1
|
Tcherkez G, Abadie C, Dourmap C, Lalande J, Limami AM. Leaf day respiration: More than just catabolic CO 2 production in the light. PLANT, CELL & ENVIRONMENT 2024; 47:2631-2639. [PMID: 38528759 DOI: 10.1111/pce.14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
Summary statementDay respiration is a net flux resulting from several CO2‐generating and CO2‐fixing reactions, not only related to catabolism but also to anabolism. We review pieces of evidence that decarboxylating reactions are partly fed by carbon sources disconnected from current photosynthesis and how they reflect various metabolic pathways.
Collapse
Affiliation(s)
- Guillaume Tcherkez
- Institut de recherche en horticulture et semences, Université d'Angers, INRAe, Beaucouzé, France
- Research school of biology, ANU College of Science, Australian National University, Canberra, Australia
| | - Cyril Abadie
- Institut de recherche en horticulture et semences, Université d'Angers, INRAe, Beaucouzé, France
- Ecophysiologie et génomique fonctionnelle de la vigne, Institut des Sciences de la Vigne et du Vin, INRAe, Université de Bordeaux, Villenave-d'Ornon, France
| | - Corentin Dourmap
- Institut de recherche en horticulture et semences, Université d'Angers, INRAe, Beaucouzé, France
| | - Julie Lalande
- Institut de recherche en horticulture et semences, Université d'Angers, INRAe, Beaucouzé, France
| | - Anis M Limami
- Institut de recherche en horticulture et semences, Université d'Angers, INRAe, Beaucouzé, France
| |
Collapse
|
2
|
Li X, Chen X, Li J, Wu P, Hu D, Zhong Q, Cheng D. Respiration in light of evergreen and deciduous woody species and its links to the leaf economic spectrum. TREE PHYSIOLOGY 2024; 44:tpad129. [PMID: 37847610 DOI: 10.1093/treephys/tpad129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
Leaf respiration in the light (Rlight) is crucial for understanding the net CO2 exchange of individual plants and entire ecosystems. However, Rlight is poorly quantified and rarely discussed in the context of the leaf economic spectrum (LES), especially among woody species differing in plant functional types (PFTs) (e.g., evergreen vs. deciduous species). To address this gap in our knowledge, Rlight, respiration in the dark (Rdark), light-saturated photosynthetic rates (Asat), leaf dry mass per unit area (LMA), leaf nitrogen (N) and phosphorus (P) concentrations, and maximum carboxylation (Vcmax) and electron transport rates (Jmax) of 54 representative subtropical woody evergreen and deciduous species were measured. With the exception of LMA, the parameters quantified in this study were significantly higher in deciduous species than in evergreen species. The degree of light inhibition did not significantly differ between evergreen (52%) and deciduous (50%) species. Rlight was significantly correlated with LES traits such as Asat, Rdark, LMA, N and P. The Rlight vs. Rdark and N relationships shared common slopes between evergreen and deciduous species, but significantly differed in their y-intercepts, in which the rates of Rlight were slower or faster for any given Rdark or N in deciduous species, respectively. A model for Rlight based on three traits (i.e., Rdark, LMA and P) had an explanatory power of 84.9%. These results show that there is a link between Rlight and the LES, and highlight that PFTs is an important factor in affecting Rlight and the relationships of Rlight with Rdark and N. Thus, this study provides information that can improve the next generation of terrestrial biosphere models (TBMs).
Collapse
Affiliation(s)
- Xueqin Li
- Institute of Geography, Fujian Normal University, No.8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007, China
| | - Xiaoping Chen
- Institute of Geography, Fujian Normal University, No.8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, No. 8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007, China
| | - Jinlong Li
- Institute of Geography, Fujian Normal University, No.8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007, China
| | - Panpan Wu
- Institute of Geography, Fujian Normal University, No.8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007, China
| | - Dandan Hu
- Institute of Geography, Fujian Normal University, No.8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007, China
| | - Quanlin Zhong
- Institute of Geography, Fujian Normal University, No.8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007, China
| | - Dongliang Cheng
- Institute of Geography, Fujian Normal University, No.8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, No. 8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007, China
| |
Collapse
|
3
|
Yin X, Amthor JS. Estimating leaf day respiration from conventional gas exchange measurements. THE NEW PHYTOLOGIST 2024; 241:52-58. [PMID: 37858976 DOI: 10.1111/nph.19330] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023]
Abstract
Leaf day respiration (Rd ) strongly influences carbon-use efficiencies of whole plants and the global terrestrial biosphere. It has long been thought that Rd is slower than respiration in the dark at a given temperature, but measuring Rd by gas exchange remains a challenge because leaves in the light are also photosynthesizing. The Kok method and the Laisk method are widely used to estimate Rd . We highlight theoretical limitations of these popular methods, and recent progress toward their improvement by using additional information from chlorophyll fluorescence and by accounting for the photosynthetic reassimilation of respired CO2 . The latest evidence for daytime CO2 and energy release from the oxidative pentose phosphate pathway in chloroplasts appears to be important to understanding Rd .
Collapse
Affiliation(s)
- Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, PO Box 430, 6700 AK, Wageningen, the Netherlands
| | - Jeffrey S Amthor
- Center for Ecosystem Science and Society, Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
4
|
Schmiege SC, Sharkey TD, Walker B, Hammer J, Way DA. Laisk measurements in the nonsteady state: Tests in plants exposed to warming and variable CO2 concentrations. PLANT PHYSIOLOGY 2023; 193:1045-1057. [PMID: 37232396 PMCID: PMC10517191 DOI: 10.1093/plphys/kiad305] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023]
Abstract
Light respiration (RL) is an important component of plant carbon balance and a key parameter in photosynthesis models. RL is often measured using the Laisk method, a gas exchange technique that is traditionally employed under steady-state conditions. However, a nonsteady-state dynamic assimilation technique (DAT) may allow for more rapid Laisk measurements. In 2 studies, we examined the efficacy of DAT for estimating RL and the parameter Ci* (the intercellular CO2 concentration where Rubisco's oxygenation velocity is twice its carboxylation velocity), which is also derived from the Laisk technique. In the first study, we compared DAT and steady-state RL and Ci* estimates in paper birch (Betula papyrifera) growing under control and elevated temperature and CO2 concentrations. In the second, we compared DAT-estimated RL and Ci* in hybrid poplar (Populus nigra L. × P. maximowiczii A. Henry "NM6") exposed to high or low CO2 concentration pre-treatments. The DAT and steady-state methods provided similar RL estimates in B. papyrifera, and we found little acclimation of RL to temperature or CO2; however, Ci* was higher when measured with DAT compared to steady-state methods. These Ci* differences were amplified by the high or low CO2 pre-treatments. We propose that changes in the export of glycine from photorespiration may explain these apparent differences in Ci*.
Collapse
Affiliation(s)
- Stephanie C Schmiege
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Thomas D Sharkey
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Berkley Walker
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Julia Hammer
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Danielle A Way
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
- Nicholas School of the Environment, Duke University, Durham, NC 27710, USA
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
5
|
Schmiege SC, Heskel M, Fan Y, Way DA. It's only natural: Plant respiration in unmanaged systems. PLANT PHYSIOLOGY 2023; 192:710-727. [PMID: 36943293 PMCID: PMC10231469 DOI: 10.1093/plphys/kiad167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 06/01/2023]
Abstract
Respiration plays a key role in the terrestrial carbon cycle and is a fundamental metabolic process in all plant tissues and cells. We review respiration from the perspective of plants that grow in their natural habitat and how it is influenced by wide-ranging elements at different scales, from metabolic substrate availability to shifts in climate. Decades of field-based measurements have honed our understanding of the biological and environmental controls on leaf, root, stem, and whole-organism respiration. Despite this effort, there remain gaps in our knowledge within and across species and ecosystems, especially in more challenging-to-measure tissues like roots. Recent databases of respiration rates and associated leaf traits from species representing diverse biomes, plant functional types, and regional climates have allowed for a wider-lens view at modeling this important CO2 flux. We also re-analyze published data sets to show that maximum leaf respiration rates (Rmax) in species from around the globe are related both to leaf economic traits and environmental variables (precipitation and air temperature), but that root respiration does not follow the same latitudinal trends previously published for leaf data. We encourage the ecophysiological community to continue to expand their study of plant respiration in tissues that are difficult to measure and at the whole plant and ecosystem levels to address outstanding questions in the field.
Collapse
Affiliation(s)
- Stephanie C Schmiege
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biology, Western University, N6A 3K7, London, ON, Canada
| | - Mary Heskel
- Department of Biology, Macalester College, Saint Paul, MN, USA 55105
| | - Yuzhen Fan
- Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Danielle A Way
- Department of Biology, Western University, N6A 3K7, London, ON, Canada
- Research School of Biology, The Australian National University, Acton, ACT, Australia
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| |
Collapse
|
6
|
Faber AH, Griffin KL, Tjoelker MG, Pagter M, Yang J, Bruhn D. Consistent diurnal pattern of leaf respiration in the light among contrasting species and climates. THE NEW PHYTOLOGIST 2022; 236:71-85. [PMID: 35727175 PMCID: PMC9544685 DOI: 10.1111/nph.18330] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/12/2022] [Indexed: 05/02/2023]
Abstract
Leaf daytime respiration (leaf respiration in the light, RL ) is often assumed to constitute a fixed fraction of leaf dark respiration (RD ) (i.e. a fixed light inhibition of respiration (RD )) and vary diurnally due to temperature fluctuations. These assumptions were tested by measuring RL , RD and the light inhibition of RD in the field at a constant temperature using the Kok method. Measurements were conducted diurnally on 21 different species: 13 deciduous, four evergreen and four herbaceous from humid continental and humid subtropical climates. RL and RD showed significant diurnal variations and the diurnal pattern differed in trajectory and magnitude between climates, but not between plant functional types (PFTs). The light inhibition of RD varied diurnally and differed between climates and in trajectory between PFTs. The results highlight the entrainment of leaf daytime respiration to the diurnal cycle and that time of day should be accounted for in studies seeking to examine the environmental and biological drivers of leaf daytime respiration.
Collapse
Affiliation(s)
- Andreas H. Faber
- Department of Chemistry and BioscienceAalborg UniversityFredrik Bajers Vej 7H9220AalborgDenmark
| | - Kevin L. Griffin
- Department of Earth and Environmental SciencesColumbia UniversityPalisadesNY10964USA
- Department of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkNY10027USA
- Lamont‐Doherty Earth ObservatoryColumbia UniversityPalisadesNY10964USA
| | - Mark G. Tjoelker
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2750Australia
| | - Majken Pagter
- Department of Chemistry and BioscienceAalborg UniversityFredrik Bajers Vej 7H9220AalborgDenmark
| | - Jinyan Yang
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2750Australia
| | - Dan Bruhn
- Department of Chemistry and BioscienceAalborg UniversityFredrik Bajers Vej 7H9220AalborgDenmark
| |
Collapse
|
7
|
Fang L, Yin X, van der Putten PEL, Martre P, Struik PC. Drought exerts a greater influence than growth temperature on the temperature response of leaf day respiration in wheat (Triticum aestivum). PLANT, CELL & ENVIRONMENT 2022; 45:2062-2077. [PMID: 35357701 PMCID: PMC9324871 DOI: 10.1111/pce.14324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 05/22/2023]
Abstract
We assessed how the temperature response of leaf day respiration (Rd ) in wheat responded to contrasting water regimes and growth temperatures. In Experiment 1, well-watered and drought-stressed conditions were imposed on two genotypes; in Experiment 2, the two water regimes combined with high (HT), medium (MT) and low (LT) growth temperatures were imposed on one of the genotypes. Rd was estimated from simultaneous gas exchange and chlorophyll fluorescence measurements at six leaf temperatures (Tleaf ) for each treatment, using the Yin method for nonphotorespiratory conditions and the nonrectangular hyperbolic fitting method for photorespiratory conditions. The two genotypes responded similarly to growth and measurement conditions. Estimates of Rd for nonphotorespiratory conditions were generally higher than those for photorespiratory conditions, but their responses to Tleaf were similar. Under well-watered conditions, Rd and its sensitivity to Tleaf slightly acclimated to LT, but did not acclimate to HT. Temperature sensitivities of Rd were considerably suppressed by drought, and the suppression varied among growth temperatures. Thus, it is necessary to quantify interactions between drought and growth temperature for reliably modelling Rd under climate change. Our study also demonstrated that the Kok method, one of the currently popular methods for estimating Rd , underestimated Rd significantly.
Collapse
Affiliation(s)
- Liang Fang
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| | - Xinyou Yin
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| | - Peter E. L. van der Putten
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| | - Pierre Martre
- LEPSE, Institut Agro SupAgro, INRAE, Univ MontpellierMontpellierFrance
| | - Paul C. Struik
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
8
|
Respiratory and Photosynthetic Responses of Antarctic Vascular Plants Are Differentially Affected by CO2 Enrichment and Nocturnal Warming. PLANTS 2022; 11:plants11111520. [PMID: 35684292 PMCID: PMC9182836 DOI: 10.3390/plants11111520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
Projected rises in atmospheric CO2 concentration and minimum night-time temperatures may have important effects on plant carbon metabolism altering the carbon balance of the only two vascular plant species in the Antarctic Peninsula. We assessed the effect of nocturnal warming (8/5 °C vs. 8/8 °C day/night) and CO2 concentrations (400 ppm and 750 ppm) on gas exchange, non-structural carbohydrates, two respiratory-related enzymes, and mitochondrial size and number in two species of vascular plants. In Colobanthus quitensis, light-saturated photosynthesis measured at 400 ppm was reduced when plants were grown in the elevated CO2 or in the nocturnal warming treatments. Growth in elevated CO2 reduced stomatal conductance but nocturnal warming did not. The short-term sensitivity of respiration, relative protein abundance, and mitochondrial traits were not responsive to either treatment in this species. Moreover, some acclimation to nocturnal warming at ambient CO2 was observed. Altogether, these responses in C. quitensis led to an increase in the respiration-assimilation ratio in plants grown in elevated CO2. The response of Deschampsia antarctica to the experimental treatments was quite distinct. Photosynthesis was not affected by either treatment; however, respiration acclimated to temperature in the elevated CO2 treatment. The observed short-term changes in thermal sensitivity indicate type I acclimation of respiration. Growth in elevated CO2 and nocturnal warming resulted in a reduction in mitochondrial numbers and an increase in mitochondrial size in D. antarctica. Overall, our results suggest that with climate change D. antarctica could be more successful than C. quitensis, due to its ability to make metabolic adjustments to maintain its carbon balance.
Collapse
|
9
|
Poorter H, Knopf O, Wright IJ, Temme AA, Hogewoning SW, Graf A, Cernusak LA, Pons TL. A meta-analysis of responses of C 3 plants to atmospheric CO 2 : dose-response curves for 85 traits ranging from the molecular to the whole-plant level. THE NEW PHYTOLOGIST 2022; 233:1560-1596. [PMID: 34657301 DOI: 10.1111/nph.17802] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/03/2021] [Indexed: 05/20/2023]
Abstract
Generalised dose-response curves are essential to understand how plants acclimate to atmospheric CO2 . We carried out a meta-analysis of 630 experiments in which C3 plants were experimentally grown at different [CO2 ] under relatively benign conditions, and derived dose-response curves for 85 phenotypic traits. These curves were characterised by form, plasticity, consistency and reliability. Considered over a range of 200-1200 µmol mol-1 CO2 , some traits more than doubled (e.g. area-based photosynthesis; intrinsic water-use efficiency), whereas others more than halved (area-based transpiration). At current atmospheric [CO2 ], 64% of the total stimulation in biomass over the 200-1200 µmol mol-1 range has already been realised. We also mapped the trait responses of plants to [CO2 ] against those we have quantified before for light intensity. For most traits, CO2 and light responses were of similar direction. However, some traits (such as reproductive effort) only responded to light, others (such as plant height) only to [CO2 ], and some traits (such as area-based transpiration) responded in opposite directions. This synthesis provides a comprehensive picture of plant responses to [CO2 ] at different integration levels and offers the quantitative dose-response curves that can be used to improve global change simulation models.
Collapse
Affiliation(s)
- Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Oliver Knopf
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Andries A Temme
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, 14195, Berlin, Germany
| | | | - Alexander Graf
- Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Qld, 4879, Australia
| | - Thijs L Pons
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3512 PN, Utrecht, the Netherlands
| |
Collapse
|
10
|
Guha A, Vharachumu T, Khalid MF, Keeley M, Avenson TJ, Vincent C. Short-term warming does not affect intrinsic thermotolerance but induces strong sustaining photoprotection in tropical evergreen citrus genotypes. PLANT, CELL & ENVIRONMENT 2022; 45:105-120. [PMID: 34723384 DOI: 10.1111/pce.14215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 05/27/2023]
Abstract
Consequences of warming and postwarming events on photosynthetic thermotolerance (PT ) and photoprotective responses in tropical evergreen species remain elusive. We chose Citrus to answer some of the emerging questions related to tropical evergreen species' PT behaviour including (i) how wide is the genotypic variation in PT ? (ii) how does PT respond to short-term warming and (iii) how do photosynthesis and photoprotective functions respond over short-term warming and postwarming events? A study on 21 genotypes revealed significant genotypic differences in PT , though these were not large. We selected five genotypes with divergent PT and simulated warming events: Tmax 26/20°C (day-time highest maximum/night-time lowest maximum) (Week 1) < Tmax 33/30°C (Week 2) < Tmax 36/32°C (Week 3) followed by Tmax 26/16°C (Week 4, recovery). The PT of all genotypes remained unaltered despite strong leaf megathermy (leaf temperature > air temperature) during warming events. Though moderate warming showed genotype-specific stimulation in photosynthesis, higher warming unequivocally led to severe loss in net photosynthesis and induced higher nonphotochemical quenching. Even after a week of postwarming, photoprotective mechanisms strongly persisted. Our study points towards a conservative PT in evergreen citrus genotypes and their need for sustaining higher photoprotection during warming as well as postwarming recovery conditions.
Collapse
Affiliation(s)
- Anirban Guha
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Talent Vharachumu
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
- Earth University, San José, Mercedes, Costa Rica
| | - Muhammad F Khalid
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
- Department of Horticulture, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Mark Keeley
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
- Agronomy and Regulatory (GLP) Services, Florida Ag Research, Thonotosassa, Florida, USA
| | - Thomas J Avenson
- Environmental Division, LI-COR Biosciences, Lincoln, Nebraska, USA
| | - Christopher Vincent
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| |
Collapse
|
11
|
Ferguson JN, Tidy AC, Murchie EH, Wilson ZA. The potential of resilient carbon dynamics for stabilizing crop reproductive development and productivity during heat stress. PLANT, CELL & ENVIRONMENT 2021; 44:2066-2089. [PMID: 33538010 DOI: 10.1111/pce.14015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 05/20/2023]
Abstract
Impaired carbon metabolism and reproductive development constrain crop productivity during heat stress. Reproductive development is energy intensive, and its requirement for respiratory substrates rises as associated metabolism increases with temperature. Understanding how these processes are integrated and the extent to which they contribute to the maintenance of yield during and following periods of elevated temperatures is important for developing climate-resilient crops. Recent studies are beginning to demonstrate links between processes underlying carbon dynamics and reproduction during heat stress, consequently a summation of research that has been reported thus far and an evaluation of purported associations are needed to guide and stimulate future research. To this end, we review recent studies relating to source-sink dynamics, non-foliar photosynthesis and net carbon gain as pivotal in understanding how to improve reproductive development and crop productivity during heat stress. Rapid and precise phenotyping during narrow phenological windows will be important for understanding mechanisms underlying these processes, thus we discuss the development of relevant high-throughput phenotyping approaches that will allow for more informed decision-making regarding future crop improvement.
Collapse
Affiliation(s)
- John N Ferguson
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
- Future Food Beacon of Excellence, School of Biosciences, University of Nottingham, Leicestershire, UK
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Alison C Tidy
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
| | - Erik H Murchie
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
| | - Zoe A Wilson
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
| |
Collapse
|
12
|
Roy J, Rineau F, De Boeck HJ, Nijs I, Pütz T, Abiven S, Arnone JA, Barton CVM, Beenaerts N, Brüggemann N, Dainese M, Domisch T, Eisenhauer N, Garré S, Gebler A, Ghirardo A, Jasoni RL, Kowalchuk G, Landais D, Larsen SH, Leemans V, Le Galliard J, Longdoz B, Massol F, Mikkelsen TN, Niedrist G, Piel C, Ravel O, Sauze J, Schmidt A, Schnitzler J, Teixeira LH, Tjoelker MG, Weisser WW, Winkler B, Milcu A. Ecotrons: Powerful and versatile ecosystem analysers for ecology, agronomy and environmental science. GLOBAL CHANGE BIOLOGY 2021; 27:1387-1407. [PMID: 33274502 PMCID: PMC7986626 DOI: 10.1111/gcb.15471] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 05/08/2023]
Abstract
Ecosystems integrity and services are threatened by anthropogenic global changes. Mitigating and adapting to these changes require knowledge of ecosystem functioning in the expected novel environments, informed in large part through experimentation and modelling. This paper describes 13 advanced controlled environment facilities for experimental ecosystem studies, herein termed ecotrons, open to the international community. Ecotrons enable simulation of a wide range of natural environmental conditions in replicated and independent experimental units while measuring various ecosystem processes. This capacity to realistically control ecosystem environments is used to emulate a variety of climatic scenarios and soil conditions, in natural sunlight or through broad-spectrum lighting. The use of large ecosystem samples, intact or reconstructed, minimizes border effects and increases biological and physical complexity. Measurements of concentrations of greenhouse trace gases as well as their net exchange between the ecosystem and the atmosphere are performed in most ecotrons, often quasi continuously. The flow of matter is often tracked with the use of stable isotope tracers of carbon and other elements. Equipment is available for measurements of soil water status as well as root and canopy growth. The experiments ran so far emphasize the diversity of the hosted research. Half of them concern global changes, often with a manipulation of more than one driver. About a quarter deal with the impact of biodiversity loss on ecosystem functioning and one quarter with ecosystem or plant physiology. We discuss how the methodology for environmental simulation and process measurements, especially in soil, can be improved and stress the need to establish stronger links with modelling in future projects. These developments will enable further improvements in mechanistic understanding and predictive capacity of ecotron research which will play, in complementarity with field experimentation and monitoring, a crucial role in exploring the ecosystem consequences of environmental changes.
Collapse
|
13
|
Gauthier PPG, Saenz N, Griffin KL, Way D, Tcherkez G. Is the Kok effect a respiratory phenomenon? Metabolic insight using 13 C labeling in Helianthus annuus leaves. THE NEW PHYTOLOGIST 2020; 228:1243-1255. [PMID: 32564374 DOI: 10.1111/nph.16756] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The Kok effect is a well-known phenomenon in which the quantum yield of photosynthesis changes abruptly at low light. This effect has often been interpreted as a shift in leaf respiratory metabolism and thus used widely to measure day respiration. However, there is still no formal evidence that the Kok effect has a respiratory origin. Here, both gas exchange and isotopic labeling were carried out on sunflower leaves, using glucose that was 13 C-enriched at specific C-atom positions. Position-specific decarboxylation measurements and NMR analysis of metabolites were used to trace the fate of C-atoms in metabolism. Decarboxylation rates were significant at low light (including above the Kok break point) and increased with decreasing irradiance below 100 µmol photons m-2 s-1 . The variation in several metabolite pools such as malate, fumarate or citrate, and flux calculations suggest the involvement of several decarboxylating pathways in the Kok effect, including the malic enzyme. Our results show that day respiratory CO2 evolution plays an important role in the Kok effect. However, the increase in the apparent quantum yield of photosynthesis below the Kok break point is also probably related to malate metabolism, which participates in maintaining photosynthetic linear electron flow.
Collapse
Affiliation(s)
- Paul P G Gauthier
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| | - Natalie Saenz
- Department of Chemistry, Columbia University, 3000 Broadway NYC, New York, NY, 10025, USA
| | - Kevin L Griffin
- Department of Ecology, Evolution and Environmental Biology (E3B), Columbia University, 1200 Amsterdam Avenue, New York, NY, 10027, USA
- Department of Earth and Environmental Sciences, Lamont Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY, 10964, USA
| | - Danielle Way
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, USA
| | - Guillaume Tcherkez
- Research School of Biology, Joint College of Sciences, Australian National University, Canberra, ACT, 2601, Australia
- Seedling Metabolism and Stress, Institut de Recherche en Horticulture et Semences, INRAE Angers, Université d'Angers, 42 rue Georges Morel, Beaucouzé Cedex, 49780, France
| |
Collapse
|
14
|
Verryckt LT, Ellsworth DS, Vicca S, Van Langenhove L, Peñuelas J, Ciais P, Posada JM, Stahl C, Coste S, Courtois EA, Obersteiner M, Chave J, Janssens IA. Can light‐saturated photosynthesis in lowland tropical forests be estimated by one light level? Biotropica 2020. [DOI: 10.1111/btp.12817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - David S. Ellsworth
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| | - Sara Vicca
- Department of Biology University of Antwerp Wilrijk Belgium
| | | | - Josep Peñuelas
- CREAF Barcelona Spain
- CSIC Global Ecology CREAF‐CSIC‐UAB Barcelona Spain
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l’Environnement CEA‐CNRS‐UVSQ Gif‐sur‐Yvette France
| | - Juan M. Posada
- Biology Department Faculty of Natural Sciences Universidad del Rosario Bogotá, D.C. Colombia
| | - Clément Stahl
- INRA UMR Ecofog AgroParisTech CNRS Cirad Université des AntillesUniversité de Guyane Kourou France
| | - Sabrina Coste
- UMR Ecofog AgroParisTech CNRS Cirad INRA Université de GuyaneUniversité des Antilles Kourou France
| | - Elodie A. Courtois
- Laboratoire Ecologie, évolution, interactions des systèmes amazoniens (LEEISA) CNRS IFREMER Université de Guyane Cayenne French Guiana
| | - Michael Obersteiner
- International Institute for Applied Systems Analysis (IIASA) Laxenburg Austria
| | - Jérôme Chave
- UMR 5174 Laboratoire Evolution et Diversité Biologique CNRS Université Paul Sabatier Toulouse France
| | | |
Collapse
|
15
|
Kumarathunge DP, Drake JE, Tjoelker MG, López R, Pfautsch S, Vårhammar A, Medlyn BE. The temperature optima for tree seedling photosynthesis and growth depend on water inputs. GLOBAL CHANGE BIOLOGY 2020; 26:2544-2560. [PMID: 31883292 DOI: 10.1111/gcb.14975] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Understanding how tree growth is affected by rising temperature is a key to predicting the fate of forests in future warmer climates. Increasing temperature has direct effects on plant physiology, but there are also indirect effects of increased water limitation because evaporative demand increases with temperature in many systems. In this study, we experimentally resolved the direct and indirect effects of temperature on the response of growth and photosynthesis of the widely distributed species Eucalyptus tereticornis. We grew E. tereticornis in an array of six growth temperatures from 18 to 35.5°C, spanning the climatic distribution of the species, with two watering treatments: (a) water inputs increasing with temperature to match plant demand at all temperatures (Wincr ), isolating the direct effect of temperature; and (b) water inputs constant for all temperatures, matching demand for coolest grown plants (Wconst ), such that water limitation increased with growth temperature. We found that constant water inputs resulted in a reduction of temperature optima for both photosynthesis and growth by ~3°C compared to increasing water inputs. Water limitation particularly reduced the total amount of leaf area displayed at Topt and intermediate growth temperatures. The reduction in photosynthesis could be attributed to lower leaf water potential and consequent stomatal closure. The reduction in growth was a result of decreased photosynthesis, reduced total leaf area display and a reduction in specific leaf area. Water availability had no effect on the response of stem and root respiration to warming, but we observed lower leaf respiration rates under constant water inputs compared to increasing water inputs at higher growth temperatures. Overall, this study demonstrates that the indirect effect of increasing water limitation strongly modifies the potential response of tree growth to rising global temperatures.
Collapse
Affiliation(s)
- Dushan P Kumarathunge
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Plant Physiology Division, Coconut Research Institute of Sri Lanka, Lunuwila, Sri Lanka
| | - John E Drake
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Forest and Natural Resources Management, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Rosana López
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain
| | - Sebastian Pfautsch
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Angelica Vårhammar
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
16
|
Li X, Xu C, Li Z, Feng J, Tissue DT, Griffin KL. Late growing season carbon subsidy in native gymnosperms in a northern temperate forest. TREE PHYSIOLOGY 2019; 39:971-982. [PMID: 31086983 DOI: 10.1093/treephys/tpz024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/25/2019] [Accepted: 02/24/2019] [Indexed: 05/05/2023]
Abstract
Evergreen tree species that maintain positive carbon balance during the late growing season may subsidize extra carbon in a mixed forest. To test this concept of 'carbon subsidy', leaf gas exchange characteristics and related leaf traits were measured for three gymnosperm evergreen species (Chamaecyparis thyoides, Tsuga canadensis and Pinus strobus) native to the oak-hickory deciduous forest in northeast USA from March (early Spring) to October (late Autumn) in a single year. All three species were photosynthetically active in Autumn. During the Summer-Autumn transition, photosynthetic capacity (Amax) of T. canadensis and P. strobus increased (T-test, P < 0.001) and was maintained in C. thyoides (T-test, P = 0.49), while dark respiration at 20 °C (Rn) and its thermal sensitivity were generally unchanged for all species (one-way ANOVA, P > 0.05). In Autumn, reductions in mitochondrial respiration rate in the daylight (RL) and the ratio of RL to Rn (RL/Rn) were observed in P. strobus (46.3% and 44.0% compared to Summer, respectively). Collectively, these physiological adjustments resulted in higher ratios of photosynthesis to respiration (A/Rnand A/RL) in Autumn for all species. Across season, photosynthetic biochemistry and respiratory variables were not correlated with prevailing growth temperature. Physiological adjustments allowed all three gymnosperm species to maintain positive carbon balance into late Autumn, suggesting that gymnosperm evergreens may benefit from Autumn warming trends relative to deciduous trees that have already lost their leaves.
Collapse
Affiliation(s)
- Ximeng Li
- College of life and Environmental Science, Minzu University of China, 27 Zhongguancun south Avenue, Beijing, China
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag, Penrith NSW 2751, Australia
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Chengyuan Xu
- School of Health, Medical and Applied Sciences, Central Queensland University, Bundaberg QLD, Australia
| | - Zhengzhen Li
- College of life and Environmental Science, Minzu University of China, 27 Zhongguancun south Avenue, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, China
| | - Jinchao Feng
- College of life and Environmental Science, Minzu University of China, 27 Zhongguancun south Avenue, Beijing, China
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag, Penrith NSW 2751, Australia
| | - Kevin L Griffin
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
- Departments of Earth and Environmental Sciences, and Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| |
Collapse
|
17
|
Way DA, Aspinwall MJ, Drake JE, Crous KY, Campany CE, Ghannoum O, Tissue DT, Tjoelker MG. Responses of respiration in the light to warming in field-grown trees: a comparison of the thermal sensitivity of the Kok and Laisk methods. THE NEW PHYTOLOGIST 2019; 222:132-143. [PMID: 30372524 DOI: 10.1111/nph.15566] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
The Kok and Laisk techniques can both be used to estimate light respiration Rlight . We investigated whether responses of Rlight to short- and long-term changes in leaf temperature depend on the technique used to estimate Rlight . We grew Eucalyptus tereticornis in whole-tree chambers under ambient temperature (AT) or AT + 3°C (elevated temperature, ET). We assessed dark respiration Rdark and light respiration with the Kok (RKok ) and Laisk (RLaisk ) methods at four temperatures to determine the degree of light suppression of respiration using both methods in AT and ET trees. The ET treatment had little impact on Rdark , RKok or RLaisk . Although the thermal sensitivities of RKok or RLaisk were similar, RKok was higher than RLaisk . We found negative values of RLaisk at the lowest measurement temperatures, indicating positive net CO2 uptake, which we propose may be related to phosphoenolpyruvate carboxylase activity. Light suppression of Rdark decreased with increasing leaf temperature, but the degree of suppression depended on the method used. The Kok and Laisk methods do not generate the same estimates of Rlight or light suppression of Rdark between 20 and 35°C. Negative rates of RLaisk imply that this method may become less reliable at low temperatures.
Collapse
Affiliation(s)
- Danielle A Way
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Nicholas School for the Environment, Duke University, 9 Circuit Drive, Box 90328, Durham, NC, 27708, USA
| | - Michael J Aspinwall
- Hawkesbury Institute of the Environment, Western Sydney University, Locked bag 1797, Penrith, NSW, 2751, Australia
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | - John E Drake
- Hawkesbury Institute of the Environment, Western Sydney University, Locked bag 1797, Penrith, NSW, 2751, Australia
- Forest and Natural Resources Management, SUNY-ESF, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Kristine Y Crous
- Hawkesbury Institute of the Environment, Western Sydney University, Locked bag 1797, Penrith, NSW, 2751, Australia
| | - Courtney E Campany
- Hawkesbury Institute of the Environment, Western Sydney University, Locked bag 1797, Penrith, NSW, 2751, Australia
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Oula Ghannoum
- Hawkesbury Institute of the Environment, Western Sydney University, Locked bag 1797, Penrith, NSW, 2751, Australia
| | - David T Tissue
- Hawkesbury Institute of the Environment, Western Sydney University, Locked bag 1797, Penrith, NSW, 2751, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute of the Environment, Western Sydney University, Locked bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
18
|
Paixão JS, Da Silva JR, Ruas KF, Rodrigues WP, Filho JAM, Bernado WDP, Abreu DP, Ferreira LS, Gonzalez JC, Griffin KL, Ramalho JC, Campostrini E. Photosynthetic capacity, leaf respiration and growth in two papaya ( Carica papaya) genotypes with different leaf chlorophyll concentrations. AOB PLANTS 2019; 11:plz013. [PMID: 30949326 PMCID: PMC6441136 DOI: 10.1093/aobpla/plz013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/29/2019] [Accepted: 03/07/2019] [Indexed: 06/06/2023]
Abstract
Golden genotype of papaya (Carica papaya), named for its yellowish leaves, produces fruits very much appreciated by consumers worldwide. However, its growth and yield are considerably lower than those of other genotypes, such as 'Sunrise Solo', which has intensely green leaves. We undertook an investigation with the goal of evaluating key physiological traits that can affect biomass accumulation of both Golden and Sunrise Solo genotypes. Papaya seeds from two different genotypes with contrasting leaf colour 'Sunrise Solo' and Golden were grown in greenhouse conditions. Plant growth (plant height, leaf number, stem diameter, leaf area, plant dry weight), leaf gas exchanges, leaf carbon balance, RuBisCO oxygenation and carboxylation rates, nitrogen, as well as chlorophyll concentrations and fluorescence variables were assessed. Although no significant differences were observed for photosynthetic rates between genotypes, the accumulation of small differences in photosynthesis, day after day, over a long period, might contribute to some extend to a higher C-budget in Sunrise Solo, higher leaf area and, thus, to higher productivity. Additionally, we consider that physiological processes other than photosynthesis and leaf respiration can be as well involved in lower growth and yield of Golden. One of these aspects could be related to the higher rates of photorespiration observed in Sunrise Solo, which could improve the rate of N assimilation into organic compounds, such as amino acids, thus contributing to the higher biomass production in Sunrise Solo relative to Golden. Further experiments to evaluate the effects of N metabolism on physiology and growth of Golden are required as it has the potential to limit its yield.
Collapse
Affiliation(s)
- Jéssica Sousa Paixão
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Jefferson Rangel Da Silva
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Rodovia Anhanguera, Cordeirópolis, São Paulo, Brazil
| | - Katherine Fraga Ruas
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Weverton Pereira Rodrigues
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - José Altino Machado Filho
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rual, Rua Afonso Sarlo, Bento, Ferreira, Vitória, Espírito Santo, Brazil
| | - Wallace de Paula Bernado
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Deivisson Pelegrino Abreu
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Luciene Souza Ferreira
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | | - Kevin Lee Griffin
- Department of Earth and Environmental Sciences, Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY, USA
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - José Cochicho Ramalho
- Lab. Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food (LEAF), Departamento de Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Av. República, Oeiras, Portugal
- GeoBioTec, Faculdade de Ciências Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Eliemar Campostrini
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Keenan TF, Migliavacca M, Papale D, Baldocchi D, Reichstein M, Torn M, Wutzler T. Widespread inhibition of daytime ecosystem respiration. Nat Ecol Evol 2019; 3:407-415. [PMID: 30742107 PMCID: PMC6421340 DOI: 10.1038/s41559-019-0809-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/12/2018] [Indexed: 11/22/2022]
Abstract
The global land surface absorbs about a third of anthropogenic emissions each year, due to the difference between two key processes: ecosystem photosynthesis and respiration. Despite the importance of these two processes, it is not possible to measure either at the ecosystem scale during the daytime. Eddy-covariance measurements are widely used as the closest 'quasi-direct' ecosystem-scale observation from which to estimate ecosystem photosynthesis and respiration. Recent research, however, suggests that current estimates may be biased by up to 25%, due to a previously unaccounted for process: the inhibition of leaf respiration in the light. Yet the extent of inhibition remains debated, and implications for estimates of ecosystem-scale respiration and photosynthesis remain unquantified. Here, we quantify an apparent inhibition of daytime ecosystem respiration across the global FLUXNET eddy-covariance network and identify a pervasive influence that varies by season and ecosystem type. We develop partitioning methods that can detect an apparent ecosystem-scale inhibition of daytime respiration and find that diurnal patterns of ecosystem respiration might be markedly different than previously thought. The results call for the re-evaluation of global terrestrial carbon cycle models and also suggest that current global estimates of photosynthesis and respiration may be biased, some on the order of magnitude of anthropogenic fossil fuel emissions.
Collapse
Affiliation(s)
- Trevor F Keenan
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- UC Berkeley, Berkeley, CA, USA.
| | | | - Dario Papale
- University of Tuscia, Viterbo, Italy
- Euro-Mediterranean Centre on Climate Change, Viterbo, Italy
| | | | | | - Margaret Torn
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
20
|
Dusenge ME, Duarte AG, Way DA. Plant carbon metabolism and climate change: elevated CO 2 and temperature impacts on photosynthesis, photorespiration and respiration. THE NEW PHYTOLOGIST 2019; 221:32-49. [PMID: 29983005 DOI: 10.1111/nph.15283] [Citation(s) in RCA: 351] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/11/2018] [Indexed: 05/18/2023]
Abstract
Contents Summary 32 I. The importance of plant carbon metabolism for climate change 32 II. Rising atmospheric CO2 and carbon metabolism 33 III. Rising temperatures and carbon metabolism 37 IV. Thermal acclimation responses of carbon metabolic processes can be best understood when studied together 38 V. Will elevated CO2 offset warming-induced changes in carbon metabolism? 40 VI. No plant is an island: water and nutrient limitations define plant responses to climate drivers 41 VII. Conclusions 42 Acknowledgements 42 References 42 Appendix A1 48 SUMMARY: Plant carbon metabolism is impacted by rising CO2 concentrations and temperatures, but also feeds back onto the climate system to help determine the trajectory of future climate change. Here we review how photosynthesis, photorespiration and respiration are affected by increasing atmospheric CO2 concentrations and climate warming, both separately and in combination. We also compile data from the literature on plants grown at multiple temperatures, focusing on net CO2 assimilation rates and leaf dark respiration rates measured at the growth temperature (Agrowth and Rgrowth , respectively). Our analyses show that the ratio of Agrowth to Rgrowth is generally homeostatic across a wide range of species and growth temperatures, and that species that have reduced Agrowth at higher growth temperatures also tend to have reduced Rgrowth , while species that show stimulations in Agrowth under warming tend to have higher Rgrowth in the hotter environment. These results highlight the need to study these physiological processes together to better predict how vegetation carbon metabolism will respond to climate change.
Collapse
Affiliation(s)
- Mirindi Eric Dusenge
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - André Galvao Duarte
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Danielle A Way
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
21
|
Heskel MA, Tang J. Environmental controls on light inhibition of respiration and leaf and canopy daytime carbon exchange in a temperate deciduous forest. TREE PHYSIOLOGY 2018; 38:1886-1902. [PMID: 30252110 DOI: 10.1093/treephys/tpy103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Uncertainty in the estimation of daytime ecosystem carbon cycling due to the light inhibition of leaf respiration and photorespiration, and how these small fluxes vary through the growing season in the field, remains a confounding element in calculations of gross primary productivity and ecosystem respiration. Our study focuses on how phenology, short-term temperature changes and canopy position influence leaf-level carbon exchange in Quercus rubra L. (red oak) at Harvard Forest in central Massachusetts, USA. Using leaf measurements and eddy covariance, we also quantify the effect of light inhibition on estimates of daytime respiration at leaf and ecosystem scales. Measured rates of leaf respiration in the light and dark were highest in the early growing season and declined in response to 10-day prior air temperatures (P < 0.01), evidence of within-season thermal acclimation. Leaf respiration was significantly inhibited by light (27.1 ± 2.82% inhibited across all measurements), and this inhibition varied with the month of measurement; greater inhibition was observed in mid-summer leaves compared with early- and late-season leaves. Increases in measurement temperature led to higher rates of respiration and photorespiration, though with a less pronounced positive effect on photosynthesis; as a result, carbon-use efficiency declined with increasing leaf temperature. Over the growing season when we account for seasonally variable light inhibition and basal respiration rates, our modeling approaches found a cumulative 12.9% reduction of leaf-level respiration and a 12.8% reduction of canopy leaf respiration, resulting in a 3.7% decrease in total ecosystem respiration compared with estimates that do not account for light inhibition in leaves. Our study sheds light on the environmental controls of the light inhibition of daytime leaf respiration and how integrating this phenomenon and other small fluxes can reduce uncertainty in current and future projections of terrestrial carbon cycling.
Collapse
Affiliation(s)
- Mary A Heskel
- The Ecosystems Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, USA
- Department of Biology, Macalester College, 1600 Grand Avenue, Saint Paul, MN, USA
| | - Jianwu Tang
- The Ecosystems Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, USA
| |
Collapse
|
22
|
Correia B, Hancock RD, Valledor L, Pinto G. Gene expression analysis in Eucalyptus globulus exposed to drought stress in a controlled and a field environment indicates different strategies for short- and longer-term acclimation. TREE PHYSIOLOGY 2018; 38:1623-1639. [PMID: 30496539 DOI: 10.1093/treephys/tpy067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 05/18/2018] [Indexed: 06/09/2023]
Abstract
Previous knowledge suggested the involvement of specific pathways/proteins that could be identified as potential molecular indicators linked to enhanced drought tolerance in Eucalyptus globulus. Here, we looked for specific variations in key transcripts of two Eucalyptus globulus clones (AL-18 and AL-13) exposed to water deficit and rehydration with two main goals: (i) to check if and how transcripts potentially associated with stress response and protection are modulated in a controlled experiment; and (ii) to verify if the transcript response is robust in a field case study. Our results showed that the controlled experiment induced a severe acute stress that resulted in a strong realignment of gene expression resulting from an overwhelming of physiological adjustments to water limitation. A number of transcripts exhibited altered abundance after the acute water stress: reduction of RuBisCO activase and mitochondrial glycine cleavage system H protein, and increase of isoflavone reductase. Malate dehydrogenase, catalase, dehydration response element B1A and potassium channel GORK showed a different abundance pattern in each clone. The stress in the field was more moderate and chronic and the plants were able to deal with the stress primarily through physiological adjustments resulting in much smaller changes in gene expression. The transcripts of clone AL-18 showed few alterations between irrigated and non-irrigated plants throughout the experiment, while the transcript changes found in clone AL-13 highlighted the impact of early rewatering rather than growing under extended drought typical of a Mediterranean summer. Although a few concurrent responses were found, the results obtained in the field study draw a very distinct picture when compared with the controlled experiment.
Collapse
Affiliation(s)
- Barbara Correia
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Robert D Hancock
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, UK
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Oviedo, Spain
| | - Glória Pinto
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
23
|
Tcherkez G, Gauthier P, Buckley TN, Busch FA, Barbour MM, Bruhn D, Heskel MA, Gong XY, Crous KY, Griffin K, Way D, Turnbull M, Adams MA, Atkin OK, Farquhar GD, Cornic G. Leaf day respiration: low CO 2 flux but high significance for metabolism and carbon balance. THE NEW PHYTOLOGIST 2017; 216:986-1001. [PMID: 28967668 DOI: 10.1111/nph.14816] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/13/2017] [Indexed: 05/04/2023]
Abstract
Contents 986 I. 987 II. 987 III. 988 IV. 991 V. 992 VI. 995 VII. 997 VIII. 998 References 998 SUMMARY: It has been 75 yr since leaf respiratory metabolism in the light (day respiration) was identified as a low-flux metabolic pathway that accompanies photosynthesis. In principle, it provides carbon backbones for nitrogen assimilation and evolves CO2 and thus impacts on plant carbon and nitrogen balances. However, for a long time, uncertainties have remained as to whether techniques used to measure day respiratory efflux were valid and whether day respiration responded to environmental gaseous conditions. In the past few years, significant advances have been made using carbon isotopes, 'omics' analyses and surveys of respiration rates in mesocosms or ecosystems. There is substantial evidence that day respiration should be viewed as a highly dynamic metabolic pathway that interacts with photosynthesis and photorespiration and responds to atmospheric CO2 mole fraction. The view of leaf day respiration as a constant and/or negligible parameter of net carbon exchange is now outdated and it should now be regarded as a central actor of plant carbon-use efficiency.
Collapse
Affiliation(s)
- Guillaume Tcherkez
- Research School of Biology, College of Science, and ARC Center of Excellence for Translational Photosynthesis, Australian National University, Canberra, ACT, 2601, Australia
| | - Paul Gauthier
- Department of Geosciences, Princeton University, Princeton, NJ, 08540, USA
| | - Thomas N Buckley
- IA Watson Grains Research Centre, University of Sydney, 12656 Newell Hwy, Narrabri, NSW, 2390, Australia
| | - Florian A Busch
- Research School of Biology, College of Science, and ARC Center of Excellence for Translational Photosynthesis, Australian National University, Canberra, ACT, 2601, Australia
| | - Margaret M Barbour
- Centre for Carbon, Water and Food, University of Sydney, 380 Werombi Rd, Brownlow Hill, NSW, 2570, Australia
| | - Dan Bruhn
- Section of Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg East, Denmark
| | - Mary A Heskel
- The Ecosystems Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Xiao Ying Gong
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, 85354, Freising, Germany
| | - Kristine Y Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Kevin Griffin
- Department of Ecology, Evolution and Environmental Biology (E3B), Columbia University, 1200 Amsterdam Avenue, New York, NY, 10027, USA
| | - Danielle Way
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Matthew Turnbull
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, PB 4800, Christchurch, New Zealand
| | - Mark A Adams
- Centre for Carbon, Water and Food, University of Sydney, 380 Werombi Rd, Brownlow Hill, NSW, 2570, Australia
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Science, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Graham D Farquhar
- Research School of Biology, College of Science, and ARC Center of Excellence for Translational Photosynthesis, Australian National University, Canberra, ACT, 2601, Australia
| | - Gabriel Cornic
- Ecologie Systématique Evolution, Université Paris-Sud, 91405, Orsay Cedex, France
| |
Collapse
|
24
|
Turnbull MH, Ogaya R, Barbeta A, Peñuelas J, Zaragoza-Castells J, Atkin OK, Valladares F, Gimeno TE, Pías B, Griffin KL. Light inhibition of foliar respiration in response to soil water availability and seasonal changes in temperature in Mediterranean holm oak (Quercus ilex) forest. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:1178-1193. [PMID: 32480643 DOI: 10.1071/fp17032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/23/2017] [Indexed: 06/11/2023]
Abstract
In the present study we investigated variations in leaf respiration in darkness (RD) and light (RL), and associated traits in response to season, and along a gradient of soil moisture, in Mediterranean woodland dominated by holm oak (Quercus ilex L.) in central and north-eastern Spain respectively. On seven occasions during the year in the central Spain site, and along the soil moisture gradient in north-eastern Spain, we measured rates of leaf RD, RL (using the Kok method), light-saturated photosynthesis (A) and related light response characteristics, leaf mass per unit area (MA) and leaf nitrogen (N) content. At the central Spain site, significant seasonal changes in soil water content and ambient temperature (T) were associated with changes in MA, foliar N, A and stomatal conductance. RD measured at the prevailing daily T and in instantaneous R-T responses, displayed signs of partial acclimation and was not significantly affected by time of year. RL was always less than, and strongly related to, RD, and RL/RD did not vary significantly or systematically with seasonal changes in T or soil water content. Averaged over the year, RL/RD was 0.66±0.05s.e. (n=14) at the central Spain site. At the north-eastern Spain site, the soil moisture gradient was characterised by increasing MA and RD, and reduced foliar N, A, and stomatal conductance as soil water availability decreased. Light inhibition of R occurred across all sites (mean RL/RD=0.69±0.01s.e. (n=18)), resulting in ratios of RL/A being lower than for RD/A. Importantly, the degree of light inhibition was largely insensitive to changes in soil water content. Our findings provide evidence for a relatively constrained degree of light inhibition of R (RL/RD ~ 0.7, or inhibition of ~30%) across gradients of water availability, although the combined impacts of seasonal changes in both T and soil water content increase the range of values expressed. The findings thus have implications in terms of the assumptions made by predictive models that seek to account for light inhibition of R, and for our understanding of how environmental gradients impact on leaf trait relationships in Mediterranean plant communities.
Collapse
Affiliation(s)
- Matthew H Turnbull
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Romà Ogaya
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | - Adrià Barbeta
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | | | - Joana Zaragoza-Castells
- Geography, College of Life and Environmental Sciences, University of Exeter, Amory Building, Rennes Drive, Exeter EX4 4RJ, UK
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601, Australia
| | - Fernando Valladares
- Museo Nacional de Ciencias Naturales, CSIC, Serrano 115, E-28006 Madrid, Spain
| | - Teresa E Gimeno
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked bag 1797, Penrith, NSW 2751, Australia
| | - Beatriz Pías
- Departamento de Botánica, Universidad Complutense de Madrid, José Antonio Novais 2, 28040, Madrid, Spain
| | - Kevin L Griffin
- Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, 6 Biology, Palisades, NY 10964, USA
| |
Collapse
|
25
|
Crous KY, Wallin G, Atkin OK, Uddling J, Af Ekenstam A. Acclimation of light and dark respiration to experimental and seasonal warming are mediated by changes in leaf nitrogen in Eucalyptus globulus. TREE PHYSIOLOGY 2017; 37:1069-1083. [PMID: 28541536 DOI: 10.1093/treephys/tpx052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Quantifying the adjustments of leaf respiration in response to seasonal temperature variation and climate warming is crucial because carbon loss from vegetation is a large but uncertain part of the global carbon cycle. We grew fast-growing Eucalyptus globulus Labill. trees exposed to +3 °C warming and elevated CO2 in 10-m tall whole-tree chambers and measured the temperature responses of leaf mitochondrial respiration, both in light (RLight) and in darkness (RDark), over a 20-40 °C temperature range and during two different seasons. RLight was assessed using the Laisk method. Respiration rates measured at a standard temperature (25 °C - R25) were higher in warm-grown trees and in the warm season, related to higher total leaf nitrogen (N) investment with higher temperatures (both experimental and seasonal), indicating that leaf N concentrations modulated the respiratory capacity to changes in temperature. Once differences in leaf N were accounted for, there were no differences in R25 but the Q10 (i.e., short-term temperature sensitivity) was higher in late summer compared with early spring. The variation in RLight between experimental treatments and seasons was positively correlated with carboxylation capacity and photorespiration. RLight was less responsive to short-term changes in temperature than RDark, as shown by a lower Q10 in RLight compared with RDark. The overall light inhibition of R was ∼40%. Our results highlight the dynamic nature of leaf respiration to temperature variation and that the responses of RLight do not simply mirror those of RDark. Therefore, it is important not to assume that RLight is the same as RDark in ecosystem models, as doing so may lead to large errors in predicting plant CO2 release and productivity.
Collapse
Affiliation(s)
- K Y Crous
- Hawkesbury Institute for Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - G Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, SE-40530 Gothenburg, Sweden
| | - O K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601, Australia
| | - J Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, SE-40530 Gothenburg, Sweden
| | - A Af Ekenstam
- Hawkesbury Institute for Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, SE-40530 Gothenburg, Sweden
| |
Collapse
|
26
|
Crous KY, O'Sullivan OS, Zaragoza-Castells J, Bloomfield KJ, Negrini ACA, Meir P, Turnbull MH, Griffin KL, Atkin OK. Nitrogen and phosphorus availabilities interact to modulate leaf trait scaling relationships across six plant functional types in a controlled-environment study. THE NEW PHYTOLOGIST 2017; 215:992-1008. [PMID: 28505389 DOI: 10.1111/nph.14591] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/19/2017] [Indexed: 05/26/2023]
Abstract
Nitrogen (N) and phosphorus (P) have key roles in leaf metabolism, resulting in a strong coupling of chemical composition traits to metabolic rates in field-based studies. However, in such studies, it is difficult to disentangle the effects of nutrient supply per se on trait-trait relationships. Our study assessed how high and low N (5 mM and 0.4 mM, respectively) and P (1 mM and 2 μM, respectively) supply in 37 species from six plant functional types (PTFs) affected photosynthesis (A) and respiration (R) (in darkness and light) in a controlled environment. Low P supply increased scaling exponents (slopes) of area-based log-log A-N or R-N relationships when N supply was not limiting, whereas there was no P effect under low N supply. By contrast, scaling exponents of A-P and R-P relationships were altered by P and N supply. Neither R : A nor light inhibition of leaf R was affected by nutrient supply. Light inhibition was 26% across nutrient treatments; herbaceous species exhibited a lower degree of light inhibition than woody species. Because N and P supply modulates leaf trait-trait relationships, the next generation of terrestrial biosphere models may need to consider how limitations in N and P availability affect trait-trait relationships when predicting carbon exchange.
Collapse
Affiliation(s)
- Kristine Y Crous
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Odhran S O'Sullivan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Joana Zaragoza-Castells
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3JN, UK
- Department of Geography, College of Life and Environmental Sciences, University of Exeter, Amory Building, Exeter, EX4 4RJ, UK
| | - Keith J Bloomfield
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - A Clarissa A Negrini
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Patrick Meir
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3JN, UK
| | - Matthew H Turnbull
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Kevin L Griffin
- Department of Earth and Environment Sciences, Columbia University, Palisades, NY, 10964, USA
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, 10027, USA
| | - Owen K Atkin
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| |
Collapse
|
27
|
Tcherkez G, Gauthier P, Buckley TN, Busch FA, Barbour MM, Bruhn D, Heskel MA, Gong XY, Crous K, Griffin KL, Way DA, Turnbull MH, Adams MA, Atkin OK, Bender M, Farquhar GD, Cornic G. Tracking the origins of the Kok effect, 70 years after its discovery. THE NEW PHYTOLOGIST 2017; 214:506-510. [PMID: 28318034 DOI: 10.1111/nph.14527] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Guillaume Tcherkez
- Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT, 2601, Australia
| | - Paul Gauthier
- Department of Geosciences, Princeton University, Princeton, NJ, 08540, USA
| | - Thomas N Buckley
- IA Watson Grains Research Centre, University of Sydney, 12656 Newell Hwy, Narrabri, NSW, 2390, Australia
| | - Florian A Busch
- Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT, 2601, Australia
| | - Margaret M Barbour
- Centre for Carbon, Water and Food, University of Sydney, 380 Werombi Rd, Brownlow Hill, NSW, 2570, Australia
| | - Dan Bruhn
- Section of Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg East, Denmark
| | - Mary A Heskel
- The Ecosystems Centre, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Xiao Ying Gong
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, 85354, Freising, Germany
| | - Kristine Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Kevin L Griffin
- Department of Ecology, Evolution and Environmental Biology (E3B), Columbia University, 1200 Amsterdam Avenue, Palisades, NY, 10027, USA
| | - Danielle A Way
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Matthew H Turnbull
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, PB 4800, Christchurch, New Zealand
| | - Mark A Adams
- Centre for Carbon, Water and Food, University of Sydney, 380 Werombi Rd, Brownlow Hill, NSW, 2570, Australia
| | - Owen K Atkin
- Division of Plant Science, ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT, 2601, Australia
| | - Michael Bender
- Department of Geosciences, Princeton University, Princeton, NJ, 08540, USA
| | - Graham D Farquhar
- Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT, 2601, Australia
| | - Gabriel Cornic
- Ecologie Systématique Evolution, Université Paris-Sud, 91405, Orsay Cedex, France
| |
Collapse
|
28
|
Gong XY, Schäufele R, Lehmeier CA, Tcherkez G, Schnyder H. Atmospheric CO 2 mole fraction affects stand-scale carbon use efficiency of sunflower by stimulating respiration in light. PLANT, CELL & ENVIRONMENT 2017; 40:401-412. [PMID: 28024100 DOI: 10.1111/pce.12886] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 12/02/2016] [Accepted: 12/11/2016] [Indexed: 05/26/2023]
Abstract
Plant carbon-use-efficiency (CUE), a key parameter in carbon cycle and plant growth models, quantifies the fraction of fixed carbon that is converted into net primary production rather than respired. CUE has not been directly measured, partly because of the difficulty of measuring respiration in light. Here, we explore if CUE is affected by atmospheric CO2 . Sunflower stands were grown at low (200 μmol mol-1 ) or high CO2 (1000 μmol mol-1 ) in controlled environment mesocosms. CUE of stands was measured by dynamic stand-scale 13 C labelling and partitioning of photosynthesis and respiration. At the same plant age, growth at high CO2 (compared with low CO2 ) led to 91% higher rates of apparent photosynthesis, 97% higher respiration in the dark, yet 143% higher respiration in light. Thus, CUE was significantly lower at high (0.65) than at low CO2 (0.71). Compartmental analysis of isotopic tracer kinetics demonstrated a greater commitment of carbon reserves in stand-scale respiratory metabolism at high CO2 . Two main processes contributed to the reduction of CUE at high CO2 : a reduced inhibition of leaf respiration by light and a diminished leaf mass ratio. This work highlights the relevance of measuring respiration in light and assessment of the CUE response to environment conditions.
Collapse
Affiliation(s)
- Xiao Ying Gong
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, 85354, Freising, Germany
| | - Rudi Schäufele
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, 85354, Freising, Germany
| | | | - Guillaume Tcherkez
- Research School of Biology, ANU College of Medicine, Biology and Environment, Australian National University, Canberra, Australian Capital Territory, 0200, Australia
| | - Hans Schnyder
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, 85354, Freising, Germany
| |
Collapse
|
29
|
Martínez-García E, Dadi T, Rubio E, García-Morote FA, Andrés-Abellán M, López-Serrano FR. Aboveground autotrophic respiration in a Spanish black pine forest: Comparison of scaling methods to improve component partitioning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:1505-1517. [PMID: 28040216 DOI: 10.1016/j.scitotenv.2016.12.136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
Total wood CO2 efflux (Rw) varies vertically within individual trees, and leaves experience large variations in foliar respiration (Rf) rates over their life spans and during daily periods. Therefore, accurate sampling approaches are required to improve aboveground autotrophic respiration (RAa) estimations in stand-scale carbon cycling studies. We scaled-up Rw (comprising stem and branch CO2 efflux; ES and EB, respectively) and Rf from biometric and flux-chamber measurements taken between 2011 and 2013 in a Spanish black pine (Pinus nigra Arn. ssp. salzmannii) forest at an unburnt (UB) site and a low burn-severity (LS) site. We measured seasonal ES at breast height (1.30m) on 9 trees at each site, which was also vertically examined on 5 of those trees. We also measured seasonal Rf in current- and previous-year needles on 3 trees at each site, and quantified Rf variations in darkness and light. Finally, we compared complex and simple scale-up methods which did or did not account for the vertical variation in Rw and the effects of leaf ageing and light inhibition on Rf, respectively. The simple methods underestimated the annual stand-level stem, branch, and total wood respiration ≈35%, 55%, and 41%, respectively, and overestimated annual stand-level whole-canopy foliage respiration ≈43% at both sites. Both methods provided similar annual stand-level RAa estimates, although the complex methods improved estimations of the relative contribution of RAa components. Thus, based on the complex methods the mean annual RAa at the stand-level was 4.53±0.25 and 4.45±0.12MgCha-1year-1 at the UB and LS sites, respectively. Our data also confirmed that the low-severity fire did not alter the RAa rates. Collectively, this study reveals that complex approaches, applicable in other forest ecosystems, enhance the accuracy of partitioning RAa sources by reducing the error in scaling-up in chamber-based measurements.
Collapse
Affiliation(s)
- E Martínez-García
- Department of Science and Agroforestry Technology and Genetics, Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario s/n, CP 02071 Albacete, Spain; Environmental Department, Renewable Energy Research Institute, University of Castilla-La Mancha, Campus Universitario s/n, CP 02071 Albacete, Spain.
| | - T Dadi
- Department of Science and Agroforestry Technology and Genetics, Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario s/n, CP 02071 Albacete, Spain; Environmental Department, Renewable Energy Research Institute, University of Castilla-La Mancha, Campus Universitario s/n, CP 02071 Albacete, Spain
| | - E Rubio
- Department of Applied Physics, School of Industrial Engineering, University of Castilla-La Mancha, Campus Universitario s/n, CP 02071 Albacete, Spain; Environmental Department, Renewable Energy Research Institute, University of Castilla-La Mancha, Campus Universitario s/n, CP 02071 Albacete, Spain
| | - F A García-Morote
- Department of Science and Agroforestry Technology and Genetics, Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario s/n, CP 02071 Albacete, Spain; Environmental Department, Renewable Energy Research Institute, University of Castilla-La Mancha, Campus Universitario s/n, CP 02071 Albacete, Spain
| | - M Andrés-Abellán
- Department of Science and Agroforestry Technology and Genetics, Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario s/n, CP 02071 Albacete, Spain; Environmental Department, Renewable Energy Research Institute, University of Castilla-La Mancha, Campus Universitario s/n, CP 02071 Albacete, Spain
| | - F R López-Serrano
- Department of Science and Agroforestry Technology and Genetics, Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario s/n, CP 02071 Albacete, Spain; Environmental Department, Renewable Energy Research Institute, University of Castilla-La Mancha, Campus Universitario s/n, CP 02071 Albacete, Spain
| |
Collapse
|
30
|
Atkin OK, Bahar NHA, Bloomfield KJ, Griffin KL, Heskel MA, Huntingford C, de la Torre AM, Turnbull MH. Leaf Respiration in Terrestrial Biosphere Models. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2017. [DOI: 10.1007/978-3-319-68703-2_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Dahal K, Martyn GD, Alber NA, Vanlerberghe GC. Coordinated regulation of photosynthetic and respiratory components is necessary to maintain chloroplast energy balance in varied growth conditions. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:657-671. [PMID: 28011719 PMCID: PMC5441918 DOI: 10.1093/jxb/erw469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mitochondria have a non-energy-conserving alternative oxidase (AOX) proposed to support photosynthesis, perhaps by promoting energy balance under varying growth conditions. To investigate this, wild-type (WT) Nicotiana tabacum were compared with AOX knockdown and overexpression lines. In addition, the amount of AOX protein in WT plants was compared with that of chloroplast light-harvesting complex II (LHCB2), whose amount is known to respond to chloroplast energy status. With increased growth irradiance, WT leaves maintained higher rates of respiration in the light (RL), but no differences in RL or photosynthesis were seen between the WT and transgenic lines, suggesting that, under non-stress conditions, AOX was not critical for leaf metabolism, regardless of growth irradiance. However, under drought, the AOX amount became an important determinant of RL, which in turn was an important determinant of chloroplast energy balance (measured as photosystem II excitation pressure, EP), and photosynthetic performance. In the WT, the AOX amount increased and the LHCB2 amount decreased with increased growth irradiance or drought severity. These changes in protein amounts correlated strongly, in opposing ways, with growth EP. This suggests that a signal deriving from the photosynthetic electron transport chain status coordinately controls the amounts of AOX and LHCB2, which then both contribute to maintaining chloroplast energy balance, particularly under stress conditions.
Collapse
Affiliation(s)
- Keshav Dahal
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Military Trail, Toronto,
ON, Canada
| | - Greg D Martyn
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Military Trail, Toronto,
ON, Canada
| | - Nicole A Alber
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Military Trail, Toronto,
ON, Canada
| | - Greg C Vanlerberghe
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Military Trail, Toronto,
ON, Canada
| |
Collapse
|
32
|
Campany CE, Tjoelker MG, von Caemmerer S, Duursma RA. Coupled response of stomatal and mesophyll conductance to light enhances photosynthesis of shade leaves under sunflecks. PLANT, CELL & ENVIRONMENT 2016; 39:2762-2773. [PMID: 27726150 DOI: 10.1111/pce.12841] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Light gradients within tree canopies play a major role in the distribution of plant resources that define the photosynthetic capacity of sun and shade leaves. However, the biochemical and diffusional constraints on gas exchange in sun and shade leaves in response to light remain poorly quantified, but critical for predicting canopy carbon and water exchange. To investigate the CO2 diffusion pathway of sun and shade leaves, leaf gas exchange was coupled with concurrent measurements of carbon isotope discrimination to measure net leaf photosynthesis (An ), stomatal conductance (gs ) and mesophyll conductance (gm ) in Eucalyptus tereticornis trees grown in climate controlled whole-tree chambers. Compared to sun leaves, shade leaves had lower An , gm , leaf nitrogen and photosynthetic capacity (Amax ) but gs was similar. When light intensity was temporarily increased for shade leaves to match that of sun leaves, both gs and gm increased, and An increased to values greater than sun leaves. We show that dynamic physiological responses of shade leaves to altered light environments have implications for up-scaling leaf level measurements and predicting whole canopy carbon gain. Despite exhibiting reduced photosynthetic capacity, the rapid up-regulation of gm with increased light enables shade leaves to respond quickly to sunflecks.
Collapse
Affiliation(s)
- Courtney E Campany
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, 2751, NSW, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, 2751, NSW, Australia
| | - Susanne von Caemmerer
- ARC Centre of Excellence for Translational Photosynthesis, Plant Science Division, Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
| | - Remko A Duursma
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, 2751, NSW, Australia
| |
Collapse
|
33
|
Kroner Y, Way DA. Carbon fluxes acclimate more strongly to elevated growth temperatures than to elevated CO2 concentrations in a northern conifer. GLOBAL CHANGE BIOLOGY 2016; 22:2913-28. [PMID: 26728638 DOI: 10.1111/gcb.13215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/29/2015] [Indexed: 05/21/2023]
Abstract
Increasing temperatures and atmospheric CO2 concentrations will affect tree carbon fluxes, generating potential feedbacks between forests and the global climate system. We studied how elevated temperatures and CO2 impacted leaf carbon dynamics in Norway spruce (Picea abies), a dominant northern forest species, to improve predictions of future photosynthetic and respiratory fluxes from high-latitude conifers. Seedlings were grown under ambient (AC, c. 435 μmol mol(-1) ) or elevated (EC, 750 μmol mol(-1) ) CO2 concentrations at ambient, +4 °C, or +8 °C growing temperatures. Photosynthetic rates (Asat ) were high in +4 °C/EC seedlings and lowest in +8 °C spruce, implying that moderate, but not extreme, climate change may stimulate carbon uptake. Asat , dark respiration (Rdark ), and light respiration (Rlight ) rates acclimated to temperature, but not CO2 : the thermal optimum of Asat increased, and Rdark and Rlight were suppressed under warming. In all treatments, the Q10 of Rlight (the relative increase in respiration for a 10 °C increase in leaf temperature) was 35% higher than the Q10 of Rdark , so the ratio of Rlight to Rdark increased with rising leaf temperature. However, across all treatments and a range of 10-40 °C leaf temperatures, a consistent relationship between Rlight and Rdark was found, which could be used to model Rlight in future climates. Acclimation reduced daily modeled respiratory losses from warm-grown seedlings by 22-56%. When Rlight was modeled as a constant fraction of Rdark , modeled daily respiratory losses were 11-65% greater than when using measured values of Rlight . Our findings highlight the impact of acclimation to future climates on predictions of carbon uptake and losses in northern trees, in particular the need to model daytime respiratory losses from direct measurements of Rlight or appropriate relationships with Rdark .
Collapse
Affiliation(s)
- Yulia Kroner
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Danielle A Way
- Department of Biology, University of Western Ontario, London, ON, Canada
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| |
Collapse
|
34
|
Drake JE, Tjoelker MG, Aspinwall MJ, Reich PB, Barton CVM, Medlyn BE, Duursma RA. Does physiological acclimation to climate warming stabilize the ratio of canopy respiration to photosynthesis? THE NEW PHYTOLOGIST 2016; 211:850-63. [PMID: 27122489 DOI: 10.1111/nph.13978] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/04/2016] [Indexed: 05/13/2023]
Abstract
Given the contrasting short-term temperature dependences of gross primary production (GPP) and autotrophic respiration, the fraction of GPP respired by trees is predicted to increase with warming, providing a positive feedback to climate change. However, physiological acclimation may dampen or eliminate this response. We measured the fluxes of aboveground respiration (Ra ), GPP and their ratio (Ra /GPP) in large, field-grown Eucalyptus tereticornis trees exposed to ambient or warmed air temperatures (+3°C). We report continuous measurements of whole-canopy CO2 exchange, direct temperature response curves of leaf and canopy respiration, leaf and branch wood respiration, and diurnal photosynthetic measurements. Warming reduced photosynthesis, whereas physiological acclimation prevented a coincident increase in Ra . Ambient and warmed trees had a common nonlinear relationship between the fraction of GPP that was respired above ground (Ra /GPP) and the mean daily temperature. Thus, warming significantly increased Ra /GPP by moving plants to higher positions on the shared Ra /GPP vs daily temperature relationship, but this effect was modest and only notable during hot conditions. Despite the physiological acclimation of autotrophic respiration to warming, increases in temperature and the frequency of heat waves may modestly increase tree Ra /GPP, contributing to a positive feedback between climate warming and atmospheric CO2 accumulation.
Collapse
Affiliation(s)
- John E Drake
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Michael J Aspinwall
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Peter B Reich
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- Department of Forest Resources, University of Minnesota, 1530 Cleveland Ave N., St Paul, MN, 55108, USA
| | - Craig V M Barton
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Remko A Duursma
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
35
|
Song X, Zhou G, Xu Z, Lv X, Wang Y. A self-photoprotection mechanism helps Stipa baicalensis adapt to future climate change. Sci Rep 2016; 6:25839. [PMID: 27161934 PMCID: PMC4861908 DOI: 10.1038/srep25839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 04/22/2016] [Indexed: 11/23/2022] Open
Abstract
We examined the photosynthetic responses of Stipa baicalensis to relative long-term exposure (42 days) to the predicted elevated temperature and water availability changes to determine the mechanisms through which the plant would acclimate to future climate change. Two thermal regimes (ambient and +4 °C) and three irrigation levels (partial, normal and excess) were used in environmental control chambers. The gas exchange parameters, light response curves and A/Ci curves were determined. The elevated temperature and partial irrigation reduced the net photosynthetic rate due to a limitation in the photosynthetic capacity instead of the intercellular CO2 concentration. Partial irrigation decreased Rubisco activation and limited RuBP regeneration. The reduction in Vcmax increased with increasing temperature. Excess irrigation offset the negative effect of drought and led to a partial recovery of the photosynthetic capacity. Although its light use efficiency was restricted, the use of light and dark respiration by Stipa baicalensis was unchanged. We concluded that nonstomatal limitation was the primary reason for photosynthesis regulation in Stipa baicalensis under relative long-term climate change conditions. Although climate change caused reductions in the light use efficiency and photosynthetic rate, a self-photoprotection mechanism in Stipa baicalensis resulted in its high ability to maintain normal live activities.
Collapse
Affiliation(s)
- Xiliang Song
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Guangsheng Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
- Chinese Academy of Meteorological Sciences, China Meteorological Administration, 46 Zhongguancun South Street, Haidian, Beijing 100081, China
| | - Zhenzhu Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
| | - Xiaomin Lv
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yuhui Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
| |
Collapse
|
36
|
Cheng DD, Liu MJ, Sun XB, Zhao M, Chow WS, Sun GY, Zhang ZS, Hu YB. Light Suppresses Bacterial Population through the Accumulation of Hydrogen Peroxide in Tobacco Leaves Infected with Pseudomonas syringae pv. tabaci. FRONTIERS IN PLANT SCIENCE 2016; 7:512. [PMID: 27148334 PMCID: PMC4838606 DOI: 10.3389/fpls.2016.00512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/31/2016] [Indexed: 05/13/2023]
Abstract
Pseudomonas syringae pv. tabaci (Pst) is a hemibiotrophic bacterial pathogen responsible for tobacco wildfire disease. Although considerable research has been conducted on the tobacco plant's tolerance to Pst, the role of light in the responses of the photosystems to Pst infection is poorly understood. This study aimed to elucidate the underlying mechanisms of the reduced photosystem damage in tobacco leaves due to Pst infection under light conditions. Compared to dark conditions, Pst infection under light conditions resulted in less chlorophyll degradation and a smaller decline in photosynthetic function. Although the maximal quantum yield of photosystem II (PSII) and the activity of the photosystem I (PSI) complex decreased as Pst infection progressed, damage to PSI and PSII after infection was reduced under light conditions compared to dark conditions. Pst was 17-fold more abundant in tobacco leaves under dark compared to light conditions at 3 days post inoculation (dpi). Additionally, H2O2 accumulated to a high level in tobacco leaves after Pst infection under light conditions; although to a lesser extent, H2O2 accumulation was also significant under dark conditions. Pretreatment with H2O2 alleviated chlorotic lesions and decreased Pst abundance in tobacco leaves at 3 dpi under dark conditions. MV pretreatment had the same effects under light conditions, whereas 3-(3,4-dichlorophenyl)-1,1-dimethylurea pretreatment aggravated chlorotic lesions and increased the Pst population. These results indicate that chlorotic symptoms and the size of the bacterial population are each negatively correlated with H2O2 accumulation. In other words, light appears to suppress the Pst population in tobacco leaves through the accumulation of H2O2 during infection.
Collapse
Affiliation(s)
- Dan-Dan Cheng
- College of Life Science, Northeast Forestry UniversityHarbin, China
| | - Mei-Jun Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTai’an, China
| | - Xing-Bin Sun
- College of Life Science, Northeast Forestry UniversityHarbin, China
| | - Min Zhao
- College of Life Science, Northeast Forestry UniversityHarbin, China
| | - Wah S. Chow
- College of Life Science, Northeast Forestry UniversityHarbin, China
- Division of Plant Science, Research School of Biology, The Australian National University, CanberraACT, Australia
| | - Guang-Yu Sun
- College of Life Science, Northeast Forestry UniversityHarbin, China
- *Correspondence: Guang-Yu Sun, ; Zi-Shan Zhang,
| | - Zi-Shan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTai’an, China
- *Correspondence: Guang-Yu Sun, ; Zi-Shan Zhang,
| | - Yan-Bo Hu
- College of Life Science, Northeast Forestry UniversityHarbin, China
| |
Collapse
|
37
|
Rodrigues WP, Martins MQ, Fortunato AS, Rodrigues AP, Semedo JN, Simões-Costa MC, Pais IP, Leitão AE, Colwell F, Goulao L, Máguas C, Maia R, Partelli FL, Campostrini E, Scotti-Campos P, Ribeiro-Barros AI, Lidon FC, DaMatta FM, Ramalho JC. Long-term elevated air [CO2 ] strengthens photosynthetic functioning and mitigates the impact of supra-optimal temperatures in tropical Coffea arabica and C. canephora species. GLOBAL CHANGE BIOLOGY 2016; 22:415-31. [PMID: 26363182 DOI: 10.1111/gcb.13088] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 05/05/2023]
Abstract
The tropical coffee crop has been predicted to be threatened by future climate changes and global warming. However, the real biological effects of such changes remain unknown. Therefore, this work aims to link the physiological and biochemical responses of photosynthesis to elevated air [CO2 ] and temperature in cultivated genotypes of Coffea arabica L. (cv. Icatu and IPR108) and Coffea canephora cv. Conilon CL153. Plants were grown for ca. 10 months at 25/20°C (day/night) and 380 or 700 μl CO2 l(-1) and then subjected to temperature increase (0.5°C day(-1) ) to 42/34°C. Leaf impacts related to stomatal traits, gas exchanges, C isotope composition, fluorescence parameters, thylakoid electron transport and enzyme activities were assessed at 25/20, 31/25, 37/30 and 42/34°C. The results showed that (1) both species were remarkably heat tolerant up to 37/30°C, but at 42/34°C a threshold for irreversible nonstomatal deleterious effects was reached. Impairments were greater in C. arabica (especially in Icatu) and under normal [CO2 ]. Photosystems and thylakoid electron transport were shown to be quite heat tolerant, contrasting to the enzymes related to energy metabolism, including RuBisCO, which were the most sensitive components. (2) Significant stomatal trait modifications were promoted almost exclusively by temperature and were species dependent. Elevated [CO2 ], (3) strongly mitigated the impact of temperature on both species, particularly at 42/34°C, modifying the response to supra-optimal temperatures, (4) promoted higher water-use efficiency under moderately higher temperature (31/25°C) and (5) did not provoke photosynthetic downregulation. Instead, enhancements in [CO2 ] strengthened photosynthetic photochemical efficiency, energy use and biochemical functioning at all temperatures. Our novel findings demonstrate a relevant heat resilience of coffee species and that elevated [CO2 ] remarkably mitigated the impact of heat on coffee physiology, therefore playing a key role in this crop sustainability under future climate change scenarios.
Collapse
Affiliation(s)
- Weverton P Rodrigues
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Setor Fisiologia Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Univ. Estadual Norte Fluminense (UENF), Darcy Ribeiro, RJ, Brazil
| | - Madlles Q Martins
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), Rod. BR 101 Norte, Km. 60, Bairro Litorâneo, CEP: 29932-540, São Mateus, ES, Brazil
| | - Ana S Fortunato
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
| | - Ana P Rodrigues
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
| | - José N Semedo
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
| | - Maria C Simões-Costa
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
| | - Isabel P Pais
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
| | - António E Leitão
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
- GeoBioTec, Fac. Ciências Tecnologia, Univ. Nova Lisboa, Caparica, 2829-516, Portugal
| | - Filipe Colwell
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
| | - Luis Goulao
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
| | - Cristina Máguas
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculty Sciences, Univ. Lisbon, Campo Grande, Lisboa, 1749-016, Portugal
| | - Rodrigo Maia
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculty Sciences, Univ. Lisbon, Campo Grande, Lisboa, 1749-016, Portugal
| | - Fábio L Partelli
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), Rod. BR 101 Norte, Km. 60, Bairro Litorâneo, CEP: 29932-540, São Mateus, ES, Brazil
| | - Eliemar Campostrini
- Setor Fisiologia Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Univ. Estadual Norte Fluminense (UENF), Darcy Ribeiro, RJ, Brazil
| | - Paula Scotti-Campos
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
| | - Ana I Ribeiro-Barros
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
- GeoBioTec, Fac. Ciências Tecnologia, Univ. Nova Lisboa, Caparica, 2829-516, Portugal
| | - Fernando C Lidon
- GeoBioTec, Fac. Ciências Tecnologia, Univ. Nova Lisboa, Caparica, 2829-516, Portugal
| | - Fábio M DaMatta
- Dept. Biologia Vegetal, Univ. Federal Viçosa (UFV), Viçosa, 36570-000, MG, Brazil
| | - José C Ramalho
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
- GeoBioTec, Fac. Ciências Tecnologia, Univ. Nova Lisboa, Caparica, 2829-516, Portugal
| |
Collapse
|
38
|
Gong XY, Schäufele R, Feneis W, Schnyder H. (13) CO2 /(12) CO2 exchange fluxes in a clamp-on leaf cuvette: disentangling artefacts and flux components. PLANT, CELL & ENVIRONMENT 2015; 38:2417-2432. [PMID: 25944155 DOI: 10.1111/pce.12564] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/19/2015] [Accepted: 04/19/2015] [Indexed: 06/04/2023]
Abstract
Leaks and isotopic disequilibria represent potential errors and artefacts during combined measurements of gas exchange and carbon isotope discrimination (Δ). This paper presents new protocols to quantify, minimize, and correct such phenomena. We performed experiments with gradients of CO2 concentration (up to ±250 μmol mol(-1) ) and δ(13) CCO2 (34‰), between a clamp-on leaf cuvette (LI-6400) and surrounding air, to assess (1) leak coefficients for CO2 , (12) CO2 , and (13) CO2 with the empty cuvette and with intact leaves of Holcus lanatus (C3 ) or Sorghum bicolor (C4 ) in the cuvette; and (2) isotopic disequilibria between net photosynthesis and dark respiration in light. Leak coefficients were virtually identical for (12) CO2 and (13) CO2 , but ∼8 times higher with leaves in the cuvette. Leaks generated errors on Δ up to 6‰ for H. lanatus and 2‰ for S. bicolor in full light; isotopic disequilibria produced similar variation of Δ. Leak errors in Δ in darkness were much larger due to small biological : leak flux ratios. Leak artefacts were fully corrected with leak coefficients determined on the same leaves as Δ measurements. Analysis of isotopic disequilibria enabled partitioning of net photosynthesis and dark respiration, and indicated inhibitions of dark respiration in full light (H. lanatus: 14%, S. bicolor: 58%).
Collapse
Affiliation(s)
- Xiao Ying Gong
- Lehrstuhl für Grünlandlehre, Technische Universität München, 85354, Freising, Germany
| | - Rudi Schäufele
- Lehrstuhl für Grünlandlehre, Technische Universität München, 85354, Freising, Germany
| | - Wolfgang Feneis
- Lehrstuhl für Grünlandlehre, Technische Universität München, 85354, Freising, Germany
| | - Hans Schnyder
- Lehrstuhl für Grünlandlehre, Technische Universität München, 85354, Freising, Germany
| |
Collapse
|
39
|
Teskey R, Wertin T, Bauweraerts I, Ameye M, McGuire MA, Steppe K. Responses of tree species to heat waves and extreme heat events. PLANT, CELL & ENVIRONMENT 2015; 38:1699-712. [PMID: 25065257 DOI: 10.1111/pce.12417] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 05/05/2023]
Abstract
The number and intensity of heat waves has increased, and this trend is likely to continue throughout the 21st century. Often, heat waves are accompanied by drought conditions. It is projected that the global land area experiencing heat waves will double by 2020, and quadruple by 2040. Extreme heat events can impact a wide variety of tree functions. At the leaf level, photosynthesis is reduced, photooxidative stress increases, leaves abscise and the growth rate of remaining leaves decreases. In some species, stomatal conductance increases at high temperatures, which may be a mechanism for leaf cooling. At the whole plant level, heat stress can decrease growth and shift biomass allocation. When drought stress accompanies heat waves, the negative effects of heat stress are exacerbated and can lead to tree mortality. However, some species exhibit remarkable tolerance to thermal stress. Responses include changes that minimize stress on photosynthesis and reductions in dark respiration. Although there have been few studies to date, there is evidence of within-species genetic variation in thermal tolerance, which could be important to exploit in production forestry systems. Understanding the mechanisms of differing tree responses to extreme temperature events may be critically important for understanding how tree species will be affected by climate change.
Collapse
Affiliation(s)
- Robert Teskey
- Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
| | - Timothy Wertin
- Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA
| | - Ingvar Bauweraerts
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, B-9000, Belgium
| | - Maarten Ameye
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, B-9000, Belgium
| | - Mary Anne McGuire
- Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
| | - Kathy Steppe
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, B-9000, Belgium
| |
Collapse
|
40
|
Way DA, Holly C, Bruhn D, Ball MC, Atkin OK. Diurnal and seasonal variation in light and dark respiration in field-grown Eucalyptus pauciflora. TREE PHYSIOLOGY 2015; 35:840-849. [PMID: 26253839 DOI: 10.1093/treephys/tpv065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/10/2015] [Indexed: 06/04/2023]
Abstract
Respiration from vegetation is a substantial part of the global carbon cycle and the responses of plant respiration to daily and seasonal fluctuations in temperature and light must be incorporated in models of terrestrial respiration to accurately predict these CO2 fluxes. We investigated how leaf respiration (R) responded to changes in leaf temperature (T(leaf)) and irradiance in field-grown saplings of an evergreen tree (Eucalyptus pauciflora Sieb. ex Spreng). Seasonal shifts in the thermal sensitivity of leaf R in the dark (R(dark)) and in the light (R(light)) were assessed by allowing T(leaf) to vary over the day in field-grown leaves over a year. The Q10 of R (i.e., the relative increase in R for a 10 °C increase in T(leaf)) was similar for R(light) and R(dark) and had a value of ∼ 2.5; there was little seasonal change in the Q10 of either R(light) or R(dark), indicating that we may be able to use similar functions to model short-term temperature responses of R in the dark and in the light. Overall, rates of R(light) were lower than those of R(dark), and the ratio of R(light)/R(dark) tended to increase with rising T(leaf), such that light suppression of R was reduced at high T(leaf) values, in contrast to earlier work with this species. Our results suggest we cannot assume that R(light)/R(dark) decreases with increasing T(leaf) on daily timescales, and highlights the need for a better mechanistic understanding of what regulates light suppression of R in leaves.
Collapse
Affiliation(s)
- Danielle A Way
- Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7 Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Chris Holly
- Division of Plant Sciences, Research School of Biology, Building 46, The Australian National University, Canberra, ACT 2601, Australia
| | - Dan Bruhn
- Department of Environment, Earth and Ecosystems, The Open University, Milton Keynes MK7 6AA, UK
| | - Marilyn C Ball
- Division of Plant Sciences, Research School of Biology, Building 46, The Australian National University, Canberra, ACT 2601, Australia
| | - Owen K Atkin
- Division of Plant Sciences, Research School of Biology, Building 46, The Australian National University, Canberra, ACT 2601, Australia ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
41
|
Way DA, Oren R, Kroner Y. The space-time continuum: the effects of elevated CO2 and temperature on trees and the importance of scaling. PLANT, CELL & ENVIRONMENT 2015; 38:991-1007. [PMID: 25737035 DOI: 10.1111/pce.12527] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/15/2015] [Accepted: 02/17/2015] [Indexed: 05/27/2023]
Abstract
To predict how forests will respond to rising temperatures and atmospheric CO₂ concentrations, we need to understand how trees respond to both of these environmental factors. In this review, we discuss the importance of scaling, moving from leaf-level responses to those of the canopy, and from short-term to long-term responses of vegetation to climate change. While our knowledge of leaf-level, instantaneous responses of photosynthesis, respiration, stomatal conductance, transpiration and water-use efficiency to elevated CO₂ and temperature is quite good, our ability to scale these responses up to larger spatial and temporal scales is less developed. We highlight which physiological processes are least understood at various levels of study, and discuss how ignoring differences in the spatial or temporal scale of a physiological process impedes our ability to predict how forest carbon and water fluxes forests will be altered in the future. We also synthesize data from the literature to show that light respiration follows a generalized temperature response across studies, and that the light compensation point of photosynthesis is reduced by elevated growth CO₂. Lastly, we emphasize the need to move beyond single factorial experiments whenever possible, and to combine both CO₂ and temperature treatments in studies of tree performance.
Collapse
Affiliation(s)
- Danielle A Way
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada; Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | | | | |
Collapse
|
42
|
Estimating daytime ecosystem respiration to improve estimates of gross primary production of a temperate forest. PLoS One 2014; 9:e113512. [PMID: 25419844 PMCID: PMC4242619 DOI: 10.1371/journal.pone.0113512] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 10/29/2014] [Indexed: 11/19/2022] Open
Abstract
Leaf respiration is an important component of carbon exchange in terrestrial ecosystems, and estimates of leaf respiration directly affect the accuracy of ecosystem carbon budgets. Leaf respiration is inhibited by light; therefore, gross primary production (GPP) will be overestimated if the reduction in leaf respiration by light is ignored. However, few studies have quantified GPP overestimation with respect to the degree of light inhibition in forest ecosystems. To determine the effect of light inhibition of leaf respiration on GPP estimation, we assessed the variation in leaf respiration of seedlings of the dominant tree species in an old mixed temperate forest with different photosynthetically active radiation levels using the Laisk method. Canopy respiration was estimated by combining the effect of light inhibition on leaf respiration of these species with within-canopy radiation. Leaf respiration decreased exponentially with an increase in light intensity. Canopy respiration and GPP were overestimated by approximately 20.4% and 4.6%, respectively, when leaf respiration reduction in light was ignored compared with the values obtained when light inhibition of leaf respiration was considered. This study indicates that accurate estimates of daytime ecosystem respiration are needed for the accurate evaluation of carbon budgets in temperate forests. In addition, this study provides a valuable approach to accurately estimate GPP by considering leaf respiration reduction in light in other ecosystems.
Collapse
|
43
|
Weerasinghe LK, Creek D, Crous KY, Xiang S, Liddell MJ, Turnbull MH, Atkin OK. Canopy position affects the relationships between leaf respiration and associated traits in a tropical rainforest in Far North Queensland. TREE PHYSIOLOGY 2014; 34:564-584. [PMID: 24722001 DOI: 10.1093/treephys/tpu016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We explored the impact of canopy position on leaf respiration (R) and associated traits in tree and shrub species growing in a lowland tropical rainforest in Far North Queensland, Australia. The range of traits quantified included: leaf R in darkness (RD) and in the light (RL; estimated using the Kok method); the temperature (T)-sensitivity of RD; light-saturated photosynthesis (Asat); leaf dry mass per unit area (LMA); and concentrations of leaf nitrogen (N), phosphorus (P), soluble sugars and starch. We found that LMA, and area-based N, P, sugars and starch concentrations were all higher in sun-exposed/upper canopy leaves, compared with their shaded/lower canopy and deep-shade/understory counterparts; similarly, area-based rates of RD, RL and Asat (at 28 °C) were all higher in the upper canopy leaves, indicating higher metabolic capacity in the upper canopy. The extent to which light inhibited R did not differ significantly between upper and lower canopy leaves, with the overall average inhibition being 32% across both canopy levels. Log-log RD-Asat relationships differed between upper and lower canopy leaves, with upper canopy leaves exhibiting higher rates of RD for a given Asat (both on an area and mass basis), as well as higher mass-based rates of RD for a given [N] and [P]. Over the 25-45 °C range, the T-sensitivity of RD was similar in upper and lower canopy leaves, with both canopy positions exhibiting Q10 values near 2.0 (i.e., doubling for every 10 °C rise in T) and Tmax values near 60 °C (i.e., T where RD reached maximal values). Thus, while rates of RD at 28 °C decreased with increasing depth in the canopy, the T-dependence of RD remained constant; these findings have important implications for vegetation-climate models that seek to predict carbon fluxes between tropical lowland rainforests and the atmosphere.
Collapse
Affiliation(s)
- Lasantha K Weerasinghe
- Division of Plant Sciences, Research School of Biology, Building 46, The Australian National University, Canberra, ACT 0200, Australia Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Danielle Creek
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked bag 1797, Penrith, NSW 2751, Australia
| | - Kristine Y Crous
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked bag 1797, Penrith, NSW 2751, Australia
| | - Shuang Xiang
- Division of Plant Sciences, Research School of Biology, Building 46, The Australian National University, Canberra, ACT 0200, Australia Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, Renmin South Road, Chengdu, Sichuan 610041, China
| | - Michael J Liddell
- Department of Chemistry & Centre for Tropical Environmental and Sustainable Sciences, James Cook University, Cairns 4870, Australia
| | - Matthew H Turnbull
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Owen K Atkin
- Division of Plant Sciences, Research School of Biology, Building 46, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
44
|
McLaughlin BC, Xu CY, Rastetter EB, Griffin KL. Predicting ecosystem carbon balance in a warming Arctic: the importance of long-term thermal acclimation potential and inhibitory effects of light on respiration. GLOBAL CHANGE BIOLOGY 2014; 20:1901-1912. [PMID: 24677488 DOI: 10.1111/gcb.12549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/30/2013] [Accepted: 12/17/2013] [Indexed: 06/03/2023]
Abstract
The carbon balance of Arctic ecosystems is particularly sensitive to global environmental change. Leaf respiration (R), a temperature-dependent key process in determining the carbon balance, is not well-understood in Arctic plants. The potential for plants to acclimate to warmer conditions could strongly impact future global carbon balance. Two key unanswered questions are (1) whether short-term temperature responses can predict long-term respiratory responses to growth in elevated temperatures and (2) to what extent the constant daylight conditions of the Arctic growing season inhibit leaf respiration. In two dominant Arctic species Eriophorum vaginatum (tussock grass) and Betula nana (woody shrub), we assessed the extent of respiratory inhibition in the light (RL/RD), respiratory response to short-term temperature change, and respiratory acclimation to long-term warming treatments. We found that R of both species is strongly inhibited by light (averaging 35% across all measurement temperatures). In E. vaginatum both RL and RD acclimated to the long-term warming treatment, reducing the magnitude of respiratory response relative to the short-term response to temperature increase. In B. nana, both RL and RD responded to short-term temperature increase but showed no acclimation to the long-term warming. The ability to predict plant respiratory response to global warming with short-term temperature responses will depend on species-specific acclimation potential and the differential response of RL and RD to temperature. With projected woody shrub encroachment in Arctic tundra and continued warming, changing species dominance between these two functional groups, may impact ecosystem respiratory response and carbon balance.
Collapse
Affiliation(s)
- Blair C McLaughlin
- Department of Integrative Biology, University of California at Berkeley, 3060 Valley Life Sciences Building, Berkeley, CA, 94720, USA
| | | | | | | |
Collapse
|
45
|
Heskel MA, Bitterman D, Atkin OK, Turnbull MH, Griffin KL. Seasonality of foliar respiration in two dominant plant species from the Arctic tundra: response to long-term warming and short-term temperature variability. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:287-300. [PMID: 32480989 DOI: 10.1071/fp13137] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 09/22/2013] [Indexed: 06/11/2023]
Abstract
Direct measurements of foliar carbon exchange through the growing season in Arctic species are limited, despite the need for accurate estimates of photosynthesis and respiration to characterise carbon cycling in the tundra. We examined seasonal variation in foliar photosynthesis and respiration (measured at 20°C) in two field-grown tundra species, Betula nana L. and Eriophorum vaginatum L., under ambient and long-term warming (LTW) conditions (+5°C), and the relationship of these fluxes to intraseasonal temperature variability. Species and seasonal timing drove most of the variation in photosynthetic parameters (e.g. gross photosynthesis (Agross)), respiration in the dark (Rdark) and light (Rlight), and foliar nitrogen concentration. LTW did not consistently influence fluxes through the season but reduced respiration in both species. Alongside the flatter respiratory response to measurement temperature in LTW leaves, this provided evidence of thermal acclimation. The inhibition of respiration by light increased by ~40%, with Rlight : Rdark values of ~0.8 at leaf out decreasing to ~0.4 after 8 weeks. Though LTW had no effect on inhibition, the cross-taxa seasonal decline in Rlight : Rdark greatly reduced respiratory carbon loss. Values of Rlight : Agross decreased from ~0.3 in both species to ~0.15 (B. nana) and ~0.05 (E. vaginatum), driven by decreases in respiratory rates, as photosynthetic rates remained stable. The influence of short-term temperature variability did not exhibit predictive trends for leaf gas exchange at a common temperature. These results underscore the influence of temperature on foliar carbon cycling, and the importance of respiration in controlling seasonal carbon exchange.
Collapse
Affiliation(s)
- Mary A Heskel
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Danielle Bitterman
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Owen K Atkin
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Matthew H Turnbull
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Kevin L Griffin
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027, USA
| |
Collapse
|
46
|
Ramalho JC, Rodrigues AP, Semedo JN, Pais IP, Martins LD, Simões-Costa MC, Leitão AE, Fortunato AS, Batista-Santos P, Palos IM, Tomaz MA, Scotti-Campos P, Lidon FC, DaMatta FM. Sustained photosynthetic performance of Coffea spp. under long-term enhanced [CO2]. PLoS One 2013; 8:e82712. [PMID: 24324823 PMCID: PMC3855777 DOI: 10.1371/journal.pone.0082712] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/28/2013] [Indexed: 11/18/2022] Open
Abstract
Coffee is one of the world's most traded agricultural products. Modeling studies have predicted that climate change will have a strong impact on the suitability of current cultivation areas, but these studies have not anticipated possible mitigating effects of the elevated atmospheric [CO2] because no information exists for the coffee plant. Potted plants from two genotypes of Coffea arabica and one of C. canephora were grown under controlled conditions of irradiance (800 μmol m(-2) s(-1)), RH (75%) and 380 or 700 μL CO2 L(-1) for 1 year, without water, nutrient or root development restrictions. In all genotypes, the high [CO2] treatment promoted opposite trends for stomatal density and size, which decreased and increased, respectively. Regardless of the genotype or the growth [CO2], the net rate of CO2 assimilation increased (34-49%) when measured at 700 than at 380 μL CO2 L(-1). This result, together with the almost unchanged stomatal conductance, led to an instantaneous water use efficiency increase. The results also showed a reinforcement of photosynthetic (and respiratory) components, namely thylakoid electron transport and the activities of RuBisCo, ribulose 5-phosphate kinase, malate dehydrogenase and pyruvate kinase, what may have contributed to the enhancements in the maximum rates of electron transport, carboxylation and photosynthetic capacity under elevated [CO2], although these responses were genotype dependent. The photosystem II efficiency, energy driven to photochemical events, non-structural carbohydrates, photosynthetic pigment and membrane permeability did not respond to [CO2] supply. Some alterations in total fatty acid content and the unsaturation level of the chloroplast membranes were noted but, apparently, did not affect photosynthetic functioning. Despite some differences among the genotypes, no clear species-dependent responses to elevated [CO2] were observed. Overall, as no apparent sign of photosynthetic down-regulation was found, our data suggest that Coffea spp. plants may successfully cope with high [CO2] under the present experimental conditions.
Collapse
Affiliation(s)
- José C. Ramalho
- Grupo Interações Planta-Ambiente - Plant Stress, Centro de Ambiente, Agricultura e Desenvolvimento - BioTrop, Instituto de Investigação Científica Tropical, I.P., Oeiras, Portugal
| | - Ana P. Rodrigues
- Centro de Estudos Florestais, Instituto Superior Agronomia, Universidade Técnica de Lisboa, Lisboa, Portugal
| | - José N. Semedo
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
| | - Isabel P. Pais
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
| | - Lima D. Martins
- Grupo Interações Planta-Ambiente - Plant Stress, Centro de Ambiente, Agricultura e Desenvolvimento - BioTrop, Instituto de Investigação Científica Tropical, I.P., Oeiras, Portugal
- Departamento Produção Vegetal, Centro de Ciências Agrárias, Universidade Federal do Espírito Santo, Alegre, Espirito Santo, Brazil
| | - Maria C. Simões-Costa
- Grupo Interações Planta-Ambiente - Plant Stress, Centro de Ambiente, Agricultura e Desenvolvimento - BioTrop, Instituto de Investigação Científica Tropical, I.P., Oeiras, Portugal
| | - António E. Leitão
- Grupo Interações Planta-Ambiente - Plant Stress, Centro de Ambiente, Agricultura e Desenvolvimento - BioTrop, Instituto de Investigação Científica Tropical, I.P., Oeiras, Portugal
| | - Ana S. Fortunato
- Grupo Interações Planta-Ambiente - Plant Stress, Centro de Ambiente, Agricultura e Desenvolvimento - BioTrop, Instituto de Investigação Científica Tropical, I.P., Oeiras, Portugal
| | - Paula Batista-Santos
- Grupo Interações Planta-Ambiente - Plant Stress, Centro de Ambiente, Agricultura e Desenvolvimento - BioTrop, Instituto de Investigação Científica Tropical, I.P., Oeiras, Portugal
| | - Isabel M. Palos
- Grupo Interações Planta-Ambiente - Plant Stress, Centro de Ambiente, Agricultura e Desenvolvimento - BioTrop, Instituto de Investigação Científica Tropical, I.P., Oeiras, Portugal
| | - Marcelo A. Tomaz
- Departamento Produção Vegetal, Centro de Ciências Agrárias, Universidade Federal do Espírito Santo, Alegre, Espirito Santo, Brazil
| | - Paula Scotti-Campos
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
| | - Fernando C. Lidon
- Departamento Ciências da Terra, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Fábio M. DaMatta
- Departamento Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
47
|
Heskel MA, Atkin OK, Turnbull MH, Griffin KL. Bringing the Kok effect to light: A review on the integration of daytime respiration and net ecosystem exchange. Ecosphere 2013. [DOI: 10.1890/es13-00120.1] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
Ye ZP, Suggett DJ, Robakowski P, Kang HJ. A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of photosystem II in C3 and C4 species. THE NEW PHYTOLOGIST 2013; 199:110-120. [PMID: 23521402 DOI: 10.1111/nph.12242] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/21/2013] [Indexed: 06/01/2023]
Abstract
A new mechanistic model of the photosynthesis-light response is developed based on photosynthetic electron transport via photosystem II (PSII) to specifically describe light-harvesting characteristics and associated biophysical parameters of photosynthetic pigment molecules. This model parameterizes 'core' characteristics not only of the light response but also of difficult to measure physical parameters of photosynthetic pigment molecules in plants. Application of the model to two C3 and two C4 species grown under the same conditions demonstrated that the model reproduced extremely well (r(2) > 0.992) the light response trends of both electron transport and CO2 uptake. In all cases, the effective absorption cross-section of photosynthetic pigment molecules decreased with increasing light intensity, demonstrating novel operation of a key mechanism for plants to avoid high light damage. In parameterizing these previously difficult to measure characteristics of light harvesting in higher plants, the model provides a new means to understand the mechanistic processes underpinning variability of CO2 uptake, for example, photosynthetic down-regulation or reversible photoinhibition induced by high light and photoprotection. However, an important next step is validating this parameterization, possibly through application to less structurally complex organisms such as single-celled algae.
Collapse
Affiliation(s)
- Zi-Piao Ye
- School of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - David J Suggett
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Piotr Robakowski
- Department of Forestry, Poznan University of Life Sciences, Wojska Polskiego 71E St., 60-625, Poznan, Poland
| | - Hua-Jing Kang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Landscape Architecture, Wenzhou Vocational & Technical College, Wenzhou, 325006, Zhejiang, China
| |
Collapse
|
49
|
Griffin KL, Turnbull MH. Light saturated RuBP oxygenation by Rubisco is a robust predictor of light inhibition of respiration in Triticum aestivum L. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:769-775. [PMID: 23451982 DOI: 10.1111/j.1438-8677.2012.00703.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/17/2012] [Indexed: 06/01/2023]
Abstract
Plant respiratory metabolism is complicated by the fact that the rate of non-photorespiratory mitochondrial CO2 release in the light (R light) may be lower than the rate of leaf respiration in the dark (R dark). A body of work on this topic implies a linkage between light inhibition of respiration and photorespiration, although the direction of effect and underlying mechanisms remain uncertain. In this study we used a variety of short- and long-term environmental manipulations to explicitly manipulate the rate of photorespiration (νo) and quantify the effect on the inhibition of mitochondrial respiration in the light (R light:R dark). We address the following three questions: (i) will the R light:R dark ratio increase or decrease with high CO2 or low O2 and at low temperatures; (ii) does νo correlate with R light:R dark, and if so, in what way; (iii) will suppression of respiration by light (the 'Kok effect') be seen to the same extent in Zea mays, a C4 plant, and in Triticum aestivum, a C3 plant? We found that Rlight :Rdark decreased under conditions that suppressed νo in wheat, and this resulted in a positive relationship between R light:R dark and νo. Inhibition of respiration by light in C4 maize did not respond to environmental treatment, and the fixed R light:R dark (0.46-0.72) was consistent with the wheat response, assuming a νo approaching zero. The most likely mechanism to explain this finding is that R light increases (or the inhibition of respiration by light decreases) when there is an increase in photorespiration and thus an increase in the demand for TCA cycle substrates associated with the recovery of photorespiratory cycle intermediates in the peroxisome. This work is significant because it combines a comparison of C3 and C4 metabolism with a range of environmental treatments to independently suppress νo.
Collapse
Affiliation(s)
- K L Griffin
- Department of Earth and Environmental Sciences, Columbia University, NY 10964, USA.
| | | |
Collapse
|
50
|
Thompson RM, Beardall J, Beringer J, Grace M, Sardina P. Means and extremes: building variability into community-level climate change experiments. Ecol Lett 2013; 16:799-806. [DOI: 10.1111/ele.12095] [Citation(s) in RCA: 250] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/18/2012] [Accepted: 01/24/2013] [Indexed: 01/11/2023]
Affiliation(s)
- Ross M. Thompson
- Institute for Applied Ecology; University of Canberra; Canberra ACT 2601 Australia
- Australian Centre for Biodiversity; Monash University; Clayton Vic. 3800 Australia
- School of Biological Sciences; Monash University; Clayton Vic. 3800 Australia
| | - John Beardall
- Australian Centre for Biodiversity; Monash University; Clayton Vic. 3800 Australia
- School of Biological Sciences; Monash University; Clayton Vic. 3800 Australia
| | - Jason Beringer
- Australian Centre for Biodiversity; Monash University; Clayton Vic. 3800 Australia
- School of Geography and Environmental Science; Monash University; Clayton Vic. 3800 Australia
| | - Mike Grace
- Australian Centre for Biodiversity; Monash University; Clayton Vic. 3800 Australia
- Water Studies Centre; School of Chemistry; Monash University; Clayton Vic. 3800 Australia
| | - Paula Sardina
- Australian Centre for Biodiversity; Monash University; Clayton Vic. 3800 Australia
- School of Biological Sciences; Monash University; Clayton Vic. 3800 Australia
- Consejo Nacional de Investigaciones Científicas y Técnicas; Caba C1033AAJ Argentina
| |
Collapse
|