1
|
Baena JC, Pérez LM, Toro-Pedroza A, Kitawaki T, Loukanov A. CAR T Cell Nanosymbionts: Revealing the Boundless Potential of a New Dyad. Int J Mol Sci 2024; 25:13157. [PMID: 39684867 DOI: 10.3390/ijms252313157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer treatment has traditionally focused on eliminating tumor cells but faces challenges such as resistance and toxicity. A promising direction involves targeting the tumor microenvironment using CAR T cell immunotherapy, which has shown potential for treating relapsed and refractory cancers but is limited by high costs, resistance, and toxicity, especially in solid tumors. The integration of nanotechnology into ICAM cell therapy, a concept we have named "CAR T nanosymbiosis", offers new opportunities to overcome these challenges. Nanomaterials can enhance CAR T cell delivery, manufacturing, activity modulation, and targeting of the tumor microenvironment, providing better control and precision. This approach aims to improve the efficacy of CAR T cells against solid tumors, reduce associated toxicities, and ultimately enhance patient outcomes. Several studies have shown promising results, and developing this therapy further is essential for increasing its accessibility and effectiveness. Our "addition by subtraction model" synthesizes these multifaceted elements into a unified strategy to advance cancer treatment paradigms.
Collapse
Affiliation(s)
- Juan C Baena
- Division of Oncology, Department of Medicine, Fundación Valle del Lili, ICESI University, Carrera 98 No. 18-49, Cali 760032, Colombia
- LiliCAR-T Group, Fundación Valle del Lili, ICESI University, Cali 760032, Colombia
| | - Lucy M Pérez
- Division of Oncology, Department of Medicine, Fundación Valle del Lili, ICESI University, Carrera 98 No. 18-49, Cali 760032, Colombia
- LiliCAR-T Group, Fundación Valle del Lili, ICESI University, Cali 760032, Colombia
| | - Alejandro Toro-Pedroza
- Division of Oncology, Department of Medicine, Fundación Valle del Lili, ICESI University, Carrera 98 No. 18-49, Cali 760032, Colombia
- LiliCAR-T Group, Fundación Valle del Lili, ICESI University, Cali 760032, Colombia
| | - Toshio Kitawaki
- Department of Hematology, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Alexandre Loukanov
- Department of Chemistry and Materials Science, National Institute of Technology, Gunma College, Maebashi 371-8530, Japan
- Laboratory of Engineering Nanobiotechnology, University of Mining and Geology "St. Ivan Rilski", 1700 Sofia, Bulgaria
| |
Collapse
|
2
|
Bhatia U, Tadman S, Rocha A, Rudraboina R, Contreras-Ruiz L, Guinan EC. Allostimulation leads to emergence of a human B cell population with increased expression of HLA class I antigen presentation-associated molecules and the immunoglobulin receptor FcRL5. Am J Transplant 2024; 24:1968-1978. [PMID: 38992496 DOI: 10.1016/j.ajt.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 07/13/2024]
Abstract
In the extensive literature characterizing lymphocyte contributions to transplant-related pathologies including allograft rejection and graft-versus-host disease, T cell-focused investigation has outpaced investigation of B cells. Most B cell-related reports describe regulatory and antibody-producing functions, with less focus on the potential role of antigen-presenting capacity. Using in vitro human mixed lymphocyte reactions (MLRs) to model allostimulation, we analyzed responder B cells using transcriptional analysis, flow cytometry, and microscopy. We observed emergence of an activated responder B cell subpopulation phenotypically similar to that described in individuals with graft-versus-host disease or allograft rejection. This population had markedly increased expression of FcRL5 (Fc receptor like 5) and molecules associated with human leukocyte antigen class I antigen presentation. Consistent with this phenotype, these cells demonstrated increased internalization of irradiated cell debris and dextran macromolecules. The proportion of this subpopulation within MLR responders also correlated with emergence of activated, cytotoxic CD8+ T cells. B cells of similar profile were quite infrequent in unstimulated blood from healthy individuals but readily identifiable in disaggregated human splenocytes and increased in both cases upon allostimulation. Further characterization of the emergence and function of this subpopulation could potentially contribute to identification of novel biomarkers and targeted therapeutics relevant to curbing transplant-related pathology.
Collapse
Affiliation(s)
- Urvashi Bhatia
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Tadman
- Department of Experimental Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Alyssa Rocha
- Department of Experimental Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Rakesh Rudraboina
- Department of Experimental Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Laura Contreras-Ruiz
- Department of Experimental Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Eva C Guinan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
3
|
Wang Z, Elbanna Y, Godet I, Peters L, Lampe G, Chen Y, Xavier J, Huse M, Massagué J. TGF-β induces an atypical EMT to evade immune mechanosurveillance in lung adenocarcinoma dormant metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618357. [PMID: 39463937 PMCID: PMC11507679 DOI: 10.1101/2024.10.15.618357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The heterogeneity of epithelial-to-mesenchymal transition (EMT) programs is manifest in the diverse EMT-like phenotypes occurring during tumor progression. However, little is known about the mechanistic basis and functional role of specific forms of EMT in cancer. Here we address this question in lung adenocarcinoma (LUAD) cells that enter a dormancy period in response to TGF-β upon disseminating to distant sites. LUAD cells with the capacity to enter dormancy are characterized by expression of SOX2 and NKX2-1 primitive progenitor markers. In these cells, TGF-β induces growth inhibition accompanied by a full EMT response that subsequently transitions into an atypical mesenchymal state of round morphology and lacking actin stress fibers. TGF-β induces this transition by driving the expression of the actin-depolymerizing factor gelsolin, which changes a migratory, stress fiber-rich mesenchymal phenotype into a cortical actin-rich, spheroidal state. This transition lowers the biomechanical stiffness of metastatic progenitors, protecting them from killing by mechanosensitive cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. Inhibiting this actin depolymerization process clears tissues of dormant metastatic cells. Thus, LUAD primitive progenitors undergo an atypical EMT as part of a strategy to evade immune-mediated elimination during dormancy. Our results provide a mechanistic basis and functional role of this atypical EMT response of LUAD metastatic progenitors and further illuminate the role of TGF-β as a crucial driver of immune evasive metastatic dormancy.
Collapse
Affiliation(s)
- Zhenghan Wang
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yassmin Elbanna
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Gerstner Sloan Kettering Graduate School, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Inês Godet
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lila Peters
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Gerstner Sloan Kettering Graduate School, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - George Lampe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Current affiliation: Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yanyan Chen
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Current affiliation: Specialized Microscopy Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, 10032, USA
| | - Joao Xavier
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Morgan Huse
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- The Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
4
|
Zhao Y, Hou X, Wang Z, Peng S, Zheng C, Huang Q, Ma Y, Li Y, Liu Y, Liu Y, Shi L, Huang F. A Mechanical Immune Checkpoint Inhibitor Stiffens Tumor Cells to Potentiate Antitumor Immunity. Angew Chem Int Ed Engl 2024:e202417518. [PMID: 39400947 DOI: 10.1002/anie.202417518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Tumor progression is associated with tumor-cell softening. Improving the stiffness of the tumor cells can make them more vulnerable to lymphocyte-mediated attack. Tumor cell membranes typically exhibit higher cholesterol levels than normal cells, making tumor cells soft. Herein, we demonstrate a mechanical immune checkpoint inhibitor (MICI) formulated by cyclodextrin (CD) lipids and fusogenic lipids. Through fusing CD lipids into the tumor cell membrane using a fusogenic liposome formulation, the cholesterol in the plasma membrane is reduced due to the specific host-guest interactions between CD lipid and cholesterol. As a result, tumor cells are stiffened, and the activation of lymphocytes (including NK and cytotoxic effector T cells) is improved when contacting the stiffened tumor cells, characterized by robust degranulation and effector cytokine production. Notably, this treatment has negligible influence on the infiltration and proliferation of lymphocytes in tumor tissues, confirming that the enhanced antitumor efficacy should result from activating a specific number of lymphocytes caused by direct regulation of the tumor cell stiffness. The combination of MICIs and clinical immunotherapies enhances the lymphocyte-mediated antitumor effects in two tumor mouse models, including breast cancer and melanoma. Our research also reveals an unappreciated mechanical dimension to lymphocyte activation.
Collapse
Affiliation(s)
- Yu Zhao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, United States
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaoxue Hou
- State Key Laboratory of Advanced Medicals and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Zeyu Wang
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, 75080, United States
| | - Shiyu Peng
- State Key Laboratory of Advanced Medicals and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Chunxiong Zheng
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Qingqing Huang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yufei Ma
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, United States
| | - Yuanfeng Li
- Translational Medicine Laboratory, The First Affiliated Hospital of, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fan Huang
- State Key Laboratory of Advanced Medicals and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
5
|
Shi Q, Chen Z, Yang J, Liu X, Su Y, Wang M, Xi J, Yang F, Li F. Review of Codonopsis Radix biological activities: A plant of traditional Chinese tonic. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118334. [PMID: 38740108 DOI: 10.1016/j.jep.2024.118334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/06/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Codonopsis Radix, commonly known as Dangshen in Chinese, is frequently used to treat deficiencies of spleen and lung Qi, gastrointestinal discomfort, fatigue, asthmatic breathing, sallow complexion, lack of strength, shortness of breath, deficiencies of both Qi and blood, as well as impairments to both Qi and body fluids in suboptimal health status. AIM OF THE REVIEW This review systematically expounds on the modern pharmacological studies related to the use of Codonopsis Radix in invigorating Qi and nourishing the body in recent years. The aim is to provide theoretical research and reference for the in-depth and systematic exploration and development of the applications of Codonopsis Radix in the fields of food and medicine. MATERIALS AND METHODS This study employs "Codonopsis Radix," "Codonopsis," and "Dangshen" as keywords to gather pertinent information on Codonopsis Radix medicine through electronic searches of classical literature and databases such as PubMed, Elsevier, Google Scholar, Wiley, EMBASE, Cochrane Library, Web of Science, CNKI, Wanfang, VIP, and Baidu Scholar. RESULTS From previous studies, activities such as immune system modulation, gastrointestinal motility regulation, cardiac function revitalization, lung function improvement, blood circulation enhancement, aging process deceleration, learning and memory augmentation, fatigue resistance enhancement, and liver and kidney damage protection of Codonopsis Radix have been reported. Recognized as an important medicine and food homologous traditional Chinese herbal remedy for supplementing deficiencies, its mode of action is multi-elemental, multi-systemic, multi-organ, multi-mechanistic, and multi-targeted. Furthermore, the benefits of its tonic surpass its therapeutic value, establishing it as an extraordinary preventive and therapeutic medicine. CONCLUSIONS With its long history of traditional applications and the revelations of contemporary pharmacological research, Codonopsis Radix exhibits great potential as both a therapeutic agent and a dietary supplement for further research in medicine, nutrition, and healthcare.
Collapse
Affiliation(s)
- Qi Shi
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Zhengjun Chen
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jie Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuxia Liu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yuanjin Su
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Miao Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jiayu Xi
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Fude Yang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Fang Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| |
Collapse
|
6
|
Zhang Y, Zhang M, Wu H, Wu X, Zheng H, Feng J, Wang M, Wang J, Luo L, Xiao H, Qiao C, Li X, Zheng Y, Huang W, Wang Y, Wang Y, Feng J, Chen G. Afucosylated anti-EBOV antibody MIL77-3 engages sGP to elicit NK cytotoxicity. J Virol 2024; 98:e0068524. [PMID: 39162435 PMCID: PMC11406966 DOI: 10.1128/jvi.00685-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/24/2024] [Indexed: 08/21/2024] Open
Abstract
MIL77-3 is one component of antibody cocktail that is produced in our lab and represents an effective regimen for animals suffering from Zaire Ebolavirus (EBOV) infection. MIL77-3 is engineered to increase its affinity for the FcγRIIIa (CD16a) by deleting the fucose in the framework region. The potential effects of this modification on host immune responses, however, remain largely unknown. Herein, we demonstrated that MIL77-3 recognized secreted glycoproptein (sGP), produced by EBOV, and formed the immunocomplex to potently augment antibody-dependent cytotoxicity of human peripheral blood-derived natural killer cells (pNKs), including CD56dim and CD56bright subpopulations, in contrast to the counterparts (Mab114, rEBOV548, fucosylated MIL77-3). Intriguingly, this effect was not observed when NK92-CD16a cell line was utilized and restored by the addition of beads-coupled or membrane-anchored sGP in combination with MIL77-3. Furthermore, sGP bound to unrecognized receptors on T cells contaminated in pNKs rather than NK92-CD16a cells. Administration of beads-coupled sGP/MIL77-3 complex in mice elicited NK activation. Overall, this work reveals an immune-stimulating function of sGP/MIL77-3 complex by triggering cytotoxic activity of NK cells, highlighting the necessity to evaluate the potential impact of MIL77-3 on host immune reaction in clinical trials. IMPORTANCE Zaire Ebolavirus (EBOV) is highly lethal and causes sporadic outbreaks. The passive administration of monoclonal antibodies (mAbs) represents a promising treatment regimen against EBOV. Mounting evidence has shown that the efficacy of a subset of therapeutic mAbs in vivo is intimately associated with its capacity to trigger NK activity, supporting glycomodification of Fc region of anti-EBOV mAbs as a putative strategy to enhance Fc-mediated immune effector function as well as protection in vivo. Our work here uncovers the potential harmful influence of this modification on host immune responses, especially for mAbs with cross-reactivity to secreted glycoproptein (sGP) (e.g., MIL77-3), and highlights it is necessary to evaluate the NK-stimulating activity of a fucosylated mAb engaged with sGP when a new candidate is developed.
Collapse
Affiliation(s)
- Yuting Zhang
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Min Zhang
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Haiyan Wu
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiaonan Wu
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Hang Zheng
- Institute of Pharmacology and Toxicology, Beijing, China
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Junjuan Feng
- Institute of Pharmacology and Toxicology, Beijing, China
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Mianjing Wang
- Institute of Pharmacology and Toxicology, Beijing, China
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Jing Wang
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Longlong Luo
- Institute of Pharmacology and Toxicology, Beijing, China
| | - He Xiao
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Chunxia Qiao
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinying Li
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuanqiang Zheng
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Yi Wang
- Department of Hematology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jiannan Feng
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Guojiang Chen
- Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
7
|
Otsuka S, Dutta D, Wu CJ, Alam MS, Ashwell JD. Calcineurin is an adaptor required for assembly of the TCR signaling complex. Cell Rep 2024; 43:114568. [PMID: 39088318 PMCID: PMC11407306 DOI: 10.1016/j.celrep.2024.114568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/25/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024] Open
Abstract
The serine/threonine phosphatase calcineurin is a component of the T cell receptor (TCR) signalosome, where it promotes T cell activation by dephosphorylating LckS59. Using small interfering RNA (siRNA)-mediated knockdown and CRISPR-Cas9-targeted genetic disruption of the calcineurin A chain α and β isoforms, we find that calcineurin also functions as an adaptor in TCR-signaled human T cells. Unlike inhibition of its phosphatase activity, in the absence of calcineurin A, TCR signaling results in attenuated actin rearrangement, markedly reduced TCR-Lck microcluster formation and recruitment of the adaptor RhoH, and diminished phosphorylation of critical targets downstream of Lck such as TCRζ and ZAP-70. Reconstitution of deficient T cells with either calcineurin Aα or Aβ restores TCR microcluster formation and signaling, as does reconstitution with a phosphatase-inactive Aα chain. These results assign a non-enzymatic adaptor function to calcineurin in the formation and stabilization of a functional TCR signaling complex.
Collapse
Affiliation(s)
- Shizuka Otsuka
- Laboratory of Immune Cell Biology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Debjani Dutta
- Laboratory of Immune Cell Biology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuan-Jin Wu
- Laboratory of Immune Cell Biology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Muhammad S Alam
- Laboratory of Immune Cell Biology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Wermke M, Holderried TAW, Luke JJ, Morris VK, Alsdorf WH, Wetzko K, Andersson BS, Wistuba II, Parra ER, Hossain MB, Grund-Gröschke S, Aslan K, Satelli A, Marisetty A, Satam S, Kalra M, Hukelmann J, Kursunel MA, Pozo K, Acs A, Backert L, Baumeister M, Bunk S, Wagner C, Schoor O, Mohamed AS, Mayer-Mokler A, Hilf N, Krishna D, Walter S, Tsimberidou AM, Britten CM. First-in-human dose escalation trial to evaluate the clinical safety and efficacy of an anti-MAGEA1 autologous TCR-transgenic T cell therapy in relapsed and refractory solid tumors. J Immunother Cancer 2024; 12:e008668. [PMID: 39038917 PMCID: PMC11268062 DOI: 10.1136/jitc-2023-008668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
RATIONALE OF THE TRIAL Although the use of engineered T cells in cancer immunotherapy has greatly advanced the treatment of hematological malignancies, reaching meaningful clinical responses in the treatment of solid tumors is still challenging. We investigated the safety and tolerability of IMA202 in a first-in-human, dose escalation basket trial in human leucocyte antigen A*02:01 positive patients with melanoma-associated antigen A1 (MAGEA1)-positive advanced solid tumors. TRIAL DESIGN The 2+2 trial design was an algorithmic design based on a maximally acceptable dose-limiting toxicity (DLT) rate of 25% and the sample size was driven by the algorithmic design with a maximum of 16 patients. IMA202 consists of autologous genetically modified cytotoxic CD8+ T cells expressing a T cell receptor (TCR), which is specific for a nine amino acid peptide derived from MAGEA1. Eligible patients underwent leukapheresis, T cells were isolated, transduced with lentiviral vector carrying MAGEA1-specific TCR and following lymphodepletion (fludarabine/cyclophosphamide), infused with a median of 1.4×109 specific T cells (range, 0.086×109-2.57×109) followed by interleukin 2. SAFETY OF IMA202: No DLT was observed. The most common grade 3-4 adverse events were cytopenias, that is, neutropenia (81.3%), lymphopenia (75.0%), anemia (50.0%), thrombocytopenia (50.0%) and leukopenia (25.0%). 13 patients experienced cytokine release syndrome, including one grade 3 event. Immune effector cell-associated neurotoxicity syndrome was observed in two patients and was grade 1 in both. EFFICACY OF IMA202: Of the 16 patients dosed, 11 (68.8%) patients had stable disease (SD) as their best overall response (Response Evaluation Criteria in Solid Tumors V.1.1). Five patients had initial tumor shrinkage in target lesions and one patient with SD experienced continued shrinkage in target lesions for 3 months in total but had to be classified as progressive disease due to progressive non-target lesions. IMA202 T cells were persistent in peripheral blood for several weeks to months and were also detectable in tumor tissue. Peak persistence was higher in patients who received higher doses. CONCLUSION In conclusion, IMA202 had a manageable safety profile, and it was associated with biological and potential clinical activity of MAGEA1-targeting genetically engineered TCR-T cells in a poor prognosis, multi-indication solid tumor cohort. TRIAL REGISTRATION NUMBERS NCT04639245, NCT05430555.
Collapse
Affiliation(s)
- Martin Wermke
- Department of Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
- National Center for Tumor Diseases, Dresden, Germany
| | - Tobias A W Holderried
- Department of Hematology, Oncology, Immunooncology, Stem Cell Transplantation, and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Jason John Luke
- Cancer Immunotherapeutics Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Van K Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center Division of Cancer Medicine, Houston, Texas, USA
| | - Winfried H Alsdorf
- Department of Oncology, Hematology, and Bone Marrow Transplantation with Section Pneumology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Wetzko
- Department of Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Borje S Andersson
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Edwin R Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Katrin Aslan
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | | | | | - Swapna Satam
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | | | | | | | | | - Andreas Acs
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | | | | | | | | | | | | | | | - Norbert Hilf
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | | | | | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
9
|
Saleh Z, Mirzazadeh S, Mirzaei F, Heidarnejad K, Meri S, Kalantar K. Alterations in metabolic pathways: a bridge between aging and weaker innate immune response. FRONTIERS IN AGING 2024; 5:1358330. [PMID: 38505645 PMCID: PMC10949225 DOI: 10.3389/fragi.2024.1358330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/06/2024] [Indexed: 03/21/2024]
Abstract
Aging is a time-dependent progressive physiological process, which results in impaired immune system function. Age-related changes in immune function increase the susceptibility to many diseases such as infections, autoimmune diseases, and cancer. Different metabolic pathways including glycolysis, tricarboxylic acid cycle, amino acid metabolism, pentose phosphate pathway, fatty acid oxidation and fatty acid synthesis regulate the development, differentiation, and response of adaptive and innate immune cells. During aging all these pathways change in the immune cells. In addition to the changes in metabolic pathways, the function and structure of mitochondria also have changed in the immune cells. Thereby, we will review changes in the metabolism of different innate immune cells during the aging process.
Collapse
Affiliation(s)
- Zahra Saleh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Mirzazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Mirzaei
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamran Heidarnejad
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seppo Meri
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), The University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), The University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Mittelheisser V, Gensbittel V, Bonati L, Li W, Tang L, Goetz JG. Evidence and therapeutic implications of biomechanically regulated immunosurveillance in cancer and other diseases. NATURE NANOTECHNOLOGY 2024; 19:281-297. [PMID: 38286876 DOI: 10.1038/s41565-023-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/26/2023] [Indexed: 01/31/2024]
Abstract
Disease progression is usually accompanied by changes in the biochemical composition of cells and tissues and their biophysical properties. For instance, hallmarks of cancer include the stiffening of tissues caused by extracellular matrix remodelling and the softening of individual cancer cells. In this context, accumulating evidence has shown that immune cells sense and respond to mechanical signals from the environment. However, the mechanisms regulating these mechanical aspects of immune surveillance remain partially understood. The growing appreciation for the 'mechano-immunology' field has urged researchers to investigate how immune cells sense and respond to mechanical cues in various disease settings, paving the way for the development of novel engineering strategies that aim at mechanically modulating and potentiating immune cells for enhanced immunotherapies. Recent pioneer developments in this direction have laid the foundations for leveraging 'mechanical immunoengineering' strategies to treat various diseases. This Review first outlines the mechanical changes occurring during pathological progression in several diseases, including cancer, fibrosis and infection. We next highlight the mechanosensitive nature of immune cells and how mechanical forces govern the immune responses in different diseases. Finally, we discuss how targeting the biomechanical features of the disease milieu and immune cells is a promising strategy for manipulating therapeutic outcomes.
Collapse
Affiliation(s)
- Vincent Mittelheisser
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
| | - Valentin Gensbittel
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
| | - Lucia Bonati
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Weilin Li
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Li Tang
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Materials Science and Engineering, EPFL, Lausanne, Switzerland.
| | - Jacky G Goetz
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France.
| |
Collapse
|
11
|
Zhou X, Geyer FK, Happel D, Takimoto J, Kolmar H, Rabinovich B. Using protein geometry to optimize cytotoxicity and the cytokine window of a ROR1 specific T cell engager. Front Immunol 2024; 15:1323049. [PMID: 38455046 PMCID: PMC10917902 DOI: 10.3389/fimmu.2024.1323049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
T cell engaging bispecific antibodies have shown clinical proof of concept for hematologic malignancies. Still, cytokine release syndrome, neurotoxicity, and on-target-off-tumor toxicity, especially in the solid tumor setting, represent major obstacles. Second generation TCEs have been described that decouple cytotoxicity from cytokine release by reducing the apparent binding affinity for CD3 and/or the TAA but the results of such engineering have generally led only to reduced maximum induction of cytokine release and often at the expense of maximum cytotoxicity. Using ROR1 as our model TAA and highly modular camelid nanobodies, we describe the engineering of a next generation decoupled TCE that incorporates a "cytokine window" defined as a dose range in which maximal killing is reached but cytokine release may be modulated from very low for safety to nearly that induced by first generation TCEs. This latter attribute supports pro-inflammatory anti-tumor activity including bystander killing and can potentially be used by clinicians to safely titrate patient dose to that which mediates maximum efficacy that is postulated as greater than that possible using standard second generation approaches. We used a combined method of optimizing TCE mediated synaptic distance and apparent affinity tuning of the TAA binding arms to generate a relatively long but persistent synapse that supports a wide cytokine window, potent killing and a reduced propensity towards immune exhaustion. Importantly, this next generation TCE induced significant tumor growth inhibition in vivo but unlike a first-generation non-decoupled benchmark TCE that induced lethal CRS, no signs of adverse events were observed.
Collapse
Affiliation(s)
- Xueyuan Zhou
- Drug Discovery and Development, Fuse Biotherapeutics, Woburn, MA, United States
| | - Felix Klaus Geyer
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Dominic Happel
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Jeffrey Takimoto
- Drug Discovery and Development, Fuse Biotherapeutics, Woburn, MA, United States
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Brian Rabinovich
- Drug Discovery and Development, Fuse Biotherapeutics, Woburn, MA, United States
| |
Collapse
|
12
|
Wang L, Mao L, Xiao W, Chen P. Natural killer cells immunosenescence and the impact of lifestyle management. Biochem Biophys Res Commun 2023; 689:149216. [PMID: 37976836 DOI: 10.1016/j.bbrc.2023.149216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Natural killer cells (NKs) are lymphocytes of the innate immune system that quickly respond to viruses, infections, and tumors during their short cell life cycle. However, it was recently found that NKs undergo quantitative, distributional, structural, and functional phenotypic changes during aging that suppress immune responses, which is known as immunosenescence. The aging host environment, cytokine regulation, cytomegalovirus status, and hypothalamic‒pituitary‒adrenal axis have significant effects on NK function. Different lifestyle management interventions modulate the number and cytotoxic activity of NKs, which are essential for rebuilding the immune barrier against pathogens in elderly individuals. Based on recent studies, we review the phenotypic changes of and potential threats of NKs during aging and explore the underlying mechanisms. By summarizing the effects of lifestyle management on NKs and their application prospects, we aim to provide evidence for enhancing immune system function against immune diseases in elderly individuals.
Collapse
Affiliation(s)
- Lian Wang
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| | - Liwei Mao
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| | - Weihua Xiao
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| | - Peijie Chen
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
13
|
Kureshi R, Bello E, Kureshi CT, Walsh MJ, Lippert V, Hoffman MT, Dougan M, Longmire T, Wichroski M, Dougan SK. DGKα/ζ inhibition lowers the TCR affinity threshold and potentiates antitumor immunity. SCIENCE ADVANCES 2023; 9:eadk1853. [PMID: 38000024 PMCID: PMC10672170 DOI: 10.1126/sciadv.adk1853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023]
Abstract
Diacylglycerol kinases (DGKs) attenuate diacylglycerol (DAG) signaling by converting DAG to phosphatidic acid, thereby suppressing pathways downstream of T cell receptor signaling. Using a dual DGKα/ζ inhibitor (DGKi), tumor-specific CD8 T cells with different affinities (TRP1high and TRP1low), and altered peptide ligands, we demonstrate that inhibition of DGKα/ζ can lower the signaling threshold for T cell priming. TRP1high and TRP1low CD8 T cells produced more effector cytokines in the presence of cognate antigen and DGKi. Effector TRP1high- and TRP1low-mediated cytolysis of tumor cells with low antigen load required antigen recognition, was mediated by interferon-γ, and augmented by DGKi. Adoptive T cell transfer into mice bearing pancreatic or melanoma tumors synergized with single-agent DGKi or DGKi and antiprogrammed cell death protein 1 (PD-1), with increased expansion of low-affinity T cells and increased cytokine production observed in tumors of treated mice. Collectively, our findings highlight DGKα/ζ as therapeutic targets for augmenting tumor-specific CD8 T cell function.
Collapse
Affiliation(s)
- Rakeeb Kureshi
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Elisa Bello
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Courtney T.S. Kureshi
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael J. Walsh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Victoria Lippert
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Megan T. Hoffman
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Dougan
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Department of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Stephanie K. Dougan
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
14
|
Gedon NKY, Bizikova P, Olivry T, Mendoza-Kuznetsova E, Oberkirchner U, Robertson JB, Linder KE. Histopathological characterisation of trunk-dominant canine pemphigus foliaceus, and comparison with classic facial and insecticide-triggered forms. Vet Dermatol 2023; 34:425-440. [PMID: 37316895 DOI: 10.1111/vde.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND While the clinical features were described recently, the histopathological characterisation of trunk-dominant canine pemphigus foliaceus (PF) is lacking, and whether it differs from classic facial or insecticide-triggered PF is unknown. HYPOTHESIS/OBJECTIVES This study describes the histopathological findings of trunk-dominant PF, and compares the results to classic facial and insecticide-triggered PF. ANIMALS Skin biopsies from 103 dogs with clinically characterised trunk-dominant (n = 33), classic facial (n = 26) and insecticide-triggered PF (n = 44) were included. MATERIALS AND METHODS Histological sections, randomised and blinded, were scored for over 50 morphological parameters of pustules, epidermis, dermis, adnexa and crusts. Intact pustule area and width were measured by digital microscopy. RESULTS In trunk-dominant PF, 77 intact pustules were predominantly subcorneal (0.0019-1.940 mm2 area, 0.0470-4.2532 mm wide), and contained from one to over 100 acantholytic keratinocytes. Pustules had boat acantholytic cells, corneocytes, perinuclear eosinophilic rings, neutrophil rosettes, acantholytic cell necrosis, rafts, cling-ons and/or eosinophils. Peripustular epidermal spongiosis, necrosis and lymphocyte exocytosis occurred, as did follicular pustules. Mixed dermal inflammation often contained eosinophils. Trunk-dominant PF did not differ from the other PF groups except for few parameters, such as having fewer rafts (p = 0.003). Additional autoimmune inflammatory patterns occurred in all PF groups. CONCLUSIONS AND CLINICAL RELEVANCE Trunk-dominant PF and other canine PF variants are histologically similar, which indicates shared pathomechanisms. The identification of common boat acantholytic cells and corneocyte separation has implications for the mechanisms of acantholysis. The diversity of histopathological and polyautoimmunity features support complicated immune mechanisms. Finally, results indicate that diagnostic biopsies cannot differentiate between these PF variants in dogs.
Collapse
Affiliation(s)
| | - Petra Bizikova
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Thierry Olivry
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | | | | | | | - Keith Emerson Linder
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
15
|
Boahen A, Hu D, Adams MJ, Nicholls PK, Greene WK, Ma B. Bidirectional crosstalk between the peripheral nervous system and lymphoid tissues/organs. Front Immunol 2023; 14:1254054. [PMID: 37767094 PMCID: PMC10520967 DOI: 10.3389/fimmu.2023.1254054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The central nervous system (CNS) influences the immune system generally by regulating the systemic concentration of humoral substances (e.g., cortisol and epinephrine), whereas the peripheral nervous system (PNS) communicates specifically with the immune system according to local interactions/connections. An imbalance between the components of the PNS might contribute to pathogenesis and the further development of certain diseases. In this review, we have explored the "thread" (hardwiring) of the connections between the immune system (e.g., primary/secondary/tertiary lymphoid tissues/organs) and PNS (e.g., sensory, sympathetic, parasympathetic, and enteric nervous systems (ENS)) in health and disease in vitro and in vivo. Neuroimmune cell units provide an anatomical and physiological basis for bidirectional crosstalk between the PNS and the immune system in peripheral tissues, including lymphoid tissues and organs. These neuroimmune interactions/modulation studies might greatly contribute to a better understanding of the mechanisms through which the PNS possibly affects cellular and humoral-mediated immune responses or vice versa in health and diseases. Physical, chemical, pharmacological, and other manipulations of these neuroimmune interactions should bring about the development of practical therapeutic applications for certain neurological, neuroimmunological, infectious, inflammatory, and immunological disorders/diseases.
Collapse
Affiliation(s)
- Angela Boahen
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri-Kembangan, Selangor, Malaysia
| | - Dailun Hu
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Murray J. Adams
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Philip K. Nicholls
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Wayne K. Greene
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
16
|
|
17
|
Sanchez EE, Tello-Lafoz M, Guo AJ, de Jesus M, Elbanna YA, Winer BY, Budhu S, Chan E, Rosiek E, Kondo T, DuSold J, Taylor N, Altan-Bonnet G, Olson MF, Huse M. Apoptotic contraction drives target cell release by cytotoxic T cells. Nat Immunol 2023; 24:1434-1442. [PMID: 37500886 PMCID: PMC11138163 DOI: 10.1038/s41590-023-01572-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/22/2023] [Indexed: 07/29/2023]
Abstract
Cytotoxic T lymphocytes (CTLs) fight intracellular pathogens and cancer by identifying and destroying infected or transformed target cells1. To kill, CTLs form a specialized cytotoxic immune synapse (IS) with a target of interest and then release toxic perforin and granzymes into the interface to elicit programmed cell death2-5. The IS then dissolves, enabling CTLs to search for additional prey and professional phagocytes to clear the corpse6. While the mechanisms governing IS assembly have been studied extensively, far less is known about target cell release. Here, we applied time-lapse imaging to explore the basis for IS dissolution and found that it occurred concomitantly with the cytoskeletal contraction of apoptotic targets. Genetic and pharmacological perturbation of this contraction response indicated that it was both necessary and sufficient for CTL dissociation. We also found that mechanical amplification of apoptotic contractility promoted faster CTL detachment and serial killing. Collectively, these results establish a biophysical basis for IS dissolution and highlight the importance of mechanosensory feedback in the regulation of cell-cell interactions.
Collapse
Affiliation(s)
- Elisa E Sanchez
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Tello-Lafoz
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aixuan J Guo
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Miguel de Jesus
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yassmin A Elbanna
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin Y Winer
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sadna Budhu
- Department of Pharmacology, Weill-Cornell Medical College, New York, NY, USA
| | - Eric Chan
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric Rosiek
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Taisuke Kondo
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Justyn DuSold
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Naomi Taylor
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Michael F Olson
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Morgan Huse
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
18
|
Majumder B, Budhu S, Ganusov VV. Cytotoxic T Lymphocytes Control Growth of B16 Tumor Cells in Collagen-Fibrin Gels by Cytolytic and Non-Lytic Mechanisms. Viruses 2023; 15:1454. [PMID: 37515143 PMCID: PMC10384826 DOI: 10.3390/v15071454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Cytotoxic T lymphocytes (CTLs) are important in controlling some viral infections, and therapies involving the transfer of large numbers of cancer-specific CTLs have been successfully used to treat several types of cancers in humans. While the molecular mechanisms of how CTLs kill their targets are relatively well understood, we still lack a solid quantitative understanding of the kinetics and efficiency by which CTLs kill their targets in vivo. Collagen-fibrin-gel-based assays provide a tissue-like environment for the migration of CTLs, making them an attractive system to study T cell cytotoxicity in in vivo-like conditions. Budhu.et al. systematically varied the number of peptide (SIINFEKL)-pulsed B16 melanoma cells and SIINFEKL-specific CTLs (OT-1) and measured the remaining targets at different times after target and CTL co-inoculation into collagen-fibrin gels. The authors proposed that their data were consistent with a simple model in which tumors grow exponentially and are killed by CTLs at a per capita rate proportional to the CTL density in the gel. By fitting several alternative mathematical models to these data, we found that this simple "exponential-growth-mass-action-killing" model did not precisely describe the data. However, determining the best-fit model proved difficult because the best-performing model was dependent on the specific dataset chosen for the analysis. When considering all data that include biologically realistic CTL concentrations (E≤107cell/mL), the model in which tumors grow exponentially and CTLs suppress tumor's growth non-lytically and kill tumors according to the mass-action law (SiGMA model) fit the data with the best quality. A novel power analysis suggested that longer experiments (∼3-4 days) with four measurements of B16 tumor cell concentrations for a range of CTL concentrations would best allow discriminating between alternative models. Taken together, our results suggested that the interactions between tumors and CTLs in collagen-fibrin gels are more complex than a simple exponential-growth-mass-action killing model and provide support for the hypothesis that CTLs' impact on tumors may go beyond direct cytotoxicity.
Collapse
Affiliation(s)
- Barun Majumder
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Sadna Budhu
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Vitaly V. Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
19
|
Danielli S, Ma Z, Pantazi E, Kumar A, Demarco B, Fischer FA, Paudel U, Weissenrieder J, Lee RJ, Joyce S, Foskett JK, Bezbradica JS. The ion channel CALHM6 controls bacterial infection-induced cellular cross-talk at the immunological synapse. EMBO J 2023; 42:e111450. [PMID: 36861806 PMCID: PMC10068325 DOI: 10.15252/embj.2022111450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 03/03/2023] Open
Abstract
Membrane ion channels of the calcium homeostasis modulator (CALHM) family promote cell-cell crosstalk at neuronal synapses via ATP release, where ATP acts as a neurotransmitter. CALHM6, the only CALHM highly expressed in immune cells, has been linked to the induction of natural killer (NK) cell anti-tumour activity. However, its mechanism of action and broader functions in the immune system remain unclear. Here, we generated Calhm6-/- mice and report that CALHM6 is important for the regulation of the early innate control of Listeria monocytogenes infection in vivo. We find that CALHM6 is upregulated in macrophages by pathogen-derived signals and that it relocates from the intracellular compartment to the macrophage-NK cell synapse, facilitating ATP release and controlling the kinetics of NK cell activation. Anti-inflammatory cytokines terminate CALHM6 expression. CALHM6 forms an ion channel when expressed in the plasma membrane of Xenopus oocytes, where channel opening is controlled by a conserved acidic residue, E119. In mammalian cells, CALHM6 is localised to intracellular compartments. Our results contribute to the understanding of neurotransmitter-like signal exchange between immune cells that fine-tunes the timing of innate immune responses.
Collapse
Affiliation(s)
- Sara Danielli
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Zhongming Ma
- Department of Physiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eirini Pantazi
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Amrendra Kumar
- Department of Veterans AffairsTennessee Valley Healthcare SystemNashvilleTNUSA
- Department of Pathology, Microbiology, & ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
| | - Benjamin Demarco
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Fabian A Fischer
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Usha Paudel
- Department of Physiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jillian Weissenrieder
- Department of Physiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Robert J Lee
- Department of Physiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Otorhinolaryngology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Sebastian Joyce
- Department of Veterans AffairsTennessee Valley Healthcare SystemNashvilleTNUSA
- Department of Pathology, Microbiology, & ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
| | - J Kevin Foskett
- Department of Physiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Cell and Developmental Biology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | | |
Collapse
|
20
|
Majumder B, Budhu S, Ganusov VV. Mathematical modeling suggests cytotoxic T lymphocytes control growth of B16 tumor cells in collagin-fibrin gels by cytolytic and non-lytic mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534600. [PMID: 37034693 PMCID: PMC10081166 DOI: 10.1101/2023.03.28.534600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cytotoxic T lymphocytes (CTLs) are important in controlling some viral infections, and therapies involving transfer of large numbers of cancer-specific CTLs have been successfully used to treat several types of cancers in humans. While molecular mechanisms of how CTLs kill their targets are relatively well understood we still lack solid quantitative understanding of the kinetics and efficiency at which CTLs kill their targets in different conditions. Collagen-fibrin gel-based assays provide a tissue-like environment for the migration of CTLs, making them an attractive system to study the cytotoxicity in vitro. Budhu et al. [1] systematically varied the number of peptide (SIINFEKL)- pulsed B16 melanoma cells and SIINFEKL-specific CTLs (OT-1) and measured remaining targets at different times after target and CTL co-inoculation into collagen-fibrin gels. The authors proposed that their data were consistent with a simple model in which tumors grow exponentially and are killed by CTLs at a per capita rate proportional to the CTL density in the gel. By fitting several alternative mathematical models to these data we found that this simple "exponential-growth-mass-action-killing" model does not precisely fit the data. However, determining the best fit model proved difficult because the best performing model was dependent on the specific dataset chosen for the analysis. When considering all data that include biologically realistic CTL concentrations ( E ≤ 10 7 cell/ml) the model in which tumors grow exponentially and CTLs suppress tumor's growth non-lytically and kill tumors according to the mass-action law (SiGMA model) fitted the data with best quality. Results of power analysis suggested that longer experiments (∼ 3 - 4 days) with 4 measurements of B16 tumor cell concentrations for a range of CTL concentrations would best allow to discriminate between alternative models. Taken together, our results suggest that interactions between tumors and CTLs in collagen-fibrin gels are more complex than a simple exponential-growth- mass-action killing model and provide support for the hypothesis that CTLs impact on tumors may go beyond direct cytotoxicity.
Collapse
Affiliation(s)
- Barun Majumder
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Sadna Budhu
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Vitaly V. Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
21
|
Crosstalk between apoptosis and cytotoxic lymphocytes (CTLs) in the course of Lagovirus europaeus GI.1a infection in rabbits. J Vet Res 2023; 67:41-47. [PMID: 37008759 PMCID: PMC10062044 DOI: 10.2478/jvetres-2023-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
Abstract
Introduction
Lagovirus europaeus is a single-stranded RNA virus causing an acute fatal disease in wild and domestic rabbits around the world. Studies have shown that the pivotal process impacting the immune response against the disease is apoptosis, registered mainly in hepatocytes and in peripheral blood, together with an increased number of cytotoxic lymphocytes (CTLs). It is known that cytotoxic lymphocytes can induce target cells to undergo apoptosis on the pseudoreceptor pathway, such apoptosis having been found in several acute and chronic viral infections. The study aimed to assess the crosstalk between the apoptosis of peripheral blood lymphocytes and CD8+ T lymphocytes (as CTLs) in rabbits infected with 6 Lagovirus europaeus GI.1a viruses.
Material and Methods
Sixty rabbits of Polish hybrid breed comprising both sexes and weighing 3.2–4.2 kg were the experimental group, and an identical group was the control. Each of the six GI.1a Lagovirus europaeus viruses was inoculated into ten experimental rabbits. Control rabbits received glycerol as a placebo. Flow cytometric analysis was performed on blood from the study and control group animals for peripheral blood lymphocyte apoptosis and CTL percentage determination.
Results
The activation of apoptosis in peripheral blood lymphocytes was recorded from 4 h post inoculation (p.i.) up to 36 h p.i. The percentage of CTLs in the total blood pool decreased from 8 to 36 h p.i. A negative correlation between apoptosis of lymphocytes and the number of CTLs was proven.
Conclusion
This may be the first evidence of virus-induced CTL apoptosis in Lagovirus europaeus GI.1a infection.
Collapse
|
22
|
Mace EM. Human natural killer cells: Form, function, and development. J Allergy Clin Immunol 2023; 151:371-385. [PMID: 36195172 PMCID: PMC9905317 DOI: 10.1016/j.jaci.2022.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 02/07/2023]
Abstract
Human natural killer (NK) cells are innate lymphoid cells that mediate important effector functions in the control of viral infection and malignancy. Their ability to distinguish "self" from "nonself" and lyse virally infected and tumorigenic cells through germline-encoded receptors makes them important players in maintaining human health and a powerful tool for immunotherapeutic applications and fighting disease. This review introduces our current understanding of NK cell biology, including key facets of NK cell differentiation and the acquisition and execution of NK cell effector function. Further, it addresses the clinical relevance of NK cells in both primary immunodeficiency and immunotherapy. It is intended to provide an up-to-date and comprehensive overview of this important and interesting innate immune effector cell subset.
Collapse
Affiliation(s)
- Emily M Mace
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York.
| |
Collapse
|
23
|
Schöllhorn A, Maia A, Kimmerle F, Born J, Rammensee HG, Dimitrov S, Gouttefangeas C. Staining of activated ß 2-integrins in combination with CD137 and CD154 for sensitive identification of functional antigen-specific CD4 + and CD8 + T cells. Front Immunol 2023; 13:1107366. [PMID: 36741378 PMCID: PMC9892897 DOI: 10.3389/fimmu.2022.1107366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023] Open
Abstract
Common flow cytometry-based methods used for functional assessment of antigen-specific T cells rely on de novo expression of intracellular cytokines or cell surface activation induced markers. They come with some limitations such as complex experimental setting, loss of cell viability and often high unspecific background which impairs assay sensitivity. We have previously shown that staining of activated ß2-integrins either with multimers of their ligand ICAM-1 or with a monoclonal antibody can serve as a functional marker detectable on T cells after minutes (CD8+) or few hours (CD4+) of activation. Here, we present a simple method for detection of activated ß2-integrins in combination with established cell surface activation induced markers. We observed that activated ß2-integrins were still detectable after 14 hours of stimulation, allowing their detection together with CD137 and CD154. Combinatorial gating of cells expressing activated ß2-integrins and CD137 or CD154 reduced background in unstimulated samples, increasing the signal-to-noise ratio and allowing improved assessment of low-frequency T cell responses. Extracellular staining of these markers highly correlated with production of intracellular cytokines IL-2, TNF or IFNγ in CD4+ and CD8+ T cells. As an exemplary application, SARS-CoV-2 spike-specific T cell responses were assessed in individuals after COVID-19 vaccination. This method should be useful for epitope discovery projects and for the simultaneous monitoring of low-frequency antigen-specific CD4+ and CD8+ T cell responses in various physiological situations.
Collapse
Affiliation(s)
- Anna Schöllhorn
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Ana Maia
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Felix Kimmerle
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany,German Center for Diabetes Research (DZD), Tübingen, Germany,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich, University of Tübingen (IDM), Tübingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany,Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Stoyan Dimitrov
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany,*Correspondence: Stoyan Dimitrov, ; Cécile Gouttefangeas,
| | - Cécile Gouttefangeas
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany,Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany,*Correspondence: Stoyan Dimitrov, ; Cécile Gouttefangeas,
| |
Collapse
|
24
|
Pineau J, Pinon L, Fattaccioli J, Pierobon P. Functionalized Lipid Droplets and Microfluidics Approach to Study Immune Cell Polarity In Vitro. Methods Mol Biol 2023; 2654:345-362. [PMID: 37106193 DOI: 10.1007/978-1-0716-3135-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The study of lymphocyte polarization upon antigen encounter typically relies on the random pairing between the cells of interest and a stimulating particle (micro bead) that mimics only some of the properties of the antigen-presenting cells. Here, we show how to build and use a microfluidic chip that allows to multiplex and synchronize the encounter between a lymphocyte and an antigen-presenting object: a functionalized oil-in-water droplet. We also explain how to fabricate and functionalize lipid droplets, an antigen-presenting tool that is, at the same time, deformable, fluid, and spherical.
Collapse
Affiliation(s)
- Judith Pineau
- Institut Curie, PSL Research University, INSERM U932, Paris, France
- Université Paris Cité, Paris, France
| | - Léa Pinon
- Institut Curie, PSL Research University, INSERM U932, Paris, France
- Laboratoire P.A.S.T.E.U.R., Département de Chimie, École Normale Supérieure, PSL Research University, Sorbonne Université, CNRS, Paris, France
- Institut Pierre-Gilles de Gennes pour la Microfluidique, Paris, France
| | - Jacques Fattaccioli
- Laboratoire P.A.S.T.E.U.R., Département de Chimie, École Normale Supérieure, PSL Research University, Sorbonne Université, CNRS, Paris, France.
- Institut Pierre-Gilles de Gennes pour la Microfluidique, Paris, France.
| | - Paolo Pierobon
- Institut Curie, PSL Research University, INSERM U932, Paris, France.
| |
Collapse
|
25
|
Scharrig E, Sanmillan ML, Giraudo CG. Analysis of immune synapses by τau-STED imaging and 3D-quantitative colocalization of lytic granule markers. Methods Cell Biol 2023. [DOI: 10.1016/bs.mcb.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
26
|
Pan M, Li B. T cell receptor convergence is an indicator of antigen-specific T cell response in cancer immunotherapies. eLife 2022; 11:e81952. [PMID: 36350695 PMCID: PMC9683788 DOI: 10.7554/elife.81952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
T cells are potent at eliminating pathogens and playing a crucial role in the adaptive immune response. T cell receptor (TCR) convergence describes T cells that share identical TCRs with the same amino acid sequences but have different DNA sequences due to codon degeneracy. We conducted a systematic investigation of TCR convergence using single-cell immune profiling and bulk TCRβ-sequence (TCR-seq) data obtained from both mouse and human samples and uncovered a strong link between antigen-specificity and convergence. This association was stronger than T cell expansion, a putative indicator of antigen-specific T cells. By using flow-sorted tetramer+ single T cell data, we discovered that convergent T cells were enriched for a neoantigen-specific CD8+ effector phenotype in the tumor microenvironment. Moreover, TCR convergence demonstrated better prediction accuracy for immunotherapy response than the existing TCR repertoire indexes. In conclusion, convergent T cells are likely to be antigen-specific and might be a novel prognostic biomarker for anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Mingyao Pan
- Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Bo Li
- Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
27
|
Behrens LM, van Egmond M, van den Berg TK. Neutrophils as immune effector cells in antibody therapy in cancer. Immunol Rev 2022; 314:280-301. [PMID: 36331258 DOI: 10.1111/imr.13159] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tumor-targeting monoclonal antibodies are available for a number of cancer cell types (over)expressing the corresponding tumor antigens. Such antibodies can limit tumor progression by different mechanisms, including direct growth inhibition and immune-mediated mechanisms, in particular complement-dependent cytotoxicity, antibody-dependent cellular phagocytosis, and antibody-dependent cellular cytotoxicity (ADCC). ADCC can be mediated by various types of immune cells, including neutrophils, the most abundant leukocyte in circulation. Neutrophils express a number of Fc receptors, including Fcγ- and Fcα-receptors, and can therefore kill tumor cells opsonized with either IgG or IgA antibodies. In recent years, important insights have been obtained with respect to the mechanism(s) by which neutrophils engage and kill antibody-opsonized cancer cells and these findings are reviewed here. In addition, we consider a number of additional ways in which neutrophils may affect cancer progression, in particular by regulating adaptive anti-cancer immunity.
Collapse
Affiliation(s)
- Leonie M. Behrens
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology HV Amsterdam The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology HV Amsterdam The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology HV Amsterdam The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology HV Amsterdam The Netherlands
- Department of Surgery, Amsterdam UMC Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
| | | |
Collapse
|
28
|
Oliveira MC, Verswyvel H, Smits E, Cordeiro RM, Bogaerts A, Lin A. The pro- and anti-tumoral properties of gap junctions in cancer and their role in therapeutic strategies. Redox Biol 2022; 57:102503. [PMID: 36228438 PMCID: PMC9557036 DOI: 10.1016/j.redox.2022.102503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/06/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
Gap junctions (GJs), essential structures for cell-cell communication, are made of two hemichannels (commonly called connexons), one on each adjacent cell. Found in almost all cells, GJs play a pivotal role in many physiological and cellular processes, and have even been linked to the progression of diseases, such as cancer. Modulation of GJs is under investigation as a therapeutic strategy to kill tumor cells. Furthermore, GJs have also been studied for their key role in activating anti-cancer immunity and propagating radiation- and oxidative stress-induced cell death to neighboring cells, a process known as the bystander effect. While, gap junction (GJ)-based therapeutic strategies are being developed, one major challenge has been the paradoxical role of GJs in both tumor progression and suppression, based on GJ composition, cancer factors, and tumoral context. Therefore, understanding the mechanisms of action, regulation, and the dual characteristics of GJs in cancer is critical for developing effective therapeutics. In this review, we provide an overview of the current understanding of GJs structure, function, and paradoxical pro- and anti-tumoral role in cancer. We also discuss the treatment strategies to target these GJs properties for anti-cancer responses, via modulation of GJ function.
Collapse
Affiliation(s)
- Maria C Oliveira
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580, Santo André, SP, Brazil.
| | - Hanne Verswyvel
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Rodrigo M Cordeiro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580, Santo André, SP, Brazil
| | - Annemie Bogaerts
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Abraham Lin
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| |
Collapse
|
29
|
Tian L, Zhou W, Wu X, Hu Z, Qiu L, Zhang H, Chen X, Zhang S, Lu Z. CTLs: Killers of intracellular bacteria. Front Cell Infect Microbiol 2022; 12:967679. [PMID: 36389159 PMCID: PMC9645434 DOI: 10.3389/fcimb.2022.967679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/12/2022] [Indexed: 09/10/2023] Open
Abstract
Many microbial pathogens have evolved a range of capabilities to evade host immune defense mechanisms and to survive and multiply in host cells. The presence of host intracellular bacteria makes it difficult for specific antibodies to function. After the intracellular bacteria escape the attack of the innate immune system, such as phagocytes, they survive in cells, and then adaptive immunity comes into play. Cytotoxic T lymphocytes (CTLs) play an important role in eliminating intracellular bacteria. The regulation of key transcription factors could promote CD4+/CD8+ T cells to acquire cytolytic ability. The TCR-CD3 complex transduces activation signals generated by TCR recognition of antigen and promotes CTLs to generate multiple pathways to kill intracellular bacteria. In this review, the mechanism of CD4/CD8 CTLs differentiation and how CD4/CD8 CTLs kill intracellular bacteria are introduced. In addition, their application and prospects in the treatment of bacterial infections are discussed.
Collapse
Affiliation(s)
- Li Tian
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Zhou
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianwei Wu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhuannan Hu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Qiu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiyong Zhang
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Shaoyan Zhang
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenhui Lu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
30
|
Cho JH, Tsao WC, Naghizadeh A, Liu D. Standardized protocol for the evaluation of chimeric antigen receptor (CAR)-modified cell immunological synapse quality using the glass-supported planar lipid bilayer. Methods Cell Biol 2022; 173:155-171. [PMID: 36653082 PMCID: PMC10768727 DOI: 10.1016/bs.mcb.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chimeric antigen receptor (CAR)-modified cell therapy is an effective therapy that harnesses the power of the human immune system by re-engineering immune cells that specifically kill tumor cells with tumor antigen specificity. Key to the effective elimination of tumor cells is the establishment of the immunological synapse (IS) between CAR-modified immune cells and their susceptible tumors. For functional activity, CAR-modified cells must form an effective IS to kill tumor cells specifically. The formation of the CAR-specific IS requires the coordination of many cellular processes including reorganization of the cytoskeletal structure, polarization of lytic granules, accumulation of tumor antigen, and phosphorylation of key signaling molecules within the IS. Visualization and assessment of the CAR IS quality can reveal much about the molecular mechanisms that underlie the efficacy of various CAR-modified immune cells. This chapter provides a standardized method of assessing the IS quality by quantifying the tumor antigen (defining the CAR IS formation), cytoskeleton (key component of CAR IS structure), and various molecules of interest involved in the IS formation (key molecular mechanism signatures of CAR IS function) using immunofluorescence on the glass-supported planar lipid bilayer, with a focus on tumor antigen only in this study. We provide specific insights and helpful tips for reagent and sample preparation, assay design, and machine learning (ML)-based data analysis. The protocol described in this chapter will provide a valuable tool to visualize and assess the IS quality of various CAR-modified immune cells.
Collapse
Affiliation(s)
- Jong Hyun Cho
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, United States; Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Wei-Chung Tsao
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, United States; Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Alireza Naghizadeh
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, United States; Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Dongfang Liu
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, United States; Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States.
| |
Collapse
|
31
|
Understanding CAR T cell-tumor interactions: Paving the way for successful clinical outcomes. MED 2022; 3:538-564. [PMID: 35963235 DOI: 10.1016/j.medj.2022.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/29/2022] [Accepted: 05/02/2022] [Indexed: 12/08/2022]
Abstract
Since their approval 5 years ago, chimeric antigen receptor (CAR) T cells have gained great importance in the daily clinical practice and treatment of hematological malignancies, although many challenges to their use remain, such as limited long-term CAR T cell efficacy due to disease resistance or recurrence. After a brief overview of CAR T cells, their approval, therapeutic successes, and ongoing limitations, this review discusses what is known about CAR T cell activation, their expansion and persistence, their mechanisms of cytotoxicity, and how the CAR design and/or tumor-intrinsic factors influence these functions. This review also examines the role of cytokines in CAR T cell-associated toxicity and their effects on CAR T cell function. Furthermore, we discuss several resistance mechanisms, including obstacles associated with CAR treatment of solid tumors. Finally, we provide a future outlook on next-generation strategies to further optimize CARs and improve clinical outcomes.
Collapse
|
32
|
Lelliott EJ, Ramsbottom KM, Dowling MR, Shembrey C, Noori T, Kearney CJ, Michie J, Parish IA, Jordan MA, Baxter AG, Young ND, Brennan AJ, Oliaro J. NKG7 Enhances CD8+ T Cell Synapse Efficiency to Limit Inflammation. Front Immunol 2022; 13:931630. [PMID: 35874669 PMCID: PMC9299089 DOI: 10.3389/fimmu.2022.931630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 12/01/2022] Open
Abstract
Cytotoxic lymphocytes are essential for anti-tumor immunity, and for effective responses to cancer immunotherapy. Natural killer cell granule protein 7 (NKG7) is expressed at high levels in cytotoxic lymphocytes infiltrating tumors from patients treated with immunotherapy, but until recently, the role of this protein in cytotoxic lymphocyte function was largely unknown. Unexpectedly, we found that highly CD8+ T cell-immunogenic murine colon carcinoma (MC38-OVA) tumors grew at an equal rate in Nkg7+/+ and Nkg7-/- littermate mice, suggesting NKG7 may not be necessary for effective CD8+ T cell anti-tumor activity. Mechanistically, we found that deletion of NKG7 reduces the ability of CD8+ T cells to degranulate and kill target cells in vitro. However, as a result of inefficient cytotoxic activity, NKG7 deficient T cells form a prolonged immune synapse with tumor cells, resulting in increased secretion of inflammatory cytokines, including tumor necrosis factor alpha (TNF). By deleting the TNF receptor, TNFR1, from MC38-OVA tumors, we demonstrate that this hyper-secretion of TNF compensates for reduced synapse-mediated cytotoxic activity against MC38-OVA tumors in vivo, via increased TNF-mediated tumor cell death. Taken together, our results demonstrate that NKG7 enhances CD8+ T cell immune synapse efficiency, which may serve as a mechanism to accelerate direct cytotoxicity and limit potentially harmful inflammatory responses.
Collapse
Affiliation(s)
- Emily J Lelliott
- Centre for Cancer Immunotherapy, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Density and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Kelly M Ramsbottom
- Centre for Cancer Immunotherapy, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Mark R Dowling
- Centre for Cancer Immunotherapy, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Density and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Carolyn Shembrey
- Centre for Cancer Immunotherapy, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Density and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Tahereh Noori
- Centre for Cancer Immunotherapy, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Conor J Kearney
- Centre for Cancer Immunotherapy, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Density and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Jessica Michie
- Centre for Cancer Immunotherapy, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Ian A Parish
- Centre for Cancer Immunotherapy, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Density and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Margaret A Jordan
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Alan G Baxter
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, QLD, Australia.,Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Amelia J Brennan
- Centre for Cancer Immunotherapy, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Density and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Jane Oliaro
- Centre for Cancer Immunotherapy, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Density and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
33
|
Wang MS, Hu Y, Sanchez EE, Xie X, Roy NH, de Jesus M, Winer BY, Zale EA, Jin W, Sachar C, Lee JH, Hong Y, Kim M, Kam LC, Salaita K, Huse M. Mechanically active integrins target lytic secretion at the immune synapse to facilitate cellular cytotoxicity. Nat Commun 2022; 13:3222. [PMID: 35680882 PMCID: PMC9184626 DOI: 10.1038/s41467-022-30809-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/19/2022] [Indexed: 01/25/2023] Open
Abstract
Cytotoxic lymphocytes fight pathogens and cancer by forming immune synapses with infected or transformed target cells and then secreting cytotoxic perforin and granzyme into the synaptic space, with potent and specific killing achieved by this focused delivery. The mechanisms that establish the precise location of secretory events, however, remain poorly understood. Here we use single cell biophysical measurements, micropatterning, and functional assays to demonstrate that localized mechanotransduction helps define the position of secretory events within the synapse. Ligand-bound integrins, predominantly the αLβ2 isoform LFA-1, function as spatial cues to attract lytic granules containing perforin and granzyme and induce their fusion with the plasma membrane for content release. LFA-1 is subjected to pulling forces within secretory domains, and disruption of these forces via depletion of the adaptor molecule talin abrogates cytotoxicity. We thus conclude that lymphocytes employ an integrin-dependent mechanical checkpoint to enhance their cytotoxic power and fidelity.
Collapse
Affiliation(s)
- Mitchell S Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pharmacology Program, Weill-Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Yuesong Hu
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Elisa E Sanchez
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Biochemistry and Molecular Biology Program, Weill-Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Xihe Xie
- Neuroscience Program, Weill-Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Nathan H Roy
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Miguel de Jesus
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin Y Winer
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth A Zale
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Weiyang Jin
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Chirag Sachar
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Joanne H Lee
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yeonsun Hong
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Lance C Kam
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Morgan Huse
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
34
|
Brauning A, Rae M, Zhu G, Fulton E, Admasu TD, Stolzing A, Sharma A. Aging of the Immune System: Focus on Natural Killer Cells Phenotype and Functions. Cells 2022; 11:cells11061017. [PMID: 35326467 PMCID: PMC8947539 DOI: 10.3390/cells11061017] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Aging is the greatest risk factor for nearly all major chronic diseases, including cardiovascular diseases, cancer, Alzheimer’s and other neurodegenerative diseases of aging. Age-related impairment of immune function (immunosenescence) is one important cause of age-related morbidity and mortality, which may extend beyond its role in infectious disease. One aspect of immunosenescence that has received less attention is age-related natural killer (NK) cell dysfunction, characterized by reduced cytokine secretion and decreased target cell cytotoxicity, accompanied by and despite an increase in NK cell numbers with age. Moreover, recent studies have revealed that NK cells are the central actors in the immunosurveillance of senescent cells, whose age-related accumulation is itself a probable contributor to the chronic sterile low-grade inflammation developed with aging (“inflammaging”). NK cell dysfunction is therefore implicated in the increasing burden of infection, malignancy, inflammatory disorders, and senescent cells with age. This review will focus on recent advances and open questions in understanding the interplay between systemic inflammation, senescence burden, and NK cell dysfunction in the context of aging. Understanding the factors driving and enforcing NK cell aging may potentially lead to therapies countering age-related diseases and underlying drivers of the biological aging process itself.
Collapse
Affiliation(s)
- Ashley Brauning
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Michael Rae
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Gina Zhu
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Elena Fulton
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Tesfahun Dessale Admasu
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Alexandra Stolzing
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
- Centre for Biological Engineering, Wolfson School of Electrical, Material and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK
- Correspondence: (A.S.); (A.S.)
| | - Amit Sharma
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
- Correspondence: (A.S.); (A.S.)
| |
Collapse
|
35
|
Walwyn-Brown K, Pugh J, Cocker AT, Beyzaie N, Singer BB, Olive D, Guethlein LA, Parham P, Djaoud Z. Phosphoantigen-stimulated γδ T cells suppress natural killer cell-responses to missing-self. Cancer Immunol Res 2022; 10:558-570. [PMID: 35263761 DOI: 10.1158/2326-6066.cir-21-0696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/14/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022]
Abstract
γδ T cells stimulated by phosphoantigens (pAg) are potent effectors that secrete Th1 cytokines and kill tumor cells. Consequently, they are considered candidates for use in cancer immunotherapy. However, they have proven only moderately effective in several clinical trials. We studied the consequences of pAg-stimulated γδ T-cell interactions with Natural Killer (NK) cells and CD8+ T cells, major innate and adaptive effectors, respectively. We found that pAg-stimulated γδ T cells suppressed NK-cell responses to "missing-self" but had no effect on antigen-specific CD8+ T-cell responses. Extensive analysis of the secreted cytokines showed that pAg-stimulated γδ T cells had a pro-inflammatory profile. CMV-pp65-specific CD8+ T cells primed with pAg-stimulated γδ T cells showed little effect on responses to pp65-loaded target cells. By contrast, NK cells primed similarly with γδ T cells had impaired capacity to degranulate and produce IFNγ in response to HLA class I-deficient targets. This effect depended on BTN3A1 and required direct contact between NK cells and γδ T cells. γδ T cell-priming of NK cells also led to a downregulation of NKG2D and NKp44 on NK cells. Every NK-cell subset was affected by γδ T cell-mediated immunosuppression, but the strongest effect was on KIR+NKG2A- NK cells. We therefore report a previously unknown function for γδ T cells, as brakes of NK-cell responses to "missing-self". This provides a new perspective for optimizing the use of γδ T cells in cancer immunotherapy and for assessing their role in immune responses to pAg-producing pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel Olive
- Aix Marseille Univ, CNRS, Inserm, Institut Paoli-Calmettes, CRCM,, Marseille, France
| | | | | | | |
Collapse
|
36
|
Chang HF, Schirra C, Ninov M, Hahn U, Ravichandran K, Krause E, Becherer U, Bálint Š, Harkiolaki M, Urlaub H, Valitutti S, Baldari CT, Dustin ML, Jahn R, Rettig J. Identification of distinct cytotoxic granules as the origin of supramolecular attack particles in T lymphocytes. Nat Commun 2022; 13:1029. [PMID: 35210420 PMCID: PMC8873490 DOI: 10.1038/s41467-022-28596-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 01/24/2022] [Indexed: 01/03/2023] Open
Abstract
Cytotoxic T lymphocytes (CTL) kill malignant and infected cells through the directed release of cytotoxic proteins into the immunological synapse (IS). The cytotoxic protein granzyme B (GzmB) is released in its soluble form or in supramolecular attack particles (SMAP). We utilize synaptobrevin2-mRFP knock-in mice to isolate fusogenic cytotoxic granules in an unbiased manner and visualize them alone or in degranulating CTLs. We identified two classes of fusion-competent granules, single core granules (SCG) and multi core granules (MCG), with different diameter, morphology and protein composition. Functional analyses demonstrate that both classes of granules fuse with the plasma membrane at the IS. SCG fusion releases soluble GzmB. MCGs can be labelled with the SMAP marker thrombospondin-1 and their fusion releases intact SMAPs. We propose that CTLs use SCG fusion to fill the synaptic cleft with active cytotoxic proteins instantly and parallel MCG fusion to deliver latent SMAPs for delayed killing of refractory targets.
Collapse
Affiliation(s)
- Hsin-Fang Chang
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany.
| | - Claudia Schirra
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany
| | - Momchil Ninov
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert Koch Str. 40, 37075, Göttingen, Germany
| | - Ulrike Hahn
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany
| | - Keerthana Ravichandran
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany
| | - Elmar Krause
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany
| | - Ute Becherer
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany
| | - Štefan Bálint
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, OX3 7FY, Oxford, UK
| | - Maria Harkiolaki
- Diamond Light Source, Harwell Science and Innovation Campus, OX11 0DE, Didcot, UK
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert Koch Str. 40, 37075, Göttingen, Germany
| | - Salvatore Valitutti
- Cancer Research Center of Toulouse, INSERM U1037, 31037, Toulouse, France
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, OX3 7FY, Oxford, UK
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Jens Rettig
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
37
|
Filali L, Puissegur MP, Cortacero K, Cussat-Blanc S, Khazen R, Van Acker N, Frenois FX, Abreu A, Lamant L, Meyer N, Vergier B, Müller S, McKenzie B, Valitutti S. Ultrarapid lytic granule release from CTLs activates Ca 2+-dependent synaptic resistance pathways in melanoma cells. SCIENCE ADVANCES 2022; 8:eabk3234. [PMID: 35171665 PMCID: PMC8849291 DOI: 10.1126/sciadv.abk3234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Human cytotoxic T lymphocytes (CTLs) exhibit ultrarapid lytic granule secretion, but whether melanoma cells mobilize defense mechanisms with commensurate rapidity remains unknown. We used single-cell time-lapse microscopy to offer high spatiotemporal resolution analyses of subcellular events in melanoma cells upon CTL attack. Target cell perforation initiated an intracellular Ca2+ wave that propagated outward from the synapse within milliseconds and triggered lysosomal mobilization to the synapse, facilitating membrane repair and conferring resistance to CTL induced cytotoxicity. Inhibition of Ca2+ flux and silencing of synaptotagmin VII limited synaptic lysosomal exposure and enhanced cytotoxicity. Multiplexed immunohistochemistry of patient melanoma nodules combined with automated image analysis showed that melanoma cells facing CD8+ CTLs in the tumor periphery or peritumoral area exhibited significant lysosomal enrichment. Our results identified synaptic Ca2+ entry as the definitive trigger for lysosomal deployment to the synapse upon CTL attack and highlighted an unpredicted defensive topology of lysosome distribution in melanoma nodules.
Collapse
Affiliation(s)
- Liza Filali
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
| | - Marie-Pierre Puissegur
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
| | - Kevin Cortacero
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
| | - Sylvain Cussat-Blanc
- Institut de Recherche en Informatique de Toulouse (IRIT) - University Toulouse Capitole Centre national de la recherche scientifique (CNRS) UMR5505, Artificial and Natural Intelligence Toulouse Institute, Toulouse, France
| | - Roxana Khazen
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
| | - Nathalie Van Acker
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France
| | - François-Xavier Frenois
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France
| | - Arnaud Abreu
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France
| | - Laurence Lamant
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France
| | - Nicolas Meyer
- Department of Dermatology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France
| | - Béatrice Vergier
- Service de Pathologie, CHU de Bordeaux, Bordeaux, France
- Equipe INSERM U1053-UMR BaRITOn (Eq 3), Université de Bordeaux, Bordeaux, France
| | - Sabina Müller
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
| | - Brienne McKenzie
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
- Corresponding author. (S.V.); (B.M.)
| | - Salvatore Valitutti
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France
- Corresponding author. (S.V.); (B.M.)
| |
Collapse
|
38
|
Han B, Song Y, Park J, Doh J. Nanomaterials to improve cancer immunotherapy based on ex vivo engineered T cells and NK cells. J Control Release 2022; 343:379-391. [DOI: 10.1016/j.jconrel.2022.01.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/15/2022] [Accepted: 01/31/2022] [Indexed: 02/08/2023]
|
39
|
Tello-Lafoz M, de Jesus MM, Huse M. Harder, better, faster, stronger: biochemistry and biophysics in the immunosurveillance concert. Trends Immunol 2022; 43:96-105. [PMID: 34973924 PMCID: PMC8810625 DOI: 10.1016/j.it.2021.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 02/08/2023]
Abstract
Antitumor immunosurveillance is triggered by immune cell recognition of characteristic biochemical signals on the surfaces of cancer cells. Recent data suggest that the mechanical properties of cancer cells influence the strength of these signals, with physically harder target cells (more rigid) eliciting better, faster, and stronger cytotoxic responses against metastasis. Using analogies to a certain electronic music duo, we argue that the biophysical properties of cancer cells and their environment can adjust the volume and tone of the antitumor immune response. We also consider the potential influence of biomechanics-based immunosurveillance in disease progression and posit that targeting the biophysical properties of cancer cells in concert with their biochemical features could increase the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Maria Tello-Lafoz
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Miguel M de Jesus
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Morgan Huse
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Correspondence: (M.H.)
| |
Collapse
|
40
|
Aichele P, Neumann-Haefelin C, Ehl S, Thimme R, Cathomen T, Boerries M, Hofmann M. Immunopathology caused by impaired CD8+ T cell responses. Eur J Immunol 2022; 52:1390-1395. [PMID: 35099807 DOI: 10.1002/eji.202149528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/16/2021] [Accepted: 01/24/2022] [Indexed: 11/12/2022]
Abstract
Recent findings indicate that many immunopathologies are at their roots a consequence of impaired immune responses ("too little" immunity) and not the result of primarily exaggerated immune responses ("too much" immunity). We have summarized this conceptional view as "IMPATH paradox". In this review, we will focus on impaired immune reactions in the context of CD8+ T cell-mediated immunopathologies. In particular, we will exemplify this concept in two disease models: Virus-triggered primary hemophagocytic lymphohistiocytosis, an inflammatory syndrome caused by genetically impaired cytolytic functions of T cells, and viral hepatitis, where T cell exhaustion is a major underlying mechanism for impaired effector functions. In both situations, T cells fail to eliminate the source of immune stimulation, which usually serves as an important negative feedback loop curtailing immune reactions. Persistent antigen presentation by antigen-presenting and/or infected cells results in continuous stimulation causing chronic inflammation and immunopathology mediated by residual T cell functions. Hence, immune stimulation or reconstitution rather than immune suppression may be strategies for therapeutic interventions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Peter Aichele
- Institute for Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Toni Cathomen
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maike Hofmann
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
41
|
Pizzagalli DU, Pulfer A, Thelen M, Krause R, Gonzalez SF. In Vivo Motility Patterns Displayed by Immune Cells Under Inflammatory Conditions. Front Immunol 2022; 12:804159. [PMID: 35046959 PMCID: PMC8762290 DOI: 10.3389/fimmu.2021.804159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
The migration of immune cells plays a key role in inflammation. This is evident in the fact that inflammatory stimuli elicit a broad range of migration patterns in immune cells. Since these patterns are pivotal for initiating the immune response, their dysregulation is associated with life-threatening conditions including organ failure, chronic inflammation, autoimmunity, and cancer, amongst others. Over the last two decades, thanks to advancements in the intravital microscopy technology, it has become possible to visualize cell migration in living organisms with unprecedented resolution, helping to deconstruct hitherto unexplored aspects of the immune response associated with the dynamism of cells. However, a comprehensive classification of the main motility patterns of immune cells observed in vivo, along with their relevance to the inflammatory process, is still lacking. In this review we defined cell actions as motility patterns displayed by immune cells, which are associated with a specific role during the immune response. In this regard, we summarize the main actions performed by immune cells during intravital microscopy studies. For each of these actions, we provide a consensus name, a definition based on morphodynamic properties, and the biological contexts in which it was reported. Moreover, we provide an overview of the computational methods that were employed for the quantification, fostering an interdisciplinary approach to study the immune system from imaging data.
Collapse
Affiliation(s)
- Diego Ulisse Pizzagalli
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Euler institute, Università della Svizzera italiana, Lugano-Viganello, Switzerland
| | - Alain Pulfer
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology Zurich (ETHZ) Zürich, Zürich, Switzerland
| | - Marcus Thelen
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| | - Rolf Krause
- Euler institute, Università della Svizzera italiana, Lugano-Viganello, Switzerland
| | - Santiago F. Gonzalez
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
42
|
Abstract
Immune principles formulated by Jenner, Pasteur, and early immunologists served as fundamental propositions for vaccine discovery against many dreadful pathogens. However, decisive success in the form of an efficacious vaccine still eludes for diseases such as tuberculosis, leishmaniasis, and trypanosomiasis. Several antileishmanial vaccine trials have been undertaken in past decades incorporating live, attenuated, killed, or subunit vaccination, but the goal remains unmet. In light of the above facts, we have to reassess the principles of vaccination by dissecting factors associated with the hosts' immune response. This chapter discusses the pathogen-associated perturbations at various junctures during the generation of the immune response which inhibits antigenic processing, presentation, or remodels memory T cell repertoire. This can lead to ineffective priming or inappropriate activation of memory T cells during challenge infection. Thus, despite a protective primary response, vaccine failure can occur due to altered immune environments in the presence of pathogens.
Collapse
Affiliation(s)
| | - Sunil Kumar
- National Centre for Cell Science, Pune, Maharashtra, India
| | | | - Bhaskar Saha
- National Centre for Cell Science, Pune, Maharashtra, India.
- Trident Academy of Creative Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
43
|
A Novel Peptide-MHC Targeted Chimeric Antigen Receptor T Cell Forms a T Cell-like Immune Synapse. Biomedicines 2021; 9:biomedicines9121875. [PMID: 34944696 PMCID: PMC8699022 DOI: 10.3390/biomedicines9121875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Chimeric Antigen Receptor (CAR) T cell therapy is a promising form of adoptive cell therapy that re-engineers patient-derived T cells to express a hybrid receptor specific to a tumour-specific antigen of choice. Many well-characterised tumour antigens are intracellular and therefore not accessible to antibodies at the cell surface. Therefore, the ability to target peptide-MHC tumour targets with antibodies is key for wider applicability of CAR T cell therapy in cancer. One way to evaluate the effectiveness and efficiency of ligating tumour target cells is studying the immune synapse. Here we generated a second-generation CAR to targeting the HLA-A*02:01 restricted H3.3K27M epitope, identified as a possible therapeutic target in ~75% of diffuse midline gliomas, used as a model antigen to study the immune synapse. The pMHCI-specific CAR demonstrated specificity, potent activation, cytokine secretion and cytotoxic function. Furthermore, we characterised killing kinetics using live cell imaging as well as CAR synapse confocal imaging. Here we provide evidence of robust CAR targeting of a model peptide-MHC antigen and that, in contrast to protein-specific CARs, these CARs form a TCR-like immune synapse which facilitates TCR-like killing kinetics.
Collapse
|
44
|
Kamnev A, Lacouture C, Fusaro M, Dupré L. Molecular Tuning of Actin Dynamics in Leukocyte Migration as Revealed by Immune-Related Actinopathies. Front Immunol 2021; 12:750537. [PMID: 34867982 PMCID: PMC8634686 DOI: 10.3389/fimmu.2021.750537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023] Open
Abstract
Motility is a crucial activity of immune cells allowing them to patrol tissues as they differentiate, sample or exchange information, and execute their effector functions. Although all immune cells are highly migratory, each subset is endowed with very distinct motility patterns in accordance with functional specification. Furthermore individual immune cell subsets adapt their motility behaviour to the surrounding tissue environment. This review focuses on how the generation and adaptation of diversified motility patterns in immune cells is sustained by actin cytoskeleton dynamics. In particular, we review the knowledge gained through the study of inborn errors of immunity (IEI) related to actin defects. Such pathologies are unique models that help us to uncover the contribution of individual actin regulators to the migration of immune cells in the context of their development and function.
Collapse
Affiliation(s)
- Anton Kamnev
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Claire Lacouture
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.,Laboratoire De Physique Théorique, IRSAMC, Université De Toulouse (UPS), CNRS, Toulouse, France
| | - Mathieu Fusaro
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| |
Collapse
|
45
|
Tittarelli A. Connexin channels modulation in pathophysiology and treatment of immune and inflammatory disorders. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166258. [PMID: 34450245 DOI: 10.1016/j.bbadis.2021.166258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
Connexin-mediated intercellular communication mechanisms include bidirectional cell-to-cell coupling by gap junctions and release/influx of molecules by hemichannels. These intercellular communications have relevant roles in numerous immune system activities. Here, we review the current knowledge about the function of connexin channels, mainly those formed by connexin-43, on immunity and inflammation. Focusing on those evidence that support the design and development of therapeutic tools to modulate connexin expression and/or channel activities with treatment potential for infections, wounds, cancer, and other inflammatory conditions.
Collapse
Affiliation(s)
- Andrés Tittarelli
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8940577, Chile.
| |
Collapse
|
46
|
Chen H, Smith M, Herz J, Li T, Hasley R, Le Saout C, Zhu Z, Cheng J, Gronda A, Martina JA, Irusta PM, Karpova T, McGavern DB, Catalfamo M. The role of protease-activated receptor 1 signaling in CD8 T cell effector functions. iScience 2021; 24:103387. [PMID: 34841225 PMCID: PMC8605340 DOI: 10.1016/j.isci.2021.103387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
CD8 T cells are essential for adaptive immunity against viral infections. Protease activated receptor 1 (PAR1) is expressed by CD8 T cells; however, its role in T cell effector function is not well defined. Here we show that in human CD8 T cells, PAR1 stimulation accelerates calcium mobilization. Furthermore, PAR1 is involved in cytotoxic T cell function by facilitating granule trafficking via actin polymerization and repositioning of the microtubule organizing center (MTOC) toward the immunological synapse. In vivo, PAR1-/- mice have reduced cytokine-producing T cells in response to a lymphocytic choriomeningitis virus (LCMV) infection and fail to efficiently control the virus. Specific deletion of PAR1 in LCMV GP33-specific CD8 T cells results in reduced expansion and diminished effector function. These data demonstrate that PAR1 plays a role in T cell activation and function, and this pathway could represent a new therapeutic strategy to modulate CD8 T cell effector function.
Collapse
Affiliation(s)
- Hui Chen
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mindy Smith
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jasmin Herz
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Tong Li
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, USA
| | - Rebecca Hasley
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cecile Le Saout
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ziang Zhu
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, USA
| | - Jie Cheng
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, USA
| | - Andres Gronda
- Department of Human Science, Georgetown University, Washington, DC, USA
| | - José A. Martina
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pablo M. Irusta
- Department of Human Science, Georgetown University, Washington, DC, USA
| | - Tatiana Karpova
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dorian B. McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Marta Catalfamo
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, USA
| |
Collapse
|
47
|
German Y, Vulliard L, Kamnev A, Pfajfer L, Huemer J, Mautner AK, Rubio A, Kalinichenko A, Boztug K, Ferrand A, Menche J, Dupré L. Morphological profiling of human T and NK lymphocytes by high-content cell imaging. Cell Rep 2021; 36:109318. [PMID: 34233185 DOI: 10.1016/j.celrep.2021.109318] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 02/25/2021] [Accepted: 06/07/2021] [Indexed: 01/21/2023] Open
Abstract
The immunological synapse is a complex structure that decodes stimulatory signals into adapted lymphocyte responses. It is a unique window to monitor lymphocyte activity because of development of systematic quantitative approaches. Here we demonstrate the applicability of high-content imaging to human T and natural killer (NK) cells and develop a pipeline for unbiased analysis of high-definition morphological profiles. Our approach reveals how distinct facets of actin cytoskeleton remodeling shape immunological synapse architecture and affect lytic granule positioning. Morphological profiling of CD8+ T cells from immunodeficient individuals allows discrimination of the roles of the ARP2/3 subunit ARPC1B and the ARP2/3 activator Wiskott-Aldrich syndrome protein (WASP) in immunological synapse assembly. Single-cell analysis further identifies uncoupling of lytic granules and F-actin radial distribution in ARPC1B-deficient lymphocytes. Our study provides a foundation for development of morphological profiling as a scalable approach to monitor primary lymphocyte responsiveness and to identify complex aspects of lymphocyte micro-architecture.
Collapse
Affiliation(s)
- Yolla German
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, CNRS UMR5051, Toulouse III Paul Sabatier University, Toulouse, France; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
| | - Loan Vulliard
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Anton Kamnev
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Laurène Pfajfer
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, CNRS UMR5051, Toulouse III Paul Sabatier University, Toulouse, France; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
| | - Jakob Huemer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria; St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Anna-Katharina Mautner
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Aude Rubio
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31024 Toulouse, France
| | - Artem Kalinichenko
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria; St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria; St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Audrey Ferrand
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31024 Toulouse, France
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria; Faculty of Mathematics, University of Vienna, Vienna, Austria
| | - Loïc Dupré
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, CNRS UMR5051, Toulouse III Paul Sabatier University, Toulouse, France; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
48
|
Khazen R, Cazaux M, Lemaître F, Corre B, Garcia Z, Bousso P. Functional heterogeneity of cytotoxic T cells and tumor resistance to cytotoxic hits limit anti-tumor activity in vivo. EMBO J 2021; 40:e106658. [PMID: 33855732 PMCID: PMC8167356 DOI: 10.15252/embj.2020106658] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 01/17/2023] Open
Abstract
Cytotoxic T cells (CTLs) can eliminate tumor cells through the delivery of lethal hits, but the actual efficiency of this process in the tumor microenvironment is unclear. Here, we visualized the capacity of single CTLs to attack tumor cells in vitro and in vivo using genetically encoded reporters that monitor cell damage and apoptosis. Using two distinct malignant B-cell lines, we found that the majority of cytotoxic hits delivered by CTLs in vitro were sublethal despite proper immunological synapse formation, and associated with reversible calcium elevation and membrane damage in the targets. Through intravital imaging in the bone marrow, we established that the majority of CTL interactions with lymphoma B cells were either unproductive or sublethal. Functional heterogeneity of CTLs contributed to diverse outcomes during CTL-tumor contacts in vivo. In the therapeutic settings of anti-CD19 CAR T cells, the majority of CAR T cell-tumor interactions were also not associated with lethal hit delivery. Thus, differences in CTL lytic potential together with tumor cell resistance to cytotoxic hits represent two important bottlenecks for anti-tumor responses in vivo.
Collapse
Affiliation(s)
- Roxana Khazen
- Dynamics of Immune Responses UnitInstitut Pasteur, Equipe Labellisée Ligue Contre le CancerINSERM U1223ParisFrance
| | - Marine Cazaux
- Dynamics of Immune Responses UnitInstitut Pasteur, Equipe Labellisée Ligue Contre le CancerINSERM U1223ParisFrance
- Université de ParisParisFrance
| | - Fabrice Lemaître
- Dynamics of Immune Responses UnitInstitut Pasteur, Equipe Labellisée Ligue Contre le CancerINSERM U1223ParisFrance
| | - Beatrice Corre
- Dynamics of Immune Responses UnitInstitut Pasteur, Equipe Labellisée Ligue Contre le CancerINSERM U1223ParisFrance
| | - Zacarias Garcia
- Dynamics of Immune Responses UnitInstitut Pasteur, Equipe Labellisée Ligue Contre le CancerINSERM U1223ParisFrance
| | - Philippe Bousso
- Dynamics of Immune Responses UnitInstitut Pasteur, Equipe Labellisée Ligue Contre le CancerINSERM U1223ParisFrance
| |
Collapse
|
49
|
Khalaf K, Hana D, Chou JTT, Singh C, Mackiewicz A, Kaczmarek M. Aspects of the Tumor Microenvironment Involved in Immune Resistance and Drug Resistance. Front Immunol 2021; 12:656364. [PMID: 34122412 PMCID: PMC8190405 DOI: 10.3389/fimmu.2021.656364] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment (TME) is a complex and ever-changing "rogue organ" composed of its own blood supply, lymphatic and nervous systems, stroma, immune cells and extracellular matrix (ECM). These complex components, utilizing both benign and malignant cells, nurture the harsh, immunosuppressive and nutrient-deficient environment necessary for tumor cell growth, proliferation and phenotypic flexibility and variation. An important aspect of the TME is cellular crosstalk and cell-to-ECM communication. This interaction induces the release of soluble factors responsible for immune evasion and ECM remodeling, which further contribute to therapy resistance. Other aspects are the presence of exosomes contributed by both malignant and benign cells, circulating deregulated microRNAs and TME-specific metabolic patterns which further potentiate the progression and/or resistance to therapy. In addition to biochemical signaling, specific TME characteristics such as the hypoxic environment, metabolic derangements, and abnormal mechanical forces have been implicated in the development of treatment resistance. In this review, we will provide an overview of tumor microenvironmental composition, structure, and features that influence immune suppression and contribute to treatment resistance.
Collapse
Affiliation(s)
- Khalil Khalaf
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Doris Hana
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Jadzia Tin-Tsen Chou
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Chandpreet Singh
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Andrzej Mackiewicz
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
50
|
Wurzer H, Filali L, Hoffmann C, Krecke M, Biolato AM, Mastio J, De Wilde S, François JH, Largeot A, Berchem G, Paggetti J, Moussay E, Thomas C. Intrinsic Resistance of Chronic Lymphocytic Leukemia Cells to NK Cell-Mediated Lysis Can Be Overcome In Vitro by Pharmacological Inhibition of Cdc42-Induced Actin Cytoskeleton Remodeling. Front Immunol 2021; 12:619069. [PMID: 34108958 PMCID: PMC8181408 DOI: 10.3389/fimmu.2021.619069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/23/2021] [Indexed: 01/24/2023] Open
Abstract
Natural killer (NK) cells are innate effector lymphocytes with strong antitumor effects against hematologic malignancies such as chronic lymphocytic leukemia (CLL). However, NK cells fail to control CLL progression on the long term. For effective lysis of their targets, NK cells use a specific cell-cell interface, known as the immunological synapse (IS), whose assembly and effector function critically rely on dynamic cytoskeletal changes in NK cells. Here we explored the role of CLL cell actin cytoskeleton during NK cell attack. We found that CLL cells can undergo fast actin cytoskeleton remodeling which is characterized by a NK cell contact-induced accumulation of actin filaments at the IS. Such polarization of the actin cytoskeleton was strongly associated with resistance against NK cell-mediated cytotoxicity and reduced amounts of the cell-death inducing molecule granzyme B in target CLL cells. Selective pharmacological targeting of the key actin regulator Cdc42 abrogated the capacity of CLL cells to reorganize their actin cytoskeleton during NK cell attack, increased levels of transferred granzyme B and restored CLL cell susceptibility to NK cell cytotoxicity. This resistance mechanism was confirmed in primary CLL cells from patients. In addition, pharmacological inhibition of actin dynamics in combination with blocking antibodies increased conjugation frequency and improved CLL cell elimination by NK cells. Together our results highlight the critical role of CLL cell actin cytoskeleton in driving resistance against NK cell cytotoxicity and provide new potential therapeutic point of intervention to target CLL immune escape.
Collapse
Affiliation(s)
- Hannah Wurzer
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Liza Filali
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Céline Hoffmann
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Max Krecke
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Andrea Michela Biolato
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jérôme Mastio
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Sigrid De Wilde
- Department of Hemato-Oncology, Central Hospitalier du Luxembourg, Luxembourg City, Luxembourg
| | - Jean Hugues François
- Laboratory of Hematology, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| | - Anne Largeot
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Guy Berchem
- Department of Hemato-Oncology, Central Hospitalier du Luxembourg, Luxembourg City, Luxembourg.,Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Jérôme Paggetti
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Etienne Moussay
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Clément Thomas
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| |
Collapse
|