1
|
Li BR, Sun N, Xu MS, Sun QX, Wang HM, Zhou J, Luo X, Lv GH, Yang XD. Difference in summer heatwave-induced damage between desert native and urban greening plants in an arid desert region. PLoS One 2024; 19:e0299976. [PMID: 39642188 PMCID: PMC11623472 DOI: 10.1371/journal.pone.0299976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/02/2024] [Indexed: 12/08/2024] Open
Abstract
Summer heatwaves have caused a distinct mortality between urban greening and native plants. However, there are insufficient studies revealing the underlying mechanisms. We hypothesized that differentiation in hydraulic traits and their integration cause the varied heatwave-induced damages between the two plant types. To prove it, three desert native species and five urban greening species were selected as the experimental objects. Then, the number of damaged individuals caused by summer heatwaves were investigated based on the 100 individuals for each species. The hydraulic traits (including hydraulic transport, photosynthetic and leaf traits) of 3-5 mature individuals were measured for each species. The comparative analysis (independent sample t test and one-way ANOVA) and the collaborative analysis (Pearson correlation and network analysis) were used to reveal the differences in heatwave-induced damage, hydraulic traits and their integration between urban greening and native plants. Our results showed that the heatwave-induced damage to urban greening plants was larger than that to native species. Water potentials of leaf and branch in pre-dawn and midday, P50, leaf dry matter content, net photosynthetic rate, transpiration rate and stomatal conductance of desert native species were significantly lower than those of urban greening plants (P < 0.05), while twig specific hydraulic conductivity, Huber value, wood density, intrinsic water use efficiency and the specific leaf area showed opposite patterns (P < 0.05). Trait integration of desert native species (0.63) was much higher than greening plants (0.24). Our results indicate that artificial urban greening plants are more susceptible to drought stress caused by heatwaves than native desert species. In the context of global climate change, in order to maintain the stability and function of urban ecosystems in extreme climate, the screening of greening plants should start from the perspective of hydraulics and trait integration, and more native species with strong drought adaptability should be planted.
Collapse
Affiliation(s)
- Bo-Rui Li
- Department of Geography & Spatial Information/Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, China
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, China
| | - Nan Sun
- Department of Geography & Spatial Information/Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, China
| | - Ming-Shan Xu
- Zhejiang Institute of Hydraulics & Estuary (Zhejiang Surveying Institute of Estuary and Coast), Hangzhou, Zhejiang, China
| | - Qi-Xing Sun
- Department of Geography & Spatial Information/Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, China
| | - Hui-Ming Wang
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, China
| | - Jie Zhou
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, China
| | - Xu Luo
- Department of Geography & Spatial Information/Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, China
| | - Guang-Hui Lv
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, China
| | - Xiao-Dong Yang
- Department of Geography & Spatial Information/Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, China
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, China
| |
Collapse
|
2
|
Liu X, Yu K, Liu H, Phillips RP, He P, Liang X, Tang W, Terrer C, Novick KA, Bakpa EP, Zhao M, Gao X, Jin Y, Wen Y, Ye Q. Contrasting drought tolerance traits of woody plants is associated with mycorrhizal types at the global scale. THE NEW PHYTOLOGIST 2024; 244:2024-2035. [PMID: 39238117 DOI: 10.1111/nph.20097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
It is well-known that the mycorrhizal type of plants correlates with different modes of nutrient cycling and availability. However, the differences in drought tolerance between arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) plants remains poorly characterized. We synthesized a global dataset of four hydraulic traits associated with drought tolerance of 1457 woody species (1139 AM and 318 EcM species) at 308 field sites. We compared these traits between AM and EcM species, with evolutionary history (i.e. angiosperms vs gymnosperms), water availability (i.e. aridity index) and biomes considered as additional factors. Overall, we found that evolutionary history and biogeography influenced differences in hydraulic traits between mycorrhizal types. Specifically, we found that (1) AM angiosperms are less drought-tolerant than EcM angiosperms in wet regions or biomes, but AM gymnosperms are more drought-tolerant than EcM gymnosperms in dry regions or biomes, and (2) in both angiosperms and gymnosperms, variation in hydraulic traits as well as their sensitivity to water availability were higher in AM species than in EcM species. Our results suggest that global shifts in water availability (especially drought) may alter the biogeographic distribution and abundance of AM and EcM plants, with consequences for ecosystem element cycling and ultimately, the land carbon sink.
Collapse
Affiliation(s)
- Xiaorong Liu
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
- Sichuan University of Arts and Science, Tashi Road 519, Dazhou, 635000, China
| | - Kailiang Yu
- Department of Ecology & Evolutionary Biology and High Meadows Environmental Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Hui Liu
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| | - Richard P Phillips
- Department of Biology, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Pengcheng He
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| | - Xingyun Liang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| | - Weize Tang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| | - César Terrer
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kimberly A Novick
- O'Neill School of Public and Environmental Affairs, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Emily P Bakpa
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| | - Min Zhao
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Xinbo Gao
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| | - Yi Jin
- Jiangxi Provincial Key Laboratory of Carbon Neutrality and Ecosystem Carbon Sink, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, 332900, China
| | - Yin Wen
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qing Ye
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| |
Collapse
|
3
|
Wittemann M, Mujawamariya M, Ntirugulirwa B, Uwizeye FK, Zibera E, Manzi OJL, Nsabimana D, Wallin G, Uddling J. Plasticity and implications of water-use traits in contrasting tropical tree species under climate change. PHYSIOLOGIA PLANTARUM 2024; 176:e14326. [PMID: 38708565 DOI: 10.1111/ppl.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/12/2024] [Indexed: 05/07/2024]
Abstract
Plants face a trade-off between hydraulic safety and growth, leading to a range of water-use strategies in different species. However, little is known about such strategies in tropical trees and whether different water-use traits can acclimate to warming. We studied five water-use traits in 20 tropical tree species grown at three different altitudes in Rwanda (RwandaTREE): stomatal conductance (gs), leaf minimum conductance (gmin), plant hydraulic conductance (Kplant), leaf osmotic potential (ψo) and net defoliation during drought. We also explored the links between these traits and growth and mortality data. Late successional (LS) species had low Kplant, gs and gmin and, thus, low water loss, while low ψo helped improve leaf water status during drought. Early successional (ES) species, on the contrary, used more water during both moist and dry conditions and exhibited pronounced drought defoliation. The ES strategy was associated with lower mortality and more pronounced growth enhancement at the warmer sites compared to LS species. While Kplant and gmin showed downward acclimation in warmer climates, ψo did not acclimate and gs measured at prevailing temperature did not change. Due to distinctly different water use strategies between successional groups, ES species may be better equipped for a warmer climate as long as defoliation can bridge drought periods.
Collapse
Affiliation(s)
- Maria Wittemann
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Myriam Mujawamariya
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, College of Science and Technology, University of Rwanda, Kigali, Rwanda
| | - Bonaventure Ntirugulirwa
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, College of Science and Technology, University of Rwanda, Kigali, Rwanda
- Rwanda Agriculture and Animal Resources Development Board (RAB), Kigali, Rwanda
- Rwanda Forestry Authority, Muhanga, Rwanda
| | - Felicien K Uwizeye
- School of Forestry and Biodiversity and Biological Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze, Rwanda
| | - Etienne Zibera
- School of Forestry and Biodiversity and Biological Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze, Rwanda
| | - Olivier Jean Leonce Manzi
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Integrated Polytechnic Regional College-Kitabi, Rwanda Polytechnic, Huye, Rwanda
| | - Donat Nsabimana
- School of Forestry and Biodiversity and Biological Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze, Rwanda
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Coleman D, Windt CW, Buckley TN, Merchant A. Leaf relative water content at 50% stomatal conductance measured by noninvasive NMR is linked to climate of origin in nine species of eucalypt. PLANT, CELL & ENVIRONMENT 2023; 46:3791-3805. [PMID: 37641435 DOI: 10.1111/pce.14700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Stomata are the gatekeepers of plant water use and must quickly respond to changes in plant water status to ensure plant survival under fluctuating environmental conditions. The mechanism for their closure is highly sensitive to disturbances in leaf water status, which makes isolating their response to declining water content difficult to characterise and to compare responses among species. Using a small-scale non-destructive nuclear magnetic resonance spectrometer as a leaf water content sensor, we measure the stomatal response to rapid induction of water deficit in the leaves of nine species of eucalypt from contrasting climates. We found a strong linear correlation between relative water content at 50% stomatal conductance (RWCgs50 ) and mean annual temperature at the climate of origin of each species. We also show evidence for stomata to maintain control over water loss well below turgor loss point in species adapted to warmer climates and secondary increases in stomatal conductance despite declining water content. We propose that RWCgs50 is a promising trait to guide future investigations comparing stomatal responses to water deficit. It may provide a useful phenotyping trait to delineate tolerance and adaption to hot temperatures and high leaf-to-air vapour pressure deficits.
Collapse
Affiliation(s)
- David Coleman
- School of Life, Earth and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Andrew Merchant
- School of Life, Earth and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
- Institute for Bio-Geosciences, Juelich, Germany
| |
Collapse
|
5
|
Restrepo-Coupe N, O'Donnell Christoffersen B, Longo M, Alves LF, Campos KS, da Araujo AC, de Oliveira RC, Prohaska N, da Silva R, Tapajos R, Wiedemann KT, Wofsy SC, Saleska SR. Asymmetric response of Amazon forest water and energy fluxes to wet and dry hydrological extremes reveals onset of a local drought-induced tipping point. GLOBAL CHANGE BIOLOGY 2023; 29:6077-6092. [PMID: 37698497 DOI: 10.1111/gcb.16933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 09/13/2023]
Abstract
Understanding the effects of intensification of Amazon basin hydrological cycling-manifest as increasingly frequent floods and droughts-on water and energy cycles of tropical forests is essential to meeting the challenge of predicting ecosystem responses to climate change, including forest "tipping points". Here, we investigated the impacts of hydrological extremes on forest function using 12+ years of observations (between 2001-2020) of water and energy fluxes from eddy covariance, along with associated ecological dynamics from biometry, at the Tapajós National Forest. Measurements encompass the strong 2015-2016 El Niño drought and La Niña 2008-2009 wet events. We found that the forest responded strongly to El Niño-Southern Oscillation (ENSO): Drought reduced water availability for evapotranspiration (ET) leading to large increases in sensible heat fluxes (H). Partitioning ET by an approach that assumes transpiration (T) is proportional to photosynthesis, we found that water stress-induced reductions in canopy conductance (Gs ) drove T declines partly compensated by higher evaporation (E). By contrast, the abnormally wet La Niña period gave higher T and lower E, with little change in seasonal ET. Both El Niño-Southern Oscillation (ENSO) events resulted in changes in forest structure, manifested as lower wet-season leaf area index. However, only during El Niño 2015-2016, we observed a breakdown in the strong meteorological control of transpiration fluxes (via energy availability and atmospheric demand) because of slowing vegetation functions (via shutdown of Gs and significant leaf shedding). Drought-reduced T and Gs , higher H and E, amplified by feedbacks with higher temperatures and vapor pressure deficits, signaled that forest function had crossed a threshold, from which it recovered slowly, with delay, post-drought. Identifying such tipping point onsets (beyond which future irreversible processes may occur) at local scale is crucial for predicting basin-scale threshold-crossing changes in forest energy and water cycling, leading to slow-down in forest function, potentially resulting in Amazon forests shifting into alternate degraded states.
Collapse
Affiliation(s)
- Natalia Restrepo-Coupe
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Bradley O'Donnell Christoffersen
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, Texas, USA
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Marcos Longo
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Luciana F Alves
- Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, California, USA
| | - Kleber Silva Campos
- Department of Environmental Physics, University of Western Pará-UFOPA, Santarém, Brazil
| | - Alessandro C da Araujo
- Brazilian Agricultural Research Corporation (Embrapa) Amazônia Oriental, Belém, Brazil
- Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | | | - Neill Prohaska
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Rodrigo da Silva
- Department of Environmental Physics, University of Western Pará-UFOPA, Santarém, Brazil
| | - Raphael Tapajos
- Department of Environmental Physics, University of Western Pará-UFOPA, Santarém, Brazil
| | - Kenia T Wiedemann
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Steven C Wofsy
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Scott R Saleska
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
6
|
Tavares JV, Oliveira RS, Mencuccini M, Signori-Müller C, Pereira L, Diniz FC, Gilpin M, Marca Zevallos MJ, Salas Yupayccana CA, Acosta M, Pérez Mullisaca FM, Barros FDV, Bittencourt P, Jancoski H, Scalon MC, Marimon BS, Oliveras Menor I, Marimon BH, Fancourt M, Chambers-Ostler A, Esquivel-Muelbert A, Rowland L, Meir P, Lola da Costa AC, Nina A, Sanchez JMB, Tintaya JS, Chino RSC, Baca J, Fernandes L, Cumapa ERM, Santos JAR, Teixeira R, Tello L, Ugarteche MTM, Cuellar GA, Martinez F, Araujo-Murakami A, Almeida E, da Cruz WJA, Del Aguila Pasquel J, Aragāo L, Baker TR, de Camargo PB, Brienen R, Castro W, Ribeiro SC, Coelho de Souza F, Cosio EG, Davila Cardozo N, da Costa Silva R, Disney M, Espejo JS, Feldpausch TR, Ferreira L, Giacomin L, Higuchi N, Hirota M, Honorio E, Huaraca Huasco W, Lewis S, Flores Llampazo G, Malhi Y, Monteagudo Mendoza A, Morandi P, Chama Moscoso V, Muscarella R, Penha D, Rocha MC, Rodrigues G, Ruschel AR, Salinas N, Schlickmann M, Silveira M, Talbot J, Vásquez R, Vedovato L, Vieira SA, Phillips OL, Gloor E, Galbraith DR. Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests. Nature 2023; 617:111-117. [PMID: 37100901 PMCID: PMC10156596 DOI: 10.1038/s41586-023-05971-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/17/2023] [Indexed: 04/28/2023]
Abstract
Tropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, [Formula: see text]50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk3-5, little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters [Formula: see text]50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both [Formula: see text]50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink.
Collapse
Affiliation(s)
- Julia Valentim Tavares
- School of Geography, University of Leeds, Leeds, UK.
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| | - Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Caroline Signori-Müller
- School of Geography, University of Leeds, Leeds, UK
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
- Department of Plant Biology, Institute of Biology, Programa de Pós Graduação em Biologia Vegetal, University of Campinas, Campinas, Brazil
| | - Luciano Pereira
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | | | | | | | | | - Martin Acosta
- Programa de Pós-Graduação em Ecologia e Manejo de Recursos Naturais, Universidade Federal do Acre, Rio Branco, Brazil
| | | | - Fernanda de V Barros
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
- Department of Plant Biology, Institute of Biology, Programa de Pós Graduação em Ecologia, University of Campinas, Campinas, Brazil
| | - Paulo Bittencourt
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Halina Jancoski
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso (UNEMAT), Nova Xavantina, Brazil
| | - Marina Corrêa Scalon
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso (UNEMAT), Nova Xavantina, Brazil
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, Brazil
| | - Beatriz S Marimon
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso (UNEMAT), Nova Xavantina, Brazil
| | - Imma Oliveras Menor
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), CIRAD, CNRS, INRA, IRD, Université de Montpellier, Montpellier, France
| | - Ben Hur Marimon
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso (UNEMAT), Nova Xavantina, Brazil
| | - Max Fancourt
- School of Geography, University of Leeds, Leeds, UK
| | | | - Adriane Esquivel-Muelbert
- School of Geography, University of Birmingham, Birmingham, UK
- Birmingham Institute of Forest Research (BIFoR), Birmingham, UK
| | - Lucy Rowland
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Patrick Meir
- School of Geosciences, University of Edinburgh, Edinburgh, UK
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | - Alex Nina
- Pontificia Universidad Católica del Perú, Lima, Peru
| | | | - Jose S Tintaya
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | | | - Jean Baca
- Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | | | - Edwin R M Cumapa
- Instituto de Geociências, Faculdade de Meteorologia, Universidade Federal do Pará, Belém, Brazil
| | | | - Renata Teixeira
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Ligia Tello
- Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | - Maira T M Ugarteche
- Museo de Historia Natural Noel Kempff Mercado, Santa Cruz de la Sierra, Bolivia
- Universidad Autonoma Gabriel Rene Moreno, Santa Cruz, Bolivia
| | - Gina A Cuellar
- Museo de Historia Natural Noel Kempff Mercado, Santa Cruz de la Sierra, Bolivia
- Universidad Autonoma Gabriel Rene Moreno, Santa Cruz, Bolivia
| | - Franklin Martinez
- Museo de Historia Natural Noel Kempff Mercado, Santa Cruz de la Sierra, Bolivia
- Universidad Autonoma Gabriel Rene Moreno, Santa Cruz, Bolivia
| | - Alejandro Araujo-Murakami
- Museo de Historia Natural Noel Kempff Mercado, Santa Cruz de la Sierra, Bolivia
- Universidad Autonoma Gabriel Rene Moreno, Santa Cruz, Bolivia
| | - Everton Almeida
- Instituto de Biodiversidade e Florestas, Universidade Federal do Oeste do Pará, Santarém, Brazil
| | | | - Jhon Del Aguila Pasquel
- Universidad Nacional de la Amazonia Peruana (UNAP), Iquitos, Peru
- Instituto de Investigaciones de la Amazonia Peruana, Iquitos, Peru
| | - Luís Aragāo
- National Institute for Space Research (INPE), São José dos Campos-SP, Brazil
| | | | | | - Roel Brienen
- School of Geography, University of Leeds, Leeds, UK
| | - Wendeson Castro
- Laboratório de Botânica e Ecologia Vegetal, Universidade Federal do Acre, Rio Branco, Brazil
- SOS Amazônia, Programa Governança e Proteção da Paisagem Verde na Amazônia, Rio Branco-AC, Brazil
| | | | | | - Eric G Cosio
- Sección Química, Pontificia Universidad Católica del Perú, Lima, Peru
| | | | - Richarlly da Costa Silva
- Programa de Pós-Graduação em Ecologia e Manejo de Recursos Naturais, Universidade Federal do Acre, Rio Branco, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Acre, Campus Baixada do Sol, Rio Branco, Brazil
| | - Mathias Disney
- Department of Geography, University College London, London, UK
| | - Javier Silva Espejo
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
- Departamento de Biología, Universidad de La Serena, La Serena, Chile
| | - Ted R Feldpausch
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | - Leandro Giacomin
- Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Niro Higuchi
- Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Marina Hirota
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Physics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Euridice Honorio
- Instituto de Investigaciones de la Amazonia Peruana, Iquitos, Peru
| | - Walter Huaraca Huasco
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Simon Lewis
- School of Geography, University of Leeds, Leeds, UK
- Department of Geography, University College London, London, UK
| | - Gerardo Flores Llampazo
- Instituto de Investigaciones de la Amazonia Peruana, Iquitos, Peru
- Universidad Nacional Jorge Basadre de Grohmann (UNJBG), Tacna, Peru
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Abel Monteagudo Mendoza
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
- Jardín Botánico de Missouri, Oxapampa, Peru
| | - Paulo Morandi
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso (UNEMAT), Nova Xavantina, Brazil
| | - Victor Chama Moscoso
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
- Jardín Botánico de Missouri, Oxapampa, Peru
| | - Robert Muscarella
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Deliane Penha
- Programa de Pós-Graduação em Biodiversidade, Universidade Federal do Oeste do Pará, Santarém, Brazil
| | - Mayda Cecília Rocha
- Instituto de Ciências e Tecnologia das Águas, Universidade Federal do Oeste do Pará, Santarém, Brazil
| | - Gleicy Rodrigues
- Programa de Pós-Graduação em Botânica, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | | | - Norma Salinas
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- Sección Química, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Monique Schlickmann
- Programa de Pós-Graduação em Biodiversidade, Universidade Federal do Oeste do Pará, Santarém, Brazil
| | - Marcos Silveira
- Museu Universitário, Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, Brazil
| | - Joey Talbot
- Institute for Transport Studies, University of Leeds, Leeds, UK
| | | | - Laura Vedovato
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Simone Aparecida Vieira
- Núcleo de Estudos e Pesquisas Ambientais, Universidade Estadual de Campinas, Campinas, Brazil
| | | | | | | |
Collapse
|
7
|
Yao Y, Ciais P, Viovy N, Joetzjer E, Chave J. How drought events during the last century have impacted biomass carbon in Amazonian rainforests. GLOBAL CHANGE BIOLOGY 2023; 29:747-762. [PMID: 36285645 PMCID: PMC10100251 DOI: 10.1111/gcb.16504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
During the last two decades, inventory data show that droughts have reduced biomass carbon sink of the Amazon forest by causing mortality to exceed growth. However, process-based models have struggled to include drought-induced responses of growth and mortality and have not been evaluated against plot data. A process-based model, ORCHIDEE-CAN-NHA, including forest demography with tree cohorts, plant hydraulic architecture and drought-induced tree mortality, was applied over Amazonia rainforests forced by gridded climate fields and rising CO2 from 1901 to 2019. The model reproduced the decelerating signal of net carbon sink and drought sensitivity of aboveground biomass (AGB) growth and mortality observed at forest plots across selected Amazon intact forests for 2005 and 2010. We predicted a larger mortality rate and a more negative sensitivity of the net carbon sink during the 2015/16 El Niño compared with the former droughts. 2015/16 was indeed the most severe drought since 1901 regarding both AGB loss and area experiencing a severe carbon loss. We found that even if climate change did increase mortality, elevated CO2 contributed to balance the biomass mortality, since CO2 -induced stomatal closure reduces transpiration, thus, offsets increased transpiration from CO2 -induced higher foliage area.
Collapse
Affiliation(s)
- Yitong Yao
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Nicolas Viovy
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Emilie Joetzjer
- INRAE, Universite de Lorraine, AgroParisTech, UMR SilvaNancyFrance
| | - Jerome Chave
- Laboratoire Evolution et Diversité Biologique UMR 5174 CNRS, IRDUniversité Paul SabatierToulouseFrance
| |
Collapse
|
8
|
Weithmann G, Schuldt B, Link RM, Heil D, Hoeber S, John H, Müller-Haubold H, Schüller LM, Schumann K, Leuschner C. Leaf trait modification in European beech trees in response to climatic and edaphic drought. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1272-1286. [PMID: 34854183 DOI: 10.1111/plb.13366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/07/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Leaf morphological and physiological traits control the carbon and water relations of mature trees and are determinants of drought tolerance, but it is not well understood how they are modified in response to water deficits. We analysed five sun-canopy leaf traits (mean leaf size (LS), specific leaf area (SLA), Huber value (HV), water potential at turgor loss point (Ψtlp ) and foliar carbon isotope signature (δ13 C)) in European beech (Fagus sylvatica L.) across three precipitation gradients sampled in moist (2010), dry (2019) and very dry (2018) summers, and tested their response to short-term water deficits (climatic water balance (CWB) preceding sample collection) and long-term water availability (mean annual precipitation (MAP), plant-available soil water capacity (AWC) and neighbourhood competition). Across the 34 sites, LS varied seven-fold (3.9-27.0 cm2 ), SLA four-fold (77.1-306.9 cm²·g-1 ) and HV six-fold (1.0-6.65 cm2 ·m-2 ). In the 2018 dataset, LS showed a negative and HV a positive relationship to MAP, which contradicts relations found in multi-species samples. Average Ψtlp ranged from -1.90 to -2.62 MPa and decreased across the sites with decreasing CWB in the month prior to measurement, as well as with decreasing MAP and AWC in 2019. Studied leaf traits varied considerably between years, suggesting that mast fruiting and the severe 2018 drought caused the formation of smaller leaves. We conclude that sun-canopy leaf traits of European beech exhibit considerable plasticity in response to climatic and edaphic aridity, and that osmotic adjustment may be an important element in the drought response strategy of this anisohydric tree species.
Collapse
Affiliation(s)
- G Weithmann
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - B Schuldt
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - R M Link
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - D Heil
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - S Hoeber
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - H John
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - H Müller-Haubold
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - L-M Schüller
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - K Schumann
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - C Leuschner
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
- Centre for Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany
| |
Collapse
|
9
|
Petruzzellis F, Tordoni E, Di Bonaventura A, Tomasella M, Natale S, Panepinto F, Bacaro G, Nardini A. Turgor loss point and vulnerability to xylem embolism predict species-specific risk of drought-induced decline of urban trees. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1198-1207. [PMID: 34704333 PMCID: PMC10078640 DOI: 10.1111/plb.13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Increasing frequency and severity of drought events is posing risks to trees' health, including those planted in urban settlements. Drought-induced decline of urban trees negatively affects ecosystem services of urban green spaces and implies cost for maintenance and removal of plants. We aimed at identifying physiological traits that can explain and predict the species-specific vulnerability to climate change in urban habitats. We assessed the relationships between long-term risk of decline of different tree species in a medium-sized town and their key indicators of drought stress tolerance, i.e. turgor loss point (TLP) and vulnerability to xylem embolism (P50 ). Starting from 2012, the study area experienced several summer seasons with positive anomalies of temperature and negative anomalies of precipitation. This trend was coupled with increasing percentages of urban trees showing signs of crown die-back and mortality. The species-specific risk of decline was higher for species with less negative TLP and P50 values. The relationship between species-specific risk of climate change-induced decline of urban trees and key physiological indicators of drought tolerance confirms findings obtained in natural forests and highlights that TLP and P50 are useful indicators for species selection for tree plantation in towns, to mitigate negative impacts of climate change.
Collapse
Affiliation(s)
- F. Petruzzellis
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
- Dipartimento di Scienze agroalimentari, ambientali e animaliUniversità di UdineUdineItalia
| | - E. Tordoni
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
- Institute of Ecology and Earth ScienceUniversity of TartuTartuEstonia
| | - A. Di Bonaventura
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
| | - M. Tomasella
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
| | - S. Natale
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
| | - F. Panepinto
- Unità Tecnica Alberature e ParchiServizio Strade e Verde PubblicoComune di TriesteTriesteItalia
| | - G. Bacaro
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
| | - A. Nardini
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
| |
Collapse
|
10
|
Hiiragi K, Matsuo N, Sakai S, Kawahara K, Ichie T, Kenzo T, Aurelia DC, Kume T, Nakagawa M. Water uptake patterns of tropical canopy trees in Borneo: species-specific and temporal variation and relationships with aboveground traits. TREE PHYSIOLOGY 2022; 42:1928-1942. [PMID: 35656927 DOI: 10.1093/treephys/tpac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Root water uptake depth and its temporal variation are important determinants of tree mortality, resource partitioning and drought resistance; however, their effects on tropical trees remain poorly understood. In this study, we investigated interspecific differences in water uptake depth and its temporal variation using stable isotope analysis and examined the relationships between water uptake depth and aboveground traits in a humid aseasonal tropical rainforest in Borneo. Species-specific differences in water uptake depth were examined for six dominant dipterocarp species. Temporal variation in water uptake depth for various canopy trees was assessed in three periods with different soil moisture conditions. We then examined the relationships between water uptake depth and aboveground traits including wood density, maximum tree height, flowering frequency and growth rate. Dipterocarpus globosus appeared to be more reliant on deep water resources than the other dipterocarp species. Water uptake from the soil layers varied among the three sampling periods. Trees generally utilized deeper soil water during the second driest sampling period, when temperatures were lowest. During the driest and wettest sampling periods, species with higher flowering frequencies tended to preferentially uptake deep soil water. These results suggest that low temperature and soil moisture promote increased deep soil water uptake in the study region. Dynamic relationships between water uptake patterns and aboveground tree traits may be related to resource partitioning among co-existing species.
Collapse
Affiliation(s)
- Katsuura Hiiragi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Naoko Matsuo
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Shoko Sakai
- Center for Ecological Research, Kyoto University, Otsu 520-2113, Japan
| | - Kazuma Kawahara
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Tomoaki Ichie
- Faculty of Agriculture and Marine Science, Kochi University, 783-8502, Japan
| | - Tanaka Kenzo
- Japan International Research Center for Agricultural Sciences, Tsukuba 305-8686, Japan
| | - Dulce Chung Aurelia
- Research, Development and Innovation Division, Forest Department Sarawak, 93250 Kuching, Sarawak, Malaysia
| | - Tomonori Kume
- Kasuya Research Forest, Kyusyu University, Sasaguri, Kasuya, Fukuoka 811-2415, Japan
| | - Michiko Nakagawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
11
|
Xiong D, Flexas J. Safety-efficiency tradeoffs? Correlations of photosynthesis, leaf hydraulics, and dehydration tolerance across species. Oecologia 2022; 200:51-64. [PMID: 36040668 DOI: 10.1007/s00442-022-05250-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
The tradeoffs between carbon assimilation and hydraulic efficiencies and drought-tolerance traits on different scales are considered a central tenet in plant ecophysiology; however, no clear tradeoff between these traits has emerged in previous studies using woody angiosperms or grasses by investigating several hydraulic tolerance and gas exchange efficiency and/or water transport efficiency traits. In this study, we measured numerous efficiency, resistance, and leaf anatomical traits, including light-saturated gas exchange, leaf hydraulic vulnerability curves, pressure-volume curves, and leaf anatomical traits, in seven species with diverse drought tolerance. A substantial variation in photosynthetic rate, stomatal conductance, mesophyll conductance, maximum leaf hydraulic conductance (Kmax), mesophyll anatomical traits, and leaf vein density across species was observed. Both mesophyll conductance and Kmax were related to leaf anatomical traits, but other gas exchange traits were decoupled from Kmax. Although the efficiency and tolerance traits varied widely across estimated species, no clear trade-off between safety traits and efficiency traits was observed. These findings suggested that postulated leaf-level drought tolerance-carbon assimilation and hydraulic efficiency tradeoff does not exist among distant species and that the fact that different leaf anatomical traits determine efficiency and tolerance capacity might contribute to the lack of such tradeoffs.
Collapse
Affiliation(s)
- Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Jaume Flexas
- Research Group on Plant Biology Under Mediterranean Conditions, Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Universitat de Les Illes Balears, Carretera de Valldemossa Km 7.5Illes Balears, 07121, Palma, Spain
| |
Collapse
|
12
|
Han H, Xi B, Wang Y, Feng J, Li X, Tissue DT. Lack of phenotypic plasticity in leaf hydraulics for 10 woody species common to urban forests of North China. TREE PHYSIOLOGY 2022; 42:1203-1215. [PMID: 35038332 DOI: 10.1093/treephys/tpac003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The survival and performance of urban forests are increasingly challenged by urban drought, consequently compromising the sustainability and functionality of urban vegetation. Plant-water relations largely determine species drought tolerance, yet little is known about the hydraulics of urban forest species. Here, we report the leaf hydraulic and carbon traits that govern plant growth and drought resistance, including vulnerability to embolism, hydraulic conductivity and leaf gas exchange characteristics, as well as morphological traits that are potentially linked with these physiological attributes, with the aim of guiding species selection and management in urban forests. Plant materials were collected from mature shrubs and trees on our university campus in Beijing, representing 10 woody species common to urban forests in north China. We found that the leaf embolism resistance, represented by the water potential inducing 50% loss of hydraulic conductivity (P50), as well as the hydraulic safety margin (HSM) defined by P50 and the water potential threshold at the inception of embolism (P12), varied remarkably across species, but was unrelated to growth form. Likewise, stem and leaf-specific hydraulic conductivity (Kstem and kl) was also highly species-specific. Leaf P50 was positively correlated with hydraulic conductivity. However, neither P50 nor hydraulic conductivity was correlated with leaf gas exchange traits, including maximum photosynthetic rate (Amax) and stomatal conductance (gs). Plant morphological and physiological traits were not related, except for specific leaf area, which showed a negative relationship with HSM. Traits influencing plant-water transport were primarily correlated with the mean annual precipitation of species climatic niche. Overall, current common woody species in urban forest environments differed widely in their drought resistance and did not have the capacity to modify these characteristics in response to a changing climate. Species morphology provides limited information regarding physiological drought resistance. Thus, screening urban forest species based on plant physiology is essential to sustain the ecological services of urban forests.
Collapse
Affiliation(s)
- Hang Han
- College of Life and Environmental Science, Minzu University of China, 27 Zhongguancun South Avenue, Haidian District, Beijing 100081, People's Republic of China
| | - Benye Xi
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, People's Republic of China
| | - Ye Wang
- Beijing Academy of Forestry and Pomology Sciences, 12 A Rui Wang Fen, Fragrance Hills, Haidian District, Beijing 100093, People's Republic of China
| | - Jinchao Feng
- College of Life and Environmental Science, Minzu University of China, 27 Zhongguancun South Avenue, Haidian District, Beijing 100081, People's Republic of China
| | - Ximeng Li
- College of Life and Environmental Science, Minzu University of China, 27 Zhongguancun South Avenue, Haidian District, Beijing 100081, People's Republic of China
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
- Global Centre for Land-based Innovation, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| |
Collapse
|
13
|
Variations in leaf water status and drought tolerance of dominant tree species growing in multi-aged tropical forests in Thailand. Sci Rep 2022; 12:6882. [PMID: 35477746 PMCID: PMC9044374 DOI: 10.1038/s41598-022-10988-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Large-scale abandoned agricultural areas in Southeast Asia resulted in patches of forests of multiple successions and characteristics, challenging the study of their responses to environmental changes, especially under climatic water stress. Here, we investigated seasonal variation in leaf water status and drought tolerance of dominant tree species in three multi-aged tropical forests, ranging from 5 to > 200 years old, with contrasting soil moisture in Thailand. Seasonal variation in leaf water status differed among the forests with trees in young and intermediate sites demonstrating larger differences between seasons than the old-growth forest. Although vulnerability to embolism curves revealed that trees in old-growth forest were potentially more sensitive to declining leaf water status than others, they were predicted to lose < 5% of their hydraulic capacity as opposed to 13% for the trees in the younger sites. Our results suggest that the responses to water stress of tree species in different forest ages greatly vary with a tendency of trees in younger sites to be more resilience than those in older sites. Such information would benefit the selection of tree species that could adapt well to specific environments, thus improving the strategies for managing forests of different ages under a warmer future.
Collapse
|
14
|
Guillemot J, Martin-StPaul NK, Bulascoschi L, Poorter L, Morin X, Pinho BX, le Maire G, R L Bittencourt P, Oliveira RS, Bongers F, Brouwer R, Pereira L, Gonzalez Melo GA, Boonman CCF, Brown KA, Cerabolini BEL, Niinemets Ü, Onoda Y, Schneider JV, Sheremetiev S, Brancalion PHS. Small and slow is safe: On the drought tolerance of tropical tree species. GLOBAL CHANGE BIOLOGY 2022; 28:2622-2638. [PMID: 35007364 DOI: 10.1111/gcb.16082] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Understanding how evolutionary history and the coordination between trait trade-off axes shape the drought tolerance of trees is crucial to predict forest dynamics under climate change. Here, we compiled traits related to drought tolerance and the fast-slow and stature-recruitment trade-off axes in 601 tropical woody species to explore their covariations and phylogenetic signals. We found that xylem resistance to embolism (P50) determines the risk of hydraulic failure, while the functional significance of leaf turgor loss point (TLP) relies on its coordination with water use strategies. P50 and TLP exhibit weak phylogenetic signals and substantial variation within genera. TLP is closely associated with the fast-slow trait axis: slow species maintain leaf functioning under higher water stress. P50 is associated with both the fast-slow and stature-recruitment trait axes: slow and small species exhibit more resistant xylem. Lower leaf phosphorus concentration is associated with more resistant xylem, which suggests a (nutrient and drought) stress-tolerance syndrome in the tropics. Overall, our results imply that (1) drought tolerance is under strong selective pressure in tropical forests, and TLP and P50 result from the repeated evolutionary adaptation of closely related taxa, and (2) drought tolerance is coordinated with the ecological strategies governing tropical forest demography. These findings provide a physiological basis to interpret the drought-induced shift toward slow-growing, smaller, denser-wooded trees observed in the tropics, with implications for forest restoration programmes.
Collapse
Affiliation(s)
- Joannès Guillemot
- CIRAD, UMR Eco&Sols, Piracicaba, São Paulo, Brazil
- Eco&Sols, Univ. Montpellier, CIRAD, INRAe, Institut Agro, IRD, Montpellier, France
- Department of Forest Sciences, ESALQ, University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Leticia Bulascoschi
- Department of Forest Sciences, ESALQ, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
| | - Xavier Morin
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Bruno X Pinho
- AMAP, Univ Montpellier, INRAe, CIRAD, CNRS, IRD, Montpellier, France
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Guerric le Maire
- CIRAD, UMR Eco&Sols, Piracicaba, São Paulo, Brazil
- Eco&Sols, Univ. Montpellier, CIRAD, INRAe, Institut Agro, IRD, Montpellier, France
| | | | - Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Frans Bongers
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
| | - Rens Brouwer
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
| | - Luciano Pereira
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | | | - Coline C F Boonman
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Kerry A Brown
- Department of Geography, Geology and the Environment, Kingston University London, Kingston Upon Thames, UK
| | - Bruno E L Cerabolini
- Department of Biotechnologies and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Ülo Niinemets
- Estonian University of Life Sciences, Tartu, Estonia
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Julio V Schneider
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
| | | | - Pedro H S Brancalion
- Department of Forest Sciences, ESALQ, University of São Paulo, Piracicaba, São Paulo, Brazil
| |
Collapse
|
15
|
Giles AL, Rowland L, Bittencourt PRL, Bartholomew DC, Coughlin I, Costa PB, Domingues T, Miatto RC, Barros FV, Ferreira LV, Groenendijk P, Oliveira AAR, da Costa ACL, Meir P, Mencuccini M, Oliveira RS. Small understorey trees have greater capacity than canopy trees to adjust hydraulic traits following prolonged experimental drought in a tropical forest. TREE PHYSIOLOGY 2022; 42:537-556. [PMID: 34508606 DOI: 10.1093/treephys/tpab121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Future climate change predictions for tropical forests highlight increased frequency and intensity of extreme drought events. However, it remains unclear whether large and small trees have differential strategies to tolerate drought due to the different niches they occupy. The future of tropical forests is ultimately dependent on the capacity of small trees (<10 cm in diameter) to adjust their hydraulic system to tolerate drought. To address this question, we evaluated whether the drought tolerance of neotropical small trees can adjust to experimental water stress and was different from tall trees. We measured multiple drought resistance-related hydraulic traits across nine common neotropical genera at the world's longest-running tropical forest throughfall-exclusion experiment and compared their responses with surviving large canopy trees. Small understorey trees in both the control and the throughfall-exclusion treatment had lower minimum stomatal conductance and maximum hydraulic leaf-specific conductivity relative to large trees of the same genera, as well as a greater hydraulic safety margin (HSM), percentage loss of conductivity and embolism resistance, demonstrating that they occupy a distinct hydraulic niche. Surprisingly, in response to the drought treatment, small trees increased specific hydraulic conductivity by 56.3% and leaf:sapwood area ratio by 45.6%. The greater HSM of small understorey trees relative to large canopy trees likely enabled them to adjust other aspects of their hydraulic systems to increase hydraulic conductivity and take advantage of increases in light availability in the understorey resulting from the drought-induced mortality of canopy trees. Our results demonstrate that differences in hydraulic strategies between small understorey and large canopy trees drive hydraulic niche segregation. Small understorey trees can adjust their hydraulic systems in response to changes in water and light availability, indicating that natural regeneration of tropical forests following long-term drought may be possible.
Collapse
Affiliation(s)
- A L Giles
- Instituto de Biologia, University of Campinas (UNICAMP), R. Monteiro Lobato, 255 - Barão Geraldo, Campinas SP 13083-970, Brazil
| | - L Rowland
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UK
| | - P R L Bittencourt
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UK
| | - D C Bartholomew
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UK
| | - I Coughlin
- Departamento de Biologia, FFCLRP, Universidade de São Paulo, Av. Bandeirantes, 3900 - Vila Monte Alegre, Ribeirão Preto SP 14040-900, Brazil
- Research School of Biology, Australian National University, 134 Linnaeus Way, Canberra ACT 2601, Australia
| | - P B Costa
- Instituto de Biologia, University of Campinas (UNICAMP), R. Monteiro Lobato, 255 - Barão Geraldo, Campinas SP 13083-970, Brazil
- Biological Sciences, Stirling Highway, Perth, WA 6009, Australia
| | - T Domingues
- Departamento de Biologia, FFCLRP, Universidade de São Paulo, Av. Bandeirantes, 3900 - Vila Monte Alegre, Ribeirão Preto SP 14040-900, Brazil
| | - R C Miatto
- Departamento de Biologia, FFCLRP, Universidade de São Paulo, Av. Bandeirantes, 3900 - Vila Monte Alegre, Ribeirão Preto SP 14040-900, Brazil
| | - F V Barros
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UK
| | - L V Ferreira
- Museu Paraense Emílio Goeldi, Av. Gov Magalhães Barata, 376 - São Brás, Belém PA 66040-170, Brazil
| | - P Groenendijk
- Instituto de Biologia, University of Campinas (UNICAMP), R. Monteiro Lobato, 255 - Barão Geraldo, Campinas SP 13083-970, Brazil
| | - A A R Oliveira
- Museu Paraense Emílio Goeldi, Av. Gov Magalhães Barata, 376 - São Brás, Belém PA 66040-170, Brazil
| | - A C L da Costa
- Museu Paraense Emílio Goeldi, Av. Gov Magalhães Barata, 376 - São Brás, Belém PA 66040-170, Brazil
- Biological Sciences, Stirling Highway, Perth, WA 6009, Australia
| | - P Meir
- Research School of Biology, Australian National University, 134 Linnaeus Way, Canberra ACT 2601, Australia
- School of GeoSciences, University of Edinburgh, Drummond St Edinburgh EH9 3FF, UK
| | - M Mencuccini
- CREAF, Campus UAB, Edifici C Campus de Bellaterra Cerdanyola del Vallés 08193, Spain
- ICREA, Passeig de Lluís Companys, 23, Barcelona 08010, Spain
| | - R S Oliveira
- Instituto de Biologia, University of Campinas (UNICAMP), R. Monteiro Lobato, 255 - Barão Geraldo, Campinas SP 13083-970, Brazil
| |
Collapse
|
16
|
Boursiac Y, Protto V, Rishmawi L, Maurel C. Experimental and conceptual approaches to root water transport. PLANT AND SOIL 2022; 478:349-370. [PMID: 36277078 PMCID: PMC9579117 DOI: 10.1007/s11104-022-05427-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/03/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Root water transport, which critically contributes to the plant water status and thereby plant productivity, has been the object of extensive experimental and theoretical studies. However, root systems represent an intricate assembly of cells in complex architectures, including many tissues at distinct developmental stages. Our comprehension of where and how molecular actors integrate their function in order to provide the root with its hydraulic properties is therefore still limited. SCOPE Based on current literature and prospective discussions, this review addresses how root water transport can be experimentally measured, what is known about the underlying molecular actors, and how elementary water transport processes are scaled up in numerical/mathematical models. CONCLUSIONS The theoretical framework and experimental procedures on root water transport that are in use today have been established a few decades ago. However, recent years have seen the appearance of new techniques and models with enhanced resolution, down to a portion of root or to the tissue level. These advances pave the way for a better comprehension of the dynamics of water uptake by roots in the soil.
Collapse
Affiliation(s)
- Yann Boursiac
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Virginia Protto
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Louai Rishmawi
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Christophe Maurel
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| |
Collapse
|
17
|
McGregor IR, Helcoski R, Kunert N, Tepley AJ, Gonzalez-Akre EB, Herrmann V, Zailaa J, Stovall AEL, Bourg NA, McShea WJ, Pederson N, Sack L, Anderson-Teixeira KJ. Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest. THE NEW PHYTOLOGIST 2021; 231:601-616. [PMID: 33049084 DOI: 10.1111/nph.16996] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
As climate change drives increased drought in many forested regions, mechanistic understanding of the factors conferring drought tolerance in trees is increasingly important. The dendrochronological record provides a window through which we can understand how tree size and traits shape growth responses to droughts. We analyzed tree-ring records for 12 species in a broadleaf deciduous forest in Virginia (USA) to test hypotheses for how tree height, microenvironment characteristics, and species' traits shaped drought responses across the three strongest regional droughts over a 60-yr period. Drought tolerance (resistance, recovery, and resilience) decreased with tree height, which was strongly correlated with exposure to higher solar radiation and evaporative demand. The potentially greater rooting volume of larger trees did not confer a resistance advantage, but marginally increased recovery and resilience, in sites with low topographic wetness index. Drought tolerance was greater among species whose leaves lost turgor (wilted) at more negative water potentials and experienced less shrinkage upon desiccation. The tree-ring record reveals that tree height and leaf drought tolerance traits influenced growth responses during and after significant droughts in the meteorological record. As climate change-induced droughts intensify, tall trees with drought-sensitive leaves will be most vulnerable to immediate and longer-term growth reductions.
Collapse
Affiliation(s)
- Ian R McGregor
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, 27607, USA
| | - Ryan Helcoski
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - Norbert Kunert
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
- Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama, Republic of Panama
| | - Alan J Tepley
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
- Canadian Forest Service, Northern Forestry Centre, Edmonton, AB, T6H 3S5, Canada
| | - Erika B Gonzalez-Akre
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - Valentine Herrmann
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - Joseph Zailaa
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
- Biological Sciences Department, California State University, Los Angeles, CA, 90032, USA
| | - Atticus E L Stovall
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, 22903, USA
- NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Norman A Bourg
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - William J McShea
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | | | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kristina J Anderson-Teixeira
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
- Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama, Republic of Panama
| |
Collapse
|
18
|
Xu X, Konings AG, Longo M, Feldman A, Xu L, Saatchi S, Wu D, Wu J, Moorcroft P. Leaf surface water, not plant water stress, drives diurnal variation in tropical forest canopy water content. THE NEW PHYTOLOGIST 2021; 231:122-136. [PMID: 33539544 DOI: 10.1111/nph.17254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/27/2021] [Indexed: 05/25/2023]
Abstract
Variation in canopy water content (CWC) that can be detected from microwave remote sensing of vegetation optical depth (VOD) has been proposed as an important measure of vegetation water stress. However, the contribution of leaf surface water (LWs ), arising from dew formation and rainfall interception, to CWC is largely unknown, particularly in tropical forests and other high-humidity ecosystems. We compared VOD data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and CWC predicted by a plant hydrodynamics model at four tropical sites in Brazil spanning a rainfall gradient. We assessed how LWs influenced the relationship between VOD and CWC. The analysis indicates that while CWC is strongly correlated with VOD (R2 = 0.62 across all sites), LWs accounts for 61-76% of the diurnal variation in CWC despite being < 10% of CWC. Ignoring LWs weakens the near-linear relationship between CWC and VOD and reduces the consistency in diurnal variation. The contribution of LWs to CWC variation, however, decreases at longer, seasonal to inter-annual, time scales. Our results demonstrate that diurnal patterns of dew formation and rainfall interception can be an important driver of diurnal variation in CWC and VOD over tropical ecosystems and therefore should be accounted for when inferring plant diurnal water stress from VOD measurements.
Collapse
Affiliation(s)
- Xiangtao Xu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Alexandra G Konings
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Marcos Longo
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Andrew Feldman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Liang Xu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Sassan Saatchi
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
- Institute of Environment and Sustainability, University of California, Los Angeles, CA, 90024, USA
| | - Donghai Wu
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Jin Wu
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Paul Moorcroft
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
19
|
Oliveira RS, Eller CB, Barros FDV, Hirota M, Brum M, Bittencourt P. Linking plant hydraulics and the fast-slow continuum to understand resilience to drought in tropical ecosystems. THE NEW PHYTOLOGIST 2021; 230:904-923. [PMID: 33570772 DOI: 10.1111/nph.17266] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/11/2020] [Indexed: 05/12/2023]
Abstract
Tropical ecosystems have the highest levels of biodiversity, cycle more water and absorb more carbon than any other terrestrial ecosystem on Earth. Consequently, these ecosystems are extremely important components of Earth's climatic system and biogeochemical cycles. Plant hydraulics is an essential discipline to understand and predict the dynamics of tropical vegetation in scenarios of changing water availability. Using published plant hydraulic data we show that the trade-off between drought avoidance (expressed as deep-rooting, deciduousness and capacitance) and hydraulic safety (P50 - the water potential when plants lose 50% of their maximum hydraulic conductivity) is a major axis of physiological variation across tropical ecosystems. We also propose a novel and independent axis of hydraulic trait variation linking vulnerability to hydraulic failure (expressed as the hydraulic safety margin (HSM)) and growth, where inherent fast-growing plants have lower HSM compared to slow-growing plants. We surmise that soil nutrients are fundamental drivers of tropical community assembly determining the distribution and abundance of the slow-safe/fast-risky strategies. We conclude showing that including either the growth-HSM or the resistance-avoidance trade-off in models can make simulated tropical rainforest communities substantially more vulnerable to drought than similar communities without the trade-off. These results suggest that vegetation models need to represent hydraulic trade-off axes to accurately project the functioning and distribution of tropical ecosystems.
Collapse
Affiliation(s)
- Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, CP 6109, University of Campinas - UNICAMP, Campinas, SP, 13083-970, Brazil
| | - Cleiton B Eller
- Department of Plant Biology, Institute of Biology, CP 6109, University of Campinas - UNICAMP, Campinas, SP, 13083-970, Brazil
| | - Fernanda de V Barros
- Department of Plant Biology, Institute of Biology, CP 6109, University of Campinas - UNICAMP, Campinas, SP, 13083-970, Brazil
- Department of Geography, University of Exeter, Exeter, EX4 4QE, UK
| | - Marina Hirota
- Department of Plant Biology, Institute of Biology, CP 6109, University of Campinas - UNICAMP, Campinas, SP, 13083-970, Brazil
- Department of Physics, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Mauro Brum
- Department of Plant Biology, Institute of Biology, CP 6109, University of Campinas - UNICAMP, Campinas, SP, 13083-970, Brazil
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, USA
| | - Paulo Bittencourt
- Department of Plant Biology, Institute of Biology, CP 6109, University of Campinas - UNICAMP, Campinas, SP, 13083-970, Brazil
- Department of Geography, University of Exeter, Exeter, EX4 4QE, UK
| |
Collapse
|
20
|
López R, Cano FJ, Martin-StPaul NK, Cochard H, Choat B. Coordination of stem and leaf traits define different strategies to regulate water loss and tolerance ranges to aridity. THE NEW PHYTOLOGIST 2021; 230:497-509. [PMID: 33452823 DOI: 10.1111/nph.17185] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Adaptation to drought involves complex interactions of traits that vary within and among species. To date, few data are available to quantify within-species variation in functional traits and they are rarely integrated into mechanistic models to improve predictions of species response to climate change. We quantified intraspecific variation in functional traits of two Hakea species growing along an aridity gradient in southeastern Australia. Measured traits were later used to parameterise the model SurEau to simulate a transplantation experiment to identify the limits of drought tolerance. Embolism resistance varied between species but not across populations. Instead, populations adjusted to drier conditions via contrasting sets of trait trade-offs that facilitated homeostasis of plant water status. The species from relatively mesic climate, Hakea dactyloides, relied on tight stomatal control whereas the species from xeric climate, Hakea leucoptera dramatically increased Huber value and leaf mass per area, while leaf area index (LAI) and epidermal conductance (gmin ) decreased. With trait variability, SurEau predicts the plasticity of LAI and gmin buffers the impact of increasing aridity on population persistence. Knowledge of within-species variability in multiple drought tolerance traits will be crucial to accurately predict species distributional limits.
Collapse
Affiliation(s)
- Rosana López
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Francisco Javier Cano
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | | | - Hervé Cochard
- Université Clermont-Auvergne, INRA, PIAF, Clermont-Ferrand, 63000, France
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
21
|
De Guzman ME, Acosta-Rangel A, Winter K, Meinzer FC, Bonal D, Santiago LS. Hydraulic traits of Neotropical canopy liana and tree species across a broad range of wood density: implications for predicting drought mortality with models. TREE PHYSIOLOGY 2021; 41:24-34. [PMID: 32803244 DOI: 10.1093/treephys/tpaa106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 07/07/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Wood density (WD) is often used as a proxy for hydraulic traits such as vulnerability to drought-induced xylem cavitation and maximum water transport capacity, with dense-wooded species generally being more resistant to drought-induced xylem cavitation, having lower rates of maximum water transport and lower sapwood capacitance than light-wooded species. However, relationships between WD and the hydraulic traits that they aim to predict have not been well established in tropical forests, where modeling is necessary to predict drought responses for a high diversity of unmeasured species. We evaluated WD and relationships with stem xylem vulnerability by measuring cavitation curves, sapwood water release curves and minimum seasonal water potential (Ψmin) on upper canopy branches of six tree species and three liana species from a single wet tropical forest site in Panama. The objective was to better understand coordination and trade-offs among hydraulic traits and the potential utility of these relationships for modeling purposes. We found that parameters from sapwood water release curves such as capacitance, saturated water content and sapwood turgor loss point (Ψtlp,x) were related to WD, whereas stem vulnerability curve parameters were not. However, the water potential corresponding to 50% loss of hydraulic conductivity (P50) was related to Ψtlp,x and sapwood osmotic potential at full turgor (πo,x). Furthermore, species with lower Ψmin showed lower P50, Ψtlp,x and πo,x suggesting greater drought resistance. Our results indicate that WD is a good easy-to-measure proxy for some traits related to drought resistance, but not others. The ability of hydraulic traits such as P50 and Ψtlp,x to predict mortality must be carefully examined if WD values are to be used to predict drought responses in species without detailed physiological measurements.
Collapse
Affiliation(s)
- Mark E De Guzman
- Department of Botany & Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
| | - Aleyda Acosta-Rangel
- Department of Botany & Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panamá 0843-03092, Republic of Panamá
| | - Frederick C Meinzer
- Pacific Northwest Station, USDA Forest Service, Corvallis, 3200 SW Jefferson Way, OR 97331, USA
| | - Damien Bonal
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, 14 Rue Girardet, 54000 Nancy, France
| | - Louis S Santiago
- Department of Botany & Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panamá 0843-03092, Republic of Panamá
| |
Collapse
|
22
|
Meunier F, Verbeeck H, Cowdery B, Schnitzer SA, Smith‐Martin CM, Powers JS, Xu X, Slot M, De Deurwaerder HPT, Detto M, Bonal D, Longo M, Santiago LS, Dietze M. Unraveling the relative role of light and water competition between lianas and trees in tropical forests: A vegetation model analysis. THE JOURNAL OF ECOLOGY 2021; 109:519-540. [PMID: 33536686 PMCID: PMC7839527 DOI: 10.1111/1365-2745.13540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/16/2020] [Indexed: 05/05/2023]
Abstract
Despite their low contribution to forest carbon stocks, lianas (woody vines) play an important role in the carbon dynamics of tropical forests. As structural parasites, they hinder tree survival, growth and fecundity; hence, they negatively impact net ecosystem productivity and long-term carbon sequestration.Competition (for water and light) drives various forest processes and depends on the local abundance of resources over time. However, evaluating the relative role of resource availability on the interactions between lianas and trees from empirical observations is particularly challenging. Previous approaches have used labour-intensive and ecosystem-scale manipulation experiments, which are infeasible in most situations.We propose to circumvent this challenge by evaluating the uncertainty of water and light capture processes of a process-based vegetation model (ED2) including the liana growth form. We further developed the liana plant functional type in ED2 to mechanistically simulate water uptake and transport from roots to leaves, and start the model from prescribed initial conditions. We then used the PEcAn bioinformatics platform to constrain liana parameters and run uncertainty analyses.Baseline runs successfully reproduced ecosystem gas exchange fluxes (gross primary productivity and latent heat) and forest structural features (leaf area index, aboveground biomass) in two sites (Barro Colorado Island, Panama and Paracou, French Guiana) characterized by different rainfall regimes and levels of liana abundance.Model uncertainty analyses revealed that water limitation was the factor driving the competition between trees and lianas at the drier site (BCI), and during the relatively short dry season of the wetter site (Paracou). In young patches, light competition dominated in Paracou but alternated with water competition between the wet and the dry season on BCI according to the model simulations.The modelling workflow also identified key liana traits (photosynthetic quantum efficiency, stomatal regulation parameters, allometric relationships) and processes (water use, respiration, climbing) driving the model uncertainty. They should be considered as priorities for future data acquisition and model development to improve predictions of the carbon dynamics of liana-infested forests. Synthesis. Competition for water plays a larger role in the interaction between lianas and trees than previously hypothesized, as demonstrated by simulations from a process-based vegetation model.
Collapse
Affiliation(s)
- Félicien Meunier
- Computational and Applied Vegetation EcologyDepartment of EnvironmentGhent UniversityGhentBelgium
- Department of Earth and EnvironmentBoston UniversityBostonMAUSA
| | - Hans Verbeeck
- Computational and Applied Vegetation EcologyDepartment of EnvironmentGhent UniversityGhentBelgium
| | - Betsy Cowdery
- Department of Earth and EnvironmentBoston UniversityBostonMAUSA
| | - Stefan A. Schnitzer
- Smithsonian Tropical Research InstituteApartadoPanama
- Department of Biological SciencesMarquette UniversityMilwaukeeWIUSA
| | - Chris M. Smith‐Martin
- Department of Ecology, Evolution and Evolutionary BiologyColumbia UniversityNew YorkNYUSA
| | - Jennifer S. Powers
- Smithsonian Tropical Research InstituteApartadoPanama
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
| | - Xiangtao Xu
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
| | - Martijn Slot
- Smithsonian Tropical Research InstituteApartadoPanama
| | - Hannes P. T. De Deurwaerder
- Computational and Applied Vegetation EcologyDepartment of EnvironmentGhent UniversityGhentBelgium
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNJUSA
| | - Matteo Detto
- Smithsonian Tropical Research InstituteApartadoPanama
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNJUSA
| | - Damien Bonal
- Université de LorraineAgroParisTechINRAEUMR SilvaNancyFrance
| | - Marcos Longo
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Louis S. Santiago
- Smithsonian Tropical Research InstituteApartadoPanama
- Department of Botany and Plant SciencesUniversity of CaliforniaRiversideCAUSA
| | - Michael Dietze
- Department of Earth and EnvironmentBoston UniversityBostonMAUSA
| |
Collapse
|
23
|
Fontes CG, Fine PVA, Wittmann F, Bittencourt PRL, Piedade MTF, Higuchi N, Chambers JQ, Dawson TE. Convergent evolution of tree hydraulic traits in Amazonian habitats: implications for community assemblage and vulnerability to drought. THE NEW PHYTOLOGIST 2020; 228:106-120. [PMID: 32452033 DOI: 10.1111/nph.16675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/10/2020] [Indexed: 05/12/2023]
Abstract
Amazonian droughts are increasing in frequency and severity. However, little is known about how this may influence species-specific vulnerability to drought across different ecosystem types. We measured 16 functional traits for 16 congeneric species from six families and eight genera restricted to floodplain, swamp, white-sand or plateau forests of Central Amazonia. We investigated whether habitat distributions can be explained by species hydraulic strategies, and if habitat specialists differ in their vulnerability to embolism that would make water transport difficult during drought periods. We found strong functional differences among species. Nonflooded species had higher wood specific gravity and lower stomatal density, whereas flooded species had wider vessels, and higher leaf and xylem hydraulic conductivity. The P50 values (water potential at 50% loss of hydraulic conductivity) of nonflooded species were significantly more negative than flooded species. However, we found no differences in hydraulic safety margin among species, suggesting that all trees may be equally likely to experience hydraulic failure during severe droughts. Water availability imposes a strong selection leading to differentiation of plant hydraulic strategies among species and may underlie patterns of adaptive radiation in many tropical tree genera. Our results have important implications for modeling species distribution and resilience under future climate scenarios.
Collapse
Affiliation(s)
- Clarissa G Fontes
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Paul V A Fine
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Florian Wittmann
- Department of Wetland Ecology, Institute of Geography and Geoecology, Karlsruhe Institute of Technology - KIT, Josefstr.1, Rastatt, D-76437, Germany
- Biogeochemistry, Max Planck Institute for Chemistry, Hahn-Meitner Weg 1, Mainz, 55128, Germany
| | - Paulo R L Bittencourt
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4RJ, UK
| | - Maria Teresa Fernandez Piedade
- Coordenação de Dinâmica Ambiental, Instituto Nacional de Pesquisas da Amazônia - INPA, Av. André Araújo, Petrópolis, Manaus, AM, 2936, 69067-375, Brazil
| | - Niro Higuchi
- Ciências de Florestas Tropicais, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, 69067-375, Brazil
| | - Jeffrey Q Chambers
- Climate Science Department, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 74, Berkeley, CA, 94720, USA
- Department of Geography, University of California Berkeley, 507 McCone Hall #4740, Berkeley, CA, 94720, USA
| | - Todd E Dawson
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
24
|
Janssen TAJ, Hölttä T, Fleischer K, Naudts K, Dolman H. Wood allocation trade-offs between fiber wall, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees. PLANT, CELL & ENVIRONMENT 2020; 43:965-980. [PMID: 31760666 PMCID: PMC7155043 DOI: 10.1111/pce.13687] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 05/25/2023]
Abstract
Functional relationships between wood density and measures of xylem hydraulic safety and efficiency are ambiguous, especially in wet tropical forests. In this meta-analysis, we move beyond wood density per se and identify relationships between xylem allocated to fibers, parenchyma, and vessels and measures of hydraulic safety and efficiency. We analyzed published data of xylem traits, hydraulic properties and measures of drought resistance from neotropical tree species retrieved from 346 sources. We found that xylem volume allocation to fiber walls increases embolism resistance, but at the expense of specific conductivity and sapwood capacitance. Xylem volume investment in fiber lumen increases capacitance, while investment in axial parenchyma is associated with higher specific conductivity. Dominant tree taxa from wet forests prioritize xylem allocation to axial parenchyma at the expense of fiber walls, resulting in a low embolism resistance for a given wood density and a high vulnerability to drought-induced mortality. We conclude that strong trade-offs between xylem allocation to fiber walls, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees. Moreover, the benefits of xylem allocation to axial parenchyma in wet tropical trees might not outweigh the consequential low embolism resistance under more frequent and severe droughts in a changing climate.
Collapse
Affiliation(s)
- Thomas A. J. Janssen
- Department of Earth Sciences, Cluster Earth and ClimateVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Teemu Hölttä
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and ForestryUniversity of HelsinkiHelsinkiFinland
| | - Katrin Fleischer
- Land Surface‐Atmosphere InteractionsTechnical University of MunichFreisingGermany
| | - Kim Naudts
- Department of Earth Sciences, Cluster Earth and ClimateVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Han Dolman
- Department of Earth Sciences, Cluster Earth and ClimateVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
25
|
Petruzzellis F, Tomasella M, Miotto A, Natale S, Trifilò P, Nardini A. A Leaf Selfie: Using a Smartphone to Quantify Leaf Vulnerability to Hydraulic Dysfunction. PLANTS (BASEL, SWITZERLAND) 2020; 9:E234. [PMID: 32054113 PMCID: PMC7076359 DOI: 10.3390/plants9020234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/21/2020] [Accepted: 02/05/2020] [Indexed: 05/28/2023]
Abstract
Accurate predictions of species distribution under current and future climate conditions require modeling efforts based on clear mechanistic relationships between climate variables and plant physiological functions. Vulnerability of leaves to xylem embolism is a key mechanistic trait that might be included in these modeling efforts. Here, we propose a simple set-up to measure leaf vulnerability to embolism on the basis of the optical method using a smartphone, a light source, and a notebook. Our data show that this proposed set-up can adequately quantify the vulnerability to xylem embolism of leaf major veins in Populus nigra and Ostrya carpinifolia, producing values consistent with those obtained in temperate tree species with other methods, allowing virtually any laboratory to quantify species-specific drought tolerance on the basis of a sound mechanistic trait.
Collapse
Affiliation(s)
- Francesco Petruzzellis
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy; (F.P.); (M.T.); (A.M.); (S.N.)
| | - Martina Tomasella
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy; (F.P.); (M.T.); (A.M.); (S.N.)
| | - Andrea Miotto
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy; (F.P.); (M.T.); (A.M.); (S.N.)
| | - Sara Natale
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy; (F.P.); (M.T.); (A.M.); (S.N.)
| | - Patrizia Trifilò
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche e ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy;
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy; (F.P.); (M.T.); (A.M.); (S.N.)
| |
Collapse
|
26
|
Cruz MV, Mori GM, Oh DH, Dassanayake M, Zucchi MI, Oliveira RS, Souza APD. Molecular responses to freshwater limitation in the mangrove tree Avicennia germinans (Acanthaceae). Mol Ecol 2019; 29:344-362. [PMID: 31834961 DOI: 10.1111/mec.15330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/31/2022]
Abstract
Environmental variation along the geographical space can shape populations by natural selection. In the context of global warming and changing precipitation regimes, it is crucial to understand the role of environmental heterogeneity in tropical trees adaptation, given their disproportional contribution to water and carbon biogeochemical cycles. Here, we investigated how heterogeneity in freshwater availability along tropical wetlands has influenced molecular variations of the black mangrove (Avicennia germinans). A total of 57 trees were sampled at seven sites differing markedly in precipitation regime and riverine freshwater inputs. Using 2,297 genome-wide single nucleotide polymorphic markers, we found signatures of natural selection by the association between variations in allele frequencies and environmental variables, including the precipitation of the warmest quarter and the annual precipitation. Additionally, we found candidate loci for selection based on statistical deviations from neutral expectations of interpopulation differentiation. Most candidate loci within transcribed sequences were functionally associated with central aspects of drought tolerance or plant response to drought. Moreover, our results suggest the occurrence of the rapid evolution of a population, probably in response to sudden and persistent limitations in plant access to soil water, following a road construction in 1974. Observations supporting rapid evolution included the reduction in tree size and changes in allele frequencies and in transcript expression associated with increased drought tolerance through the accumulation of osmoprotectants and antioxidants, biosynthesis of cuticles, protection against protein degradation, stomatal closure, photorespiration and photosynthesis. We describe a major role of spatial heterogeneity in freshwater availability in the specialization of this typically tropical tree.
Collapse
Affiliation(s)
- Mariana Vargas Cruz
- Department of Plant Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil
| | | | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University (LSU), Louisiana, LA, USA
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University (LSU), Louisiana, LA, USA
| | | | - Rafael Silva Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil
| | - Anete Pereira de Souza
- Department of Plant Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil
| |
Collapse
|
27
|
Zhang L, Chen Y, Ma K, Bongers F, Sterck FJ. Fully exposed canopy tree and liana branches in a tropical forest differ in mechanical traits but are similar in hydraulic traits. TREE PHYSIOLOGY 2019; 39:1713-1724. [PMID: 31211370 DOI: 10.1093/treephys/tpz070] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/29/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Large lianas and trees in the forest canopy are challenged by hydraulic and mechanical failures and need to balance hydraulic conductivity, hydraulic safety and mechanical safety. Our study integrates these functions in canopy branches to understand the performance of canopy trees and lianas, and their difference. We sampled and measured branches from 22 species at a canopy crane in the tropical forest at Xishuangbanna, SW China. We quantified the hydraulic conductivity from the xylem-specific hydraulic conductivity (KS), hydraulic safety from the cavitation resistance (P50) and mechanical safety from the modulus of rupture (MOR) to evaluate trade-offs and differences between lianas and trees. We also measured a number of anatomical features that may influence these three functional traits. Our results suggest the following: trade-offs between hydraulic conductivity, hydraulic safety and mechanical safety are weak or absent; liana branches better resist external mechanical forces (higher MOR) than tree branches; and liana and tree branches were similar in hydraulic performance (KS and P50). The anatomical features underlying KS, P50 and MOR may differ between lianas and trees. We conclude that canopy branches of lianas and trees diverged in mechanical design due to fundamental differences in wood formation, but converged in hydraulic design.
Collapse
Affiliation(s)
- Lan Zhang
- Forest Ecology and Forest Management Group, Wageningen University and Research Centre, PO Box 47, Wageningen 6700 AA, The Netherlands
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
| | - Yajun Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang, Yunnan 666303, China
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
| | - Frans Bongers
- Forest Ecology and Forest Management Group, Wageningen University and Research Centre, PO Box 47, Wageningen 6700 AA, The Netherlands
| | - Frank J Sterck
- Forest Ecology and Forest Management Group, Wageningen University and Research Centre, PO Box 47, Wageningen 6700 AA, The Netherlands
| |
Collapse
|
28
|
Mbinda W, Dixelius C, Oduor R. Induced Expression of Xerophyta viscosa XvSap1 Gene Enhances Drought Tolerance in Transgenic Sweet Potato. FRONTIERS IN PLANT SCIENCE 2019; 10:1119. [PMID: 31616447 PMCID: PMC6764105 DOI: 10.3389/fpls.2019.01119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/14/2019] [Indexed: 05/08/2023]
Abstract
Drought stress often leads to reduced yields and is a perilous delimiter for expanded cultivation and increased productivity of sweet potato. Cell wall stabilization proteins have been identified to play a pivotal role in mechanical stabilization during desiccation stress mitigation in plants. They are involved in numerous cellular processes that modify cell wall properties to tolerate the mechanical stress during dehydration. This provides a plausible approach to engineer crops for enhanced stable yields under adverse climatic conditions. In this study, we genetically engineered sweet potato cv. Jewel with XvSap1 gene encoding a protein related to cell wall stabilization, isolated from the resurrection plant Xerophyta viscosa, under stress-inducible XvPSap1 promoter via Agrobacterium-mediated transformation. Detection of the transgene by PCR, Southern blot, and quantitative real-time PCR (qRT-PCR) analyses revealed the integration of XvSap1 in the three independent events. Phenotypic evaluation of shoot length, number of leaves, and yield revealed that the transgenic plants grew better than the wild-type plants under drought stress. Assessment of biochemical indices during drought stress showed higher levels of chlorophyll, free proline, and relative water content and decreased lipid peroxidation in transgenic plants than in wild types. Our findings demonstrate that XvSap1 enhances drought tolerance in transgenic sweet potato without causing deleterious phenotypic and yield changes. The transgenic drought-tolerant sweet potato lines provide a valuable resource as a drought-tolerant crop on arid lands of the world.
Collapse
Affiliation(s)
- Wilton Mbinda
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
| | - Christina Dixelius
- Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Uppsala, Sweden
| | - Richard Oduor
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
| |
Collapse
|
29
|
Tng DYP, Apgaua DMG, Ishida YF, Mencuccini M, Lloyd J, Laurance WF, Laurance SGW. Rainforest trees respond to drought by modifying their hydraulic architecture. Ecol Evol 2018; 8:12479-12491. [PMID: 30619559 PMCID: PMC6308889 DOI: 10.1002/ece3.4601] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023] Open
Abstract
Increased drought is forecasted for tropical regions, with severe implications for the health and function of forest ecosystems. How mature forest trees will respond to water deficit is poorly known. We investigated wood anatomy and leaf traits in lowland tropical forest trees after 24 months of experimental rainfall exclusion. Sampling sun-exposed young canopy branches from target species, we found species-specific systematic variation in hydraulic-related wood anatomy and leaf traits in response to drought stress. Relative to controls, drought-affected individuals of different tree species variously exhibited trait measures consistent with increasing hydraulic safety. These included narrower or less vessels, reduced vessel groupings, lower theoretical water conductivities, less water storage tissue and more abundant fiber in their wood, and more occluded vessels. Drought-affected individuals also had thinner leaves, and more negative pre-dawn or mid-day leaf water potentials. Future studies examining both wood and leaf hydraulic traits should improve the representation of plant hydraulics within terrestrial ecosystem and biosphere models, and help fine-tune predictions of how future climate changes will affect tropical forests globally.
Collapse
Affiliation(s)
- David Y. P. Tng
- Centre for Tropical, Environmental and Sustainability Sciences, College of Science and EngineeringJames Cook UniversitySmithfieldQueenslandAustralia
- Instituto de BiologiaUniversidade Federal da BahiaSalvadorBahiaBrazil
| | - Deborah M. G. Apgaua
- Centre for Tropical, Environmental and Sustainability Sciences, College of Science and EngineeringJames Cook UniversitySmithfieldQueenslandAustralia
| | - Yoko F. Ishida
- Centre for Tropical, Environmental and Sustainability Sciences, College of Science and EngineeringJames Cook UniversitySmithfieldQueenslandAustralia
| | - Maurizio Mencuccini
- ICREAPg. Lluís CompanysBarcelonaSpain
- CREAFUniversidad Autonoma de BarcelonaBarcelonaSpain
| | - Jon Lloyd
- Centre for Tropical, Environmental and Sustainability Sciences, College of Science and EngineeringJames Cook UniversitySmithfieldQueenslandAustralia
- Department of Life SciencesImperial College LondonAscotUK
- Faculdade de Filosofia, Ciencias e Letras de Ribeirao PretoUniversidade de Sao PauloRibeirao PretoBrazil
| | - William F. Laurance
- Centre for Tropical, Environmental and Sustainability Sciences, College of Science and EngineeringJames Cook UniversitySmithfieldQueenslandAustralia
| | - Susan G. W. Laurance
- Centre for Tropical, Environmental and Sustainability Sciences, College of Science and EngineeringJames Cook UniversitySmithfieldQueenslandAustralia
| |
Collapse
|
30
|
Zuidema PA, Poulter B, Frank DC. A Wood Biology Agenda to Support Global Vegetation Modelling. TRENDS IN PLANT SCIENCE 2018; 23:1006-1015. [PMID: 30209023 DOI: 10.1016/j.tplants.2018.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 05/06/2023]
Abstract
Realistic forecasting of forest responses to climate change critically depends on key advancements in global vegetation modelling. Compared with traditional 'big-leaf' models that simulate forest stands, 'next-generation' vegetation models aim to track carbon-, light-, water-, and nutrient-limited growth of individual trees. Wood biology can play an important role in delivering the required knowledge at tissue-to-individual levels, at minute-to-century scales and for model parameterization and benchmarking. We propose a wood biology research agenda that contributes to filling six knowledge gaps: sink versus source limitation, drivers of intra-annual growth, drought impacts, functional wood traits, dynamic biomass allocation, and nutrient cycling. Executing this agenda will expedite model development and increase the ability of models to forecast global change impact on forest dynamics.
Collapse
Affiliation(s)
- Pieter A Zuidema
- Forest Ecology and Forest Management, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands.
| | | | - David C Frank
- Laboratory of Tree-Ring Research, University of Arizona, 1215 E Lowell Street, Tucson, AZ 85721, USA
| |
Collapse
|
31
|
Meir P, Mencuccini M, Binks O, da Costa AL, Ferreira L, Rowland L. Short-term effects of drought on tropical forest do not fully predict impacts of repeated or long-term drought: gas exchange versus growth. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170311. [PMID: 30297468 PMCID: PMC6178433 DOI: 10.1098/rstb.2017.0311] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2018] [Indexed: 11/12/2022] Open
Abstract
Are short-term responses by tropical rainforest to drought (e.g. during El Niño) sufficient to predict changes over the long-term, or from repeated drought? Using the world's only long-term (16-year) drought experiment in tropical forest we examine predictability from short-term measurements (1-2 years). Transpiration was maximized in droughted forest: it consumed all available throughfall throughout the 16 years of study. Leaf photosynthetic capacity [Formula: see text] was maintained, but only when averaged across tree size groups. Annual transpiration in droughted forest was less than in control, with initial reductions (at high biomass) imposed by foliar stomatal control. Tree mortality increased after year three, leading to an overall biomass loss of 40%; over the long-term, the main constraint on transpiration was thus imposed by the associated reduction in sapwood area. Altered tree mortality risk may prove predictable from soil and plant hydraulics, but additional monitoring is needed to test whether future biomass will stabilize or collapse. Allocation of assimilate differed over time: stem growth and reproductive output declined in the short-term, but following mortality-related changes in resource availability, both showed long-term resilience, with partial or full recovery. Understanding and simulation of these phenomena and related trade-offs in allocation will advance more effectively through greater use of optimization and probabilistic modelling approaches.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.
Collapse
Affiliation(s)
- Patrick Meir
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- School of Geosciences, University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh EH9 3FF, UK
| | - Maurizio Mencuccini
- CREAF, Campus UAB, Cerdanyola del Vallés 08193, Spain
- ICREA, Barcelona 08193, Spain
| | - Oliver Binks
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Antonio Lola da Costa
- Instituto de Geosciências, Universidade Federal do Pará, Belém, PA 66075-110, Brazil
| | | | - Lucy Rowland
- Geography, College of Life and Environmental Sciences, University of Exeter, Amory Building, Exeter EX4 4RJ, UK
| |
Collapse
|
32
|
Fontes CG, Dawson TE, Jardine K, McDowell N, Gimenez BO, Anderegg L, Negrón-Juárez R, Higuchi N, Fine PVA, Araújo AC, Chambers JQ. Dry and hot: the hydraulic consequences of a climate change-type drought for Amazonian trees. Philos Trans R Soc Lond B Biol Sci 2018; 373:20180209. [PMID: 30297481 PMCID: PMC6178441 DOI: 10.1098/rstb.2018.0209] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2018] [Indexed: 11/12/2022] Open
Abstract
How plants respond physiologically to leaf warming and low water availability may determine how they will perform under future climate change. In 2015-2016, an unprecedented drought occurred across Amazonia with record-breaking high temperatures and low soil moisture, offering a unique opportunity to evaluate the performances of Amazonian trees to a severe climatic event. We quantified the responses of leaf water potential, sap velocity, whole-tree hydraulic conductance (Kwt), turgor loss and xylem embolism, during and after the 2015-2016 El Niño for five canopy-tree species. Leaf/xylem safety margins (SMs), sap velocity and Kwt showed a sharp drop during warm periods. SMs were negatively correlated with vapour pressure deficit, but had no significant relationship with soil water storage. Based on our calculations of canopy stomatal and xylem resistances, the decrease in sap velocity and Kwt was due to a combination of xylem cavitation and stomatal closure. Our results suggest that warm droughts greatly amplify the degree of trees' physiological stress and can lead to mortality. Given the extreme nature of the 2015-2016 El Niño and that temperatures are predicted to increase, this work can serve as a case study of the possible impact climate warming can have on tropical trees.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.
Collapse
Affiliation(s)
- Clarissa G Fontes
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Todd E Dawson
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- Ecosystem Science Division, Department of Science, Policy and Management, Environmental University of California Berkeley, Berkeley, CA, USA
| | - Kolby Jardine
- Climate Science Department, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 74, Berkeley, CA 94720, USA
- Ciências de Florestas Tropicais, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus-AM 69067-375, Brazil
| | - Nate McDowell
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Bruno O Gimenez
- Ciências de Florestas Tropicais, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus-AM 69067-375, Brazil
| | - Leander Anderegg
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Robinson Negrón-Juárez
- Climate Science Department, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 74, Berkeley, CA 94720, USA
| | - Niro Higuchi
- Ciências de Florestas Tropicais, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus-AM 69067-375, Brazil
| | - Paul V A Fine
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Alessandro C Araújo
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama St., Stanford, CA 94305, USA
- Embrapa Amazônia Oriental, Trav. Dr. Enéas Pinheiro, Belém, Pará 66095-100, Brazil
| | - Jeffrey Q Chambers
- Climate Science Department, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 74, Berkeley, CA 94720, USA
- Department of Geography, University of California Berkeley, 507 McCone Hall #4740, Berkeley, CA 94720, USA
| |
Collapse
|
33
|
Rungwattana K, Kasemsap P, Phumichai T, Kanpanon N, Rattanawong R, Hietz P. Trait evolution in tropical rubber (Hevea brasiliensis) trees is related to dry season intensity. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kanin Rungwattana
- Institute of BotanyUniversity of Natural Resources and Life Sciences Vienna Austria
| | - Poonpipope Kasemsap
- Hevea Research Platform in PartnershipDORAS CentreKasetsart University Bangkok Thailand
- Department of HorticultureFaculty of AgricultureKasetsart University Bangkok Thailand
| | | | - Nicha Kanpanon
- Department of HorticultureFaculty of AgricultureKasetsart University Bangkok Thailand
- UMR 1137, Ecologie et Ecophysiologie ForestièresFaculté des SciencesUniversité de Lorraine Vandoeure‐les‐Nancy France
| | - Ratchanee Rattanawong
- Nong Khai Rubber Research CenterRubber Research Institute of Thailand Rattanawapi District Nong Khai Thailand
| | - Peter Hietz
- Institute of BotanyUniversity of Natural Resources and Life Sciences Vienna Austria
| |
Collapse
|
34
|
Maréchaux I, Bonal D, Bartlett MK, Burban B, Coste S, Courtois EA, Dulormne M, Goret J, Mira E, Mirabel A, Sack L, Stahl C, Chave J. Dry‐season decline in tree sapflux is correlated with leaf turgor loss point in a tropical rainforest. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13188] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Isabelle Maréchaux
- Laboratoire Evolution et Diversité Biologique UMR5174, CNRS, Université Paul Sabatier, IRD Toulouse Cedex 9 France
- AMAP, INRA, University of Montpellier, IRD, CIRAD, CNRS Montpellier France
- AgroParisTech‐ENGREF Paris France
| | - Damien Bonal
- Université de Lorraine, AgroParisTech, INRA, UMR Silva Nancy France
| | - Megan K. Bartlett
- Department of Ecology and Evolution University of California Los Angeles Los Angeles California
- Princeton Environmental Institute, Princeton University Princeton New Jersey
| | - Benoît Burban
- INRA, UMR EcoFoG, AgroParisTech, CNRS, CIRAD, Université des Antilles, Université de Guyane Kourou France
| | - Sabrina Coste
- Université de Guyane, UMR EcoFoG, AgroParisTech, CNRS, CIRAD, INRA, Université des Antilles Cayenne France
| | - Elodie A. Courtois
- Department of Biology University of Antwerp Wilrijk Belgium
- Laboratoire Écologie, évolution, interactions des systèmes amazoniens (LEEISA) Université de Guyane, CNRS Guyane Cayenne France
| | - Maguy Dulormne
- Université des Antilles, UMR EcoFoG, AgroParisTech, CNRS, CIRAD, INRA, Université de Guyane Pointe à Pitre France
| | - Jean‐Yves Goret
- INRA, UMR EcoFoG, AgroParisTech, CNRS, CIRAD, Université des Antilles, Université de Guyane Kourou France
| | - Eléonore Mira
- Université des Antilles, UMR EcoFoG, AgroParisTech, CNRS, CIRAD, INRA, Université de Guyane Pointe à Pitre France
| | - Ariane Mirabel
- Université de Guyane, UMR EcoFoG, AgroParisTech, CNRS, CIRAD, INRA, Université des Antilles Cayenne France
| | - Lawren Sack
- Department of Ecology and Evolution University of California Los Angeles Los Angeles California
| | - Clément Stahl
- INRA, UMR EcoFoG, AgroParisTech, CNRS, CIRAD, Université des Antilles, Université de Guyane Kourou France
- Department of Biology University of Antwerp Wilrijk Belgium
| | - Jérôme Chave
- Laboratoire Evolution et Diversité Biologique UMR5174, CNRS, Université Paul Sabatier, IRD Toulouse Cedex 9 France
| |
Collapse
|
35
|
McDowell N, Allen CD, Anderson-Teixeira K, Brando P, Brienen R, Chambers J, Christoffersen B, Davies S, Doughty C, Duque A, Espirito-Santo F, Fisher R, Fontes CG, Galbraith D, Goodsman D, Grossiord C, Hartmann H, Holm J, Johnson DJ, Kassim AR, Keller M, Koven C, Kueppers L, Kumagai T, Malhi Y, McMahon SM, Mencuccini M, Meir P, Moorcroft P, Muller-Landau HC, Phillips OL, Powell T, Sierra CA, Sperry J, Warren J, Xu C, Xu X. Drivers and mechanisms of tree mortality in moist tropical forests. THE NEW PHYTOLOGIST 2018; 219:851-869. [PMID: 29451313 DOI: 10.1111/nph.15027] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/19/2017] [Indexed: 05/22/2023]
Abstract
Tree mortality rates appear to be increasing in moist tropical forests (MTFs) with significant carbon cycle consequences. Here, we review the state of knowledge regarding MTF tree mortality, create a conceptual framework with testable hypotheses regarding the drivers, mechanisms and interactions that may underlie increasing MTF mortality rates, and identify the next steps for improved understanding and reduced prediction. Increasing mortality rates are associated with rising temperature and vapor pressure deficit, liana abundance, drought, wind events, fire and, possibly, CO2 fertilization-induced increases in stand thinning or acceleration of trees reaching larger, more vulnerable heights. The majority of these mortality drivers may kill trees in part through carbon starvation and hydraulic failure. The relative importance of each driver is unknown. High species diversity may buffer MTFs against large-scale mortality events, but recent and expected trends in mortality drivers give reason for concern regarding increasing mortality within MTFs. Models of tropical tree mortality are advancing the representation of hydraulics, carbon and demography, but require more empirical knowledge regarding the most common drivers and their subsequent mechanisms. We outline critical datasets and model developments required to test hypotheses regarding the underlying causes of increasing MTF mortality rates, and improve prediction of future mortality under climate change.
Collapse
Affiliation(s)
- Nate McDowell
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Craig D Allen
- US Geological Survey, Fort Collins Science Center, New Mexico Landscapes Field Station, Los Alamos, NM, 87544, USA
| | - Kristina Anderson-Teixeira
- Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, 20036, USA
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - Paulo Brando
- Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA, 02450, USA
- Instituto de Pesquisa Ambiental de Amazonia, Lago Norte, Brasilia, Brazil
| | - Roel Brienen
- School of Geography, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Jeff Chambers
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Brad Christoffersen
- Department of Biology and School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Stuart Davies
- Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, 20036, USA
| | - Chris Doughty
- SICCS, Northern Arizona University, Flagstaff, AZ, 86001, USA
| | - Alvaro Duque
- Departmento de Ciencias Forestales, Universidad Nacional de Columbia, Medellín, Columbia
| | | | - Rosie Fisher
- National Center for Atmospheric Research, Boulder, CO, 80305, USA
| | - Clarissa G Fontes
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - David Galbraith
- School of Geography, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Devin Goodsman
- Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | | | - Henrik Hartmann
- Department of Biogeochemical Processes, Max Plank Institute for Biogeochemistry, 07745, Jena, Germany
| | - Jennifer Holm
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | | - Abd Rahman Kassim
- Geoinformation Programme, Forestry and Environment Division, Forest Research Institute Malaysia, Selangor, Malaysia
| | - Michael Keller
- International Institute of Tropical Forestry, USDA Jardin Botanico Sur, 1201 Calle Ceiba, San Juan, 00926, Puerto Rico
- Embrapa Agricultural Informatics, Parque Estacao Biologica, Brasilia DF, 70770, Brazil
- Jet Propulsion Laboratory, Pasadena, CA, 91109, USA
| | - Charlie Koven
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lara Kueppers
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Energy and Resources Group, University of California, Berkeley, CA, 94720, USA
| | - Tomo'omi Kumagai
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 7 Chome-3-1 Hongo, Bunkyo, Tokyo, 113-8654, Japan
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 2JD, UK
| | - Sean M McMahon
- Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, 20036, USA
| | - Maurizio Mencuccini
- ICREA, CREAF, University of Barcelona, Gran Via de les Corts Catalenes, 585 08007, Barcelona, Spain
| | - Patrick Meir
- Australian National University, Acton, Canberra, ACT, 2601, Australia
- School of Geosciences, University of Edinburgh, Old College, South Bridge, Edinburgh, EH8 9YL, UK
| | | | - Helene C Muller-Landau
- Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092, Panamá, República de Panamá
| | - Oliver L Phillips
- School of Geography, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Thomas Powell
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Carlos A Sierra
- Department of Biogeochemical Processes, Max Plank Institute for Biogeochemistry, 07745, Jena, Germany
| | - John Sperry
- University of Utah, Salt Lake City, UT, 84112, USA
| | - Jeff Warren
- Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Chonggang Xu
- Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Xiangtao Xu
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
36
|
Bretfeld M, Ewers BE, Hall JS. Plant water use responses along secondary forest succession during the 2015-2016 El Niño drought in Panama. THE NEW PHYTOLOGIST 2018; 219:885-899. [PMID: 29504138 DOI: 10.1111/nph.15071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/22/2018] [Indexed: 05/25/2023]
Abstract
Tropical forests are increasingly being subjected to hotter, drier conditions as a result of global climate change. The effects of drought on forests along successional gradients remain poorly understood. We took advantage of the 2015-2016 El Niño event to test for differences in drought response along a successional gradient by measuring the sap flow in 76 trees, representing 42 different species, in 8-, 25- and 80-yr-old secondary forests in the 15-km2 'Agua Salud Project' study area, located in central Panama. Average sap velocities and sapwood-specific hydraulic conductivities were highest in the youngest forest. During the dry season drought, sap velocities increased significantly in the 80-yr-old forest as a result of higher evaporative demand, but not in younger forests. The main drivers of transpiration shifted from radiation to vapor pressure deficit with progressing forest succession. Soil volumetric water content was a limiting factor only in the youngest forest during the dry season, probably as a result of less root exploration in the soil. Trees in early-successional forests displayed stronger signs of regulatory responses to the 2015-2016 El Niño drought, and the limiting physiological processes for transpiration shifted from operating at the plant-soil interface to the plant-atmosphere interface with progressing forest succession.
Collapse
Affiliation(s)
- Mario Bretfeld
- ForestGEO, Smithsonian Tropical Research Institute, Av. Roosevelt 401, Balboa, Ancón, Panama
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - Brent E Ewers
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Jefferson S Hall
- ForestGEO, Smithsonian Tropical Research Institute, Av. Roosevelt 401, Balboa, Ancón, Panama
| |
Collapse
|
37
|
Longo M, Knox RG, Levine NM, Alves LF, Bonal D, Camargo PB, Fitzjarrald DR, Hayek MN, Restrepo-Coupe N, Saleska SR, da Silva R, Stark SC, Tapajós RP, Wiedemann KT, Zhang K, Wofsy SC, Moorcroft PR. Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts. THE NEW PHYTOLOGIST 2018; 219:914-931. [PMID: 29786858 DOI: 10.1111/nph.15185] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/20/2018] [Indexed: 05/12/2023]
Abstract
The impact of increases in drought frequency on the Amazon forest's composition, structure and functioning remain uncertain. We used a process- and individual-based ecosystem model (ED2) to quantify the forest's vulnerability to increased drought recurrence. We generated meteorologically realistic, drier-than-observed rainfall scenarios for two Amazon forest sites, Paracou (wetter) and Tapajós (drier), to evaluate the impacts of more frequent droughts on forest biomass, structure and composition. The wet site was insensitive to the tested scenarios, whereas at the dry site biomass declined when average rainfall reduction exceeded 15%, due to high mortality of large-sized evergreen trees. Biomass losses persisted when year-long drought recurrence was shorter than 2-7 yr, depending upon soil texture and leaf phenology. From the site-level scenario results, we developed regionally applicable metrics to quantify the Amazon forest's climatological proximity to rainfall regimes likely to cause biomass loss > 20% in 50 yr according to ED2 predictions. Nearly 25% (1.8 million km2 ) of the Amazon forests could experience frequent droughts and biomass loss if mean annual rainfall or interannual variability changed by 2σ. At least 10% of the high-emission climate projections (CMIP5/RCP8.5 models) predict critically dry regimes over 25% of the Amazon forest area by 2100.
Collapse
Affiliation(s)
- Marcos Longo
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA, 02138, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Ryan G Knox
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Naomi M Levine
- University of Southern California, Los Angeles, CA, 90007, USA
| | - Luciana F Alves
- Center for Tropical Research, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, 90095, USA
| | | | - Plinio B Camargo
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13416-000, Brazil
| | | | - Matthew N Hayek
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Natalia Restrepo-Coupe
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, 2007, Australia
- University of Arizona, Tucson, AZ, 85721, USA
| | | | - Rodrigo da Silva
- Universidade Federal do Oeste do Pará, Santarém, PA, 68040-255, USA
| | - Scott C Stark
- Michigan State University, East Lansing, MI, 48824, USA
| | | | - Kenia T Wiedemann
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Ke Zhang
- Hohai University, Nanjing, Jiangsu, 210029, China
| | - Steven C Wofsy
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Paul R Moorcroft
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
38
|
Powell TL, Koven CD, Johnson DJ, Faybishenko B, Fisher RA, Knox RG, McDowell NG, Condit R, Hubbell SP, Wright SJ, Chambers JQ, Kueppers LM. Variation in hydroclimate sustains tropical forest biomass and promotes functional diversity. THE NEW PHYTOLOGIST 2018; 219:932-946. [PMID: 29923303 DOI: 10.1111/nph.15271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
The fate of tropical forests under climate change is unclear as a result, in part, of the uncertainty in projected changes in precipitation and in the ability of vegetation models to capture the effects of drought-induced mortality on aboveground biomass (AGB). We evaluated the ability of a terrestrial biosphere model with demography and hydrodynamics (Ecosystem Demography, ED2-hydro) to simulate AGB and mortality of four tropical tree plant functional types (PFTs) that operate along light- and water-use axes. Model predictions were compared with observations of canopy trees at Barro Colorado Island (BCI), Panama. We then assessed the implications of eight hypothetical precipitation scenarios, including increased annual precipitation, reduced inter-annual variation, El Niño-related droughts and drier wet or dry seasons, on AGB and functional diversity of the model forest. When forced with observed meteorology, ED2-hydro predictions capture multiple BCI benchmarks. ED2-hydro predicts that AGB will be sustained under lower rainfall via shifts in the functional composition of the forest, except under the drier dry-season scenario. These results support the hypothesis that inter-annual variation in mean and seasonal precipitation promotes the coexistence of functionally diverse PFTs because of the relative differences in mortality rates. If the hydroclimate becomes chronically drier or wetter, functional evenness related to drought tolerance may decline.
Collapse
Affiliation(s)
- Thomas L Powell
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Charles D Koven
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | | | | - Rosie A Fisher
- National Center for Atmospheric Research, Boulder, CO, 80305, USA
| | - Ryan G Knox
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Nate G McDowell
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Richard Condit
- Field Museum of Natural History, Chicago, IL, 60605, USA
- Morton Arboretum, Lisle, IL, 60532, USA
| | - Stephen P Hubbell
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Republic of Panama
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Republic of Panama
| | | | - Lara M Kueppers
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Energy and Resources Group, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
39
|
Li X, Blackman CJ, Choat B, Duursma RA, Rymer PD, Medlyn BE, Tissue DT. Tree hydraulic traits are coordinated and strongly linked to climate-of-origin across a rainfall gradient. PLANT, CELL & ENVIRONMENT 2018; 41:646-660. [PMID: 29314083 DOI: 10.1111/pce.13129] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 05/18/2023]
Abstract
Plant hydraulic traits capture the impacts of drought stress on plant function, yet vegetation models lack sufficient information regarding trait coordination and variation with climate-of-origin across species. Here, we investigated key hydraulic and carbon economy traits of 12 woody species in Australia from a broad climatic gradient, with the aim of identifying the coordination among these traits and the role of climate in shaping cross-species trait variation. The influence of environmental variation was minimized by a common garden approach, allowing us to factor out the influence of environment on phenotypic variation across species. We found that hydraulic traits (leaf turgor loss point, stomatal sensitivity to drought [Pgs ], xylem vulnerability to cavitation [Px ], and branch capacitance [Cbranch ]) were highly coordinated across species and strongly related to rainfall and aridity in the species native distributional range. In addition, trade-offs between drought tolerance and plant growth rate were observed across species. Collectively, these results provide critical insight into the coordination among hydraulic traits in modulating drought adaptation and will significantly advance our ability to predict drought vulnerability in these dominant trees species.
Collapse
Affiliation(s)
- Ximeng Li
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Chris J Blackman
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Remko A Duursma
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Paul D Rymer
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| |
Collapse
|
40
|
Feng X, Uriarte M, González G, Reed S, Thompson J, Zimmerman JK, Murphy L. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling. GLOBAL CHANGE BIOLOGY 2018; 24:e213-e232. [PMID: 28804989 DOI: 10.1111/gcb.13863] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here, we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured interannual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including aboveground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.
Collapse
Affiliation(s)
- Xiaohui Feng
- Department of Ecology, Evolution & Environmental Biology, Columbia University, New York, NY, USA
| | - María Uriarte
- Department of Ecology, Evolution & Environmental Biology, Columbia University, New York, NY, USA
| | - Grizelle González
- International Institute of Tropical Forestry, United States Department of Agriculture Forest Service, Río Piedras, Puerto Rico
| | - Sasha Reed
- Southwest Biological Science Center, U.S. Geological Survey, Moab, UT, USA
| | - Jill Thompson
- Department of Environmental Science, University of Puerto Rico, San Juan, Puerto Rico
| | - Jess K Zimmerman
- Department of Environmental Science, University of Puerto Rico, San Juan, Puerto Rico
| | - Lora Murphy
- Department of Ecology, Evolution & Environmental Biology, Columbia University, New York, NY, USA
- Cary Institute of Ecosystem Studies, Millbrook, NY, USA
| |
Collapse
|