1
|
Xie B, Fan M, Wang CX, Zhang Y, Xu S, Mizenko R, Lin TY, Duan Y, Zhang Y, Huang J, Berg JI, Wu D, Li A, Hao D, Gao K, Sun Y, Tepper CG, Carney R, Li Y, Wang A, Gong Q, Daly M, Jao LE, Monjazeb AM, Fierro FA, Li JJ. Post-death Vesicles of Senescent Bone Marrow Mesenchymal Stromal Polyploids Promote Macrophage Aging and Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583755. [PMID: 38496556 PMCID: PMC10942423 DOI: 10.1101/2024.03.06.583755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Potential systemic factors contributing to aging-associated breast cancer (BC) remain elusive. Here, we reveal that the polyploid giant cells (PGCs) that contain more than two sets of genomes prevailing in aging and cancerous tissues constitute 5-10% of healthy female bone marrow mesenchymal stromal cells (fBMSCs). The PGCs can repair DNA damage and stimulate neighboring cells for clonal expansion. However, dying PGCs in advanced-senescent fBMSCs can form "spikings" which are then separated into membraned mtDNA-containing vesicles (Senescent PGC-Spiking Bodies; SPSBs). SPSB-phagocytosed macrophages accelerate aging with diminished clearance on BC cells and protumor M2 polarization. SPSB-carried mitochondrial OXPHOS components are enriched in BC of elder patients and associated with poor prognosis. SPSB-incorporated breast epithelial cells develop aggressive characteristics and PGCs resembling the polyploid giant cancer cells (PGCCs) in clonogenic BC cells and cancer tissues. These findings highlight an aging BMSC-induced BC risk mediated by SPSB-induced macrophage dysfunction and epithelial cell precancerous transition. SIGNIFICANCE Mechanisms underlying aging-associated cancer risk remain unelucidated. This work demonstrates that polyploid giant cells (PGCs) in bone marrow mesenchymal stromal cells (BMSCs) from healthy female bone marrow donors can boost neighboring cell proliferation for clonal expansion. However, the dying-senescent PGCs in the advanced-senescent fBMSCs can form "spikings" which are separated into mitochondrial DNA (mtDNA)-containing spiking bodies (senescent PGC-spiking bodies; SPSBs). The SPSBs promote macrophage aging and breast epithelial cell protumorigenic transition and form polyploid giant cancer cells. These results demonstrate a new form of ghost message from dying-senescent BMSCs, that may serve as a systemic factor contributing to aging-associated immunosuppression and breast cancer risk. Graphic Abstract
Collapse
|
2
|
Larsen TJ, Jahan I, Brock DA, Strassmann JE, Queller DC. Reduced social function in experimentally evolved Dictyostelium discoideum implies selection for social conflict in nature. Proc Biol Sci 2023; 290:20231722. [PMID: 38113942 PMCID: PMC10730294 DOI: 10.1098/rspb.2023.1722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Many microbes interact with one another, but the difficulty of directly observing these interactions in nature makes interpreting their adaptive value complicated. The social amoeba Dictyostelium discoideum forms aggregates wherein some cells are sacrificed for the benefit of others. Within chimaeric aggregates containing multiple unrelated lineages, cheaters can gain an advantage by undercontributing, but the extent to which wild D. discoideum has adapted to cheat is not fully clear. In this study, we experimentally evolved D. discoideum in an environment where there were no selective pressures to cheat or resist cheating in chimaeras. Dictyostelium discoideum lines grown in this environment evolved reduced competitiveness within chimaeric aggregates and reduced ability to migrate during the slug stage. By contrast, we did not observe a reduction in cell number, a trait for which selection was not relaxed. The observed loss of traits that our laboratory conditions had made irrelevant suggests that these traits were adaptations driven and maintained by selective pressures D. discoideum faces in its natural environment. Our results suggest that D. discoideum faces social conflict in nature, and illustrate a general approach that could be applied to searching for social or non-social adaptations in other microbes.
Collapse
Affiliation(s)
- Tyler J. Larsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Israt Jahan
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Debra A. Brock
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Joan E. Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - David C. Queller
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
3
|
Feng HY, Zhang PP, Wang XW. Presbyphagia: Dysphagia in the elderly. World J Clin Cases 2023; 11:2363-2373. [PMID: 37123321 PMCID: PMC10131003 DOI: 10.12998/wjcc.v11.i11.2363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/08/2023] [Accepted: 03/22/2023] [Indexed: 04/06/2023] Open
Abstract
Dysphagia has been classified as a “geriatric syndrome” and can lead to serious complications that result in a tremendous burden on population health and healthcare resources worldwide. A characteristic age-related change in swallowing is defined as “presbyphagia.” Medical imaging has shown some changes that seriously affect the safety and efficacy of swallowing. However, there is a general lack of awareness of the effects of aging on swallowing function and a belief that these changes are part of normal aging. Our review provides an overview of presbyphagia, which has been a neglected health problem for a long time. Attention and awareness of dysphagia in the elderly population should be strengthened, and targeted intervention measures should be actively implemented.
Collapse
Affiliation(s)
- Hai-Yang Feng
- School of Rehabilitation Medicine, Weifang Medical University, Weifang 261021, Shandong Province, China
| | - Ping-Ping Zhang
- School of Rehabilitation Medicine, Weifang Medical University, Weifang 261021, Shandong Province, China
| | - Xiao-Wen Wang
- School of Rehabilitation Medicine, Weifang Medical University, Weifang 261021, Shandong Province, China
| |
Collapse
|
4
|
Kubinyi E. Biologia Futura: four questions about ageing and the future of relevant animal models. Biol Futur 2022; 73:385-391. [PMID: 36131217 DOI: 10.1007/s42977-022-00135-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/02/2022] [Indexed: 01/10/2023]
Abstract
Understanding how active and healthy ageing can be achieved is one of the most relevant global problems. In this review, I use the "Four questions" framework of Tinbergen to investigate how ageing works, how it might contribute to the survival of species, how it develops during the lifetime of (human) individuals and how it evolved. The focus of ageing research is usually on losses, although trajectories in later life show heterogeneity and many individuals experience healthy ageing. In humans, mild changes in cognition might be a typical part of ageing, but deficits are a sign of pathology. The ageing of the world's populations, and relatedly, the growing number of pathologically ageing people, is one of the major global problems. Animal models can help to understand the intrinsic and extrinsic factors contributing to ageing.
Collapse
Affiliation(s)
- Enikő Kubinyi
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary. .,MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Budapest, Hungary.
| |
Collapse
|
5
|
Archer CR, Paniw M, Vega-Trejo R, Sepil I. A sex skew in life-history research: the problem of missing males. Proc Biol Sci 2022; 289:20221117. [PMID: 35892214 PMCID: PMC9332873 DOI: 10.1098/rspb.2022.1117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Life-history strategies are diverse. While understanding this diversity is a fundamental aim of evolutionary biology and biodemography, life-history data for some traits-in particular, age-dependent reproductive investment-are biased towards females. While other authors have highlighted this sex skew, the general scale of this bias has not been quantified and its impact on our understanding of evolutionary ecology has not been discussed. This review summarizes why the sexes can evolve different life-history strategies. The scale of the sex skew is then discussed and its magnitude compared between taxonomic groups, laboratory and field studies, and through time. We discuss the consequences of this sex skew for evolutionary and ecological research. In particular, this sex bias means that we cannot test some core evolutionary theory. Additionally, this skew could obscure or drive trends in data and hinder our ability to develop effective conservation strategies. We finally highlight some ways through which this skew could be addressed to help us better understand broad patterns in life-history strategies.
Collapse
Affiliation(s)
- C. Ruth Archer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Maria Paniw
- Department of Conservation Biology, Estación Biológica de Doñana (EBD-CSIC), Seville 41001, Spain,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | | | - Irem Sepil
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Muresanu C, Khalchitsky S. Updated Understanding of the Causes of Cancer, and a New Theoretical Perspective of Combinational Cancer Therapies, a Hypothesis. DNA Cell Biol 2022; 41:342-355. [PMID: 35262416 DOI: 10.1089/dna.2021.1118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We present an integrative understanding of cancer as a metabolic multifactorial, multistage disease. We focus on underlying genetics-environmental interactions, evidenced by telomere changes. A range of genetic and epigenetic factors, including physical agents and predisposing factors such as diet and lifestyle are included. We present a structured model of the causes of cancer, methods of investigations, approaches to cancer prevention, and polypharmaceutical multidisciplinary complex treatment within a framework of personalized medicine. We searched PubMed, National Cancer Institute online, and other databases for publications regarding causes of cancer, reports of novel mitochondrial reprogramming, epigenetic, and telomerase therapies and state-of-the-art investigations. We focused on multistep treatment protocols to enhance early detection of cancer, and elimination or neutralization of the causes and factors associated with cancer formation and progression.Our aim is to suggest a model therapeutic protocol that incorporates the patient's genome, metabolism, and immune system status; stage of tumor development; and comorbidity(ies), if any. Investigation and treatment of cancer is a challenge that requires further holistic studies that improve the quality of life and survival rates, but are most likely to aid prevention.
Collapse
Affiliation(s)
- Cristian Muresanu
- Research Center for Applied Biotechnology in Diagnosis and Molecular Therapies, Cluj-Napoca, Romania.,Department of Ecology, Taxonomy and Nature Conservation, Institute of Biology, Romanian Academy, Bucharest, Romania
| | - Sergei Khalchitsky
- H. Turner National Medical Research Center for Children's Orthopedics and Trauma Surgery of the Ministry of Health of the Russian Federation, Saint-Petersburg, Russia
| |
Collapse
|
7
|
Goedeke L, Murt KN, Di Francesco A, Camporez JP, Nasiri AR, Wang Y, Zhang X, Cline GW, de Cabo R, Shulman GI. Sex- and strain-specific effects of mitochondrial uncoupling on age-related metabolic diseases in high-fat diet-fed mice. Aging Cell 2022; 21:e13539. [PMID: 35088525 PMCID: PMC8844126 DOI: 10.1111/acel.13539] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Mild uncoupling of oxidative phosphorylation is an intrinsic property of all mitochondria and may have evolved to protect cells against the production of damaging reactive oxygen species. Therefore, compounds that enhance mitochondrial uncoupling are potentially attractive anti‐aging therapies; however, chronic ingestion is associated with a number of unwanted side effects. We have previously developed a controlled‐release mitochondrial protonophore (CRMP) that is functionally liver‐directed and promotes oxidation of hepatic triglycerides by causing a subtle sustained increase in hepatic mitochondrial inefficiency. Here, we sought to leverage the higher therapeutic index of CRMP to test whether mild mitochondrial uncoupling in a liver‐directed fashion could reduce oxidative damage and improve age‐related metabolic disease and lifespan in diet‐induced obese mice. Oral administration of CRMP (20 mg/[kg‐day] × 4 weeks) reduced hepatic lipid content, protein kinase C epsilon activation, and hepatic insulin resistance in aged (74‐week‐old) high‐fat diet (HFD)‐fed C57BL/6J male mice, independently of changes in body weight, whole‐body energy expenditure, food intake, or markers of hepatic mitochondrial biogenesis. CRMP treatment was also associated with a significant reduction in hepatic lipid peroxidation, protein carbonylation, and inflammation. Importantly, long‐term (49 weeks) hepatic mitochondrial uncoupling initiated late in life (94–104 weeks), in conjugation with HFD feeding, protected mice against neoplastic disorders, including hepatocellular carcinoma (HCC), in a strain and sex‐specific manner. Taken together, these studies illustrate the complex variation of aging and provide important proof‐of‐concept data to support further studies investigating the use of liver‐directed mitochondrial uncouplers to promote healthy aging in humans.
Collapse
Affiliation(s)
- Leigh Goedeke
- Department of Internal Medicine Yale School of Medicine New Haven Connecticut USA
| | - Kelsey N. Murt
- Translational Gerontology Branch Intramural Research Program National Institute on Aging, NIH Baltimore Maryland USA
| | - Andrea Di Francesco
- Translational Gerontology Branch Intramural Research Program National Institute on Aging, NIH Baltimore Maryland USA
| | - João Paulo Camporez
- Department of Internal Medicine Yale School of Medicine New Haven Connecticut USA
- Department of Physiology Ribeirao Preto School of Medicine University of Sao Paulo São Paulo Brazil
| | - Ali R. Nasiri
- Department of Internal Medicine Yale School of Medicine New Haven Connecticut USA
| | - Yongliang Wang
- Department of Internal Medicine Yale School of Medicine New Haven Connecticut USA
| | - Xian‐Man Zhang
- Department of Internal Medicine Yale School of Medicine New Haven Connecticut USA
| | - Gary W. Cline
- Department of Internal Medicine Yale School of Medicine New Haven Connecticut USA
| | - Rafael de Cabo
- Translational Gerontology Branch Intramural Research Program National Institute on Aging, NIH Baltimore Maryland USA
| | - Gerald I. Shulman
- Department of Internal Medicine Yale School of Medicine New Haven Connecticut USA
- Department of Cellular and Molecular Physiology Yale School of Medicine New Haven Connecticut USA
| |
Collapse
|
8
|
Promislow DEL, Flatt T, Bonduriansky R. The Biology of Aging in Insects: From Drosophila to Other Insects and Back. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:83-103. [PMID: 34590891 PMCID: PMC8940561 DOI: 10.1146/annurev-ento-061621-064341] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
An enormous amount of work has been done on aging in Drosophila melanogaster, a classical genetic and molecular model system, but also in numerous other insects. However, these two extensive bodies of work remain poorly integrated to date. Studies in Drosophila often explore genetic, developmental, physiological, and nutrition-related aspects of aging in the lab, while studies in other insects often explore ecological, social, and somatic aspects of aging in both lab and natural populations. Alongside exciting genomic and molecular research advances in aging in Drosophila, many new studies have also been published on aging in various other insects, including studies on aging in natural populations of diverse species. However, no broad synthesis of these largely separate bodies of work has been attempted. In this review, we endeavor to synthesize these two semi-independent literatures to facilitate collaboration and foster the exchange of ideas and research tools. While lab studies of Drosophila have illuminated many fundamental aspects of senescence, the stunning diversity of aging patterns among insects, especially in the context of their rich ecology, remains vastlyunderstudied. Coupled with field studies and novel, more easily applicable molecular methods, this represents a major opportunity for deepening our understanding of the biology of aging in insects and beyond.
Collapse
Affiliation(s)
- Daniel E L Promislow
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA;
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | - Thomas Flatt
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland;
| | - Russell Bonduriansky
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, New South Wales 2052, Australia;
| |
Collapse
|
9
|
Omotoso O, Gladyshev VN, Zhou X. Lifespan Extension in Long-Lived Vertebrates Rooted in Ecological Adaptation. Front Cell Dev Biol 2021; 9:704966. [PMID: 34733838 PMCID: PMC8558438 DOI: 10.3389/fcell.2021.704966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/02/2021] [Indexed: 01/21/2023] Open
Abstract
Contemporary studies on aging and longevity have largely overlooked the role that adaptation plays in lifespan variation across species. Emerging evidence indicates that the genetic signals of extended lifespan may be maintained by natural selection, suggesting that longevity could be a product of organismal adaptation. The mechanisms of adaptation in long-lived animals are believed to account for the modification of physiological function. Here, we first review recent progress in comparative biology of long-lived animals, together with the emergence of adaptive genetic factors that control longevity and disease resistance. We then propose that hitchhiking of adaptive genetic changes is the basis for lifespan changes and suggest ways to test this evolutionary model. As individual adaptive or adaptation-linked mutations/substitutions generate specific forms of longevity effects, the cumulative beneficial effect is largely nonrandom and is indirectly favored by natural selection. We consider this concept in light of other proposed theories of aging and integrate these disparate ideas into an adaptive evolutionary model, highlighting strategies in decoding genetic factors of lifespan control.
Collapse
Affiliation(s)
- Olatunde Omotoso
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Xuming Zhou
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China
| |
Collapse
|
10
|
Roper M, Capdevila P, Salguero-Gómez R. Senescence: why and where selection gradients might not decline with age. Proc Biol Sci 2021; 288:20210851. [PMID: 34284628 PMCID: PMC8292751 DOI: 10.1098/rspb.2021.0851] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Patterns of ageing across the tree of life are much more diverse than previously thought. Yet, we still do not adequately understand how, why and where across the tree of life a particular pattern of ageing will evolve. An ability to predict ageing patterns requires a firmer understanding of how and why different ecological and evolutionary factors alter the sensitivity of fitness to age-related changes in mortality and reproduction. From this understanding, we can ask why and where selection gradients might not decline with age. Here, we begin by summarizing the recent breadth of literature that is unearthing, empirically and theoretically, the mechanisms that drive variation in patters of senescence. We focus on the relevance of two key parameters, population structure and reproductive value, as key to understanding selection gradients, and therefore senescence. We discuss how growth form, individual trade-offs, stage structure and social interactions may all facilitate differing distributions of these two key parameters than those predicted by classical theory. We argue that these four key aspects can help us understand why patterns of negligible and negative senescence can actually be explained under the same evolutionary framework as classical senescence.
Collapse
Affiliation(s)
- Mark Roper
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Pol Capdevila
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Roberto Salguero-Gómez
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
- Centre for Biodiversity and Conservation Science, University of Queensland, St Lucia, Queensland 4071, Australia
- Evolutionary Demography Laboratory, Max Plank Institute for Demographic Research, Rostock 18057, Germany
| |
Collapse
|
11
|
Jardine MD, Ruzicka F, Diffley C, Fowler K, Reuter M. A non-coding indel polymorphism in the fruitless gene of Drosophila melanogaster exhibits antagonistically pleiotropic fitness effects. Proc Biol Sci 2021; 288:20202958. [PMID: 33975471 PMCID: PMC8113896 DOI: 10.1098/rspb.2020.2958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/14/2021] [Indexed: 11/12/2022] Open
Abstract
The amount of genetic variation for fitness within populations tends to exceed that expected under mutation-selection-drift balance. Several mechanisms have been proposed to actively maintain polymorphism and account for this discrepancy, including antagonistic pleiotropy (AP), where allelic variants have opposing effects on different components of fitness. Here, we identify a non-coding indel polymorphism in the fruitless gene of Drosophila melanogaster and measure survival and reproductive components of fitness in males and females of replicate lines carrying each respective allele. Expressing the fruitless region in a hemizygous state reveals a pattern of AP, with one allele generating greater reproductive fitness and the other conferring greater survival to adulthood. Different fitness effects were observed in an alternative genetic background, which may reflect dominance reversal and/or epistasis. Our findings link sequence-level variation at a single locus with complex effects on a range of fitness components, thus helping to explain the maintenance of genetic variation for fitness. Transcription factors, such as fruitless, may be prime candidates for targets of balancing selection since they interact with multiple target loci and their associated phenotypic effects.
Collapse
Affiliation(s)
- Michael D. Jardine
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Centre for Life's Origins and Evolution, University College London, London, UK
| | - Filip Ruzicka
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Clayton, Australia
| | - Charlotte Diffley
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Kevin Fowler
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Centre for Life's Origins and Evolution, University College London, London, UK
| | - Max Reuter
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Centre for Life's Origins and Evolution, University College London, London, UK
| |
Collapse
|
12
|
Flintham EO, Savolainen V, Mullon C. Dispersal Alters the Nature and Scope of Sexually Antagonistic Variation. Am Nat 2021; 197:543-559. [PMID: 33908829 DOI: 10.1086/713739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractIntralocus sexual conflict, or sexual antagonism, occurs when alleles have opposing fitness effects in the two sexes. Previous theory suggests that sexual antagonism is a driver of genetic variation by generating balancing selection. However, most of these studies assume that populations are well mixed, neglecting the effects of spatial subdivision. Here, we use mathematical modeling to show that limited dispersal changes evolution at sexually antagonistic autosomal and X-linked loci as a result of inbreeding and sex-specific kin competition. We find that if the sexes disperse at different rates, kin competition within the philopatric sex biases intralocus conflict in favor of the more dispersive sex. Furthermore, kin competition diminishes the strength of balancing selection relative to genetic drift, reducing genetic variation in small subdivided populations. Meanwhile, by decreasing heterozygosity, inbreeding reduces the scope for sexually antagonistic polymorphism due to nonadditive allelic effects, and this occurs to a greater extent on the X chromosome than autosomes. Overall, our results indicate that spatial structure is a relevant factor in predicting where sexually antagonistic alleles might be observed. We suggest that sex-specific dispersal ecology and demography can contribute to interspecific and intragenomic variation in sexual antagonism.
Collapse
|
13
|
Hunt LC, Schadeberg B, Stover J, Haugen B, Pagala V, Wang YD, Puglise J, Barton ER, Peng J, Demontis F. Antagonistic control of myofiber size and muscle protein quality control by the ubiquitin ligase UBR4 during aging. Nat Commun 2021; 12:1418. [PMID: 33658508 PMCID: PMC7930053 DOI: 10.1038/s41467-021-21738-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/08/2021] [Indexed: 01/31/2023] Open
Abstract
Sarcopenia is a degenerative condition that consists in age-induced atrophy and functional decline of skeletal muscle cells (myofibers). A common hypothesis is that inducing myofiber hypertrophy should also reinstate myofiber contractile function but such model has not been extensively tested. Here, we find that the levels of the ubiquitin ligase UBR4 increase in skeletal muscle with aging, and that UBR4 increases the proteolytic activity of the proteasome. Importantly, muscle-specific UBR4 loss rescues age-associated myofiber atrophy in mice. However, UBR4 loss reduces the muscle specific force and accelerates the decline in muscle protein quality that occurs with aging in mice. Similarly, hypertrophic signaling induced via muscle-specific loss of UBR4/poe and of ESCRT members (HGS/Hrs, STAM, USP8) that degrade ubiquitinated membrane proteins compromises muscle function and shortens lifespan in Drosophila by reducing protein quality control. Altogether, these findings indicate that these ubiquitin ligases antithetically regulate myofiber size and muscle protein quality control.
Collapse
Affiliation(s)
- Liam C Hunt
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bronwen Schadeberg
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jared Stover
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Benard Haugen
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Vishwajeeth Pagala
- Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jason Puglise
- College of Health & Human Performance Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, USA
| | - Elisabeth R Barton
- College of Health & Human Performance Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, USA
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
14
|
Genetic Association Studies of Age-Related Traits: New Perspectives. ACTA ACUST UNITED AC 2021; 3. [PMID: 33511377 PMCID: PMC7839997 DOI: 10.20900/agmr20210003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Understanding the role of genetic factors in non-Mendelian traits characteristic for post-reproductive life, herein referred to as age-related traits, is lagged behind the understanding of the genetic architecture of Mendelian traits. This lag calls for new, more comprehensive approaches in the analyses of age-related traits leveraging their characteristic features. This paper discusses the role of the inherent heterogeneity in genetic predisposition to age-related traits and pleiotropy. It shows that the comprehensive analyses leveraging such heterogeneity can substantially increase the efficiency and accelerate the progress in uncovering genetic predisposition to such traits.
Collapse
|
15
|
Salinas YD, Wang Z, DeWan AT. Discovery and Mediation Analysis of Cross-Phenotype Associations Between Asthma and Body Mass Index in 12q13.2. Am J Epidemiol 2021; 190:85-94. [PMID: 32700739 DOI: 10.1093/aje/kwaa144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022] Open
Abstract
Twin studies suggest that shared genetics contributes to the comorbidity of asthma and obesity, but candidate-gene studies provide limited evidence of pleiotropy. We conducted genome-wide association analyses of asthma and body mass index (BMI; weight (kg)/height (m)2)) among 305,945 White British subjects recruited into the UK Biobank in 2006-2010. We searched for overlapping signals and conducted mediation analyses on genome-wide-significant cross-phenotype associations, assessing moderation by sex and age at asthma diagnosis, and adjusting for confounders of the asthma-BMI relationship. We identified a genome-wide-significant cross-phenotype association at rs705708 (asthma odds ratio = 1.05, 95% confidence interval: 1.03, 1.07; P = 7.20 × 10-9; and BMI β = -0.065, 95% confidence interval: -0.087, -0.042; P = 1.30 × 10-8). rs705708 resides on 12q13.2, which harbors 9 other asthma- and BMI-associated variants (all P < 5 × 10-5 for asthma; all but one P < 5 × 10-5 for BMI). Follow-up analyses of rs705708 show that most of the BMI association occurred independently of asthma, with consistent magnitude between men and women and persons with and without asthma, irrespective of age at diagnosis; the asthma association was stronger for childhood versus adult asthma; and both associations remained after confounder adjustment. This suggests that 12q13.2 displays pleiotropy for asthma and BMI. Upon further characterization, 12q13.2 might provide a target for interventions that simultaneously prevent or treat asthma and obesity.
Collapse
|
16
|
Lemanski NJ, Bansal S, Fefferman NH. The sensitivity of a honeybee colony to worker mortality depends on season and resource availability. BMC Evol Biol 2020; 20:139. [PMID: 33121428 PMCID: PMC7596992 DOI: 10.1186/s12862-020-01706-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022] Open
Abstract
Background Honeybees have extraordinary phenotypic plasticity in their senescence rate, making them a fascinating model system for the evolution of aging. Seasonal variation in senescence and extrinsic mortality results in a tenfold increase in worker life expectancy in winter as compared to summer. To understand the evolution of this remarkable pattern of aging, we must understand how individual longevity scales up to effects on the entire colony. In addition, threats to the health of honey bees and other social insects are typically measured at the individual level. To predict the effects of environmental change on social insect populations, we must understand how individual effects impact colony performance. We develop a matrix model of colony demographics to ask how worker age-dependent and age-independent mortality affect colony fitness and how these effects differ by seasonal conditions. Results We find that there are seasonal differences in honeybee colony elasticity to both senescent and extrinsic worker mortality. Colonies are most elastic to extrinsic (age-independent) nurse and forager mortality during periods of higher extrinsic mortality and resource availability but most elastic to age-dependent mortality during periods of lower extrinsic mortality and lower resource availability. Conclusions These results suggest that seasonal changes in the strength of selection on worker senescence partly explain the observed pattern of seasonal differences in worker aging in honey bees. More broadly, these results extend our understanding of the role of extrinsic mortality in the evolution of senescence to social animals and improve our ability to model the effects of environmental change on social insect populations of economic or conservation concern.
Collapse
Affiliation(s)
- Natalie J Lemanski
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA. .,Department of Ecology and Evolutionary Biology, University of California, 4114 Life Sciences Building, Los Angeles, CA, 90024, USA.
| | - Siddhant Bansal
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| | - Nina H Fefferman
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
17
|
Kulminski AM, Loika Y, Nazarian A, Culminskaya I. Quantitative and Qualitative Role of Antagonistic Heterogeneity in Genetics of Blood Lipids. J Gerontol A Biol Sci Med Sci 2020; 75:1811-1819. [PMID: 31566214 DOI: 10.1093/gerona/glz225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 12/18/2022] Open
Abstract
Prevailing strategies in genome-wide association studies (GWAS) mostly rely on principles of medical genetics emphasizing one gene, one function, one phenotype concept. Here, we performed GWAS of blood lipids leveraging a new systemic concept emphasizing complexity of genetic predisposition to such phenotypes. We focused on total cholesterol, low- and high-density lipoprotein cholesterols, and triglycerides available for 29,902 individuals of European ancestry from seven independent studies, men and women combined. To implement the new concept, we leveraged the inherent heterogeneity in genetic predisposition to such complex phenotypes and emphasized a new counter intuitive phenomenon of antagonistic genetic heterogeneity, which is characterized by misalignment of the directions of genetic effects and the phenotype correlation. This analysis identified 37 loci associated with blood lipids but only one locus, FBXO33, was not reported in previous top GWAS. We, however, found strong effect of antagonistic heterogeneity that leaded to profound (quantitative and qualitative) changes in the associations with blood lipids in most, 25 of 37 or 68%, loci. These changes suggested new roles for some genes, which functions were considered as well established such as GCKR, SIK3 (APOA1 locus), LIPC, LIPG, among the others. The antagonistic heterogeneity highlighted a new class of genetic associations emphasizing beneficial and adverse trade-offs in predisposition to lipids. Our results argue that rigorous analyses dissecting heterogeneity in genetic predisposition to complex traits such as lipids beyond those implemented in current GWAS are required to facilitate translation of genetic discoveries into health care.
Collapse
Affiliation(s)
- Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina
| | - Yury Loika
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina
| | - Alireza Nazarian
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina
| | - Irina Culminskaya
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina
| |
Collapse
|
18
|
Jakobson CM, Jarosz DF. What Has a Century of Quantitative Genetics Taught Us About Nature's Genetic Tool Kit? Annu Rev Genet 2020; 54:439-464. [PMID: 32897739 DOI: 10.1146/annurev-genet-021920-102037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The complexity of heredity has been appreciated for decades: Many traits are controlled not by a single genetic locus but instead by polymorphisms throughout the genome. The importance of complex traits in biology and medicine has motivated diverse approaches to understanding their detailed genetic bases. Here, we focus on recent systematic studies, many in budding yeast, which have revealed that large numbers of all kinds of molecular variation, from noncoding to synonymous variants, can make significant contributions to phenotype. Variants can affect different traits in opposing directions, and their contributions can be modified by both the environment and the epigenetic state of the cell. The integration of prospective (synthesizing and analyzing variants) and retrospective (examining standing variation) approaches promises to reveal how natural selection shapes quantitative traits. Only by comprehensively understanding nature's genetic tool kit can we predict how phenotypes arise from the complex ensembles of genetic variants in living organisms.
Collapse
Affiliation(s)
- Christopher M Jakobson
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA; .,Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
19
|
Borghesan M, Hoogaars WMH, Varela-Eirin M, Talma N, Demaria M. A Senescence-Centric View of Aging: Implications for Longevity and Disease. Trends Cell Biol 2020; 30:777-791. [PMID: 32800659 DOI: 10.1016/j.tcb.2020.07.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of stable cell cycle arrest associated with macromolecular alterations and secretion of proinflammatory cytokines and molecules. From their initial discovery in the 1960s, senescent cells have been hypothesized as potential contributors to the age-associated loss of regenerative potential. Here, we discuss recent evidence that implicates cellular senescence as a central regulatory mechanism of the aging process. We provide a comprehensive overview of age-associated pathologies in which cellular senescence has been implicated. We describe mechanisms by which senescent cells drive aging and diseases, and we discuss updates on exploiting these mechanisms as therapeutic targets. Finally, we critically analyze the use of senotherapeutics and their translation to the clinic, highlighting limitations and suggesting ideas for future applications and developments.
Collapse
Affiliation(s)
- M Borghesan
- European Research Institute for the Biology of Ageing (ERIBA);, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, The Netherlands
| | - W M H Hoogaars
- European Research Institute for the Biology of Ageing (ERIBA);, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, The Netherlands
| | - M Varela-Eirin
- European Research Institute for the Biology of Ageing (ERIBA);, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, The Netherlands
| | - N Talma
- European Research Institute for the Biology of Ageing (ERIBA);, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, The Netherlands
| | - M Demaria
- European Research Institute for the Biology of Ageing (ERIBA);, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, The Netherlands.
| |
Collapse
|
20
|
Rozhok AI, DeGregori J. The three dimensions of somatic evolution: Integrating the role of genetic damage, life-history traits, and aging in carcinogenesis. Evol Appl 2020; 13:1569-1580. [PMID: 32821273 PMCID: PMC7428813 DOI: 10.1111/eva.12947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
Tumors result from genetic and epigenetic alterations that change cellular survival and differentiation probabilities, promoting clonal dominance. Subsequent genetic and selection processes in tumors allow cells to lose their tissue fidelity and migrate to other parts of the body, turning tumors into cancer. However, the relationship between genetic damage and cancer is not linear, showing remarkable and sometimes seemingly counterintuitive patterns for different tissues and across animal taxa. In the present paper, we attempt to integrate our understanding of somatic evolution and cancer as a product of three major orthogonal processes: occurrence of somatic mutations, evolution of species-specific life-history traits, and physiological aging. Patterns of cancer risk have been shaped by selective pressures experienced by animal populations over millions of years, influencing and influenced by selection acting on traits ranging from mutation rate to reproductive strategies to longevity. We discuss how evolution of species shapes their cancer profiles alongside and in connection with other evolving life-history traits and how this process explains the patterns of cancer incidence we observe in humans and other animals.
Collapse
Affiliation(s)
- Andrii I. Rozhok
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColorado
| | - James DeGregori
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColorado
- Integrated Department of ImmunologyUniversity of Colorado Anschutz Medical CampusAuroraColorado
- Department of PediatricsUniversity of Colorado Anschutz Medical CampusAuroraColorado
- Department of Medicine/Section of HematologyUniversity of Colorado Anschutz Medical CampusAuroraColorado
| |
Collapse
|
21
|
da Silva J. Williams’ Intuition about Extrinsic Mortality Was Correct. Trends Ecol Evol 2020; 35:378-379. [DOI: 10.1016/j.tree.2020.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/23/2020] [Accepted: 02/04/2020] [Indexed: 11/28/2022]
|
22
|
Day T, Abrams PA. Density Dependence, Senescence, and Williams’ Hypothesis. Trends Ecol Evol 2020; 35:300-302. [DOI: 10.1016/j.tree.2019.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 11/17/2022]
|
23
|
Cayuela H, Lemaître J, Bonnaire E, Pichenot J, Schmidt BR. Population position along the fast–slow life‐history continuum predicts intraspecific variation in actuarial senescence. J Anim Ecol 2020; 89:1069-1079. [DOI: 10.1111/1365-2656.13172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/21/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Hugo Cayuela
- Département de Biologie Institut de Biologie Intégrative et des Systèmes (IBIS) Université LavalPavillon Charles‐Eugène‐Marchand Québec QC Canada
| | - Jean‐François Lemaître
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558 CNRSUniversité Lyon 1 Villeurbanne France
| | - Eric Bonnaire
- Office National des ForêtsAgence de Verdun Verdun France
| | - Julian Pichenot
- URCACERFECentre de Recherche et Formation en Eco‐éthologie Boult‐aux‐Bois France
| | - Benedikt R. Schmidt
- Institut für Evolutionsbiologie und Umweltwissenschaften Universität Zürich Zürich Switzerland
- Info Fauna KarchUniMail, Bâtiment G Neuchâtel Switzerland
| |
Collapse
|
24
|
Szücs A, Szanto K, Wright AG, Dombrovski AY. Personality of late- and early-onset elderly suicide attempters. Int J Geriatr Psychiatry 2020; 35:384-395. [PMID: 31894591 PMCID: PMC7291767 DOI: 10.1002/gps.5254] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/21/2019] [Indexed: 11/11/2022]
Abstract
OBJECTIVES While suicidal behavior often manifests in adolescence and early adulthood, some people first attempt suicide in late life, often with remarkable lethal intent and determination. Given these individuals' more adaptive functioning earlier in life, they may possess traits that hinder adjustment to aging, such as high conscientiousness, rather than impulsive-aggressive traits associated with suicidal behavior in younger adults. METHODS A cross-sectional case-control study was conducted in older adults aged ≥50 (mean: 65), divided into early- and late-onset attempters (age at first attempt ≤ or >50, mean: 31 vs 61), suicide ideators as well as non-suicidal depressed and healthy controls. Personality was assessed in terms of the five-factor model (FFM, n = 200) and five DSM personality disorders analyzed on the trait level as continuous scores (PDs, n = 160). Given our starting hypothesis about late-onset attempters, the FFM dimension conscientiousness was further tested on the subcomponent level. RESULTS All clinical groups displayed more maladaptive profiles than healthy subjects. Compared to depressed controls, higher neuroticism, and borderline traits characterized both suicide ideators and early-onset attempters, while only early-onset attempters further displayed lower extraversion and higher antisocial traits. Late-onset attempters were similar to depressed controls on most measures, but scored higher than them on orderliness, a conscientiousness subcomponent. CONCLUSIONS While neuroticism, introversion, and cluster B traits are prominent in early-onset suicidal behavior, late-onset cases generally lack these features. In contrast, higher levels of orderliness in late-onset suicidal behavior are compatible with the age-selective maladjustment hypothesis. Key points Personality of elderly attempters differed between those with early- and late-onset first attempts. Early-onset attempters possessed personality traits generally found in younger suicidal populations (high neuroticism, low extraversion, antisocial, and borderline PD traits), supporting that constitutional suicide risk factors persist into late life in some individuals. Late-onset suicide attempters had higher levels of orderliness than non-suicidal depressed participants, suggesting that this generally adaptive trait may facilitate suicidal behavior in a subset of depressed elderly.
Collapse
Affiliation(s)
- Anna Szücs
- Dept. of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Dept. of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Katalin Szanto
- Dept. of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aidan G.C. Wright
- Dept. of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
25
|
Hoekstra LA, Schwartz TS, Sparkman AM, Miller DAW, Bronikowski AM. The untapped potential of reptile biodiversity for understanding how and why animals age. Funct Ecol 2020; 34:38-54. [PMID: 32921868 PMCID: PMC7480806 DOI: 10.1111/1365-2435.13450] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
1. The field of comparative aging biology has greatly expanded in the past 20 years. Longitudinal studies of populations of reptiles with a range of maximum lifespans have accumulated and been analyzed for evidence of mortality senescence and reproductive decline. While not as well represented in studies of amniote senescence, reptiles have been the subjects of many recent demographic and mechanistic studies of the biology of aging. 2. We review recent literature on reptile demographic senescence, mechanisms of senescence, and identify unanswered questions. Given the ecophysiological and demographic diversity of reptiles, what is the expected range of reptile senescence rates? Are known mechanisms of aging in reptiles consistent with canonical hallmarks of aging in model systems? What are the knowledge gaps in our understanding of reptile aging? 3. We find ample evidence of increasing mortality with advancing age in many reptiles. Testudines stand out as slower aging than other orders, but data on crocodilians and tuatara are sparse. Sex-specific analyses are generally not available. Studies of female reproduction suggest that reptiles are less likely to have reproductive decline with advancing age than mammals. 4. Reptiles share many physiological and molecular pathways of aging with mammals, birds, and laboratory model organisms. Adaptations related to stress physiology coupled with reptilian ectothermy suggest novel comparisons and contrasts that can be made with canonical aging phenotypes in mammals. These include stem cell and regeneration biology, homeostatic mechanisms, IIS/TOR signaling, and DNA repair. 5. To overcome challenges to the study of reptile aging, we recommend extending and expanding long-term monitoring of reptile populations, developing reptile cell lines to aid cellular biology, conducting more comparative studies of reptile morphology and physiology sampled along relevant life-history axes, and sequencing more reptile genomes for comparative genomics. Given the diversity of reptile life histories and adaptations, achieving these directives will likely greatly benefit all aging biology.
Collapse
Affiliation(s)
- Luke A Hoekstra
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50010, USA
| | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Amanda M Sparkman
- Department of Biology, Westmont College, Santa Barbara, California, 93108, USA
| | - David A W Miller
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50010, USA
| |
Collapse
|
26
|
Reinke BA, Hoekstra L, Bronikowski AM, Janzen FJ, Miller D. Joint estimation of growth and survival from mark-recapture data to improve estimates of senescence in wild populations. Ecology 2019; 101:e02877. [PMID: 31471965 DOI: 10.1002/ecy.2877] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/22/2019] [Accepted: 07/30/2019] [Indexed: 01/09/2023]
Abstract
Understanding age-dependent patterns of survival is fundamental to predicting population dynamics, understanding selective pressures, and estimating rates of senescence. However, quantifying age-specific survival in wild populations poses significant logistical and statistical challenges. Recent work has helped to alleviate these constraints by demonstrating that age-specific survival can be estimated using mark-recapture data even when age is unknown for all or some individuals. However, previous approaches do not incorporate auxiliary information that can improve age estimates of individuals. We introduce a survival estimator that combines a von Bertalanffy growth model, age-specific hazard functions, and a Cormack-Jolly-Seber mark-recapture model into a single hierarchical framework. This approach allows us to obtain information about age and its uncertainty based on size and growth for individuals of unknown age when estimating age-specific survival. Using both simulated and real-world data for two painted turtle (Chrysemys picta) populations, we demonstrate that this additional information substantially reduces the bias of age-specific hazard rates, which allows for the testing of hypotheses related to aging. Estimating patterns of senescence is just one practical application of jointly estimating survival and growth; other applications include obtaining better estimates of the timing of recruitment and improved understanding of life-history trade-offs between growth and survival.
Collapse
Affiliation(s)
- Beth A Reinke
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Luke Hoekstra
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Fredric J Janzen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - David Miller
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
27
|
Fulop T, Larbi A, Khalil A, Cohen AA, Witkowski JM. Are We Ill Because We Age? Front Physiol 2019; 10:1508. [PMID: 31956310 PMCID: PMC6951428 DOI: 10.3389/fphys.2019.01508] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022] Open
Abstract
Growing elderly populations, sometimes referred to as gray (or silver) tsunami, are an increasingly serious health and socioeconomic concern for modern societies. Science has made tremendous progress in the understanding of aging itself, which has helped medicine to extend life expectancies. With the increase of the life expectancy, the incidence of chronic age-related diseases (ARDs) has also increased. A new approach trying to solve this problem is the concept of geroscience. This concept implies that the aging process itself is the common cause of all ARDs. The corollary and consequence of such thinking is that we can and should treat aging itself as a disease. How to translate this into the medical practice is a big challenge, but if we consider aging as a disease the problem is solved. However, as there is no common definition of what aging is, what its causes are, why it occurs, and what should be the target(s) for interventions, it is impossible to conclude that aging is a disease. On the contrary, aging should be strongly considered not to be a disease and as such should not be treated; nonetheless, aging is likely amenable to optimization of changes/adaptations at an individual level to achieve a better functional healthspan.
Collapse
Affiliation(s)
- Tamas Fulop
- Geriatrics Division, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Biopolis, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, University of Singapore, Singapore, Singapore
- Department of Biology, Faculty of Sciences, University of Tunis El Manar, Tunis, Tunisia
| | - Abdelouahed Khalil
- Geriatrics Division, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Alan A. Cohen
- Department of Family Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jacek M. Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
28
|
Johnson AA, Shokhirev MN, Shoshitaishvili B. Revamping the evolutionary theories of aging. Ageing Res Rev 2019; 55:100947. [PMID: 31449890 DOI: 10.1016/j.arr.2019.100947] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/20/2019] [Accepted: 08/21/2019] [Indexed: 01/04/2023]
Abstract
Radical lifespan disparities exist in the animal kingdom. While the ocean quahog can survive for half a millennium, the mayfly survives for less than 48 h. The evolutionary theories of aging seek to explain why such stark longevity differences exist and why a deleterious process like aging evolved. The classical mutation accumulation, antagonistic pleiotropy, and disposable soma theories predict that increased extrinsic mortality should select for the evolution of shorter lifespans and vice versa. Most experimental and comparative field studies conform to this prediction. Indeed, animals with extreme longevity (e.g., Greenland shark, bowhead whale, giant tortoise, vestimentiferan tubeworms) typically experience minimal predation. However, data from guppies, nematodes, and computational models show that increased extrinsic mortality can sometimes lead to longer evolved lifespans. The existence of theoretically immortal animals that experience extrinsic mortality - like planarian flatworms, panther worms, and hydra - further challenges classical assumptions. Octopuses pose another puzzle by exhibiting short lifespans and an uncanny intelligence, the latter of which is often associated with longevity and reduced extrinsic mortality. The evolutionary response to extrinsic mortality is likely dependent on multiple interacting factors in the organism, population, and ecology, including food availability, population density, reproductive cost, age-mortality interactions, and the mortality source.
Collapse
Affiliation(s)
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Boris Shoshitaishvili
- Division of Literatures, Cultures, and Languages, Stanford University, Stanford, CA, United States
| |
Collapse
|
29
|
Abstract
Many recent advances have emerged in the telomere and telomerase fields. This Timeline article highlights the key advances that have expanded our views on the mechanistic underpinnings of telomeres and telomerase and their roles in ageing and disease. Three decades ago, the classic view was that telomeres protected the natural ends of linear chromosomes and that telomerase was a specific telomere-terminal transferase necessary for the replication of chromosome ends in single-celled organisms. While this concept is still correct, many diverse fields associated with telomeres and telomerase have substantially matured. These areas include the discovery of most of the key molecular components of telomerase, implications for limits to cellular replication, identification and characterization of human genetic disorders that result in premature telomere shortening, the concept that inhibiting telomerase might be a successful therapeutic strategy and roles for telomeres in regulating gene expression. We discuss progress in these areas and conclude with challenges and unanswered questions in the field.
Collapse
Affiliation(s)
- Jerry W Shay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Woodring E Wright
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
30
|
Zajitschek F, Zajitschek S, Bonduriansky R. Senescence in wild insects: Key questions and challenges. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13399] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Felix Zajitschek
- School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia
| | - Susanne Zajitschek
- School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia
| | - Russell Bonduriansky
- School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia
| |
Collapse
|
31
|
Abstract
The demonstration of life span plasticity in natural populations would provide a powerful test of evolutionary theories of senescence. Plastic senescence is not easily explained by mutation accumulation or antagonistic pleiotropy but is a corollary of the disposable soma theory. The life span differences among castes of the eusocial Hymenoptera are potentially some of the most striking and extreme examples of life span plasticity. Although these differences are often assumed to be plastic, this has never been demonstrated conclusively because differences in life span may be caused by the proximate effects of different levels of environmental hazard experienced by castes. Here age-dependent and age-independent components of instantaneous mortality rates of the honey bee (Apis mellifera) were estimated from published life tables for natural and seminatural populations to determine whether differences in life span between queens and workers and between different types of workers are indeed plastic. These differences in life span were found to be due to differences in the rate of actuarial senescence, which correlate positively with the rate of extrinsic mortality, in accordance with the central prediction of evolutionary theories of senescence. Although all three evolutionary theories of senescence could in principle explain such plastic senescence, given differential gene expression between castes or life stages, only the disposable soma theory adequately explains the adaptive regulation of somatic maintenance in response to different environmental conditions that appears to underlie life span plasticity.
Collapse
|
32
|
Abstract
Senescent cells accumulate with age but tissue-based studies of senescent cells are limited to selected organs from humans, mice, and primates. Cell culture and xenograft studies have indicated that senescent cells in the microenvironment may play a role in tumor proliferation via paracrine activities. Dogs develop age-related conditions, including in the testis, but cellular senescence has not been confirmed. We hypothesized that senescent cells accumulate with age in canine testes and in the microenvironment of testicular tumors. We tested the expression of the established senescence markers γH2AX and p21 on normal formalin-fixed, paraffin-embedded testes from 15 young dogs (<18 months of age) and 15 old dogs (7-15 years of age) and correlated the findings with age-dependent morphological changes. A statistically significant age-dependent increase in the percentage of p21-expressing cells was observed for testicular fibroblasts (4-fold) and Leydig cells (8-fold). However, p21-expressing cells were still a rare event. In contrast, the percentage of γH2AX-positive cells did not increase with age. P21- and γH2AX-expressing cells were rare in the microenvironments of tumors. Age-dependent morphological changes included an increased mean number of Leydig cells per intertubular triangle (2.95-fold) and a decreased spermatogenesis score. To our surprise, no age-related changes were recorded for interstitial collagen content, mean tubular diameter, and epithelial area. Opposed to our expectations based on previous in vitro data, we did not identify evidence of a correlation between age-associated accumulation of senescent cells and testicular tumor development. Understanding the role of the microenvironment in senescence obviously remains a challenging task.
Collapse
Affiliation(s)
- Sophie E Merz
- 1 Institute of Veterinary Pathology, Freie Universität, Berlin, Germany
| | | | - Angele Breithaupt
- 1 Institute of Veterinary Pathology, Freie Universität, Berlin, Germany
| | - Achim D Gruber
- 1 Institute of Veterinary Pathology, Freie Universität, Berlin, Germany
| |
Collapse
|
33
|
Moorad J, Promislow D, Silvertown J. Evolutionary Ecology of Senescence and a Reassessment of Williams' 'Extrinsic Mortality' Hypothesis. Trends Ecol Evol 2019; 34:519-530. [PMID: 30857756 DOI: 10.1016/j.tree.2019.02.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 10/27/2022]
Abstract
The evolutionary theory of senescence underpins research in life history evolution and the biology of aging. In 1957 G.C. Williams predicted that higher adult death rates select for earlier senescence and shorter length of life, but preadult mortality does not matter to the evolution of senescence. This was subsequently interpreted as predicting that senescence should be caused by 'extrinsic' sources of mortality. This idea still motivates empirical studies, although formal, mathematical theory shows it is wrong. It has nonetheless prospered because it offers an intuitive explanation for patterns observed in nature. We review the flaws in Williams' model, explore alternative explanations for comparative patterns that are consistent with the evolutionary theory of senescence, and discuss how hypotheses based on it can be tested. We argue that focusing on how sources of mortality affect ages differently offers greater insight into evolutionary processes.
Collapse
Affiliation(s)
- Jacob Moorad
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Daniel Promislow
- Department of Pathology and Department of Biology, University of Washington, Seattle, WA, USA. https://twitter.com@DPromislow
| | - Jonathan Silvertown
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK. https://twitter.com@JWSilvertown
| |
Collapse
|
34
|
Kaur Y, Wang DX, Liu HY, Meyre D. Comprehensive identification of pleiotropic loci for body fat distribution using the NHGRI-EBI Catalog of published genome-wide association studies. Obes Rev 2019; 20:385-406. [PMID: 30565845 DOI: 10.1111/obr.12806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022]
Abstract
We conducted a hypothesis-free cross-trait analysis for waist-to-hip ratio adjusted for body mass index (WHRadjBMI ) loci derived through genome-wide association studies (GWAS). Summary statistics from published GWAS were used to capture all WHRadjBMI single-nucleotide polymorphisms (SNPs), and their proxy SNPs were identified. These SNPs were used to extract cross-trait associations between WHRadjBMI SNPs and other traits through the NHGRI-EBI GWAS Catalog. Pathway analysis was conducted for pleiotropic WHRadjBMI SNPs. We found 160 WHRadjBMI SNPs and 3675 proxy SNPs. Cross-trait analysis identified 239 associations, of which 100 were for obesity traits. The remaining 139 associations were filtered down to 101 unique linkage disequilibrium block associations, which were grouped into 13 categories: lipids, red blood cell traits, white blood cell counts, inflammatory markers and autoimmune diseases, type 2 diabetes-related traits, adiponectin, cancers, blood pressure, height, neuropsychiatric disorders, electrocardiography changes, urea measurement, and others. The highest number of cross-trait associations were found for triglycerides (n = 10), high-density lipoprotein cholesterol (n = 9), and reticulocyte counts (n = 8). Pathway analysis for WHRadjBMI pleiotropic SNPs found immune function pathways as the top canonical pathways. Results from our original methodology indicate a novel genetic association between WHRadjBMI and reticulocyte counts and highlight the pleiotropy between abdominal obesity, immune pathways, and other traits.
Collapse
Affiliation(s)
- Yuvreet Kaur
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada.,Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Dominic X Wang
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada.,Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Hsin-Yen Liu
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada.,Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - David Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
35
|
Auld JR. The effects of diet and mating system on reproductive (and post-reproductive) life span in a freshwater snail. Ecol Evol 2018; 8:12260-12270. [PMID: 30598816 PMCID: PMC6303742 DOI: 10.1002/ece3.4689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 02/05/2023] Open
Abstract
The length of the reproductive life span, along with the number/frequency/magnitude of reproductive events, quantifies an individual's potential contribution to the next generation. By examining reproductive life span, and distinguishing it from somatic life span, we gain insight into critical aspects of an individual's potential fitness as well as reproductive and somatic senescence. Additionally, differentiating somatic and reproductive life spans can provide insight into the existence of a post-reproductive period and factors that shape its duration. Given the known importance of diet and mating system on resource allocation, I reared individual freshwater snails (Physa acuta) from 22 full-sib families under a 2 × 2 factorial design that crossed mate availability (available [outcrossing] or not [selfing]) and diet (Spirulina or lettuce) and quantified aspects of the entire life history enabling me to distinguish reproductive and somatic life spans, determine the total number of reproductive events, and evaluate how the reproductive rate changes with age. Overall, mated snails experienced shorter reproductive and somatic life spans; a diet of Spirulina also shortened both reproductive and somatic life spans. A post-reproductive period existed in all conditions; its duration was proportional to somatic but not reproductive life span. I evaluate several hypotheses for the existence and duration of the post-reproductive period, including a novel hypothesis that the post-reproductive period may result from an increase in reproductive interval with age. I conclude that the post-reproductive period may be indicative of a randomly timed death occurring as the interval between reproductive events continues to increase. As such, a "post-reproductive" period can be viewed as a by-product of a situation where reproductive senescence outpaces somatic senescence.
Collapse
Affiliation(s)
- Josh R. Auld
- Department of BiologyWest Chester UniversityWest ChesterPennsylvania
| |
Collapse
|
36
|
Stark G, Tamar K, Itescu Y, Feldman A, Meiri S. Cold and isolated ectotherms: drivers of reptilian longevity. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly153] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Gavin Stark
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Karin Tamar
- Institute of Evolutionary Biology (CSIC – Universitat Pompeu Fabra), Barcelona, Spain
| | | | - Anat Feldman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shai Meiri
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
37
|
Abstract
Between the 1930s and 50s, evolutionary biologists developed a successful theory of why organisms age, firmly rooted in population genetic principles. By the 1980s the evolution of aging had a secure experimental basis. Since the force of selection declines with age, aging evolves due to mutation accumulation or a benefit to fitness early in life. Here we review major insights and challenges that have emerged over the last 35 years: selection does not always necessarily decline with age; higher extrinsic (i.e., environmentally caused) mortality does not always accelerate aging; conserved pathways control aging rate; senescence patterns are more diverse than previously thought; aging is not universal; trade-offs involving lifespan can be 'broken'; aging might be 'druggable'; and human life expectancy continues to rise but compressing late-life morbidity remains a pressing challenge.
Collapse
Affiliation(s)
- Thomas Flatt
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Linda Partridge
- Max Planck Institute for Biology of Aging, Joseph-Stelzmann-Strasse 9b, D-50931, Cologne, Germany.
- Institute for Healthy Aging and GEE, University College London, Darwin Building, Gower Street, London, WC1E6BT, UK.
| |
Collapse
|
38
|
Dańko MJ, Burger O, Argasiński K, Kozłowski J. Extrinsic Mortality Can Shape Life-History Traits, Including Senescence. Evol Biol 2018; 45:395-404. [PMID: 30459480 PMCID: PMC6223763 DOI: 10.1007/s11692-018-9458-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/07/2018] [Indexed: 11/24/2022]
Abstract
The Williams' hypothesis is one of the most widely known ideas in life history evolution. It states that higher adult mortality should lead to faster and/or earlier senescence. Theoretically derived gradients, however, do not support this prediction. Increased awareness of this fact has caused a crisis of misinformation among theorists and empirical ecologists. We resolve this crisis by outlining key issues in the measurement of fitness, assumptions of density dependence, and their effect on extrinsic mortality. The classic gradients apply only to a narrow range of ecological contexts where density-dependence is either absent or present but with unrealistic stipulations. Re-deriving the classic gradients, using a more appropriate measure of fitness and incorporating density, shows that broad ecological contexts exist where Williams' hypothesis is supported.
Collapse
Affiliation(s)
- Maciej J Dańko
- 1Max Planck Institute for Demographic Research, Rostock, Germany
| | - Oskar Burger
- 1Max Planck Institute for Demographic Research, Rostock, Germany
| | | | - Jan Kozłowski
- 3Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland
| |
Collapse
|
39
|
Abstract
We propose a method to decompose the young adult mortality hump by cause of death. This method is based on a flexible shape decomposition of mortality rates that separates cause-of-death contributions to the hump from senescent mortality. We apply the method to U.S. males and females from 1959 to 2015. Results show divergence between time trends of hump and observed deaths, both for all-cause and cause-specific mortality. The study of the hump shape reveals age, period, and cohort effects, suggesting that it is formed by a complex combination of different forces of biological and socioeconomic nature. Male and female humps share some traits in all-cause shape and trend, but they also differ by their overall magnitude and cause-specific contributions. Notably, among males, the contributions of traffic and other accidents were progressively replaced by those of suicides, homicides, and poisonings; among females, traffic accidents remained the major contributor to the hump.
Collapse
|
40
|
Vrtílek M, Žák J, Polačik M, Blažek R, Reichard M. Longitudinal demographic study of wild populations of African annual killifish. Sci Rep 2018; 8:4774. [PMID: 29555942 PMCID: PMC5859278 DOI: 10.1038/s41598-018-22878-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/02/2018] [Indexed: 12/22/2022] Open
Abstract
The natural history of model organisms is often overlooked despite its importance to correctly interpret the outcome of laboratory studies. Ageing is particularly understudied in natural populations. To address this gap, we present lifetime demographic data from wild populations of an annual species, the turquoise killifish, Nothobranchius furzeri, a model species in ageing research, and two other species of coexisting annual killifishes. Annual killifish hatch synchronously, have non-overlapping generations, and reproduce daily after reaching sexual maturity. Data from 13 isolated savanna pools in southern Mozambique demonstrate that the pools supporting killifish populations desiccated 1–4 months after their filling, though some pools persisted longer. Declines in population size over the season were stronger than predicted, because they exceeded the effect of steady habitat shrinking on population density that, contrary to the prediction, decreased. Populations of N. furzeri also became more female-biased with progressing season suggesting that males had lower survival. Nothobranchius community composition did not significantly vary across the season. Our data clearly demonstrate that natural populations of N. furzeri and its congeners suffer strong mortality throughout their lives, with apparent selective disappearance (condition-dependent mortality) at the individual level. This represents selective force that can shape the evolution of lifespan, and its variation across populations, beyond the effects of the gradient in habitat persistence.
Collapse
Affiliation(s)
- Milan Vrtílek
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Květná 8, Brno, 603 65, Czech Republic
| | - Jakub Žák
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Květná 8, Brno, 603 65, Czech Republic.,Faculty of Sciences, Charles University, Viničná 7, Praha 2, 128 44, Czech Republic
| | - Matej Polačik
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Květná 8, Brno, 603 65, Czech Republic
| | - Radim Blažek
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Květná 8, Brno, 603 65, Czech Republic
| | - Martin Reichard
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Květná 8, Brno, 603 65, Czech Republic.
| |
Collapse
|
41
|
Reichard M, Lanés LEK, Polačik M, Blažek R, Vrtílek M, Godoy RS, Maltchik L. Avian predation mediates size-specific survival in a Neotropical annual fish: a field experiment. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Martin Reichard
- The Czech Academy of Science, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná, Brno, Czech Republic
| | - Luis E K Lanés
- Laboratório de Ecologia e Conservação de Ecossistemas Aquáticos, Universidade do Vale do Rio dos Sinos, Bairro Cristo Rei, São Leopoldo, Rio Grande do Sul, Brazil
- Instituto Pró-Pampa – IPPAMPA, Bairro Centro, Pelotas, Rio Grande do Sul, Brazil
| | - Matej Polačik
- The Czech Academy of Science, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná, Brno, Czech Republic
| | - Radim Blažek
- The Czech Academy of Science, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná, Brno, Czech Republic
| | - Milan Vrtílek
- The Czech Academy of Science, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná, Brno, Czech Republic
| | - Robson S Godoy
- Laboratório de Ecologia e Conservação de Ecossistemas Aquáticos, Universidade do Vale do Rio dos Sinos, Bairro Cristo Rei, São Leopoldo, Rio Grande do Sul, Brazil
| | - Leonardo Maltchik
- Laboratório de Ecologia e Conservação de Ecossistemas Aquáticos, Universidade do Vale do Rio dos Sinos, Bairro Cristo Rei, São Leopoldo, Rio Grande do Sul, Brazil
| |
Collapse
|
42
|
|
43
|
da Silva J. Reports of the Death of Extrinsic Mortality Moulding Senescence Have Been Greatly Exaggerated. Evol Biol 2018. [DOI: 10.1007/s11692-018-9446-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Blood RNA expression profiles undergo major changes during the seventh decade. Oncotarget 2018; 7:71353-71361. [PMID: 27655681 PMCID: PMC5342083 DOI: 10.18632/oncotarget.12098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/05/2016] [Indexed: 02/03/2023] Open
Abstract
Genome-wide alterations in RNA expression profiles are age-associated. Yet the rate and temporal pattern of those alterations are poorly understood. We investigated temporal changes in RNA expression profiles in blood from population-based studies using a quadratic regression model. Comparative analysis between two independent studies was carried out after sample-weighting that downsized differences in sample distribution over age between the datasets. We show that age-associated expression profiles are clustered into two major inclinations and transcriptional alternations occur predominantly from the seventh decade onwards. The age-associated genes in blood are enriched in functional groups of the translational machinery and the immune system. The results are highly consistent between the two population-based studies indicating that our analysis overcomes potential confounders in population-based studies. We suggest that the critical age when major transcriptional alterations occur could help understanding aging and disease risk during adulthood.
Collapse
|
45
|
Percival CJ, Green R, Roseman CC, Gatti DM, Morgan JL, Murray SA, Donahue LR, Mayeux JM, Pollard KM, Hua K, Pomp D, Marcucio R, Hallgrímsson B. Developmental constraint through negative pleiotropy in the zygomatic arch. EvoDevo 2018; 9:3. [PMID: 29423138 PMCID: PMC5787316 DOI: 10.1186/s13227-018-0092-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/08/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Previous analysis suggested that the relative contribution of individual bones to regional skull lengths differ between inbred mouse strains. If the negative correlation of adjacent bone lengths is associated with genetic variation in a heterogeneous population, it would be an example of negative pleiotropy, which occurs when a genetic factor leads to opposite effects in two phenotypes. Confirming negative pleiotropy and determining its basis may reveal important information about the maintenance of overall skull integration and developmental constraint on skull morphology. RESULTS We identified negative correlations between the lengths of the frontal and parietal bones in the midline cranial vault as well as the zygomatic bone and zygomatic process of the maxilla, which contribute to the zygomatic arch. Through gene association mapping of a large heterogeneous population of Diversity Outbred (DO) mice, we identified a quantitative trait locus on chromosome 17 driving the antagonistic contribution of these two zygomatic arch bones to total zygomatic arch length. Candidate genes in this region were identified and real-time PCR of the maxillary processes of DO founder strain embryos indicated differences in the RNA expression levels for two of the candidate genes, Camkmt and Six2. CONCLUSIONS A genomic region underlying negative pleiotropy of two zygomatic arch bones was identified, which provides a mechanism for antagonism in component bone lengths while constraining overall zygomatic arch length. This type of mechanism may have led to variation in the contribution of individual bones to the zygomatic arch noted across mammals. Given that similar genetic and developmental mechanisms may underlie negative correlations in other parts of the skull, these results provide an important step toward understanding the developmental basis of evolutionary variation and constraint in skull morphology.
Collapse
Affiliation(s)
| | - Rebecca Green
- Alberta Children’s Hospital Institute for Child and Maternal Health, University of Calgary, Calgary, AB Canada
- The McCaig Bone and Joint Institute, University of Calgary, Calgary, AB Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB Canada
| | - Charles C. Roseman
- Program in Ecology Evolution and Conservation Biology, University of Illinois, Urbana, IL USA
| | | | | | | | | | - Jessica M. Mayeux
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA USA
| | - K. Michael Pollard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA USA
| | - Kunjie Hua
- Department of Genetics, University of North Carolina Medical School, Chapel Hill, NC USA
| | - Daniel Pomp
- Department of Genetics, University of North Carolina Medical School, Chapel Hill, NC USA
| | - Ralph Marcucio
- The Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, UCSF School of Medicine, San Francisco, CA USA
| | - Benedikt Hallgrímsson
- Alberta Children’s Hospital Institute for Child and Maternal Health, University of Calgary, Calgary, AB Canada
- The McCaig Bone and Joint Institute, University of Calgary, Calgary, AB Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB Canada
| |
Collapse
|
46
|
Dańko MJ, Burger O, Kozłowski J. Density-dependence interacts with extrinsic mortality in shaping life histories. PLoS One 2017; 12:e0186661. [PMID: 29049399 PMCID: PMC5648222 DOI: 10.1371/journal.pone.0186661] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/05/2017] [Indexed: 12/02/2022] Open
Abstract
The role of extrinsic mortality in shaping life histories is poorly understood. However, substantial evidence suggests that extrinsic mortality interacts with density-dependence in crucial ways. We develop a model combining Evolutionarily Stable Strategies with a projection matrix that allows resource allocation to growth, tissue repairs, and reproduction. Our model examines three cases, with density-dependence acting on: (i) mortality, (ii) fecundity, and (iii) production rate. We demonstrate that density-independent extrinsic mortality influences the rate of aging, age at maturity, growth rate, and adult size provided that density-dependence acts on fertility or juvenile mortality. However, density-independent extrinsic mortality has no effect on these life history traits when density-dependence acts on survival. We show that extrinsic mortality interacts with density-dependence via a compensation mechanism: the higher the extrinsic mortality the lower the strength of density-dependence. However, this compensation fully offsets the effect of extrinsic mortality only if density-dependence acts on survival independently of age. Both the age-pattern and the type of density-dependence are crucial for shaping life history traits.
Collapse
Affiliation(s)
- Maciej Jan Dańko
- Max Planck Institute for Demographic Research, Rostock, Germany
- * E-mail:
| | - Oskar Burger
- Max Planck Institute for Demographic Research, Rostock, Germany
| | - Jan Kozłowski
- Jagiellonian University, Institute of Environmental Sciences, Kraków, Poland
| |
Collapse
|
47
|
Ronget V, Garratt M, Lemaître JF, Gaillard JM. The 'Evo-Demo' Implications of Condition-Dependent Mortality. Trends Ecol Evol 2017; 32:909-921. [PMID: 29032843 DOI: 10.1016/j.tree.2017.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022]
Abstract
Animals in the wild die from a variety of different mortality sources, including predation, disease, and starvation. Different mortality sources selectively remove individuals with different body condition in different ways, and this variation in the condition dependence of mortality has evolutionary and demographic implications. Subsequent population dynamics are influenced by the strength of condition-dependent mortality during specific periods, with population growth impacted in different ways in short- versus long-lived species. The evolution of lifespan is strongly influenced by condition-dependent mortality, with strikingly different outcomes expected in senescence rates when the relationship between condition and mortality is altered. A coupling of field and laboratory studies is now required to further reveal the evolutionary implications of condition-dependent mortality.
Collapse
Affiliation(s)
- Victor Ronget
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR-5558, F-69622 Villeurbanne, France.
| | - Michael Garratt
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jean-François Lemaître
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR-5558, F-69622 Villeurbanne, France
| | - Jean-Michel Gaillard
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR-5558, F-69622 Villeurbanne, France
| |
Collapse
|
48
|
Zinger A, Cho WC, Ben-Yehuda A. Cancer and Aging - the Inflammatory Connection. Aging Dis 2017; 8:611-627. [PMID: 28966805 PMCID: PMC5614325 DOI: 10.14336/ad.2016.1230] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/30/2016] [Indexed: 12/13/2022] Open
Abstract
Aging and cancer are highly correlated biological phenomena. Various cellular processes such as DNA damage responses and cellular senescence that serve as tumor suppressing mechanisms throughout life result in degenerative changes and contribute to the aging phenotype. In turn, aging is considered a pro-tumorigenic state, and constitutes the single most important risk factor for cancer development. However, the causative relations between aging and cancer is not straight forward, as these processes carry contradictory hallmarks; While aging is characterized by tissue degeneration and organ loss of function, cancer is a state of sustained cellular proliferation and gain of new functions. Here, we review the molecular and cellular pathways that stand in the base of aging related cancer. Specifically, we deal with the inflammatory perspective that link these two processes, and suggest possible molecular targets that may be exploited to modify their courses.
Collapse
Affiliation(s)
- Adar Zinger
- 1Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - William C Cho
- 2Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Arie Ben-Yehuda
- 1Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
49
|
Reichard M. Evolutionary perspectives on ageing. Semin Cell Dev Biol 2017; 70:99-107. [DOI: 10.1016/j.semcdb.2017.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023]
|
50
|
Cohen AA. Aging across the tree of life: The importance of a comparative perspective for the use of animal models in aging. Biochim Biophys Acta Mol Basis Dis 2017; 1864:2680-2689. [PMID: 28690188 DOI: 10.1016/j.bbadis.2017.05.028] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/22/2022]
Abstract
Use of model organisms in aging research is problematic because our ability to extrapolate across the tree of life is not clear. On one hand, there are conserved pathways that regulate lifespan in organisms including yeast, nematodes, fruit flies, and mice. On the other, many intermediate taxa across the tree of life appear not to age at all, and there is substantial variation in aging mechanisms and patterns, sometimes even between closely related species. There are good evolutionary and mechanistic reasons to expect this complexity, but it means that model organisms must be used with caution and that results must always be interpreted through a broader comparative framework. Additionally, it is essential to include research on non-traditional and unusual species, and to integrate mechanistic and demographic research. There will be no simple answers regarding the biology of aging, and research approaches should reflect this. This article is part of a Special Issue entitled: Animal models of aging - edited by Houtkooper Riekelt.
Collapse
Affiliation(s)
- Alan A Cohen
- Groupe de recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|