1
|
Cortés-Guzmán D, Bowler DE, Haase P. Spatial and temporal effects of heat waves on the diversity of European stream invertebrate communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176229. [PMID: 39270857 DOI: 10.1016/j.scitotenv.2024.176229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
The frequency and magnitude of extreme events, such as heat waves, are predicted to increase with climate change. However, assessments of the response of biological communities to heat waves are often inconclusive. We aimed to assess the responses in abundance, taxonomic and functional diversity indices of stream invertebrate communities to heat waves using long-term monitoring data collected across Europe. We quantified the heat waves' magnitude, analyzed the spatial (i.e., long-term mean) and temporal (anomaly around the long-term mean) components of variation in the magnitude of heat waves, and their interaction with anthropogenic stressors (ecological quality and land cover). For the spatial component of variation, we found a negative association of the community indices to the increasing magnitude of heat waves. Sites undergoing heat waves of higher magnitude showed fewer species and lower trait diversity compared with sites experiencing lower magnitude heat waves. However, we could not detect an immediate temporal response of the communities to heat waves (i.e., the temporal component). Furthermore, we found that the effects of heat waves interacted with the ecological quality of the streams and their surrounding land cover. Diversity declined with increasing heat waves' magnitude in streams with higher ecological quality or surrounded by forest, which may be due to a higher proportion of sensitive species in the community. Heat waves' impacts on diversity were also exacerbated by increasing urban cover. The interaction between heat waves' magnitude and anthropogenic stressors suggests that the effects of extreme events can compromise the recovery of communities. Further, the predicted increase in heat waves will likely have long-term effects on stream invertebrate communities that are currently undetected.
Collapse
Affiliation(s)
- Daniela Cortés-Guzmán
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.
| | - Diana E Bowler
- Biodiversity Monitoring & Analysis, UK Centre for Ecology & Hydrology, Wallingford, UK
| | - Peter Haase
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany; Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
2
|
Mora-Teddy AK, Closs GP, Matthaei CD. Microplastics and riverine macroinvertebrate communities in a multiple-stressor context: A mesocosm approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175456. [PMID: 39173751 DOI: 10.1016/j.scitotenv.2024.175456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/11/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Growing use of synthetic materials has increased the number of stressors that can degrade freshwater ecosystems. Many of these stressors are relatively new and poorly understood, such as microplastics which are now ubiquitous in freshwater systems. The effects of microplastics on freshwater biota must be investigated further in order to better manage and mitigate their impacts. Our experiment provides the first empirical evaluation of stream invertebrate community dynamics in response to microplastics of different concentrations and sizes, in combination with fine sediment, a pervasive known stressor in running waters. In a 7-week streamside experiment using 64 flow-through circular mesocosms, we investigated the effects of exposure to three simulated microplastic influxes (polyethylene microspheres at four levels between 0 and 28,800 items/event) and the addition of fine sediment (to simulate a polluted stream environment). Invertebrate drift was monitored for 48 h immediately after each microplastic influx, and benthic invertebrate communities were sampled after 28 days of microplastic and sediment manipulations. Microplastic concentration, size and fine sediment all had significant factor main effects on several invertebrate drift response metrics, whereas few microplastic main effects were seen in the benthic community. However, interactive stressor effects were common in different combinations between sediment, microplastic size and concentration, suggesting multiple-stressor relationships between microplastics and fine sediment. Microplastic ingestion was witnessed in four of 12 taxa analysed: Hydrobiosidae, Deleatidium spp., Potamopyrgus antipodarum and Archichauliodes diversus. Our findings provide insights into how microplastics affect drift and benthic community dynamics of stream invertebrates in a field-realistic experimental setting and highlight areas requiring further study. These include investigations of invertebrate drift dynamics in response to other types of microplastics, the role invertebrate size may play in determining their vulnerability to microplastic pollution, and framing more microplastic research in a field-realistic multiple-stressor context.
Collapse
|
3
|
Shahid N, Siddique A, Liess M. Synergistic interaction between a toxicant and food stress is further exacerbated by temperature. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125109. [PMID: 39396725 DOI: 10.1016/j.envpol.2024.125109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Global biodiversity is declining at an unprecedented rate in response to multiple environmental stressors. Effective biodiversity management requires deeper understanding of the relevant mechanisms behind such ecological impacts. A key challenge is understanding synergistic interactions between multiple stressors and predicting their combined effects. Here we used Daphnia magna to investigate the interaction between a pyrethroid insecticide esfenvalerate and two non-chemical environmental stressors: elevated temperature and food limitation. We hypothesized that the stressors with different modes of action can act synergistically. Our findings showed additive effects of food limitation and elevated temperature (25 °C, null model effect addition (EA)) with model deviation ratio (MDR) ranging from 0.7 to 0.9. In contrast, we observed strong synergistic interactions between esfenvalerate and food limitation at 20 °C, considerably further amplified at 25 °C. Additionally, for all stress combinations, the synergism intensified over time indicating the latent effects of the pesticide. Consequently, multiple stress substantially reduced the lethal concentration of esfenvalerate by a factor of 19 for the LC50 (0.45-0.024 μg/L) and 130 for the LC10 (0.096-0.00074 μg/L). The stress addition model (SAM) predicted increasing synergistic interactions among stressors with increasing total stress.
Collapse
Affiliation(s)
- Naeem Shahid
- System-Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Germany.
| | - Ayesha Siddique
- System-Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
| | - Matthias Liess
- System-Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany; Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| |
Collapse
|
4
|
Wehrli M, Slotsbo S, Fomsgaard IS, Laursen BB, Gröning J, Liess M, Holmstrup M. A Dirt(y) World in a Changing Climate: Importance of Heat Stress in the Risk Assessment of Pesticides for Soil Arthropods. GLOBAL CHANGE BIOLOGY 2024; 30:e17542. [PMID: 39450625 DOI: 10.1111/gcb.17542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
The rise in global temperatures and increasing severity of heat waves pose significant threats to soil organisms, disrupting ecological balances in soil communities. Additionally, the implications of environmental pollution are exacerbated in a warmer world, as changes in temperature affect the uptake, transformation and elimination of toxicants, thereby increasing the vulnerability of organisms. Nevertheless, our understanding of such processes remains largely unexplored. The present study examines the impact of high temperatures on the uptake and effects of the fungicide fluazinam on the springtail Folsomia candida (Collembola, Isotomidae). Conducted under non-optimum but realistic high temperatures, the experiments revealed that increased temperature hampered detoxification processes in F. candida, enhancing the toxic effects of fluazinam. High temperatures and the fungicide exerted synergistic interactions, reducing F. candida's reproduction and increasing adult mortality beyond what would be predicted by simple addition of the heat and chemical effects. These findings highlight the need to reevaluate the current ecological risk assessment and the regulatory framework in response to climate changes. This research enhances our understanding of how global warming affects the toxicokinetics and toxicodynamics (TK-TD) of chemicals in terrestrial invertebrates. In conclusion, our results suggest that adjustments to regulatory threshold values are necessary to address the impact of a changing climate.
Collapse
Affiliation(s)
- Micha Wehrli
- Department of Ecoscience, Aarhus University, Aarhus, Denmark
| | - Stine Slotsbo
- Department of Ecoscience, Aarhus University, Aarhus, Denmark
| | | | - Bente B Laursen
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Jonas Gröning
- UFZ - Helmholtz Centre for Environmental Research, -Ecotoxicology, Leipzig, Germany
| | - Matthias Liess
- UFZ - Helmholtz Centre for Environmental Research, -Ecotoxicology, Leipzig, Germany
- Institute for Environmental Research (Biology V), RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
5
|
Kokotović I, Kolar V, Rožman M, Bočkor L, Vitecek S, Previšić A. Wastewater and warming effects on aquatic invertebrates: Experimental insights into multi-level biodiversity consequences. WATER RESEARCH 2024; 267:122496. [PMID: 39340863 DOI: 10.1016/j.watres.2024.122496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Wastewater effluents and global warming affect freshwater ecosystems and impact their crucial biodiversity. Our study aimed at characterizing individual and combined impacts of wastewater effluent and increased water temperature (as one aspect of climate change) on model freshwater communities. We tested the effect of experimental treatments on genetic diversity, survival, body weight, total lipid content, lipidome and metabolome of individual species as well as community composition and phylogenetic diversity. In a 21-day mesocosm experiment we assessed the responses of a simplified freshwater food web comprising of moss and seven species of benthic macroinvertebrate shredders and grazers (mayflies, stoneflies, caddisflies and amphipods) to four treatments in a full factorial design: control, increased water temperature, wastewater and a multiple stressor treatment combining increased temperature and wastewater. Physiological responses varied among taxa, with species-specific sensitivities observed in survival and lipid content. The lowest total lipid content was observed in caddisflies and a mayfly subjected to multiple stressor treatment. The effects of stressors were reflected in the altered metabolic pathways and lipid metabolism of the individual taxa, with differential treatment effects also observed between taxa. A notable decrease in phylogenetic diversity was observed across all experimental communities. Gammarus fossarum demonstrated a high susceptibility to environmental stressors at the genetic level. Hence, while commonly used indicators of ecosystem health (e.g. community composition) remained stable, molecular indicators (e.g. phylogenetic diversity, metabolome and lipidome) responded readily to experimental treatments. These findings underscore the vulnerability of macroinvertebrates to environmental stressors, even over relatively short exposure periods. They highlight the importance of molecular indicators in detecting immediate ecological impacts, offering valuable information for conservation strategies and understanding the ecological consequences in freshwater ecosystems.
Collapse
Affiliation(s)
- Iva Kokotović
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Vojtech Kolar
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic; Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic; WasserCluster Lunz - Biologische Station, Lunz am See, Austria.
| | | | - Luka Bočkor
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia.
| | - Simon Vitecek
- WasserCluster Lunz - Biologische Station, Lunz am See, Austria; University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Ana Previšić
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
6
|
Dudgeon D, Strayer DL. Bending the curve of global freshwater biodiversity loss: what are the prospects? Biol Rev Camb Philos Soc 2024. [PMID: 39221642 DOI: 10.1111/brv.13137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Freshwater biodiversity conservation has received substantial attention in the scientific literature and is finally being recognized in policy frameworks such as the Global Biodiversity Framework and its associated targets for 2030. This is important progress. Nonetheless, freshwater species continue to be confronted with high levels of imperilment and widespread ecosystem degradation. An Emergency Recovery Plan (ERP) proposed in 2020 comprises six measures intended to "bend the curve" of freshwater biodiversity loss, if they are widely adopted and adequately supported. We review evidence suggesting that the combined intensity of persistent and emerging threats to freshwater biodiversity has become so serious that current and projected efforts to preserve, protect and restore inland-water ecosystems may be insufficient to avert substantial biodiversity losses in the coming decades. In particular, climate change, with its complex and harmful impacts, will frustrate attempts to prevent biodiversity losses from freshwater ecosystems already affected by multiple threats. Interactions among these threats will limit recovery of populations and exacerbate declines resulting in local or even global extinctions, especially among low-viability populations in degraded or fragmented ecosystems. In addition to impediments represented by climate change, we identify several other areas where the absolute scarcity of fresh water, inadequate scientific information or predictive capacity, and a widespread failure to mitigate anthropogenic stressors, are liable to set limits on the recovery of freshwater biodiversity. Implementation of the ERP rapidly and at scale through many widely dispersed local actions focused on regions of high freshwater biodiversity and intense threat, together with an intensification of ex-situ conservation efforts, will be necessary to preserve native freshwater biodiversity during an increasingly uncertain climatic future in which poorly understood, emergent and interacting threats have become more influential. But implementation of the ERP must be accompanied by measures that will improve water, energy and food security for humans - without further compromising the condition of freshwater ecosystems. Unfortunately, the inadequate political implementation of policies to arrest widely recognized environmental challenges such as climate change do not inspire confidence about the possible success of the ERP. In many parts of the world, the Anthropocene future seems certain to include extended periods with an absolute scarcity of uncontaminated surface runoff that will inevitably be appropriated by humans. Unless there is a step-change in societal awareness of - and commitment to - the conservation of freshwater biodiversity, together with necessary actions to arrest climate change, implementation of established methods for protecting freshwater biodiversity may not bend the curve enough to prevent continued ecosystem degradation and species loss.
Collapse
Affiliation(s)
- David Dudgeon
- Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - David L Strayer
- Cary Institute of Ecosystem Studies, P.O. Box AB, Millbrook, NY 12545, USA
| |
Collapse
|
7
|
García-Astillero A, Polazzo F, Rico A. Combined effects of heat waves and pesticide pollution on zooplankton communities: Does the timing of stressor matter? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116751. [PMID: 39024950 DOI: 10.1016/j.ecoenv.2024.116751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 05/21/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Most studies assessing the combined effects of chemical and non-chemical stressors on aquatic ecosystems have been based on synchronous stressor applications. However, asynchronous exposure scenarios may be more common in nature, particularly for pulsed stressors such as heatwaves and pesticide concentration peaks. In this study, we investigated the single and combined effects of the insecticide chlorpyrifos (CPF) and a heatwave (HW) on a zooplankton community representative of a Mediterranean coastal wetland using synchronous (CPF+HW) and asynchronous (HW→CPF and CPF→HW) exposure scenarios. CPF was applied at a concentration of 0.8 µg/L (single pulse), and the HW was simulated by a temperature increase of 8°C above the control temperature (20°C) for 7 days in freshwater microcosms. The interaction between stressors in synchrony resulted in synergistic effects at the population level (Daphnia magna) and additive at the community level. The partial reduction of sensitive species resulted in an abundance increase of competing species that were more tolerant to the evaluated stressors (e.g. Moina sp.). The asynchronous exposure scenarios resulted in a similar abundance decline of sensitive populations as compared to the synchronous one; however, the timing of stressor resulted in different responses in the long term. In the HW→CPF treatment, the D. magna population recovered at least one month faster than in the CPF+HW treatment, probably due to survival selection and cross-tolerance mechanisms. In the CPF→HW treatment, the effects lasted longer than in the CPF+HW, and the population did not recover within the experimental period, most likely due to the energetic costs of detoxification and effects on internal damage recovery. The different timing and magnitude of indirect effects among the tested asynchronous scenarios resulted in more severe effects on the structure of the zooplankton community in the CPF→HW treatment. Our study highlights the relevance of considering the order of stressors to predict the long-term effects of chemicals and heatwaves both at the population and community levels.
Collapse
Affiliation(s)
- Ariadna García-Astillero
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Punto Com 2, Alcalá de Henares, Madrid 28805, Spain; Biodiversity and Conservation Area, Department of Biology and Geology, Fisics and Inorganic Chemistry, University Rey Juan Carlos, Av. del Alcalde de Móstoles, Móstoles 28933, Madrid, Spain.
| | - Francesco Polazzo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland.
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Punto Com 2, Alcalá de Henares, Madrid 28805, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, Paterna, Valencia 46980, Spain.
| |
Collapse
|
8
|
Zhou Q, Di Nunno F, Sun J, Sojka M, Ptak M, Qian Y, Zhu S, Granata F. Characteristics of river heatwaves in the Vistula River basin, Europe. Heliyon 2024; 10:e35987. [PMID: 39247302 PMCID: PMC11379556 DOI: 10.1016/j.heliyon.2024.e35987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/27/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Rivers worldwide are warming due to the impact of climate change and human interventions. This study investigated river heatwaves in the Vistula River Basin, one of the largest river systems in Europe using long-term observed daily river water temperatures from the past 30 years (1991-2020). The results showed that river heatwaves are increased in frequency and intensity in the Vistula River Basin. The total number of river heatwaves showed clear increasing trend with an average rate of 1.400 times/decade, the duration of river heatwaves increased at an average rate of 14.506 days/decade, and the cumulative intensity of river heatwaves increased at an average rate of 53.169 °C/decade. The Mann-Kendall (MK) test was also employed, showing statistically significant increasing trends in the total number, duration, and intensity of heatwaves for all rivers, including the main watercourse of the Vistula River and its tributaries, with few exceptions. Air temperature is the major controller of river heatwaves for each hydrological station, and with the increase of air temperatures, river heatwaves will increase in frequency and intensity. Another impacting factor is flow, and with the increase of flow, river heatwaves tend to decrease in number, duration and intensity. The results suggested that mitigation measures shall be taken to reduce the effect of climate change on river systems.
Collapse
Affiliation(s)
- Quan Zhou
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, China
| | - Fabio Di Nunno
- Department of Civil and Mechanical Engineering (DICEM), University of Cassino and Southern Lazio, Via Di Biasio, 43, 03043, Cassino, Frosinone, Italy
| | - Jiang Sun
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, China
| | - Mariusz Sojka
- Department of Land Improvement, Environmental Development and Spatial Management, Poznań University of Life Sciences, Piątkowska 94E, 60-649, Poznań, Poland
| | - Mariusz Ptak
- Department of Hydrology and Water Management, Adam Mickiewicz University, B. Krygowskiego 10, 61-680, Poznań, Poland
| | - Yun Qian
- Gaoyou Institute of Dalian University of Technology, Yangzhou, China
| | - Senlin Zhu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, China
| | - Francesco Granata
- Department of Civil and Mechanical Engineering (DICEM), University of Cassino and Southern Lazio, Via Di Biasio, 43, 03043, Cassino, Frosinone, Italy
| |
Collapse
|
9
|
Alvarez MF, Villar-Argaiz M, Vela Soria F, Fernández Zambrano A, Medina-Sánchez JM, Carrillo P. Thresholds and interactive effects of BPA-gradient and temperature on life history traits of Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124186. [PMID: 38772512 DOI: 10.1016/j.envpol.2024.124186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/09/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024]
Abstract
Bisphenol A (BPA), a synthetic organic compound widely used in the production of plastics, is recognized as an emerging contaminant because of its toxicity and the potential risks associated with bioaccumulation in organisms. Despite potential environmental hazards, there is a lack of studies examining BPA toxicity mechanisms and its potential impact on various trophic levels, with even fewer exploring whether global stressors such as temperature can affect the toxicity of BPA in organisms. Our aim was to assess the combined impact of BPA and varying temperature regimes on life-history traits in Daphnia magna. Our results revealed a significant impact of BPA on the growth, reproduction, and accumulated moulting of D. magna, with adverse effects primarily associated with the assimilation of BPA in algae rather than the BPA present in the medium, pointing to a trophic transfer mechanism. The interactive effect between BPA and temperature demonstrated a slight stimulatory effect of low BPA level on D. magna growth rate under warming constant conditions, but an inhibitory under warming fluctuating temperatures. Additionally, a BPA threshold was identified, below which growth became temperature-dependent. This study emphasizes the crucial role of considering temperature in predicting how toxins may affect Daphnia within aquatic food webs.
Collapse
Affiliation(s)
- M Fernanda Alvarez
- Instituto del Agua, Universidad de Granada, 18071, Granada, Spain; Instituto de Limnología "Dr. Raúl A. Ringuelet". CCT-CONICET-La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (UNLP), La Plata, Argentina.
| | - Manuel Villar-Argaiz
- Instituto del Agua, Universidad de Granada, 18071, Granada, Spain; Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - Fernando Vela Soria
- Instituto de Investigación Biosanitaria (IBS.GRANADA), E-18016, Granada, Spain; Clinical Laboratory Management Unit, Hospital Universitario Clínico San Cecilio, E-18016, Granada, Spain
| | | | - J Manuel Medina-Sánchez
- Instituto del Agua, Universidad de Granada, 18071, Granada, Spain; Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | | |
Collapse
|
10
|
Hermann M, Polazzo F, Cherta L, Crettaz-Minaglia M, García-Astillero A, Peeters ETHM, Rico A, Van den Brink PJ. Combined stress of an insecticide and heatwaves or elevated temperature induce community and food web effects in a Mediterranean freshwater ecosystem. WATER RESEARCH 2024; 260:121903. [PMID: 38875860 DOI: 10.1016/j.watres.2024.121903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Ongoing global climate change will shift nature towards Anthropocene's unprecedented conditions by increasing average temperatures and the frequency and severity of extreme events, such as heatwaves. While such climatic changes pose an increased threat for freshwater ecosystems, other stressors like pesticides may interact with warming and lead to unpredictable effects. Studies that examine the underpinned mechanisms of multiple stressor effects are scarce and often lack environmental realism. Here, we conducted a multiple stressors experiment using outdoor freshwater mesocosms with natural assemblages of macroinvertebrates, zooplankton, phytoplankton, macrophytes, and microbes. The effects of the neonicotinoid insecticide imidacloprid (1 µg/L) were investigated in combination with three temperature scenarios representing ambient, elevated temperatures (+4 °C), and heatwaves (+0 to 8 °C), the latter two having similar energy input. We found similar imidacloprid dissipation patterns for all temperature treatments with lowest average dissipation half-lives under both warming scenarios (DT50: 3 days) and highest under ambient temperatures (DT50: 4 days) throughout the experiment. Amongst all communities, only the zooplankton community was significantly affected by the combined treatments. This community demonstrated low chemical sensitivity with lagged and significant negative imidacloprid effects only for cyclopoids. Heatwaves caused early and long-lasting significant effects on the zooplankton community as compared to elevated temperatures, with Polyarthra, Daphnia longispina, Lecanidae, and cyclopoids being the most negatively affected taxa, whereas Ceriodaphnia and nauplii showed positive responses to temperature. Community recovery from imidacloprid stress was slower under heatwaves, suggesting temperature-enhanced toxicity. Finally, microbial and macrofauna litter degradation were significantly enhanced by temperature, whereas the latter was also negatively affected by imidacloprid. A structural equation model depicted cascading food web effects of both stressors with stronger relationships and significant negative stressor effects at higher than at lower trophic levels. Our study highlights the threat of a series of heatwaves compared to elevated temperatures for imidacloprid-stressed freshwaters.
Collapse
Affiliation(s)
- Markus Hermann
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Francesco Polazzo
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Laura Cherta
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Melina Crettaz-Minaglia
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Ariadna García-Astillero
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Edwin T H M Peeters
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
11
|
Huang A, Van den Brink PJ, Van den Brink NW, Baas J. A dynamic energy budget (DEB) model to assess the sublethal effects of imidacloprid toward Gammarus pulex at different temperatures. CHEMOSPHERE 2024; 361:142511. [PMID: 38825249 DOI: 10.1016/j.chemosphere.2024.142511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/03/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
Environmental ambient temperature significantly impacts the metabolic activities of aquatic ectotherm organisms and influences the fate of various chemicals. Although numerous studies have shown that the acute lethal toxicity of most chemicals increases with increasing temperature, the impact of temperature on chronic effects - encompassing both lethal and sublethal endpoints - has received limited attention. Furthermore, the mechanisms linking temperature and toxicity, potentially unveiled by toxicokinetic-toxicodynamic models (TKTD), remains inadequately explored. This study investigated the effects of environmentally relevant concentrations of the insecticide imidacloprid (IMI) on the growth and survival of the freshwater amphipod Gammarus pulex at two different temperatures. Our experimental design was tailored to fit a TKTD model, specifically the Dynamic Energy Budget (DEB) model. We conducted experiments spanning three and six months, utilizing small G. pulex juveniles. We observed effects endpoints at least five times, employing both destructive and non-destructive methods, crucial for accurate model fittings. Our findings reveal that IMI at environmental concentrations (up to 0.3 μg/L) affects the growth and survival of G. pulex, albeit with limited effects, showing a 10% inhibition compared to the control group. These limited effects, observed in both lethal and sublethal aspects, suggest a different mode of action at low, environmentally-relevant concentrations in long-term exposure (3 months), in contrast to previous studies which applied higher concentrations and found that sublethal effects occurred at significantly lower levels than lethal effects in an acute test setting (4 days). Moreover, after parameterizing the DEB model for various temperatures, we identified a lower threshold for both lethal and sublethal effects at higher temperatures, indicating increased intrinsic sensitivity. Overall, this study contributes to future risk assessments considering temperature as a crucial factor and exemplifies the integration of the DEB model into experimental design for comprehensive toxicity evaluations.
Collapse
Affiliation(s)
- Anna Huang
- Wageningen Environmental Research, P.O. Box 47, 6700, AA Wageningen, the Netherlands; Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700, AA Wageningen, the Netherlands.
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700, AA Wageningen, the Netherlands
| | - Nico W Van den Brink
- Sub-department of Toxicology, Wageningen University, P.O. Box 8000, 6700, EA Wageningen, the Netherlands
| | - Jan Baas
- Wageningen Environmental Research, P.O. Box 47, 6700, AA Wageningen, the Netherlands
| |
Collapse
|
12
|
Matesun J, Petrik L, Musvoto E, Ayinde W, Ikumi D. Limitations of wastewater treatment plants in removing trace anthropogenic biomarkers and future directions: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116610. [PMID: 38909392 DOI: 10.1016/j.ecoenv.2024.116610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/31/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
This review highlights the limitations faced by conventional wastewater treatment plants (WWTPs) in effectively removing contaminants of emerging concern (CECs), heavy metals (HMs), and Escherichia coli (E. coli). This emphasises the limitations of current treatment methods and advocates for innovative approaches to enhance the removal efficiency. By following the PRISMA guidelines, the study systematically reviewed relevant literature on detecting and remedying these pollutants in wastewater treatment facilities. Conventional wastewater treatment plants struggle to eliminate CECs, HMs, and E. coli owing to their small size, persistence, and complex nature. The review suggests upgrading WWTPs with advanced tertiary processes to significantly improve contaminant removal. This calls for cost-effective treatment parameters and standardised assessment techniques to enhance the fate of MPs in WWTPs and WRRFs. It recommends integrating insights from mass-balance model studies on MPs in WWTP to overcome modelling challenges and ensure model reliability. In conclusion, this review underscores the urgent need for advancements in wastewater treatment processes to mitigate the environmental impact of trace anthropogenic biomarkers. Future efforts should focus on conducting comprehensive studies, implementing advanced treatment methods, and optimising management practices in WWTPs and WRRFs.
Collapse
Affiliation(s)
- Joshua Matesun
- Water Research Group, New Engineering Building, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.
| | - Leslie Petrik
- Environmental and NanoScience Research Group, University of the Western Cape, Bellville, Cape Town 7535, South Africa
| | - Eustina Musvoto
- TruSense Consulting Services (Pty) Ltd, 191 Hartley Street Pretoria, South Africa
| | - Wasiu Ayinde
- Water Research Group, New Engineering Building, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - David Ikumi
- Water Research Group, New Engineering Building, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.
| |
Collapse
|
13
|
Shahid N, Siddique A, Liess M. Predicting the Combined Effects of Multiple Stressors and Stress Adaptation in Gammarus pulex. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12899-12908. [PMID: 38984974 PMCID: PMC11270985 DOI: 10.1021/acs.est.4c02014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Global change confronts organisms with multiple stressors causing nonadditive effects. Persistent stress, however, leads to adaptation and related trade-offs. The question arises: How can the resulting effects of these contradictory processes be predicted? Here we show that Gammarus pulex from agricultural streams were more tolerant to clothianidin (mean EC50 148 μg/L) than populations from reference streams (mean EC50 67 μg/L). We assume that this increased tolerance results from a combination of physiological acclimation, epigenetic effects, and genetic evolution, termed as adaptation. Further, joint exposure to pesticide mixture and temperature stress led to synergistic interactions of all three stressors. However, these combined effects were significantly stronger in adapted populations as shown by the model deviation ratio (MDR) of 4, compared to reference populations (MDR = 2.7). The pesticide adaptation reduced the General-Stress capacity of adapted individuals, and the related trade-off process increased vulnerability to combined stress. Overall, synergistic interactions were stronger with increasing total stress and could be well predicted by the stress addition model (SAM). In contrast, traditional models such as concentration addition (CA) and effect addition (EA) substantially underestimated the combined effects. We conclude that several, even very disparate stress factors, including population adaptations to stress, can act synergistically. The strong synergistic potential underscores the critical importance of correctly predicting multiple stresses for risk assessment.
Collapse
Affiliation(s)
- Naeem Shahid
- System-Ecotoxicology, Helmholtz Centre for Environmental Research −
UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Department
of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, 60629 Frankfurt am Main, Germany
| | - Ayesha Siddique
- System-Ecotoxicology, Helmholtz Centre for Environmental Research −
UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute
for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Matthias Liess
- System-Ecotoxicology, Helmholtz Centre for Environmental Research −
UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute
for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
14
|
Kommana G, Hupfer M, Woodhouse JN, Grossart HP, Goldhammer T. Reduced greenhouse gas emissions from particulate organic matter degradation in iron-enriched sediments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1227-1244. [PMID: 38910491 DOI: 10.1039/d4em00185k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Iron (Fe) plays an important role in the biogeochemical cycling of carbon and nutrients in aquatic systems. Reactive Fe phases can interact with organic carbon and facilitate the removal of carbon from the biogeochemical cycle; however, this important ecosystem function is often strongly controlled by Fe availability. Due to pollution from lignite mining in the Lusatian province in Northeast Germany, large amounts of iron and sulfate are released into the fluvial-lacustrine system of the Spree River. It was hypothesized that the input of freshly precipitated iron oxyhydroxides from mining areas (e.g., ferrihydrite) alter the biodegradation of particulate organic matter (POM) in downstream lacustrine sediments. To investigate the Fe-dependent degradation of POM, slurries mimicking iron-polluted sediments (85 mg Fe per g, 116 mg Fe per g, and 149 mg Fe per g dry weight) were incubated with plankton or leaf POM under anoxic and oxic headspace conditions, and CO2 and CH4 emissions, water chemistry, and stable isotopes of dissolved inorganic carbon were measured. The experiments revealed that (i) with an increasing Fe content, the CO2 and CH4 emissions were gradually reduced, (ii) CO2 and CH4 production was higher during plankton degradation than during leaf decomposition, and (iii) under oxic conditions, CO2 production was higher and CH4 production was lower when compared to the treatments under anoxic conditions. These findings demonstrate that while benthic mineralization of fresh POM typically releases greenhouse gases into the water column, the availability of iron oxyhydroxides can contribute to reduced greenhouse gas emissions from sediments. This is of considerable relevance for future carbon budgets of similar mining-affected, iron-polluted fluvial-lacustrine river systems.
Collapse
Affiliation(s)
- Giulia Kommana
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Ecohydrology and Biogeochemistry, Mueggelseedamm 301, D-12587 Berlin, Germany.
- Brandenburg University of Technology Cottbus-Senftenberg, Department of Aquatic Ecology, Seestraße 45, D-15526 Bad Saarow, Germany
| | - Michael Hupfer
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Ecohydrology and Biogeochemistry, Mueggelseedamm 301, D-12587 Berlin, Germany.
- Brandenburg University of Technology Cottbus-Senftenberg, Department of Aquatic Ecology, Seestraße 45, D-15526 Bad Saarow, Germany
| | - Jason Nicholas Woodhouse
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststraße 18, D-22609 Hamburg, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Plankton and Microbial Ecology, Zur Alten Fischerhuette 2, 16775 Stechlin, Germany
| | - Hans-Peter Grossart
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Plankton and Microbial Ecology, Zur Alten Fischerhuette 2, 16775 Stechlin, Germany
- Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, D-14469 Potsdam, Germany
| | - Tobias Goldhammer
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Ecohydrology and Biogeochemistry, Mueggelseedamm 301, D-12587 Berlin, Germany.
| |
Collapse
|
15
|
Martyniuk V, Matskiv T, Yunko K, Khoma V, Gnatyshyna L, Faggio C, Stoliar O. Reductive stress and cytotoxicity in the swollen river mussel (Unio tumidus) exposed to microplastics and salinomycin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123724. [PMID: 38462197 DOI: 10.1016/j.envpol.2024.123724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Multistress effects lead to unpredicted consequences in aquatic ecotoxicology and are extremely concerning. The goal of this study was to trace how specific effects of the antibiotic salinomycin (Sal) and microplastics (MP) on the bivalve molluscs are manifested in the combined environmentally relevant exposures. Unio tumidus specimens were treated with Sal (0.6 μg L-1), MP (1 mg L-1, 2 μm size), and both at 18 °C (Mix) and 25 °C (MixT) for 14 days. The redox stress and apoptotic enzyme responses and the balance of Zn/Cu in the digestive gland were analyzed. The shared signs of stress included a decrease in NAD+/NADH and Zn/Cu ratios and lysosomal integrity and an increase in Zn-metallothioneins and cholinesterase levels. MP caused a decrease in the glutathione (GSH) concentration and redox state, total antioxidant capacity, and Zn levels. MP and Mix induced coordinated apoptotic/autophagy activities, increasing caspase-3 and cathepsin D (CtD) total and extralysosomal levels. Sal activated caspase-3 only and increased by five times Cu level in the tissue. Due to the discriminant analysis, the cumulative effect was evident in the combined exposure at 18 °C. However, under heating, the levels of NAD+, NADH, GSH, GSH/GSSG and metallothionein-related thiols were decreased, and coordination of the cytosolic and lysosomal death stimuli was distorted, confirming that heating and pollution could exert unexpected synergistic effects on aquatic life.
Collapse
Affiliation(s)
- Viktoria Martyniuk
- Department of Chemistry and Methods of Its Teaching, Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine.
| | - Tetiana Matskiv
- Department of Chemistry and Methods of Its Teaching, Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine; Department of General Chemistry, I. Horbachevsky Ternopil National Medical University, Maidan Voli, 1, Ternopil, 46001, Ukraine.
| | - Kateryna Yunko
- Department of Chemistry and Methods of Its Teaching, Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine.
| | - Vira Khoma
- Department of Research of Materials, Substances and Products, Ternopil Scientific Research Forensic Center of the Ministry of Internal Affairs of Ukraine, St. Budny, 48, Ternopil, 46020, Ukraine.
| | - Lesya Gnatyshyna
- Department of General Chemistry, I. Horbachevsky Ternopil National Medical University, Maidan Voli, 1, Ternopil, 46001, Ukraine.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, S. Agata, Messina, 31-98166, Italy; Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Oksana Stoliar
- Department of Chemistry and Methods of Its Teaching, Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, S. Agata, Messina, 31-98166, Italy.
| |
Collapse
|
16
|
Sun X, Arnott SE. Timing determines zooplankton community responses to multiple stressors. GLOBAL CHANGE BIOLOGY 2024; 30:e17358. [PMID: 38822590 DOI: 10.1111/gcb.17358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/31/2024] [Accepted: 04/19/2024] [Indexed: 06/03/2024]
Abstract
Human activities and climate change cause abiotic factors to fluctuate through time, sometimes passing thresholds for organismal reproduction and survival. Multiple stressors can independently or interactively impact organisms; however, few studies have examined how they interact when they overlap spatially but occur asynchronously. Fluctuations in salinity have been found in freshwater habitats worldwide. Meanwhile, heatwaves have become more frequent and extreme. High salinity pulses and heatwaves are often decoupled in time but can still collectively impact freshwater zooplankton. The time intervals between them, during which population growth and community recovery could happen, can influence combined effects, but no one has examined these effects. We conducted a mesocosm experiment to examine how different recovery times (0-, 3-, 6-week) between salt treatment and heatwave exposure influence their combined effects. We hypothesized that antagonistic effects would appear when having short recovery time, because previous study found that similar species were affected by the two stressors, but effects would become additive with longer recovery time since fully recovered communities would respond to heatwave similar to undisturbed communities. Our findings showed that, when combined, the two-stressor joint impacts changed from antagonistic to additive with increased recovery time between stressors. Surprisingly, full compositional recovery was not achieved despite a recovery period that was long enough for population growth, suggesting legacy effects from earlier treatment. The recovery was mainly driven by small organisms, such as rotifers and small cladocerans. As a result, communities recovering from previous salt exposure responded differently to heatwaves than undisturbed communities, leading to similar zooplankton communities regardless of the recovery time between stressors. Our research bolsters the understanding and management of multiple-stressor issues by revealing that prior exposure to one stressor has long-lasting impacts on community recovery that can lead to unexpected joint effects of multiple stressors.
Collapse
Affiliation(s)
- Xinyu Sun
- Biology Department, Queen's University, Kingston, Ontario, Canada
| | - Shelley E Arnott
- Biology Department, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
17
|
Hunn JG, Orr JA, Kelly AM, Piggott JJ, Matthaei CD. Individual and combined impacts of carbon dioxide enrichment, heatwaves, flow velocity variability, and fine sediment deposition on stream invertebrate communities. GLOBAL CHANGE BIOLOGY 2024; 30:e17336. [PMID: 38775780 DOI: 10.1111/gcb.17336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/29/2024] [Accepted: 04/18/2024] [Indexed: 09/21/2024]
Abstract
Climate change and land-use change are widely altering freshwater ecosystem functioning and there is an urgent need to understand how these broad stressor categories may interact in future. While much research has focused on mean temperature increases, climate change also involves increasing variability of both water temperature and flow regimes and increasing concentrations of atmospheric CO2, all with potential to alter stream invertebrate communities. Deposited fine sediment is a pervasive land-use stressor with widespread impacts on stream invertebrates. Sedimentation may be managed at the catchment scale; thus, uncovering interactions with these three key climate stressors may assist mitigation of future threats. This is the first experiment to investigate the individual and combined effects of enriched CO2, heatwaves, flow velocity variability, and fine sediment on realistic stream invertebrate communities. Using 128 mesocosms simulating small stony-bottomed streams in a 7-week experiment, we manipulated dissolved CO2 (ambient; enriched), fine sediment (no sediment; 300 g dry sediment), temperature (ambient; two 7-day heatwaves), and flow velocity (constant; variable). All treatments changed community composition. CO2 enrichment reduced abundances of Orthocladiinae and Chironominae and increased Copepoda abundance. Variable flow velocity had only positive effects on invertebrate abundances (7 of 13 common taxa and total abundance), in contrast to previous experiments showing negative impacts of reduced velocity. CO2 was implicated in most stressor interactions found, with CO2 × sediment interactions being most common. Communities forming under enriched CO2 conditions in sediment-impacted mesocosms had ~20% fewer total invertebrates than those with either treatment alone. Copepoda abundances doubled in CO2-enriched mesocosms without sediment, whereas no CO2 effect occurred in mesocosms with sediment. Our findings provide new insights into potential future impacts of climate change and land use in running freshwaters, in particular highlighting the potential for elevated CO2 to interact with fine sediment deposition in unpredictable ways.
Collapse
Affiliation(s)
- J G Hunn
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - J A Orr
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
- Department of Biology, University of Oxford, Oxford, UK
| | - A-M Kelly
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - J J Piggott
- Department of Zoology, University of Otago, Dunedin, New Zealand
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - C D Matthaei
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
18
|
Sinclair T, Craig P, Maltby LL. Climate warming shifts riverine macroinvertebrate communities to be more sensitive to chemical pollutants. GLOBAL CHANGE BIOLOGY 2024; 30:e17254. [PMID: 38556898 DOI: 10.1111/gcb.17254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/17/2024] [Accepted: 02/26/2024] [Indexed: 04/02/2024]
Abstract
Freshwaters are highly threatened ecosystems that are vulnerable to chemical pollution and climate change. Freshwater taxa vary in their sensitivity to chemicals and changes in species composition can potentially affect the sensitivity of assemblages to chemical exposure. Here we explore the potential consequences of future climate change on the composition and sensitivity of freshwater macroinvertebrate assemblages to chemical stressors using the UK as a case study. Macroinvertebrate assemblages under end of century (2080-2100) and baseline (1980-2000) climate conditions were predicted for 608 UK sites for four climate scenarios corresponding to mean temperature changes of 1.28 to 3.78°C. Freshwater macroinvertebrate toxicity data were collated for 19 chemicals and the hierarchical species sensitivity distribution model was used to predict the sensitivity of untested taxa using relatedness within a Bayesian approach. All four future climate scenarios shifted assemblage compositions, increasing the prevalence of Mollusca, Crustacea and Oligochaeta species, and the insect taxa of Odonata, Chironomidae, and Baetidae species. Contrastingly, decreases were projected for Plecoptera, Ephemeroptera (except for Baetidae) and Coleoptera species. Shifts in taxonomic composition were associated with changes in the percentage of species at risk from chemical exposure. For the 3.78°C climate scenario, 76% of all assemblages became more sensitive to chemicals and for 18 of the 19 chemicals, the percentage of species at risk increased. Climate warming-induced increases in sensitivity were greatest for assemblages exposed to metals and were dependent on baseline assemblage composition, which varied spatially. Climate warming is predicted to result in changes in the use, environmental exposure and toxicity of chemicals. Here we show that, even in the absence of these climate-chemical interactions, shifts in species composition due to climate warming will increase chemical risk and that the impact of chemical pollution on freshwater macroinvertebrate biodiversity may double or quadruple by the end of the 21st century.
Collapse
Affiliation(s)
- Tom Sinclair
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Peter Craig
- Department of Mathematical Sciences, Durham University, Durham, UK
| | | |
Collapse
|
19
|
Little AG, Seebacher F. Endocrine responses to environmental variation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220515. [PMID: 38310937 PMCID: PMC10838640 DOI: 10.1098/rstb.2022.0515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 02/06/2024] Open
Abstract
Hormones regulate most physiological functions and life history from embryonic development to reproduction. In addition to their roles in growth and development, hormones also mediate responses to the abiotic, social and nutritional environments. Hormone signalling is responsive to environmental changes to adjust phenotypes to prevailing conditions. Both hormone levels and receptor densities can change to provide a flexible system of regulation. Endocrine flexibility connects the environment to organismal function, and it is central to understanding environmental impacts and their effect on individuals and populations. Hormones may also act as a 'sensor' to link environmental signals to epigenetic processes and thereby effect phenotypic plasticity within and across generations. Many environmental parameters are now changing in unprecedented ways as a result of human activity. The knowledge base of organism-environmental interactions was established in environments that differ in many ways from current conditions as a result of ongoing human impacts. It is an urgent contemporary challenge to understand how evolved endocrine responses will modulate phenotypes in response to anthropogenic environmental impacts including climate change, light-at-night and chemical pollution. Endocrine responses play a central role in ecology, and their integration into conservation can lead to more effective outcomes. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Alexander G. Little
- Department of Biology, Life Sciences Building, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
20
|
Seebacher F, Little AG. Thyroid hormone links environmental signals to DNA methylation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220506. [PMID: 38310936 PMCID: PMC10838643 DOI: 10.1098/rstb.2022.0506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/14/2023] [Indexed: 02/06/2024] Open
Abstract
Environmental conditions experienced within and across generations can impact individual phenotypes via so-called 'epigenetic' processes. Here we suggest that endocrine signalling acts as a 'sensor' linking environmental inputs to epigenetic modifications. We focus on thyroid hormone signalling and DNA methylation, but other mechanisms are likely to act in a similar manner. DNA methylation is one of the most important epigenetic mechanisms, which alters gene expression patterns by methylating cytosine bases via DNA methyltransferase enzymes. Thyroid hormone is mechanistically linked to DNA methylation, at least partly by regulating the activity of DNA methyltransferase 3a, which is the principal enzyme that mediates epigenetic responses to environmental change. Thyroid signalling is sensitive to natural and anthropogenic environmental impacts (e.g. light, temperature, endocrine-disrupting pollution), and here we propose that thyroid hormone acts as an environmental sensor to mediate epigenetic modifications. The nexus between thyroid hormone signalling and DNA methylation can integrate multiple environmental signals to modify phenotypes, and coordinate phenotypic plasticity at different time scales, such as within and across generations. These dynamics can have wide-ranging effects on health and fitness of animals, because they influence the time course of phenotypic adjustments and potentially the range of environmental stimuli that can elicit epigenetic responses. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, New South Wales 2006, Australia
| | - Alexander G. Little
- Department of Biology, Life Sciences Building, McMaster University, Ontario, Canada L8S 4K1
| |
Collapse
|
21
|
Oldenkamp R, Benestad RE, Hader JD, Mentzel S, Nathan R, Madsen AL, Jannicke Moe S. Incorporating climate projections in the environmental risk assessment of pesticides in aquatic ecosystems. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:384-400. [PMID: 37795750 DOI: 10.1002/ieam.4849] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023]
Abstract
Global climate change will significantly impact the biodiversity of freshwater ecosystems, both directly and indirectly via the exacerbation of impacts from other stressors. Pesticides form a prime example of chemical stressors that are expected to synergize with climate change. Aquatic exposures to pesticides might change in magnitude due to increased runoff from agricultural fields, and in composition, as application patterns will change due to changes in pest pressures and crop types. Any prospective chemical risk assessment that aims to capture the influence of climate change should properly and comprehensively account for the variabilities and uncertainties that are inherent to projections of future climate. This is only feasible if they probabilistically propagate extensive ensembles of climate model projections. However, current prospective risk assessments typically make use of process-based models of chemical fate that do not typically allow for such high-throughput applications. Here, we describe a Bayesian network model that does. It incorporates a two-step univariate regression model based on a 30-day antecedent precipitation index, circumventing the need for computationally laborious mechanistic models. We show its feasibility and application potential in a case study with two pesticides in a Norwegian stream: the fungicide trifloxystrobin and herbicide clopyralid. Our analysis showed that variations in pesticide application rates as well as precipitation intensity lead to variations in in-stream exposures. When relating to aquatic risks, the influence of these processes is reduced and distributions of risk are dominated by effect-related parameters. Predicted risks for clopyralid were negligible, but the probability of unacceptable future environmental risks due to exposure to trifloxystrobin (i.e., a risk quotient >1) was 8%-12%. This percentage further increased to 30%-35% when a more conservative precautionary factor of 100 instead of 30 was used. Integr Environ Assess Manag 2024;20:384-400. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Rik Oldenkamp
- Amsterdam Institute for Life and Environment (A-LIFE)-Section Chemistry for Environment and Health, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - John D Hader
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Sophie Mentzel
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Rory Nathan
- Department of Infrastructure Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Anders L Madsen
- Hugin Expert A/S, Alborg, Denmark
- Department of Computer Science, Aalborg University, Aalborg, Denmark
| | - S Jannicke Moe
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| |
Collapse
|
22
|
Moe SJ, Brix KV, Landis WG, Stauber JL, Carriger JF, Hader JD, Kunimitsu T, Mentzel S, Nathan R, Noyes PD, Oldenkamp R, Rohr JR, van den Brink PJ, Verheyen J, Benestad RE. Integrating climate model projections into environmental risk assessment: A probabilistic modeling approach. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:367-383. [PMID: 38084033 PMCID: PMC11247537 DOI: 10.1002/ieam.4879] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
The Society of Environmental Toxicology and Chemistry (SETAC) convened a Pellston workshop in 2022 to examine how information on climate change could be better incorporated into the ecological risk assessment (ERA) process for chemicals as well as other environmental stressors. A major impetus for this workshop is that climate change can affect components of ecological risks in multiple direct and indirect ways, including the use patterns and environmental exposure pathways of chemical stressors such as pesticides, the toxicity of chemicals in receiving environments, and the vulnerability of species of concern related to habitat quality and use. This article explores a modeling approach for integrating climate model projections into the assessment of near- and long-term ecological risks, developed in collaboration with climate scientists. State-of-the-art global climate modeling and downscaling techniques may enable climate projections at scales appropriate for the study area. It is, however, also important to realize the limitations of individual global climate models and make use of climate model ensembles represented by statistical properties. Here, we present a probabilistic modeling approach aiming to combine projected climatic variables as well as the associated uncertainties from climate model ensembles in conjunction with ERA pathways. We draw upon three examples of ERA that utilized Bayesian networks for this purpose and that also represent methodological advancements for better prediction of future risks to ecosystems. We envision that the modeling approach developed from this international collaboration will contribute to better assessment and management of risks from chemical stressors in a changing climate. Integr Environ Assess Manag 2024;20:367-383. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- S Jannicke Moe
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Kevin V Brix
- EcoTox LLC, Miami, Florida, USA
- RSMAES, University of Miami, Miami, Florida, USA
| | - Wayne G Landis
- College of the Environment, Western Washington University, Bellingham, Washington, USA
| | - Jenny L Stauber
- CSIRO Environment, Lucas Heights, Sydney, NSW, Australia
- La Trobe University, Wodonga, Victoria, Australia
| | - John F Carriger
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, USEPA, Land Remediation and Technology Division, Cincinnati, Ohio, USA
| | - John D Hader
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Taro Kunimitsu
- CICERO Center for International Climate Research, Oslo, Norway
| | - Sophie Mentzel
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Rory Nathan
- Department of Infrastructure Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Pamela D Noyes
- Center for Public Health and Environmental Assessment, Office of Research and Development, USEPA, Integrated Climate Sciences Division, Washington, DC, USA
| | - Rik Oldenkamp
- Chemistry for Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jason R Rohr
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Paul J van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, The Netherlands
| | - Julie Verheyen
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Belgium
| | | |
Collapse
|
23
|
Kokotović I, Veseli M, Ložek F, Karačić Z, Rožman M, Previšić A. Pharmaceuticals and endocrine disrupting compounds modulate adverse effects of climate change on resource quality in freshwater food webs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168751. [PMID: 38008314 DOI: 10.1016/j.scitotenv.2023.168751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Freshwater biodiversity, ecosystem functions and services are changing at an unprecedented rate due to the impacts of vast number of stressors overlapping in time and space. Our study aimed at characterizing individual and combined impacts of pollution with pharmaceuticals (PhACs) and endocrine disrupting compounds (EDCs) and increased water temperature (as a proxy for climate change) on primary producers and first level consumers in freshwaters. We conducted a microcosm experiment with a simplified freshwater food web containing moss (Bryophyta) and shredding caddisfly larvae of Micropterna nycterobia (Trichoptera). The experiment was conducted with four treatments; control (C), increased water temperature + 4 °C (T2), emerging contaminants' mix (EC = 15 PhACs & 5 EDCs), and multiple stressor treatment (MS = EC + T2). Moss exhibited an overall mild response to selected stressors and their combination. Higher water temperature negatively affected development of M. nycterobia through causing earlier emergence of adults and changes in their lipidome profiles. Pollution with PhACs and EDCs had higher impact on metabolism of all life stages of M. nycterobia than warming. Multiple stressor effect was recorded in M. nycterobia adults in metabolic response, lipidome profiles and as a decrease in total lipid content. Sex specific response to stressor effects was observed in adults, with impacts on metabolome generally more pronounced in females, and on lipidome in males. Thus, our study highlights the variability of both single and multiple stressor impacts on different traits, different life stages and sexes of a single insect species. Furthermore, our research suggests that the combined impacts of warming, linked to climate change, and contamination with PhACs and EDCs could have adverse consequences on the population dynamics of aquatic insects. Additionally, these findings point to a potential decrease in the quality of resources available for both aquatic and potentially terrestrial food webs.
Collapse
Affiliation(s)
- Iva Kokotović
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Marina Veseli
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Filip Ložek
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia; South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Czech Republic.
| | | | | | - Ana Previšić
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
24
|
Duchet C, Grabicová K, Kolar V, Lepšová O, Švecová H, Csercsa A, Zdvihalová B, Randák T, Boukal DS. Combined effects of climate warming and pharmaceuticals on a tri-trophic freshwater food web. WATER RESEARCH 2024; 250:121053. [PMID: 38159539 DOI: 10.1016/j.watres.2023.121053] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Multiple anthropogenic stressors influence the functioning of lakes and ponds, but their combined effects are often little understood. We conducted two mesocosm experiments to evaluate the effects of warming (+4 °C above ambient temperature) and environmentally relevant concentrations of a mixture of commonly used pharmaceuticals (cardiovascular, psychoactive, antihistamines, antibiotics) on tri-trophic food webs representative of communities in ponds and other small standing waters. Communities were constituted of phyto- and zooplankton and macroinvertebrates (molluscs and insects) including benthic detritivores, grazers, omnivorous scrapers, omnivorous piercers, water column predators, benthic predators, and phytophilous predators. We quantified the main and interactive effects of warming and pharmaceuticals on each trophic level in the pelagic community and attributed them to the direct effects of both stressors and the indirect effects arising through biotic interactions. Warming and pharmaceuticals had stronger effects in the summer experiment, altering zooplankton community composition and causing delayed or accelerated emergence of top insect predators (odonates). In the summer experiment, both stressors and top predators reduced the biomass of filter-feeding zooplankton (cladocerans), while warming and pharmaceuticals had opposite effects on phytoplankton. In the winter experiment, the effects were much weaker and were limited to a positive effect of warming on phytoplankton biomass. Overall, we show that pharmaceuticals can exacerbate the effects of climate warming in freshwater ecosystems, especially during the warm season. Our results demonstrate the utility of community-level studies across seasons for risk assessment of multiple emerging stressors in freshwater ecosystems.
Collapse
Affiliation(s)
- Claire Duchet
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic; Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | - Kateřina Grabicová
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Vojtech Kolar
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic; Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Olga Lepšová
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Helena Švecová
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Andras Csercsa
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Barbora Zdvihalová
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Tomáš Randák
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - David S Boukal
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic; Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
25
|
Matskiv T, Martyniuk V, Khoma V, Yunko K, Orlova-Hudim K, Gnatyshyna L, Geffard A, Palos-Ladeiro M, Stoliar O. Biochemical basis of resistance to multiple contaminations in the native and invasive populations of Dreissena polymorpha. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109803. [PMID: 38008240 DOI: 10.1016/j.cbpc.2023.109803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
The zebra mussel Dreissena polymorpha (Pallas, 1771) is an invasive species and a valuable bioindicator in the inland waters. Nevertheless, the biochemical reasons for the unique competitiveness of zebra mussels are not clear. This study aimed to compare the native and invasive populations of D. polymorpha in their ability to withstand the same multiple environmental challenges (i.e. chemical: microplastics and caffeine; physical: temperatures). The specimens from the invasive population in west Ukraine (Tn) and native population at lower streams of river Dnipro (south Ukraine, Kh) were sampled in the August of 2021 y. Molluscs from both populations were treated simultaneously with microplastics (MP, 1 mg L-1, pore size 2 μm); caffeine (Caf, 20.0 μg L-1) at 18 °C, elevated temperature (25 °C) and MP and Caf combinations at 18 °C and 25 °C for 14 days. Untreated molluscs exposed at 18 °C represented control groups. A set of the 20 markers of oxidative stress, biotransformation, detoxification and apoptosis were assayed in the total soft tissues. From the two controls, Kh-group indicated lower stressful impact. However, both populations increased caspase-3 and GST activities and lysosomal instability in most exposures, and cholinesterase and phenoloxidase activities under the heating and combine exposures, indicating the remarkable properties to respond to new challenges and synergistic effect of mixtures. Inter-population differences were related to the metallothionein, cathepsin D, cytochrome P540 and oxidative stress responses that reflect population-dependent adverse outcome pathways. The discriminant analysis separated two populations with a substantially lesser magnitude of responses in the invasive population as a sign of higher resistance.
Collapse
Affiliation(s)
- Tetiana Matskiv
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine; I. Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001 Ternopil, Ukraine.
| | - Viktoria Martyniuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| | - Vira Khoma
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| | - Kateryna Yunko
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| | | | - Lesya Gnatyshyna
- I. Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001 Ternopil, Ukraine.
| | - Alain Geffard
- Université de Reims Champagne-Ardenne, Normandie Université, ULH, INERIS, SEBIO, UMR-I 02, Reims, France.
| | - Melissa Palos-Ladeiro
- Université de Reims Champagne-Ardenne, Normandie Université, ULH, INERIS, SEBIO, UMR-I 02, Reims, France.
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| |
Collapse
|
26
|
Ishiwaka N, Hashimoto K, Hiraiwa MK, Sánchez-Bayo F, Kadoya T, Hayasaka D. Can warming accelerate the decline of Odonata species in experimental paddies due to insecticide fipronil exposure? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122831. [PMID: 37913977 DOI: 10.1016/j.envpol.2023.122831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/05/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Systemic insecticides are one of the causes of Odonata declines in paddy fields. Since rising temperatures associated with global warming can contribute to strengthen pesticide toxicity, insecticide exposures under increasing temperatures may accelerate the decline of Odonata species in the future. However, the combined effects of multiple stressors on Odonata diversity and abundance within ecosystems under various environmental conditions and species interactions are little known. Here, we evaluate the combined effects of the insecticide fipronil and warming on the abundance of Odonata nymphs in experimental paddies. We show that the stand-alone effect of the insecticide exposure caused a significant decrease in abundance of the Odonata community, while nymphs decreased synergistically in the combined treatments with temperature rise in paddy water. However, impacts of each stressor alone were different among species. This study provides experimental evidence that warming could accelerate a reduction in abundance of the Odonata community exposed to insecticides (synergistic effect), although the strength of that effect might vary with the community composition in targeted habitats, due mainly to different susceptibilities among species to each stressor. Community-based monitoring in actual fields is deemed necessary for a realistic evaluation of the combined effects of multiple stressors on biodiversity.
Collapse
Affiliation(s)
- Naoto Ishiwaka
- Graduate School of Agriculture, Kindai University, Nakamachi, 3327-204, Nara, Nara, 631-8505, Japan
| | - Koya Hashimoto
- Biodiversity Division, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan; Faculty of Agriculture and Life Science, Hirosaki University, Bunkyotyo 3, Hirosaki, Aomori, 036-8561, Japan
| | - Masayoshi K Hiraiwa
- Faculty of Agriculture, Kindai University, Nakamachi, 3327-204, Nara, Nara, 631-8505, Japan
| | - Francisco Sánchez-Bayo
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Taku Kadoya
- Biodiversity Division, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan
| | - Daisuke Hayasaka
- Faculty of Agriculture, Kindai University, Nakamachi, 3327-204, Nara, Nara, 631-8505, Japan.
| |
Collapse
|
27
|
Sun X, Arnott SE, Little AG. Impacts of sequential salinity and heat stress are recovery time-specific in freshwater crustacean, Daphnia pulicaria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115899. [PMID: 38171229 DOI: 10.1016/j.ecoenv.2023.115899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Stressors can interact to affect animal fitness, but we have limited knowledge about how temporal variation in stressors may impact their combined effect. This limits our ability to predict the outcomes of pollutants and future dynamic environmental changes. Elevated salinity in freshwater ecosystems has been observed worldwide. Meanwhile, heatwaves have become more frequent and intensified as an outcome of climate change. These two stressors can jointly affect organisms; however, their interaction has rarely been explored in the context of freshwater ecosystems. We conducted lab experiments using Daphnia pulicaria, a key species in lakes, to investigate how elevated salinity and heatwave conditions collectively affect freshwater organisms. We also monitored the impacts of various recovery times between the two stressors. Daphnia physiological conditions (metabolic rate, Na+-K+-ATPase (NKA) activity, and lipid peroxidation level) and life history traits (survival, fecundity, and growth) in response to salt stress as well as mortality in heat treatment were examined. We found that Daphnia responded to elevated salinity by upregulating NKA activity and increasing metabolic rate, causing a high lipid peroxidation level. Survival, fecundity, and growth were all negatively affected by this stressor. These impacts on physiological conditions and life history traits persisted for a few days after the end of the exposure. Heat treatments caused mortality in Daphnia, which increased with rising temperature. Results also showed that individuals that experienced salt exposure were more susceptible to subsequent heat stress, but this effect decreased with increasing recovery time between stressors. Findings from this work suggest that the legacy effects from a previous stressor can reduce individual resistance to a subsequent stressor, adding great difficulties to the prediction of outcomes of multiple stressors. Our work also demonstrates that cross-tolerance/susceptibility and the associated mechanisms remain unclear, necessitating further investigation.
Collapse
Affiliation(s)
- Xinyu Sun
- Biology Department, Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada.
| | - Shelley E Arnott
- Biology Department, Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada
| | - Alexander G Little
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1 ON, Canada
| |
Collapse
|
28
|
Mangold-Döring A, Baas J, van den Brink PJ, Focks A, van Nes EH. Toxicokinetic-Toxicodynamic Model to Assess Thermal Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21029-21037. [PMID: 38062939 PMCID: PMC10734255 DOI: 10.1021/acs.est.3c05079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023]
Abstract
Temperature is a crucial environmental factor affecting the distribution and performance of ectothermic organisms. This study introduces a new temperature damage model to interpret their thermal stress. Inspired by the ecotoxicological damage model in the General Unified Threshold model for Survival (GUTS) framework, the temperature damage model assumes that damage depends on the balance between temperature-dependent accumulation and constant repair. Mortality due to temperature stress is driven by the damage level exceeding a threshold. Model calibration showed a good agreement with the measured survival of Gammarus pulex exposed to different constant temperatures. Further, model simulations, including constant temperatures, daily temperature fluctuations, and heatwaves, demonstrated the model's ability to predict temperature effects for various environmental scenarios. With this, the present study contributes to the mechanistic understanding of temperature as a single stressor while facilitating the incorporation of temperature as an additional stressor alongside chemicals in mechanistic multistressor effect models.
Collapse
Affiliation(s)
- Annika Mangold-Döring
- Department
of Aquatic Ecology and Water Quality Management, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
- Wageningen
Environmental Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Jan Baas
- Wageningen
Environmental Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Paul J. van den Brink
- Department
of Aquatic Ecology and Water Quality Management, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
- Wageningen
Environmental Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Andreas Focks
- System
Science Group/Institute of Mathematics, Osnabrück University, Barbarastrasse 12, D-49076 Osnabrück, Germany
| | - Egbert H. van Nes
- Department
of Aquatic Ecology and Water Quality Management, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
29
|
Hutchins M, Sweetman A, Barry C, Berg P, George C, Pickard A, Qu Y. MAKING WAVES: Effluent to estuary: Does sunshine or shade reduce downstream footprints of cities? WATER RESEARCH 2023; 247:120815. [PMID: 37931359 DOI: 10.1016/j.watres.2023.120815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/09/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
Riparian tree canopies are key components of river systems, and influence the provision of many essential ecosystem services. Their management provides the potential for substantial control of the downstream persistence of pollutants. The recent advent of new advances in mass spectrometry to detect a large suite of emerging contaminants, high-frequency observations of water quality and gas exchange (e.g., aquatic eddy covariance), and improved spatial resolution in remote sensing (e.g., hyperspectral measurements and high-resolution imagery), presents new opportunities to understand and more comprehensively quantify the role of riparian canopies as Nature-based Solutions. The paper outlines how we may now couple these advances in observational technologies with developments in water quality modelling to integrate simulation of eutrophication impacts with organic matter dynamics and fate of synthetic toxic compounds. In particular regarding solar radiation drivers, this enables us to scale-up new knowledge of canopy-mediated photodegradation processes at a basin level, and integrate it with ongoing improvements in understanding of thermal control, eutrophication, and ecosystem metabolism.
Collapse
Affiliation(s)
- Michael Hutchins
- UK Centre for Ecology & Hydrology, Crowmarsh Gifford, Wallingford OX10 8BB, UK; Department of Earth Sciences, Royal Holloway University of London, Egham Hill, Egham TW20 0EX, UK.
| | - Andrew Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Christopher Barry
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor LL57 2UW, UK
| | - Peter Berg
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22908, USA
| | - Charles George
- UK Centre for Ecology & Hydrology, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - Amy Pickard
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Edinburgh EH26 0QB, UK
| | - Yueming Qu
- UK Centre for Ecology & Hydrology, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| |
Collapse
|
30
|
Wang T, Zhang P, Molinos JG, Xie J, Zhang H, Wang H, Xu X, Wang K, Feng M, Cheng H, Zhang M, Xu J. Interactions between climate warming, herbicides, and eutrophication in the aquatic food web. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118753. [PMID: 37625285 DOI: 10.1016/j.jenvman.2023.118753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/16/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Understanding the interactive effects of multiple environmental stressors on biological communities is crucial for effective environmental management and biodiversity conservation. Here, we present the results of an outdoor mesocosm experiment examining how an aquatic food web responds to the individual and combined effects of climate warming, heat waves, nutrient enrichment, and herbicide exposure. To assess ecosystem functioning, we examined energy flow, using stable isotope analysis integrated with the bioenergetics food web approach to quantify energy fluxes among trophic levels. Our results revealed that the combined effects of these stressors altered the pattern of energy fluxes within the food web. Under warming conditions, there was an increase in energy flux from producers and primary consumers to secondary consumers. However, we did not observe a significant increase in energy flux in primary consumers, potentially due to enhanced top-down control. Nutrient enrichment increased energy flux from producers to higher trophic levels while simultaneously decreasing detrital energy flux. Herbicide exposure did not significantly affect herbivory energy flux but did reduce detritivory energy flux, particularly from detritus to primary consumers. The interactive effects we observed were primarily antagonistic or additive, although we also detected reversed and synergistic effects. The responses to multiple stressors varied across different energy flow pathways, leading to an asymmetric response. Furthermore, our results also revealed significant differences in the effects of constant warming and heat waves, either alone or in combination with water pollution. The asymmetric response of energy flow pathways and the prevalence of antagonistic effects present significant challenges for ecosystem restoration. Together, our findings provide novel and clear evidence of the complex mechanisms by which the coexistence of stressors can differently affect the pathways of energy flux across trophic levels in aquatic ecosystems. Regulatory strategies for ecosystems should comprehensively consider responses at multi-trophic levels using a network perspective, especially in the face of combinations of global and local stressors.
Collapse
Affiliation(s)
- Tao Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China; University of Chinese Academy of Sciences, Beijing, PR China.
| | - Peiyu Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China.
| | | | - Jiayi Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China; University of Chinese Academy of Sciences, Beijing, PR China.
| | - Huan Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China.
| | - Huan Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China.
| | - Xiaoqi Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China.
| | - Kang Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China; University of Chinese Academy of Sciences, Beijing, PR China.
| | - Mingjun Feng
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Huazhong Agricultural University, Wuhan, PR China.
| | - Haowu Cheng
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Huazhong Agricultural University, Wuhan, PR China.
| | - Min Zhang
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Huazhong Agricultural University, Wuhan, PR China.
| | - Jun Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China.
| |
Collapse
|
31
|
Bundschuh M, Mesquita-Joanes F, Rico A, Camacho A. Understanding Ecological Complexity in a Chemical Stress Context: A Reflection on Recolonization, Recovery, and Adaptation of Aquatic Populations and Communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1857-1866. [PMID: 37204216 DOI: 10.1002/etc.5677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/17/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Recovery, recolonization, and adaptation in a chemical stress context are processes that regenerate local populations and communities as well as the functions these communities perform. Recolonization, either by species previously present or by new species able to occupy the niches left empty, refers to a metacommunity process with stressed ecosystems benefiting from the dispersal of organisms from other areas. A potential consequence of recolonization is a limited capacity of local populations to adapt to potentially repeating events of chemical stress exposure when their niches have been effectively occupied by the new colonizers or by new genetic lineages of the taxa previously present. Recovery, instead, is an internal process occurring within stressed ecosystems. More specifically, the impact of a stressor on a community benefits less sensitive individuals of a local population as well as less sensitive taxa within a community. Finally, adaptation refers to phenotypic and, sometimes, genetic changes at the individual and population levels, allowing the permanence of individuals of previously existing taxa without necessarily changing the community taxonomic composition (i.e., not replacing sensitive species). Because these processes are usually operating in parallel in nature, though at different degrees, it seems relevant to try to understand their relative importance for the regeneration of community structure and ecosystem functioning after chemical exposure. In the present critical perspective, we employed case studies supporting our understanding of the underlying processes with the hope to provide a theoretical framework to disentangle the relevance of the three processes for the regeneration of a biological community after chemical exposure. Finally, we provide some recommendations to experimentally compare their relative importance so that the net effects of these processes can be used to parameterize risk-assessment models and inform ecosystem management. Environ Toxicol Chem 2023;42:1857-1866. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Francesc Mesquita-Joanes
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, València, Spain
| | - Andreu Rico
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, València, Spain
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Madrid, Spain
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, València, Spain
| |
Collapse
|
32
|
Martínez-Megías C, Mentzel S, Fuentes-Edfuf Y, Moe SJ, Rico A. Influence of climate change and pesticide use practices on the ecological risks of pesticides in a protected Mediterranean wetland: A Bayesian network approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163018. [PMID: 36963680 DOI: 10.1016/j.scitotenv.2023.163018] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/28/2023] [Accepted: 03/19/2023] [Indexed: 05/13/2023]
Abstract
Pollution by agricultural pesticides is one of the most important pressures affecting Mediterranean coastal wetlands. Pesticide risks are expected to be influenced by climate change, which will result in an increase of temperatures and a decrease in annual precipitation. On the other hand, pesticide dosages are expected to change given the increase in pest resistance and the implementation of environmental policies like the European ´Farm-to-Fork` strategy, which aims for a 50 % reduction in pesticide usage by 2030. The influence of climate change and pesticide use practices on the ecological risks of pesticides needs to be evaluated making use of realistic environmental scenarios. This study investigates how different climate change and pesticide use practices affect the ecological risks of pesticides in the Albufera Natural Park (Valencia, Spain), a protected Mediterranean coastal wetland. We performed a probabilistic risk assessment for nine pesticides applied in rice production using three climatic scenarios (for the years 2008, 2050 and 2100), three pesticide dosage regimes (the recommended dose, and 50 % increase and 50 % decrease), and their combinations. The scenarios were used to simulate pesticide exposure concentrations in the water column of the rice paddies using the RICEWQ model. Pesticide effects were characterized using acute and chronic Species Sensitivity Distributions built with toxicity data for aquatic organisms. Risk quotients were calculated as probability distributions making use of Bayesian networks. Our results show that future climate projections will influence exposure concentrations for some of the studied pesticides, yielding higher dissipation and lower exposure in scenarios dominated by an increase of temperatures, and higher exposure peaks in scenarios where heavy precipitation events occur right after pesticide application. Our case study shows that pesticides such as azoxystrobin, difenoconazole and MCPA are posing unacceptable ecological risks for aquatic organisms, and that the implementation of the ´Farm-to-Fork` strategy is crucial to reduce them.
Collapse
Affiliation(s)
- Claudia Martínez-Megías
- University of Alcalá, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Ctra. Madrid-Barcelona KM 33.600, 28871 Alcalá de Henares, Madrid, Spain; IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Av. Punto Com 2, Alcalá de Henares 28805, Madrid, Spain
| | - Sophie Mentzel
- Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway
| | - Yasser Fuentes-Edfuf
- Department of Strategy, IE Business School, IE University, Paseo de la Castellana 259 E., 28046 Madrid, Spain
| | - S Jannicke Moe
- Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Av. Punto Com 2, Alcalá de Henares 28805, Madrid, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
33
|
Hermann M, Peeters ETHM, Van den Brink PJ. Heatwaves, elevated temperatures, and a pesticide cause interactive effects on multi-trophic levels of a freshwater ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121498. [PMID: 36965684 DOI: 10.1016/j.envpol.2023.121498] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Climate impacts of elevated temperatures and more severe and frequent weather extremes like heatwaves are globally becoming discernible on nature. While a mechanistic understanding is pivotal for ecosystem management, stressors like pesticides may interact with warming, leading to unpredictable effects on freshwater ecosystems. These multiple stressor studies are scarce and experimental designs often lack environmental realism. To investigate the multiple stressor effects, we conducted a microcosm experiment for 48 days comprising benthic macroinvertebrates, zooplankton, phytoplankton, macrophytes, and microbes. The fungicide carbendazim (100 μg/L) was investigated combined with temperature scenarios representing elevated temperatures (+4 °C) or heatwaves (+0 to +8 °C), both applied with similar energy input on a daily fluctuating ambient temperature (18 °C ± 1.5 °C), which served as control. Measurements showed the highest carbendazim dissipation in water under heatwaves followed by elevated and ambient temperatures. Average carbendazim concentrations were about 50% in water and 16% in sediment of the nominal concentration. In both heated cosms, zooplankton community dynamics revealed an unexpected shift from Rotifera to Cladocera and Copepoda nauplii, indicating variations in their thermal sensitivity, tolerance and resilience. Notably, warming and heatwaves shaped community responses similarly, suggesting heat intensity rather than distribution patterns determined the community structure. Heatwaves led to significant early and longer-lasting adverse effects that were exacerbated over time with Cladocera and Copepoda being most sensitive likely due to significant carbendazim interactions. Finally, a structural equation model demonstrated significant relationships between zooplankton and macrophytes and significantly negative carbendazim effects on zooplankton, whereas positive on macroinvertebrate abundances. The relationship between macroinvertebrate feeding and abundance was masked by significantly temperature-affected microbial leaf litter decomposition. Despite the thermal tolerance of zooplankton communities, our study highlights an increased pesticide threat under temperature extremes. More intense heatwaves are thus likely to cause significant alterations in community assemblages which will adversely affect ecosystem's processes and functions.
Collapse
Affiliation(s)
- Markus Hermann
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700, AA Wageningen, the Netherlands.
| | - Edwin T H M Peeters
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700, AA Wageningen, the Netherlands
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700, AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700, AA Wageningen, the Netherlands
| |
Collapse
|
34
|
Verheyen J, Cuypers K, Stoks R. Adverse effects of the pesticide chlorpyrifos on the physiology of a damselfly only occur at the cold and hot extremes of a temperature gradient. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121438. [PMID: 36963457 DOI: 10.1016/j.envpol.2023.121438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/13/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Ecotoxicological studies considerably improved realism by assessing the toxicity of pollutants at different temperatures. Nevertheless, they may miss key interaction patterns between pollutants and temperature by typically considering only part of the natural thermal gradient experienced by species and ignoring daily temperature fluctuations (DTF). We therefore tested in a common garden laboratory experiment the effects of the pesticide chlorpyrifos across a range of mean temperatures and DTF on physiological traits (related to oxidative stress and bioenergetics) in low- and high-latitude populations of Ischnura elegans damselfly larvae. As expected, the impact of chlorpyrifos varied along the wide range of mean temperatures (12-34 °C). None of the physiological traits (except the superoxide anion levels) were affected by chlorpyrifos at the intermediate mean temperatures (20-24 °C). Instead, most of them were negatively affected by chlorpyrifos (reduced activity levels of the antioxidant defense enzymes superoxide dismutase [SOD], catalase [CAT] and peroxidase [PER], and a reduced energy budget) at the very high (≥28 °C) or extreme high temperatures (≥32 °C), and to lesser extent at the lower mean temperatures (≤16 °C). Notably, at the lower mean temperatures the negative impact of chlorpyrifos was often only present or stronger under DTF. Although the chlorpyrifos effects on the physiological traits greatly depended on the experimentally imposed thermal gradient, patterns were mainly consistent across the natural latitude-associated thermal gradient, indicating the generality of our results. The thermal patterns in chlorpyrifos-induced physiological responses contributed to the observed toxicity patterns in life history (reduced survival and growth at low and high mean temperatures). Taken together, our results underscore the importance of evaluating pesticide toxicity along a temperature gradient and of taking a mechanistic approach with a focus on physiology, to improve our understanding of the combined effects of pollutants and temperature in natural populations.
Collapse
Affiliation(s)
- Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium.
| | - Kiani Cuypers
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium
| |
Collapse
|
35
|
James RS, Seebacher F, Tallis J. Can animals tune tissue mechanics in response to changing environments caused by anthropogenic impacts? J Exp Biol 2023; 226:287009. [PMID: 36779312 DOI: 10.1242/jeb.245109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Anthropogenic climate change and pollution are impacting environments across the globe. This Review summarises the potential impact of such anthropogenic effects on animal tissue mechanics, given the consequences for animal locomotor performance and behaviour. More specifically, in light of current literature, this Review focuses on evaluating the acute and chronic effects of temperature on the mechanical function of muscle tissues. For ectotherms, maximal muscle performance typically occurs at temperatures approximating the natural environment of the species. However, species vary in their ability to acclimate to chronic changes in temperature, which is likely to have longer-term effects on species range. Some species undergo periods of dormancy to avoid extreme temperature or drought. Whilst the skeletal muscle of such species generally appears to be adapted to minimise muscle atrophy and maintain performance for emergence from dormancy, the increased occurrence of extreme climatic conditions may reduce the survival of individuals in such environments. This Review also considers the likely impact of anthropogenic pollutants, such as hormones and heavy metals, on animal tissue mechanics, noting the relative paucity of literature directly investigating this key area. Future work needs to determine the direct effects of anthropogenic environmental changes on animal tissues and related changes in locomotor performance and behaviour, including accounting for currently unknown interactions between environmental factors, e.g. temperature and pollutants.
Collapse
Affiliation(s)
- Rob S James
- Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Jason Tallis
- Research Centre for Sport, Exercise and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| |
Collapse
|
36
|
Raths J, Švara V, Lauper B, Fu Q, Hollender J. Speed it up: How temperature drives toxicokinetics of organic contaminants in freshwater amphipods. GLOBAL CHANGE BIOLOGY 2023; 29:1390-1406. [PMID: 36448880 PMCID: PMC10107603 DOI: 10.1111/gcb.16542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 05/26/2023]
Abstract
The acceleration of global climate change draws increasing attention towards interactive effects of temperature and organic contaminants. Many studies reported a higher sensitivity of aquatic invertebrates towards contaminant exposure with increasing or fluctuating temperatures. The hypothesis of this study was that the higher sensitivity of invertebrates is associated with the changes of toxicokinetic processes that determine internal concentrations of contaminants and consequently toxic effects. Therefore, the influence of temperature on toxicokinetic processes and the underlying mechanisms were studied in two key amphipod species (Gammarus pulex and Hyalella azteca). Bioconcentration experiments were carried out at four different temperatures with a mixture of 12 exposure relevant polar organic contaminants. Tissue and medium samples were taken in regular intervals and analysed by online solid-phase extraction liquid chromatography high-resolution tandem mass spectrometry. Subsequently, toxicokinetic rates were modelled and analysed in dependence of the exposure temperature using the Arrhenius equation. An exponential relationship between toxicokinetic rates versus temperature was observed and could be well depicted by applying the Arrhenius equation. Due to a similar Arrhenius temperature of uptake and elimination rates, the bioconcentration factors of the contaminants were generally constant across the temperature range. Furthermore, the Arrhenius temperature of the toxicokinetic rates and respiration was mostly similar. However, in some cases (citalopram, cyprodinil), the bioconcentration factor appeared to be temperature dependent, which could potentially be explained by the influence of temperature on active uptake mechanisms or biotransformation. The observed temperature effects on toxicokinetics may be particularly relevant in non-equilibrated systems, such as exposure peaks in summer as exemplified by the exposure modelling of a field measured pesticide peak where the internal concentrations increased by up to fourfold along the temperature gradient. The results provide novel insights into the mechanisms of chemical uptake, biotransformation and elimination in different climate scenarios and can improve environmental risk assessment.
Collapse
Affiliation(s)
- Johannes Raths
- Department of Environmental ChemistrySwiss Federal Institute of Aquatic Science and Technology – EawagDübendorfSwitzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH ZürichZürichSwitzerland
| | - Vid Švara
- UNESCO Chair on Sustainable Management of Conservation Areas, Engineering & ITCarinthia University of Applied SciencesVillachAustria
- Department of Effect‐Directed AnalysisHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Benedikt Lauper
- Department of Environmental ChemistrySwiss Federal Institute of Aquatic Science and Technology – EawagDübendorfSwitzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH ZürichZürichSwitzerland
| | - Qiuguo Fu
- Department of Environmental ChemistrySwiss Federal Institute of Aquatic Science and Technology – EawagDübendorfSwitzerland
| | - Juliane Hollender
- Department of Environmental ChemistrySwiss Federal Institute of Aquatic Science and Technology – EawagDübendorfSwitzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH ZürichZürichSwitzerland
| |
Collapse
|
37
|
Verheyen J, Stoks R. Thermal Performance Curves in a Polluted World: Too Cold and Too Hot Temperatures Synergistically Increase Pesticide Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3270-3279. [PMID: 36787409 DOI: 10.1021/acs.est.2c07567] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ecotoxicological studies typically cover only a limited part of the natural thermal range of populations and ignore daily temperature fluctuations (DTFs). Therefore, we may miss important stressor interaction patterns and have poor knowledge on how pollutants affect thermal performance curves (TPCs), which is needed to improve insights into the fate of populations to warming in a polluted world. We tested the single and combined effects of pesticide exposure and DTFs on the TPCs of low- and high-latitude populations of Ischnura elegans damselfly larvae. While chlorpyrifos did not have any effect at the intermediate mean temperatures (20-24 °C), it became toxic (reflecting synergisms) at lower (≤16 °C, reduced growth) and especially at higher (≥28 °C, reduced survival and growth) mean temperatures, resulting in more concave-shaped TPCs. Remarkably, these toxicity patterns were largely consistent at both latitudes and hence across a natural thermal gradient. Moreover, DTFs magnified the pesticide-induced survival reductions at 34 °C. The TPC perspective allowed us to identify different toxicity patterns and interaction types (mainly additive vs synergistic) across the thermal gradient. This highlights the importance of using thermal gradients to make more realistic predictions about the impact of pesticides in a warming world and of warming in a polluted world.
Collapse
Affiliation(s)
- Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| |
Collapse
|
38
|
Thanigaivel S, Vickram S, Dey N, Jeyanthi P, Subbaiya R, Kim W, Govarthanan M, Karmegam N. Ecological disturbances and abundance of anthropogenic pollutants in the aquatic ecosystem: Critical review of impact assessment on the aquatic animals. CHEMOSPHERE 2023; 313:137475. [PMID: 36528154 DOI: 10.1016/j.chemosphere.2022.137475] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Anthropogenic toxins are discharged into the environment and distributed through a variety of environmental matrices. Trace contaminant detection and analysis has advanced dramatically in recent decades, necessitating further specialized technique development. These pollutants can be mobile and persistent in small amounts in the environment, and ecological receptors will interact with it. Despite the fact that few researches have been undertaken on invertebrate exposure, accumulation, and biological implications, it is apparent that a wide range of pollutants can accumulate in the tissues of aquatic insects, earthworms, amphipod crustaceans, and mollusks. Due to long-term stability during long-distance transit, a number of chemical and microbiological agents that were not previously deemed pollutants have been found in various environmental compartments. The uptake of such pollutants by the aquatic organism is done through the process of bioaccumulation when dangerous compounds accumulate in living beings while biomagnification is the process of a pollutant becoming more hazardous as it moves up the trophic chain. Organic and metal pollution harms animals of every species studied so far, from bacteria to phyla in between. The environmental protection agency says these poisons harm humans as well as a variety of aquatic organisms when the water quality is sacrificed in typical wastewater treatment systems. Contrary to popular belief, treated effluents discharged into aquatic bodies contain considerable levels of Anthropogenic contaminants. This evolution necessitates a more robust and recent advancement in the field of remediation and their techniques to completely discharge the various organic and inorganic contaminants.
Collapse
Affiliation(s)
- Sundaram Thanigaivel
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Nibedita Dey
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Palanivelu Jeyanthi
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600 062, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Natchimuthu Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| |
Collapse
|
39
|
Polazzo F, Hermann M, Crettaz-Minaglia M, Rico A. Impacts of extreme climatic events on trophic network complexity and multidimensional stability. Ecology 2023; 104:e3951. [PMID: 36484732 PMCID: PMC10078413 DOI: 10.1002/ecy.3951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/27/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Untangling the relationship between network complexity and ecological stability under climate change is an arduous challenge for theoretical and empirical ecology. Even more so, when considering extreme climatic events. Here, we studied the effects of extreme climatic events (heatwaves) on the complexity of realistic freshwater ecosystems using topological and quantitative trophic network metrics. Next, we linked changes in network complexity with the investigation of four stability components (temporal stability, resistance, resilience, and recovery) of community's functional, compositional, and energy flux stability. We found reduction in topological network complexity to be correlated with reduction of functional and compositional resistance. However, temperature-driven increase in link-weighted network complexity increased functional and energy flux recovery and resilience, but at the cost of increased compositional instability. Overall, we propose an overarching approach to elucidate the effects of climate change on multidimensional stability through the lens of network complexity, providing helpful insights for preserving ecosystems stability under climate change.
Collapse
Affiliation(s)
- Francesco Polazzo
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Madrid, Spain
| | - Markus Hermann
- Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, The Netherlands
| | - Melina Crettaz-Minaglia
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Madrid, Spain
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Madrid, Spain.,Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
40
|
Huang A, Mangold-Döring A, Guan H, Boerwinkel MC, Belgers D, Focks A, Van den Brink PJ. The effect of temperature on toxicokinetics and the chronic toxicity of insecticides towards Gammarus pulex. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158886. [PMID: 36167137 DOI: 10.1016/j.scitotenv.2022.158886] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/30/2022] [Accepted: 09/16/2022] [Indexed: 05/14/2023]
Abstract
A comprehensive understanding of chemical toxicity and temperature interaction is essential to improve ecological risk assessment under climate change. However, there is only limited knowledge about the effect of temperature on the toxicity of chemicals. To fill this knowledge gap and to improve our mechanistic understanding of the influence of temperature, the current study explored toxicokinetics and the chronic toxicity effects of two insecticides, imidacloprid (IMI) and flupyradifurone (FPF), on Gammarus pulex at different temperatures (7-24 °C). In the toxicokinetics tests, organisms were exposed to IMI or FPF for 2 days and then transferred to clean water for 3 days of elimination at 7, 18, or 24 °C. In the chronic tests, organisms were exposed to the individual insecticides for 28 days at 7, 11, or 15 °C. Our research found that temperature impacted the toxicokinetics and the chronic toxicity of both IMI and FPF, while the extent of such impact differed for each insecticide. For IMI, the uptake rate and biotransformation rate increased with temperature, and mortality and food consumption inhibition was enhanced by temperature. While for FPF, the elimination rate increased with temperature at a higher rate than the increasing uptake rate, resulting in a smaller pronounced effect of temperature on mortality compared to IMI. In addition, the adverse effects of the insecticides on sublethal endpoints (food consumption and dry weight) were exacerbated by elevated temperatures. Our results highlight the importance of including temperature in the ecological risk assessment of insecticides in light of global climate change.
Collapse
Affiliation(s)
- Anna Huang
- Aquatic Ecology and Water Quality Management Group, Wageningen University, the Netherlands.
| | - Annika Mangold-Döring
- Aquatic Ecology and Water Quality Management Group, Wageningen University, the Netherlands
| | - Huitong Guan
- Aquatic Ecology and Water Quality Management Group, Wageningen University, the Netherlands
| | | | - Dick Belgers
- Wageningen Environmental Research, Wageningen, the Netherlands
| | - Andreas Focks
- Wageningen Environmental Research, Wageningen, the Netherlands; Institute of Mathematics, Osnabrück University, Germany
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, the Netherlands; Wageningen Environmental Research, Wageningen, the Netherlands
| |
Collapse
|
41
|
Iordache V, Neagoe A. Conceptual methodological framework for the resilience of biogeochemical services to heavy metals stress. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116401. [PMID: 36279774 DOI: 10.1016/j.jenvman.2022.116401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The idea of linking stressors, services providing units (SPUs), and ecosystem services (ES) is ubiquitous in the literature, although is currently not applied in areas contaminated with heavy metals (HMs), This integrative literature review introduces the general form of a deterministic conceptual model of the cross-scale effect of HMs on biogeochemical services by SPUs with a feedback loop, a cross-scale heuristic concept of resilience, and develops a method for applying the conceptual model. The objectives are 1) to identify the clusters of existing research about HMs effects on ES, biodiversity, and resilience to HMs stress, 2) to map the scientific fields needed for the conceptual model's implementation, identify institutional constraints for inter-disciplinary cooperation, and propose solutions to surpass them, 3) to describe how the complexity of the cause-effect chain is reflected in the research hypotheses and objectives and extract methodological consequences, and 4) to describe how the conceptual model can be implemented. A nested analysis by CiteSpace of a set of 16,176 articles extracted from the Web of Science shows that at the highest level of data aggregation there is a clear separation between the topics of functional traits, stoichiometry, and regulating services from the typical issues of the literature about HMs, biodiversity, and ES. Most of the resilience to HMs stress agenda focuses on microbial communities. General topics such as the biodiversity-ecosystem function relationship in contaminated areas are no longer dominant in the current research, as well as large-scale problems like watershed management. The number of Web of Science domains that include the analyzed articles is large (26 up to 87 domains with at least ten articles, depending on the sub-set), but thirteen domains account for 70-80% of the literature. The complexity of approaches regarding the cause-effect chain, the stressors, the biological and ecological hierarchical level and the management objectives was characterized by a detailed analysis of 60 selected reviews and 121 primary articles. Most primary articles approach short causal chains, and the number of hypotheses or objectives by article tends to be low, pointing out the need for portfolios of complementary research projects in coherent inter-disciplinary programs and innovation ecosystems to couple the ES and resilience problems in areas contaminated with HMs. One provides triggers for developing innovation ecosystems, examples of complementary research hypotheses, and an example of technology transfer. Finally one proposes operationalizing the conceptual methodological model in contaminated socio-ecological systems by a calibration, a sensitivity analysis, and a validation phase.
Collapse
Affiliation(s)
- Virgil Iordache
- University of Bucharest, Department of Systems Ecology and Sustainability, and "Dan Manoleli" Research Centre for Ecological Services - CESEC, Romania.
| | - Aurora Neagoe
- University of Bucharest, "Dan Manoleli" Research Centre for Ecological Services - CESEC and "Dimitrie Brândză" Botanical Garden, Romania.
| |
Collapse
|
42
|
Mangold-Döring A, Huang A, van Nes EH, Focks A, van den Brink PJ. Explicit Consideration of Temperature Improves Predictions of Toxicokinetic-Toxicodynamic Models for Flupyradifurone and Imidacloprid in Gammarus pulex. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15920-15929. [PMID: 36281980 PMCID: PMC9671055 DOI: 10.1021/acs.est.2c04085] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 05/11/2023]
Abstract
In the face of global climate change, where temperature fluctuations and the frequency of extreme weather events are increasing, it is needed to evaluate the impact of temperature on the ecological risk assessment of chemicals. Current state-of-the-art mechanistic effect models, such as toxicokinetic-toxicodynamic (TK-TD) models, often do not explicitly consider temperature as a modulating factor. This study implemented the effect of temperature in a widely used modeling framework, the General Unified Threshold model for Survival (GUTS). We tested the model using data from toxicokinetic and toxicity experiments with Gammarus pulex exposed to the insecticides imidacloprid and flupyradifurone. The experiments revealed increased TK rates with increasing temperature and increased toxicity under chronic exposures. Using the widely used Arrhenius equation, we could include the temperature influence into the modeling. By further testing of different model approaches, differences in the temperature scaling of TK and TD model parameters could be identified, urging further investigations of the underlying mechanisms. Finally, our results show that predictions of TK-TD models improve if we include the toxicity modulating effect of temperature explicitly.
Collapse
Affiliation(s)
- Annika Mangold-Döring
- Department
of Aquatic Ecology and Water Quality Management, Wageningen University and Research,
P.O. Box 47, 6700 AAWageningen, The Netherlands
| | - Anna Huang
- Department
of Aquatic Ecology and Water Quality Management, Wageningen University and Research,
P.O. Box 47, 6700 AAWageningen, The Netherlands
| | - Egbert H. van Nes
- Department
of Aquatic Ecology and Water Quality Management, Wageningen University and Research,
P.O. Box 47, 6700 AAWageningen, The Netherlands
| | - Andreas Focks
- System
Science Group/Institute of Mathematics, Osnabrück University, Barbarastr. 12, D-49076Osnabrück, Germany
| | - Paul J. van den Brink
- Department
of Aquatic Ecology and Water Quality Management, Wageningen University and Research,
P.O. Box 47, 6700 AAWageningen, The Netherlands
- Wageningen
Environmental Research, P.O. Box 47, 6700 AAWageningen, The Netherlands
| |
Collapse
|
43
|
Zhang P, Wang T, Zhang H, Wang H, Hilt S, Shi P, Cheng H, Feng M, Pan M, Guo Y, Wang K, Xu X, Chen J, Zhao K, He Y, Zhang M, Xu J. Heat waves rather than continuous warming exacerbate impacts of nutrient loading and herbicides on aquatic ecosystems. ENVIRONMENT INTERNATIONAL 2022; 168:107478. [PMID: 35998413 DOI: 10.1016/j.envint.2022.107478] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Submerged macrophytes are vital components in shallow aquatic ecosystems, but their abundances have declined globally. Shading by periphyton and phytoplankton/turbidity plays a major role in this decline, and the competing aquatic primary producers are subject to the complex influence of multiple stressors such as increasing temperatures, nutrient loading and herbicides. Their joint impact has rarely been tested and is difficult to predict due to potentially opposing effects on the different primary producers, their interactions and their grazers. Here, we used 48 mesocosms (2500 L) to simulate shallow lakes dominated by two typical submerged macrophytes, bottom-dwelling Vallisneria denseserrulata and canopy-forming Hydrilla verticillata, and associated food web components. We applied a combination of nutrient loading, continuous warming, heat waves and glyphosate-based herbicides to test how these stressors interactively impact the growth of submerged macrophytes, phytoplankton and periphyton as competing primary producers. Warming or heat waves alone did not affect phytoplankton and periphyton abundance, but negatively influenced the biomass of V. denseserrulata. Nutrient loading alone increased phytoplankton biomass and water turbidity and thus negatively affected submerged macrophyte biomass, particularly for V. denseserrulata, by shading. Glyphosate alone did not affect biomass of each primary producer under ambient temperatures. However, heat waves facilitated phytoplankton growth under combined nutrient loading and glyphosate treatments more than continuous warming. As a consequence, H. verticillata biomass was lowest under these conditions indicating the potential of multiple stressors for macrophyte decline. Our study demonstrated that multiple stressors interactively alter the biomass of primary producers and their interactions and can eventually lead to a loss of macrophyte communities and shift to phytoplankton dominance. These results show the risks in shallow lakes and ponds in agricultural landscapes and underline the need for multiple stressor studies as a base for their future management.
Collapse
Affiliation(s)
- Peiyu Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Tao Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Sabine Hilt
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Penglan Shi
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Haowu Cheng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Mingjun Feng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Meng Pan
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Yulun Guo
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kang Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoqi Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jianlin Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kangshun Zhao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yuhan He
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Min Zhang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Jun Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
44
|
Seebacher F. Interactive effects of anthropogenic environmental drivers on endocrine responses in wildlife. Mol Cell Endocrinol 2022; 556:111737. [PMID: 35931299 DOI: 10.1016/j.mce.2022.111737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Anthropogenic activity has created unique environmental drivers, which may interact to produce unexpected effects. My aim was to conduct a systematic review of the interactive effects of anthropogenic drivers on endocrine responses in non-human animals. The interaction between temperature and light can disrupt reproduction and growth by impacting gonadotropins, thyroid hormones, melatonin, and growth hormone. Temperature and endocrine disrupting compounds (EDCs) interact to modify reproduction with differential effects across generations. The combined effects of light and EDCs can be anxiogenic, so that light-at-night could increase anxiety in wildlife. Light and noise increase glucocorticoid release by themselves, and together can modify interactions between individuals and their environment. The literature detailing interactions between drivers is relatively sparse and there is a need to extend research to a broader range of taxa and interactions. I suggest that incorporating endocrine responses into Adverse Outcome Pathways would be beneficial to improve predictions of environmental effects.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
45
|
Burgess BJ, Jackson MC, Murrell DJ. Are experiment sample sizes adequate to detect biologically important interactions between multiple stressors? Ecol Evol 2022. [PMID: 36177120 DOI: 10.1101/2021.07.21.453207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
As most ecosystems are being challenged by multiple, co-occurring stressors, an important challenge is to understand and predict how stressors interact to affect biological responses. A popular approach is to design factorial experiments that measure biological responses to pairs of stressors and compare the observed response to a null model expectation. Unfortunately, we believe experiment sample sizes are inadequate to detect most non-null stressor interaction responses, greatly hindering progress. Using both real and simulated data, we show sample sizes typical of many experiments (<6) can (i) only detect very large deviations from the additive null model, implying many important non-null stressor-pair interactions are being missed, and (ii) potentially lead to mostly statistical outliers being reported. Computer code that simulates data under either additive or multiplicative null models is provided to estimate statistical power for user-defined responses and sample sizes, and we recommend this is used to aid experimental design and interpretation of results. We suspect that most experiments may require 20 or more replicates per treatment to have adequate power to detect nonadditive. However, estimates of power need to be made while considering the smallest interaction of interest, i.e., the lower limit for a biologically important interaction, which is likely to be system-specific, meaning a general guide is unavailable. We discuss ways in which the smallest interaction of interest can be chosen, and how sample sizes can be increased. Our main analyses relate to the additive null model, but we show similar problems occur for the multiplicative null model, and we encourage similar investigations into the statistical power of other null models and inference methods. Without knowledge of the detection abilities of the statistical tools at hand or the definition of the smallest meaningful interaction, we will undoubtedly continue to miss important ecosystem stressor interactions.
Collapse
Affiliation(s)
- Benjamin J Burgess
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment University College London London UK
- RTI Health Solutions Didsbury, Manchester UK
| | | | - David J Murrell
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment University College London London UK
| |
Collapse
|
46
|
Burgess BJ, Jackson MC, Murrell DJ. Are experiment sample sizes adequate to detect biologically important interactions between multiple stressors? Ecol Evol 2022; 12:e9289. [PMID: 36177120 PMCID: PMC9475135 DOI: 10.1002/ece3.9289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/05/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
As most ecosystems are being challenged by multiple, co-occurring stressors, an important challenge is to understand and predict how stressors interact to affect biological responses. A popular approach is to design factorial experiments that measure biological responses to pairs of stressors and compare the observed response to a null model expectation. Unfortunately, we believe experiment sample sizes are inadequate to detect most non-null stressor interaction responses, greatly hindering progress. Using both real and simulated data, we show sample sizes typical of many experiments (<6) can (i) only detect very large deviations from the additive null model, implying many important non-null stressor-pair interactions are being missed, and (ii) potentially lead to mostly statistical outliers being reported. Computer code that simulates data under either additive or multiplicative null models is provided to estimate statistical power for user-defined responses and sample sizes, and we recommend this is used to aid experimental design and interpretation of results. We suspect that most experiments may require 20 or more replicates per treatment to have adequate power to detect nonadditive. However, estimates of power need to be made while considering the smallest interaction of interest, i.e., the lower limit for a biologically important interaction, which is likely to be system-specific, meaning a general guide is unavailable. We discuss ways in which the smallest interaction of interest can be chosen, and how sample sizes can be increased. Our main analyses relate to the additive null model, but we show similar problems occur for the multiplicative null model, and we encourage similar investigations into the statistical power of other null models and inference methods. Without knowledge of the detection abilities of the statistical tools at hand or the definition of the smallest meaningful interaction, we will undoubtedly continue to miss important ecosystem stressor interactions.
Collapse
Affiliation(s)
- Benjamin J. Burgess
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
- RTI Health SolutionsDidsbury, ManchesterUK
| | | | - David J. Murrell
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| |
Collapse
|
47
|
Vijayaraj V, Laviale M, Allen J, Amoussou N, Hilt S, Hölker F, Kipferler N, Leflaive J, López Moreira M GA, Polst BH, Schmitt-Jansen M, Stibor H, Gross EM. Multiple-stressor exposure of aquatic food webs: Nitrate and warming modulate the effect of pesticides. WATER RESEARCH 2022; 216:118325. [PMID: 35349923 DOI: 10.1016/j.watres.2022.118325] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Shallow lakes provide essential ecological and environmental services but are exposed to multiple stressors, including agricultural runoff (ARO) and climate warming, which may act on different target receptors disrupting their normal functioning. We performed a microcosm experiment to determine the individual and combined effects of three stressors-pesticides, nitrate and climate warming-on two trophic levels representative of communities found in shallow lakes. We used three submerged macrophyte species (Myriophyllum spicatum, Potamogeton perfoliatus, Elodea nuttallii), eight benthic or pelagic microalgal species and three primary consumer species (Daphnia magna, Lymnaea stagnalis, Dreissena polymorpha) with different feeding preferences for benthic and pelagic primary producers. Eight different treatments consisted of a control, only nitrate, a pesticide cocktail, and a combination of nitrate and pesticides representing ARO, each replicated at ambient temperature and +3.5°C, mimicking climate warming. Pesticides negatively affected all functional groups except phytoplankton, which increased. Warming and nitrate modified these effects. Strong but opposite pesticide and warming effects on Myriophyllum drove the response of the total macrophyte biomass. Nitrate significantly suppressed Myriophyllum final biomass, but not overall macrophyte and microalgal biomass. Nitrate and pesticides in combination caused a macrophyte decline, and the system tipped towards phytoplankton dominance. Strong synergistic or even reversed stressor interaction effects were observed for macrophytes or periphyton. We emphasize the need for more complex community- and ecosystem-level studies incorporating multiple stressor scenarios to define safe operating spaces.
Collapse
Affiliation(s)
- Vinita Vijayaraj
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; LTSER-Zone Atelier Moselle, F-57000 Metz, France
| | - Martin Laviale
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; LTSER-Zone Atelier Moselle, F-57000 Metz, France
| | - Joey Allen
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; Université de Toulouse, Laboratoire Ecologie Fonctionnelle et Environnement UMR 5245 CNRS, Toulouse, France
| | | | - Sabine Hilt
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Franz Hölker
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Nora Kipferler
- Ludwig-Maximilians University Munich, Department of Biology, Munich, Germany
| | - Joséphine Leflaive
- Université de Toulouse, Laboratoire Ecologie Fonctionnelle et Environnement UMR 5245 CNRS, Toulouse, France
| | | | - Bastian H Polst
- Helmholtz-Centre for Environmental Research - UFZ, Department of Bioanalytical Ecotoxicology, Leipzig, Germany
| | - Mechthild Schmitt-Jansen
- Helmholtz-Centre for Environmental Research - UFZ, Department of Bioanalytical Ecotoxicology, Leipzig, Germany
| | - Herwig Stibor
- Ludwig-Maximilians University Munich, Department of Biology, Munich, Germany
| | - Elisabeth M Gross
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; LTSER-Zone Atelier Moselle, F-57000 Metz, France.
| |
Collapse
|
48
|
Evaluating Multiple Stressor Effects on Benthic–Pelagic Freshwater Communities in Systems of Different Complexities: Challenges in Upscaling. WATER 2022. [DOI: 10.3390/w14040581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Upscaling of ecological effects from indoor microcosms to outdoor mesocosms bridging the gap between controlled laboratory conditions and highly complex natural environments poses several challenges: typical standard water types used in laboratory experiments are not feasible in large outdoor experiments. Additionally, moving from the micro- to meso-scale, biodiversity is enhanced. We performed an indoor microcosm experiment to determine the effects of agricultural run-off (ARO) on a defined benthic–pelagic community comprising primary producers and primary consumers, exposed to ambient summer temperature and +3.5 °C. Treatments were replicated in two water types (standard Volvic and Munich well water). We then scaled up to outdoor mesocosms using an ARO concentration gradient and +3 °C warming above ambient temperature, using Munich well water. We included the same benthic macroorganisms but more complex periphyton and plankton communities. All the functional groups were affected by stressors in the microcosms, and a shift from macrophyte to phytoplankton dominance was observed. While effects were present, they were less pronounced in the mesocosms, where a higher biodiversity may have modified the responses of the system to the stressors. The stressor effects observed in controlled experiments may thus be masked in more complex outdoor experiments, but should not be interpreted as “no effects”.
Collapse
|