1
|
Lamb ER, Criss AK. Terminal complement complexes with or without C9 potentiate antimicrobial activity against Neisseria gonorrhoeae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633325. [PMID: 39868146 PMCID: PMC11760736 DOI: 10.1101/2025.01.16.633325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The complement cascade is a front-line defense against pathogens. Complement activation generates the membrane attack complex (MAC), a 10-11 nm diameter pore formed by complement proteins C5b through C8 and polymerized C9. The MAC embeds within the outer membrane of Gram-negative bacteria and displays bactericidal activity. In the absence of C9, C5b-C8 complexes can form 2-4 nm pores on membranes, but their relevance to microbial control is poorly understood. Deficiencies in terminal complement components uniquely predispose individuals to infections by pathogenic Neisseria, including N. gonorrhoeae (Gc). Increasing antibiotic resistance in Gc makes new therapeutic strategies a priority. Here, we demonstrate that MAC formed by complement activity in human serum disrupts the Gc outer and inner membranes, potentiating the activity of antimicrobials against Gc and re-sensitizing multidrug resistant Gc to antibiotics. C9-depleted serum also disrupts Gc membranes and exerts antigonococcal activity, effects that are not reported in other Gram-negative bacteria. C5b-C8 complex formation potentiates Gc sensitivity to azithromycin but not lysozyme. These findings expand our mechanistic understanding of complement lytic activity, suggest a size limitation for terminal complement-mediated enhancement of antimicrobials against Gc, and suggest complement manipulation can be used to combat drug-resistant gonorrhea. Importance The complement cascade is a front-line arm of the innate immune system against pathogens. Complement activation results in membrane attack complex (MAC) pores forming on the outer membrane of Gram-negative bacteria, resulting in bacterial death. Individuals who cannot generate MAC are specifically susceptible to infection by pathogenic Neisseria species including N. gonorrhoeae (Gc). High rates of gonorrhea and its complications like infertility, and high-frequency resistance to multiple antibiotics, make it important to identify new approaches to combat Gc. Beyond direct anti-Gc activity, we found the MAC increases the ability of antibiotics and antimicrobial proteins to kill Gc and re-sensitizes multidrug-resistant bacteria to antibiotics. The most terminal component, C9, is needed to potentiate the anti-Gc activity of lysozyme, but azithromycin activity is potentiated regardless of C9. These findings highlight the unique effects of MAC on Gc and suggest novel translational avenues to combat drug-resistant gonorrhea.
Collapse
Affiliation(s)
- Evan R. Lamb
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
2
|
Wang F, Yuan C, Deng R, Liu Y. Multi-omics analysis reveals the pre-protective mechanism of Dendrobium flexicaule polysaccharide against alcohol-induced gastric mucosal injury. Int J Biol Macromol 2024; 291:139191. [PMID: 39730050 DOI: 10.1016/j.ijbiomac.2024.139191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Dendrobium flexicaule (DF) is an endemic plant primarily found in the mountains of central China with important medicinal and edible values. In traditional Chinese medicine, DF has the effects of nourishing stomach and "Yin", and clearing heat. At present, no studies have explored the mechanisms by which Dendrobium flexicaule polysaccharides (DFP) exert pre-protect effects against alcohol-induced gastric mucosal injury. In this study, DFP (367.478 kDa) was extracted through water extraction and ethanol precipitation, and composed of mannose (79.89 %), glucose (19.05 %), xylose (0.42 %), arabinose (0.33 %), and galactose (0.31 %). A rat model of alcohol-induced gastric mucosal injury was established to evaluate the pre-protective effects of DFP. Histological analysis, using hematoxylin-eosin staining, revealed that DFP alleviated gastric mucosal congestion and redness. Furthermore, DFP downregulated the expression of IL-6, IL-1β, MPO and MDA, while upregulating the expression of PGE2, GSH and SOD. Immunofluorescence analysis demonstrated that DFP upregulated the expression of ZO-1 and Occludin, thereby improving gastric barrier function. Multi-omics analysis revealed its regulation of the complement and coagulation cascade signaling pathway, as well as the propanoate metabolism pathway. Immunohistochemical analysis further confirmed that DFP significantly down-regulated the expression of C3, VTN, F2, Serpind1, CPB2, FGA and VWF. Overall, this study offers novel insights into the pre-protective effects and mechanisms of DFP against alcohol-induced gastric mucosal injury, laying the groundwork for the development of DF based therapeutic resources.
Collapse
Affiliation(s)
- Fei Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chong Yuan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Rui Deng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yifei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China.
| |
Collapse
|
3
|
Coppolino F, Berbiglia A, Lentini G, Famà A, Pietrocola G, Teti G, Beninati C, De Gaetano GV. Role of the SaeRS Two-Component Regulatory System in Group B Streptococcus Biofilm Formation on Human Fibrinogen. Microorganisms 2024; 12:2096. [PMID: 39458405 PMCID: PMC11510217 DOI: 10.3390/microorganisms12102096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Streptococcus agalactiae, also known as Group B Streptococcus or GBS, is a commensal colonizer of human vaginal and gastrointestinal tracts that can also be a deadly pathogen for newborns, pregnant women, and the elderly. The SaeRS two-component regulatory system (TCS) positively regulates the expression of two GBS adhesins genes, but its role in the formation of biofilm, an important step in pathogenesis, has not been investigated. In the present study, we set up a novel model of GBS biofilm formation using surfaces coated with human fibrinogen (hFg). Biofilm mass and structure were analyzed by crystal violet staining and three-dimensional fluorescence microscopy, respectively. GBS growth on hFg resulted in the formation of a mature and abundant biofilm composed of bacterial cells and an extracellular matrix containing polysaccharides, proteins, and extracellular DNA (eDNA). Enzymatic and genetic analysis showed that GBS biofilm formation on hFg is dependent on proteins and eDNA in the extracellular matrix and on the presence of covalently linked cell wall proteins on the bacterial surface but not on the type-specific capsular polysaccharide. In the absence of the SaeR regulator of the SaeRS TCS, there was a significant reduction in biomass formation, with reduced numbers of bacterial cells, reduced eDNA content, and disruption of the biofilm architecture. Overall, our data suggest that GBS binding to hFg contributes to biofilm formation and that the SaeRS TCS plays an important role in this process.
Collapse
Affiliation(s)
- Francesco Coppolino
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
| | - Alessia Berbiglia
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
| | - Germana Lentini
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
| | - Agata Famà
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
| | | | | | - Concetta Beninati
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
- Scylla Biotech S.r.l., 98168 Messina, Italy
| | - Giuseppe Valerio De Gaetano
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
| |
Collapse
|
4
|
Arias-Mainer C, Romero-Gavilán F, Cerqueira A, Peñarocha-Oltra D, Bernabeu-Mira JC, Elortza F, Azkargorta M, Gurruchaga M, Goñi I, Suay J. Combining sandblasting and pink anodisation of Ti implants as a promising method for improving fibroblast adhesion and immune response. J Mater Chem B 2024; 12:8778-8790. [PMID: 39141321 DOI: 10.1039/d4tb00992d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
This study examined the effect of combining the sandblasting and anodising of titanium alloys used in implants on the cell response and protein adsorption patterns. The titanium samples were divided into four groups depending on the surface treatment: machining (MC), pink anodisation (PA), sandblasting (MC04) and a combination of the last two (MC04 + PA). Their physicochemical properties were analysed by SEM/EDX, Raman, contact angle measurements and profilometry. In vitro responses were examined using human gingival fibroblastic (HGF) cells and THP-1 macrophages. Cytokine secretion, macrophage adhesion and gene expression were measured by ELISA, confocal microscopy and RT-PCR. Cell adhesion and collagen secretion were evaluated in HGF cultures. The adsorption of immune and regenerative proteins onto the surfaces was assessed employing nLC-MS/MS. MC04 + PA surfaces exhibited a change in the roughness, chemical composition and hydrophilicity of the material, showing more elongated HGF cells and a considerable increase in the area of cells exposed to the MC04 + PA surfaces. Moreover, cells cultured on MC04 + PA generally showed a reduction in the expression of proinflammatory genes (TNF-α, MCP-1, C5, NF-kB and ICAM-1) and an increase in the secretion of anti-inflammatory cytokines, such as IL-4. These results correlated with the proteomic data; we found preferential adsorption of proteins favouring cell adhesion, such as DSC1 and PCOC1. A considerable reduction in the adsorption of immunoglobulins and proteins associated with acute inflammatory response (including SAA4) was also observed. The study highlights the potential advantages of MC04 + PA surface treatment to modify dental implant abutments; it enhances their compatibility with soft tissues and reduces the inflammatory response.
Collapse
Affiliation(s)
- Carlos Arias-Mainer
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Castellon de la Plana, Spain.
| | - Francisco Romero-Gavilán
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Castellon de la Plana, Spain.
| | - Andreia Cerqueira
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Castellon de la Plana, Spain.
| | - David Peñarocha-Oltra
- Department of Stomatology, Valencia University Medical and Dental School, Valencia, Spain
| | | | - Félix Elortza
- 3Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - Mikel Azkargorta
- 3Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - Mariló Gurruchaga
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, San Sebastián, Spain
| | - Isabel Goñi
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, San Sebastián, Spain
| | - Julio Suay
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Castellon de la Plana, Spain.
| |
Collapse
|
5
|
Pellegrini A, Pietrocola G. Recruitment of Vitronectin by Bacterial Pathogens: A Comprehensive Overview. Microorganisms 2024; 12:1385. [PMID: 39065153 PMCID: PMC11278874 DOI: 10.3390/microorganisms12071385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The key factor that enables pathogenic bacteria to establish successful infections lies largely in their ability to escape the host's immune response and adhere to host surfaces. Vitronectin (Vn) is a multidomain glycoprotein ubiquitously present in blood and the extracellular matrix of several tissues, where it plays important roles as a regulator of membrane attack complex (MAC) formation and as a mediator of cell adhesion. Vn has emerged as an intriguing target for several microorganisms. Vn binding by bacterial receptors confers protection from lysis resulting from MAC deposition. Furthermore, through its Arg-Gly-Asp (RGD) motif, Vn can bind several host cell integrins. Therefore, Vn recruited to the bacterial cell functions as a molecular bridge between bacteria and host surfaces, where it triggers several host signaling events that could promote bacterial internalization. Each bacterium uses different receptors that recognize specific Vn domains. In this review, we update the current knowledge of Vn receptors of major bacterial pathogens, emphasizing the role they may play in the host upon Vn binding. Focusing on the structural properties of bacterial proteins, we provide details on the residues involved in their interaction with Vn. Furthermore, we discuss the possible involvement of Vn adsorption on biomaterials in promoting bacterial adhesion on abiotic surfaces and infection.
Collapse
Affiliation(s)
| | - Giampiero Pietrocola
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy;
| |
Collapse
|
6
|
Vasseur L, Barbault F, Monari A. Interaction between Yersinia pestis Ail Outer Membrane Protein and the C-Terminal Domain of Human Vitronectin. J Phys Chem B 2024; 128:3929-3936. [PMID: 38619541 DOI: 10.1021/acs.jpcb.4c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Yersinia pestis, the causative agent of plague, is capable of evading the human immune system response by recruiting the plasma circulating vitronectin proteins, which act as a shield and avoid its lysis. Vitronectin recruitment is mediated by its interaction with the bacterial transmembrane protein Ail, protruding from the Y. pestis outer membrane. By using all-atom long-scale molecular dynamic simulations of Ail embedded in a realistic model of the bacterial membrane, we have shown that vitronectin forms a stable complex, mediated by interactions between the disordered moieties of the two proteins. The main amino acids driving the complexation have also been evidenced, thus favoring the possible rational design of specific peptides which, by inhibiting vitronectin recruitment, could act as original antibacterial agents.
Collapse
Affiliation(s)
- Laurine Vasseur
- Université Paris Cité and CNRS, ITODYS, F-75006 Paris, France
| | | | - Antonio Monari
- Université Paris Cité and CNRS, ITODYS, F-75006 Paris, France
| |
Collapse
|
7
|
Palacpac NMQ, Ishii KJ, Arisue N, Tougan T, Horii T. Immune tolerance caused by repeated P. falciparum infection against SE36 malaria vaccine candidate antigen and the resulting limited polymorphism. Parasitol Int 2024; 99:102845. [PMID: 38101534 DOI: 10.1016/j.parint.2023.102845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
The call for second generation malaria vaccines needs not only the identification of novel candidate antigens or adjuvants but also a better understanding of immune responses and the underlying protective processes. Plasmodium parasites have evolved a range of strategies to manipulate the host immune system to guarantee survival and establish parasitism. These immune evasion strategies hamper efforts to develop effective malaria vaccines. In the case of a malaria vaccine targeting the N-terminal domain of P. falciparum serine repeat antigen 5 (SE36), now in clinical trials, we observed reduced responsiveness (lowered immunogenicity) which may be attributed to immune tolerance/immune suppression. Here, immunogenicity data and insights into the immune responses to SE36 antigen from epidemiological studies and clinical trials are summarized. Documenting these observations is important to help identify gaps for SE36 continued development and engender hope that highly effective blood-stage/multi-stage vaccines can be achieved.
Collapse
Affiliation(s)
- Nirianne Marie Q Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Ken J Ishii
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan; Laboratory of Vaccine Science, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| | - Nobuko Arisue
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Takahiro Tougan
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
8
|
De Gaetano GV, Lentini G, Coppolino F, Famà A, Pietrocola G, Beninati C. Engagement of α 3β 1 and α 2β 1 integrins by hypervirulent Streptococcus agalactiae in invasion of polarized enterocytes. Front Microbiol 2024; 15:1367898. [PMID: 38511003 PMCID: PMC10951081 DOI: 10.3389/fmicb.2024.1367898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
The gut represents an important site of colonization of the commensal bacterium Streptococcus agalactiae (group B Streptococcus or GBS), which can also behave as a deadly pathogen in neonates and adults. Invasion of the intestinal epithelial barrier is likely a crucial step in the pathogenesis of neonatal infections caused by GBS belonging to clonal complex 17 (CC17). We have previously shown that the prototypical CC17 BM110 strain invades polarized enterocyte-like cells through their lateral surfaces using an endocytic pathway. By analyzing the cellular distribution of putative GBS receptors in human enterocyte-like Caco-2 cells, we find here that the alpha 3 (α3) and alpha 2 (α2) integrin subunits are selectively expressed on lateral enterocyte surfaces at equatorial and parabasal levels along the vertical axis of polarized cells, in an area corresponding to GBS entry sites. The α3β1 and α2β1 integrins were not readily accessible in fully differentiated Caco-2 monolayers but could be exposed to specific antibodies after weakening of intercellular junctions in calcium-free media. Under these conditions, anti-α3β1 and anti-α2β1 antibodies significantly reduced GBS adhesion to and invasion of enterocytes. After endocytosis, α3β1 and α2β1 integrins localized to areas of actin remodeling around GBS containing vacuoles. Taken together, these data indicate that GBS can invade enterocytes by binding to α3β1 and α2β1 integrins on the lateral membrane of polarized enterocytes, resulting in cytoskeletal remodeling and bacterial internalization. Blocking integrins might represent a viable strategy to prevent GBS invasion of gut epithelial tissues.
Collapse
Affiliation(s)
| | - Germana Lentini
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Francesco Coppolino
- Department of Biomedical, Dental and Imaging Sciences, University of Messina, Messina, Italy
| | - Agata Famà
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Biochemistry Section, University of Pavia, Pavia, Italy
| | - Concetta Beninati
- Department of Human Pathology, University of Messina, Messina, Italy
- Scylla Biotech Srl, Messina, Italy
| |
Collapse
|
9
|
Hurst R, Brewer DS, Gihawi A, Wain J, Cooper CS. Cancer invasion and anaerobic bacteria: new insights into mechanisms. J Med Microbiol 2024; 73:001817. [PMID: 38535967 PMCID: PMC10995961 DOI: 10.1099/jmm.0.001817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 04/07/2024] Open
Abstract
There is growing evidence that altered microbiota abundance of a range of specific anaerobic bacteria are associated with cancer, including Peptoniphilus spp., Porphyromonas spp., Fusobacterium spp., Fenollaria spp., Prevotella spp., Sneathia spp., Veillonella spp. and Anaerococcus spp. linked to multiple cancer types. In this review we explore these pathogenic associations. The mechanisms by which bacteria are known or predicted to interact with human cells are reviewed and we present an overview of the interlinked mechanisms and hypotheses of how multiple intracellular anaerobic bacterial pathogens may act together to cause host cell and tissue microenvironment changes associated with carcinogenesis and cancer cell invasion. These include combined effects on changes in cell signalling, DNA damage, cellular metabolism and immune evasion. Strategies for early detection and eradication of anaerobic cancer-associated bacterial pathogens that may prevent cancer progression are proposed.
Collapse
Affiliation(s)
- Rachel Hurst
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Daniel S. Brewer
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich NR4 7UZ, UK
| | - Abraham Gihawi
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - John Wain
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Quadram Institute Biosciences, Colney Lane, Norwich, Norfolk, NR4 7UQ, UK
| | - Colin S. Cooper
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| |
Collapse
|
10
|
Xu D, Zhou S, Liu Y, Scott AL, Yang J, Wan F. Complement in breast milk modifies offspring gut microbiota to promote infant health. Cell 2024; 187:750-763.e20. [PMID: 38242132 PMCID: PMC10872564 DOI: 10.1016/j.cell.2023.12.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 01/21/2024]
Abstract
Breastfeeding offers demonstrable benefits to newborns and infants by providing nourishment and immune protection and by shaping the gut commensal microbiota. Although it has been appreciated for decades that breast milk contains complement components, the physiological relevance of complement in breast milk remains undefined. Here, we demonstrate that weanling mice fostered by complement-deficient dams rapidly succumb when exposed to murine pathogen Citrobacter rodentium (CR), whereas pups fostered on complement-containing milk from wild-type dams can tolerate CR challenge. The complement components in breast milk were shown to directly lyse specific members of gram-positive gut commensal microbiota via a C1-dependent, antibody-independent mechanism, resulting in the deposition of the membrane attack complex and subsequent bacterial lysis. By selectively eliminating members of the commensal gut community, complement components from breast milk shape neonate and infant gut microbial composition to be protective against environmental pathogens such as CR.
Collapse
Affiliation(s)
- Dongqing Xu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Siyu Zhou
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Yue Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Alan L Scott
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
11
|
Yu J, Huang J, Ding R, Xu Y, Liu Y. Inhibiting F-Actin Polymerization Impairs the Internalization of Moraxella catarrhalis. Microorganisms 2024; 12:291. [PMID: 38399695 PMCID: PMC10892693 DOI: 10.3390/microorganisms12020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Moraxella catarrhalis, a commensal in the human nasopharynx, plays a significant role in the acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Its pathogenicity involves adherence to respiratory epithelial cells, leading to infection through a macropinocytosis-like mechanism. Previous investigations highlighted the diverse abilities of M. catarrhalis isolates with different phenotypes to adhere to and invade respiratory epithelial cells. This study used a murine COPD model and in vitro experiments to explore the factors influencing the pathogenicity of distinct phenotypes of M. catarrhalis. Transcriptome sequencing suggested a potential association between actin cytoskeleton regulation and the infection of lung epithelial cells by M. catarrhalis with different phenotypes. Electron microscopy and Western blot analyses revealed a decrease in filamentous actin (F-actin) expression upon infection with various M. catarrhalis phenotypes. Inhibition of actin polymerization indicated the involvement of F-actin dynamics in M. catarrhalis internalization, distinguishing it from the adhesion process. Notably, hindering F-actin polymerization impaired the internalization of M. catarrhalis. These findings contribute vital theoretical insights for developing preventive strategies and individualized clinical treatments for AECOPD patients infected with M. catarrhalis. The study underscores the importance of understanding the nuanced interactions between M. catarrhalis phenotypes and host lung epithelial cells, offering valuable implications for the management of AECOPD infections.
Collapse
Affiliation(s)
- Jinhan Yu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (J.Y.); (J.H.)
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China;
| | - Jingjing Huang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (J.Y.); (J.H.)
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China;
| | - Rui Ding
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China;
| | - Yingchun Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (J.Y.); (J.H.)
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China;
| | - Yali Liu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (J.Y.); (J.H.)
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China;
| |
Collapse
|
12
|
Zhang Q, Bin S, Budge K, Petrosyan A, Villani V, Aguiari P, Vink C, Wetzels J, Soloyan H, La Manna G, Podestà MA, Molinari P, Sedrakyan S, Lemley KV, De Filippo RE, Perin L, Cravedi P, Da Sacco S. C3aR-initiated signaling is a critical mechanism of podocyte injury in membranous nephropathy. JCI Insight 2024; 9:e172976. [PMID: 38227377 PMCID: PMC11143932 DOI: 10.1172/jci.insight.172976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024] Open
Abstract
The deposition of antipodocyte autoantibodies in the glomerular subepithelial space induces primary membranous nephropathy (MN), the leading cause of nephrotic syndrome worldwide. Taking advantage of the glomerulus-on-a-chip system, we modeled human primary MN induced by anti-PLA2R antibodies. Here we show that exposure of primary human podocytes expressing PLA2R to MN serum results in IgG deposition and complement activation on their surface, leading to loss of the chip permselectivity to albumin. C3a receptor (C3aR) antagonists as well as C3AR gene silencing in podocytes reduced oxidative stress induced by MN serum and prevented albumin leakage. In contrast, inhibition of the formation of the membrane-attack-complex (MAC), previously thought to play a major role in MN pathogenesis, did not affect permselectivity to albumin. In addition, treatment with a C3aR antagonist effectively prevented proteinuria in a mouse model of MN, substantiating the chip findings. In conclusion, using a combination of pathophysiologically relevant in vitro and in vivo models, we established that C3a/C3aR signaling plays a critical role in complement-mediated MN pathogenesis, indicating an alternative therapeutic target for MN.
Collapse
Affiliation(s)
- Qi Zhang
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles (CHLA), Los Angeles, California, USA
| | - Sofia Bin
- Translational Transplant Research Center and Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS - Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Kelly Budge
- Translational Transplant Research Center and Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Astgik Petrosyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles (CHLA), Los Angeles, California, USA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Valentina Villani
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles (CHLA), Los Angeles, California, USA
| | - Paola Aguiari
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles (CHLA), Los Angeles, California, USA
| | - Coralien Vink
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack Wetzels
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hasmik Soloyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles (CHLA), Los Angeles, California, USA
| | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS - Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Manuel Alfredo Podestà
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paolo Molinari
- Translational Transplant Research Center and Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sargis Sedrakyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles (CHLA), Los Angeles, California, USA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kevin V. Lemley
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles (CHLA), Los Angeles, California, USA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Roger E. De Filippo
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles (CHLA), Los Angeles, California, USA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles (CHLA), Los Angeles, California, USA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Paolo Cravedi
- Translational Transplant Research Center and Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stefano Da Sacco
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles (CHLA), Los Angeles, California, USA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
13
|
Liang S, Zheng Z, Li Y, Yang Y, Qin L, Zhao Z, Wang L, Wang H. A review of platelet-rich plasma for enteric fistula management. Front Bioeng Biotechnol 2023; 11:1287890. [PMID: 38033816 PMCID: PMC10685294 DOI: 10.3389/fbioe.2023.1287890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Enteric fistula (EF), a serious complication after abdominal surgery, refers to unnatural communication between the gastrointestinal tract and the skin or other hollow organs. It is associated with infection, massive fluid/electrolyte loss, and malnutrition, resulting in an unhealed course. Despite advances in surgical techniques, wound care, infection control, and nutritional support, EF remains associated with considerable morbidity and mortality. Autologous platelet-rich plasma (PRP) containing elevated platelet concentrations has been proposed to promote healing in many tissues. However, the mechanism of action of PRP in EF treatment remains unclear owing to its complicated clinical manifestations. In this review, we summarized the clinical approaches, outlined the principal cytokines involved in the healing effects, and discussed the advantages of PRP for EF therapy. In addition, we defined the mechanism of autologous PRP in EF management, which is essential for further developing EF therapies.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Clinical Laboratory, Zhangdian District People’s Hospital of Zibo City, Zibo, China
| | - Zhiqiang Zheng
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaxin Li
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuanming Yang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lifeng Qin
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhen Zhao
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Licun Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Wang J, Liang K, Chen L, Su X, Liao D, Yu J, He J. Unveiling the stealthy tactics: mycoplasma's immune evasion strategies. Front Cell Infect Microbiol 2023; 13:1247182. [PMID: 37719671 PMCID: PMC10502178 DOI: 10.3389/fcimb.2023.1247182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/09/2023] [Indexed: 09/19/2023] Open
Abstract
Mycoplasmas, the smallest known self-replicating organisms, possess a simple structure, lack a cell wall, and have limited metabolic pathways. They are responsible for causing acute or chronic infections in humans and animals, with a significant number of species exhibiting pathogenicity. Although the innate and adaptive immune responses can effectively combat this pathogen, mycoplasmas are capable of persisting in the host, indicating that the immune system fails to eliminate them completely. Recent studies have shed light on the intricate and sophisticated defense mechanisms developed by mycoplasmas during their long-term co-evolution with the host. These evasion strategies encompass various tactics, including invasion, biofilm formation, and modulation of immune responses, such as inhibition of immune cell activity, suppression of immune cell function, and resistance against immune molecules. Additionally, antigen variation and molecular mimicry are also crucial immune evasion strategies. This review comprehensively summarizes the evasion mechanisms employed by mycoplasmas, providing valuable insights into the pathogenesis of mycoplasma infections.
Collapse
Affiliation(s)
- Jingyun Wang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Keying Liang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Chen
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaoling Su
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Daoyong Liao
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianwei Yu
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jun He
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
15
|
Wu RX, Miao BB, Han FY, Niu SF, Liang YS, Liang ZB, Wang QH. Chromosome-Level Genome Assembly Provides Insights into the Evolution of the Special Morphology and Behaviour of Lepturacanthus savala. Genes (Basel) 2023; 14:1268. [PMID: 37372448 DOI: 10.3390/genes14061268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Savalani hairtail Lepturacanthus savala is a widely distributed fish along the Indo-Western Pacific coast, and contributes substantially to trichiurid fishery resources worldwide. In this study, the first chromosome-level genome assembly of L. savala was obtained by PacBio SMRT-Seq, Illumina HiSeq, and Hi-C technologies. The final assembled L. savala genome was 790.02 Mb with contig N50 and scaffold N50 values of 19.01 Mb and 32.77 Mb, respectively. The assembled sequences were anchored to 24 chromosomes by using Hi-C data. Combined with RNA sequencing data, 23,625 protein-coding genes were predicted, of which 96.0% were successfully annotated. In total, 67 gene family expansions and 93 gene family contractions were detected in the L. savala genome. Additionally, 1825 positively selected genes were identified. Based on a comparative genomic analysis, we screened a number of candidate genes associated with the specific morphology, behaviour-related immune system, and DNA repair mechanisms in L. savala. Our results preliminarily revealed mechanisms underlying the special morphological and behavioural characteristics of L. savala from a genomic perspective. Furthermore, this study provides valuable reference data for subsequent molecular ecology studies of L. savala and whole-genome analyses of other trichiurid fishes.
Collapse
Affiliation(s)
- Ren-Xie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ben-Ben Miao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Fang-Yuan Han
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yan-Shan Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhen-Bang Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qing-Hua Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
16
|
Cleveland DW, Anderson CC, Brissette CA. Borrelia miyamotoi: A Comprehensive Review. Pathogens 2023; 12:267. [PMID: 36839539 PMCID: PMC9967256 DOI: 10.3390/pathogens12020267] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Borrelia miyamotoi is an emerging tick-borne pathogen in the Northern Hemisphere and is the causative agent of Borrelia miyamotoi disease (BMD). Borrelia miyamotoi is vectored by the same hard-bodied ticks as Lyme disease Borrelia, yet phylogenetically groups with relapsing fever Borrelia, and thus, has been uniquely labeled a hard tick-borne relapsing fever Borrelia. Burgeoning research has uncovered new aspects of B. miyamotoi in human patients, nature, and the lab. Of particular interest are novel findings on disease pathology, prevalence, diagnostic methods, ecological maintenance, transmission, and genetic characteristics. Herein, we review recent literature on B. miyamotoi, discuss how findings adapt to current Borrelia doctrines, and briefly consider what remains unknown about B. miyamotoi.
Collapse
Affiliation(s)
| | | | - Catherine A. Brissette
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
17
|
Walker E, van Niekerk S, Hanning K, Kelton W, Hicks J. Mechanisms of host manipulation by Neisseria gonorrhoeae. Front Microbiol 2023; 14:1119834. [PMID: 36819065 PMCID: PMC9935845 DOI: 10.3389/fmicb.2023.1119834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Neisseria gonorrhoeae (also known as gonococcus) has been causing gonorrhoea in humans since ancient Egyptian times. Today, global gonorrhoea infections are rising at an alarming rate, in concert with an increasing number of antimicrobial-resistant strains. The gonococcus has concurrently evolved several intricate mechanisms that promote pathogenesis by evading both host immunity and defeating common therapeutic interventions. Central to these adaptations is the ability of the gonococcus to manipulate various host microenvironments upon infection. For example, the gonococcus can survive within neutrophils through direct regulation of both the oxidative burst response and maturation of the phagosome; a concerning trait given the important role neutrophils have in defending against invading pathogens. Hence, a detailed understanding of how N. gonorrhoeae exploits the human host to establish and maintain infection is crucial for combating this pathogen. This review summarizes the mechanisms behind host manipulation, with a central focus on the exploitation of host epithelial cell signaling to promote colonization and invasion of the epithelial lining, the modulation of the host immune response to evade both innate and adaptive defenses, and the manipulation of host cell death pathways to both assist colonization and combat antimicrobial activities of innate immune cells. Collectively, these pathways act in concert to enable N. gonorrhoeae to colonize and invade a wide array of host tissues, both establishing and disseminating gonococcal infection.
Collapse
Affiliation(s)
- Emma Walker
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - Stacy van Niekerk
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - Kyrin Hanning
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - William Kelton
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
- Te Aka Mātuatua School of Science, University of Waikato, Hamilton, New Zealand
| | - Joanna Hicks
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
18
|
Redistribution of the Novel Clostridioides difficile Spore Adherence Receptor E-Cadherin by TcdA and TcdB Increases Spore Binding to Adherens Junctions. Infect Immun 2023; 91:e0047622. [PMID: 36448839 PMCID: PMC9872679 DOI: 10.1128/iai.00476-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Clostridioides difficile causes antibiotic-associated diseases in humans, ranging from mild diarrhea to severe pseudomembranous colitis and death. A major clinical challenge is the prevention of disease recurrence, which affects nearly ~20 to 30% of the patients with a primary C. difficile infection (CDI). During CDI, C. difficile forms metabolically dormant spores that are essential for recurrence of CDI (R-CDI). In prior studies, we have shown that C. difficile spores interact with intestinal epithelial cells (IECs), which contribute to R-CDI. However, this interaction remains poorly understood. Here, we provide evidence that C. difficile spores interact with E-cadherin, contributing to spore adherence and internalization into IECs. C. difficile toxins TcdA and TcdB lead to adherens junctions opening and increase spore adherence to IECs. Confocal micrographs demonstrate that C. difficile spores associate with accessible E-cadherin; spore-E-cadherin association increases upon TcdA and TcdB intoxication. The presence of anti-E-cadherin antibodies decreased spore adherence and entry into IECs. By enzyme-linked immunosorbent assay (ELISA), immunofluorescence, and immunogold labeling, we observed that E-cadherin binds to C. difficile spores, specifically to the hairlike projections of the spore, reducing spore adherence to IECs. Overall, these results expand our knowledge of how C. difficile spores bind to IECs by providing evidence that E-cadherin acts as a spore adherence receptor to IECs and by revealing how toxin-mediated damage affects spore interactions with IECs.
Collapse
|
19
|
Huang D, Luo J, OuYang X, Song L. Subversion of host cell signaling: The arsenal of Rickettsial species. Front Cell Infect Microbiol 2022; 12:995933. [PMID: 36389139 PMCID: PMC9659576 DOI: 10.3389/fcimb.2022.995933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/04/2022] [Indexed: 10/10/2023] Open
Abstract
Rickettsia is a genus of nonmotile, Gram-negative, non-spore-forming, highly pleomorphic bacteria that cause severe epidemic rickettsioses. The spotted fever group and typhi group are major members of the genus Rickettsia. Rickettsial species from the two groups subvert diverse host cellular processes, including membrane dynamics, actin cytoskeleton dynamics, phosphoinositide metabolism, intracellular trafficking, and immune defense, to promote their host colonization and intercellular transmission through secreted effectors (virulence factors). However, lineage-specific rickettsiae have exploited divergent strategies to accomplish such challenging tasks and these elaborated strategies focus on distinct host cell processes. In the present review, we summarized current understandings of how different rickettsial species employ their effectors' arsenal to affect host cellular processes in order to promote their own replication or to avoid destruction.
Collapse
Affiliation(s)
- Dan Huang
- Department of Respiratory Medicine, Center of Pathogen Biology and Infectious Disease, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Jingjing Luo
- Department of Respiratory Medicine, Center of Pathogen Biology and Infectious Disease, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xuan OuYang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lei Song
- Department of Respiratory Medicine, Center of Pathogen Biology and Infectious Disease, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Tian Y, Shin K, Aleshin AE, Im W, Marassi FM. Calcium-induced environmental adaptability of the blood protein vitronectin. Biophys J 2022; 121:3896-3906. [PMID: 36056555 PMCID: PMC9674982 DOI: 10.1016/j.bpj.2022.08.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/29/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
The adaptability of proteins to their work environments is fundamental for cellular life. Here, we describe how the hemopexin-like domain of the multifunctional blood glycoprotein vitronectin binds Ca2+ to adapt to excursions of temperature and shear stress. Using X-ray crystallography, molecular dynamics simulations, NMR, and differential scanning fluorimetry, we describe how Ca2+ and its flexible hydration shell enable the protein to perform conformational changes that relay beyond the calcium-binding site and alter the number of polar contacts to enhance conformational stability. By means of mutagenesis, we identify key residues that cooperate with Ca2+ to promote protein stability, and we show that calcium association confers protection against shear stress, a property that is advantageous for proteins that circulate in the vasculature, like vitronectin.
Collapse
Affiliation(s)
- Ye Tian
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Kyungsoo Shin
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | | | - Wonpil Im
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, Pennsylvania
| | | |
Collapse
|
21
|
Ruest MK, Dennis JJ. The Exploration of Complement-Resistance Mechanisms of Pathogenic Gram-Negative Bacteria to Support the Development of Novel Therapeutics. Pathogens 2022; 11:931. [PMID: 36015050 PMCID: PMC9412335 DOI: 10.3390/pathogens11080931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Resistance to antibiotics in Bacteria is one of the biggest threats to human health. After decades of attempting to isolate or design antibiotics with novel mechanisms of action against bacterial pathogens, few approaches have been successful. Antibacterial drug discovery is now moving towards targeting bacterial virulence factors, especially immune evasion factors. Gram-negative bacteria present some of the most significant challenges in terms of antibiotic resistance. However, they are also able to be eliminated by the component of the innate immune system known as the complement system. In response, Gram-negative bacteria have evolved a variety of mechanisms by which they are able to evade complement and cause infection. Complement resistance mechanisms present some of the best novel therapeutic targets for defending against highly antibiotic-resistant pathogenic bacterial infections.
Collapse
Affiliation(s)
| | - Jonathan J. Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
22
|
Doorduijn DJ, Lukassen MV, van 't Wout MFL, Franc V, Ruyken M, Bardoel BW, Heck AJR, Rooijakkers SHM. Soluble MAC is primarily released from MAC-resistant bacteria that potently convert complement component C5. eLife 2022; 11:77503. [PMID: 35947526 PMCID: PMC9402229 DOI: 10.7554/elife.77503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
The membrane attack complex (MAC or C5b-9) is an important effector of the immune system to kill invading microbes. MAC formation is initiated when complement enzymes on the bacterial surface convert complement component C5 into C5b. Although the MAC is a membrane-inserted complex, soluble forms of MAC (sMAC), or terminal complement complex (TCC), are often detected in sera of patients suffering from infections. Consequently, sMAC has been proposed as a biomarker, but it remains unclear when and how it is formed during infections. Here, we studied mechanisms of MAC formation on different Gram-negative and Gram-positive bacteria and found that sMAC is primarily formed in human serum by bacteria resistant to MAC-dependent killing. Surprisingly, C5 was converted into C5b more potently by MAC-resistant compared to MAC-sensitive Escherichia coli strains. In addition, we found that MAC precursors are released from the surface of MAC-resistant bacteria during MAC assembly. Although release of MAC precursors from bacteria induced lysis of bystander human erythrocytes, serum regulators vitronectin (Vn) and clusterin (Clu) can prevent this. Combining size exclusion chromatography with mass spectrometry profiling, we show that sMAC released from bacteria in serum is a heterogeneous mixture of complexes composed of C5b-8, up to three copies of C9 and multiple copies of Vn and Clu. Altogether, our data provide molecular insight into how sMAC is generated during bacterial infections. This fundamental knowledge could form the basis for exploring the use of sMAC as biomarker.
Collapse
Affiliation(s)
- Dennis J Doorduijn
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marie V Lukassen
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, Utrecht, Netherlands
| | - Marije F L van 't Wout
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, Utrecht, Netherlands
| | - Maartje Ruyken
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bart W Bardoel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, Utrecht, Netherlands
| | - Suzan H M Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
23
|
Wang J, Chen Z, Xu W, Li Y, Lu S, Wang L, Song Y, Wang N, Gong Z, Yang Q, Chen S. Transcriptomic analysis reveals the gene expression profiles in the spleen of spotted knifejaw (Oplegnathus punctatus) infected by Vibrio harveyi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104432. [PMID: 35533850 DOI: 10.1016/j.dci.2022.104432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
As one of the most valuable maricultured species, spotted knifejaw (Oplegnathus punctatus) has high popularity in eastern Asia. In recent years, diseases caused by Vibrio harveyi have brought huge economic losses in spotted knifejaw industry. To better understand the molecular mechanisms of immune response about V. harveyi resistance in spotted knifejaw, a comparative transcriptome analysis was performed on spleen tissues at five different time points post-infection (0, 12, 24, 48 and 72 hpi). A total of 4279 differentially expressed genes (DEGs) were identified. KEGG pathways analysis showed that multiple immune-related pathways were significant regulated, including Toll-like receptor signaling pathway, ECM-receptor interaction pathway, cytokine-cytokine receptor interaction pathway and hematopoietic cell lineage pathway. Weighted gene co-expression network analysis showed that several immune-related pathways of the highest correlation with 12 hpi (cor = 0.89, P = 7e-06) were significantly enriched. In addition, 12 hpi was a turning point for 7 gene clusters out of 9 that were divided according to gene expression patterns. Therefore, we speculated that 12 hpi might be a very critical time point for spotted knifejaw against V. harveyi infection. Additionally, qRT-PCR was carried out to validate the expressions of 12 DEGs. This study provided the first systematical transcriptome analysis of spotted knifejaw against V. harveyi. The results could help us better understand the dynamic immune responses of spotted knifejaw against bacterial infection, and provide useful information for antibacterial defense in spotted knifejaw industry as well.
Collapse
Affiliation(s)
- Jie Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Zhangfan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China
| | - Wenteng Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China
| | - Yangzhen Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China
| | - Sheng Lu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Lei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China
| | - Yu Song
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Na Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China
| | - Zhihong Gong
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qian Yang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China.
| |
Collapse
|
24
|
Yang X, Li M, Zhao Y, Tan X, Su J, Zhong X. Hsa_circ_0079530/AQP4 Axis Is Related to Non-Small Cell Lung Cancer Development and Radiosensitivity. Ann Thorac Cardiovasc Surg 2022; 28:307-319. [PMID: 35896371 PMCID: PMC9585336 DOI: 10.5761/atcs.oa.21-00237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: Circular RNAs are associated with non-small cell lung cancer (NSCLC) development and radiosensitivity. Nevertheless, the function and regulation mechanism of hsa_circ_0079530 (circ_0079530) in NSCLC development and radiosensitivity are largely unknown. Methods: The abundances of circ_0079530, microRNA (miR-409-3p), aquaporin 4 (AQP4), E-cadherin, intercellular adhesion molecule-1, vitronectin, proliferating cell nuclear antigen, and matrix metalloproteinase 9 were determined via quantitative reverse transcription polymerase chain reaction or western blotting. Cell proliferation, survival fraction, cycle process, migration, invasion, and in vivo growth were examined by cell counting kit-8, colony formation, flow cytometry, transwell, and xenograft analyses. The binding relationship was assessed via dual-luciferase reporter assay and RNA immunoprecipitation assay. Results: Circ_0079530 expression was increased in NSCLC tissues and radioresistant samples. Circ_0079530 knockdown restrained cell proliferation, migration, and invasion, and facilitated radiosensitivity. Circ_0079530 silence decreased tumor growth with or without radiation treatment. Circ_0079530 was verified as a miR-409-3p sponge, and miR-409-3p downregulation mitigated the effects of circ_0079530 interference on NSCLC cell malignancy and radiosensitivity. AQP4 was directly targeted by miR-409-3p. MiR-409-3p restrained cell proliferation, migration, and invasion, and enhanced radiosensitivity by decreasing AQP4 expression. Notably, circ_0079530 silence decreased AQP4 expression by regulating miR-409-3p expression. Conclusion: Circ_0079530 silence repressed cell proliferation, migration, and invasion, and facilitated radiosensitivity in NSCLC cells by mediating miR-409-3p/AQP4 axis.
Collapse
Affiliation(s)
- Xianghui Yang
- Department of Oncology, Changsha Central Hospital, Changsha, China
| | - Min Li
- Interventional Therapy Centre, Changsha Central Hospital, Changsha, China
| | - Yang Zhao
- Department of Oncology, Changsha Central Hospital, Changsha, China
| | - Xiaolang Tan
- Department of Oncology, Changsha Central Hospital, Changsha, China
| | - Jiqing Su
- Department of Oncology, Changsha Central Hospital, Changsha, China
| | - Xi Zhong
- Department of Oncology, People's Hospital of Ningxiang, Ningxiang, Changsha, China
| |
Collapse
|
25
|
Phan QT, Solis NV, Lin J, Swidergall M, Singh S, Liu H, Sheppard DC, Ibrahim AS, Mitchell AP, Filler SG. Serum bridging molecules drive candidal invasion of human but not mouse endothelial cells. PLoS Pathog 2022; 18:e1010681. [PMID: 35797411 PMCID: PMC9295963 DOI: 10.1371/journal.ppat.1010681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/19/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022] Open
Abstract
During hematogenously disseminated candidiasis, blood borne fungi must invade the endothelial cells that line the blood vessels to infect the deep tissues. Although Candida albicans, which forms hyphae, readily invades endothelial cells, other medically important species of Candida are poorly invasive in standard in vitro assays and have low virulence in immunocompetent mouse models of disseminated infection. Here, we show that Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida krusei can bind to vitronectin and high molecular weight kininogen present in human serum. Acting as bridging molecules, vitronectin and kininogen bind to αv integrins and the globular C1q receptor (gC1qR), inducing human endothelial cells to endocytose the fungus. This mechanism of endothelial cell invasion is poorly supported by mouse endothelial cells but can be restored when mouse endothelial cells are engineered to express human gC1qR or αv integrin. Overall, these data indicate that bridging molecule-mediated endocytosis is a common pathogenic strategy used by many medically important Candida spp. to invade human vascular endothelial cells.
Collapse
Affiliation(s)
- Quynh T. Phan
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Norma V. Solis
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Jianfeng Lin
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Marc Swidergall
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Shakti Singh
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Hong Liu
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Donald C. Sheppard
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Ashraf S. Ibrahim
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Scott G. Filler
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Cui T, Miao G, Jin X, Yu H, Zhang Z, Xu L, Wu Y, Qu G, Liu G, Zheng Y, Jiang G. The adverse inflammatory response of tobacco smoking in COVID-19 patients: biomarkers from proteomics and metabolomics. J Breath Res 2022; 16. [PMID: 35772384 DOI: 10.1088/1752-7163/ac7d6b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/30/2022] [Indexed: 01/08/2023]
Abstract
Whether tobacco smoking affects the occurrence and development of COVID-19 is still a controversial issue, and potential biomarkers to predict the adverse outcomes of smoking in the progression of COVID-19 patients have not yet been elucidated. To further uncover their linkage and explore the effective biomarkers, three proteomics and metabolomics databases (i.e. smoking status, COVID-19 status, and basic information of population) from human serum proteomic and metabolomic levels were established by literature search. Bioinformatics analysis was then performed to analyze the interactions of proteins or metabolites among the above three databases and their biological effects. Potential confounding factors (age, BMI, and gender) were controlled to improve the reliability. The obtained data indicated that smoking may increase the relative risk of conversion from non-severe to severe COVID-19 patients by inducing the dysfunctional immune response. Seven interacting proteins (C8A, LBP, FCN2, CRP, SAA1, SAA2, and VTN) were found to promote the deterioration of COVID-19 by stimulating the complement pathway and macrophage phagocytosis as well as inhibiting the associated negative regulatory pathways, which can be biomarkers to reflect and predict adverse outcomes in smoking COVID-19 patients. Three crucial pathways related to immunity and inflammation, including tryptophan, arginine, and glycerophospholipid metabolism, were considered to affect the effect of smoking on the adverse outcomes of COVID-19 patients. Our study provides novel evidence and corresponding biomarkers as potential predictors of severe disease progression in smoking COVID-19 patients, which is of great significance for preventing further deterioration in these patients.
Collapse
Affiliation(s)
- Tenglong Cui
- Qingdao University Medical College, Qingdao, Qingdao, Shandong, 266021, CHINA
| | - Gan Miao
- Qingdao University Medical College, Qingdao, Qingdao, Shandong, 266021, CHINA
| | - Xiaoting Jin
- Qingdao University Medical College, Qingdao, Qingdao, Shandong, 266021, CHINA
| | - Haiyi Yu
- Qingdao University Medical College, Qingdao, Qingdao, Shandong, 266021, CHINA
| | - Ze Zhang
- Qingdao University Medical College, Qingdao, Qingdao, Shandong, 266021, CHINA
| | - Liting Xu
- Qingdao University Medical College, Qingdao, Qingdao, Shandong, 266021, CHINA
| | - Yili Wu
- Qingdao University Medical College, Qingdao, Qingdao, Shandong, 266021, CHINA
| | - Guangbo Qu
- Research Centre for Eco-Environmental Sciences Chinese Academy of Sciences, Beijing, Beijing, Beijing, 100085, CHINA
| | - Guoliang Liu
- China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, China., Beijing, 100029, CHINA
| | - Yuxin Zheng
- Qingdao University Medical College, Qingdao, Qingdao, Shandong, 266021, CHINA
| | - Guibin Jiang
- Research Centre for Eco-Environmental Sciences Chinese Academy of Sciences, State Key Laboratory of Environmental Chemistry and Ecotoxicology , PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing, 100085 PR CHINA, Beijing, Beijing, 100085, CHINA
| |
Collapse
|
27
|
Li Y, Wang J, Liu B, Yu Y, Yuan T, Wei Y, Gan Y, Shao J, Shao G, Feng Z, Tu Z, Xiong Q. DnaK Functions as a Moonlighting Protein on the Surface of Mycoplasma hyorhinis Cells. Front Microbiol 2022; 13:842058. [PMID: 35308339 PMCID: PMC8927758 DOI: 10.3389/fmicb.2022.842058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Mycoplasma hyorhinis is a common pathogen of swine and is also associated with various human tumors. It causes systemic inflammation, typically polyserositis and polyarthritis, in some infected pigs. However, the pathogenic mechanism of M. hyorhinis remains unclear. DnaK is a highly conserved protein belonging to the heat-shock protein 70 family of molecular chaperones, which plays important roles as a moonlighting protein in various bacteria. In the present study, we identified the surface exposure of M. hyorhinis DnaK. Two virulent strains expressed more DnaK on their surface than the avirulent strain. Thereafter, the potential moonlighting functions of DnaK were investigated. Recombinant M. hyorhinis DnaK (rMhr-DnaK) was found to be able to adhere to swine PK-15 cells and human NCI-H292 cells. It also bound to four extracellular matrix components-fibronectin, laminin, type IV collagen, and vitronectin-in a dose-dependent manner. ELISA demonstrated an interaction between rMhr-DnaK and plasminogen, which was significantly inhibited by a lysine analog, ε-aminocaproic acid. rMhr-DnaK-bound plasminogen was activated by tissue-type plasminogen activator (tPA), and the addition of rMhr-DnaK significantly enhanced the activation. Finally, a DnaK-specific antibody was detected in the serum of pigs immunized with inactivated vaccines, which indicated good immunogenicity of it. In summary, our findings imply that DnaK is an important multifunctional moonlighting protein in M. hyorhinis and likely participates extensively in the infection and pathogenesis processes of M. hyorhinis.
Collapse
Affiliation(s)
- Yao Li
- School of Life Sciences, Jiangsu University, Zhenjiang, China.,Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Jia Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China.,College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| | - Beibei Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Yanfei Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ting Yuan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Yanna Wei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China.,College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| | - Yuan Gan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Jia Shao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Guoqing Shao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China.,College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zhixin Feng
- School of Life Sciences, Jiangsu University, Zhenjiang, China.,Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qiyan Xiong
- School of Life Sciences, Jiangsu University, Zhenjiang, China.,Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China.,College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
28
|
Bagel A, Sergentet D. Shiga Toxin-Producing Escherichia coli and Milk Fat Globules. Microorganisms 2022; 10:496. [PMID: 35336072 PMCID: PMC8953591 DOI: 10.3390/microorganisms10030496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are zoonotic Gram-negative bacteria. While raw milk cheese consumption is healthful, contamination with pathogens such as STEC can occur due to poor hygiene practices at the farm level. STEC infections cause mild to serious symptoms in humans. The raw milk cheese-making process concentrates certain milk macromolecules such as proteins and milk fat globules (MFGs), allowing the intrinsic beneficial and pathogenic microflora to continue to thrive. MFGs are surrounded by a biological membrane, the milk fat globule membrane (MFGM), which has a globally positive health effect, including inhibition of pathogen adhesion. In this review, we provide an update on the adhesion between STEC and raw MFGs and highlight the consequences of this interaction in terms of food safety, pathogen detection, and therapeutic development.
Collapse
Affiliation(s)
- Arthur Bagel
- ‘Bacterial Opportunistic Pathogens and Environment’ Research Team, Université de Lyon, UMR5557 Ecologie Microbienne Lyon, CNRS (National Center of Scientific Research), VetAgro Sup, Marcy-l’Etoile, 69280 Lyon, France;
| | - Delphine Sergentet
- ‘Bacterial Opportunistic Pathogens and Environment’ Research Team, Université de Lyon, UMR5557 Ecologie Microbienne Lyon, CNRS (National Center of Scientific Research), VetAgro Sup, Marcy-l’Etoile, 69280 Lyon, France;
- Laboratoire d’Etudes des Microorganismes Alimentaires Pathogènes-French National Reference Laboratory for Escherichia coli Including Shiga Toxin-Producing E. coli (NRL-STEC), VetAgro Sup—Campus Vétérinaire, Université de Lyon, Marcy-l’Etoile, 69280 Lyon, France
| |
Collapse
|
29
|
Qi J, Wang Y, Li H, Shang Y, Gao S, Ding C, Liu X, Wang S, Li T, Tian M, Yu S. Mycoplasma synoviae dihydrolipoamide dehydrogenase is an immunogenic fibronectin/plasminogen binding protein and a putative adhesin. Vet Microbiol 2021; 265:109328. [PMID: 35032790 DOI: 10.1016/j.vetmic.2021.109328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/23/2020] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
Mycoplasma synoviae (M. synoviae) is an important avian pathogen that causes arthritis and airsacculitis in young chickens and turkeys. Infection by M. synoviae results in considerable economic losses to the poultry industry worldwide. Cytoadherence is a crucial stage during mycoplasma infection. Dihydrolipoamide dehydrogenase (PdhD) is a flavin-dependent enzyme that is critical for energy metabolism and redox balance. To date, its role in cytoadherence is poorly understood. In this study, recombinant PdhD from M. synoviae (rMSPdhD) was expressed in the supernatant component of E. coli BL21 and rabbit anti-rMSPdhD serum was prepared. rMSPdhD was shown to be an immunogenic protein by immunoblot assays, while the mycoplasmacidal assay revealed that the rabbit anti-rMSPdhD serum had a high complement-dependent mycoplasmacidal rate (88.5 %). Using a suspension immunofluorescence assay and subcellular localization analysis, MSPdhD was shown to be a surface-localized protein distributed in both the cytoplasm and cell membrane of M. synoviae. The enzymatic activity of rMSPdhD was determined by measuring its ability to reduce lipoamide to dihydrolipoamide and convert NADH to NAD+. Using an indirect immunofluorescence assay, rMSPdhD was shown to adhere to DF-1 chicken embryo fibroblast cells. Furthermore, the attachment of M. synoviae to DF-1 cells was significantly inhibited by rabbit anti-rMSPdhD serum. Western blot and ELISA binding assays confirmed that rMSPdhD also bound to fibronectin (Fn) and plasminogen (Plg) in a dose-dependent manner. In conclusion, our data show that MSPdhD is not only a biological enzyme, but also an immunogenic surface-exposed protein that can bind to Fn and Plg as well as adhere to host cells. In addition, we show that rabbit anti-rMSPdhD serum can inhibit the adhesion of M. synoviae to DF-1 cells and has a significant complement-dependent bactericidal activity. Our findings suggest that MSPdhD may be involved in the pathogenesis of M. synoviae.
Collapse
Affiliation(s)
- Jingjing Qi
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China
| | - Yu Wang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China; College of Veterinary Medicine, Yangzhou University, No. 88 University South Road, Yangzhou, Jiangsu 225009, PR China
| | - Haoran Li
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China; College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei, Anhui, PR China
| | - Yuanbing Shang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China; College of Animal Husbandry and Veterinary Medicine, Jin Zhou Medical University, No. 40 Section 3 Songpo Road, Linghe District, Jinzhou City, Liaoning 121001, PR China
| | - Song Gao
- College of Veterinary Medicine, Yangzhou University, No. 88 University South Road, Yangzhou, Jiangsu 225009, PR China
| | - Chan Ding
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China
| | - Xiaohan Liu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China
| | - Tao Li
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China.
| |
Collapse
|
30
|
Fox CR, Parks GD. Complement Inhibitors Vitronectin and Clusterin Are Recruited from Human Serum to the Surface of Coronavirus OC43-Infected Lung Cells through Antibody-Dependent Mechanisms. Viruses 2021; 14:v14010029. [PMID: 35062233 PMCID: PMC8780186 DOI: 10.3390/v14010029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
Little is known about the role of complement (C’) in infections with highly prevalent circulating human coronaviruses such as OC43, a group of viruses of major public health concern. Treatment of OC43-infected human lung cells with human serum resulted in C3 deposition on their surfaces and generation of C5a, indicating robust C’ activation. Real-time cell viability assays showed that in vitro C’-mediated lysis of OC43 infected cells requires C3, C5 and C6 but not C7, and was substantially delayed as compared to rapid C’-mediated killing of parainfluenza virus type 5 (PIV5)-infected cells. In cells co-infected with OC43 and PIV5, C’-mediated lysis was delayed, similar to OC43 infected cells alone, suggesting that OC43 infection induced dominant inhibitory signals. When OC43-infected cells were treated with human serum, their cell surfaces contained both Vitronectin (VN) and Clusterin (CLU), two host cell C’ inhibitors that can alter membrane attack complex (MAC) formation and C’-mediated killing. VN and CLU were not bound to OC43-infected cells after treatment with antibody-depleted serum. Reconstitution experiments with purified IgG and VN showed that human antibodies are both necessary and sufficient for VN recruitment to OC43-infected lung cells–novel findings with implications for CoV pathogenesis.
Collapse
|
31
|
MB T, AF T, ALTO N. The leptospiral LipL21 and LipL41 proteins exhibit a broad spectrum of interactions with host cell components. Virulence 2021; 12:2798-2813. [PMID: 34719356 PMCID: PMC8632080 DOI: 10.1080/21505594.2021.1993427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/08/2021] [Accepted: 10/08/2021] [Indexed: 01/09/2023] Open
Abstract
Leptospirosis is a globally prevalent zoonotic disease, and is caused by pathogenic spirochetes from the genus Leptospira. LipL21 and LipL41 are lipoproteins expressed strongly on the outer membrane of pathogenic Leptospira spp. Many studies have shown that both proteins are interesting targets for vaccines and diagnosis. However, their role in host-pathogen interactions remains underexplored. Therefore, we evaluated the capacity of LipL21 and LipL41 to bind with glycosaminoglycans (GAGs), the cell receptors and extracellular matrix, and plasma components by ELISA. Both proteins interacted with collagen IV, laminin, E-cadherin, and elastin dose-dependently. A broad-spectrum binding to plasma components was also observed. Only LipL21 interacted with all the GAG components tested, whereas LipL41 presented a concentration-dependent binding only for chondroitin 4 sulfate. Although, both proteins have the ability to interact with fibrinogen, only LipL21 inhibited fibrin clot formation partially. Both proteins exhibited a decrease in plasminogen binding in the presence of amino caproic acid (ACA), a competitive inhibitor of lysine residues, suggesting that their binding occurs via the kringle domains of plasminogen. LipL41, but not LipL21, was able to convert plasminogen to plasmin, and recruit plasminogen from normal human serum, suggesting that the interaction of this protein with plasminogen may occur in physiological conditions. This work provides the first report demonstrating the capacity of LipL21 and LipL41 to interact with a broad range of host components, highlighting their importance in host-Leptospira interactions.
Collapse
Affiliation(s)
- Takahashi MB
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades Em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Teixeira AF
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Nascimento ALTO
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
32
|
Rahman MM, Lendel C. Extracellular protein components of amyloid plaques and their roles in Alzheimer's disease pathology. Mol Neurodegener 2021; 16:59. [PMID: 34454574 PMCID: PMC8400902 DOI: 10.1186/s13024-021-00465-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is pathologically defined by the presence of fibrillar amyloid β (Aβ) peptide in extracellular senile plaques and tau filaments in intracellular neurofibrillary tangles. Extensive research has focused on understanding the assembly mechanisms and neurotoxic effects of Aβ during the last decades but still we only have a brief understanding of the disease associated biological processes. This review highlights the many other constituents that, beside Aβ, are accumulated in the plaques, with the focus on extracellular proteins. All living organisms rely on a delicate network of protein functionality. Deposition of significant amounts of certain proteins in insoluble inclusions will unquestionably lead to disturbances in the network, which may contribute to AD and copathology. This paper provide a comprehensive overview of extracellular proteins that have been shown to interact with Aβ and a discussion of their potential roles in AD pathology. Methods that can expand the knowledge about how the proteins are incorporated in plaques are described. Top-down methods to analyze post-mortem tissue and bottom-up approaches with the potential to provide molecular insights on the organization of plaque-like particles are compared. Finally, a network analysis of Aβ-interacting partners with enriched functional and structural key words is presented.
Collapse
Affiliation(s)
- M Mahafuzur Rahman
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| | - Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
33
|
Analyzing the Effect of Vitronectin on Cell Growth and Mesenchymal-Epithelial Transition of Pulmonary Fibroblast Cells. Lung 2021; 199:389-394. [PMID: 34415400 DOI: 10.1007/s00408-021-00467-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Vitronectin (VTN), a multifunctional glycoprotein, is involved in various biological and pathological processes. The purpose of this study was to explore the effect of VTN on mesenchymal-epithelial transition (MET) of pulmonary fibroblast cells. METHODS Lentivirus encoding for VTN-specific shRNA was constructed and infected into the cultured fibroblast WI-38 cells. Real-time PCR and Western blot were applied to examine the expression of VTN in WI-38 cells. MTT assay was used to assess cell proliferation. Western blot was conducted to examine the expression of MET-related and apoptosis-related proteins. RESULTS The knockdown of VTN significantly inhibited the growth of WI-38 cells compared to the control group. Meanwhile, knockdown of VTN remarkably increased the expression of Bax and Caspase 3 compared with the control group. Furthermore, knockdown of VTN significantly promoted the expression of E-cadherin in comparison to control group. CONCLUSIONS Knockdown of VTN promoted the expression of apoptosis-related factors, meanwhile, facilitated the MET process of fibroblast cells by regulating the expression of relevant factors. In sum, VTN performed a potential regulator in cell growth and MET of pulmonary fibroblast cells, which can be considered as a potential target for diagnose and therapy of relevant diseases.
Collapse
|
34
|
Hower S, McCormack R, Bartra SS, Alonso P, Podack ER, Shembade N, Plano GV. LPS modifications and AvrA activity of Salmonella enterica serovar Typhimurium are required to prevent Perforin-2 expression by infected fibroblasts and intestinal epithelial cells. Microb Pathog 2021; 154:104852. [PMID: 33762201 DOI: 10.1016/j.micpath.2021.104852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
Cellular Perforin-2 (MPEG1) is a pore-forming MACPF family protein that plays a critical role in the defense against bacterial pathogens. Macrophages, neutrophils, and several other cell types that are part of the front line of innate defenses constitutively express high levels of Perforin-2; whereas, most other cell types must be induced to express Perforin-2 by interferons (α, β and γ) and/or PAMPs such as LPS. In this study, we demonstrate that many bacterial pathogens can limit the expression of Perforin-2 in cells normally inducible for Perforin-2 expression, while ordinarily commensal or non-pathogenic bacteria triggered high levels of Perforin-2 expression in these same cell types. The mechanisms by which pathogens suppress Perforin-2 expression was explored further using Salmonella enterica serovar Typhimurium and cultured MEFs as well as intestinal epithelial cell lines. These studies identified multiple factors required to minimize the expression of Perforin-2 in cell types inducible for Perforin-2 expression. These included the PmrAB and PhoPQ two-component systems, select LPS modification enzymes and the Type III secretion effector protein AvrA.
Collapse
Affiliation(s)
- Suzanne Hower
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ryan McCormack
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Sara Schesser Bartra
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Patricia Alonso
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Eckhard R Podack
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - Noula Shembade
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
35
|
Sato K, Kumagai Y, Sekizuka T, Kuroda M, Hayashi T, Takano A, Gaowa, Taylor KR, Ohnishi M, Kawabata H. Vitronectin binding protein, BOM1093, confers serum resistance on Borrelia miyamotoi. Sci Rep 2021; 11:5462. [PMID: 33750855 PMCID: PMC7943577 DOI: 10.1038/s41598-021-85069-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
Borrelia miyamotoi, a member of the tick-borne relapsing fever spirochetes, shows a serum-resistant phenotype in vitro. This ability of B. miyamotoi may contribute to bacterial evasion of the host innate immune system. To investigate the molecular mechanism of serum-resistance, we constructed a membrane protein-encoding gene library of B. miyamotoi using Borrelia garinii strain HT59G, which shows a transformable and serum-susceptible phenotype. By screening the library, we found that bom1093 and bom1515 of B. miyamotoi provided a serum-resistant phenotype to the recipient B. garinii. These B. miyamotoi genes are predicted to encode P35-like antigen genes and are conserved among relapsing fever borreliae. Functional analysis revealed that BOM1093 bound to serum vitronectin and that the C-terminal region of BOM1093 was involved in the vitronectin-binding property. Importantly, the B. garinii transformant was not serum-resistant when the C terminus-truncated BOM1093 was expressed. We also observed that the depletion of vitronectin from human serum enhances the bactericidal activity of BOM1093 expressing B. garinii, and the survival rate of BOM1093 expressing B. garinii in vitronectin-depleted serum is enhanced by the addition of purified vitronectin. Our data suggests that B. miyamotoi utilize BOM1093-mediated binding to vitronectin as a mechanism of serum resistance.
Collapse
Affiliation(s)
- Kozue Sato
- Department of Bacteriology-I, National Institute of Infectious Disease, Toyama 1-23-1, Shinjuku, Tokyo, 162-8640, Japan
| | - Yumi Kumagai
- Department of Bacteriology-I, National Institute of Infectious Disease, Toyama 1-23-1, Shinjuku, Tokyo, 162-8640, Japan
- Department of Host Defense and Biochemical Research, School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Disease, Tokyo, 162-8640, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Disease, Tokyo, 162-8640, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Ai Takano
- Laboratory of Veterinary Epidemiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753-8511, Japan
| | - Gaowa
- Inner Mongolia Key Laboratory of Tick-Borne Zoonotic Infectious Disease, Department of Medicine, College of Hetao, Bayannur, China
| | - Kyle R Taylor
- College of Veterinary Medicine, Washington State University, Pullman, USA
| | - Makoto Ohnishi
- Department of Bacteriology-I, National Institute of Infectious Disease, Toyama 1-23-1, Shinjuku, Tokyo, 162-8640, Japan
| | - Hiroki Kawabata
- Department of Bacteriology-I, National Institute of Infectious Disease, Toyama 1-23-1, Shinjuku, Tokyo, 162-8640, Japan.
| |
Collapse
|
36
|
Castro-Córdova P, Mora-Uribe P, Reyes-Ramírez R, Cofré-Araneda G, Orozco-Aguilar J, Brito-Silva C, Mendoza-León MJ, Kuehne SA, Minton NP, Pizarro-Guajardo M, Paredes-Sabja D. Entry of spores into intestinal epithelial cells contributes to recurrence of Clostridioides difficile infection. Nat Commun 2021; 12:1140. [PMID: 33602902 PMCID: PMC7893008 DOI: 10.1038/s41467-021-21355-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile spores produced during infection are important for the recurrence of the disease. Here, we show that C. difficile spores gain entry into the intestinal mucosa via pathways dependent on host fibronectin-α5β1 and vitronectin-αvβ1. The exosporium protein BclA3, on the spore surface, is required for both entry pathways. Deletion of the bclA3 gene in C. difficile, or pharmacological inhibition of endocytosis using nystatin, leads to reduced entry into the intestinal mucosa and reduced recurrence of the disease in a mouse model. Our findings indicate that C. difficile spore entry into the intestinal barrier can contribute to spore persistence and infection recurrence, and suggest potential avenues for new therapies.
Collapse
Affiliation(s)
- Pablo Castro-Córdova
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Paola Mora-Uribe
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Rodrigo Reyes-Ramírez
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Glenda Cofré-Araneda
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Josué Orozco-Aguilar
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Christian Brito-Silva
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - María José Mendoza-León
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Sarah A Kuehne
- School of Dentistry and Institute for Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, Centre for Biomolecular Sciences, The University of Nottingham, Nottingham, UK
| | - Marjorie Pizarro-Guajardo
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
- ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile.
- Department of Biology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
37
|
Mathelié-Guinlet M, Viela F, Pietrocola G, Speziale P, Dufrêne YF. Nanonewton forces between Staphylococcus aureus surface protein IsdB and vitronectin. NANOSCALE ADVANCES 2020; 2:5728-5736. [PMID: 36133863 PMCID: PMC9419033 DOI: 10.1039/d0na00636j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/16/2020] [Indexed: 06/16/2023]
Abstract
Single-molecule experiments have recently revealed that the interaction between staphylococcal surface proteins and their ligands can be extremely strong, equivalent to the strength of covalent bonds. Here, we report on the unusually high binding strength between Staphylococcus aureus iron-regulated surface determinant B (IsdB) and vitronectin (Vn), an essential human blood protein known to interact with bacterial pathogens. The IsdB-Vn interaction is dramatically strengthened by mechanical tension, with forces up to 2000 pN at a loading rate of 105 pN s-1. In line with this, flow experiments show that IsdB-mediated bacterial adhesion to Vn is enhanced by fluid shear stress. The stress-dependent binding of IsdB to Vn is likely to play a role in promoting bacterial adhesion to human cells under fluid shear stress conditions.
Collapse
Affiliation(s)
- Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain Croix du Sud, 4-5, bte L7.07.07 B-1348 Louvain-la-Neuve Belgium
| | - Felipe Viela
- Louvain Institute of Biomolecular Science and Technology, UCLouvain Croix du Sud, 4-5, bte L7.07.07 B-1348 Louvain-la-Neuve Belgium
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia Viale Taramelli 3/b 27100 Pavia Italy
| | - Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia Viale Taramelli 3/b 27100 Pavia Italy
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain Croix du Sud, 4-5, bte L7.07.07 B-1348 Louvain-la-Neuve Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) B-1300 Wavre Belgium
| |
Collapse
|
38
|
Krawczyk PA, Laub M, Kozik P. To Kill But Not Be Killed: Controlling the Activity of Mammalian Pore-Forming Proteins. Front Immunol 2020; 11:601405. [PMID: 33281828 PMCID: PMC7691655 DOI: 10.3389/fimmu.2020.601405] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/20/2020] [Indexed: 01/01/2023] Open
Abstract
Pore-forming proteins (PFPs) are present in all domains of life, and play an important role in host-pathogen warfare and in the elimination of cancers. They can be employed to deliver specific effectors across membranes, to disrupt membrane integrity interfering with cell homeostasis, and to lyse membranes either destroying intracellular organelles or entire cells. Considering the destructive potential of PFPs, it is perhaps not surprising that mechanisms controlling their activity are remarkably complex, especially in multicellular organisms. Mammalian PFPs discovered to date include the complement membrane attack complex (MAC), perforins, as well as gasdermins. While the primary function of perforin-1 and gasdermins is to eliminate infected or cancerous host cells, perforin-2 and MAC can target pathogens directly. Yet, all mammalian PFPs are in principle capable of generating pores in membranes of healthy host cells which-if uncontrolled-could have dire, and potentially lethal consequences. In this review, we will highlight the strategies employed to protect the host from destruction by endogenous PFPs, while enabling timely and efficient elimination of target cells.
Collapse
Affiliation(s)
- Patrycja A Krawczyk
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Marco Laub
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Patrycja Kozik
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
39
|
Elieh Ali Komi D, Shafaghat F, Kovanen PT, Meri S. Mast cells and complement system: Ancient interactions between components of innate immunity. Allergy 2020; 75:2818-2828. [PMID: 32446274 DOI: 10.1111/all.14413] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/09/2020] [Accepted: 04/26/2020] [Indexed: 12/23/2022]
Abstract
The emergence and evolution of the complement system and mast cells (MCs) can be traced back to sea urchins and the ascidian Styela plicata, respectively. Acting as a cascade of enzymatic reactions, complement is activated through the classical (CP), the alternative (AP), and the lectin pathway (LP) based on the recognized molecules. The system's main biological functions include lysis, opsonization, and recruitment of phagocytes. MCs, beyond their classic role as master cells of allergic reactions, play a role in other settings, as well. Thus, MCs are considered as extrahepatic producers of complement proteins. They express various complement receptors, including those for C3a and C5a. C3a and C5a not only activate the C3aR and C5aR expressing MCs but also act as chemoattractants for MCs derived from different anatomic sites, such as from the bone marrow, human umbilical cord blood, or skin in vitro. Cross talk between MCs and complement is facilitated by the production of complement proteins by MCs and their activation by the MC tryptase. The coordinated activity between MCs and the complement system plays a key role, for example, in a number of allergic, cutaneous, and vascular diseases. At a molecular level, MCs and complement system interactions are based on the production of several complement zymogens by MCs and their activation by MC-released proteases. Additionally, at a cellular level, MCs act as potent effector cells of complement activation by expressing receptors for C3a and C5a through which their chemoattraction and activation are mediated by anaphylatoxins in a paracrine and autocrine fashion.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology Tabriz University of Medical Sciences Tabriz Iran
| | - Farzaneh Shafaghat
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology Tabriz University of Medical Sciences Tabriz Iran
| | | | - Seppo Meri
- Department of Bacteriology and Immunology Immunobiology Research Program University of Helsinki Helsinki Finland
- HUSLAB Helsinki University Central Hospital Helsinki Finland
| |
Collapse
|
40
|
Calcium and hydroxyapatite binding site of human vitronectin provides insights to abnormal deposit formation. Proc Natl Acad Sci U S A 2020; 117:18504-18510. [PMID: 32699145 DOI: 10.1073/pnas.2007699117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human blood protein vitronectin (Vn) is a major component of the abnormal deposits associated with age-related macular degeneration, Alzheimer's disease, and many other age-related disorders. Its accumulation with lipids and hydroxyapatite (HAP) has been demonstrated, but the precise mechanism for deposit formation remains unknown. Using a combination of solution and solid-state NMR experiments, cosedimentation assays, differential scanning fluorimetry (DSF), and binding energy calculations, we demonstrate that Vn is capable of binding both soluble ionic calcium and crystalline HAP, with high affinity and chemical specificity. Calcium ions bind preferentially at an external site, at the top of the hemopexin-like (HX) domain, with a group of four Asp carboxylate groups. The same external site is also implicated in HAP binding. Moreover, Vn acquires thermal stability upon association with either calcium ions or crystalline HAP. The data point to a mechanism whereby Vn plays an active role in orchestrating calcified deposit formation. They provide a platform for understanding the pathogenesis of macular degeneration and other related degenerative disorders, and the normal functions of Vn, especially those related to bone resorption.
Collapse
|
41
|
Hong Y, Lee H, Kim KS, Min MS. Phylogenetic relationships between different raccoon dog (Nyctereutes procyonoides) populations based on four nuclear and Y genes. Genes Genomics 2020; 42:1075-1085. [PMID: 32725576 DOI: 10.1007/s13258-020-00972-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/14/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND The raccoon dog (Nyctereutes procyonoides), endemic to East Asia, is classified as six subspecies according to their geographical distribution including a population introduced to Europe. Studies on phylogenetic relationship or population genetics in both native and introduced areas have been carried out recently. Lately, opinions that Japanese raccoon dogs should be classified as a different species were asserted based on several studies using karyotypes, morphometric characters, mtDNA, and microsatellites analysis. However, no data pertaining to the nuclear DNA (nDNA) or Y chromosome are available. OBJECTIVE To estimate the relationship among the species using different genes is necessary in understanding of the history of this species. METHOD Therefore, we investigated nDNA and Y chromosomes in our study to define relationships: (1) between continental raccoon dog populations, (2) between original and introduced groups, and (3) between continental and Japanese groups. RESULTS The analysis of four nuclear (CHRNA1, VTN, TRSP, WT1) and ZFY genes indicated that there had been no genetic differentiation among the continental populations. However, significant differences were observed between continental and Japanese raccoon dogs in VTN and ZFY genes implying genetic differentiation has been going between them. CONCLUSION To better understand the phylogenetic relationship among raccoon dog populations, further study will be necessary.
Collapse
Affiliation(s)
- YoonJee Hong
- Conservation Genome Resource Bank for Korean Wildlife (CGRB), Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Hang Lee
- Conservation Genome Resource Bank for Korean Wildlife (CGRB), Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung Seok Kim
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, 50011, USA
| | - Mi-Sook Min
- Conservation Genome Resource Bank for Korean Wildlife (CGRB), Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
42
|
Harpf V, Rambach G, Würzner R, Lass-Flörl C, Speth C. Candida and Complement: New Aspects in an Old Battle. Front Immunol 2020; 11:1471. [PMID: 32765510 PMCID: PMC7381207 DOI: 10.3389/fimmu.2020.01471] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/05/2020] [Indexed: 01/13/2023] Open
Abstract
Candida is a dominant fungal pathogen in immunocompromised hosts, leading to opportunistic infections. Complement with its multifaceted functions is involved in the immune defense against this yeast, and recently several novel aspects have emerged in this old battle. It is clear that Candida can adopt both roles as a colonizer or as a pathogen. In our article, we focus on the molecular mechanisms of the Candida-complement interplay, which occur in disseminated disease as well as locally on skin or on mucous membranes in mouth and vagina; the mechanisms can be supposed to be the same. Activation of the complement system by Candida is facilitated by directly triggering the three dominant pathways, but also indirectly via the coagulation and fibrinolysis systems. The complement-mediated anti-Candida effects induced thereby clearly extend chemotaxis, opsonization, and phagocytosis, and even the membrane attack complex formed on the fungal surface plays a modulatory role, although lysis of the yeast per se cannot be induced due to the thick fungal cell wall. In order to avoid the hostile action of complement, several evasion mechanisms have evolved during co-evolution, comprising the avoidance of recognition, and destruction. The latter comes in many flavors, in particular the cleavage of complement proteins by yeast enzymes and the exploitation of regulatory proteins by recruiting them on the cell wall, such as factor H. The rationale behind that is that the fluid phase regulators on the fungal cell surface down-regulate complement locally. Interestingly, however, evasion protein knockout strains do not necessarily lead to an attenuated disease, so it is likely more complex in vivo than initially thought. The interactions between complement and non-albicans species also deserve attention, especially Candida auris, a recently identified drug-resistant species of medical importance. This is in particular worth investigating, as deciphering of these interactions may lead to alternative anti-fungal therapies directly targeting the molecular mechanisms.
Collapse
Affiliation(s)
- Verena Harpf
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Rambach
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Speth
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
43
|
Deciphering the Intricate Roles of Radiation Therapy and Complement Activation in Cancer. Int J Radiat Oncol Biol Phys 2020; 108:46-55. [PMID: 32629082 DOI: 10.1016/j.ijrobp.2020.06.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022]
Abstract
The complement system consists of a collection of serum proteins that act as the main frontline effector arm of the innate immune system. Activation of complement can occur through 3 individual induction pathways: the classical, mannose-binding lectin, and alternative pathways. Activation results in opsonization, recruitment of effector cells through potent immune mediators known as anaphylatoxins, and cell lysis via the formation of the membrane attack complex. Stringent regulation of complement is required to protect against inappropriate activation of the complement cascade. Complement activation within the tumor microenvironment does not increase antitumoral action; instead, it enhances tumor growth and disease progression. Radiation therapy (RT) is a staple in the treatment of malignancies and controls tumor growth through direct DNA damage and the influx of immune cells, reshaping the makeup of the tumor microenvironment. The relationship between RT and complement activity in the tumor microenvironment is uncertain at best. The following review will focus on the complex interaction of complement activation and the immune-modulating effects of RT and the overall effect on tumor progression. The clinical implications of complement activation in cancer and the use of therapeutics and potential biomarkers will also be covered.
Collapse
|
44
|
Quantitative proteomic analysis of human plasma using tandem mass tags to identify novel biomarkers for herpes zoster. J Proteomics 2020; 225:103879. [PMID: 32585426 DOI: 10.1016/j.jprot.2020.103879] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 11/21/2022]
Abstract
Herpes zoster (HZ), commonly called shingles, it is a distinctive syndrome caused by reactivation of varicella zoster virus (VZV). A better understanding of the biological characteristics of HZ patients can help develop new targeted therapies to improve the prognosis. High-throughput proteomics technology can deeply study the molecular changes in the development and progression of HZ disease and integrate different levels of information, this is important to help make clinical decisions. Circulating blood contains a lot of biological information, we conducted a proteomics study of patient plasma, hoping to identify key proteins that could indicate the development of HZ. Compared to healthy human plasma, we found 44 differentially expressed proteins in the plasma of HZ patients, the main pathways involved in these molecules are MAPK signaling pathway, Neuroactive ligand-receptor interaction, Acute myeloid leukemia, Transcriptional misregulation in cancer. We found that 27 proteins have direct protein-protein interactions. Based on the comprehensive score, we identified six key molecules as candidate molecules for further study, and then validated another 80 plasma samples (40 HZ patient plasma and 40 healthy human plasma) using enzyme-linked immunosorbent assay (ELISA), immunoblot assay and receiver operating characteristic (ROC) curve analysis. Finally, we found that the expression levels of these three proteins (PLG, F2, VTN) were significantly lower than those of healthy controls (P < .05). To the best of our knowledge, we first used tandem mass tag (TMT) combined with liquid chromatography-mass spectrometry (LC-MS/MS) to screen for differentially expressed proteins in plasma between HZ patients and healthy individuals. It is preliminarily proved that the plasma protein expression profile of HZ patients is different from that of uninfected patients, it has also been found that these three altered key proteins may be used as biomarkers to test early HZ infection. This study reveals new insights into HZ that help to more accurately identify early HZ patients and to find new therapeutic targets. SIGNIFICANCE: Varicella-zoster virus (VZV; termed human alphaherpesvirus 3 by the International Committee on Taxonomy of Viruses) is a herpesvirus that is ubiquitous in humans and can cause chickenpox and herpes zoster (HZ). After the initial infection of varicella, the VZV goes into a dormant state in the sensory ganglia and cranial nerves. As age or immunosuppression increases, the cellular immunity to VZV decreases, and the virus reactivates and spreads along the sensory nerves to the skin, causing a unique prodromal pain followed by a rash. About one in five people around the world may be infected with VZV at some point in their lives. According to statistics, about one-third of infected people will develop HZ in their lifetime, and an estimated 1 million cases of herpes zoster occur in the United States each year. Herpes zoster can occur at any age and is usually less severe in children and young adults, but the greatest morbidity and mortality are observed in elderly and immunocompromised patients. 20% of patients with HZ have complications including vasculitis, increased risk of myocardial infarction, or postherpetic neuralgia, the overall mortality rate of patients with HZ in the United States is close to 5%. Considering the wide clinical severity and complications of this disease, there is a great need for biomarkers that contribute to early diagnosis, classification of risks, and prediction of outcomes, which will help elucidate the mechanisms underlying their clinical development. As a useful tool in biology, quantitative proteomics can repeatedly identify and accurately quantify proteins in a variety of biological samples. Proteomic analysis focuses on translational proteins, which play a direct role in most biological processes. Although a small number of proteins can be studied simultaneously with traditional methods, such as ELISA and Western blotting, typical proteomics studies can simultaneously analyze thousands of proteins for a more comprehensive identification. Proteomics has been successfully applied to human-based disease research, Analysis of exposed and unexposed subjects based on mass spectrometry (MS) has been found to reveal altered expression of proteins that can be identified as intermediate biomarkers of early disease effects. Tandem mass tags (TMTs) are chemical labels used for MS-based identification and quantification of biological molecules. TMTs play an important role in proteomic analysis in a variety of samples such as cells, tissues, and body fluids. The body fluids that are often detected clinically are blood, which are easy to obtain and contain abundant biological information related to physiological and pathological processes, we hope to develop protein biomarkers from these blood. Therefore, in order to better characterize the pathological process of HZ patients, we performed proteomic analysis of HZ patients and healthy human plasma using the TMT method. This comparison aims to identify specific processes in the development of HZ disease through protein profiling, which may help to improve our biological understanding of HZ.
Collapse
|
45
|
Moraes CTP, Longo J, Silva LB, Pimenta DC, Carvalho E, Morone MSLC, da Rós N, Serrano SMT, Santos ACM, Piazza RMF, Barbosa AS, Elias WP. Surface Protein Dispersin of Enteroaggregative Escherichia coli Binds Plasminogen That Is Converted Into Active Plasmin. Front Microbiol 2020; 11:1222. [PMID: 32625178 PMCID: PMC7315649 DOI: 10.3389/fmicb.2020.01222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/14/2020] [Indexed: 01/24/2023] Open
Abstract
Dispersin is a 10.2 kDa-immunogenic protein secreted by enteroaggregative Escherichia coli (EAEC). In the prototypical EAEC strain 042, dispersin is non-covalently bound to the outer membrane, assisting dispersion across the intestinal mucosa by overcoming electrostatic attraction between the AAF/II fimbriae and the bacterial surface. Also, dispersin facilitates penetration of the intestinal mucus layer. Initially characterized in EAEC, dispersin has been detected in other E. coli pathotypes, including those isolated from extraintestinal sites. In this study we investigated the binding capacity of purified dispersin to extracellular matrix (ECM), since dispersin is exposed on the bacterial surface and is involved in intestinal colonization. Binding to plasminogen was also investigated due to the presence of conserved carboxy-terminal lysine residues in dispersin sequences, which are involved in plasminogen binding in several bacterial proteins. Moreover, some E. coli components can interact with this host protease, as well as with tissue plasminogen activator, leading to plasmin production. Recombinant dispersin was produced and used in binding assays with ECM molecules and coagulation cascade compounds. Purified dispersin bound specifically to laminin and plasminogen. Interaction with plasminogen occurred in a dose-dependent and saturable manner. In the presence of plasminogen activator, bound plasminogen was converted into plasmin, its active form, leading to fibrinogen and vitronectin cleavage. A collection of E. coli strains isolated from human bacteremia was screened for the presence of aap, the dispersin-encoding gene. Eight aap-positive strains were detected and dispersin production could be observed in four of them. Our data describe new attributes for dispersin and points out to possible roles in mechanisms of tissue adhesion and dissemination, considering the binding capacity to laminin, and the generation of dispersin-bound plasmin(ogen), which may facilitate E. coli spread from the colonization site to other tissues and organs. The cleavage of fibrinogen in the bloodstream, may also contribute to the pathogenesis of sepsis caused by dispersin-producing E. coli.
Collapse
Affiliation(s)
| | - Jonathan Longo
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| | - Ludmila B Silva
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| | - Daniel C Pimenta
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São Paulo, Brazil
| | - Eneas Carvalho
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| | - Mariana S L C Morone
- Laboratory of Applied Toxinology - Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Nancy da Rós
- Laboratory of Applied Toxinology - Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Solange M T Serrano
- Laboratory of Applied Toxinology - Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Ana Carolina M Santos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | | | - Angela S Barbosa
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| | - Waldir P Elias
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
46
|
Pietrocola G, Pellegrini A, Alfeo MJ, Marchese L, Foster TJ, Speziale P. The iron-regulated surface determinant B (IsdB) protein from Staphylococcus aureus acts as a receptor for the host protein vitronectin. J Biol Chem 2020; 295:10008-10022. [PMID: 32499371 DOI: 10.1074/jbc.ra120.013510] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is an important bacterial pathogen that can cause a wide spectrum of diseases in humans and other animals. S. aureus expresses a variety of virulence factors that promote infection with this pathogen. These include cell-surface proteins that mediate adherence of the bacterial cells to host extracellular matrix components, such as fibronectin and fibrinogen. Here, using immunoblotting, ELISA, and surface plasmon resonance analysis, we report that the iron-regulated surface determinant B (IsdB) protein, besides being involved in heme transport, plays a novel role as a receptor for the plasma and extracellular matrix protein vitronectin (Vn). Vn-binding activity was expressed by staphylococcal strains grown under iron starvation conditions when Isd proteins are expressed. Recombinant IsdB bound Vn dose dependently and specifically. Both near-iron transporter motifs NEAT1 and NEAT2 of IsdB individually bound Vn in a saturable manner, with KD values in the range of 16-18 nm Binding of Vn to IsdB was specifically blocked by heparin and reduced at high ionic strength. Furthermore, IsdB-expressing bacterial cells bound significantly higher amounts of Vn from human plasma than did an isdB mutant. Adherence to and invasion of epithelial and endothelial cells by IsdB-expressing S. aureus cells was promoted by Vn, and an αvβ3 integrin-blocking mAb or cilengitide inhibited adherence and invasion by staphylococci, suggesting that Vn acts as a bridge between IsdB and host αvβ3 integrin.
Collapse
Affiliation(s)
- Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Angelica Pellegrini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Mariangela J Alfeo
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Loredana Marchese
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Timothy J Foster
- Department of Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| |
Collapse
|
47
|
Papafilippou L, Claxton A, Dark P, Kostarelos K, Hadjidemetriou M. Protein corona fingerprinting to differentiate sepsis from non-infectious systemic inflammation. NANOSCALE 2020; 12:10240-10253. [PMID: 32356537 DOI: 10.1039/d0nr02788j] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rapid and accurate diagnosis of sepsis remains clinically challenging. The lack of specific biomarkers that can differentiate sepsis from non-infectious systemic inflammatory diseases often leads to excessive antibiotic treatment. Novel diagnostic tests are urgently needed to rapidly and accurately diagnose sepsis and enable effective treatment. Despite investment in cutting-edge technologies available today, the discovery of disease-specific biomarkers in blood remains extremely difficult. The highly dynamic environment of plasma restricts access to vital diagnostic information that can be obtained by proteomic analysis. Here, we employed clinically used lipid-based nanoparticles (AmBisome®) as an enrichment platform to analyze the human plasma proteome in the setting of sepsis. We exploited the spontaneous interaction of plasma proteins with nanoparticles (NPs) once in contact, called the 'protein corona', to discover previously unknown disease-specific biomarkers for sepsis diagnosis. Plasma samples obtained from non-infectious acute systemic inflammation controls and sepsis patients were incubated ex vivo with AmBisome® liposomes, and the resultant protein coronas were thoroughly characterised and compared by mass spectrometry (MS)-based proteomics. Our results demonstrate that the proposed nanoparticle enrichment technology enabled the discovery of 67 potential biomarker proteins that could reproducibly differentiate non-infectious acute systemic inflammation from sepsis. This study provides proof-of-concept evidence that nanoscale-based 'omics' enrichment technologies have the potential to substantially improve plasma proteomics analysis and to uncover novel biomarkers in a challenging clinical setting.
Collapse
Affiliation(s)
- Lana Papafilippou
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, AV Hill Building, The University of Manchester, Manchester, M13 9PT, UK.
| | | | | | | | | |
Collapse
|
48
|
Riesbeck K. Complement evasion by the human respiratory tract pathogens Haemophilus influenzae and Moraxella catarrhalis. FEBS Lett 2020; 594:2586-2597. [PMID: 32053211 DOI: 10.1002/1873-3468.13758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/26/2020] [Accepted: 02/09/2020] [Indexed: 12/14/2022]
Abstract
All infective bacterial species need to conquer the innate immune system in order to colonize and survive in their hosts. The human respiratory pathogens Haemophilus influenzae and Moraxella catarrhalis are no exceptions and have developed sophisticated mechanisms to evade complement-mediated killing. Both bacterial species carry lipooligosaccharides preventing complement attacks and attract and utilize host complement regulators C4b binding protein and factor H to inhibit the classical and alternative pathways of complement activation, respectively. In addition, the regulator of the terminal pathway of complement activation, vitronectin, is hijacked by both bacteria. An array of different outer membrane proteins (OMP) in H. influenzae and M. catarrhalis simultaneously binds complement regulators, but also plasminogen. Several of the bacterial complement-binding proteins are important adhesins and contain highly conserved regions for interactions with the host. Thus, some of the OMP are viable targets for new therapeutics, including vaccines aimed at preventing respiratory tract diseases such as otitis media in children and exacerbations in patients suffering from chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
49
|
Complement C9 binding site and the anti-microbial activity of caprine vitronectin are localized in close proximity in the N-terminal region of the protein. Microb Pathog 2020; 149:104111. [PMID: 32135222 DOI: 10.1016/j.micpath.2020.104111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 11/21/2022]
Abstract
Vitronectin (Vn) is a ligand for complement C9 and modulates its activity that favors bacterial growth and survival. At the same time, the anti-microbial activity of the heparin-binding region of human Vn has been documented. To understand these diverse and opposite functions of the protein, we have analyzed the interaction of caprine Vn with C9 in the homologous system. In a previous study, the C9 binding activity was mapped to the N-fragment of the caprine Vn (N-Vn), representing the first 200 amino acids. Interestingly, this fragment also inhibited bacterial growth. In this study, we have generated four sub-fragments of N-Vn and analyzed C9 binding by ELISA, blot overlay, surface plasmon resonance and circular dichroism spectroscopy. These sub-fragments were also tested for antimicrobial activity against E. coli and S. aureus by drop plate method and analyzing cell death by flow cytometry. Results of these analyses together with previous data suggest that in addition to the second RGD motif (106-108 amino acids), the first 47 residues are also required for C9 binding. The anti-microbial tests employed indicate that the growth inhibitory property is contributed by 101-150 residues of Vn. These results provide an initial insight into two diverse Vn functions.
Collapse
|
50
|
Choi S, Park YE, Cheon EJ, Kim KY, Kim M, Ann SJ, Noh HM, Lee J, Lee CJ, Lee ST, Lee C, Lee JE, Lee SH. Novel Associations between Related Proteins and Cellular Effects of High-Density Lipoprotein. Korean Circ J 2019; 50:236-247. [PMID: 31845554 PMCID: PMC7043958 DOI: 10.4070/kcj.2019.0195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/05/2019] [Accepted: 10/02/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Recent studies have examined the structure-function relationship of high-density lipoprotein (HDL). This study aimed to identify and rank HDL-associated proteins involved in several biological function of HDL. METHODS HDLs isolated from 48 participants were analyzed. Cholesterol efflux capacity, effect of HDL on nitric oxide production, and vascular cell adhesion molecule-1 expression were assessed. The relative abundance of identified proteins in the highest vs. lowest quartile was expressed using the normalized spectral abundance factor ratio. RESULTS After adjustment by multiple testing, six proteins, thyroxine-binding globulin, alpha-1B-glycoprotein, plasma serine protease inhibitor, vitronectin, angiotensinogen, and serum amyloid A-4, were more abundant (relative abundance ratio ≥2) in HDLs with the highest cholesterol efflux capacity. In contrast, three proteins, complement C4-A, alpha-2-macroglobulin, and immunoglobulin mu chain C region, were less abundant (relative abundance ratio <0.5). In terms of nitric oxide production and vascular cell adhesion molecule-1 expression, no proteins showed abundance ratios ≥2 or <0.5 after adjustment. Proteins correlated with the functional parameters of HDL belonged to diverse biological categories. CONCLUSIONS In summary, this study ranked proteins showing higher or lower abundance in HDLs with high functional capacities and newly identified multiple proteins linked to cholesterol efflux capacity.
Collapse
Affiliation(s)
- Seungbum Choi
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Yae Eun Park
- Center for Theragnosis, Biomedical Research Institute, Korean Institute of Science and Technology, Seoul, Korea.,Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Eun Jeong Cheon
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyeong Yeon Kim
- Center for Theragnosis, Biomedical Research Institute, Korean Institute of Science and Technology, Seoul, Korea.,Department of Chemistry, Sookmyung Women's University, Seoul, Korea.,Proteometech Inc., Seoul, Korea
| | - Miso Kim
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Jin Ann
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Min Noh
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jaeho Lee
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Chan Joo Lee
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea.,Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Taek Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Cheolju Lee
- Center for Theragnosis, Biomedical Research Institute, Korean Institute of Science and Technology, Seoul, Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Korea
| | - Ji Eun Lee
- Center for Theragnosis, Biomedical Research Institute, Korean Institute of Science and Technology, Seoul, Korea.
| | - Sang Hak Lee
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea.,Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|