1
|
Kirk NM, Liang Y, Ly H. Pathogenesis and virulence of coronavirus disease: Comparative pathology of animal models for COVID-19. Virulence 2024; 15:2316438. [PMID: 38362881 PMCID: PMC10878030 DOI: 10.1080/21505594.2024.2316438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024] Open
Abstract
Animal models that can replicate clinical and pathologic features of severe human coronavirus infections have been instrumental in the development of novel vaccines and therapeutics. The goal of this review is to summarize our current understanding of the pathogenesis of coronavirus disease 2019 (COVID-19) and the pathologic features that can be observed in several currently available animal models. Knowledge gained from studying these animal models of SARS-CoV-2 infection can help inform appropriate model selection for disease modelling as well as for vaccine and therapeutic developments.
Collapse
Affiliation(s)
- Natalie M. Kirk
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| | - Yuying Liang
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| |
Collapse
|
2
|
Chandran D, Chakraborty S, Chandran D, Subedi D, Jisha AI, Chopra H, Rabaan AA, Al-Tawfiq JA, Islam MR, Dhama K. Middle East Respiratory Syndrome Coronavirus Could be a Priority Pathogen to Cause Public Health Emergency: Noticeable Features and Counteractive Measures. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241271545. [PMID: 39156879 PMCID: PMC11329908 DOI: 10.1177/11786302241271545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/02/2024] [Indexed: 08/20/2024]
Abstract
Middle East respiratory syndrome (MERS) is caused by a specific strain of the 6 types of human coronaviruses (HCoV). MERS-CoV has spread unchecked since it was first discovered in Saudi Arabia in 2012. The virus most likely spreads through nosocomial and zoonotic channels. Genetic analyses suggest that bats were the initial hosts and that the disease spread to camels. Person-to-person transmission occurs with varying frequency, being most prevalent in clinical settings and the least common among the general population and among close relatives. Due to the severity of the illness, high fatality rate, potential for epidemic spread, and lack of adequate medical countermeasures, the World Health Organization (WHO) continues to list MERS-CoV as a priority pathogen. While no specific antiviral medicines exist, a combination of antivirals has shown promise in recent clinical trials. Vaccines against MERS-CoV are critically needed and are currently being developed. Early diagnosis and implementing appropriate infection control measures are keys to preventing hospital-associated outbreaks. Preventive measures include avoiding raw or undercooked meats and other animal products, ensuring proper hand hygiene in healthcare settings and around dromedaries, educating the public and healthcare personnel about the disease, and adhering to other recommended practices. Countries with a high prevalence of MERS should adhere to regulations designed to limit the transmission of the virus. The recent spread of MERS-CoV highlights the importance of public awareness regarding the significance of reporting symptoms so that appropriate control measures can be adopted. The narrative review discusses the incidence of MERS, its clinical presentation, potential transmission routes, recent reports, preventative and control measures, and current therapeutic options.
Collapse
Affiliation(s)
- Deepak Chandran
- Department of Animal Husbandry, Government of Kerala, Kerala, India
| | - Sandip Chakraborty
- State Disease Investigation Laboratory, ARDD, Abhoynagar, Agartala, West Tripura, India
| | - Diljith Chandran
- KVG Dental College & Hospital, Kurunjibhag, Sullia, Karnataka, India
| | - Deepak Subedi
- Department of Poultry Science, University of Georgia, Athens, Georgia, USA
| | - Ankitha Indu Jisha
- Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Jaffar A Al-Tawfiq
- Specialty Internal Medicine and Quality Patient Safety Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- Infectious Diseases Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Infectious Diseases Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Md. Rabiul Islam
- School of Pharmacy, BRAC University, Merul Badda, Dhaka, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
3
|
Ajmera A, Pernicone PJ, Patel N, Benabe SH. Coronavirus HKU1 infection and development of pediatric acute liver failure with immune dysregulation phenotype. JPGN REPORTS 2024; 5:204-207. [PMID: 38756108 PMCID: PMC11093931 DOI: 10.1002/jpr3.12065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/23/2024] [Accepted: 02/18/2024] [Indexed: 05/18/2024]
Abstract
Pediatric acute liver failure is a rare but serious complication of Coronavirus infections. Our patient is a previously healthy 8-year-old male who presented with acute liver failure in the setting of human coronavirus HKU1 (HCoV-HKU1) infection while asymptomatic from a respiratory perspective. During the hospital course, he developed acute hepatic encephalopathy and was listed for liver transplantation, but fortunately recovered remaining status 7 (inactive) on the transplant list. With a negative diagnostic evaluation other than his viral infection and hyperdense CD8 T-cells on liver immunohistochemical staining, pediatric acute liver failure (PALF) immune dysregulation phenotype was diagnosed.
Collapse
Affiliation(s)
- Arun Ajmera
- Center for Digestive Health and NutritionArnold Palmer Hospital for ChildrenOrlandoFloridaUSA
| | | | - Nishant Patel
- Center for Digestive Health and NutritionArnold Palmer Hospital for ChildrenOrlandoFloridaUSA
| | - Stefany Hernandez Benabe
- Advent Health Medical Group Pediatric Gastroenterology at OrlandoAdvent Health for ChildrenOrlandoFloridaUSA
| |
Collapse
|
4
|
Singh L, Kumar A, Rai M, Basnet B, Rai N, Khanal P, Lai KS, Cheng WH, Asaad AM, Ansari S. Spectrum of COVID-19 induced liver injury: A review report. World J Hepatol 2024; 16:517-536. [PMID: 38689748 PMCID: PMC11056898 DOI: 10.4254/wjh.v16.i4.517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/20/2024] [Accepted: 02/28/2024] [Indexed: 04/24/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused changes in the global health system, causing significant setbacks in healthcare systems worldwide. This pandemic has also shown resilience, flexibility, and creativity in reacting to the tragedy. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection targets most of the respiratory tract, resulting in a severe sickness called acute respiratory distress syndrome that may be fatal in some individuals. Although the lung is the primary organ targeted by COVID-19 viruses, the clinical aspect of the disease is varied and ranges from asymptomatic to respiratory failure. However, due to an unorganized immune response and several affected mechanisms, the liver may also experience liver cell injury, ischemic liver dysfunction, and drug-induced liver injury, which can result in respiratory failure because of the immune system's disordered response and other compromised processes that can end in multisystem organ failure. Patients with liver cirrhosis or those who have impaired immune systems may be more likely than other groups to experience worse results from the SARS-CoV-2 infection. We thus intend to examine the pathogenesis, current therapy, and consequences of liver damage concerning COVID-19.
Collapse
Affiliation(s)
- Lokjan Singh
- Department of Microbiology, Karnali Academy of Health Science, Teaching Hospital, Jumla 21200, Karnali, Nepal
| | - Anil Kumar
- Department of Microbiology, Karnali Academy of Health Science, Teaching Hospital, Jumla 21200, Karnali, Nepal
| | - Maya Rai
- Department of Microbiology, Karnali Academy of Health Science, Teaching Hospital, Jumla 21200, Karnali, Nepal
| | - Bibek Basnet
- Health Sciences, Asian College of Advance Studies, Purbanchal University, Satdobato 24122, Lalitpur, Nepal
| | - Nishant Rai
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Pukar Khanal
- Department of Pharmacology & Toxicology, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, Karnataka, India
| | - Kok-Song Lai
- Division of Health Sciences, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| | - Ahmed Morad Asaad
- Department of Microbiology, College of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Shamshul Ansari
- Division of Health Sciences, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates.
| |
Collapse
|
5
|
Musigk N, Suwalski P, Golpour A, Fairweather D, Klingel K, Martin P, Frustaci A, Cooper LT, Lüscher TF, Landmesser U, Heidecker B. The inflammatory spectrum of cardiomyopathies. Front Cardiovasc Med 2024; 11:1251780. [PMID: 38464847 PMCID: PMC10921946 DOI: 10.3389/fcvm.2024.1251780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Infiltration of the myocardium with various cell types, cytokines and chemokines plays a crucial role in the pathogenesis of cardiomyopathies including inflammatory cardiomyopathies and myocarditis. A more comprehensive understanding of the precise immune mechanisms involved in acute and chronic myocarditis is essential to develop novel therapeutic approaches. This review offers a comprehensive overview of the current knowledge of the immune landscape in cardiomyopathies based on etiology. It identifies gaps in our knowledge about cardiac inflammation and emphasizes the need for new translational approaches to improve our understanding thus enabling development of novel early detection methods and more effective treatments.
Collapse
Affiliation(s)
- Nicolas Musigk
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Phillip Suwalski
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Ainoosh Golpour
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
| | - Karin Klingel
- Cardiopathology Institute for Pathology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Pilar Martin
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
| | | | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Thomas F. Lüscher
- GZO-Zurich Regional Health Centre, Wetzikon & Cardioimmunology, Centre for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Royal Brompton & Harefield Hospitals and National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ulf Landmesser
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Bettina Heidecker
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| |
Collapse
|
6
|
Abstract
Most enveloped viruses encode viral fusion proteins to penetrate host cell by membrane fusion. Interestingly, many enveloped viruses can also use viral fusion proteins to induce cell-cell fusion, both in vitro and in vivo, leading to the formation of syncytia or multinucleated giant cells (MGCs). In addition, some non-enveloped viruses encode specialized viral proteins that induce cell-cell fusion to facilitate viral spread. Overall, viruses that can induce cell-cell fusion are nearly ubiquitous in mammals. Virus cell-to-cell spread by inducing cell-cell fusion may overcome entry and post-entry blocks in target cells and allow evasion of neutralizing antibodies. However, molecular mechanisms of virus-induced cell-cell fusion remain largely unknown. Here, I summarize the current understanding of virus-induced cell fusion and syncytia formation.
Collapse
Affiliation(s)
- Maorong Xie
- Division of Infection and Immunity, UCL, London, UK.
| |
Collapse
|
7
|
Kuchi Bhotla H, Meyyazhagan A, Pushparaj K, Pappuswamy M, Chaudhary A, Arumugam VA, Balasubramanian B, Ragu Varman D, Orlacchio A, Rengasamy KRR. Prevalence of Cardiovascular Diseases in South Asians: Scrutinizing Traditional Risk Factors and Newly Recognized Risk Factors Sarcopenia and Osteopenia/Osteoporosis. Curr Probl Cardiol 2024; 49:102071. [PMID: 37690535 DOI: 10.1016/j.cpcardiol.2023.102071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
One of the primary reasons for complications and death worldwide are cardiovascular diseases (CVDs), with a death toll of approximately 18 million per year. CVDs include cardiomyopathy, hypertension, ischemic heart disease, coronary heart disease, myocardial infarction, heart attack, hearth failure, etc. Over 80% of the CVD mortality is recorded from lower and middle-income countries. Records from the past decade have highlighted the increase of CVDs among the South Asian populations, and the prime purpose of the review is to jot down the reasons for the steep spike in CVDs. Studies analyzing the causative factors for the increase of CVDs in South Asians are still to be verified. Apart from known predisposing and lifestyle factors, other emerging risk factors associated with CVDs, namely the musculoskeletal diseases sarcopenia and osteopenia, should be tracked to tackle research gaps in upcoming analyses. This requires loads of scientific efforts. With proper monitoring, the raising alarm that the CVD burden generates can be reduced. This review discusses the already established signs and recognizes important clues to the emerging etiology of CVDs in the Asian population and prevention measures to keep it at bay.
Collapse
Affiliation(s)
- Haripriya Kuchi Bhotla
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru, Karnataka, India
| | - Arun Meyyazhagan
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru, Karnataka, India; Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Manikantan Pappuswamy
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru, Karnataka, India
| | - Aditi Chaudhary
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru, Karnataka, India
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Durairaj Ragu Varman
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy; Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Kannan R R Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, India.
| |
Collapse
|
8
|
Lee JD, Menasche BL, Mavrikaki M, Uyemura MM, Hong SM, Kozlova N, Wei J, Alfajaro MM, Filler RB, Müller A, Saxena T, Posey RR, Cheung P, Muranen T, Heng YJ, Paulo JA, Wilen CB, Slack FJ. Differences in syncytia formation by SARS-CoV-2 variants modify host chromatin accessibility and cellular senescence via TP53. Cell Rep 2023; 42:113478. [PMID: 37991919 PMCID: PMC10785701 DOI: 10.1016/j.celrep.2023.113478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/13/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) remains a significant public health threat due to the ability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants to evade the immune system and cause breakthrough infections. Although pathogenic coronaviruses such as SARS-CoV-2 and Middle East respiratory syndrome (MERS)-CoV lead to severe respiratory infections, how these viruses affect the chromatin proteomic composition upon infection remains largely uncharacterized. Here, we use our recently developed integrative DNA And Protein Tagging methodology to identify changes in host chromatin accessibility states and chromatin proteomic composition upon infection with pathogenic coronaviruses. SARS-CoV-2 infection induces TP53 stabilization on chromatin, which contributes to its host cytopathic effect. We mapped this TP53 stabilization to the SARS-CoV-2 spike and its propensity to form syncytia, a consequence of cell-cell fusion. Differences in SARS-CoV-2 spike variant-induced syncytia formation modify chromatin accessibility, cellular senescence, and inflammatory cytokine release via TP53. Our findings suggest that differences in syncytia formation alter senescence-associated inflammation, which varies among SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jonathan D Lee
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Bridget L Menasche
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Maria Mavrikaki
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Madison M Uyemura
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Su Min Hong
- Department of Genetics, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Nina Kozlova
- Department of Genetics, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jin Wei
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mia M Alfajaro
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Renata B Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Arne Müller
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Tanvi Saxena
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan R Posey
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Priscilla Cheung
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Taru Muranen
- Department of Genetics, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Yujing J Heng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Frank J Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Department of Genetics, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Obleagă CV, Ahmet RAM, Florescu DN, Popescu DM, Meşină C, Streba L, Vere CC, Constantin C. Post-COVID-19 enterocolitis - a cause of rebellious diarrhea, acute abdomen and liver failure. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2023; 64:527-533. [PMID: 38184833 PMCID: PMC10863687 DOI: 10.47162/rjme.64.4.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024]
Abstract
Currently, worldwide, the coronavirus disease 2019 (COVID-19) pandemic, which first appeared in Wuhan, China, in December 2019, is capsizing the medical system and turning the attention of the entire healthcare system through the many aspects it presents, both from a pathophysiological and from a semiological view, insufficiently studied aspects. With a high rate of morbidity and mortality, the COVID-19 pandemic was initially observed as a pathology leading to a severe acute respiratory syndrome, but over time gastrointestinal and hepatic manifestations have been reported. The study includes an analysis of 21 patients in the stage of the clinical disease of COVID-19 or in the stage of recovery, hospitalized in the Departments of General Surgery II or Gastroenterology, Emergency Clinical County Hospital of Craiova, Romania, with predominantly digestive symptoms, with the clinical expression of infectious enterocolitis, although stool culture was negative for pathogenic bacteria. The evolution of patients was influenced by the appearance of peritonitis through colonic necrosis or remission of clinical symptoms under empirical therapy.
Collapse
Affiliation(s)
| | | | - Dan Nicolae Florescu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, Romania
| | - Dragoş Marian Popescu
- Department of Extreme Conditions Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Cristian Meşină
- Department of Surgery, University of Medicine and Pharmacy of Craiova, Romania
| | - Liliana Streba
- Department of Medical Oncology, University of Medicine and Pharmacy of Craiova, Romania
| | | | - Cristian Constantin
- Department of Medical Imaging, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
10
|
Pustake M, Giri P, Ganiyani MA, Mumtaz K, Deshmukh K, Saju M, Nunez JV, Orlova N, Das A. Drawing Parallels between SARS, MERS, and COVID-19: A Comparative Overview of Epidemiology, Pathogenesis, and Pathological Features. Indian J Community Med 2023; 48:518-524. [PMID: 37662119 PMCID: PMC10470569 DOI: 10.4103/ijcm.ijcm_460_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 05/22/2023] [Indexed: 09/05/2023] Open
Abstract
Background Since November 2019, when the novel coronavirus arose in Wuhan City, over 188 million people worldwide have been infected with COVID-19. It is the third coronavirus outbreak in the twenty-first century. Until now, practically all coronavirus epidemics have occurred due to zoonotic spread from an animal or transitional host or through the consumption of their products. Coronaviruses can infect humans and cause severe illness and even death. Material and Methods This review was designed to help us recognize and harmonize the similarities and differences between these three coronaviridae family members. Result Measures aimed at containing the epidemic should be emphasized in this circumstance. Prioritizing and planning these activities require an understanding of the particulars of these three viruses. Given the pandemic's enormous death toll and rapid spread, we should be cognizant of the parallels and differences between these three viruses. Additionally, this pandemic warns us to be cautious against the possibility of a future pandemic. Conclusion We highlight the fundamental characteristics of coronaviruses that are critical for recognizing coronavirus epidemiology, pathogenesis, and pathological features that reveal numerous significant pathological attributes and evolutionary patterns in the viral genome that aid in better understanding and anticipating future epidemics.
Collapse
Affiliation(s)
- Manas Pustake
- Department of Internal Medicine, Grant Govt. Medical College and Sir JJ Group of Hospitals, Mumbai, Maharashtra, India
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Purushottam Giri
- Department of Community Medicine, IIMSR Medical College, Jalna, Maharashtra, India
| | - Mohammad Arfat Ganiyani
- Department of Internal Medicine, Grant Govt. Medical College and Sir JJ Group of Hospitals, Mumbai, Maharashtra, India
| | - Kahkashan Mumtaz
- Department of Pediatrics, Grant Govt. Medical College and Sir JJ Group of Hospitals, Mumbai, Maharashtra, India
| | - Krishna Deshmukh
- Department of Internal Medicine, Grant Govt. Medical College and Sir JJ Group of Hospitals, Mumbai, Maharashtra, India
| | - Michael Saju
- Department of Community Medicine, Grant Govt. Medical College and Sir JJ Group of Hospitals, Mumbai, Maharashtra, India
| | | | | | - Arghadip Das
- Department of Pathology, Nil Ratan Sircar Medical College and Hospital, Kolkata, West Bengal, India
| |
Collapse
|
11
|
Matskevych V, Kamyshnyi O, Vasylyk VM, Grynovska MB, Lenchuk T, Fishchuk R, Gospodaryov D, Yurkevych I, Strilbytska O, Petakh P, Lushchak O. Morphological prediction of lethal outcomes in the evaluation of lung tissue structural changes in patients on respiratory support with СOVID-19: Ukrainian experience. Pathol Res Pract 2023; 245:154471. [PMID: 37104960 PMCID: PMC10122962 DOI: 10.1016/j.prp.2023.154471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Abstract
The impact of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on lung tissue in patients on respiratory support is of significant scientific interest in predicting mortality. This study aimed to analyze post-mortem histological changes in the lung tissue of COVID-19 patients on respiratory support using vital radiology semiotics. A total of 41 autopsies were performed on patients who died of SARS-CoV-2 and had confirmed COVID-19 by polymerase chain reaction (PCR) and radiological evidence of lung tissue consolidation and ground glass opacity. The results showed that the duration of COVID-19 in patients on respiratory support was significantly associated with the development of all stages of diffuse alveolar damage, acute fibrous organizing pneumonia, pulmonary capillary congestion, fibrin thrombi, perivascular inflammation, alveolar hemorrhage, proliferating interstitial fibroblasts, and pulmonary embolism. The prediction model for lethal outcomes based on the duration of total respiratory support had a sensitivity of 68.3% and a specificity of 87.5%. In conclusion, for COVID-19 patients on long-term respiratory support with radiological signs of ground glass opacity and lung consolidation, post-mortem morphological features included various stages of diffuse alveolar lung damage, pulmonary capillary congestion, fibrin clots, and perivascular inflammation.
Collapse
Affiliation(s)
- Viktoriya Matskevych
- Department of Radiology and Radiation Medicine, Ivano-Frankivsk National Medical University, Ukraine
| | - Olexandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Volodymyr M Vasylyk
- Pathology Department, Municipal Non-profit Enterprise "Regional Clinical Hospital of Ivano-Frankivsk Regional Council", Ivano-Frankivsk, Ukraine
| | - Marta B Grynovska
- Department of Anesthesiology and Intensive Care, Ivano-Frankivsk National Medical University, Ukraine
| | - Tetiana Lenchuk
- Department of Radiology and Radiation Medicine, Ivano-Frankivsk National Medical University, Ukraine
| | - Roman Fishchuk
- Clinical Trials Unit, Municipal Non-profit Enterprise "Ivano-Frankivsk Central City Hospital", Ukraine
| | - Dmytro Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Ihor Yurkevych
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Olha Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Pavlo Petakh
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine; Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine.
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine; Research and Development University, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
12
|
Abstract
INTRODUCTION Since the end of 2019, a new disease outbreak has been spreading worldwide, after starting from Wuhan, China. The viral pathogen responsible for the disease was named as SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), and for the illness the acronym COVID-19 was coined (COronaVIrus Disease 2019). Viral pathogenesis, epidemiology, and clinics are still somewhat obscure, when occurring during childhood the most. The aim of this study was to evaluate the features of liver involvement and damage in course of COVID-19. EVIDENCE ACQUISITION An insight into what is known as to COVID-19 and hepatic damage in adulthood as well as pediatric age was given. All the most relevant papers up to 15/10/2020 were identified and discussed. An extensive search strategy was carried out to identify all paper published from December 1st, 2019, to September 5, 2020, combining the key words "coronavirus," "coronavirus infection," "SARS-CoV-2," "COVID-19," "liver," "liver injury," "hepatic injury," "children," "pediatric" in key electronic bibliographic databases (PubMed, Google Scholar), following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guidelines. EVIDENCE SYNTHESIS Establishing whether liver damage is due to a direct viral action or host immune system inflammatory reaction or consequence of the administered drugs or secondary to another organ failure (for example the heart) is difficult. What is sure is the fact that liver function should be checked at the time of admission to hospital and during hospitalization. CONCLUSIONS In conclusion, liver involvement during COVID-19 is likely due to a multifactorial origin. An aberrant immune system reaction to SARS-CoV-2 is probably the most important underlying trigger, though more extended studies are needed for a definitive confirmation. The markers of liver injury should be carefully in each patient admitted for COVID-19: in fact, in case of altered hepatic markers, a specific therapy to protect liver is needed.
Collapse
Affiliation(s)
- Simone Mameli
- Graduate School in Pediatrics, University of Cagliari, Cagliari, Italy
| | - Maria A Marcialis
- Neonatal Intensive Care Unit, University of Cagliari, Cagliari, Italy
| | - Pier P Bassareo
- Mater Misericordiae University Hospital and Our Lady's Children's Hospital Crumlin, University College of Dublin, Dublin, Ireland -
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, University of Cagliari, Cagliari, Italy
| |
Collapse
|
13
|
Bernstein HG, Keilhoff G, Dobrowolny H, Steiner J. The many facets of CD26/dipeptidyl peptidase 4 and its inhibitors in disorders of the CNS - a critical overview. Rev Neurosci 2023; 34:1-24. [PMID: 35771831 DOI: 10.1515/revneuro-2022-0026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/10/2022] [Indexed: 01/11/2023]
Abstract
Dipeptidyl peptidase 4 is a serine protease that cleaves X-proline or X-alanine in the penultimate position. Natural substrates of the enzyme are glucagon-like peptide-1, glucagon inhibiting peptide, glucagon, neuropeptide Y, secretin, substance P, pituitary adenylate cyclase-activating polypeptide, endorphins, endomorphins, brain natriuretic peptide, beta-melanocyte stimulating hormone and amyloid peptides as well as some cytokines and chemokines. The enzyme is involved in the maintenance of blood glucose homeostasis and regulation of the immune system. It is expressed in many organs including the brain. DPP4 activity may be effectively depressed by DPP4 inhibitors. Apart from enzyme activity, DPP4 acts as a cell surface (co)receptor, associates with adeosine deaminase, interacts with extracellular matrix, and controls cell migration and differentiation. This review aims at revealing the impact of DPP4 and DPP4 inhibitors for several brain diseases (virus infections affecting the brain, tumours of the CNS, neurological and psychiatric disorders). Special emphasis is given to a possible involvement of DPP4 expressed in the brain.While prominent contributions of extracerebral DPP4 are evident for a majority of diseases discussed herein; a possible role of "brain" DPP4 is restricted to brain cancers and Alzheimer disease. For a number of diseases (Covid-19 infection, type 2 diabetes, Alzheimer disease, vascular dementia, Parkinson disease, Huntington disease, multiple sclerosis, stroke, and epilepsy), use of DPP4 inhibitors has been shown to have a disease-mitigating effect. However, these beneficial effects should mostly be attributed to the depression of "peripheral" DPP4, since currently used DPP4 inhibitors are not able to pass through the intact blood-brain barrier.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| |
Collapse
|
14
|
Valsamaki A, Xanthoudaki M, Oikonomou KG, Vlachostergios PJ, Papadogoulas A, Katsiafylloudis P, Voulgaridi I, Skoura AL, Komnos A, Papamichalis P. Prevention, diagnostic evaluation, management and prognostic implications of liver disease in critically ill patients with COVID-19. World J Clin Cases 2023; 11:514-527. [PMID: 36793637 PMCID: PMC9923862 DOI: 10.12998/wjcc.v11.i3.514] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/05/2022] [Accepted: 01/10/2023] [Indexed: 01/23/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, broke out in December 2019 in Wuhan city of China and spread rapidly worldwide. Therefore, by March 2020, the World Health Organization declared the disease a global pandemic. Apart from the respiratory system, various other organs of the human body are also seriously affected by the virus. Liver injury in patients with a severe form of COVID-19 is estimated to be 14.8%-53.0%. Elevated levels of total bilirubin, aspartate aminotransferase and alanine aminotransferase and low levels of serum albumin and prealbumin are the main laboratory findings. Patients with pre-existing chronic liver disease and cirrhosis are much more prone to develop severe liver injury. This literature review presented the recent scientific findings regarding the pathophysiological mechanisms responsible for liver injury in critically ill patients with COVID-19, the various interactions between drugs used to treat the disease and the function of the liver and the specific tests providing the possibility of early diagnosis of severe liver injury in these patients. Moreover, it highlighted the burden that COVID-19 put on health systems worldwide and its effect on transplant programs and the care provided to critically ill patients in general and particularly to those with chronic liver disease.
Collapse
Affiliation(s)
- Asimina Valsamaki
- Intensive Care Unit, General Hospital of Larissa, Larissa 41221, Greece
| | - Maria Xanthoudaki
- Intensive Care Unit, General Hospital of Larissa, Larissa 41221, Greece
| | | | - Panagiotis J Vlachostergios
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, United States
| | | | | | - Ioanna Voulgaridi
- Department of Microbiology, General Hospital of Larissa, Larissa 41221, Greece
| | | | - Apostolos Komnos
- Intensive Care Unit, General Hospital of Larissa, Larissa 41221, Greece
| | | |
Collapse
|
15
|
Bałaban J, Wierzbicki M, Zielińska-Górska M, Sosnowska M, Daniluk K, Jaworski S, Koczoń P, Cysewski D, Chwalibog A, Sawosz E. Graphene Oxide Decreases Pro-Inflammatory Proteins Production in Skeletal Muscle Cells Exposed to SARS-CoV-2 Spike Protein. Nanotechnol Sci Appl 2023; 16:1-18. [PMID: 36699443 PMCID: PMC9869801 DOI: 10.2147/nsa.s391761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023] Open
Abstract
Aim The experiments aimed to document the presence of the ACE2 receptor on human muscle cells and the effects of the interaction of these cells with the spike protein of the SARS-CoV-2 virus in terms of induction of pro-inflammatory proteins, as well as to assess the possibility of reducing the pool of these proteins with the use of graphene oxide (GO) flakes. Methods Human Skeletal Myoblast (HSkM), purchased from Gibco were maintained in standard condition according to the manufacturer's instruction. The cells were divided into 4 groups; 1. C-control, 2. S-with addition of spike protein, 3. GO-with the addition of graphene oxide, 4. GO-S-with addition of GO followed by the addition of S protein. Protein S (PX-COV-P049) was purchased from ProteoGenix (France). GO was obtained from Advanced Graphene Products (Zielona Gora, Poland). The influence of all the factors on the morphology of cells was investigated using light and confocal microscopy. ACE2 protein expression on muscle cells was visualized and 40 pro-inflammatory cytokines were investigated using the membrane antibody array method. The protein profile of the lysate of cells from individual groups was also analyzed by mass spectrometry. Conclusion The experiments confirmed the presence of the ACE2 receptor in human skeletal muscle cells. It has also been documented that the SARS-CoV-2 virus spike protein influences the activation of selected pro-inflammatory proteins that promote cytokine storm and oxidative stress in muscle cells. The use of low levels of graphene oxide does not adversely affect muscle cells, reducing the levels of most proteins, including pro-inflammatory proteins. It can be assumed that GO may support anti-inflammatory therapy in muscles by scavenging proteins that activate cytokine storm.
Collapse
Affiliation(s)
- Jaśmina Bałaban
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marlena Zielińska-Górska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Karolina Daniluk
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, Białystok, Poland
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark,Correspondence: André Chwalibog, University of Copenhagen, Groennegaardsvej 3, Frederiksberg, 1870, Denmark, Tel +45 40963573, Email
| | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
16
|
Xu KL, Randall PA. Alcohol, nicotine, and COVID-19: A retrospective study of health outcomes in central Pennsylvania. Brain Res Bull 2023; 192:175-183. [PMID: 36442695 PMCID: PMC9694354 DOI: 10.1016/j.brainresbull.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022]
Abstract
Individuals with substance abuse disorder are at increased risk for the development of severe disease following COVID-19 infection. Furthermore, individuals in rural populations where access to healthcare is limited and rates of substance abuse tend to be higher are at increased risk compared to other regions. The Penn State Health Network serves 29 counties in central Pennsylvania that are largely rural. The current study assessed the electronic medical records for individuals in this population that were reported as having alcohol dependence, nicotine dependence or both (co-users) in addition to individuals with no history of drug use and the rate of developing primary and secondary health outcomes following COVID-19 infection. All patients in this study were determined to be COVID+ while in care. We found that overall, risk for requiring ventilation, developing pneumonia, and mortality within 30 days of diagnosis all increased with any substance use history, across both males and females and across all age groups. Moreover, rates of these outcomes were considerably higher in patients that were both alcohol and nicotine dependent suggesting additive effects of co-use. Rates of secondary effects also increased substantially across all use categories with these patients showing greater risk of developing liver, kidney, and pancreas maladies compared to patients with no history of substance use. Taken together, these findings reinforce previous studies showing that substance use increases the risks of significant disease following COVID-19 infection, giving insights into the health disparities that exist in rural populations.
Collapse
Affiliation(s)
- Kevin Lou Xu
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA 17033, USA,Program in Medical Education, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Patrick Arthur Randall
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA 17033, USA,Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA,Corresponding author at: Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
17
|
Fu A, Chang M, Zhu H, Liu H, Wu D, Zeng H. Air-blood barrier (ABB) on a chip. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Alhetheel A, Albarrag A, Shakoor Z, Somily A, Barry M, Altalhi H, Bakhrebah M, Nassar M, Alfageeh M, Assiri A, Alfaraj S, Memish ZA. Differential expression of carcinoembryonic antigen-related cell adhesion molecule-5 (CEACAM5) and dipeptidyl peptidase-4 (DPP4) with detection of Middle East respiratory syndrome-coronavirus in peripheral blood. J Infect Public Health 2022; 15:1315-1320. [PMID: 36279687 PMCID: PMC9576204 DOI: 10.1016/j.jiph.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/13/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Middle East respiratory syndrome-coronavirus (MERS-CoV) utilizes CD26 (dipeptidyl peptidase-4) and CD66e or CEACAM5 (carcinoembryonic antigen-related cell adhesion molecule 5) receptors for cell infection. Peripheral blood mononuclear cells (PBMCs) play a critical role in mounting adaptive immune response against the virus. This study was performed to assess the expression of CD26 and CD66e on PBMCs and their susceptibility to MERS-CoV infection. METHODS Surface expression of CD26 and CD66e receptors on PBMCs from MERS-CoV patients (n = 20) and healthy controls (n = 20) was assessed by flow cytometry and the soluble forms were determined by enzyme-linked immunosorbent assay (ELISA). MERS-CoV UpE and Orf1a genes in PBMCs were detected by using Altona diagnostics reverse transcription polymerase chain reaction (RT-PCR) kit. RESULTS Mean fluorescent intensity (MFI) of CD66e was significantly higher on CD4 + lymphocytes (462.4 ± 64.35 vs 325.1 ± 19.69; p < 0.05) and CD8 + lymphocytes (533.8 ± 55.32 vs 392.4 ± 37.73; p < 0.04) from patients with MERS-CoV infection compared to the normal controls. No difference in MFI for CD66e was observed on monocytes (381.8 ± 40.34 vs 266.8 ± 20.6; p = 0.3) between the patients and controls. Soluble form of CD66e among MERS-CoV patients was also higher than the normal controls (mean= 338.7 ± 58.75 vs 160.7 ± 29.49 ng/mL; p < 0.01). Surface expression of CD26 on PBMCs and its soluble form were no different between the groups. MERS-CoV was detected by RT-PCR in 16/20 (80%) patients from whole blood, among them 8 patients were tested in PBMCs, 4/8 (50%) patients were positive. CONCLUSION Increased expression levels of CD66e (CEACAM5) may contribute to increased susceptibility of PBMCs to MERS-CoV infection and disease progression.
Collapse
Affiliation(s)
- Abdulkarim Alhetheel
- King Khalid University Hospital, Riyadh, Saudi Arabia; Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Ahmed Albarrag
- King Khalid University Hospital, Riyadh, Saudi Arabia; Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Zahid Shakoor
- King Khalid University Hospital, Riyadh, Saudi Arabia; Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ali Somily
- King Khalid University Hospital, Riyadh, Saudi Arabia; Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mazin Barry
- King Khalid University Hospital, Riyadh, Saudi Arabia; Department of Infectious Diseases, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hifa Altalhi
- King Khalid University Hospital, Riyadh, Saudi Arabia
| | | | - Majed Nassar
- King Abdulaziz city for Science and Technology, Riyadh, Saudi Arabia
| | - Mohamed Alfageeh
- King Abdulaziz city for Science and Technology, Riyadh, Saudi Arabia
| | - Ayed Assiri
- Critical Care Unit, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia
| | - Sarah Alfaraj
- Corona Center, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia
| | - Ziad A Memish
- Research and Innovation Center, King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
19
|
Ultrastructural Characterization of Human Bronchial Epithelial Cells during SARS-CoV-2 Infection: Morphological Comparison of Wild-Type and CFTR-Modified Cells. Int J Mol Sci 2022; 23:ijms23179724. [PMID: 36077122 PMCID: PMC9455986 DOI: 10.3390/ijms23179724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
SARS-CoV-2 replicates in host cell cytoplasm. People with cystic fibrosis, considered at risk of developing severe symptoms of COVID-19, instead, tend to show mild symptoms. We, thus, analyzed at the ultrastructural level the morphological effects of SARS-CoV-2 infection on wild-type (WT) and F508del (ΔF) CFTR-expressing CFBE41o- cells at early and late time points post infection. We also investigated ACE2 expression through immune-electron microscopy. At early times of infection, WT cells exhibited double-membrane vesicles, representing typical replicative structures, with granular and vesicular content, while at late time points, they contained vesicles with viral particles. ∆F cells exhibited double-membrane vesicles with an irregular shape and degenerative changes and at late time of infection, showed vesicles containing viruses lacking a regular structure and a well-organized distribution. ACE2 was expressed at the plasma membrane and present in the cytoplasm only at early times in WT, while it persisted even at late times of infection in ΔF cells. The autophagosome content also differed between the cells: in WT cells, it comprised vesicles associated with virus-containing structures, while in ΔF cells, it comprised ingested material for lysosomal digestion. Our data suggest that CFTR-modified cells infected with SARS-CoV-2 have impaired organization of normo-conformed replicative structures.
Collapse
|
20
|
Chen H, Chen Q. COVID-19 Pandemic: Insights into Interactions between SARS-CoV-2 Infection and MAFLD. Int J Biol Sci 2022; 18:4756-4767. [PMID: 35874945 PMCID: PMC9305262 DOI: 10.7150/ijbs.72461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/23/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become an ongoing global health pandemic. Since 2019, the pandemic continues to cast a long shadow on all aspects of our lives, bringing huge health and economic burdens to all societies. With our in-depth understanding of COVID-19, from the initial respiratory tract to the later gastrointestinal tract and cardiovascular systems, the multiorgan involvement of this infectious disease has been discovered. Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly named nonalcoholic fatty liver disease (NAFLD), is a major health issue closely related to metabolic dysfunctions, affecting a quarter of the world's adult population. The association of COVID-19 with MAFLD has received increasing attention, as MAFLD is a potential risk factor for SARS-CoV-2 infection and severe COVID-19 symptoms. In this review, we provide an update on the interactions between COVID-19 and MAFLD and its underlying mechanisms.
Collapse
Affiliation(s)
- Hanfei Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Qiang Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.,MOE Frontier Science Centre for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
21
|
Rasmi Y, Hatamkhani S, Naderi R, Shokati A, Nayeb Zadeh V, Hosseinzadeh F, Farnamian Y, Jalali L. Molecular signaling pathways, pathophysiological features in various organs, and treatment strategies in SARS-CoV2 infection. Acta Histochem 2022; 124:151908. [PMID: 35662001 PMCID: PMC9130726 DOI: 10.1016/j.acthis.2022.151908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/19/2022] [Indexed: 01/08/2023]
Abstract
Cytokine storms and extra-activated cytokine signaling pathways can lead to severe tissue damage and patient death. Activation of inflammatory signaling pathways during Cytokine storms are an important factor in the development of acute respiratory syndrome (SARS-CoV-2), which is the major health problem today, causing systemic and local inflammation. Cytokine storms attract many inflammatory cells that attack the lungs and other organs and cause tissue damage. Angiotensin-converting enzyme 2 (ACE2) are expressed in a different type of tissues. inhibition of ACE2 activity impairs renin-angiotensin (RAS) function, which is related to the severity of symptoms and mortality rate in COVID-19 patients. Different signaling cascades are activated, affecting various organs during SARS-CoV-2 infection. Nowadays, there is no specific treatment for COVID-19, but scientists have recognized and proposed several treatment alternatives, including applying cytokine inhibitors, immunomodulators, and plasma therapy. Herein, we have provided the detailed mechanism of SARS-CoV-2 induced cytokine signaling and its connection with pathophysiological features in different organs. Possible treatment options to cope with the severe clinical manifestations of COVID-19 are also discussed.
Collapse
Affiliation(s)
- Yousef Rasmi
- Cellular and Molecular Research Center,Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shima Hatamkhani
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, school of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ameneh Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Faezeh Hosseinzadeh
- Department of Tissue Engineering, Qom University of Medical Sciences, Qom, Iran
| | - Yeganeh Farnamian
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Ladan Jalali
- Cellular and Molecular Research Center,Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
22
|
Channappanavar R, Selvaraj M, More S, Perlman S. Alveolar macrophages protect mice from MERS-CoV-induced pneumonia and severe disease. Vet Pathol 2022; 59:627-638. [PMID: 35499307 DOI: 10.1177/03009858221095270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Emerging and re-emerging human coronaviruses (hCoVs) cause severe respiratory illness in humans, but the basis for lethal pneumonia in these diseases is not well understood. Alveolar macrophages (AMs) are key orchestrators of host antiviral defense and tissue tolerance during a variety of respiratory infections, and AM dysfunction is associated with severe COVID-19. In this study, using a mouse model of Middle East respiratory syndrome coronavirus (MERS-CoV) infection, we examined the role of AMs in MERS pathogenesis. Our results show that depletion of AMs using clodronate (CL) liposomes significantly increased morbidity and mortality in human dipeptidyl peptidase 4 knock-in (hDPP4-KI) mice. Detailed examination of control and AM-depleted lungs at different days postinfection revealed increased neutrophil activity but a significantly reduced MERS-CoV-specific CD4 T-cell response in AM-deficient lungs during later stages of infection. Furthermore, enhanced MERS severity in AM-depleted mice correlated with lung inflammation and lesions. Collectively, these data demonstrate that AMs are critical for the development of an optimal virus-specific T-cell response and controlling excessive inflammation during MERS-CoV infection.
Collapse
Affiliation(s)
| | | | - Sunil More
- Oklahoma State University, Stillwater, OK
| | | |
Collapse
|
23
|
Jonigk D, Werlein C, Lee PD, Kauczor HU, Länger F, Ackermann M. Pulmonary and Systemic Pathology in COVID-19—Holistic Pathological Analyses. DEUTSCHES ARZTEBLATT INTERNATIONAL 2022; 119:429-435. [PMID: 35698804 PMCID: PMC9549895 DOI: 10.3238/arztebl.m2022.0231] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 03/22/2022] [Accepted: 05/10/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND The COVID-19 pandemic is the third worldwide coronavirus-associated disease outbreak in the past 20 years. Lung involvement, with acute respiratory distress syndrome (ARDS) in severe cases, is the main clinical feature of this disease; the cardiovascular system, the central nervous system, and the gastrointestinal tract can also be affected. The pathophysiology of both pulmonary and extrapulmonary organ damage was almost completely unknown when the pandemic began. METHODS This review is based on pertinent publications retrieved by a selective search concerning the structural changes and pathophysiology of COVID-19, with a focus on imaging techniques. RESULTS Immunohistochemical, electron-microscopic and molecular pathological analyses of tissues obtained by autopsy have improved our understanding of COVID-19 pathophysiology, including molecular regulatory mechanisms. Intussusceptive angiogenesis (IA) has been found to be a prominent pattern of damage in the affected organs of COVID-19 patients. In IA, an existing vessel changes by invagination of the endothelium and formation of an intraluminal septum, ultimately giving rise to two new lumina. This alters hemodynamics within the vessel, leading to a loss of laminar flow and its replacement by turbulent, inhomogeneous flow. IA, which arises because of ischemia due to thrombosis, is itself a risk factor for the generation of further microthrombi; these have been detected in the lungs, heart, liver, kidneys, brain, and placenta of COVID-19 patients. CONCLUSION Studies of autopsy material from various tissues of COVID-19 patients have revealed ultrastructural evidence of altered microvascularity, IA, and multifocal thrombi. These changes may contribute to the pathophysiology of post-acute interstitial fibrotic organ changes as well as to the clinical picture of long COVID.
Collapse
Affiliation(s)
- Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany; German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover site, Hannover, Germany; Department of Mechanical Engineering, Faculty of Engineering Science, University College London, London, UK; Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany; Institute of Pathology and Molecular Pathology, Helios University Hospital Wuppertal, University Hospital of Witten-Herdecke, Wuppertal, Germany; Institute of Functional and Clinical Anatomy, University Medical Center Mainz, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Shulunov VR. Rapid Parallel Search Technology with Scanning Electron Microscope and Artificial Neural Network. SMART SCIENCE 2022. [DOI: 10.1080/23080477.2022.2092671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Vyacheslav R Shulunov
- Institute of Physical Materials Science, Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Russia
| |
Collapse
|
25
|
Galeano Reyes SA, Dhimes Tejeda P, Steen B, Arcos Orozco HK, Ramos Pontón P. Cytopathological Findings in Bronchoalveolar Lavage from Patients with COVID-19. Acta Cytol 2022; 66:532-541. [PMID: 35732159 PMCID: PMC9393766 DOI: 10.1159/000525339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 05/23/2022] [Indexed: 11/19/2022]
Abstract
Information on cellular analysis of bronchoalveolar lavage (BAL) in patients with COVID-19 is limited. Some studies have described an increase in lymphocyte percentage or exuberant plasmacytosis. Some reports addressed the importance of molecular testing on BAL samples to confirm COVID-19 pneumonia, in clinically highly suspected patients with consecutive negative nasopharyngeal swab results. In addition to atypical lymphocytes in the peripheral blood, morphologic findings of atypical lymphocytes in BAL were also reported in a few patients. The objective of this study was to describe the cytopathic characteristics identified, any data presented here are descriptives and intended to trigger further research. Three general aspects have been evaluated in each sample: reactive changes, virus-related pathological changes, and differential leukocyte count. Seventeen samples were collected. All samples were negative for malignancy, with an inflammatory background, predominantly lymphohistiocytic in 5 samples, histiocytic in 9, and 3 with predominantly neutrophilic. Hemosiderin-laden macrophages were observed in 12/17. Nonspecific reactive cell changes were identified in 4 samples, including bronchial, alveolar, and reserve cell hyperplasia. Virus-related pathological changes were observed in 14 samples, such as loss of nuclear chromatin pattern, lymphocytes with atypical nuclei, nuclear and cytoplasmic inclusions, multinucleations in bronchial cells and macrophages, or multinucleated giant cells. The identification of multinucleated giant cells could represent a cytopathic effect induced by the virus, at the same time the nuclear clearance of pneumocytes as a possible direct effect. BAL is a procedure aimed at obtaining cells from the respiratory tract that can provide valuable and rapid information. It is important to collect and describe as many cytopathological findings as possible, which can provide relevant information for future studies.
Collapse
Affiliation(s)
| | | | - Bárbara Steen
- Department of Pneumology, Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | | | - Paloma Ramos Pontón
- Department of Pathology, Hospital Universitario Fundación Alcorcón, Madrid, Spain
| |
Collapse
|
26
|
He W, Liu X, Hu B, Li D, Chen L, Li Y, Tu Y, Xiong S, Wang G, Deng J, Fu B. Mechanisms of SARS-CoV-2 Infection-Induced Kidney Injury: A Literature Review. Front Cell Infect Microbiol 2022; 12:838213. [PMID: 35774397 PMCID: PMC9237415 DOI: 10.3389/fcimb.2022.838213] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/10/2022] [Indexed: 01/08/2023] Open
Abstract
The severe acute respiratory coronavirus 2 (SARS-CoV-2) has become a life-threatening pandemic. Clinical evidence suggests that kidney involvement is common and might lead to mild proteinuria and even advanced acute kidney injury (AKI). Moreover, AKI caused by coronavirus disease 2019 (COVID-19) has been reported in several countries and regions, resulting in high patient mortality. COVID-19-induced kidney injury is affected by several factors including direct kidney injury mediated by the combination of virus and angiotensin-converting enzyme 2, immune response dysregulation, cytokine storm driven by SARS-CoV-2 infection, organ interactions, hypercoagulable state, and endothelial dysfunction. In this review, we summarized the mechanism of AKI caused by SARS-CoV-2 infection through literature search and analysis.
Collapse
Affiliation(s)
- Weihang He
- Reproductive Medicine Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Bing Hu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dongshui Li
- Reproductive Medicine Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Luyao Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yechao Tu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Situ Xiong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Jun Deng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| |
Collapse
|
27
|
Hammoud H, Bendari A, Bendari T, Bougmiza I. Histopathological Findings in COVID-19 Cases: A Systematic Review. Cureus 2022; 14:e25573. [PMID: 35784976 PMCID: PMC9249248 DOI: 10.7759/cureus.25573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 11/05/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has turned into one of the most serious public health crises of the last few decades. Although the disease can result in diverse and multiorgan pathologies, very few studies have addressed the postmortem pathological findings of COVID-19 cases. Active autopsy findings amid this pandemic could be an essential tool for diagnosis, surveillance, and research. We aimed to provide a comprehensive picture of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) histopathological features of different body organs through a systematic review of the published literature. A systematic search of electronic databases (PubMed, ScienceDirect, Google Scholar, medRxiv, and bioRxiv) for journal articles of different study designs reporting postmortem pathological findings in COVID-19 cases was performed. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used for conducting the review. A total of 50 articles reporting 430 cases were included in our analysis. Postmortem pathological findings were reported for different body organs: pulmonary system (42 articles), cardiovascular system (23 articles), hepatobiliary system (22 articles), kidney (16 articles), spleen and lymph nodes (12 articles), and central nervous system (seven articles). In lung samples, diffuse alveolar damage (DAD) was the most commonly reported finding in 239 cases (84.4%). Myocardial hypertrophy (87 cases, 51.2%), arteriosclerosis (121 cases, 62%), and steatosis (118 cases, 59.3%) were the most commonly reported pathological findings in the heart, kidney, and the hepatobiliary system respectively. Autopsy examination as an investigation tool could lead to a better understanding of SARS-CoV-2 pathophysiology, diagnosis, and management, subsequently improving patient care.
Collapse
Affiliation(s)
- Hamed Hammoud
- Preventive Medicine, Hamad Medical Corporation, Doha, QAT
| | - Ahmed Bendari
- Department of Pathology, Lenox Hill Hospital, New York, USA
| | | | - Iheb Bougmiza
- Community Medicine Residency Program, Primary Health Care Corporation, Doha, QAT
| |
Collapse
|
28
|
Choudhary A, Singh V, Bharadwaj M. Maternal and Neonatal Outcomes in Pregnant Women With SARS-CoV-2 Infection Complicated by Hepatic Dysfunction. Cureus 2022; 14:e25347. [PMID: 35761912 PMCID: PMC9233295 DOI: 10.7759/cureus.25347] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2022] [Indexed: 01/09/2023] Open
Abstract
Background and objective The coronavirus disease 2019 (COVID-19) pandemic has caused one of the most devastating healthcare crises in recent times and presented many diagnostic challenges and uncertainties. COVID-19 complicated by acute hepatic dysfunction is a well-described phenomenon, but its impact on maternal and perinatal outcomes is not well documented. In this study, we aimed to evaluate the maternal and neonatal outcomes in pregnant women with COVID-19 complicated by liver dysfunction and compare those with pregnant women with COVID-19 and normal liver function. Methodology This was a retrospective observational cohort study conducted at the Tata Main Hospital, Jamshedpur, a tertiary care hospital in eastern India. All COVID-19-positive pregnant women (n=249) admitted to the hospital from May 15, 2020, to August 15, 2021, were included in this study. Retrospective data collection was done using the medical records of these COVID-19-positive pregnant women and included the baseline characteristics, past medical history, obstetric history, clinical presentation, laboratory results, management modalities, and maternal and neonatal outcomes. Of note, 107 women were found to have acute liver function abnormality on admission and 142 women had normal liver function tests (LFTs). Pregnant women with normal LFTs were classified as group one and those with deranged LFTs as group two. Characteristics such as age, period of gestation, symptoms, associated comorbidities, laboratory results, management, and outcomes were compared across both groups. Results Out of the total 249 pregnant women with COVID-19 admitted during the study period, 42.97% (n=107) women had laboratory findings consistent with liver dysfunction and 142 women (57.03%) had a normal liver function. Significantly higher levels of lactate dehydrogenase (LDH), C-reactive protein (CRP), neutrophil-lymphocyte ratio (NLR), alanine transaminase (ALT), aspartate aminotransferase (AST), and total bilirubin levels were seen in pregnant women with hepatic dysfunction when compared to those with normal liver function. Among the 249 patients, the majority were asymptomatic or had mild disease, 12 women had moderate disease, and six women had severe COVID-19. All women with severe COVID-19 had deranged LFTs. There was no statistical difference in terms of obstetric management between pregnant patients with and without liver dysfunction. Out of the 107 women with deranged liver function, 18 women had a preterm birth, four had intrauterine fetal death, and one had neonatal death. Complications such as postpartum hemorrhage, the need for blood transfusions, sepsis and multiorgan failure, and mortality were more commonly seen in the group of pregnant women with hepatic dysfunction associated with COVID-19. Conclusion COVID-19 in pregnancy may cause deranged LFTs in these women. Pregnant women with COVID-19 complicated by liver dysfunction have been reported to have worse inflammation, higher disease severity, and more morbidity and mortality when compared to those without liver dysfunction. They are also at a higher risk of complications such as postpartum hemorrhage, the need for blood transfusion, sepsis, and multiorgan dysfunction.
Collapse
|
29
|
Elnaggar M, Abomhya A, Elkhattib I, Dawoud N, Doshi R. COVID-19 and liver diseases, what we know so far. World J Clin Cases 2022; 10:3969-3980. [PMID: 35665122 PMCID: PMC9131221 DOI: 10.12998/wjcc.v10.i13.3969] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/15/2021] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) pneumonia outbreak started in December 2019. On March 12, 2020, the World Health Organization (WHO) declared that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) constitutes a pandemic, and as of May 2021, SARS-CoV-2 has infected over 167.3 million patients, including 3.4 million deaths, reported to WHO. In this review, we will focus on the relationship between SARS-CoV-2 infection and the liver. We will discuss how chronic liver diseases affect the COVID-19 disease course and outcomes. We will also discuss the SARS-CoV-2 effects on the liver, mechanisms of acute liver injury, and potential management plans.
Collapse
Affiliation(s)
- Mohamed Elnaggar
- Department of Internal Medicine, University of Nevada Reno School of Medicine, Reno, NV 89052, United States
| | - Ahmed Abomhya
- Department of Internal Medicine, The Brooklyn Hospital Center, Brooklyn, NY 11200, United States
| | - Ismail Elkhattib
- Department of Internal Medicine, University of Connecticut, Farmington, CT 06030, United States
| | - Nabila Dawoud
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40508, United States
| | - Rajkumar Doshi
- Department of Cardiology, St Joseph's University Medical Center, Paterson, NJ 07503, United States
| |
Collapse
|
30
|
Kohli A, Sauerhering L, Fehling SK, Klann K, Geiger H, Becker S, Koch B, Baer PC, Strecker T, Münch C. Proteomic landscape of SARS-CoV-2- and MERS-CoV-infected primary human renal epithelial cells. Life Sci Alliance 2022; 5:e202201371. [PMID: 35110370 PMCID: PMC8814637 DOI: 10.26508/lsa.202201371] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Acute kidney injury is associated with mortality in COVID-19 patients. However, host cell changes underlying infection of renal cells with SARS-CoV-2 remain unknown and prevent understanding of the molecular mechanisms that may contribute to renal pathology. Here, we carried out quantitative translatome and whole-cell proteomics analyses of primary renal proximal and distal tubular epithelial cells derived from human donors infected with SARS-CoV-2 or MERS-CoV to disseminate virus and cell type-specific changes over time. Our findings revealed shared pathways modified upon infection with both viruses, as well as SARS-CoV-2-specific host cell modulation driving key changes in innate immune activation and cellular protein quality control. Notably, MERS-CoV infection-induced specific changes in mitochondrial biology that were not observed in response to SARS-CoV-2 infection. Furthermore, we identified extensive modulation in pathways associated with kidney failure that changed in a virus- and cell type-specific manner. In summary, we provide an overview of the effects of SARS-CoV-2 or MERS-CoV infection on primary renal epithelial cells revealing key pathways that may be essential for viral replication.
Collapse
Affiliation(s)
- Aneesha Kohli
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Lucie Sauerhering
- Institute of Virology, Philipps University Marburg, Marburg, Germany
- German Center for Infection Research (DZIF), Partner Sites Gieβen-Marburg-Langen, Marburg, Germany
| | - Sarah K Fehling
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Kevin Klann
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Helmut Geiger
- Division of Nephrology, Department of Internal Medicine III, University Hospital, Goethe-University, Frankfurt am Main, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
- German Center for Infection Research (DZIF), Partner Sites Gieβen-Marburg-Langen, Marburg, Germany
| | - Benjamin Koch
- Division of Nephrology, Department of Internal Medicine III, University Hospital, Goethe-University, Frankfurt am Main, Germany
| | - Patrick C Baer
- Division of Nephrology, Department of Internal Medicine III, University Hospital, Goethe-University, Frankfurt am Main, Germany
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Frankfurt am Main, Germany
| |
Collapse
|
31
|
Bullock HA, Goldsmith CS, Miller SE. Detection and identification of coronaviruses in human tissues using electron microscopy. Microsc Res Tech 2022; 85:2740-2747. [PMID: 35373872 PMCID: PMC9088335 DOI: 10.1002/jemt.24115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/17/2022] [Accepted: 03/16/2022] [Indexed: 11/23/2022]
Abstract
The identification of viral particles within a tissue specimen requires specific knowledge of viral ultrastructure and replication, as well as a thorough familiarity with normal subcellular organelles. The severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) pandemic has underscored how challenging the task of identifying coronavirus by electron microscopy (EM) can be. Numerous articles have been published mischaracterizing common subcellular structures, including clathrin‐ or coatomer‐ coated vesicles, multivesicular bodies, and rough endoplasmic reticulum, as coronavirus particles in SARS‐CoV‐2 positive patient tissue specimens. To counter these misinterpretations, we describe the morphological features of coronaviruses that should be used to differentiate coronavirus particles from subcellular structures. Further, as many of the misidentifications of coronavirus particles have stemmed from attempts to attribute tissue damage to direct infection by SARS‐CoV‐2, we review articles describing ultrastructural changes observed in specimens from SARS‐CoV‐2‐infected individuals that do not necessarily provide EM evidence of direct viral infection. Ultrastructural changes have been observed in respiratory, cardiac, kidney, and intestinal tissues, highlighting the widespread effects that SARS‐CoV‐2 infection may have on the body, whether through direct viral infection or mediated by SARS‐CoV‐2 infection‐induced inflammatory and immune processes.
Collapse
Affiliation(s)
- Hannah A. Bullock
- Synergy America, Inc. Atlanta Georgia USA
- Centers for Disease Control and Prevention Atlanta Georgia USA
| | | | | |
Collapse
|
32
|
Rajah MM, Bernier A, Buchrieser J, Schwartz O. The Mechanism and Consequences of SARS-CoV-2 Spike-Mediated Fusion and Syncytia Formation. J Mol Biol 2022; 434:167280. [PMID: 34606831 PMCID: PMC8485708 DOI: 10.1016/j.jmb.2021.167280] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Syncytia are formed when individual cells fuse. SARS-CoV-2 induces syncytia when the viral spike (S) protein on the surface of an infected cell interacts with receptors on neighboring cells. Syncytia may potentially contribute to pathology by facilitating viral dissemination, cytopathicity, immune evasion, and inflammatory response. SARS-CoV-2 variants of concern possess several mutations within the S protein that enhance receptor interaction, fusogenicity and antibody binding. In this review, we discuss the molecular determinants of S mediated fusion and the antiviral innate immunity components that counteract syncytia formation. Several interferon-stimulated genes, including IFITMs and LY6E act as barriers to S protein-mediated fusion by altering the composition or biophysical properties of the target membrane. We also summarize the effect that the mutations associated with the variants of concern have on S protein fusogenicity. Altogether, this review contextualizes the current understanding of Spike fusogenicity and the role of syncytia during SARS-CoV-2 infection and pathology.
Collapse
Affiliation(s)
- Maaran Michael Rajah
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France; Université de Paris, Sorbonne Paris Cité, Paris, France. https://twitter.com/MaaranRajah
| | - Annie Bernier
- Institut Curie, INSERM U932, Paris, France. https://twitter.com/nini_bernier
| | - Julian Buchrieser
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France. https://twitter.com/JBuchrieser
| | - Olivier Schwartz
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France; Université de Paris, Sorbonne Paris Cité, Paris, France; Vaccine Research Institute, Creteil, France.
| |
Collapse
|
33
|
Mittal A, Chauhan A. Aspects of Biological Replication and Evolution Independent of the Central Dogma: Insights from Protein-Free Vesicular Transformations and Protein-Mediated Membrane Remodeling. J Membr Biol 2022; 255:185-209. [PMID: 35333977 PMCID: PMC8951669 DOI: 10.1007/s00232-022-00230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/06/2022] [Indexed: 11/21/2022]
Abstract
Biological membrane remodeling is central to living systems. In spite of serving as “containers” of whole-living systems and functioning as dynamic compartments within living systems, biological membranes still find a “blue collar” treatment compared to the “white collar” nucleic acids and proteins in biology. This may be attributable to the fact that scientific literature on biological membrane remodeling is only 50 years old compared to ~ 150 years of literature on proteins and a little less than 100 years on nucleic acids. However, recently, evidence for symbiotic origins of eukaryotic cells from data only on biological membranes was reported. This, coupled with appreciation of reproducible amphiphilic self-assemblies in aqueous environments (mimicking replication), has already initiated discussions on origins of life beyond nucleic acids and proteins. This work presents a comprehensive compilation and meta-analyses of data on self-assembly and vesicular transformations in biological membranes—starting from model membranes to establishment of Influenza Hemagglutinin-mediated membrane fusion as a prototypical remodeling system to a thorough comparison between enveloped mammalian viruses and cellular vesicles. We show that viral membrane fusion proteins, in addition to obeying “stoichiometry-driven protein folding”, have tighter compositional constraints on their amino acid occurrences than general-structured proteins, regardless of type/class. From the perspective of vesicular assemblies and biological membrane remodeling (with and without proteins) we find that cellular vesicles are quite different from viruses. Finally, we propose that in addition to pre-existing thermodynamic frameworks, kinetic considerations in de novo formation of metastable membrane structures with available “third-party” constituents (including proteins) were not only crucial for origins of life but also continue to offer morphological replication and/or functional mechanisms in modern life forms, independent of the central dogma.
Collapse
Affiliation(s)
- Aditya Mittal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi, 110016, India. .,Supercomputing Facility for Bioinformatics and Computational Biology (SCFBio), IIT Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Akanksha Chauhan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
34
|
Rahmani W, Chung H, Sinha S, Bui-Marinos MP, Arora R, Jaffer A, Corcoran JA, Biernaskie J, Chun J. Attenuation of SARS-CoV-2 infection by losartan in human kidney organoids. iScience 2022; 25:103818. [PMID: 35106453 PMCID: PMC8795780 DOI: 10.1016/j.isci.2022.103818] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 11/04/2021] [Accepted: 01/21/2022] [Indexed: 12/27/2022] Open
Abstract
COVID-19-associated acute kidney injury (COVID-AKI) is a common complication of SARS-CoV-2 infection in hospitalized patients. The susceptibility of human kidneys to direct SARS-CoV-2 infection and modulation of the renin-angiotensin II signaling (RAS) pathway by viral infection remain poorly characterized. Using induced pluripotent stem cell-derived kidney organoids, SARS-CoV-1, SARS-CoV-2, and MERS-CoV tropism, defined by the paired expression of a host receptor (ACE2, NRP1 or DPP4) and protease (TMPRSS2, TMPRSS4, FURIN, CTSB or CTSL), was identified primarily among proximal tubule cells. Losartan, an angiotensin II receptor blocker being tested in patients with COVID-19, inhibited angiotensin II-mediated internalization of ACE2, upregulated interferon-stimulated genes (IFITM1 and BST2) known to restrict viral entry, and attenuated the infection of proximal tubule cells by SARS-CoV-2. Our work highlights the susceptibility of proximal tubule cells to SARS-CoV-2 and reveals a putative protective role for RAS inhibitors during SARS-CoV-2 infection. SARS-CoV-2 kidney organoid tropism is primarily among proximal tubule cells Losartan attenuates angiotensin II-mediated ACE2 internalization Losartan upregulates viral restrictive genes IFITM1 and BST2 SARS-CoV-2 infection is enhanced by angiotensin II and attenuated by losartan
Collapse
Affiliation(s)
- Waleed Rahmani
- Department of Medicine, Health Research Innovation Centre 4A12, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Hyunjae Chung
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Heritage Medical Research Building, Room 402, 3300 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Maxwell P Bui-Marinos
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Microbiology, Immunology and Infectious Diseases Department and Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, Canada
| | - Rohit Arora
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Heritage Medical Research Building, Room 402, 3300 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Arzina Jaffer
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Heritage Medical Research Building, Room 402, 3300 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Jennifer A Corcoran
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Microbiology, Immunology and Infectious Diseases Department and Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Heritage Medical Research Building, Room 402, 3300 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Justin Chun
- Department of Medicine, Health Research Innovation Centre 4A12, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
35
|
|
36
|
Hui DS, Azhar EI, Memish ZA, Zumla A. Human Coronavirus Infections—Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and SARS-CoV-2. ENCYCLOPEDIA OF RESPIRATORY MEDICINE 2022. [PMCID: PMC7241405 DOI: 10.1016/b978-0-12-801238-3.11634-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Oreh A, Akerele I, Nnabuchi C, Obazee D, Onyegbutulem H. Derangements of liver enzymes in a study of 201 COVID-19 patients in Abuja, Nigeria's federal capital territory. NIGERIAN JOURNAL OF MEDICINE 2022. [DOI: 10.4103/njm.njm_180_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
38
|
Zafar T. The emergence of severe acute respiratory syndrome-coronavirus 2 epidemic and pandemic. ADVANCED BIOSENSORS FOR VIRUS DETECTION 2022. [PMCID: PMC8901424 DOI: 10.1016/b978-0-12-824494-4.00006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
In the history of travel and tourism, a microscopic creature wrote a dark note, which interrupted the fast pace of globalization. In December 2019, in the seafood market of Wuhan city of China, a severe viral pneumonia-like infection was initiated, and which was new to the world and resulted in the emergence of a global health emergency. Thousands of passengers traveled through the city without knowing that one travel can change not only their lives but the future of the world. When WHO declared the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) outbreak as a global emergency, still no one thought of the conversion of the epidemic in the worst pandemic of the ongoing decade. Initially, the spread of SARS-CoV-2 infection over a wide area with a lot of patients at the same time declared it as a global epidemic, but the rapid escalation of the infection at more comprehensive geographical locations with a significant portion of the infected population soon turned the epidemic into the pandemic. The imported cases soon spread to their native places and turn the disease pandemic. While many countries are imposing partial or complete lockdown for the safety of travelers and civilians, the vacant human-made spaces and tourist architectures are asking that where the lacunae were, which has put the globe in such a devastating phase. The emergence of SARS-CoV-2 created a colossal health crisis for the entire world. From a provincial health concern to a global meltdown, the impact of SARS-CoV-2 has undeniably impacted the world medically, socially, financially, and psychologically. The footprints of SARS-CoV-2 are impactfully imprinted on the decade that will require a lot of time for global recovery.
Collapse
|
39
|
Helms L, Marchiano S, Stanaway IB, Hsiang TY, Juliar BA, Saini S, Zhao YT, Khanna A, Menon R, Alakwaa F, Mikacenic C, Morrell ED, Wurfel MM, Kretzler M, Harder JL, Murry CE, Himmelfarb J, Ruohola-Baker H, Bhatraju PK, Gale M, Freedman BS. Cross-validation of SARS-CoV-2 responses in kidney organoids and clinical populations. JCI Insight 2021; 6:e154882. [PMID: 34767537 PMCID: PMC8783682 DOI: 10.1172/jci.insight.154882] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Kidneys are critical target organs of COVID-19, but susceptibility and responses to infection remain poorly understood. Here, we combine SARS-CoV-2 variants with genome-edited kidney organoids and clinical data to investigate tropism, mechanism, and therapeutics. SARS-CoV-2 specifically infects organoid proximal tubules among diverse cell types. Infections produce replicating virus, apoptosis, and disrupted cell morphology, features of which are revealed in the context of polycystic kidney disease. Cross-validation of gene expression patterns in organoids reflects proteomic signatures of COVID-19 in the urine of critically ill patients indicating interferon pathway upregulation. SARS-CoV-2 viral variants alpha, beta, gamma, kappa, and delta exhibit comparable levels of infection in organoids. Infection is ameliorated in ACE2-/- organoids and blocked via treatment with de novo-designed spike binder peptides. Collectively, these studies clarify the impact of kidney infection in COVID-19 as reflected in organoids and clinical populations, enabling assessment of viral fitness and emerging therapies.
Collapse
Affiliation(s)
- Louisa Helms
- Department of Medicine
- Division of Nephrology
- Kidney Research Institute
- Institute for Stem Cell and Regenerative Medicine
- Department of Laboratory Medicine and Pathology
| | - Silvia Marchiano
- Department of Medicine
- Institute for Stem Cell and Regenerative Medicine
- Department of Laboratory Medicine and Pathology
- Division of Cardiology
- Center for Cardiovascular Biology
| | - Ian B. Stanaway
- Department of Medicine
- Division of Nephrology
- Kidney Research Institute
| | - Tien-Ying Hsiang
- Center for Innate Immunity and Immune Disease, Department of Immunology
| | - Benjamin A. Juliar
- Department of Medicine
- Division of Nephrology
- Kidney Research Institute
- Institute for Stem Cell and Regenerative Medicine
| | - Shally Saini
- Institute for Stem Cell and Regenerative Medicine
- Department of Biochemistry; and
| | - Yan Ting Zhao
- Institute for Stem Cell and Regenerative Medicine
- Department of Biochemistry; and
- Department of Oral Health Sciences, School of Dentistry, University of Washington School of Medicine, Seattle, Washington, USA
| | - Akshita Khanna
- Institute for Stem Cell and Regenerative Medicine
- Department of Laboratory Medicine and Pathology
- Center for Cardiovascular Biology
| | - Rajasree Menon
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Fadhl Alakwaa
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Carmen Mikacenic
- Department of Medicine
- Translational Research, Benaroya Research Institute, Seattle, Washington, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Eric D. Morrell
- Department of Medicine
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mark M. Wurfel
- Department of Medicine
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer L. Harder
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles E. Murry
- Department of Medicine
- Institute for Stem Cell and Regenerative Medicine
- Department of Laboratory Medicine and Pathology
- Division of Cardiology
- Center for Cardiovascular Biology
- Sana Biotechnology, Seattle, Washington, USA
| | | | - Hannele Ruohola-Baker
- Institute for Stem Cell and Regenerative Medicine
- Department of Biochemistry; and
- Department of Oral Health Sciences, School of Dentistry, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Pavan K. Bhatraju
- Department of Medicine
- Kidney Research Institute
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology
| | - Benjamin S. Freedman
- Department of Medicine
- Division of Nephrology
- Kidney Research Institute
- Institute for Stem Cell and Regenerative Medicine
- Department of Laboratory Medicine and Pathology
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
40
|
Comparison of experimental MERS-CoV infection acquired by three individual routes of infection in the common marmoset. J Virol 2021; 96:e0173921. [PMID: 34908447 PMCID: PMC8865480 DOI: 10.1128/jvi.01739-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two strains of Middle East respiratory syndrome coronavirus (MERS-CoV), England 1 and Erasmus Medical Centre/2012 (EMC/2012), were used to challenge common marmosets (Callithrix jacchus) by three routes of infection: aerosol, oral, and intranasal. Animals challenged by the intranasal and aerosol routes presented with mild, transient disease, while those challenged by the oral route presented with a subclinical immunological response. Animals challenged with MERS-CoV strain EMC/2012 by the aerosol route responded with primary and/or secondary pyrexia. Marmosets had minimal to mild multifocal interstitial pneumonia, with the greatest relative severity being observed in animals challenged by the aerosol route. Viable virus was isolated from the host in throat swabs and lung tissue. The transient disease described is consistent with a successful host response and was characterized by the upregulation of macrophage and neutrophil function observed in all animals at the time of euthanasia. IMPORTANCE Middle East respiratory syndrome is caused by a human coronavirus, MERS-CoV, similar to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Humans typically exhibit fever, cough, shortness of breath, gastrointestinal issues, and breathing difficulties, which can lead to pneumonia and/or renal complications. This emerging disease resulted in the first human lethal cases in 2012 and has a case fatality rate of approximately 36%. Consequently, there is a need for medical countermeasures and appropriate animal models for their assessment. This work has demonstrated the requirement for higher concentrations of virus to cause overt disease. Challenge by the aerosol, intranasal, and oral routes resulted in no or mild disease, but all animals had an immunological response. This shows that an appropriate early immunological response is able to control the disease.
Collapse
|
41
|
The clinical implication of gamma-glutamyl transpeptidase in COVID-19. LIVER RESEARCH 2021; 5:209-216. [PMID: 34603826 PMCID: PMC8464026 DOI: 10.1016/j.livres.2021.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/11/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Coronavirus disease 2019 (COVID-19) is a life-threatening disease that predominantly causes respiratory failure. The impact of COVID-19 on other organs remains elusive. Herein, we aimed to investigate the effects of COVID-19 on the hepatobiliary system. METHODS In the current study, we obtained the clinical records and laboratory results from 66 laboratory-confirmed patients with COVID-19 at the Wuhan Tongji Hospital between 10 February 2020 and 28 February 2020. The detailed clinical features and laboratory findings were collected for analysis. Bioinformatics analysis was conducted to evaluate the correlation between gamma-glutamyl transferase (GGT) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry receptor angiotensin-converting enzyme 2 (ACE2). RESULTS In this cohort, 30 (51.7%) patients had abnormal liver function on admission, which was associated with disease severity and enriched in the male and diabetic patients. The elevated levels of direct bilirubin (P = 0.029) and GGT (P = 0.004) were common in patients with severe pneumonia when compared with those with mild pneumonia. In addition, elevated levels of GGT (P = 0.003) and aspartate aminotransferase (AST) (P = 0.007) were positively associated with longer hospital stay. The expression of ACE2 was closely associated with GGT in various human tissues because they shared the common transcriptional regulator hepatic nuclear factor-1β (HNF1B). CONCLUSIONS Increased GGT levels were common in severe cases and elevated GGT levels were positively associated with prolonged hospital stay and disease severity. Due to the consistent expression with ACE2, GGT is a potent biomarker indicating the susceptibility of SARS-CoV-2 infection.
Collapse
|
42
|
Liu F, Li Y, Yang Y, Li M, Du Y, Zhang Y, Wang J, Shi Y. Study on mechanism of matrine in treatment of COVID-19 combined with liver injury by network pharmacology and molecular docking technology. Drug Deliv 2021; 28:325-342. [PMID: 33517789 PMCID: PMC8735880 DOI: 10.1080/10717544.2021.1879313] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/18/2021] [Indexed: 12/20/2022] Open
Abstract
The aim of the present study was to investigate the pharmacological mechanism of matrine in treatment of COVID-19 combined with liver injury. Potential targets related to matrine, COVID-19 and liver injury were identified from several databases. We constructed PPI network and screened the core targets according to the degree value. Then, GO and KEGG enrichment were carried out. Molecular docking technology was used to verify the affinity between matrine and the crystal structure of core target protein. Finally, real-time RT-PCR was used to detect the effects of matrine on hub gene expression in liver tissue of liver injury mice and lung tissue of lung injury mice to further confirm the results of network pharmacological analysis. The results show that six core targets including AKT1, TP53, TNF, IL6, BCL2L1 and ATM were identified. The potential therapeutic mechanism of matrine on COVID-19 combined with liver injury is closely related to regulate antiviral process, improve immune system and regulate the level of inflammatory factors. Molecular docking showed that matrine could spontaneously bind to the receptor protein and had strong binding force. Real-time RT-PCR demonstrated that matrine could significantly reduce the expression of AKT1, TP53, TNF, IL6 and ATM in mice with liver injury or lung injury (P < 0.05), and increase the expression of BCL2L1 to a certain extent (P > 0.05). Our results indicate that matrine can achieve simultaneous intervention of COVID-19 combined with liver injury by multi-dimensional pharmacological mechanism.
Collapse
Affiliation(s)
- Fangzhou Liu
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanbai Li
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Yang
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meng Li
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Du
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiying Zhang
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Wang
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujing Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
43
|
Cau A, Cheng MP, Lee T, Levin A, Lee TC, Vinh DC, Lamontagne F, Singer J, Walley KR, Murthy S, Patrick D, Rewa O, Winston B, Marshall J, Boyd J, Russell JA. Acute Kidney Injury and Renal Replacement Therapy in COVID-19 Versus Other Respiratory Viruses: A Systematic Review and Meta-Analysis. Can J Kidney Health Dis 2021; 8:20543581211052185. [PMID: 34733538 PMCID: PMC8558598 DOI: 10.1177/20543581211052185] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/04/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a potentially fatal complication of Coronavirus Disease-2019 (COVID-19). Binding of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, to its viral receptor, angiotensin converting enzyme 2 (ACE2), results in viral entry and may cause AKI. OBJECTIVES We performed a systematic review and meta-analysis of the frequencies of AKI and renal replacement therapy (RRT) in critically ill COVID-19 patients and compared those frequencies with patients who were infected by respiratory viruses that bind or downregulate ACE2 (ACE2-associated viruses) and viruses that do not bind nor downregulate ACE2 (non-ACE2-associated viruses). DESIGN Systematic review and meta-analysis. SETTING Observational studies on COVID-19 and other respiratory viral infections reporting AKI and RRT were included. The exclusion criteria were non-English articles, non-peer-reviewed articles, review articles, studies that included patients under the age of 18, studies including fewer than 10 patients, and studies not reporting AKI and RRT rates. PATIENTS Adult COVID-19, Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and influenza patients. MEASUREMENTS We extracted the following data from the included studies: author, year, study location, age, sex, race, diabetes mellitus, hypertension, chronic kidney disease, shock, vasopressor use, mortality, intensive care unit (ICU) admission, ICU mortality, AKI, and RRT. METHODS We systematically searched PubMed and EMBASE for articles reporting AKI or RRT. AKI was defined by authors of included studies. Critical illness was defined by ICU admission. We performed a random effects meta-analysis to calculate pooled estimates for the AKI and RRT rate within each virus group using a random intercept logistic regression model. RESULTS Of 23 655 hospitalized, critically ill COVID-19 patients, AKI frequencies were not significantly different between COVID-19 patients (51%, 95% confidence interval [CI]: 44%-57%) and critically ill patients infected with ACE2-associated (56%, 95% CI: 37%-74%, P = .610) or non-ACE2-associated viruses (63%, 95% CI: 43%-79%, P = .255). Pooled RRT rates were also not significantly different between critically ill, hospitalized patients with COVID-19 (20%, 95% CI: 16%-24%) and ACE2-associated viruses (18%, 95% CI: 8%-33%, P = .747). RRT rates for both COVID-19 and ACE2-associated viruses were significantly different (P < .001 for both) from non-ACE2-associated viruses (49%, 95% CI: 44%-54%). After adjusting for shock or vasopressor use, AKI and RRT rates were not significantly different between groups. LIMITATIONS Limitations of this study include the heterogeneity of definitions of AKI that were used across different virus studies. We could not match severity of infection or do propensity matching across studies. Most of the included studies were conducted in retrospective fashion. Last, we did not include non-English publications. CONCLUSIONS Our findings suggest that viral ACE2 association does not significantly alter the rates of AKI and RRT among critically ill patients admitted to the ICU. However, the rate of RRT is lower in patients with COVID-19 or ACE2-associated viruses when compared with patients infected with non-ACE2-binding viruses, which might partly be due to the lower frequencies of shock and use of vasopressors in these two virus groups. Prospective studies are necessary to demonstrate whether modulation of the ACE2 axis with Renin-Angiotensin System inhibitors impacts the rates of AKI and whether they are beneficial or harmful in COVID-19 patients.
Collapse
Affiliation(s)
- A. Cau
- The University of British Columbia, Vancouver, BC, Canada
| | - M. P. Cheng
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Terry Lee
- Centre for Health Evaluation & Outcomes Science, The University of British Columbia, Vancouver, BC, Canada
| | - A. Levin
- Division of Nephrology, St. Paul’s Hospital, Vancouver, BC, Canada
| | - T. C. Lee
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - D. C. Vinh
- Department of Medicine, McGill University, Montreal, QC, Canada
| | | | - J. Singer
- Centre for Health Evaluation & Outcomes Science, The University of British Columbia, Vancouver, BC, Canada
| | - K. R. Walley
- Centre for Heart Lung Innovation, St. Paul’s Hospital and The University of British Columbia, Vancouver, BC, Canada
| | - S. Murthy
- BC Children’s Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - D. Patrick
- British Columbia Centre for Disease Control and The University of British Columbia, Vancouver, BC, Canada
| | - O. Rewa
- University of Alberta, Edmonton, AB, Canada
| | - B. Winston
- University of Calgary, Calgary, AB, Canada
| | - J. Marshall
- St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - J. Boyd
- Centre for Heart Lung Innovation, St. Paul’s Hospital and The University of British Columbia, Vancouver, BC, Canada
| | - JA Russell
- Centre for Heart Lung Innovation, St. Paul’s Hospital and The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
44
|
Idalsoaga F, Ayares G, Arab JP, Díaz LA. COVID-19 and Indirect Liver Injury: A Narrative Synthesis of the Evidence. J Clin Transl Hepatol 2021; 9:760-768. [PMID: 34722191 PMCID: PMC8516829 DOI: 10.14218/jcth.2020.00140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/16/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
The liver is frequently affected by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection. The most common manifestations are mildly elevated alanine aminotransferase and aspartate aminotransferase, with a prevalence of 16-53% among patients. Cases with severe coronavirus disease 2019 (COVID-19) seem to have higher rates of acute liver dysfunction, and the presence of abnormal liver tests at admission signifies a higher risk of severe disease during hospitalization. Patients with chronic liver diseases also have a higher risk of severe disease and mortality (mainly seen in patients with metabolic-associated fatty liver disease). Several pathways of damage have been proposed in the liver involvement of COVID-19 patients; although, the end-cause is most likely multifactorial. Abnormal liver tests have been attributed to the expression of angiotensin-converting enzyme 2 receptors in SARS-CoV-2 infection. This enzyme is expressed widely in cholangiocytes and less in hepatocytes. Other factors attributed to liver damage include drug-induced liver injury, uncontrolled release of proinflammatory molecules ("cytokine storm"), pneumonia-associated hypoxia, and direct damage by the infection. Hepatic steatosis, vascular thrombosis, fibrosis, and inflammatory features (including Kupffer cell hyperplasia) are the most common liver histopathological findings in deceased COVID-19 patients, suggesting important indirect mechanisms of liver damage. In this translational medicine-based narrative review, we summarize the current data on the possible indirect mechanisms involved in liver damage due to COVID-19, the histopathological findings, and the impact of these mechanisms in patients with chronic liver disease.
Collapse
Affiliation(s)
- Francisco Idalsoaga
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gustavo Ayares
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Antonio Díaz
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Correspondence to: Luis Antonio Díaz, Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Marcoleta 367, Santiago 8330024, Chile. ORCID: https://orcid.org/0000-0002-8540-4930. Tel/Fax:+56-2-2354-3820, E-mail:
| |
Collapse
|
45
|
Testino G, DI Biagio A, Fagoonee S, Pellicano R. SARS-CoV-2, alcohol consumption and liver injury. Minerva Med 2021; 113:333-342. [PMID: 34672164 DOI: 10.23736/s0026-4806.21.07809-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Angiotensin converting enzyme 2 (ACE2) receptor sites for severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2), responsible for the disease called Covid-19 are present in the liver, especially in correspondence with cholangiocytes. Liver damage during SARS-Cov-2 infection can be due to several mechanism including direct cytopathic effect, synergy of intestinal damage / liver damage (lipopolysaccharides / Kupfer and other cells interaction), uncontrolled immune reaction (lymphopenia and significant increase in C reactive protein, ferritin, lactate dehydrogenase, D-dimer, interleukin (IL)-6, IL- 10, IL-2, interferon-gamma ...), sepsis, drug-induced liver injury, hypoxia and thromboembolic events. An increase in aspartate aminotransferase (AST) from 14 to 58% and alanine transaminase (ALT) from 21 to 76% has been reported. The mean level of AST and ALT has been reported to be higher in patients admitted to the intensive care unit than in those hospitalized in the ordinary hospital unit. The correlation of liver damage with worse prognosis is now a known fact, confirmed by numerous studies, in all pandemic phases. The consumption of alcohol reduces both innate and acquired immune activity and it has been hypothesized that this habit is correlated with liver increase of ACE2 receptors. Furthermore, non-alcoholic and alcoholic steatosis / steatohepatitis is a breeding ground for the development of oxidative stress. In this context, any encounter with SARS-Cov-2 infection can support and aggravate the systemic cytokine tsunami.
Collapse
Affiliation(s)
- Gianni Testino
- Addiction and Hepatology Unit, Alcohological Regional Centre, ASL3 Liguria c/o Polyclinic San Martino Hospital, Genova, Italy -
| | - Antonio DI Biagio
- Infectious Diseases Unit, University of Genoa and Polyclinic San Martino Hospital, Genova, Italy
| | - Sharmila Fagoonee
- Institute for Biostructure and Bioimaging, National Research Council, Molecular Biotechnology Center, Turin, Italy
| | | |
Collapse
|
46
|
Ng JH, Zaidan M, Jhaveri KD, Izzedine H. Acute tubulointerstitial nephritis and COVID-19. Clin Kidney J 2021; 14:2151-2157. [PMID: 34603692 PMCID: PMC8344665 DOI: 10.1093/ckj/sfab107] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/14/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an ongoing pandemic that to date has spread to >100 countries. Acute kidney injury is not uncommon with this disease. The most common kidney biopsy finding is acute tubular injury. Glomerular diseases such as collapsing glomerulopathy and vasculitis, and thrombotic microangiopathy have been reported. Viral inclusion particles with distinctive spikes in the tubular epithelium and podocytes, and endothelial cells of the glomerular capillary loops, have been visualized by electron microscopy by some but disputed by others as non-viral structures. Interstitial infiltrates have not commonly been described in the published kidney biopsy series from patients with COVID-19. Medications used to treat COVID-19 can lead to interstitial nephritis, but very few have been reported. In summary, interstitial kidney disease is a rare finding in COVID-19.
Collapse
Affiliation(s)
- Jia H Ng
- Department of Medicine, Division of Kidney Diseases and Hypertension, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY, USA
| | - Mohamad Zaidan
- Department of Nephrology, Dialysis, Transplantation, Bicêtre University Hospital, Paris-Saclay University, AP-HP, DMU CORREVE Maladies du Coeur et Des Vaisseaux, Le Kremlin-Bicêtre, France
| | - Kenar D Jhaveri
- Department of Medicine, Division of Kidney Diseases and Hypertension, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY, USA
| | - Hassan Izzedine
- Department of Nephrology, Peupliers Private Hospital, Ramsay Générale de Santé, Paris, France
| |
Collapse
|
47
|
Wang X, Lei J, Li Z, Yan L. Potential Effects of Coronaviruses on the Liver: An Update. Front Med (Lausanne) 2021; 8:651658. [PMID: 34646834 PMCID: PMC8502894 DOI: 10.3389/fmed.2021.651658] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
The coronaviruses that cause notable diseases, namely, severe acute respiratory syndrome (SARS), middle east respiratory syndrome (MERS) and coronavirus disease 2019 (COVID-19), exhibit remarkable similarities in genomic components and pathogenetic mechanisms. Although coronaviruses have widely been studied as respiratory tract pathogens, their effects on the hepatobiliary system have seldom been reported. Overall, the manifestations of liver injury caused by coronaviruses typically involve decreased albumin and elevated aminotransferase and bilirubin levels. Several pathophysiological hypotheses have been proposed, including direct damage, immune-mediated injury, ischemia and hypoxia, thrombosis and drug hepatotoxicity. The interaction between pre-existing liver disease and coronavirus infection has been illustrated, whereby coronaviruses influence the occurrence, severity, prognosis and treatment of liver diseases. Drugs and vaccines used for treating and preventing coronavirus infection also have hepatotoxicity. Currently, the establishment of optimized therapy for coronavirus infection and liver disease comorbidity is of significance, warranting further safety tests, animal trials and clinical trials.
Collapse
Affiliation(s)
- Xinyi Wang
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
- Liver Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jianyong Lei
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
- Liver Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Zhihui Li
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
- Liver Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Lunan Yan
- Liver Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Su YJ, Chang CW, Chen MJ, Lai YC. Impact of COVID-19 on liver. World J Clin Cases 2021. [PMID: 34621856 DOI: 10.12998/wjcc.v9.i27.7998.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The incidence of liver injury after coronavirus disease 2019 (COVID-19) infection ranged from 15%-53%. The mechanism includes direct viral cytopathic effect, cytokinesis, and treatment drug-induced liver injury. The symptoms include nausea, vomiting, diarrhea, and loss of appetite. The laboratory results include increased liver enzyme levels, decreased monocyte count, and longer prothrombin time. The most common imaging findings are hepatomegaly on ultrasound, ground-glass opacity on chest computed tomography (CT), and liver hypodensity and pericholecystic fat stranding on abdominal CT. Patients may also have different presentations and poor outcomes of different liver diseases concomitant with COVID-19 infection. Liver function test (LFT) results should be monitored, and all factors known to cause or predispose liver injury should be investigated while managing the patients. The risks of transfer to an intensive care unit, need for mechanical ventilator support, and acute kidney injury is higher in COVID-19 patients with than without abnormal LFTs. Increased mortality and length of hospital stay are both observed.
Collapse
Affiliation(s)
- Yu-Jang Su
- Department of Emergency Medicine, MacKay Memorial Hospital, Taipei City 10449, Taiwan
| | - Chen-Wang Chang
- MacKay Junior College of Medicine, Nursing and Management, Taipei City 25245, Taiwan
| | - Ming-Jen Chen
- MacKay Junior College of Medicine, Nursing and Management, Taipei City 25245, Taiwan
| | - Yen-Chun Lai
- Department of Anesthesiology, Taipei Medical University Hospital, Taipei City 110301, Taiwan
| |
Collapse
|
49
|
Su YJ, Chang CW, Chen MJ, Lai YC. Impact of COVID-19 on liver. World J Clin Cases 2021; 9:7998-8007. [PMID: 34621856 PMCID: PMC8462210 DOI: 10.12998/wjcc.v9.i27.7998] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/22/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
The incidence of liver injury after coronavirus disease 2019 (COVID-19) infection ranged from 15%-53%. The mechanism includes direct viral cytopathic effect, cytokinesis, and treatment drug-induced liver injury. The symptoms include nausea, vomiting, diarrhea, and loss of appetite. The laboratory results include increased liver enzyme levels, decreased monocyte count, and longer prothrombin time. The most common imaging findings are hepatomegaly on ultrasound, ground-glass opacity on chest computed tomography (CT), and liver hypodensity and pericholecystic fat stranding on abdominal CT. Patients may also have different presentations and poor outcomes of different liver diseases concomitant with COVID-19 infection. Liver function test (LFT) results should be monitored, and all factors known to cause or predispose liver injury should be investigated while managing the patients. The risks of transfer to an intensive care unit, need for mechanical ventilator support, and acute kidney injury is higher in COVID-19 patients with than without abnormal LFTs. Increased mortality and length of hospital stay are both observed.
Collapse
Affiliation(s)
- Yu-Jang Su
- Department of Emergency Medicine, MacKay Memorial Hospital, Taipei City 10449, Taiwan
- Poison Center, Department of Emergency Medicine, MacKay Memorial Hospital, Taipei City 10449, Taiwan
- Yuanpei University of Medical Technology, HsinChu 30015, Taiwan
- MacKay Junior College of Medicine, Nursing and Management, Taipei City 25245, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
| | - Chen-Wang Chang
- MacKay Junior College of Medicine, Nursing and Management, Taipei City 25245, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei City 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
| | - Ming-Jen Chen
- MacKay Junior College of Medicine, Nursing and Management, Taipei City 25245, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei City 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
| | - Yen-Chun Lai
- Department of Anesthesiology, Taipei Medical University Hospital, Taipei City 110301, Taiwan
- Heroic Faith Medical Science Company, Taipei 11493, Taiwan
| |
Collapse
|
50
|
Vairappan B, Wright G, Corrigal D, Ravikumar Ts. Liver injury in COVID-19: A Direct hit or Collateral damage? Infect Disord Drug Targets 2021; 22:e130921196417. [PMID: 34517808 DOI: 10.2174/1871526521666210913110500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 is a novel coronavirus identified in December 2019 in Wuhan, China, and since becoming a worldwide pandemic with far-reaching impacts on global human health and socio-economic activity. Worldwide there are over 2 million Covid-19 related deaths. Recently published case studies have reported that Covid-19 patients develop different degrees of liver dysfunction. Inevitably, in hospitalized Covid-19 patients who develop acute liver derangement, there are a plethora of potential pathogenic causes such as direct-viral, immune-driven, and drug-induced and/or ischaemic liver injury. Patients with advanced chronic liver diseases (e.g. cirrhosis) and/or autoimmune liver disease have a poor immune function and associated poorer outcomes compared to other critically ill cohorts. However, largely any immediate liver derangement tends to be relatively mild, and as such any de novo liver injury may not be a significant feature of Covid-19. There is an immediate necessity, therefore, to better understand the liver-specific pathophysiology of COVID-19. This review focuses on the up-to-date information about Covid-19 and associated indices for liver dysfunction, possible mechanisms, and potential drug targeted therapies in Covid-19 patients with and without liver dysfunction. PubMed database was used to perform an extensive literature search using the keywords liver and SARS-CoV-2, liver and Covid-19, Covid 19 and treatment etc.
Collapse
Affiliation(s)
- Balasubramaniyan Vairappan
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry-605006. India
| | - Gavin Wright
- Mid and South Essex NHS Foundation Trust, Basildon & Thurrock University Hospitals NHS Foundation Trust. United Kingdom
| | - Douglas Corrigal
- Mid and South Essex NHS Foundation Trust, Basildon & Thurrock University Hospitals NHS Foundation Trust. United Kingdom
| | - Ravikumar Ts
- President All India Institute of Medical Sciences, Mangalagiri, Andhra Pradesh. India
| |
Collapse
|