1
|
Li D, Xing Y, Li L, Yao Y, Li Y, Zhu H, Du P, Wang F, Yu D, Yang F, Yao Z, Thomas KV. Accumulation, translocation and transformation of artificial sweeteners in plants: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125517. [PMID: 39667574 DOI: 10.1016/j.envpol.2024.125517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Artificial sweeteners (ASs) have become an increasingly significant concern as an emerging contaminant. The widespread utilization has given rise to environmental consequences that are progressively harder to disregard. ASs infiltrate both aquatic and terrestrial ecosystems through the discharge of wastewater effluents and the application of manure and biosolids. These compounds can be absorbed and accumulated by plants from soil, water and the atmosphere, posing potential risks to ecological systems and human health. However, limited data available on plant absorption, translocation, and metabolism of ASs hinders a comprehensive understanding of their impact on ecosystem. This study aims to comprehensively summarize the global distribution of ASs, along with elucidating patterns of their uptake and accumulation within plants. Furthermore, it seeks to elucidate the pivotal factors governing ASs absorption and translocation, encompassing hydrophilicity, ionic nature, plant physiology, and environmental conditions. Notably, there remains a significant knowledge gap in understanding the biodegradation of ASs within plants, with their specific degradation pathways and mechanisms largely unexplored, thereby necessitating further investigation. Additionally, this review provides valuable insights into the ecotoxicological effects of ASs on plants. Finally, it identifies research gaps and outlines potential avenues for future research, offering a forward-looking perspective on this critical issue.
Collapse
Affiliation(s)
- Dandan Li
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Yeye Xing
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Li Li
- School of Public Health, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV, 89557-0274, USA
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yongcheng Li
- School of Public Health, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV, 89557-0274, USA
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Peng Du
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Fang Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Dayang Yu
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Fang Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Zhiliang Yao
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| |
Collapse
|
2
|
Tian X, Li Y, Wang S, Zou H, Xiao Q, Ma B, Ma F, Li M. Glucose uptake from the rhizosphere mediated by MdDOF3-MdHT1.2 regulates drought resistance in apple. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1566-1581. [PMID: 38205680 PMCID: PMC11123392 DOI: 10.1111/pbi.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/28/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
In plants under drought stress, sugar content in roots increases, which is important for drought resistance. However, the molecular mechanisms for controlling the sugar content in roots during response to drought remain elusive. Here, we found that the MdDOF3-MdHT1.2 module-mediated glucose influx into the root is essential for drought resistance in apple (Malus × domestica). Drought induced glucose uptake from the rhizosphere and up-regulated the transcription of hexose transporter MdHT1.2. Compared with the wild-type plants, overexpression of MdHT1.2 promoted glucose uptake from the rhizosphere, thereby facilitating sugar accumulation in root and enhancing drought resistance, whereas silenced plants showed the opposite phenotype. Furthermore, ATAC-seq, RNA-seq and biochemical analysis demonstrated that MdDOF3 directly bound to the promoter of MdHT1.2 and was strongly up-regulated under drought. Overexpression of MdDOF3 in roots improved MdHT1.2-mediated glucose transport capacity and enhanced plant resistance to drought, but MdDOF3-RNAihr apple plants showed the opposite phenotype. Moreover, overexpression of MdDOF3 in roots did not attenuate drought sensitivity in MdHT1.2-RNAi plants, which was correlated with a lower glucose uptake capacity and glucose content in root. Collectively, our findings deciphered the molecular mechanism through which glucose uptake from the rhizosphere is mediated by MdDOF3-MdHT1.2, which acts to modulate sugar content in root and promote drought resistance.
Collapse
Affiliation(s)
- Xiaocheng Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Yuxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Shaoteng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Hui Zou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Qian Xiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
3
|
Mehdi F, Galani S, Wickramasinghe KP, Zhao P, Lu X, Lin X, Xu C, Liu H, Li X, Liu X. Current perspectives on the regulatory mechanisms of sucrose accumulation in sugarcane. Heliyon 2024; 10:e27277. [PMID: 38463882 PMCID: PMC10923725 DOI: 10.1016/j.heliyon.2024.e27277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024] Open
Abstract
Sugars transported from leaves (source) to stems (sink) energize cell growth, elongation, and maintenance. which are regulated by a variety of genes. This review reflects progress and prospects in the regulatory mechanism for maximum sucrose accumulation, including the role of sucrose metabolizing enzymes, sugar transporters and the elucidation of post-transcriptional control of sucrose-induced regulation of translation (SIRT) in the accumulation of sucrose. The current review suggests that SIRT is emerging as a significant mechanism controlling Scbzip44 activities in response to endogenous sugar signals (via the negative feedback mechanism). Sucrose-controlled upstream open reading frame (SC-uORF) exists at the 5' leader region of Scbzip44's main ORF, which inhibits sucrose accumulation through post-transcriptional regulatory mechanisms. Sucrose transporters (SWEET1a/4a/4b/13c, TST, SUT1, SUT4 and SUT5) are crucial for sucrose translocation from source to sink. Particularly, SWEET13c was found to be a major contributor to the efflux in the transportation of stems. Tonoplast sugar transporters (TSTs), which import sucrose into the vacuole, suggest their tissue-specific role from source to sink. Sucrose cleavage has generally been linked with invertase isozymes, whereas sucrose synthase (SuSy)-catalyzed metabolism has been associated with biosynthetic processes such as UDP-Glc, cellulose, hemicellulose and other polymers. However, other two key sucrose-metabolizing enzymes, such as sucrose-6-phosphate phosphohydrolase (S6PP) and sucrose phosphate synthase (SPS) isoforms, have been linked with sucrose biosynthesis. These findings suggest that manipulation of genes, such as overexpression of SPS genes and sucrose transporter genes, silencing of the SC-uORF of Scbzip44 (removing the 5' leader region of the main ORF that is called SIRT-Insensitive) and downregulation of the invertase genes, may lead to maximum sucrose accumulation. This review provides an overview of sugarcane sucrose-regulating systems and baseline information for the development of cultivars with higher sucrose accumulation.
Collapse
Affiliation(s)
- Faisal Mehdi
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Saddia Galani
- Dr.A. Q. Khan Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi Pakistan
| | - Kamal Priyananda Wickramasinghe
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
- Sugarcane Research Institute, Uda Walawa, 70190, Sri Lanka
| | - Peifang Zhao
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Xin Lu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Xiuqin Lin
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Chaohua Xu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Hongbo Liu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Xujuan Li
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Xinlong Liu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| |
Collapse
|
4
|
Liu H, Lin X, Li X, Luo Z, Lu X, You Q, Yang X, Xu C, Liu X, Liu J, Wu C, Wang J. Haplotype variations of sucrose phosphate synthase B gene among sugarcane accessions with different sucrose content. BMC Genomics 2023; 24:42. [PMID: 36698074 PMCID: PMC9875459 DOI: 10.1186/s12864-023-09139-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Sucrose phosphate synthase B (SPSB) gene encoding an important rate-limiting enzyme for sucrose synthesis in sugarcane is mainly expressed on leaves, where its alleles control sucrose synthesis. In this study, genetic variation of SPSB gene represented by different haplotypes in sugarcane was investigated in hybrid clones with high and low sugar content and various accessory species. RESULTS A total of 39 haplotypes of SPSB gene with 2, 824 bp in size were identified from 18 sugarcane accessions. These haplotypes mainly distributed on Chr3B, Chr3C, and Chr3D according to the AP85-441 reference genome. Single nucleotide polymorphisms (SNPs) and insertion/deletion (InDels) were very dense (42 bp/sequence variation) including 44 transitional and 23 transversional SNPs among the 39 haplotypes. The sequence diversity related Hd, Eta, and Pi values were all lower in clones of high sucrose content (HS) than those in clones of low sucrose content (LS). The evolutionary network analysis showed that about half SPSB haplotypes (19 out of 39) were clustered into one group, including 6 (HAP4, HAP6, HAP7, HAP9, HAP17 and HAP20) haplotypes under positive selection in comparison to HAP26 identified in Badila (S. officinarum), an ancestry noble cane species and under purification selection (except HAP19 under neutral selection) in comparison to HAP18 identified from India1 (S. spontaneum), an ancestry species with low sugar content but high stress tolerance. The average number of haplotypes under positive selection in HS clones was twice as that in LS. Most of the SNPs and InDels sequence variation sites were positively correlated with sucrose and fiber content and negatively correlated with reducing sugar. CONCLUSIONS A total of 39 haplotypes of SPSB gene were identified in this study. Haplotypes potentially associated with high sucrose synthesis efficiency were identified. The mutations of SPSB haplotypes in HS were favorable and tended to be selected and fixed. The results of this study are informative and beneficial to the molecular assisted breeding of sucrose synthesis in sugarcane in the future.
Collapse
Affiliation(s)
- Hongbo Liu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699 China ,grid.15276.370000 0004 1936 8091Agronomy Department, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Genetics Institute, Plant Molecular and Biology Program, University of Florida, Gainesville, FL 32610 USA ,grid.256609.e0000 0001 2254 5798Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Guangxi 530004 Kaiyuan, China
| | - Xiuqin Lin
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699 China
| | - Xujuan Li
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699 China
| | - Ziliang Luo
- grid.15276.370000 0004 1936 8091Agronomy Department, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Genetics Institute, Plant Molecular and Biology Program, University of Florida, Gainesville, FL 32610 USA
| | - Xin Lu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699 China
| | - Qian You
- grid.15276.370000 0004 1936 8091Agronomy Department, University of Florida, Gainesville, FL 32610 USA
| | - Xiping Yang
- grid.15276.370000 0004 1936 8091Agronomy Department, University of Florida, Gainesville, FL 32610 USA ,grid.256609.e0000 0001 2254 5798Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Guangxi 530004 Kaiyuan, China
| | - Chaohua Xu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699 China
| | - Xinlong Liu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699 China
| | - Jiayong Liu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699 China
| | - Caiwen Wu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699 China
| | - Jianping Wang
- grid.15276.370000 0004 1936 8091Agronomy Department, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Genetics Institute, Plant Molecular and Biology Program, University of Florida, Gainesville, FL 32610 USA
| |
Collapse
|
5
|
Wang X, Liang X, Guo X. Global distribution and potential risks of artificial sweeteners (ASs) with widespread contaminant in the environment: The latest advancements and future development. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Yu Z, Guo J. Non-caloric artificial sweeteners exhibit antimicrobial activity against bacteria and promote bacterial evolution of antibiotic tolerance. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128840. [PMID: 35398799 DOI: 10.1016/j.jhazmat.2022.128840] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/15/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Non-caloric artificial sweeteners are being widely used as safe table sugar substitutes with highly intensive sweetness but low calories. Previous studies have suggested that some of the sweeteners can alter the gut microbiota composition and promote horizontal transfer of antibiotic resistance genes across bacterial genera. However, little is known about whether these sweeteners could show antibiotic-like antimicrobial activity against bacteria, especially gut relevant bacteria. Whether they could affect evolutional trajectory of antibiotic resistance or tolerance in bacteria is also not clear yet. Here we investigated four commonly used artificial sweeteners (saccharin, sucralose, aspartame, and acesulfame potassium) against both Gram-negative (Escherichia coli and Klebsiella pneumoniae) and positive (Bacillus subtilis) strains. Results show that all four sweeteners exhibit antimicrobial effects on these strains. The antimicrobial mechanism is due to increased reactive oxygen species (ROS) and cell envelope damage. Compared to sucrose and glucose, the treatment of artificial sweeteners stimulates bacterial efflux pumps and promotes bacterial evolution of antibiotic tolerance. Collectively, our finding provides insights into roles of artificial sweeteners in the emergence of antibiotic tolerance and calls for a re-evaluation of risks due to their intensive usage.
Collapse
Affiliation(s)
- Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formly AWMC), The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formly AWMC), The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
7
|
Akbar S, Yao W, Qin L, Yuan Y, Powell CA, Chen B, Zhang M. Comparative Analysis of Sugar Metabolites and Their Transporters in Sugarcane Following Sugarcane mosaic virus (SCMV) Infection. Int J Mol Sci 2021; 22:ijms222413574. [PMID: 34948367 PMCID: PMC8707430 DOI: 10.3390/ijms222413574] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/19/2022] Open
Abstract
Sugarcane mosaic virus (SCMV) is one of the major pathogens of sugarcane. SCMV infection causes dynamic changes in plant cells, including decreased photosynthetic rate, respiration, and sugar metabolism. To understand the basics of pathogenicity mechanism, we performed transcriptome and proteomics analysis in two sugarcane genotypes (Badila: susceptible to SCMV and B-48: SCMV resistant). Using Saccharum spontaneum L. genome as a reference, we identified the differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) that participate in sugar metabolism, transport of their metabolites, and Carbohydrate Activating enZYmes (CAZymes). Sequencing data revealed 287 DEGs directly or indirectly involved in sugar metabolism, transport, and storage, while 323 DEGs are associated with CAZymes. Significant upregulation of glucose, sucrose, fructose, starch, and SWEET-related transcripts was observed in the Badila after infection of SCMV. B-48 showed resistance against SCMV with a limited number of sugar transcripts up-regulation at the post-infection stage. For CAZymes, only glycosyltransferase (GT)1 and glycosyl hydrolase (GH)17 were upregulated in B-48. Regulation of DEGs was analyzed at the proteomics level as well. Starch, fructose, glucose, GT1, and GH17 transcripts were expressed at the post-translational level. We verified our transcriptomic results with proteomics and qPCR data. Comprehensively, this study proved that Badila upregulated sugar metabolizing and transporting transcripts and proteins, which enhance virus multiplication and infectionl.
Collapse
Affiliation(s)
- Sehrish Akbar
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning 530005, China; (S.A.); (W.Y.); (L.Q.); (Y.Y.); (B.C.)
| | - Wei Yao
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning 530005, China; (S.A.); (W.Y.); (L.Q.); (Y.Y.); (B.C.)
| | - Lifang Qin
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning 530005, China; (S.A.); (W.Y.); (L.Q.); (Y.Y.); (B.C.)
| | - Yuan Yuan
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning 530005, China; (S.A.); (W.Y.); (L.Q.); (Y.Y.); (B.C.)
| | | | - Baoshan Chen
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning 530005, China; (S.A.); (W.Y.); (L.Q.); (Y.Y.); (B.C.)
| | - Muqing Zhang
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning 530005, China; (S.A.); (W.Y.); (L.Q.); (Y.Y.); (B.C.)
- IRREC-IFAS, University of Florida, Fort Pierce, FL 34945, USA;
- Correspondence:
| |
Collapse
|
8
|
Cai Y, Yin L, Tu W, Deng Z, Yan J, Dong W, Gao H, Xu J, Zhang N, Wang J, Zhu L, Meng Q, Zhang Y. Ectopic Expression of VvSUC27 Induces Stenospermocarpy and Sugar Accumulation in Tomato Fruits. FRONTIERS IN PLANT SCIENCE 2021; 12:759047. [PMID: 34868153 PMCID: PMC8637806 DOI: 10.3389/fpls.2021.759047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Seedless fruits are favorable in the market because of their ease of manipulation. Sucrose transporters (SUTs or SUCs) are essential for carbohydrate metabolism in plants. Whether SUTs participate directly in causing stenospermocarpy, thereby increasing fruit quality, remains unclear. Three SUTs, namely, VvSUC11, VvSUC12, and VvSUC27 from Vitis vinifera, were characterized and ectopic expression in tomatoes. VvSUC11- and VvSUC12-overexpressing lines had similar flower and fruit phenotypes compared with those of the wild type. VvSUC27-overexpressing lines produced longer petals and pistils, an abnormal stigma, much less and shrunken pollen, and firmer seedless fruits. Moreover, produced fruits from all VvSUC-overexpressing lines had a higher soluble solid content and sugar concentration. Transcriptomic analysis revealed more genes associated with carbohydrate metabolism and sugar transport and showed downregulation of auxin- and ethylene-related signaling pathways during early fruit development in VvSUC27-overexpressing lines relative to that of the wild type. Our findings demonstrated that stenospermocarpy can be induced by overexpression of VvSUC27 through a consequential reduction in nutrient delivery to pollen at anthesis, with a subsequent downregulation of the genes involved in carbohydrate metabolism and hormone signaling. These commercially desirable results provide a new strategy for bioengineering stenospermocarpy in tomatoes and in other fruit plants.
Collapse
Affiliation(s)
- Yumeng Cai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Tianjin Key Laboratory of Crop Genetics and Breeding, Crops Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Ling Yin
- Guangxi Crop Genetic Improvement and Biotechnology Key Laboratory, Academy of Agricultural Sciences, Nanning, China
| | - Wenrui Tu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhefang Deng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jing Yan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Wenjie Dong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Han Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jinxu Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Nan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jie Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lei Zhu
- College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qingyong Meng
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Naik AQ, Zafar T, Shrivastava VK. Environmental Impact of the Presence, Distribution, and Use of Artificial Sweeteners as Emerging Sources of Pollution. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2021; 2021:6624569. [PMID: 33936216 PMCID: PMC8060115 DOI: 10.1155/2021/6624569] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/06/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022]
Abstract
Artificial sweeteners are posing a new threat to the environment. The water ecosystem is the primary recipient of these emerging contaminants. Once ingested, sufficient amount of these artificial sweeteners escape unchanged from the human body and are added to the environment. However, some are added in the form of their breakdown products through excretion. Artificial sweeteners are resistant to wastewater treatment processes and are therefore continuously introduced into the water environments. However, the environmental behavior, fate, and long-term ecotoxicological contributions of artificial sweeteners in our water resources still remain largely unknown. Some artificial sweeteners like saccharin are used as a food additive in animal feeds. It also forms the degradation product of the sulfonylurea herbicides. All artificial sweeteners enter into the wastewater treatment plants from the industries and households. From the effluents, they finally reside into the receiving environmental bodies including wastewaters, groundwaters, and surface waters. The global production of these sweeteners is several hundred tons annually and is continuously being added into the environment.
Collapse
Affiliation(s)
- Ab Qayoom Naik
- Laboratory of Endocrinology, Department of Biosciences, Barkatullah University, Bhopal 462026, MP, India
| | - Tabassum Zafar
- Laboratory of Endocrinology, Department of Biosciences, Barkatullah University, Bhopal 462026, MP, India
| | - Vinoy Kumar Shrivastava
- Laboratory of Endocrinology, Department of Biosciences, Barkatullah University, Bhopal 462026, MP, India
| |
Collapse
|
10
|
Li D, Yao Y, Sun H. Emission and Mass Load of Artificial Sweeteners from a Pig Farm to Its Surrounding Environment: Contribution of Airborne Pathway and Biomonitoring Potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2307-2315. [PMID: 33539083 DOI: 10.1021/acs.est.0c05326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An investigation was conducted by determining artificial sweeteners (ASs) in 80 samples from various environmental matrices, including dry deposition, rainfall, soil, leaf, and bark samples around a pig farm in Tianjin, China. Saccharin, cyclamate, and acesulfame were predominant in dry deposition and rainfall samples. Spatially, the distribution of ASs showed a consistent trend of farm center > downwind sites > upwind sites > reference site. The annual total mass loads of saccharin (70%), cyclamate (25%), and acesulfame (5%) via dry deposition and precipitation within a 5 km radius of the pig farm were estimated at 3.9 and 6.2 kg in the average-case and worst-case scenarios, respectively, accounting for 12-18% of the overall emission, indicating that pig farms are a significant source of ASs to the atmosphere and to the vicinal environment via dry and wet deposition. The distribution trends of ASs in tree bark and leaves were similar and tree bark performed better in passively biomonitoring the AS contamination. Overall, pig farms were predicted to release 65-114, 22-38, 2.0-3.5, and 0.6-1.1 tons by feed application in China, Europe, Latin America, and North America, respectively, to the vicinal environment via dry deposition and precipitation.
Collapse
Affiliation(s)
- Dandan Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
11
|
Zhang Q, Hua X, Liu H, Yuan Y, Shi Y, Wang Z, Zhang M, Ming R, Zhang J. Evolutionary expansion and functional divergence of sugar transporters in Saccharum (S. spontaneum and S. officinarum). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:884-906. [PMID: 33179305 DOI: 10.1111/tpj.15076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 10/27/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
The sugar transporter (ST) family is considered to be the most important gene family for sugar accumulation, but limited information about the ST family in the important sugar-yielding crop Saccharum is available due to its complex genetic background. Here, 105 ST genes were identified and clustered into eight subfamilies in Saccharum spontaneum. Comparative genomics revealed that tandem duplication events contributed to ST gene expansions of two subfamilies, PLT and STP, in S. spontaneum, indicating an early evolutionary step towards high sugar content in Saccharum. The analyses of expression patterns were based on four large datasets with a total of 226 RNA sequencing samples from S. spontaneum and Saccharum officinarum. The results clearly demonstrated 50 ST genes had different spatiotemporal expression patterns in leaf tissues, 10 STs were specifically expressed in the stem, and 10 STs responded to the diurnal rhythm. Heterologous expression experiments in the defective yeast strain EBY.VW4000 indicated STP13, pGlcT2, VGT3, and TMT4 are the STs with most affinity for glucose/fructose and SUT1_T1 has the highest affinity to sucrose. Furthermore, metabolomics analysis suggested STP7 is a sugar starvation-induced gene and STP13 has a function in retrieving sugar in senescent tissues. PLT11, PLT11_T1, TMT3, and TMT4 contributed to breaking the limitations of the storage sink. SUT1, SUT1_T1, PLT11, TMT4, pGlcT2, and VGT3 responded for different functions in these two Saccharum species. This study demonstrated the evolutionary expansion and functional divergence of the ST gene family and will enable the further investigation of the molecular mechanism of sugar metabolism in Saccharum.
Collapse
Affiliation(s)
- Qing Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiuting Hua
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong Liu
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuan Yuan
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Yan Shi
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhengchao Wang
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Muqing Zhang
- Guangxi key lab for sugarcane biology, Guangxi University, Nanning, Guangxi, 530005, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Guangxi key lab for sugarcane biology, Guangxi University, Nanning, Guangxi, 530005, China
| |
Collapse
|
12
|
Li D, O'Brien JW, Tscharke BJ, Choi PM, Ahmed F, Thompson J, Mueller JF, Sun H, Thomas KV. Trends in artificial sweetener consumption: A 7-year wastewater-based epidemiology study in Queensland, Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142438. [PMID: 33254907 DOI: 10.1016/j.scitotenv.2020.142438] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 06/12/2023]
Abstract
A 7-year temporal trend study of artificial sweetener consumption was performed by determining per capital mass loads in 293 influent wastewater samples collected from a wastewater treatment plant in Australia between 2012 and 2018. Population-weighted per capita mass loads of the four detected artificial sweeteners ranged from 2.4 ± 0.8 mg d-1 p-1 for saccharin to 7.8 ± 2.0 mg d-1 p-1 for acesulfame over the study period. Negligible intra-week fluctuations were observed, however the consumption of acesulfame was seen to be significantly influenced by season with the highest consumption in summer. The consumption of sucralose and saccharin significantly increased with an annual increase rate of 10% and 6.0%. Cyclamate consumption declined over the same period with average annual decrease rate of 11%, which agrees with data from market surveys. Sucrose equivalence of total artificial sweeteners consumption showed an increase between 2012 and 2016, then decreased in 2018. This is the first long-term trend study of artificial sweetener consumption by wastewater analysis and highlights the feasibility to quantitatively measure artificial sweeter consumption over time.
Collapse
Affiliation(s)
- Dandan Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| | - Benjamin J Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| | - Phil M Choi
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| | - Fahad Ahmed
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| | - Jack Thompson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia.
| |
Collapse
|
13
|
Li D, O'Brien JW, Tscharke BJ, Choi PM, Zheng Q, Ahmed F, Thompson J, Li J, Mueller JF, Sun H, Thomas KV. National wastewater reconnaissance of artificial sweetener consumption and emission in Australia. ENVIRONMENT INTERNATIONAL 2020; 143:105963. [PMID: 32688159 DOI: 10.1016/j.envint.2020.105963] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Artificial sweeteners are used as sugar substitutes in our daily lives yet consumption and release patterns are currently unknown in Australia. The spatial distribution of artificial sweetener consumption and WWTP effluent emission in Australia was estimated by wastewater analysis. Wastewater influent and effluent samples were collected from 69 WWTPs across Australia during the week of the 2016 Australian census. Mean population-weighted per capita loads for individual artificial sweeteners (cyclamate, aspartame, acesulfame, sucralose, saccharin) ranged from 0.12 ± 0.14 mg d-1p-1 for aspartame to 6.9 ± 2.8 mg d-1p-1 for acesulfame with 1004 kg of these artificial sweeteners being consumed daily in Australia. Significant removal of aspartame (100%), cyclamate (92 ± 18%) and saccharin (88 ± 21%) was observed during wastewater treatment. The average per capita release to the environment for individual artificial sweeteners (cyclamate, acesulfame, sucralose, saccharin) ranged from 230 ± 780 mg d-1 1000p-1 (cyclamate) to 3800 ± 1400 mg d-1 1000p-1 (sucralose). The daily release of artificial sweeteners from Australian WWTPs was estimated to be 142 kg suggesting that 14% of the artificial sweeteners consumed in Australia are released into the environment. To the best of our knowledge, this is the first wastewater study to estimate the occurrence and population-normalized artificial sweetener consumption and emission in Australia.
Collapse
Affiliation(s)
- Dandan Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102 Queensland, Australia
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102 Queensland, Australia
| | - Benjamin J Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102 Queensland, Australia
| | - Phil M Choi
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102 Queensland, Australia
| | - Qiuda Zheng
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102 Queensland, Australia
| | - Fahad Ahmed
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102 Queensland, Australia
| | - Jack Thompson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102 Queensland, Australia
| | - Jiaying Li
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, 4072 Queensland, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102 Queensland, Australia
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102 Queensland, Australia.
| |
Collapse
|
14
|
Li D, Yao Y, Sun H, Wang Y, Pu J, Calderón R, Alder AC, Kannan K. Artificial Sweeteners in Pig Feed: A Worldwide Survey and Case Study in Pig Farms in Tianjin, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4059-4067. [PMID: 32122124 DOI: 10.1021/acs.est.9b06853] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Some artificial sweeteners (ASs) are used in pig feeds, although little is known on this regard. An investigation was conducted by determining seven common ASs in pig feed, manure, wastewater, compost, and soil from 16 pig farms in Tianjin, China. Saccharin (SAC) was predominant in feed (1.41-326 mg/kg) and manure samples (1.06-401 mg/kg). The annual mass loads of ASs in pig feeds were estimated at 5.69-119, 4.92-149, and 1.29-35 kg per 103 piglets, hogs, and sows, respectively. The annual emission of ASs via biowaste (i.e., manure) was estimated at 3.58-85.2, 0.04-26.2, and 0.08-9.97 kg per 103 capita for the three dominant ASs, i.e., SAC, neotame (NEO), and cyclamate (CYC). On a global scale, SAC was also widely detected at concentrations of 0.01-326 mg/kg in pig feed from China, Switzerland, Japan, Chile, and the United States, suggesting the worldwide use of ASs in pig feed. NEO and CYC were found in 41% and 30% of the feed samples, respectively, at concentrations of 0.05-70 mg/kg, whereas other ASs were barely found with rather lower concentrations. The annual mass loads of ASs consumed via pig feed consumption were estimated at 2400 tons worldwide. Thus, pig farming is an important source of ASs to the environment.
Collapse
Affiliation(s)
- Dandan Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jian Pu
- Faculty of Information Networking for Innovation and Design, Tokyo University, Tokyo 115-0053, Japan
- Institute for Future Initiatives, The University of Tokyo, Tokyo 113-8654, Japan
| | - Raul Calderón
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Fabrica 1990, Segundo Piso, Santiago, Chile
| | - Alfredo C Alder
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, New York 12201, United States
| |
Collapse
|
15
|
Yang Z, Li JL, Liu LN, Xie Q, Sui N. Photosynthetic Regulation Under Salt Stress and Salt-Tolerance Mechanism of Sweet Sorghum. FRONTIERS IN PLANT SCIENCE 2020; 10:1722. [PMID: 32010174 PMCID: PMC6974683 DOI: 10.3389/fpls.2019.01722] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/09/2019] [Indexed: 05/18/2023]
Abstract
Sweet sorghum is a C4 crop with the characteristic of fast-growth and high-yields. It is a good source for food, feed, fiber, and fuel. On saline land, sweet sorghum can not only survive, but increase its sugar content. Therefore, it is regarded as a potential source for identifying salt-related genes. Here, we review the physiological and biochemical responses of sweet sorghum to salt stress, such as photosynthesis, sucrose synthesis, hormonal regulation, and ion homeostasis, as well as their potential salt-resistance mechanisms. The major advantages of salt-tolerant sweet sorghum include: 1) improving the Na+ exclusion ability to maintain ion homeostasis in roots under salt-stress conditions, which ensures a relatively low Na+ concentration in shoots; 2) maintaining a high sugar content in shoots under salt-stress conditions, by protecting the structures of photosystems, enhancing photosynthetic performance and sucrose synthetase activity, as well as inhibiting sucrose degradation. To study the regulatory mechanism of such genes will provide opportunities for increasing the salt tolerance of sweet sorghum by breeding and genetic engineering.
Collapse
Affiliation(s)
- Zhen Yang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biological Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jin-Lu Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, China University of Chinese Academy of Sciences, Beijing, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
16
|
Chen G, Hu J, Dong L, Zeng D, Guo L, Zhang G, Zhu L, Qian Q. The Tolerance of Salinity in Rice Requires the Presence of a Functional Copy of FLN2. Biomolecules 2019; 10:biom10010017. [PMID: 31877655 PMCID: PMC7022601 DOI: 10.3390/biom10010017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022] Open
Abstract
A panel of ethane-methyl-sulfonate-mutagenized japonica rice lines was grown in the presence of salinity in order to identify genes required for the expression of salinity tolerance. A highly nontolerant selection proved to harbor a mutation in FLN2, a gene which encodes fructokinase-like protein2. Exposure of wild-type rice to salinity up-regulated FLN2, while a CRISPR/Cas9-generated FLN2 knockout line was hypersensitive to the stress. Both ribulose 1,5-bisphosphate carboxylase/oxygenase activity and the abundance of the transcript generated by a number of genes encoding components of sucrose synthesis were lower in the knockout line than in wild-type plants’ leaves, while the sucrose contents of the leaf and root were, respectively, markedly increased and decreased. That sugar partitioning to the roots was impaired in FLN2 knockout plants was confirmed by the observation that several genes involved in carbon transport were down-regulated in both the leaf and in the leaf sheath. The levels of sucrose synthase, acid invertase, and neutral invertase activity were distinctly lower in the knockout plants’ roots than in those of wild-type plants, particularly when the plants were exposed to salinity stress. The compromised salinity tolerance exhibited by the FLN2 knockout plants was likely a consequence of an inadequate supply of the assimilate required to support growth, a problem which was rectifiable by providing an exogenous supply of sucrose. The conclusion was that FLN2, on account of its influence over sugar metabolism, is important in the context of seedling growth and the rice plant’s response to salinity stress.
Collapse
Affiliation(s)
- Guang Chen
- Correspondence: (G.C.); (L.Z.); (Q.Q.); Tel.: +86-571-6337-0179 (G.C. & L.Z.); +86-571-6337-0483 (Q.Q.)
| | | | | | | | | | | | - Li Zhu
- Correspondence: (G.C.); (L.Z.); (Q.Q.); Tel.: +86-571-6337-0179 (G.C. & L.Z.); +86-571-6337-0483 (Q.Q.)
| | - Qian Qian
- Correspondence: (G.C.); (L.Z.); (Q.Q.); Tel.: +86-571-6337-0179 (G.C. & L.Z.); +86-571-6337-0483 (Q.Q.)
| |
Collapse
|
17
|
Chen Z, Qin C, Wang M, Liao F, Liao Q, Liu X, Li Y, Lakshmanan P, Long M, Huang D. Ethylene-mediated improvement in sucrose accumulation in ripening sugarcane involves increased sink strength. BMC PLANT BIOLOGY 2019; 19:285. [PMID: 31253103 PMCID: PMC6599285 DOI: 10.1186/s12870-019-1882-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/11/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Sugarcane is a major crop producing about 80% of sugar globally. Increasing sugar content is a top priority for sugarcane breeding programs worldwide, however, the progress is extremely slow. Owing to its commercial significance, the physiology of sucrose accumulation has been studied extensively but it did not lead to any significant practical outcomes. Recent molecular studies are beginning to recognize genes and gene networks associated with this phenomenon. To further advance our molecular understanding of sucrose accumulation, we altered sucrose content of sugarcane genotypes with inherently large variation for sucrose accumulation using a sugarcane ripener, ethylene, and studied their transcriptomes to identify genes associated with the phenomenon. RESULTS Sucrose content variation in the experimental genotypes was substantial, with the top-performing clone producing almost 60% more sucrose than the poorest performer. Ethylene treatment increased stem sucrose content but that occurred only in low-sugar genotype. Transcriptomic analyses have identified about 160,000 unigenes of which 86,000 annotated genes were classified into functional groups associated with carbohydrate metabolism, signaling, localization, transport, hydrolysis, growth, catalytic activity, membrane and storage, suggesting the structural and functional specification, including sucrose accumulation, occurring in maturing internodes. About 25,000 genes were differentially expressed between all genotypes and treatments combined. Genotype had a dominant effect on differential gene expression than ethylene treatment. Sucrose and starch metabolism genes were more responsive to ethylene treatment in low-sugar genotype. Ethylene caused differential gene expression of many stress-related transcription factors, carbohydrate metabolism, hormone metabolism and epigenetic modification. Ethylene-induced expression of ethylene-responsive transcription factors, cytosolic acid- and cell wall-bound invertases, and ATPase was more pronounced in low- than in high-sugar genotype, suggesting an ethylene-stimulated sink activity and consequent increased sucrose accumulation in low-sugar genotype. CONCLUSION Ethylene-induced sucrose accumulation is more pronounced in low-sugar sugarcane genotype, and this is possibly achieved by the preferential activation of genes such as invertases that increase sink strength in the stem. The relatively high enrichment of differentially expressed genes associated with hormone metabolism and signaling and stress suggests a strong hormonal regulation of source-sink activity, growth and sucrose accumulation in sugarcane.
Collapse
Affiliation(s)
- Zhongliang Chen
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs /Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Cuixian Qin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs /Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Miao Wang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs /Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Fen Liao
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs /Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Qing Liao
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs /Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Xihui Liu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs /Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Yangrui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs /Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Prakash Lakshmanan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs /Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, QLD, St Lucia, 4072 Australia
| | - Minghua Long
- College of Agriculture, Guangxi University, Nanning, 530004 China
| | - Dongliang Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs /Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| |
Collapse
|
18
|
Ma Q, Sun M, Lu J, Kang H, You C, Hao Y. An apple sucrose transporter MdSUT2.2 is a phosphorylation target for protein kinase MdCIPK22 in response to drought. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:625-637. [PMID: 30133123 PMCID: PMC6381786 DOI: 10.1111/pbi.13003] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 08/02/2018] [Accepted: 08/18/2018] [Indexed: 05/22/2023]
Abstract
Sugars increase with drought stress in plants and accumulate in the vacuole. However, the exact molecular mechanism underlying this process is not clear yet. In this study, protein interaction and phosphorylation experiments were conducted for sucrose transporter and CIPK kinase in apple. The specific phosphorylation site of sucrose transporter was identified with mass spectrometry. Transgenic analyses were performed to characterize their biological function. It was found that overexpression of sucrose transporter gene MdSUT2.2 in apple plants promoted sugar accumulation and drought tolerance. MdSUT2.2 protein was phosphorylated at Ser381 site in response to drought. A DUALmembrane system using MdSUT2.2 as bait through an apple cDNA library got a protein kinase MdCIPK22. Bimolecular fluorescence complementary (BiFC), pull-down and co-immunoprecipitation (Co-IP) assays further demonstrated that MdCIPK22 interacted with MdSUT2.2. A series of transgenic analysis showed that MdCIPK22 was required for the drought-induced phosphylation at Ser381 site of MdSUT2.2 protein, and that it enhanced the stability and transport activity of MdSUT2.2 protein. Finally, it was found that MdCIPK22 overexpression promoted sugar accumulation and improved drought tolerance in an MdSUT2.2-dependent manner in transgenic apple plants. MdCIPK22-MdSUT2.2 regulatory module shed light on the molecular mechanism by which plant accumulates sugars and enhances tolerance in response to drought stress.
Collapse
Affiliation(s)
- Qi‐Jun Ma
- National Key Laboratory of Crop BiologyMOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in Huanghuai RegionCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐AnShandongChina
| | - Mei‐Hong Sun
- National Key Laboratory of Crop BiologyMOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in Huanghuai RegionCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐AnShandongChina
| | - Jing Lu
- National Key Laboratory of Crop BiologyMOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in Huanghuai RegionCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐AnShandongChina
| | - Hui Kang
- National Key Laboratory of Crop BiologyMOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in Huanghuai RegionCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐AnShandongChina
| | - Chun‐Xiang You
- National Key Laboratory of Crop BiologyMOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in Huanghuai RegionCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐AnShandongChina
| | - Yu‐Jin Hao
- National Key Laboratory of Crop BiologyMOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in Huanghuai RegionCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐AnShandongChina
| |
Collapse
|
19
|
Luo J, Zhang Q, Cao M, Wu L, Cao J, Fang F, Li C, Xue Z, Feng Q. Ecotoxicity and environmental fates of newly recognized contaminants-artificial sweeteners: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:1149-1160. [PMID: 30759555 DOI: 10.1016/j.scitotenv.2018.10.445] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/25/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Artificial sweeteners (ASs) are used in countless application in daily life. ASs are newly recognized as pollutants due to their high detection frequency in various environmental media, which has aroused great concern. This review presents the current knowledge of AS ecotoxicity and possible elimination routes in the environment. The obtained results indicate that the negative impacts of ASs are more severe than previously expected. More attention should be paid to the chronic and metabolite toxicities of ASs. Moreover, numerous processes (physical, chemical and biological) have been reported to be able to degrade ASs. However, the elimination efficiency varies greatly depending on the specific AS and the particular experimental conditions. Cyclamate and saccharin are easily removed, while sucralose and acesulfame are generally persistent. Additionally, there is a large gap in the ASs removal efficiency between bench tests and full-scale studies. The potential for microbial degradation of persistent ASs was reported in some regions, but clarification of the underlying mechanisms is necessary to increase the likelihood of using this approach in wide applications with a satisfactory performance.
Collapse
Affiliation(s)
- Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qin Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Hohai University Wentian College, Ma'anshan, China
| | - Miao Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Lijuan Wu
- Jiangsu Provincial Academy of Environmental Science, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Chao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhaoxia Xue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
20
|
Hu W, Hua X, Zhang Q, Wang J, Shen Q, Zhang X, Wang K, Yu Q, Lin YR, Ming R, Zhang J. New insights into the evolution and functional divergence of the SWEET family in Saccharum based on comparative genomics. BMC PLANT BIOLOGY 2018; 18:270. [PMID: 30404601 PMCID: PMC6222987 DOI: 10.1186/s12870-018-1495-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/22/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND The SWEET (Sugars Will Eventually be Exported Transporters) gene family is a recently identified group of sugar transporters that play an indispensable role in sugar efflux, phloem loading, plant-pathogen interaction, nectar secretion, and reproductive tissue development. However, little information on Saccharum SWEET is available for this crop with a complex genetic background. RESULTS In this study, 22 SWEET genes were identified from Saccharum spontaneum Bacterial Artificial Chromosome libraries sequences. Phylogenetic analyses of SWEETs from 11 representative plant species showed that gene expansions of the SWEET family were mainly caused by the recent gene duplication in dicot plants, while these gene expansions were attributed to the ancient whole genome duplication (WGD) in monocot plant species. Gene expression profiles were obtained from RNA-seq analysis. SWEET1a and SWEET2s had higher expression levels in the transitional zone and maturing zone than in the other analyzed zones. SWEET1b was mainly expressed in the leaf tissues and the mature zone of the leaf of both S. spontaneum and S. officinarum, and displayed a peak in the morning and was undetectable in both sclerenchyma and parenchyma cells from the mature stalks of S. officinarum. SsSWEET4a\4b had higher expression levels than SWEET4c and were mainly expressed in the stems of seedlings and mature plants. SWEET13s are recently duplicated genes, and the expression of SWEET13s dramatically increased from the maturing to mature zones. SWEET16b's expression was not detected in S. officinarum, but displayed a rhythmic diurnal expression pattern. CONCLUSIONS Our study revealed the gene evolutionary history of SWEETs in Saccharum and SWEET1b was found to be a sucrose starvation-induced gene involved in the sugar transportation in the high photosynthetic zones. SWEET13c was identified as the key player in the efflux of sugar transportation in mature photosynthetic tissues. SWEET4a\4b were found to be mainly involved in sugar transportation in the stalk. SWEET1a\2a\4a\4b\13a\16b were suggested to be the genes contributing to the differences in sugar contents between S. spontaneum and S. officinarum. Our results are valuable for further functional analysis of SWEET genes and utilization of the SWEET genes for genetic improvement of Saccharum for biofuel production.
Collapse
Affiliation(s)
- Weichang Hu
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiuting Hua
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Qing Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jianping Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Agronomy Department, University of Florida, Gainesville, FL 32610 USA
| | - Qiaochu Shen
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xingtan Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Kai Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Qingyi Yu
- Texas A&M AgriLife Research, Department of Plant Pathology and Microbiology, Texas A&M University System, Dallas, TX 75252 USA
| | - Yann-Rong Lin
- Department of Agronomy, National Taiwan University, Taipei, 100 Taiwan
| | - Ray Ming
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
21
|
Rottmann TM, Fritz C, Lauter A, Schneider S, Fischer C, Danzberger N, Dietrich P, Sauer N, Stadler R. Protoplast-Esculin Assay as a New Method to Assay Plant Sucrose Transporters: Characterization of AtSUC6 and AtSUC7 Sucrose Uptake Activity in Arabidopsis Col-0 Ecotype. FRONTIERS IN PLANT SCIENCE 2018; 9:430. [PMID: 29740457 PMCID: PMC5925572 DOI: 10.3389/fpls.2018.00430] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/20/2018] [Indexed: 05/20/2023]
Abstract
The best characterized function of sucrose transporters of the SUC family in plants is the uptake of sucrose into the phloem for long-distance transport of photoassimilates. This important step is usually performed by one specific SUC in every species. However, plants possess small families of several different SUCs which are less well understood. Here, we report on the characterization of AtSUC6 and AtSUC7, two members of the SUC family in Arabidopsis thaliana. Heterologous expression in yeast (Saccharomyces cerevisiae) revealed that AtSUC6Col-0 is a high-affinity H+-symporter that mediates the uptake of sucrose and maltose across the plasma membrane at exceptionally low pH values. Reporter gene analyses revealed a strong expression of AtSUC6Col-0 in reproductive tissues, where the protein product might contribute to sugar uptake into pollen tubes and synergid cells. A knockout of AtSUC6 did not interfere with vegetative development or reproduction, which points toward physiological redundancy of AtSUC6Col-0 with other sugar transporters. Reporter gene analyses showed that AtSUC7Col-0 is expressed in roots and pollen tubes and that this sink specific expression of AtSUC7Col-0 is regulated by intragenic regions. Transport activity of AtSUC7Col-0 could not be analyzed in baker's yeast or Xenopus oocytes because the protein was not correctly targeted to the plasma membrane in both heterologous expression systems. Therefore, a novel approach to analyze sucrose transporters in planta was developed. Plasma membrane localized SUCs including AtSUC6Col-0 and also sucrose specific SWEETs were able to mediate transport of the fluorescent sucrose analog esculin in transformed mesophyll protoplasts. In contrast, AtSUC7Col-0 is not able to mediate esculin transport across the plasma membrane which implicates that AtSUC7Col-0 might be a non-functional pseudogene. The novel protoplast assay provides a useful tool for the quick and quantitative analysis of sucrose transporters in an in planta expression system.
Collapse
|
22
|
Involvement of Penicillium digitatum PdSUT1 in fungicide sensitivity and virulence during citrus fruit infection. Microbiol Res 2017; 203:57-67. [DOI: 10.1016/j.micres.2017.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/12/2017] [Accepted: 06/29/2017] [Indexed: 12/27/2022]
|
23
|
ElSayed AI, Lehrer A, Ebrahim M, Mohamed AH, Komor E. Assessment of sucrose transporters, metabolites and sucrose phosphate synthase in different sugarcane tissues. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:703-712. [PMID: 28878508 PMCID: PMC5567715 DOI: 10.1007/s12298-017-0454-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/28/2017] [Accepted: 05/25/2017] [Indexed: 05/29/2023]
Abstract
The expression of sucrose-phosphate synthase II (SPSII) and sucrose transporters ShSUT1A and ShSUT4 were determined by RT-PCR and qRT-PCR in the sink and source leaves and in rind and pith of mature internodes of four high-yielding Hawaiian sugarcane cultivars. Expression of SPSII, ShSUT1A, and ShSUT4 was lower in pith than in rind, except in one cultivar, but else quite similar in the cultivars. The strong expression of transporter ShSUT4 in the rind of the internodes may hint to a special role of ShSUT4 in the rind. ShSUT4-expression in the sink and source leaves was similar in all four cultivars, whereas large differences were found for the expression of ShSUT1A and SPSII between the source and sink leaves and between the cultivars. The levels of sucrose precursors were doubled in source leaves compared to sink leaves, whereas they were higher in immature internode compared to mature internode. The role of sucrose transporters and SPSII in leaves and internodes is discussed, but the large differences, which were observed in the transcript levels of SPSII and sucrose transporters between some cultivars, although all the cultivars were similarly high-yielding cultivars, show that SPSII and SUT transcript levels cannot be used as indicators of high-yield cultivars.
Collapse
Affiliation(s)
- Abdelaleim Ismail ElSayed
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519 Egypt
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Axel Lehrer
- Hawaii Agriculture Research Center, Kunia, HI USA
| | - Mohsen Ebrahim
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Azza H. Mohamed
- Biochemistry Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Ewald Komor
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
24
|
Glassop D, Stiller J, Bonnett GD, Grof CPL, Rae AL. An analysis of the role of the ShSUT1 sucrose transporter in sugarcane using RNAi suppression. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:795-808. [PMID: 32480608 DOI: 10.1071/fp17073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 05/11/2017] [Indexed: 06/11/2023]
Abstract
The role of ShSUT1 in sucrose mobilisation and storage in sugarcane was investigated by employing RNAi technology to reduce the expression of this gene. Transcript profiling in non-transformed plants showed an alignment between expression and sucrose concentration, with strongest expression in source leaves and increasing expression through the daylight period of a diurnal cycle. Five transgenic plant lines were produced with reduced ShSUT1 expression ranging from 52 to 92% lower than control plants. Differential suppression of ShSUT1 sequence variants in the highly polyploid sugarcane genome were also investigated. Amplicon sequencing of the ShSUT1 variants within the transgenic lines and controls showed no preferential suppression with only minor differences in the proportional expression of the variants. A range of altered sugar, fibre and moisture contents were measured in mature leaf and internode samples, but no phenotype was consistently exhibited by all five transgenic lines. Phenotypes observed indicate that ShSUT1 does not play a direct role in phloem loading. ShSUT1 is likely involved with retrieving sucrose from intercellular spaces for transport and storage.
Collapse
Affiliation(s)
- Donna Glassop
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, Qld 4067, Australia
| | - Jiri Stiller
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, Qld 4067, Australia
| | - Graham D Bonnett
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, Qld 4067, Australia
| | - Christopher P L Grof
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Anne L Rae
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, Qld 4067, Australia
| |
Collapse
|
25
|
Tran TM, Hampton CS, Brossard TW, Harmata M, Robertson JD, Jurisson SS, Braun DM. In vivo transport of three radioactive [ 18F]-fluorinated deoxysucrose analogs by the maize sucrose transporter ZmSUT1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:1-11. [PMID: 28300727 DOI: 10.1016/j.plaphy.2017.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 05/26/2023]
Abstract
Sucrose transporter (SUT) proteins translocate sucrose across cell membranes; however, mechanistic aspects of sucrose binding by SUTs are not well resolved. Specific hydroxyl groups in sucrose participate in hydrogen bonding with SUT proteins. We previously reported that substituting a radioactive fluorine-18 [18F] at the C-6' position within the fructosyl moiety of sucrose did not affect sucrose transport by the maize (Zea mays) ZmSUT1 protein. To determine how 18F substitution of hydroxyl groups at two other positions within sucrose, the C-1' in the fructosyl moiety or the C-6 in the glucosyl moiety, impact sucrose transport, we synthesized 1'-[F18]fluoro-1'-deoxysucrose and 6-[F18]fluoro-6-deoxysucrose ([18F]FDS) analogs. Each [18F]FDS derivative was independently introduced into wild-type or sut1 mutant plants, which are defective in sucrose phloem loading. All three (1'-, 6'-, and 6-) [18F]FDS derivatives were efficiently and equally translocated, similarly to carbon-14 [14C]-labeled sucrose. Hence, individually replacing the hydroxyl groups at these positions within sucrose does not interfere with substrate recognition, binding, or membrane transport processes, and hydroxyl groups at these three positions are not essential for hydrogen bonding between sucrose and ZmSUT1. [18F]FDS imaging afforded several advantages compared to [14C]-sucrose detection. We calculated that 1'-[18F]FDS was transported at approximately a rate of 0.90 ± 0.15 m.h-1 in wild-type leaves, and at 0.68 ± 0.25 m.h-1 in sut1 mutant leaves. Collectively, our data indicated that [18F]FDS analogs are valuable tools to probe sucrose-SUT interactions and to monitor sucrose transport in plants.
Collapse
Affiliation(s)
- Thu M Tran
- Plant Imaging Consortium, United States; Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO 65211, United States
| | - Carissa S Hampton
- Department of Chemistry, University of Missouri, Columbia, MO 65211, United States; University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211, United States
| | - Tom W Brossard
- Department of Chemistry, University of Missouri, Columbia, MO 65211, United States; University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211, United States
| | - Michael Harmata
- Department of Chemistry, University of Missouri, Columbia, MO 65211, United States
| | - J David Robertson
- Department of Chemistry, University of Missouri, Columbia, MO 65211, United States; University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211, United States
| | - Silvia S Jurisson
- Plant Imaging Consortium, United States; Department of Chemistry, University of Missouri, Columbia, MO 65211, United States
| | - David M Braun
- Plant Imaging Consortium, United States; Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
26
|
Amy-Sagers C, Reinhardt K, Larson DM. Ecotoxicological assessments show sucralose and fluoxetine affect the aquatic plant, Lemna minor. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 185:76-85. [PMID: 28192727 DOI: 10.1016/j.aquatox.2017.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 06/06/2023]
Abstract
Pharmaceuticals and personal care products (PPCP) are prevalent in aquatic systems, yet the fate and impacts on aquatic plants needs quantification for many compounds. We measured and detected sucralose (an artificial sweetener), fluoxetine (an antidepressant), and other PPCP in the Portneuf River in Idaho, USA, where Lemna minor (an aquatic plant in the environment and used in ecotoxicology studies) naturally occurs. Sucralose was hypothesized to negatively affect photosynthesis and growth of L. minor because sucralose is a chlorinated molecule that may be toxic or unusable for plant metabolism. A priori hypotheses were not created for fluoxetine due to lack of previous studies examining its impacts on plants. We conducted laboratory ecotoxicological assessments for a large range of concentrations of sucralose and fluoxetine on L. minor physiology and photosynthetic function. Frond green leaf area, root length, growth rate, photosynthetic capacity, and plant carbon isotopic composition (discrimination relative to a standard; δ13C) were measured among treatments ranging from 0 to 15000nmol/L-sucralose and 0-323nmol/L-fluoxetine. Contrary to our predictions, sucralose significantly increased green leaf area, photosynthetic capacity, and δ 13C of L. minor at environmentally relevant concentrations. The increase of δ 13C from sucralose amendments and an isotope-mixing model indicated substantial sucralose uptake and assimilation within the plant. Unlike humans who cannot break down and utilize sucralose, we documented that L. minor-a mixotrophic plant-can use sucralose as a sugar substitute to increase its green leaf area and photosynthetic capacity. Fluoxetine significantly decreased L. minor root growth, daily growth rate, and asexual reproduction at 323nmol/L-fluoxetine; however, ambiguity remains regarding the mechanisms responsible and the applicability of these extreme concentrations unprecedented in the natural environment. To our knowledge, this was the first study to show aquatic plants can uptake and metabolize sucralose as a carbon source. This study further supports the common notion that L. minor can be useful in bioremediation of PPCP from wastewaters.
Collapse
Affiliation(s)
- Cherisse Amy-Sagers
- Department of Biological Sciences, Idaho State University, MS 8007, Pocatello, ID 83209, United States
| | - Keith Reinhardt
- Department of Biological Sciences, Idaho State University, MS 8007, Pocatello, ID 83209, United States
| | - Danelle M Larson
- Department of Biological Sciences, Idaho State University, MS 8007, Pocatello, ID 83209, United States.
| |
Collapse
|
27
|
Regmi KC, Li L, Gaxiola RA. Alternate Modes of Photosynthate Transport in the Alternating Generations of Physcomitrella patens. FRONTIERS IN PLANT SCIENCE 2017; 8:1956. [PMID: 29181017 PMCID: PMC5693889 DOI: 10.3389/fpls.2017.01956] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/30/2017] [Indexed: 05/06/2023]
Abstract
Physcomitrella patens has emerged as a model moss system to investigate the evolution of various plant characters in early land plant lineages. Yet, there is merely a disparate body of ultrastructural and physiological evidence from other mosses to draw inferences about the modes of photosynthate transport in the alternating generations of Physcomitrella. We performed a series of ultrastructural, fluorescent tracing, physiological, and immunohistochemical experiments to elucidate a coherent model of photosynthate transport in this moss. Our ultrastructural observations revealed that Physcomitrella is an endohydric moss with water-conducting and putative food-conducting cells in the gametophytic stem and leaves. Movement of fluorescent tracer 5(6)-carboxyfluorescein diacetate revealed that the mode of transport in the gametophytic generation is symplasmic and is mediated by plasmodesmata, while there is a diffusion barrier composed of transfer cells that separates the photoautotrophic gametophyte from the nutritionally dependent heterotrophic sporophyte. We posited that, analogous to what is found in apoplasmically phloem loading higher plants, the primary photosynthate sucrose, is actively imported into the transfer cells by sucrose/H+ symporters (SUTs) that are, in turn, powered by P-type ATPases, and that the transfer cells harbor an ATP-conserving Sucrose Synthase (SUS) pathway. Supporting our hypothesis was the finding that a protonophore (2,4-dinitrophenol) and a SUT-specific inhibitor (diethyl pyrocarbonate) reduced the uptake of radiolabeled sucrose into the sporangia. In situ immunolocalization of P-type ATPase, Sucrose Synthase, and Proton Pyrophosphatase - all key components of the SUS pathway - showed that these proteins were prominently localized in the transfer cells, providing further evidence consistent with our argument.
Collapse
|
28
|
Hu H, Deng Y, Fan Y, Zhang P, Sun H, Gan Z, Zhu H, Yao Y. Effects of artificial sweeteners on metal bioconcentration and toxicity on a green algae Scenedesmus obliquus. CHEMOSPHERE 2016; 150:285-293. [PMID: 26915590 DOI: 10.1016/j.chemosphere.2016.02.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 01/09/2016] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
The ecotoxicity of heavy metals depends much on their speciation, which is influenced by other co-existing substances having chelating capacity. In the present study, the toxic effects of Cd(2+) and Cu(2+) on a green algae Scenedesmus obliquus were examined in the presence of two artificial sweeteners (ASs), acesulfame (ACE) and sucralose (SUC) by comparing the cell specific growth rate μ and pulse-amplitude-modulated (PAM) parameters (maximal photosystem II photochemical efficiency Fv/Fm, actual photochemical efficiency Yield, and non-photochemical quenching NPQ) of the algae over a 96-h period. Simultaneously, the bioconcentration of the metals by the algal cells in the presence of the ASs was measured. The presence of ACE enhanced the growth of S. obliquus and promoted the bioconcentration of Cd(2+) in S. obliquus, while the impacts of SUC were not significant. Meanwhile, EC50 values of Cd(2+) on the growth of S. obliquus increased from 0.42 mg/L to 0.54 mg/L and 0.48 mg/L with the addition of 1.0 mg/L ACE and SUC, respectively. As for Cu(2+), EC50 values increased from 0.13 mg/L to 0.17 mg/L and 0.15 mg/L with the addition of 1.0 mg/L ACE and SUC, respectively. In summary, the two ASs reduced the toxicity of the metals on the algae, with ACE showing greater effect than SUC. Although not as sensitive as the cell specific growth rate, PAM parameters could disclose the mechanisms involved in metal toxicity at subcellular levels. This study provides the first evidence for the possible impact of ASs on the ecotoxicity of heavy metals.
Collapse
Affiliation(s)
- Hongwei Hu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yuanyuan Deng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yunfei Fan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Pengfei Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Zhiwei Gan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
29
|
Zhang Q, Hu W, Zhu F, Wang L, Yu Q, Ming R, Zhang J. Structure, phylogeny, allelic haplotypes and expression of sucrose transporter gene families in Saccharum. BMC Genomics 2016; 17:88. [PMID: 26830680 PMCID: PMC4736615 DOI: 10.1186/s12864-016-2419-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/26/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Sugarcane is an economically important crop contributing to about 80% of the world sugar production. Increasing efforts in molecular biological studies have been performed for improving the sugar yield and other relevant important agronomic traits. However, due to sugarcane's complicated genomes, it is still challenging to study the genetic basis of traits, such as sucrose accumulation. Sucrose transporters (SUTs) are critical for both phloem loading in source tissue and sucrose uptaking in sink tissue, and are considered to be the control points for regulating sucrose storage. However, no genomic study for sugarcane sucrose transporter (SsSUT) families has been reported up to date. RESULTS By using comparative genomics and bacterial artificial chromosomes (BACs), six SUT genes were identified and characterized in S. spontaenum. Phylogenetic analyses revealed that the two pairs SsSUTs (SsSUT1/SsSUT3 and SsSUT5/SsSUT6) could be clustered together into two separate monocot specific SUT groups, while SsSUT2 and SsSUT4 were separated into the other two groups, with members from both dicot and monocot species. Gene structure comparison demonstrated that the number and position of exons/introns in SUTs were highly conserved among the close orthologs; in contrast, there were variations among the paralogous SUTs in Sacchuarm. Though with the high polyploidy level, gene allelic haplotype comparative analysis showed that the examined four SsSUT members exhibited conservations of gene structures and amino acid sequences among the allelic haplotypes accompanied by variations of intron sizes. Gene expression analyses were performed for tissues from seedlings under drought stress and mature plants of three Saccharum species (S.officinarnum, S.spotaneum and S.robustum). Both SUT1 and SUT4 expressed abundantly at different conditions. SUT2 had similar expression level in all of the examined tissues, but SUT3 was undetectable. Both of SUT5 and SUT6 had lower expression level than other gene member, and expressed stronger in source leaves and are likely to play roles in phloem loading. In the seeding plant leave under water stress, four genes SUT1, SUT2, SUT4 and SUT5 were detectable. In these detectable genes, SUT1 and SUT4 were down regulated, while, SUT2 and SUT5 were up regulated. CONCLUSIONS In this study, we presented the first comprehensive genomic study for a whole gene family, the SUT family, in Saccharum. We speculated that there were six SUT members in the S. spotaneum genome. Out of the six members, SsSUTs, SsSUT5 and SsSUT6 were recent duplication genes accompanied by rapid evolution, while, SsSUT2 and SsSUT4 were the ancient members in the families. Despite the high polypoidy genome, functional redundancy may not exist among the SUTs allelic haplotypes supported by the evidence of strong purifying selection of the gene allele. SUT3 could be a low active member in the family because it is undetectable in our study, but it might not be a pseudogene because it harbored integrated gene structure. SUT1 and SUT4 were the main members for the sucrose transporter, while, these SUTs had sub-functional divergence in response to sucrose accumulation and plant development in Saccharum.
Collapse
Affiliation(s)
- Qing Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Weichang Hu
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Fan Zhu
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Liming Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Qingyi Yu
- TexasA&M AgriLife Research, Department of Plant Pathology and Microbiology, Texas A&M University System, Dallas, TX, 75252, USA.
| | - Ray Ming
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
30
|
Matros A, Peshev D, Peukert M, Mock HP, Van den Ende W. Sugars as hydroxyl radical scavengers: proof-of-concept by studying the fate of sucralose in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:822-39. [PMID: 25891826 DOI: 10.1111/tpj.12853] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 05/25/2023]
Abstract
Substantial formation of reactive oxygen species (ROS) is inevitable in aerobic life forms. Due to their extremely high reactivity and short lifetime, hydroxyl radicals are a special case, because cells have not developed enzymes to detoxify these most dangerous ROS. Thus, scavenging of hydroxyl radicals may only occur by accumulation of higher levels of simple organic compounds. Previous studies have demonstrated that plant-derived sugars show hydroxyl radical scavenging capabilities during Fenton reactions with Fe(2+) and hydrogen peroxide in vitro, leading to formation of less detrimental sugar radicals that may be subject of regeneration to non-radical carbohydrates in vivo. Here, we provide further evidence for the occurrence of such radical reactions with sugars in planta, by following the fate of sucralose, an artificial analog of sucrose, in Arabidopsis tissues. The expected sucralose recombination and degradation products were detected in both normal and stressed plant tissues. Oxidation products of endogenous sugars were also assessed in planta for Arabidopsis and barley, and were shown to increase in abundance relative to the non-oxidized precursor during oxidative stress conditions. We concluded that such non-enzymatic reactions with hydroxyl radicals form an integral part of plant antioxidant mechanisms contributing to cellular ROS homeostasis, and may be more important than generally assumed. This is discussed in relation to the recently proposed roles for Fe(2+) and hydrogen peroxide in processes leading to the origin of metabolism and the origin of life.
Collapse
Affiliation(s)
- Andrea Matros
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| | - Darin Peshev
- Laboratory of Molecular Plant Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, B-3001, Leuven, Belgium
| | - Manuela Peukert
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, B-3001, Leuven, Belgium
| |
Collapse
|
31
|
Rotsch D, Brossard T, Bihmidine S, Ying W, Gaddam V, Harmata M, Robertson JD, Swyers M, Jurisson SS, Braun DM. Radiosynthesis of 6'-Deoxy-6'[18F]Fluorosucrose via Automated Synthesis and Its Utility to Study In Vivo Sucrose Transport in Maize (Zea mays) Leaves. PLoS One 2015; 10:e0128989. [PMID: 26024520 PMCID: PMC4449027 DOI: 10.1371/journal.pone.0128989] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 05/01/2015] [Indexed: 01/08/2023] Open
Abstract
Sugars produced from photosynthesis in leaves are transported through the phloem tissues within veins and delivered to non-photosynthetic organs, such as roots, stems, flowers, and seeds, to support their growth and/or storage of carbohydrates. However, because the phloem is located internally within the veins, it is difficult to access and to study the dynamics of sugar transport. Radioactive tracers have been extensively used to study vascular transport in plants and have provided great insights into transport dynamics. To better study sucrose partitioning in vivo, a novel radioactive analog of sucrose was synthesized through a completely chemical synthesis route by substituting fluorine-18 (half-life 110 min) at the 6' position to generate 6'-deoxy-6'[(18)F]fluorosucrose ((18)FS). This radiotracer was then used to compare sucrose transport between wild-type maize plants and mutant plants lacking the Sucrose transporter1 (Sut1) gene, which has been shown to function in sucrose phloem loading. Our results demonstrate that (18)FS is transported in vivo, with the wild-type plants showing a greater rate of transport down the leaf blade than the sut1 mutant plants. A similar transport pattern was also observed for universally labeled [U-(14)C]sucrose ([U-(14)C]suc). Our findings support the proposed sucrose phloem loading function of the Sut1 gene in maize, and additionally demonstrate that the (18)FS analog is a valuable, new tool that offers imaging advantages over [U-(14)C]suc for studying phloem transport in plants.
Collapse
Affiliation(s)
- David Rotsch
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Tom Brossard
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Saadia Bihmidine
- Division of Biological Sciences, Interdisciplinary Plant Group and the Missouri Maize Center, University of Missouri, Columbia, Missouri, United States of America
| | - Weijiang Ying
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Vikram Gaddam
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Michael Harmata
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - J. David Robertson
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
- University of Missouri Research Reactor, University of Missouri, Columbia, Missouri, United States of America
| | - Michael Swyers
- Division of Biological Sciences, Interdisciplinary Plant Group and the Missouri Maize Center, University of Missouri, Columbia, Missouri, United States of America
| | - Silvia S. Jurisson
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - David M. Braun
- Division of Biological Sciences, Interdisciplinary Plant Group and the Missouri Maize Center, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
32
|
Functional characterization of a putative disaccharide membrane transporter in crustacean intestine. J Comp Physiol B 2014; 185:173-83. [DOI: 10.1007/s00360-014-0876-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/07/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022]
|
33
|
Li F, Wu B, Qin X, Yan L, Hao C, Tan L, Lai J. Molecular cloning and expression analysis of the sucrose transporter gene family from Theobroma cacao L. Gene 2014; 546:336-41. [PMID: 24875417 DOI: 10.1016/j.gene.2014.05.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/30/2014] [Accepted: 05/23/2014] [Indexed: 11/29/2022]
Abstract
In this study, we performed cloning and expression analysis of six putative sucrose transporter genes, designated TcSUT1, TcSUT2, TcSUT3, TcSUT4, TcSUT5 and TcSUT6, from the cacao genotype 'TAS-R8'. The combination of cDNA and genomic DNA sequences revealed that the cacao SUT genes contained exon numbers ranging from 1 to 14. The average molecular mass of all six deduced proteins was approximately 56 kDa (range 52 to 66 kDa). All six proteins were predicted to exhibit typical features of sucrose transporters with 12 trans-membrane spanning domains. Phylogenetic analysis revealed that TcSUT2 and TcSUT4 belonged to Group 2 SUT and Group 4 SUT, respectively, and the other TcSUT proteins were belonging to Group 1 SUT. Real-time PCR was conducted to investigate the expression pattern of each member of the SUT family in cacao. Our experiment showed that TcSUT1 was expressed dominantly in pods and that, TcSUT3 and TcSUT4 were highly expressed in both pods and in bark with phloem. Within pods, TcSUT1 and TcSUT4 were expressed more in the seed coat and seed from the pod enlargement stage to the ripening stage. TcSUT5 expression sharply increased to its highest expression level in the seed coat during the ripening stage. Expression pattern analysis indicated that TcSUT genes may be associated with photoassimilate transport into developing seeds and may, therefore, have an impact on seed production.
Collapse
Affiliation(s)
- Fupeng Li
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, PR China; Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning 571533, PR China; Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning 571533, PR China
| | - Baoduo Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, PR China; Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning 571533, PR China; Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning 571533, PR China
| | - Xiaowei Qin
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, PR China; Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning 571533, PR China; Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning 571533, PR China
| | - Lin Yan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, PR China; Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning 571533, PR China; Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning 571533, PR China
| | - Chaoyun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, PR China; Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning 571533, PR China; Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning 571533, PR China
| | - Lehe Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, PR China; Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning 571533, PR China; Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning 571533, PR China
| | - Jianxiong Lai
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, PR China; Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning 571533, PR China; Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning 571533, PR China.
| |
Collapse
|
34
|
Braun DM, Wang L, Ruan YL. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1713-35. [PMID: 24347463 DOI: 10.1093/jxb/ert416] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sucrose is produced in, and translocated from, photosynthetically active leaves (sources) to support non-photosynthetic tissues (sinks), such as developing seeds, fruits, and tubers. Different plants can utilize distinct mechanisms to transport sucrose into the phloem sieve tubes in source leaves. While phloem loading mechanisms have been extensively studied in dicot plants, there is less information about phloem loading in monocots. Maize and rice are major dietary staples, which have previously been proposed to use different cellular routes to transport sucrose from photosynthetic cells into the translocation stream. The anatomical, physiological, and genetic evidence supporting these conflicting hypotheses is examined. Upon entering sink cells, sucrose often is degraded into hexoses for a wide range of metabolic and storage processes, including biosynthesis of starch, protein, and cellulose, which are all major constituents for food, fibre, and fuel. Sucrose, glucose, fructose, and their derivate, trehalose-6-phosphate, also serve as signalling molecules to regulate gene expression either directly or through cross-talk with other signalling pathways. As such, sugar transport and metabolism play pivotal roles in plant development and realization of crop yield that needs to be increased substantially to meet the projected population demand in the foreseeable future. This review will discuss the current understanding of the control of carbon partitioning from the cellular to whole-plant levels, focusing on (i) the pathways employed for phloem loading in source leaves, particularly in grasses, and the routes used in sink organs for phloem unloading; (ii) the transporter proteins responsible for sugar efflux and influx across plasma membranes; and (iii) the key enzymes regulating sucrose metabolism, signalling, and utilization. Examples of how sugar transport and metabolism can be manipulated to improve crop productivity and stress tolerance are discussed.
Collapse
Affiliation(s)
- David M Braun
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
35
|
Derrer C, Wittek A, Bamberg E, Carpaneto A, Dreyer I, Geiger D. Conformational changes represent the rate-limiting step in the transport cycle of maize sucrose transporter1. THE PLANT CELL 2013; 25:3010-21. [PMID: 23964025 PMCID: PMC3784595 DOI: 10.1105/tpc.113.113621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Proton-driven Suc transporters allow phloem cells of higher plants to accumulate Suc to more than 1 M, which is up to ~1000-fold higher than in the surrounding extracellular space. The carrier protein can accomplish this task only because proton and Suc transport are tightly coupled. This study provides insights into this coupling by resolving the first step in the transport cycle of the Suc transporter SUT1 from maize (Zea mays). Voltage clamp fluorometry measurements combining electrophysiological techniques with fluorescence-based methods enable the visualization of conformational changes of SUT1 expressed in Xenopus laevis oocytes. Using the Suc derivate sucralose, binding of which hinders conformational changes of SUT1, the association of protons to the carrier could be dissected from transport-associated movements of the protein. These combined approaches enabled us to resolve the binding of protons to the carrier and its interrelationship with the alternating movement of the protein. The data indicate that the rate-limiting step of the reaction cycle is determined by the accessibility of the proton binding site. This, in turn, is determined by the conformational change of the SUT1 protein, alternately exposing the binding pockets to the inward and to the outward face of the membrane.
Collapse
Affiliation(s)
- Carmen Derrer
- Julius-von-Sachs-Institute, Molecular Plant Physiology and Biophysics, University Würzburg, D-97082 Wuerzburg, Germany
| | - Anke Wittek
- Julius-von-Sachs-Institute, Molecular Plant Physiology and Biophysics, University Würzburg, D-97082 Wuerzburg, Germany
| | - Ernst Bamberg
- Max-Plant-Institute for Biophysics, Department of Biophysical Chemistry, D-60438 Frankfurt/Main, Germany
| | - Armando Carpaneto
- Instituto di Biofisica–Consiglio Nazionale delle Richerche, I-16149 Genova, Italy
| | - Ingo Dreyer
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid, Campus de Montegancedo, E-28223 Pozuelo de Alarcón (Madrid), Spain
| | - Dietmar Geiger
- Julius-von-Sachs-Institute, Molecular Plant Physiology and Biophysics, University Würzburg, D-97082 Wuerzburg, Germany
- Address correspondence to
| |
Collapse
|
36
|
Wang J, Nayak S, Koch K, Ming R. Carbon partitioning in sugarcane (Saccharum species). FRONTIERS IN PLANT SCIENCE 2013; 4:201. [PMID: 23785381 PMCID: PMC3685024 DOI: 10.3389/fpls.2013.00201] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/29/2013] [Indexed: 05/18/2023]
Abstract
Focus has centered on C-partitioning in stems of sugarcane (Saccharum sp.) due to their high-sucrose accumulation features, relevance to other grasses, and rising economic value. Here we review how sugarcane balances between sucrose storage, respiration, and cell wall biosynthesis. The specific topics involve (1) accumulation of exceptionally high sucrose levels (up to over 500 mM), (2) a potential, turgor-sensitive system for partitioning sucrose between storage inside (cytosol and vacuole) and outside cells, (3) mechanisms to prevent back-flow of extracellular sucrose to xylem or phloem, (4) apparent roles of sucrose-P-synthase in fructose retrieval and sucrose re-synthesis, (5) enhanced importance of invertases, and (6) control of C-flux at key points in cell wall biosynthesis (UDP-glucose dehydrogenase) and respiration (ATP- and pyrophosphate-dependent phosphofructokinases). A combination of emerging technologies is rapidly enhancing our understanding of these points and our capacity to shift C-flux between sucrose, cell wall polymers, or other C-sinks.
Collapse
Affiliation(s)
- Jianping Wang
- FAFU and UIUC SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Agronomy Department, Genetics Institute, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| | - Spurthi Nayak
- Agronomy Department, Genetics Institute, University of FloridaGainesville, FL, USA
| | - Karen Koch
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
- Horticultural Sciences Department, University of FloridaGainesville, FL, USA
| | - Ray Ming
- FAFU and UIUC SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Department of Plant Biology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| |
Collapse
|
37
|
Gan Z, Sun H, Wang R, Feng B. A novel solid-phase extraction for the concentration of sweeteners in water and analysis by ion-pair liquid chromatography-triple quadrupole mass spectrometry. J Chromatogr A 2012; 1274:87-96. [PMID: 23273631 DOI: 10.1016/j.chroma.2012.11.081] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/28/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022]
Abstract
A highly sensitive method for the simultaneous trace (ng/L) quantification of seven commonly used artificial sweeteners in a variety of water samples using solid-phase extraction and ion-pair high-performance liquid chromatography (HPLC) triple quadrupole mass spectrometer with an electrospray ionization source (ESI-MS) in negative ion multiple reaction monitoring mode was developed. Ten solid phase extraction (SPE) cartridges were tested to evaluate their applicability for the pre-concentration of the analytes, and their loading and eluting parameters were optimized. Satisfactory recoveries (77-99%) of all of the studied sweeteners were obtained using a Poly-Sery PWAX cartridge with 25 mM sodium acetate solution (pH 4) as wash buffer and methanol containing 1mM tris (hydroxymethyl) amino methane (TRIS) as eluent. The method is sound and does not require pH adjustment or buffering of water samples. The HPLC separation was performed on an Athena C18-WP column with water and acetonitrile, both containing 5mM ammonium acetate and 1mM TRIS as mobile phases, in gradient elution mode. The linearity, precision, and accuracy of the method were evaluated, and good reproducibility was obtained. Method quantification limits varied between 0.4 and 7.5 ng/L for different water samples. The post-extraction spike method was applied to assess matrix effects, and quantification was achieved using internal standard calibration to overcome the unavoidable matrix effects during ESI-MS analysis. The method was applied to the analysis of thirteen water samples from Tianjin, China, including wastewater, tap water, surface water, and groundwater. The method described here is time-saving, accurate and precise, and is suitable for monitoring artificial sweeteners in different water matrices.
Collapse
Affiliation(s)
- Zhiwei Gan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 94 Weijin Street, Tianjin 300071, China
| | | | | | | |
Collapse
|
38
|
Sun Y, Ward JM. Arg188 in rice sucrose transporter OsSUT1 is crucial for substrate transport. BMC BIOCHEMISTRY 2012; 13:26. [PMID: 23170937 PMCID: PMC3523064 DOI: 10.1186/1471-2091-13-26] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/05/2012] [Indexed: 01/06/2023]
Abstract
Background Plant sucrose uptake transporters (SUTs) are H+/sucrose symporters related to the major facilitator superfamily (MFS). SUTs are essential for plant growth but little is known about their transport mechanism. Recent work identified several conserved, charged amino acids within transmembrane spans (TMS) in SUTs that are essential for transport activity. Here we further evaluated the role of one of these positions, R188 in the fourth TMS of OsSUT1, a type II SUT. Results The OsSUT1(R188K) mutant, studied by expression in plants, yeast, and Xenopus oocytes, did not transport sucrose but showed a H+ leak that was blocked by sucrose. The H+ leak was also blocked by β-phenyl glucoside which is not translocated by OsSUT1. Replacing the corresponding Arg in type I and type III SUTs, AtSUC1(R163K) and LjSUT4(R169K), respectively, also resulted in loss of sucrose transport activity. Fluorination at the glucosyl 3 and 4 positions of α-phenyl glucoside greatly decreased transport by wild type OsSUT1 but did not affect the ability to block H+ leak in the R188K mutant. Conclusion OsSUT1 R188 appears to be essential for sucrose translocation but not for substrate interaction that blocks H+ leak. Therefore, we propose that an additional binding site functions in the initial recognition of substrates. The corresponding Arg in type I and III SUTs are equally important. We propose that R188 interacts with glucosyl 3-OH and 4-OH during translocation.
Collapse
Affiliation(s)
- Ye Sun
- Department of Plant Biology, University of Minnesota Twin Cities, St, Paul, MN 55108, USA
| | | |
Collapse
|
39
|
Frost CJ, Nyamdari B, Tsai CJ, Harding SA. The tonoplast-localized sucrose transporter in Populus (PtaSUT4) regulates whole-plant water relations, responses to water stress, and photosynthesis. PLoS One 2012; 7:e44467. [PMID: 22952983 PMCID: PMC3432113 DOI: 10.1371/journal.pone.0044467] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/02/2012] [Indexed: 12/24/2022] Open
Abstract
The Populus sucrose (Suc) transporter 4 (PtaSUT4), like its orthologs in other plant taxa, is tonoplast localized and thought to mediate Suc export from the vacuole into the cytosol. In source leaves of Populus, SUT4 is the predominantly expressed gene family member, with transcript levels several times higher than those of plasma membrane SUTs. A hypothesis is advanced that SUT4-mediated tonoplast sucrose fluxes contribute to the regulation of osmotic gradients between cellular compartments, with the potential to mediate both sink provisioning and drought tolerance in Populus. Here, we describe the effects of PtaSUT4-RNA interference (RNAi) on sucrose levels and raffinose family oligosaccharides (RFO) induction, photosynthesis, and water uptake, retention and loss during acute and chronic drought stresses. Under normal water-replete growing conditions, SUT4-RNAi plants had generally higher shoot water contents than wild-type plants. In response to soil drying during a short-term, acute drought, RNAi plants exhibited reduced rates of water uptake and delayed wilting relative to wild-type plants. SUT4-RNAi plants had larger leaf areas and lower photosynthesis rates than wild-type plants under well-watered, but not under chronic water-limiting conditions. Moreover, the magnitude of shoot water content, height growth, and photosynthesis responses to contrasting soil moisture regimes was greater in RNAi than wild-type plants. The concentrations of stress-responsive RFOs increased in wild-type plants but were unaffected in SUT4-RNAi plants under chronically dry conditions. We discuss a model in which the subcellular compartmentalization of sucrose mediated by PtaSUT4 is regulated in response to both sink demand and plant water status in Populus.
Collapse
Affiliation(s)
- Christopher J Frost
- Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, Georgia, USA
| | | | | | | |
Collapse
|
40
|
Reinders A, Sun Y, Karvonen KL, Ward JM. Identification of amino acids important for substrate specificity in sucrose transporters using gene shuffling. J Biol Chem 2012; 287:30296-304. [PMID: 22807445 DOI: 10.1074/jbc.m112.372888] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant sucrose transporters (SUTs) are H(+)-coupled uptake transporters. Type I and II (SUTs) are phylogenetically related but have different substrate specificities. Type I SUTs transport sucrose, maltose, and a wide range of natural and synthetic α- and β-glucosides. Type II SUTs are more selective for sucrose and maltose. Here, we investigated the structural basis for this difference in substrate specificity. We used a novel gene shuffling method called synthetic template shuffling to introduce 62 differentially conserved amino acid residues from type I SUTs into OsSUT1, a type II SUT from rice. The OsSUT1 variants were tested for their ability to transport the fluorescent coumarin β-glucoside esculin when expressed in yeast. Fluorescent yeast cells were selected using fluorescence-activated cell sorting (FACS). Substitution of five amino acids present in type I SUTs in OsSUT1 was found to be sufficient to confer esculin uptake activity. The changes clustered in two areas of the OsSUT1 protein: in the first loop and the top of TMS2 (T80L and A86K) and in TMS5 (S220A, S221A, and T224Y). The substrate specificity of this OsSUT1 variant was almost identical to that of type I SUTs. Corresponding changes in the sugarcane type II transporter ShSUT1 also changed substrate specificity, indicating that these residues contribute to substrate specificity in type II SUTs in general.
Collapse
Affiliation(s)
- Anke Reinders
- Department of Plant Biology, University of Minnesota, St. Paul, MN 55108-1095, USA
| | | | | | | |
Collapse
|
41
|
Sun Y, Lin Z, Reinders A, Ward JM. Functionally Important Amino Acids in Rice Sucrose Transporter OsSUT1. Biochemistry 2012; 51:3284-91. [DOI: 10.1021/bi201934h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ye Sun
- Department of Plant Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota
55108, United States
| | - Zi Lin
- Department
of Electrical and
Computer Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Anke Reinders
- Department of Plant Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota
55108, United States
| | - John M. Ward
- Department of Plant Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota
55108, United States
| |
Collapse
|
42
|
|
43
|
Reinders A, Sivitz AB, Ward JM. Evolution of plant sucrose uptake transporters. FRONTIERS IN PLANT SCIENCE 2012; 3:22. [PMID: 22639641 PMCID: PMC3355574 DOI: 10.3389/fpls.2012.00022] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/20/2012] [Indexed: 05/18/2023]
Abstract
In angiosperms, sucrose uptake transporters (SUTs) have important functions especially in vascular tissue. Here we explore the evolutionary origins of SUTs by analysis of angiosperm SUTs and homologous transporters in a vascular early land plant, Selaginella moellendorffii, and a non-vascular plant, the bryophyte Physcomitrella patens, the charophyte algae Chlorokybus atmosphyticus, several red algae and fission yeast, Schizosaccharomyces pombe. Plant SUTs cluster into three types by phylogenetic analysis. Previous studies using angiosperms had shown that types I and II are localized to the plasma membrane while type III SUTs are associated with vacuolar membrane. SUT homologs were not found in the chlorophyte algae Chlamydomonas reinhardtii and Volvox carterii. However, the characean algae Chlorokybus atmosphyticus contains a SUT homolog (CaSUT1) and phylogenetic analysis indicated that it is basal to all other streptophyte SUTs analyzed. SUTs are present in both red algae and S. pombe but they are less related to plant SUTs than CaSUT1. Both Selaginella and Physcomitrella encode type II and III SUTs suggesting that both plasma membrane and vacuolar sucrose transporter activities were present in early land plants. It is likely that SUT transporters are important for scavenging sucrose from the environment and intracellular compartments in charophyte and non-vascular plants. Type I SUTs were only found in eudicots and we conclude that they evolved from type III SUTs, possibly through loss of a vacuolar targeting sequence. Eudicots utilize type I SUTs for phloem (vascular tissue) loading while monocots use type II SUTs for phloem loading. We show that HvSUT1 from barley, a type II SUT, reverted the growth defect of the Arabidopsis atsuc2 (type I) mutant. This indicates that type I and II SUTs evolved similar (and interchangeable) phloem loading transporter capabilities independently.
Collapse
Affiliation(s)
- Anke Reinders
- Department of Plant Biology, University of MinnesotaSt. Paul, MN, USA
| | - Alicia B. Sivitz
- Department of Biological Sciences, Dartmouth CollegeHanover, NH, USA
| | - John M. Ward
- Department of Plant Biology, University of MinnesotaSt. Paul, MN, USA
- *Correspondence: John M. Ward, Department of Plant Biology, University of Minnesota, 250 Biological Sciences Center, 1445 Gortner Avenue, St. Paul, MN 55108, USA. e-mail:
| |
Collapse
|
44
|
Soh L, Connors KA, Brooks BW, Zimmerman J. Fate of sucralose through environmental and water treatment processes and impact on plant indicator species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:1363-9. [PMID: 21235203 DOI: 10.1021/es102719d] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The degradation and partitioning of sucralose during exposure to a variety of environmental and advanced treatment processes (ATP) and the effect of sucralose on indicator plant species were systematically assessed. Bench scale experiments were used to reproduce conditions from environmental processes (microbial degradation, hydrolysis, soil sorption) and ATPs (chlorination, ozonation, sorption to activated carbon, and UV radiation). Degradation only occurred to a limited extent during hydrolysis, ozonation, and microbial processes indicating that breakdown of sucralose will likely be slow and incomplete leading to accumulation in surface waters. Further, the persistence of sucralose was compared to suggested human tracer compounds, caffeine and acesulfame-K. In comparison sucralose exhibits similar or enhanced characteristics pertaining to persistence, prevalence, and facile detection and can therefore be considered an ideal tracer for anthropogenic activity. Ecological effects of sucralose were assessed by measuring sucrose uptake inhibition in plant cotelydons and aquatic plant growth impairment. Sucralose did not inhibit plant cotelydon sucrose uptake, nor did it effect frond number, wet weight, or growth rate in aquatic plant, Lemna gibba. Though sucralose does not appear toxic to plant growth, the peristent qualities of sucralose may lead to chronic low-dose exposure with largely unknown consequences for human and environmental health.
Collapse
Affiliation(s)
- Lindsay Soh
- Environmental Engineering Program and ‡School of Forestry and Environmental Studies, Yale University, New Haven, CT 06511, USA
| | | | | | | |
Collapse
|
45
|
|
46
|
|
47
|
Rolz C, de León R. Converting developing and mature sugarcane carbohydrates into ethanol. Eng Life Sci 2010. [DOI: 10.1002/elsc.201000030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
48
|
Scheurer M, Storck FR, Brauch HJ, Lange FT. Performance of conventional multi-barrier drinking water treatment plants for the removal of four artificial sweeteners. WATER RESEARCH 2010; 44:3573-84. [PMID: 20462625 DOI: 10.1016/j.watres.2010.04.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/02/2010] [Accepted: 04/07/2010] [Indexed: 05/10/2023]
Abstract
Due to incomplete removal of artificial sweeteners in wastewater treatment plants some of these compounds end up in receiving surface waters, which are used for drinking water production. The sum of removal efficiency of single treatment steps in multi-barrier treatment systems affects the concentrations of these compounds in the provided drinking water. This is the first systematic study revealing the effectiveness of single treatment steps in laboratory experiments and in waterworks. Six full-scale waterworks using surface water influenced raw water were sampled up to ten times to study the fate of acesulfame, saccharin, cyclamate and sucralose. For the most important treatment technologies the results were confirmed by laboratory batch experiments. Saccharin and cyclamate proved to play a minor role for drinking water treatment plants as they were eliminated by nearly 100% in all waterworks with biologically active treatment units like river bank filtration (RBF) or artificial groundwater recharge. Acesulfame and sucralose were not biodegraded during RBF and their suitability as wastewater tracers under aerobic conditions was confirmed. Sucralose proved to be persistent against ozone and its transformation was < 20% in lab and field investigations. Remaining traces were completely removed by subsequent granular activated carbon (GAC) filters. Acesulfame readily reacts with ozone (pseudo first-order rate constant k = 1.3 x 10(-3) s(-1) at 1 mg L(-1) ozone concentration). However, the applied ozone concentrations and contact times under typical waterworks conditions only led to an incomplete removal (18-60%) in the ozonation step. Acesulfame was efficiently removed by subsequent GAC filters with a low throughput of less than 30 m(3) kg(-1), but removal strongly depended on the GAC preload. Thus, acesulfame was detected up to 0.76 microg L(-1) in finished water.
Collapse
Affiliation(s)
- Marco Scheurer
- Water Technology Center Karlsruhe (TZW), Karlsruher Str. 84, D-76139 Karlsruhe, Germany
| | | | | | | |
Collapse
|
49
|
Schubert M, Melnikova AN, Mesecke N, Zubkova EK, Fortte R, Batashev DR, Barth I, Sauer N, Gamalei YV, Mamushina NS, Tietze LF, Voitsekhovskaja OV, Pawlowski K. Two novel disaccharides, rutinose and methylrutinose, are involved in carbon metabolism in Datisca glomerata. PLANTA 2010; 231:507-21. [PMID: 19915863 PMCID: PMC2806534 DOI: 10.1007/s00425-009-1049-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 10/22/2009] [Indexed: 05/03/2023]
Abstract
Datisca glomerata forms nitrogen-fixing root nodules in symbiosis with soil actinomycetes from the genus Frankia. Analysis of sugars in roots, nodules and leaves of D. glomerata revealed the presence of two novel compounds that were identified as alpha-L-rhamnopyranoside-(1 --> 6)-D-glucose (rutinose) and alpha-L-rhamnopyranoside-(1 --> 6)-1-O-beta-D-methylglucose (methylrutinose). Rutinose has been found previously as a/the glycoside part of several flavonoid glycosides, e.g. rutin, also of datiscin, the main flavonoid of Datisca cannabina, but had not been reported as free sugar. Time course analyses suggest that both rutinose and methylrutinose might play a role in transient carbon storage in sink organs and, to a lesser extent, in source leaves. Their concentrations show that they can accumulate in the vacuole. Rutinose, but not methylrutinose, was accepted as a substrate by the tonoplast disaccharide transporter SUT4 from Arabidopsis. In vivo (14)C-labeling and the study of uptake of exogenous sucrose and rutinose from the leaf apoplast showed that neither rutinose nor methylrutinose appreciably participate in phloem translocation of carbon from source to sink organs, despite rutinose being found in the apoplast at significant levels. A model for sugar metabolism in D. glomerata is presented.
Collapse
Affiliation(s)
- Maria Schubert
- Albrecht von Haller Institute for Plant Sciences, Plant Biochemistry, Göttingen University, 37077 Göttingen, Germany
| | - Anna N. Melnikova
- Komarov Botanical Institute, Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Nikola Mesecke
- Albrecht von Haller Institute for Plant Sciences, Plant Biochemistry, Göttingen University, 37077 Göttingen, Germany
| | - Elena K. Zubkova
- Komarov Botanical Institute, Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Rocco Fortte
- Institute of Organic and Biomolecular Chemistry, Göttingen University, 37077 Göttingen, Germany
| | - Denis R. Batashev
- Komarov Botanical Institute, Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Inga Barth
- Department of Molecular Plant Physiology, University of Erlangen-Nürnberg, 90158 Erlangen, Germany
| | - Norbert Sauer
- Department of Molecular Plant Physiology, University of Erlangen-Nürnberg, 90158 Erlangen, Germany
| | - Yuri V. Gamalei
- Komarov Botanical Institute, Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Natalia S. Mamushina
- Komarov Botanical Institute, Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Lutz F. Tietze
- Institute of Organic and Biomolecular Chemistry, Göttingen University, 37077 Göttingen, Germany
| | - Olga V. Voitsekhovskaja
- Albrecht von Haller Institute for Plant Sciences, Plant Biochemistry, Göttingen University, 37077 Göttingen, Germany
- Komarov Botanical Institute, Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Katharina Pawlowski
- Albrecht von Haller Institute for Plant Sciences, Plant Biochemistry, Göttingen University, 37077 Göttingen, Germany
- Department of Botany, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
50
|
Sun Y, Reinders A, LaFleur KR, Mori T, Ward JM. Transport activity of rice sucrose transporters OsSUT1 and OsSUT5. PLANT & CELL PHYSIOLOGY 2010; 51:114-22. [PMID: 19965875 PMCID: PMC2807175 DOI: 10.1093/pcp/pcp172] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Expression in Xenopus oocytes and electrophysiology was used to test for transport activity of the five sucrose transporter (SUT) homologs from rice. Expression of OsSUT1 and OsSUT5 resulted in sucrose-dependent currents that were analyzed by two-electrode voltage clamping. We examined the transport kinetics, substrate specificity and pH dependence of sucrose transport and K(0.5) for sucrose. OsSUT1 showed similar features to those of other type II SUTs from monocots examined previously, with a K(0.5) value of 7.50 mM at pH 5.6. In contrast, OsSUT5 had a higher substrate affinity (K(0.5) = 2.32 mM at pH 5.6), less substrate specificity and less pH dependence compared with all type II SUTs tested to date. Regulation of the rice SUTs, as well as ZmSUT1 from maize and HvSUT1 from barley, by reduced (GSH) and oxidized (GSSG) forms of glutathione was tested. GSSG and GSH were found to have no significant effect on the activity of sucrose transporters when expressed in Xenopus oocytes. In conclusion, differences in transport activity between OsSUT1 and OsSUT5 indicate that type II SUTs have a range of transport activities that are tuned to their function in the plant.
Collapse
Affiliation(s)
| | | | | | | | - John M. Ward
- *Corresponding author: E-mail, ; Fax, +1-612-625-1738
| |
Collapse
|