1
|
Fedoreyeva LI. ROS as Signaling Molecules to Initiate the Process of Plant Acclimatization to Abiotic Stress. Int J Mol Sci 2024; 25:11820. [PMID: 39519373 PMCID: PMC11546855 DOI: 10.3390/ijms252111820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
During their life cycle, plants constantly respond to environmental changes. Abiotic stressors affect the photosynthetic and respiratory processes of plants. Reactive oxygen species (ROS) are produced during aerobic metabolism and play an important role as regulatory mediators in signaling processes, activating the plant's protective response to abiotic stress and restoring "oxidation-reduction homeostasis". Cells develop normally if the rates of ROS production and the ability to neutralize them are balanced. To implement oxidation-reduction signaling, this balance must be disrupted either by an increase in ROS concentration or a decrease in the activity of one or more antioxidant systems. Under abiotic stress, plants accumulate excessive amounts of ROS, and if the ROS content exceeds the threshold amount dangerous for living organisms, it can lead to damage to all major cellular components. Adaptive resistance of plants to abiotic stressors depends on a set of mechanisms of adaptation to them. The accumulation of ROS in the cell depends on the type of abiotic stress, the strength of its impact on the plant, the duration of its impact, and the recovery period. The aim of this review is to provide a general understanding of the processes occurring during ROS homeostasis in plants, oxidation-reduction processes in cellular compartments in response to abiotic stress, and the participation of ROS in signaling processes activating adaptation processes to abiotic stress.
Collapse
|
2
|
Zhu L, Liao Y, Zhang T, Zeng Z, Wang J, Duan L, Chen X, Lin K, Liang X, Han Z, Huang Y, Wu W, Hu H, Xu ZF, Ni J. Reactive oxygen species act as the key signaling molecules mediating light-induced anthocyanin biosynthesis in Eucalyptus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108715. [PMID: 38761541 DOI: 10.1016/j.plaphy.2024.108715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
Light plays a pivotal role in regulating anthocyanin biosynthesis in plants, and the early light-responsive signals that initiate anthocyanin biosynthesis remain to be elucidated. In this study, we showed that the anthocyanin biosynthesis in Eucalyptus is hypersensitive to increased light intensity. The combined transcriptomic and metabolomic analyses were conducted on Eucalyptus leaves after moderate (ML; 100 μmol m-2 s-1) and high (HL; 300 μmol m-2 s-1) light intensity treatments. The results identified 1940, 1096, 1173, and 2756 differentially expressed genes at 6, 12, 24, and 36 h after HL treatment, respectively. The metabolomic results revealed the primary anthocyanin types, and other differentially accumulated flavonoids and phenylpropane intermediates that were produced in response to HL, which well aligned with the transcriptome results. Moreover, biochemical analysis showed that HL inhibited peroxidase activity and increased the ROS level in Eucalyptus leaves. ROS depletion through co-application of the antioxidants rutin, uric acid, and melatonin significantly reduced, and even abolished, anthocyanin biosynthesis induced by HL treatment. Additionally, exogenous application of hydrogen peroxide efficiently induced anthocyanin biosynthesis within 24 h, even under ML conditions, suggesting that ROS played a major role in activating anthocyanin biosynthesis. A HL-responsive MYB transcription factor EgrMYB113 was identified to play an important role in regulating anthocyanin biosynthesis by targeting multiple anthocyanin biosynthesis genes. Additionally, the results demonstrated that gibberellic acid and sugar signaling contributed to HL-induced anthocyanin biosynthesis. Conclusively, these results suggested that HL triggers multiple signaling pathways to induce anthocyanin biosynthesis, with ROS acting as indispensable mediators in Eucalyptus.
Collapse
Affiliation(s)
- Linhui Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Yuwu Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Tingting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Zhiyu Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Jianzhong Wang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Dongmen Forest Farm, Chongzuo, 532108, China
| | - Lanjuan Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Xin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Kai Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Xiuqing Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Zewei Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Yunkai Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Wenfei Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Hao Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Zeng-Fu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
| | - Jun Ni
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
3
|
Liang K, Zhao C, Wang J, Zheng X, Yu F, Qiu F. Genetic variations in ZmEREB179 are associated with waterlogging tolerance in maize. J Genet Genomics 2024:S1673-8527(24)00075-4. [PMID: 38636730 DOI: 10.1016/j.jgg.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Maize (Zea mays) is highly susceptible to waterlogging stress, which reduces both the yield and quality of this important crop. However, the molecular mechanism governing waterlogging tolerance is poorly understood. In this study, we identify a waterlogging- and ethylene-inducible gene ZmEREB179 that encodes an ethylene response factor (ERF) localized in the nucleus. Overexpression of ZmEREB179 in maize increases the sensitivity to waterlogging stress. Conversely, the zmereb179 knockout mutants are more tolerant to waterlogging, suggesting that ZmEREB179 functions as a negative regulator of waterlogging tolerance. A transcriptome analysis of the ZmEREB179-overexpressing plants reveals that the ERF-type transcription factor modulates the expression of various stress-related genes, including ZmEREB180. We find that ZmEREB179 directly targets the ZmEREB180 promoter and represses its expression. Notably, the analysis of a panel of 220 maize inbred lines reveals that genetic variations in the ZmEREB179 promoter (Hap2) are highly associated with waterlogging resistance. The functional association of Hap2 with waterlogging resistance is tightly co-segregated in two F2 segregating populations, highlighting its potential applications in breeding programs. Our findings shed light on the involvement of the transcriptional cascade of ERF genes in regulating plant-waterlogging tolerance.
Collapse
Affiliation(s)
- Kun Liang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chenxu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xueqing Zheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Feng Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, Hubei 430062, China.
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
4
|
Bernacki MJ, Rusaczonek A, Gołębiewska K, Majewska-Fala AB, Czarnocka W, Karpiński SM. METACASPASE8 (MC8) Is a Crucial Protein in the LSD1-Dependent Cell Death Pathway in Response to Ultraviolet Stress. Int J Mol Sci 2024; 25:3195. [PMID: 38542169 PMCID: PMC10970217 DOI: 10.3390/ijms25063195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
LESION-SIMULATING DISEASE1 (LSD1) is one of the well-known cell death regulatory proteins in Arabidopsis thaliana. The lsd1 mutant exhibits runaway cell death (RCD) in response to various biotic and abiotic stresses. The phenotype of the lsd1 mutant strongly depends on two other proteins, ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and PHYTOALEXIN-DEFICIENT 4 (PAD4) as well as on the synthesis/metabolism/signaling of salicylic acid (SA) and reactive oxygen species (ROS). However, the most interesting aspect of the lsd1 mutant is its conditional-dependent RCD phenotype, and thus, the defined role and function of LSD1 in the suppression of EDS1 and PAD4 in controlled laboratory conditions is different in comparison to a multivariable field environment. Analysis of the lsd1 mutant transcriptome in ambient laboratory and field conditions indicated that there were some candidate genes and proteins that might be involved in the regulation of the lsd1 conditional-dependent RCD phenotype. One of them is METACASPASE 8 (AT1G16420). This type II metacaspase was described as a cell death-positive regulator induced by UV-C irradiation and ROS accumulation. In the double mc8/lsd1 mutant, we discovered reversion of the lsd1 RCD phenotype in response to UV radiation applied in controlled laboratory conditions. This cell death deregulation observed in the lsd1 mutant was reverted like in double mutants of lsd1/eds1 and lsd1/pad4. To summarize, in this work, we demonstrated that MC8 is positively involved in EDS1 and PAD4 conditional-dependent regulation of cell death when LSD1 function is suppressed in Arabidopsis thaliana. Thus, we identified a new protein compound of the conditional LSD1-EDS1-PAD4 regulatory hub. We proposed a working model of MC8 involvement in the regulation of cell death and we postulated that MC8 is a crucial protein in this regulatory pathway.
Collapse
Affiliation(s)
- Maciej Jerzy Bernacki
- Institute of Technology and Life Sciences—National Research Institute, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland;
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (K.G.); (A.B.M.-F.)
| | - Anna Rusaczonek
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (A.R.); (W.C.)
| | - Kinga Gołębiewska
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (K.G.); (A.B.M.-F.)
| | - Agata Barbara Majewska-Fala
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (K.G.); (A.B.M.-F.)
| | - Weronika Czarnocka
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (A.R.); (W.C.)
| | - Stanisław Mariusz Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (K.G.); (A.B.M.-F.)
| |
Collapse
|
5
|
Sevilla F, Martí MC, De Brasi-Velasco S, Jiménez A. Redox regulation, thioredoxins, and glutaredoxins in retrograde signalling and gene transcription. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5955-5969. [PMID: 37453076 PMCID: PMC10575703 DOI: 10.1093/jxb/erad270] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Integration of reactive oxygen species (ROS)-mediated signal transduction pathways via redox sensors and the thiol-dependent signalling network is of increasing interest in cell biology for their implications in plant growth and productivity. Redox regulation is an important point of control in protein structure, interactions, cellular location, and function, with thioredoxins (TRXs) and glutaredoxins (GRXs) being key players in the maintenance of cellular redox homeostasis. The crosstalk between second messengers, ROS, thiol redox signalling, and redox homeostasis-related genes controls almost every aspect of plant development and stress response. We review the emerging roles of TRXs and GRXs in redox-regulated processes interacting with other cell signalling systems such as organellar retrograde communication and gene expression, especially in plants during their development and under stressful environments. This approach will cast light on the specific role of these proteins as redox signalling components, and their importance in different developmental processes during abiotic stress.
Collapse
Affiliation(s)
- Francisca Sevilla
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | - Maria Carmen Martí
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | - Sabrina De Brasi-Velasco
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | - Ana Jiménez
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| |
Collapse
|
6
|
Sawatdee S, Jarunglumlert T, Pavasant P, Sakihama Y, Flood AE, Prommuak C. Effect of mixed light emitting diode spectrum on antioxidants content and antioxidant activity of red lettuce grown in a closed soilless system. BMC PLANT BIOLOGY 2023; 23:351. [PMID: 37415111 PMCID: PMC10324264 DOI: 10.1186/s12870-023-04364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Light spectra have been demonstrated to result in different levels of comfort or stress, which affect plant growth and the availability of health-promoting compounds in ways that sometimes contradict one another. To determine the optimal light conditions, it is necessary to weigh the vegetable's mass against the amount of nutrients it contains, as vegetables tend to grow poorly in environments where nutrient synthesis is optimal. This study investigates the effects of varying light conditions on the growth of red lettuce and its occurring nutrients in terms of productivities, which were determined by multiplying the total weight of the harvested vegetables by their nutrient content, particularly phenolics. Three different light-emitting diode (LED) spectral mixes, including blue, green, and red, which were all supplemented by white, denoted as BW, GW, and RW, respectively, as well as the standard white as the control, were equipped in grow tents with soilless cultivation systems for such purposes. RESULTS Results demonstrated that the biomass and fiber content did not differ substantially across treatments. This could be due to the use of a modest amount of broad-spectrum white LEDs, which could help retain the lettuce's core qualities. However, the concentrations of total phenolics and antioxidant capacity in lettuce grown with the BW treatment were the highest (1.3 and 1.4-fold higher than those obtained from the control, respectively), with chlorogenic acid accumulation (8.4 ± 1.5 mg g- 1 DW) being particularly notable. Meanwhile, the study observed a high glutathione reductase (GR) activity in the plant achieved from the RW treatment, which in this study was deemed the poorest treatment in terms of phenolics accumulation. CONCLUSION In this study, the BW treatment provided the most efficient mixed light spectrum to stimulate phenolics productivity in red lettuce without a significant detrimental effect on other key properties.
Collapse
Affiliation(s)
- Sopanat Sawatdee
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wang Chan, Rayong, 21210, Thailand
| | - Teeraya Jarunglumlert
- Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok (Rayong Campus), Ban Khai, Rayong, 21180, Thailand
| | | | - Yasuko Sakihama
- Graduate School/Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Adrian E Flood
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wang Chan, Rayong, 21210, Thailand.
| | - Chattip Prommuak
- Energy Research Institute, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Wang YY, Head DJ, Hauser BA. During Water Stress, Fertility Modulated by ROS Scavengers Abundant in Arabidopsis Pistils. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112182. [PMID: 37299161 DOI: 10.3390/plants12112182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Hours after watering plants with 75 mM NaCl, the water potential of reproductive structures precipitously decreases. In flowers with mature gametes, this change in water potential did not alter the rate of fertilization but caused 37% of the fertilized ovules to abort. We hypothesize that the accumulation of reactive oxygen species (ROS) in ovules is an early physiological manifestation associated with seed failure. In this study, we characterize ROS scavengers that were differentially expressed in stressed ovules to determine whether any of these genes regulate ROS accumulation and/or associate with seed failure. Mutants in an iron-dependent superoxide dismutase (FSD2), ascorbate peroxidase (APX4), and three peroxidases (PER17, PER28, and PER29) were evaluated for changes in fertility. Fertility was unchanged in apx4 mutants, but the other mutants grown under normal conditions averaged a 140% increase in seed failure. In pistils, PER17 expression increases three-fold after stress, while the other genes decreased two-fold or more following stress; this change in expression accounts for differences in fertility between healthy and stressed conditions for different genotypes. In pistils, H2O2 levels rose in per mutants, but only in the triple mutant was there a significant increase, indicating that other ROS or their scavengers be involved in seed failure.
Collapse
Affiliation(s)
- Ya-Ying Wang
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Donald J Head
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Bernard A Hauser
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
8
|
Lv X, Li Y, Chen R, Rui M, Wang Y. Stomatal Responses of Two Drought-Tolerant Barley Varieties with Different ROS Regulation Strategies under Drought Conditions. Antioxidants (Basel) 2023; 12:antiox12040790. [PMID: 37107165 PMCID: PMC10135251 DOI: 10.3390/antiox12040790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Drought stress is a major obstacle to agricultural production. Stomata are central to efforts to improve photosynthesis and water use. They are targets for manipulation to improve both processes and the balance between them. An in-depth understanding of stomatal behavior and kinetics is important for improving photosynthesis and the WUE of crops. In this study, a drought stress pot experiment was performed, and a transcriptome analysis of the leaves of three contrasting, cultivated barley genotypes Lumley (Lum, drought-tolerant), Golden Promise (GP, drought-sensitive), and Tadmor (Tad, drought-tolerant), generated by high-throughput sequencing, were compared. Lum exhibited a different WUE at the leaf and whole-plant levels and had greater CO2 assimilation, with a higher gs under drought stress. Interestingly, Lum showed a slower stomatal closure in response to a light-dark transition and significant differences compared to Tad in stomatal response to the exogenous application of ABA, H2O2, and CaCl2. A transcriptome analysis revealed that 24 ROS-related genes were indeed involved in drought response regulation, and impaired ABA-induced ROS accumulation in Lum was identified using ROS and antioxidant capacity measurements. We conclude that different stomatal ROS responses affect stomatal closure in barley, demonstrating different drought regulation strategies. These results provide valuable insight into the physiological and molecular basis of stomatal behavior and drought tolerance in barley.
Collapse
Affiliation(s)
- Xiachen Lv
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yihong Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Rongjia Chen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Mengmeng Rui
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Sandalio LM, Collado-Arenal AM, Romero-Puertas MC. Deciphering peroxisomal reactive species interactome and redox signalling networks. Free Radic Biol Med 2023; 197:58-70. [PMID: 36642282 DOI: 10.1016/j.freeradbiomed.2023.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/19/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Plant peroxisomes are highly dynamic organelles with regard to metabolic pathways, number and morphology and participate in different metabolic processes and cell responses to their environment. Peroxisomes from animal and plant cells house a complex system of reactive oxygen species (ROS) production associated to different metabolic pathways which are under control of an important set of enzymatic and non enzymatic antioxidative defenses. Nitric oxide (NO) and its derivate reactive nitrogen species (RNS) are also produced in these organelles. Peroxisomes can regulate ROS and NO/RNS levels to allow their role as signalling molecules. The metabolism of other reactive species such as carbonyl reactive species (CRS) and sulfur reactive species (SRS) in peroxisomes and their relationship with ROS and NO have not been explored in depth. In this review, we define a peroxisomal reactive species interactome (PRSI), including all reactive species ROS, RNS, CRS and SRS, their interaction and effect on target molecules contributing to the dynamic redox/ROS homeostasis and plasticity of peroxisomes, enabling fine-tuned regulation of signalling networks associated with peroxisome-dependent H2O2. Particular attention will be paid to update the information available on H2O2-dependent peroxisomal retrograde signalling and to discuss a specific peroxisomal footprint.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas (CSIC), C/ Profesor Albareda 1, 18008, Granada, Spain.
| | - Aurelio M Collado-Arenal
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas (CSIC), C/ Profesor Albareda 1, 18008, Granada, Spain
| | - María C Romero-Puertas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas (CSIC), C/ Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
10
|
Kesawat MS, Satheesh N, Kherawat BS, Kumar A, Kim HU, Chung SM, Kumar M. Regulation of Reactive Oxygen Species during Salt Stress in Plants and Their Crosstalk with Other Signaling Molecules-Current Perspectives and Future Directions. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040864. [PMID: 36840211 PMCID: PMC9964777 DOI: 10.3390/plants12040864] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 05/14/2023]
Abstract
Salt stress is a severe type of environmental stress. It adversely affects agricultural production worldwide. The overproduction of reactive oxygen species (ROS) is the most frequent phenomenon during salt stress. ROS are extremely reactive and, in high amounts, noxious, leading to destructive processes and causing cellular damage. However, at lower concentrations, ROS function as secondary messengers, playing a critical role as signaling molecules, ensuring regulation of growth and adjustment to multifactorial stresses. Plants contain several enzymatic and non-enzymatic antioxidants that can detoxify ROS. The production of ROS and their scavenging are important aspects of the plant's normal response to adverse conditions. Recently, this field has attracted immense attention from plant scientists; however, ROS-induced signaling pathways during salt stress remain largely unknown. In this review, we will discuss the critical role of different antioxidants in salt stress tolerance. We also summarize the recent advances on the detrimental effects of ROS, on the antioxidant machinery scavenging ROS under salt stress, and on the crosstalk between ROS and other various signaling molecules, including nitric oxide, hydrogen sulfide, calcium, and phytohormones. Moreover, the utilization of "-omic" approaches to improve the ROS-regulating antioxidant system during the adaptation process to salt stress is also described.
Collapse
Affiliation(s)
- Mahipal Singh Kesawat
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, India
| | - Neela Satheesh
- Department of Food Nutrition and Dietetics, Faculty of Agriculture, Sri Sri University, Cuttack 754006, India
| | - Bhagwat Singh Kherawat
- Krishi Vigyan Kendra, Bikaner II, Swami Keshwanand Rajasthan Agricultural University, Bikaner 334603, India
| | - Ajay Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, India
| | - Hyun-Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Republic of Korea
| | - Sang-Min Chung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
- Correspondence:
| |
Collapse
|
11
|
Kolupaev YE, Yemets AI, Yastreb TO, Blume YB. The role of nitric oxide and hydrogen sulfide in regulation of redox homeostasis at extreme temperatures in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1128439. [PMID: 36824204 PMCID: PMC9941552 DOI: 10.3389/fpls.2023.1128439] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Nitric oxide and hydrogen sulfide, as important signaling molecules (gasotransmitters), are involved in many functions of plant organism, including adaptation to stress factors of various natures. As redox-active molecules, NO and H2S are involved in redox regulation of functional activity of many proteins. They are also involved in maintaining cell redox homeostasis due to their ability to interact directly and indirectly (functionally) with ROS, thiols, and other molecules. The review considers the involvement of nitric oxide and hydrogen sulfide in plant responses to low and high temperatures. Particular attention is paid to the role of gasotransmitters interaction with other signaling mediators (in particular, with Ca2+ ions and ROS) in the formation of adaptive responses to extreme temperatures. Pathways of stress-induced enhancement of NO and H2S synthesis in plants are considered. Mechanisms of the NO and H2S effect on the activity of some proteins of the signaling system, as well as on the state of antioxidant and osmoprotective systems during adaptation to stress temperatures, were analyzed. Possibilities of practical use of nitric oxide and hydrogen sulfide donors as inductors of plant adaptive responses are discussed.
Collapse
Affiliation(s)
- Yuriy E. Kolupaev
- Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine
| | - Alla I. Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Tetiana O. Yastreb
- Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine
| | - Yaroslav B. Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
12
|
Zirngibl ME, Araguirang GE, Kitashova A, Jahnke K, Rolka T, Kühn C, Nägele T, Richter AS. Triose phosphate export from chloroplasts and cellular sugar content regulate anthocyanin biosynthesis during high light acclimation. PLANT COMMUNICATIONS 2023; 4:100423. [PMID: 35962545 PMCID: PMC9860169 DOI: 10.1016/j.xplc.2022.100423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 05/07/2023]
Abstract
Plants have evolved multiple strategies to cope with rapid changes in the environment. During high light (HL) acclimation, the biosynthesis of photoprotective flavonoids, such as anthocyanins, is induced. However, the exact nature of the signal and downstream factors for HL induction of flavonoid biosynthesis (FB) is still under debate. Here, we show that carbon fixation in chloroplasts, subsequent export of photosynthates by triose phosphate/phosphate translocator (TPT), and rapid increase in cellular sugar content permit the transcriptional and metabolic activation of anthocyanin biosynthesis during HL acclimation. In combination with genetic and physiological analysis, targeted and whole-transcriptome gene expression studies suggest that reactive oxygen species and phytohormones play only a minor role in rapid HL induction of the anthocyanin branch of FB. In addition to transcripts of FB, sugar-responsive genes showed delayed repression or induction in tpt-2 during HL treatment, and a significant overlap with transcripts regulated by SNF1-related protein kinase 1 (SnRK1) was observed, including a central transcription factor of FB. Analysis of mutants with increased and repressed SnRK1 activity suggests that sugar-induced inactivation of SnRK1 is required for HL-mediated activation of anthocyanin biosynthesis. Our study emphasizes the central role of chloroplasts as sensors for environmental changes as well as the vital function of sugar signaling in plant acclimation.
Collapse
Affiliation(s)
- Max-Emanuel Zirngibl
- Humboldt-Universität zu Berlin, Institute of Biology, Physiology of Plant Cell Organelles, Philippstrasse 13, 10115 Berlin, Germany
| | - Galileo Estopare Araguirang
- University of Rostock, Institute for Biosciences, Physiology of Plant Metabolism, Albert-Einstein-Strasse 3, 18059 Rostock, Germany; Humboldt-Universität zu Berlin, Institute of Biology, Physiology of Plant Cell Organelles, Philippstrasse 13, 10115 Berlin, Germany
| | - Anastasia Kitashova
- Ludwig-Maximilians-Universität München, Faculty of Biology, Plant Evolutionary Cell Biology, 82152 Planegg-Martinsried, Germany
| | - Kathrin Jahnke
- University of Rostock, Institute for Biosciences, Physiology of Plant Metabolism, Albert-Einstein-Strasse 3, 18059 Rostock, Germany
| | - Tobias Rolka
- Humboldt-Universität zu Berlin, Institute of Biology, Physiology of Plant Cell Organelles, Philippstrasse 13, 10115 Berlin, Germany
| | - Christine Kühn
- University of Rostock, Institute for Biosciences, Physiology of Plant Metabolism, Albert-Einstein-Strasse 3, 18059 Rostock, Germany
| | - Thomas Nägele
- Ludwig-Maximilians-Universität München, Faculty of Biology, Plant Evolutionary Cell Biology, 82152 Planegg-Martinsried, Germany
| | - Andreas S Richter
- University of Rostock, Institute for Biosciences, Physiology of Plant Metabolism, Albert-Einstein-Strasse 3, 18059 Rostock, Germany; Humboldt-Universität zu Berlin, Institute of Biology, Physiology of Plant Cell Organelles, Philippstrasse 13, 10115 Berlin, Germany.
| |
Collapse
|
13
|
Richter AS, Nägele T, Grimm B, Kaufmann K, Schroda M, Leister D, Kleine T. Retrograde signaling in plants: A critical review focusing on the GUN pathway and beyond. PLANT COMMUNICATIONS 2023; 4:100511. [PMID: 36575799 PMCID: PMC9860301 DOI: 10.1016/j.xplc.2022.100511] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
Plastids communicate their developmental and physiological status to the nucleus via retrograde signaling, allowing nuclear gene expression to be adjusted appropriately. Signaling during plastid biogenesis and responses of mature chloroplasts to environmental changes are designated "biogenic" and "operational" controls, respectively. A prominent example of the investigation of biogenic signaling is the screen for gun (genomes uncoupled) mutants. Although the first five gun mutants were identified 30 years ago, the functions of GUN proteins in retrograde signaling remain controversial, and that of GUN1 is hotly disputed. Here, we provide background information and critically discuss recently proposed concepts that address GUN-related signaling and some novel gun mutants. Moreover, considering heme as a candidate in retrograde signaling, we revisit the spatial organization of heme biosynthesis and export from plastids. Although this review focuses on GUN pathways, we also highlight recent progress in the identification and elucidation of chloroplast-derived signals that regulate the acclimation response in green algae and plants. Here, stress-induced accumulation of unfolded/misassembled chloroplast proteins evokes a chloroplast-specific unfolded protein response, which leads to changes in the expression levels of nucleus-encoded chaperones and proteases to restore plastid protein homeostasis. We also address the importance of chloroplast-derived signals for activation of flavonoid biosynthesis leading to production of anthocyanins during stress acclimation through sucrose non-fermenting 1-related protein kinase 1. Finally, a framework for identification and quantification of intercompartmental signaling cascades at the proteomic and metabolomic levels is provided, and we discuss future directions of dissection of organelle-nucleus communication.
Collapse
Affiliation(s)
- Andreas S Richter
- Physiology of Plant Metabolism, Institute for Biosciences, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
14
|
Szechyńska-Hebda M, Ghalami RZ, Kamran M, Van Breusegem F, Karpiński S. To Be or Not to Be? Are Reactive Oxygen Species, Antioxidants, and Stress Signalling Universal Determinants of Life or Death? Cells 2022; 11:cells11244105. [PMID: 36552869 PMCID: PMC9777155 DOI: 10.3390/cells11244105] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
In the environmental and organism context, oxidative stress is complex and unavoidable. Organisms simultaneously cope with a various combination of stress factors in natural conditions. For example, excess light stress is accompanied by UV stress, heat shock stress, and/or water stress. Reactive oxygen species (ROS) and antioxidant molecules, coordinated by electrical signalling (ES), are an integral part of the stress signalling network in cells and organisms. They together regulate gene expression to redirect energy to growth, acclimation, or defence, and thereby, determine cellular stress memory and stress crosstalk. In plants, both abiotic and biotic stress increase energy quenching, photorespiration, stomatal closure, and leaf temperature, while toning down photosynthesis and transpiration. Locally applied stress induces ES, ROS, retrograde signalling, cell death, and cellular light memory, then acclimation and defence responses in the local organs, whole plant, or even plant community (systemic acquired acclimation, systemic acquired resistance, network acquired acclimation). A simplified analogy can be found in animals where diseases vs. fitness and prolonged lifespan vs. faster aging, are dependent on mitochondrial ROS production and ES, and body temperature is regulated by sweating, temperature-dependent respiration, and gene regulation. In this review, we discuss the universal features of stress factors, ES, the cellular production of ROS molecules, ROS scavengers, hormones, and other regulators that coordinate life and death.
Collapse
Affiliation(s)
- Magdalena Szechyńska-Hebda
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
- W. Szafer Institute of Botany of the Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
- Correspondence: or (M.S.-H.); (S.K.)
| | - Roshanak Zarrin Ghalami
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Muhammad Kamran
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Frank Van Breusegem
- UGent Department of Plant Biotechnology and Bioinformatics, VIB-UGent Center for Plant Systems Biology Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
- Correspondence: or (M.S.-H.); (S.K.)
| |
Collapse
|
15
|
Araguirang GE, Richter AS. Activation of anthocyanin biosynthesis in high light - what is the initial signal? THE NEW PHYTOLOGIST 2022; 236:2037-2043. [PMID: 36110042 DOI: 10.1111/nph.18488] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Due to their sessile nature, plants cannot escape adverse environmental conditions and evolved mechanisms to cope with sudden environmental changes. The reaction to variations in abiotic factors, also summarized as acclimation response, affects all layers of cellular functions and involves rapid modification of enzymatic activities, the metabolome, proteome and transcriptome on different timescales. One trait of plants acclimating to high light (HL) is the rapid transcriptional activation of the flavonoid biosynthesis (FB) pathway resulting in the accumulation of photoprotective and antioxidative flavonoids, such as flavonols and anthocyanins, in the leaf tissue. Although enormous progress has been made in identifying enzymes and transcriptional regulators of FB by forward and reverse genetic approaches in the past, the signals and signalling pathways permitting the conditional activation of FB in HL are still debated. With this Tansley Insight, we summarize the current knowledge on the proposed signals and downstream factors involved in regulating FB and will discuss their contribution to, particularly, HL-induced accumulation of anthocyanins.
Collapse
Affiliation(s)
- Galileo Estopare Araguirang
- Physiology of Plant Metabolism, Institute for Biosciences, University of Rostock, Albert-Einstein-Strasse 3, 18059, Rostock, Germany
| | - Andreas S Richter
- Physiology of Plant Metabolism, Institute for Biosciences, University of Rostock, Albert-Einstein-Strasse 3, 18059, Rostock, Germany
| |
Collapse
|
16
|
Manzoor M, Yang L, Wu S, El-Shafie H, Haider MS, Ahmad JN. Feeding preference of Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae) on different date palm cultivars and host biochemical responses to its infestation. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:494-501. [PMID: 35382914 DOI: 10.1017/s0007485321001012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To counter the insect infestation, plants respond with wide-ranging and highly dynamic biochemical reactions. Of these, the anti-oxidative activity is poorly understood. The red palm weevil (RPW) Rhynchophorus ferrugineus (Oliver), one of the most widespread pests in Pakistan, prefers to infest date palm Phoenix dactylifera. Our present study investigated the feeding preference of RPW to 11 different date palm cultivars and the results suggested that the Hillawi cultivar was most preferred. Greater infestation rate, fecundity and hatching rate were also recorded from Hillawi and Mozawati than other cultivars. No significant decreases were observed in chlorophyll a, chlorophyll b, total chlorophylls and carotenoids of RPW-infested Hillawi cultivar over un-infested control. In contrast, the contents of enzymatic antioxidants including phenols, proline, hydrogen peroxide, anthocyanin, malondialdehyde, ascorbic acid and glycine betaine showed a drastic increase after RPW infestation, and there was enhanced superoxide dismutase, peroxidase and catalase activities. Furthermore, we recorded the increase of total protein and sugar contents in RPW-infested date palms. These findings offer valuable insight into the antioxidative molecular mechanism of date palms under RPW attack and may contribute to the breeding of insect-resistant crops.
Collapse
Affiliation(s)
- Mujahid Manzoor
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
- Department of Entomology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Lei Yang
- Hainan University, Haikou, China
| | | | - Hamadttu El-Shafie
- Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Jam Nazeer Ahmad
- Department of Entomology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
17
|
Song L, Wang X, Zou L, Prodhan Z, Yang J, Yang J, Ji L, Li G, Zhang R, Wang C, Li S, Zhang Y, Ji X, Zheng X, Li W, Zhang Z. Cassava ( Manihot esculenta) Slow Anion Channel ( MeSLAH4) Gene Overexpression Enhances Nitrogen Assimilation, Growth, and Yield in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:932947. [PMID: 35832225 PMCID: PMC9271942 DOI: 10.3389/fpls.2022.932947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen is one of the most important nutrient elements required for plant growth and development, which is also immensely related to the efficient use of nitrogen by crop plants. Therefore, plants evolved sophisticated mechanisms and anion channels to extract inorganic nitrogen (nitrate) from the soil or nutrient solutions, assimilate, and recycle the organic nitrogen. Hence, developing crop plants with a greater capability of using nitrogen efficiently is the fundamental research objective for attaining better agricultural productivity and environmental sustainability. In this context, an in-depth investigation has been conducted into the cassava slow type anion channels (SLAHs) gene family, including genome-wide expression analysis, phylogenetic relationships with other related organisms, chromosome localization, and functional analysis. A potential and nitrogen-responsive gene of cassava (MeSLAH4) was identified and selected for overexpression (OE) analysis in rice, which increased the grain yield and root growth related performance. The morpho-physiological response of OE lines was better under low nitrogen (0.01 mm NH4NO3) conditions compared to the wild type (WT) and OE lines under normal nitrogen (0.5 mm NH4NO3) conditions. The relative expression of the MeSLAH4 gene was higher (about 80-fold) in the OE line than in the wild type. The accumulation and flux assay showed higher accumulation of NO 3 - and more expansion of root cells and grain dimension of OE lines compared to the wild type plants. The results of this experiment demonstrated that the MeSLAH4 gene may play a vital role in enhancing the efficient use of nitrogen in rice, which could be utilized for high-yielding crop production.
Collapse
Affiliation(s)
- Linhu Song
- State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- College of Life Sciences, Neijiang Normal University, Neijiang, China
| | - Xingmei Wang
- State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Liangping Zou
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zakaria Prodhan
- College of Life Sciences, Neijiang Normal University, Neijiang, China
| | - Jiaheng Yang
- State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jianping Yang
- State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Li Ji
- State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guanhui Li
- State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Runcong Zhang
- State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Changyu Wang
- State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shi Li
- State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yan Zhang
- State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiang Ji
- State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xu Zheng
- State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Wanchen Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhiyong Zhang
- College of Life Sciences, Neijiang Normal University, Neijiang, China
| |
Collapse
|
18
|
Genetic Manipulation of Reactive Oxygen Species (ROS) Homeostasis Utilizing CRISPR/Cas9-Based Gene Editing in Rice. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2526:25-41. [PMID: 35657510 DOI: 10.1007/978-1-0716-2469-2_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Reactive oxygen species (ROS) are now recognized as key signals in plant stress responses. Adverse environmental conditions can either promote ROS production or downregulate antioxidative enzymes, leading to the alteration of redox homeostasis and activation of ROS-linked stress signaling. To uncover their signaling mechanisms and to characterize related components, genetic modification of ROS homeostasis is a central approach. CRISPR/Cas9-based genome editing system has become a powerful tool for gene mutation in a variety of organisms, including plants. Within this chapter, we describe a method that can be applied to manipulate ROS homeostasis in rice (Oryza sativa L.) utilizing CRISPR/Cas9 technology. Step-by-step protocols including the design and construction of Cas9/sgRNA, agrobacterium-mediated transformation, and mutation characterization are described. Application of this system in editing a rice catalase gene CatC, a key antioxidative enzyme in controlling ROS homeostasis, is also presented.
Collapse
|
19
|
Kashyap AS, Manzar N, Nebapure SM, Rajawat MVS, Deo MM, Singh JP, Kesharwani AK, Singh RP, Dubey SC, Singh D. Unraveling Microbial Volatile Elicitors Using a Transparent Methodology for Induction of Systemic Resistance and Regulation of Antioxidant Genes at Expression Levels in Chili against Bacterial Wilt Disease. Antioxidants (Basel) 2022; 11:antiox11020404. [PMID: 35204287 PMCID: PMC8869530 DOI: 10.3390/antiox11020404] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/10/2022] Open
Abstract
Microbial volatiles benefit the agricultural ecological system by promoting plant growth and systemic resistance against diseases without harming the environment. To explore the plant growth-promoting efficiency of VOCs produced by Pseudomonas fluorescens PDS1 and Bacillus subtilis KA9 in terms of chili plant growth and its biocontrol efficiency against Ralstonia solanacearum, experiments were conducted both in vitro and in vivo. A closure assembly was designed using a half-inverted plastic bottle to demonstrate plant–microbial interactions via volatile compounds. The most common volatile organic compounds were identified and reported; they promoted plant development and induced systemic resistance (ISR) against wilt pathogen R. solanacearum. The PDS1 and KA9 VOCs significantly increased defensive enzyme activity and overexpressed the antioxidant genes PAL, POD, SOD, WRKYa, PAL1, DEF-1, CAT-2, WRKY40, HSFC1, LOX2, and NPR1 related to plant defense. The overall gene expression was greater in root tissue as compared to leaf tissue in chili plant. Our findings shed light on the relationship among rhizobacteria, pathogen, and host plants, resulting in plant growth promotion, disease suppression, systemic resistance-inducing potential, and antioxidant response with related gene expression in the leaf and root tissue of chili.
Collapse
Affiliation(s)
- Abhijeet Shankar Kashyap
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.K.); (R.P.S.)
- Plant Pathology Laboratory, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (N.M.); (M.V.S.R.); (J.P.S.)
- Correspondence: (A.S.K.); (D.S.)
| | - Nazia Manzar
- Plant Pathology Laboratory, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (N.M.); (M.V.S.R.); (J.P.S.)
| | | | - Mahendra Vikram Singh Rajawat
- Plant Pathology Laboratory, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (N.M.); (M.V.S.R.); (J.P.S.)
| | - Man Mohan Deo
- Farm Machinery and Power, ICAR-Indian Institute of Pulses Research, Kanpur 208024, India;
| | - Jyoti Prakash Singh
- Plant Pathology Laboratory, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (N.M.); (M.V.S.R.); (J.P.S.)
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Amit Kumar Kesharwani
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.K.); (R.P.S.)
| | - Ravinder Pal Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.K.); (R.P.S.)
| | - S. C. Dubey
- Division of Plant Quarantine, ICAR-NBPGR, New Delhi 110012, India;
- Krishi Bhawan, Indian Council of Agricultural Research, New Delhi 110001, India
| | - Dinesh Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.K.); (R.P.S.)
- Correspondence: (A.S.K.); (D.S.)
| |
Collapse
|
20
|
Reactive Oxygen Species, Antioxidant Responses and Implications from a Microbial Modulation Perspective. BIOLOGY 2022; 11:biology11020155. [PMID: 35205022 PMCID: PMC8869449 DOI: 10.3390/biology11020155] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/17/2022]
Abstract
Simple Summary Environmental conditions are subject to unprecedented changes due to recent progressive anthropogenic activities on our planet. Plants, as the frontline of food security, are susceptible to these changes, resulting in the generation of unavoidable byproducts of metabolism (ROS), which eventually affect their productivity. The response of plants to these unfavorable conditions is highly intricate and depends on several factors, among them are the species/genotype tolerance level, intensity, and duration of stress factors. Defensive mechanisms in plant systems, by nature, are concerned primarily with generating enzymatic and non-enzymatic antioxidants. In addition to this, plant-microbe interactions have been found to improve immune systems in plants suffering from drought and salinity stress. Abstract Plants are exposed to various environmental stresses in their lifespan that threaten their survival. Reactive oxygen species (ROS), the byproducts of aerobic metabolism, are essential signalling molecules in regulating multiple plant developmental processes as well as in reinforcing plant tolerance to biotic and abiotic stimuli. However, intensified environmental challenges such as salinity, drought, UV irradiation, and heavy metals usually interfere with natural ROS metabolism and homeostasis, thus aggravating ROS generation excessively and ultimately resulting in oxidative stress. Cellular damage is confined to the degradation of biomolecular structures, including carbohydrates, proteins, lipids, pigments, and DNA. The nature of the double-edged function of ROS as a secondary messenger or harmful oxidant has been attributed to the degree of existing balance between cellular ROS production and ROS removal machinery. The activities of enzyme-based antioxidants, catalase (CAT, EC 1.11.1.6), monodehydroascorbate reductase (MDHAR, E.C.1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2), and guaiacol peroxidase (GPX, EC 1.11.1.7); and non-enzyme based antioxidant molecules, ascorbate (AA), glutathione (GSH), carotenoids, α-tocopherol, prolines, flavonoids, and phenolics, are indeed parts of the defensive strategies developed by plants to scavenge excess ROS and to maintain cellular redox homeostasis during oxidative stress. This review briefly summarises current knowledge on enzymatic and non-enzymatic antioxidant machinery in plants. Moreover, additional information about the beneficial impact of the microbiome on countering abiotic/biotic stresses in association with roots and plant tissues has also been provided.
Collapse
|
21
|
Zentgraf U, Andrade-Galan AG, Bieker S. Specificity of H 2O 2 signaling in leaf senescence: is the ratio of H 2O 2 contents in different cellular compartments sensed in Arabidopsis plants? Cell Mol Biol Lett 2022; 27:4. [PMID: 34991444 PMCID: PMC8903538 DOI: 10.1186/s11658-021-00300-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/17/2021] [Indexed: 01/21/2023] Open
Abstract
Leaf senescence is an integral part of plant development and is driven by endogenous cues such as leaf or plant age. Developmental senescence aims to maximize the usage of carbon, nitrogen and mineral resources for growth and/or for the sake of the next generation. This requires efficient reallocation of the resources out of the senescing tissue into developing parts of the plant such as new leaves, fruits and seeds. However, premature senescence can be induced by severe and long-lasting biotic or abiotic stress conditions. It serves as an exit strategy to guarantee offspring in an unfavorable environment but is often combined with a trade-off in seed number and quality. In order to coordinate the very complex process of developmental senescence with environmental signals, highly organized networks and regulatory cues have to be in place. Reactive oxygen species, especially hydrogen peroxide (H2O2), are involved in senescence as well as in stress signaling. Here, we want to summarize the role of H2O2 as a signaling molecule in leaf senescence and shed more light on how specificity in signaling might be achieved. Altered hydrogen peroxide contents in specific compartments revealed a differential impact of H2O2 produced in different compartments. Arabidopsis lines with lower H2O2 levels in chloroplasts and cytoplasm point to the possibility that not the actual contents but the ratio between the two different compartments is sensed by the plant cells.
Collapse
Affiliation(s)
- Ulrike Zentgraf
- ZMBP (Centre of Plant Molecular Biology), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany.
| | - Ana Gabriela Andrade-Galan
- ZMBP (Centre of Plant Molecular Biology), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Stefan Bieker
- ZMBP (Centre of Plant Molecular Biology), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| |
Collapse
|
22
|
Lima-Melo Y, Kılıç M, Aro EM, Gollan PJ. Photosystem I Inhibition, Protection and Signalling: Knowns and Unknowns. FRONTIERS IN PLANT SCIENCE 2021; 12:791124. [PMID: 34925429 PMCID: PMC8671627 DOI: 10.3389/fpls.2021.791124] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/11/2021] [Indexed: 05/22/2023]
Abstract
Photosynthesis is the process that harnesses, converts and stores light energy in the form of chemical energy in bonds of organic compounds. Oxygenic photosynthetic organisms (i.e., plants, algae and cyanobacteria) employ an efficient apparatus to split water and transport electrons to high-energy electron acceptors. The photosynthetic system must be finely balanced between energy harvesting and energy utilisation, in order to limit generation of dangerous compounds that can damage the integrity of cells. Insight into how the photosynthetic components are protected, regulated, damaged, and repaired during changing environmental conditions is crucial for improving photosynthetic efficiency in crop species. Photosystem I (PSI) is an integral component of the photosynthetic system located at the juncture between energy-harnessing and energy consumption through metabolism. Although the main site of photoinhibition is the photosystem II (PSII), PSI is also known to be inactivated by photosynthetic energy imbalance, with slower reactivation compared to PSII; however, several outstanding questions remain about the mechanisms of damage and repair, and about the impact of PSI photoinhibition on signalling and metabolism. In this review, we address the knowns and unknowns about PSI activity, inhibition, protection, and repair in plants. We also discuss the role of PSI in retrograde signalling pathways and highlight putative signals triggered by the functional status of the PSI pool.
Collapse
Affiliation(s)
- Yugo Lima-Melo
- Post-graduation Programme in Cellular and Molecular Biology (PPGBCM), Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mehmet Kılıç
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Peter J. Gollan
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
23
|
Nabi RBS, Rolly NK, Tayade R, Khan M, Shahid M, Yun BW. Enhanced Resistance of atbzip62 against Pseudomonas syringae pv. tomato Suggests Negative Regulation of Plant Basal Defense and Systemic Acquired Resistance by AtbZIP62 Transcription Factor. Int J Mol Sci 2021; 22:ijms222111541. [PMID: 34768971 PMCID: PMC8584143 DOI: 10.3390/ijms222111541] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
The intrinsic defense mechanisms of plants toward pathogenic bacteria have been widely investigated for years and are still at the center of interest in plant biosciences research. This study investigated the role of the AtbZIP62 gene encoding a transcription factor (TF) in the basal defense and systemic acquired resistance in Arabidopsis using the reverse genetics approach. To achieve that, the atbzip62 mutant line (lacking the AtbZIP62 gene) was challenged with Pseudomonas syringae pv. tomato (Pst DC3000) inoculated by infiltration into Arabidopsis leaves at the rosette stage. The results indicated that atbzip62 plants showed an enhanced resistance phenotype toward Pst DC3000 vir over time compared to Col-0 and the susceptible disease controls, atgsnor1-3 and atsid2. In addition, the transcript accumulation of pathogenesis-related genes, AtPR1 and AtPR2, increased significantly in atbzip62 over time (0–72 h post-inoculation, hpi) compared to that of atgsnor1-3 and atsid2 (susceptible lines), with AtPR1 prevailing over AtPR2. When coupled with the recorded pathogen growth (expressed as a colony-forming unit, CFU mL−1), the induction of PR genes, associated with the salicylic acid (SA) defense signaling, in part explained the observed enhanced resistance of atbzip62 mutant plants in response to Pst DC3000 vir. Furthermore, when Pst DC3000 avrB was inoculated, the expression of AtPR1 was upregulated in the systemic leaves of Col-0, while that of AtPR2 remained at a basal level in Col-0. Moreover, the expression of AtAZI (a systemic acquired resistance -related) gene was significantly upregulated at all time points (0–24 h post-inoculation, hpi) in atbzip62 compared to Col-0 and atgsnor1-3 and atsid2. Under the same conditions, AtG3DPH exhibited a high transcript accumulation level 48 hpi in the atbzip62 background. Therefore, all data put together suggest that AtPR1 and AtPR2 coupled with AtAZI and AtG3DPH, with AtAZI prevailing over AtG3DPH, would contribute to the recorded enhanced resistance phenotype of the atbzip62 mutant line against Pst DC3000. Thus, the AtbZIP62 TF is proposed as a negative regulator of basal defense and systemic acquired resistance in plants under Pst DC3000 infection.
Collapse
Affiliation(s)
- Rizwana Begum Syed Nabi
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (R.B.S.N.); (N.K.R.); (M.K.); (M.S.)
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| | - Nkulu Kabange Rolly
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (R.B.S.N.); (N.K.R.); (M.K.); (M.S.)
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
- National Laboratory of Seed Testing, National Seed Service, SENASEM, Ministry of Agriculture, Kinshasa 904KIN1, Democratic Republic of the Congo
| | - Rupesh Tayade
- Laboratory of Plant Breeding, School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea;
| | - Murtaza Khan
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (R.B.S.N.); (N.K.R.); (M.K.); (M.S.)
| | - Muhammad Shahid
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (R.B.S.N.); (N.K.R.); (M.K.); (M.S.)
- Agriculture Research Institute Mingora, Swat 19130, Khyber Pakhtunkhwa, Pakistan
| | - Byung-Wook Yun
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (R.B.S.N.); (N.K.R.); (M.K.); (M.S.)
- Correspondence: ; Tel.: +82-53-950-5712
| |
Collapse
|
24
|
Sako K, Nagashima R, Tamoi M, Seki M. Exogenous ethanol treatment alleviates oxidative damage of Arabidopsis thaliana under conditions of high-light stress. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:339-344. [PMID: 34782821 PMCID: PMC8562572 DOI: 10.5511/plantbiotechnology.21.0715a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/15/2021] [Indexed: 05/31/2023]
Abstract
Abiotic stresses, such as high light and salinity, are major factors that limit crop productivity and sustainability worldwide. Chemical priming is a promising strategy for improving the abiotic stress tolerance of plants. Recently, we discovered that ethanol enhances high-salinity stress tolerance in Arabidopsis thaliana and rice by detoxifying reactive oxygen species (ROS). However, the effect of ethanol on other abiotic stress responses is unclear. Therefore, we investigated the effect of ethanol on the high-light stress response. Measurement of chlorophyll fluorescence showed that ethanol mitigates photoinhibition under high-light stress. Staining with 3,3'-diaminobenzidine (DAB) showed that the accumulation of hydrogen peroxide (H2O2) was inhibited by ethanol under high-light stress conditions in A. thaliana. We found that ethanol increased the gene expressions and enzymatic activities of antioxidative enzymes, including ASCORBATE PEROXIDASE1 (AtAPX1), Catalase (AtCAT1 and AtCAT2). Moreover, the expression of flavonoid biosynthetic genes and anthocyanin contents were upregulated by ethanol treatment during exposure to high-light stress. These results imply that ethanol alleviates oxidative damage from high-light stress in A. thaliana by suppressing ROS accumulation. Our findings support the hypothesis that ethanol improves tolerance to multiple stresses in field-grown crops.
Collapse
Affiliation(s)
- Kaori Sako
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Nara 631-8505, Japan
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa 230-0045, Japan
| | - Ryutaro Nagashima
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Nara 631-8505, Japan
| | - Masahiro Tamoi
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Nara 631-8505, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa 244-0813, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
25
|
Chen K, Su C, Tang W, Zhou Y, Xu Z, Chen J, Li H, Chen M, Ma Y. Nuclear transport factor GmNTF2B-1 enhances soybean drought tolerance by interacting with oxidoreductase GmOXR17 to reduce reactive oxygen species content. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:740-759. [PMID: 33978999 DOI: 10.1111/tpj.15319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/18/2021] [Accepted: 05/03/2021] [Indexed: 05/27/2023]
Abstract
Drought is a critical abiotic stressor that modulates soybean yield. Drought stress drastically enhances reactive oxygen species (ROS) formation, and maintaining ROS content above a cytostatic level but below a cytotoxic level is essential for normal biology processes in plants. At present, most of the known ROS-scavenging systems are in the cytoplasm, and the mechanism of ROS regulation in the nucleus remains unclear. GmNTF2B-1 is a member of the IV subgroup in the nucleus transporter family. Its expression is localized to the roots and is stimulated by drought stress. In this study, the overexpression of GmNTF2B-1 was found to improve the drought tolerance of transgenic soybean by influencing the ROS content in plants. An oxidoreductase, GmOXR17, was identified to interact with GmNTF2B-1 in the nucleus through the yeast two-hybrid, coimmunoprecipitation and bimolecular fluorescence complementation assays. The drought tolerance of GmOXR17 transgenic soybean was similar to that of GmNTF2B-1. GmNTF2B-1 was expressed in both cytoplasm and nucleus, and GmOXR17 transferred from the cytoplasm to the nucleus under drought stress. The overexpression of GmNTF2B-1 enhanced the nuclear entry of GmOXR17, and the overexpression of GmNTF2B-1 or GmOXR17 could decrease the H2 O2 content and oxidation level in the nucleus. In conclusion, the interaction between GmNTF2B-1 and GmOXR17 may enhance the nuclear entry of GmOXR17, thereby enhancing nuclear ROS scavenging to improve the drought resistance of soybean.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Ministry of Agriculture, Beijing, 100081, China
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Chen Su
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Ministry of Agriculture, Beijing, 100081, China
- Agricultural Technology Extension Center of Xi'an, Xi'an 710000, China
| | - Wensi Tang
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Ministry of Agriculture, Beijing, 100081, China
| | - Yongbin Zhou
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Ministry of Agriculture, Beijing, 100081, China
| | - Zhaoshi Xu
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Ministry of Agriculture, Beijing, 100081, China
| | - Jun Chen
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Ministry of Agriculture, Beijing, 100081, China
| | - Haiyan Li
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Ming Chen
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Ministry of Agriculture, Beijing, 100081, China
| | - Youzhi Ma
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Ministry of Agriculture, Beijing, 100081, China
| |
Collapse
|
26
|
He H, Denecker J, Van Der Kelen K, Willems P, Pottie R, Phua SY, Hannah MA, Vertommen D, Van Breusegem F, Mhamdi A. The Arabidopsis mediator complex subunit 8 regulates oxidative stress responses. THE PLANT CELL 2021; 33:2032-2057. [PMID: 33713138 PMCID: PMC8290281 DOI: 10.1093/plcell/koab079] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/10/2021] [Indexed: 05/13/2023]
Abstract
Signaling events triggered by hydrogen peroxide (H2O2) regulate plant growth and defense by orchestrating a genome-wide transcriptional reprogramming. However, the specific mechanisms that govern H2O2-dependent gene expression are still poorly understood. Here, we identify the Arabidopsis Mediator complex subunit MED8 as a regulator of H2O2 responses. The introduction of the med8 mutation in a constitutive oxidative stress genetic background (catalase-deficient, cat2) was associated with enhanced activation of the salicylic acid pathway and accelerated cell death. Interestingly, med8 seedlings were more tolerant to oxidative stress generated by the herbicide methyl viologen (MV) and exhibited transcriptional hyperactivation of defense signaling, in particular salicylic acid- and jasmonic acid-related pathways. The med8-triggered tolerance to MV was manipulated by the introduction of secondary mutations in salicylic acid and jasmonic acid pathways. In addition, analysis of the Mediator interactome revealed interactions with components involved in mRNA processing and microRNA biogenesis, hence expanding the role of Mediator beyond transcription. Notably, MED8 interacted with the transcriptional regulator NEGATIVE ON TATA-LESS, NOT2, to control the expression of H2O2-inducible genes and stress responses. Our work establishes MED8 as a component regulating oxidative stress responses and demonstrates that it acts as a negative regulator of H2O2-driven activation of defense gene expression.
Collapse
Affiliation(s)
- Huaming He
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Jordi Denecker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
- Present address: Illumina Cambridge Ltd, Cambridge, CB21 6DF, UK; Present address: Sciensano, 1050 Brussels, Belgium
| | - Katrien Van Der Kelen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
- Present address: Illumina Cambridge Ltd, Cambridge, CB21 6DF, UK; Present address: Sciensano, 1050 Brussels, Belgium
| | - Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Robin Pottie
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Su Yin Phua
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Matthew A Hannah
- BASF Belgium Coordination Center, Innovation Center Gent, 9052 Gent, Belgium
| | - Didier Vertommen
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
- Author for correspondence: (A.M.)
| |
Collapse
|
27
|
Sandalio LM, Peláez-Vico MA, Molina-Moya E, Romero-Puertas MC. Peroxisomes as redox-signaling nodes in intracellular communication and stress responses. PLANT PHYSIOLOGY 2021; 186:22-35. [PMID: 33587125 PMCID: PMC8154099 DOI: 10.1093/plphys/kiab060] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/22/2021] [Indexed: 05/05/2023]
Abstract
Peroxisomes are redox nodes playing a diverse range of roles in cell functionality and in the perception of and responses to changes in their environment.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
- Author for communication:
| | - Maria Angeles Peláez-Vico
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | - Eliana Molina-Moya
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | - Maria C Romero-Puertas
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
28
|
Kan C, Zhang Y, Wang HL, Shen Y, Xia X, Guo H, Li Z. Transcription Factor NAC075 Delays Leaf Senescence by Deterring Reactive Oxygen Species Accumulation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:634040. [PMID: 33719309 PMCID: PMC7943619 DOI: 10.3389/fpls.2021.634040] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/22/2021] [Indexed: 05/23/2023]
Abstract
Leaf senescence is a highly complex genetic process that is finely tuned by multiple layers of regulation. Among them, transcriptional regulation plays a critical role in controlling the initiation and progression of leaf senescence. Here, we found that the NAC transcription factor NAC075 functions as a novel negative regulator of leaf senescence. Loss of function of NAC075 promotes leaf senescence in an age-dependent manner, whereas constitutive overexpression of NAC075 delays senescence in Arabidopsis. Transcriptome analysis revealed that transcript levels of antioxidant enzymes such as catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD) are significantly suppressed in nac075 mutants compared with wild-type plants. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) analyses revealed that NAC075 directly binds the promoter of catalase 2 (CAT2). Moreover, genetic analysis showed that overexpression of CAT2 suppresses the overproduction of reactive oxygen species (ROS) and the early senescence phenotypes of nac075 mutants, suggesting that CAT2 acts downstream of NAC075 to delay leaf senescence by repressing ROS accumulation. Collectively, our findings provide a new regulatory module involving NAC075-CAT2-ROS in controlling leaf senescence in Arabidopsis.
Collapse
Affiliation(s)
- Chengcheng Kan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Hou-Ling Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Yingbai Shen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongwei Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| |
Collapse
|
29
|
Dvořák P, Krasylenko Y, Zeiner A, Šamaj J, Takáč T. Signaling Toward Reactive Oxygen Species-Scavenging Enzymes in Plants. FRONTIERS IN PLANT SCIENCE 2021; 11:618835. [PMID: 33597960 PMCID: PMC7882706 DOI: 10.3389/fpls.2020.618835] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/11/2020] [Indexed: 05/26/2023]
Abstract
Reactive oxygen species (ROS) are signaling molecules essential for plant responses to abiotic and biotic stimuli as well as for multiple developmental processes. They are produced as byproducts of aerobic metabolism and are affected by adverse environmental conditions. The ROS content is controlled on the side of their production but also by scavenging machinery. Antioxidant enzymes represent a major ROS-scavenging force and are crucial for stress tolerance in plants. Enzymatic antioxidant defense occurs as a series of redox reactions for ROS elimination. Therefore, the deregulation of the antioxidant machinery may lead to the overaccumulation of ROS in plants, with negative consequences both in terms of plant development and resistance to environmental challenges. The transcriptional activation of antioxidant enzymes accompanies the long-term exposure of plants to unfavorable environmental conditions. Fast ROS production requires the immediate mobilization of the antioxidant defense system, which may occur via retrograde signaling, redox-based modifications, and the phosphorylation of ROS detoxifying enzymes. This review aimed to summarize the current knowledge on signaling processes regulating the enzymatic antioxidant capacity of plants.
Collapse
|
30
|
Xiong Y, Fan XH, Wang Q, Yin ZG, Sheng XW, Chen J, Zhou YB, Chen M, Ma YZ, Ma J, Xu ZS. Genomic Analysis of Soybean PP2A-B ' ' Family and Its Effects on Drought and Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2021; 12:784038. [PMID: 35195114 PMCID: PMC8847135 DOI: 10.3389/fpls.2021.784038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/30/2021] [Indexed: 05/05/2023]
Abstract
Abiotic stresses induce the accumulation of reactive oxygen species (ROS) and significantly affect plant growth. Protein phosphatase 2A (PP2A) plays an important role in controlling intracellular and extracellular ROS signals. However, the interaction between PP2A, ROS, and stress tolerance remains largely unclear. In this study, we found that the B ' ' subunit of PP2A (PP2A-B ' ' ) can be significantly induced and was analyzed using drought- and salt-induced soybean transcriptome data. Eighty-three soybean PP2A-B ' ' genes were identified from the soybean genome via homologous sequence alignment, which was distributed across 20 soybean chromosomes. Among soybean PP2A-B ' ' family genes, 26 GmPP2A-B ' ' members were found to be responsive to drought and salt stresses in soybean transcriptome data. Quantitative PCR (qPCR) analysis demonstrated that GmPP2A-B ' ' 71 had the highest expression levels under salt and drought stresses. Functional analysis demonstrated that overexpression of GmPP2A-B ' ' 71 in soybeans can improve plant tolerance to drought and salt stresses; however, the interference of GmPP2A-B ' ' 71 in soybean increased the sensibility to drought and salt stresses. Further analysis demonstrated that overexpression of GmPP2A-B ' ' 71 in soybean could enhance the expression levels of stress-responsive genes, particularly genes associated with ROS elimination. These results indicate that PP2A-B ' ' can promote plant stress tolerance by regulating the ROS signaling, which will contribute to improving the drought resistance of crops.
Collapse
Affiliation(s)
- Yang Xiong
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Xu-Hong Fan
- Soybean Research Institute, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Soybean, Changchun, China
| | - Qiang Wang
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zheng-Gong Yin
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xue-Wen Sheng
- College of Modern Agriculture, Changchun Vocational Institute of Technology, Changchun, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jian Ma
- College of Agronomy, Jilin Agricultural University, Changchun, China
- *Correspondence: Jian Ma,
| | - Zhao-Shi Xu
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- Zhao-Shi Xu,
| |
Collapse
|
31
|
Rolly NK, Imran QM, Shahid M, Imran M, Khan M, Lee SU, Hussain A, Lee IJ, Yun BW. Drought-induced AtbZIP62 transcription factor regulates drought stress response in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:384-395. [PMID: 33007532 DOI: 10.1016/j.plaphy.2020.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
We investigated the role of AtbZIP62, an uncharacterized Arabidopsis bZIP TF, in oxidative, nitro-oxidative and drought stress conditions using reverse genetics approach. We further monitored the expression of AtPYD1 gene (orthologous to rice OsDHODH1 involved in the pyrimidine biosynthesis) in atbzip62 knock-out (KO) plants in order to investigate the transcriptional interplay of AtbZIP62 and AtPYD1. The atbzip62 KO plants showed significant increase in shoot length under oxidative stress, while no significant difference was recorded for root length compared to WT. However, under nitro-oxidative stress conditions, atbzip62 showed differential response to both NO-donors. Further characterization of AtbZIP62 under drought conditions showed that both atbzip62 and atpyd1-2 showed a sensitive phenotype to drought stress, and could not recover after re-watering. Transcript accumulation of AtbZIP62 and AtPYD1 showed that both were highly up-regulated by drought stress in wild type (WT) plants. Interestingly, AtPYD1 transcriptional level significantly decreased in atbzip62 exposed to drought stress. However, AtbZIP62 expression was highly induced in atpyd1-2 under the same conditions. Both AtbZIP62 and AtPYD1 were up-regulated in atnced3 and atcat2 while showing a contrasting expression pattern in atgsnor1-3. The recorded increase in CAT, POD, and PPO-like activities, the accumulation of chlorophylls and total carotenoids, and the enhanced proline and malondialdehyde levels would explain the sensitivity level of atbzip62 towards drought stress. All results collectively suggest that AtbZIP62 could be involved in AtPYD1 transcriptional regulation while modulating cellular redox state and photosynthetic processes. In addition, AtbZIP62 is suggested to positively regulate drought stress response in Arabidopsis.
Collapse
Affiliation(s)
- Nkulu Kabange Rolly
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea; National Laboratory of Seed Testing, National Seed Service, SENASEM, Ministry of Agriculture, Kinshasa, Democratic Republic of the Congo.
| | - Qari Muhammad Imran
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
| | - Muhammad Shahid
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
| | - Muhammad Imran
- Laboratory of Crop Physiology, School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
| | - Murtaza Khan
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
| | - Sang-Uk Lee
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
| | - Adil Hussain
- Department of Agriculture, Abdul Wali Khan University, Mardan, 23200, KP, Pakistan.
| | - In-Jung Lee
- Laboratory of Crop Physiology, School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
| | - Byung-Wook Yun
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
32
|
Borisova-Mubarakshina MM, Vetoshkina DV, Naydov IA, Rudenko NN, Zhurikova EM, Balashov NV, Ignatova LK, Fedorchuk TP, Ivanov BN. Regulation of the size of photosystem II light harvesting antenna represents a universal mechanism of higher plant acclimation to stress conditions. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:959-969. [PMID: 32564779 DOI: 10.1071/fp19362] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
We investigated acclimatory responses of Arabidopsis plants to drought and salinity conditions before the appearance of obvious signs of damage caused by these factors. We detected changes indicating an increase in the reduction level of the chloroplast plastoquinone pool (PQ pool) 5-7 days after introduction of the stress factors. After 10-14 days, a decrease in the size of PSII light harvesting antenna was observed in plants under conditions of drought and salinity. This was confirmed by a decrease in content of PSII antenna proteins and by downregulation of gene expression levels of these proteins under the stress conditions. No changes in values of performance index and maximum quantum yield of PSII were detected. Under drought and salinity, the content of hydrogen peroxide in leaves was higher than in control leaves. Thus, we propose that reduction of the size of PSII antenna represents one of the universal mechanisms of acclimation of higher plants to stress factors and the downsizing already begins to manifest under mild stress conditions. Both the PQ pool reduction state and the hydrogen peroxide content are important factors needed for the observed rearrangement.
Collapse
Affiliation(s)
- Maria M Borisova-Mubarakshina
- Institute of Basic Biological Problems RAS, Institutskaya st. 2, Pushchino, 142290, Moscow region, Russian Federation; and Corresponding author.
| | - Daria V Vetoshkina
- Institute of Basic Biological Problems RAS, Institutskaya st. 2, Pushchino, 142290, Moscow region, Russian Federation
| | - Ilya A Naydov
- Institute of Basic Biological Problems RAS, Institutskaya st. 2, Pushchino, 142290, Moscow region, Russian Federation
| | - Natalia N Rudenko
- Institute of Basic Biological Problems RAS, Institutskaya st. 2, Pushchino, 142290, Moscow region, Russian Federation
| | - Elena M Zhurikova
- Institute of Basic Biological Problems RAS, Institutskaya st. 2, Pushchino, 142290, Moscow region, Russian Federation
| | - Nikolai V Balashov
- Institute of Basic Biological Problems RAS, Institutskaya st. 2, Pushchino, 142290, Moscow region, Russian Federation; and Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation
| | - Lyudmila K Ignatova
- Institute of Basic Biological Problems RAS, Institutskaya st. 2, Pushchino, 142290, Moscow region, Russian Federation
| | - Tatyana P Fedorchuk
- Institute of Basic Biological Problems RAS, Institutskaya st. 2, Pushchino, 142290, Moscow region, Russian Federation
| | - Boris N Ivanov
- Institute of Basic Biological Problems RAS, Institutskaya st. 2, Pushchino, 142290, Moscow region, Russian Federation
| |
Collapse
|
33
|
Poonia AK, Mishra SK, Sirohi P, Chaudhary R, Kanwar M, Germain H, Chauhan H. Overexpression of wheat transcription factor (TaHsfA6b) provides thermotolerance in barley. PLANTA 2020; 252:53. [PMID: 32945950 DOI: 10.1007/s00425-020-03457-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/28/2020] [Indexed: 05/22/2023]
Abstract
Overexpressing a heat shock factor gene (TaHsfA6bT) from wheat provides thermotolerance in barley by constitutive expression of heat and other abiotic stress-response genes. Temperature is one of the most crucial abiotic factors defining the yield potential of temperate cereal crops, such as barley. The regulators of heat shock response (HSR), heat stress transcription factors (Hsfs), modulate the transcription level of heat-responsive genes to protect the plants from heat stress. In this study, an Hsf from wheat (TaHsfA6b) is overexpressed in barley for providing thermotolerance. Transgenic barley lines overexpressing TaHsfA6b showed improvement in thermotolerance. The constitutive overexpression of a TaHsfA6b gene upregulated the expression of major heat shock proteins and other abiotic stress-responsive genes. RNA-seq and qRT-PCR analysis confirmed the upregulation of Hsps, chaperonins, DNAJ, LEA protein genes, and genes related to anti-oxidative enzymes in transgenic lines. Excessive generation and accumulation of reactive oxygen species (ROS) occurred in wild-type (WT) plants during heat stress; however, the transgenic lines reflected improved ROS homeostasis mechanisms, showing lesser ROS accumulation under high temperature. No negative phenotypic changes were observed in overexpression lines. These results suggest that TaHsfA6b is a regulator of HSR and its overexpression altered the expression patterns of some main stress-related genes and enhanced the thermotolerance of this cereal crop.
Collapse
Affiliation(s)
- Anuj Kumar Poonia
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Sumit Kumar Mishra
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Parul Sirohi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada
| | - Reeku Chaudhary
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Meenakshi Kanwar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada
| | - Harsh Chauhan
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
34
|
Mielecki J, Gawroński P, Karpiński S. Retrograde Signaling: Understanding the Communication between Organelles. Int J Mol Sci 2020; 21:E6173. [PMID: 32859110 PMCID: PMC7503960 DOI: 10.3390/ijms21176173] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding how cell organelles and compartments communicate with each other has always been an important field of knowledge widely explored by many researchers. However, despite years of investigations, one point-and perhaps the only point that many agree on-is that our knowledge about cellular-signaling pathways still requires expanding. Chloroplasts and mitochondria (because of their primary functions in energy conversion) are important cellular sensors of environmental fluctuations and feedback they provide back to the nucleus is important for acclimatory responses. Under stressful conditions, it is important to manage cellular resources more efficiently in order to maintain a proper balance between development, growth and stress responses. For example, it can be achieved through regulation of nuclear and organellar gene expression. If plants are unable to adapt to stressful conditions, they will be unable to efficiently produce energy for growth and development-and ultimately die. In this review, we show the importance of retrograde signaling in stress responses, including the induction of cell death and in organelle biogenesis. The complexity of these pathways demonstrates how challenging it is to expand the existing knowledge. However, understanding this sophisticated communication may be important to develop new strategies of how to improve adaptability of plants in rapidly changing environments.
Collapse
Affiliation(s)
| | | | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.M.); (P.G.)
| |
Collapse
|
35
|
Nadarajah KK. ROS Homeostasis in Abiotic Stress Tolerance in Plants. Int J Mol Sci 2020; 21:E5208. [PMID: 32717820 PMCID: PMC7432042 DOI: 10.3390/ijms21155208] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Climate change-induced abiotic stress results in crop yield and production losses. These stresses result in changes at the physiological and molecular level that affect the development and growth of the plant. Reactive oxygen species (ROS) is formed at high levels due to abiotic stress within different organelles, leading to cellular damage. Plants have evolved mechanisms to control the production and scavenging of ROS through enzymatic and non-enzymatic antioxidative processes. However, ROS has a dual function in abiotic stresses where, at high levels, they are toxic to cells while the same molecule can function as a signal transducer that activates a local and systemic plant defense response against stress. The effects, perception, signaling, and activation of ROS and their antioxidative responses are elaborated in this review. This review aims to provide a purview of processes involved in ROS homeostasis in plants and to identify genes that are triggered in response to abiotic-induced oxidative stress. This review articulates the importance of these genes and pathways in understanding the mechanism of resistance in plants and the importance of this information in breeding and genetically developing crops for resistance against abiotic stress in plants.
Collapse
Affiliation(s)
- Kalaivani K Nadarajah
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM BANGI, Malaysia
| |
Collapse
|
36
|
Gollan PJ, Aro EM. Photosynthetic signalling during high light stress and recovery: targets and dynamics. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190406. [PMID: 32362249 DOI: 10.1098/rstb.2019.0406] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The photosynthetic apparatus is one of the major primary sensors of the plant's external environment. Changes in environmental conditions affect the balance between harvested light energy and the capacity to deal with excited electrons in the stroma, which alters the redox homeostasis of the photosynthetic electron transport chain. Disturbances to redox balance activate photosynthetic regulation mechanisms and trigger signalling cascades that can modify the transcription of nuclear genes. H2O2 and oxylipins have been identified as especially prominent regulators of gene expression in response to excess light stress. This paper explores the hypothesis that photosynthetic imbalance triggers specific signals that target discrete gene profiles and biological processes. Analysis of the major retrograde signalling pathways engaged during high light stress and recovery demonstrates both specificity and overlap in gene targets. This work reveals distinct, time-resolved profiles of gene expression that suggest a regulatory interaction between rapidly activated abiotic stress response and induction of secondary metabolism and detoxification processes during recovery. The findings of this study show that photosynthetic electron transport provides a finely tuned sensor for detecting and responding to the environment through chloroplast retrograde signalling. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Peter J Gollan
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
37
|
Zhang T, Ma M, Chen T, Zhang L, Fan L, Zhang W, Wei B, Li S, Xuan W, Noctor G, Han Y. Glutathione-dependent denitrosation of GSNOR1 promotes oxidative signalling downstream of H 2 O 2. PLANT, CELL & ENVIRONMENT 2020; 43:1175-1191. [PMID: 31990075 DOI: 10.1111/pce.13727] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Photorespiratory hydrogen peroxide (H2 O2 ) plays key roles in pathogenesis responses by triggering the salicylic acid (SA) pathway in Arabidopsis. However, factors linking intracellular H2 O2 to activation of the SA pathway remain elusive. In this work, the catalase-deficient Arabidopsis mutant, cat2, was exploited to elucidate the impact of S-nitrosoglutathione reductase 1 (GSNOR1) on H2 O2 -dependent signalling pathways. Introducing the gsnor1-3 mutation into the cat2 background increased S-nitrosothiol levels and abolished cat2-triggered cell death, SA accumulation, and associated gene expression but had little additional effect on the major components of the ascorbate-glutathione system or glycolate oxidase activities. Differential transcriptome profiles between gsnor1-3 and cat2 gsnor1-3 together with damped ROS-triggered gene expression in cat2 gsnor1-3 further indicated that GSNOR1 acts to mediate the SA pathway downstream of H2 O2 . Up-regulation of GSNOR activity was compromised in cat2 cad2 and cat2 pad2 mutants in which glutathione accumulation was genetically prevented. Experiments with purified recombinant GSNOR revealed that the enzyme is posttranslationally regulated by direct denitrosation in a glutathione-dependent manner. Together, our findings identify GSNOR1-controlled nitrosation as a key factor in activation of the SA pathway by H2 O2 and reveal that glutathione is required to maintain this biological function.
Collapse
Affiliation(s)
- Tianru Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Mingyue Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Tao Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Linlin Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Lingling Fan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Wei Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Bo Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Graham Noctor
- Institute of Plant Sciences Paris Saclay IPS2, Université Paris-Sud, CNRS, INRA, Université Evry, Paris Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Orsay, France
- Institut Universitaire de France, Paris, France
| | - Yi Han
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| |
Collapse
|
38
|
Bdolach E, Prusty MR, Faigenboim-Doron A, Filichkin T, Helgerson L, Schmid KJ, Greiner S, Fridman E. Thermal plasticity of the circadian clock is under nuclear and cytoplasmic control in wild barley. PLANT, CELL & ENVIRONMENT 2019; 42:3105-3120. [PMID: 31272129 DOI: 10.1111/pce.13606] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
Temperature compensation, expressed as the ability to maintain clock characteristics (mainly period) in face of temperature changes, that is, robustness, is considered a key feature of circadian clock systems. In this study, we explore the genetic basis for lack of robustness, that is, plasticity, of circadian clock as reflected by photosynthesis rhythmicity. The clock rhythmicity of a new wild barley reciprocal doubled haploid population was analysed with a high temporal resolution of pulsed amplitude modulation of chlorophyll fluorescence under optimal (22°C) and high (32°C) temperature. This comparison between two environments pointed to the prevalence of clock acceleration under heat. Genotyping by sequencing of doubled haploid lines indicated a rich recombination landscape with minor fixation (less than 8%) for one of the parental alleles. Quantitative genetic analysis included genotype by environment interactions and binary-threshold models. Variation in the circadian rhythm plasticity phenotypes, expressed as change (delta) of period and amplitude under two temperatures, was associated with maternal organelle genome (the plasmotype), as well as with several nuclear loci. This first reported rhythmicity driven by nuclear loci and plasmotype with few identified variants, paves the way for studying impact of cytonuclear variations on clock robustness and on plant adaptation to changing environments.
Collapse
Affiliation(s)
- Eyal Bdolach
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Manas Ranjan Prusty
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Adi Faigenboim-Doron
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Tanya Filichkin
- Crop and Soil Science Department, Oregon State University, Corvallis, Oregon
| | - Laura Helgerson
- Crop and Soil Science Department, Oregon State University, Corvallis, Oregon
| | - Karl J Schmid
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | - Stephan Greiner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Eyal Fridman
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| |
Collapse
|
39
|
Bernacki MJ, Czarnocka W, Szechyńska-Hebda M, Mittler R, Karpiński S. Biotechnological Potential of LSD1, EDS1, and PAD4 in the Improvement of Crops and Industrial Plants. PLANTS (BASEL, SWITZERLAND) 2019; 8:E290. [PMID: 31426325 PMCID: PMC6724177 DOI: 10.3390/plants8080290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022]
Abstract
Lesion Simulating Disease 1 (LSD1), Enhanced Disease Susceptibility (EDS1) and Phytoalexin Deficient 4 (PAD4) were discovered a quarter century ago as regulators of programmed cell death and biotic stress responses in Arabidopsis thaliana. Recent studies have demonstrated that these proteins are also required for acclimation responses to various abiotic stresses, such as high light, UV radiation, drought and cold, and that their function is mediated through secondary messengers, such as salicylic acid (SA), reactive oxygen species (ROS), ethylene (ET) and other signaling molecules. Furthermore, LSD1, EDS1 and PAD4 were recently shown to be involved in the modification of cell walls, and the regulation of seed yield, biomass production and water use efficiency. The function of these proteins was not only demonstrated in model plants, such as Arabidopsis thaliana or Nicotiana benthamiana, but also in the woody plant Populus tremula x tremuloides. In addition, orthologs of LSD1, EDS1, and PAD4 were found in other plant species, including different crop species. In this review, we focus on specific LSD1, EDS1 and PAD4 features that make them potentially important for agricultural and industrial use.
Collapse
Affiliation(s)
- Maciej Jerzy Bernacki
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland
- The Division of Plant Sciences, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| | - Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Magdalena Szechyńska-Hebda
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek Street 21, 30-239 Cracow, Poland
- The Plant Breeding and Acclimatization Institute - National Research Institute, 05-870 Błonie, Radzików, Poland
| | - Ron Mittler
- The Division of Plant Sciences, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland.
| |
Collapse
|
40
|
Zaffagnini M, Fermani S, Marchand CH, Costa A, Sparla F, Rouhier N, Geigenberger P, Lemaire SD, Trost P. Redox Homeostasis in Photosynthetic Organisms: Novel and Established Thiol-Based Molecular Mechanisms. Antioxid Redox Signal 2019; 31:155-210. [PMID: 30499304 DOI: 10.1089/ars.2018.7617] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Redox homeostasis consists of an intricate network of reactions in which reactive molecular species, redox modifications, and redox proteins act in concert to allow both physiological responses and adaptation to stress conditions. Recent Advances: This review highlights established and novel thiol-based regulatory pathways underlying the functional facets and significance of redox biology in photosynthetic organisms. In the last decades, the field of redox regulation has largely expanded and this work is aimed at giving the right credit to the importance of thiol-based regulatory and signaling mechanisms in plants. Critical Issues: This cannot be all-encompassing, but is intended to provide a comprehensive overview on the structural/molecular mechanisms governing the most relevant thiol switching modifications with emphasis on the large genetic and functional diversity of redox controllers (i.e., redoxins). We also summarize the different proteomic-based approaches aimed at investigating the dynamics of redox modifications and the recent evidence that extends the possibility to monitor the cellular redox state in vivo. The physiological relevance of redox transitions is discussed based on reverse genetic studies confirming the importance of redox homeostasis in plant growth, development, and stress responses. Future Directions: In conclusion, we can firmly assume that redox biology has acquired an established significance that virtually infiltrates all aspects of plant physiology.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | - Simona Fermani
- 2 Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Christophe H Marchand
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Alex Costa
- 4 Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Sparla
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | | | - Peter Geigenberger
- 6 Department Biologie I, Ludwig-Maximilians-Universität München, LMU Biozentrum, Martinsried, Germany
| | - Stéphane D Lemaire
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Paolo Trost
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| |
Collapse
|
41
|
Tuzet A, Rahantaniaina MS, Noctor G. Analyzing the Function of Catalase and the Ascorbate-Glutathione Pathway in H 2O 2 Processing: Insights from an Experimentally Constrained Kinetic Model. Antioxid Redox Signal 2019; 30:1238-1268. [PMID: 30044135 DOI: 10.1089/ars.2018.7601] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Plant stress involves redox signaling linked to reactive oxygen species such as hydrogen peroxide (H2O2), which can be generated at high rates in photosynthetic cells. The systems that process H2O2 include catalase (CAT) and the ascorbate-glutathione pathway, but interactions between them remain unclear. Modeling can aid interpretation and pinpoint areas for investigation. Recent Advances: Based on emerging data and concepts, we introduce a new experimentally constrained kinetic model to analyze interactions between H2O2, CAT, ascorbate, glutathione, and NADPH. The sensitivity points required for accurate simulation of experimental observations are analyzed, and the implications for H2O2-linked redox signaling are discussed. CRITICAL ISSUES We discuss several implications of the modeled results, in particular the following. (i) CAT and ascorbate peroxidase can share the load in H2O2 processing even in optimal conditions. (ii) Intracellular H2O2 concentrations more than the low μM range may rarely occur. (iii) Ascorbate redox turnover is largely independent of glutathione until ascorbate peroxidation exceeds a certain value. (iv) NADPH availability may determine glutathione redox status through its influence on monodehydroascorbate reduction. (v) The sensitivity of glutathione status to oxidative stress emphasizes its potential suitability as a sensor of increased H2O2. FUTURE DIRECTIONS Important future questions include the roles of other antioxidative systems in interacting with CAT and the ascorbate-glutathione pathway as well as the nature and significance of processes that achieve redox exchange between different subcellular compartments. Progress in these areas is likely to be favored by integrating kinetic modeling analyses into experimentally based programs, allowing each approach to inform the other.
Collapse
Affiliation(s)
- Andrée Tuzet
- 1 Unité Mixte de Recherche ECOSYS/Pôle BIOCLIMATOLOGIE, INRA-AgroParisTech, Thiverval-Grignon, France
| | - Marie-Sylviane Rahantaniaina
- 1 Unité Mixte de Recherche ECOSYS/Pôle BIOCLIMATOLOGIE, INRA-AgroParisTech, Thiverval-Grignon, France.,2 Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, Université Paris-Sud, CNRS, INRA, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Graham Noctor
- 2 Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, Université Paris-Sud, CNRS, INRA, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Orsay, France
| |
Collapse
|
42
|
Yang Z, Mhamdi A, Noctor G. Analysis of catalase mutants underscores the essential role of CATALASE2 for plant growth and day length-dependent oxidative signalling. PLANT, CELL & ENVIRONMENT 2019; 42:688-700. [PMID: 30291629 DOI: 10.1111/pce.13453] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
Three genes encode catalase in Arabidopsis. Although the role of CAT2 in photorespiration is well established, the importance of the different catalases in other processes is less clear. Analysis of cat1, cat2, cat3, cat1 cat2, and cat2 cat3 T-DNA mutants revealed that cat2 had the largest effect on activity in both roots and leaves. Root growth was inhibited in all cat2-containing lines, but this inhibition was prevented by growing plants at high CO2 , suggesting that it is mainly an indirect effect of stress at the leaf level. Analysis of double mutants suggested some overlap between CAT2 and CAT3 functions in leaves and CAT1 and CAT2 in seeds. When plants had been grown to a similar developmental stage in short days or long days, equal-time exposure to oxidative stress caused by genetic or pharmacological inhibition of catalase produced a much stronger induction of H2 O2 marker genes in short day plants. Together, our data (a) underline the importance of CAT2 in basal H2 O2 processing in Arabidopsis; (b) suggest that CAT1 and CAT3 are mainly "backup" or stress-specific enzymes; and (c) establish that day length-dependent responses to catalase deficiency are independent of the duration of oxidative stress.
Collapse
Affiliation(s)
- Zheng Yang
- Institute of Plant Sciences Paris Saclay IPS2, Université Paris-Sud, CNRS, INRA, Université Evry, Paris Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Orsay, France
| | - Amna Mhamdi
- Institute of Plant Sciences Paris Saclay IPS2, Université Paris-Sud, CNRS, INRA, Université Evry, Paris Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Orsay, France
| | - Graham Noctor
- Institute of Plant Sciences Paris Saclay IPS2, Université Paris-Sud, CNRS, INRA, Université Evry, Paris Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Orsay, France
| |
Collapse
|
43
|
Zhao Y, Li Y, Yin J. Effects of hot air treatment in combination with Pichia guilliermondii on postharvest preservation of peach fruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:647-655. [PMID: 29962027 DOI: 10.1002/jsfa.9229] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Antagonistic yeast and hot air treatment are two promising methods for conferring resistance to pathogenic fungi. The study assessed the effectiveness of hot-air treatment (45 °C, 4 h) and antagonistic yeast (Pichia guilliermondii at 108 CFU mL-1 ) alone or in combination on the two major postharvest diseases (Rhizopus stolonifer and Penicillium expansum), as well as the quality and antioxidant parameters in harvested peaches. RESULTS The combination of hot-air treatment and Pichia guilliermondii had notable inhibitory effects on infections in peach fruit wounds. In addition, the individual hot-air treatment or Pichia guilliermondii could improve quality indexes to varying degrees, but the combination of the above two treatments could achieve the highest efficacy. Furthermore, compared with other groups, the combined treatment induced the highest activities of superoxide dismutase and catalase, improved the content of total phenolics and reduced glutathione most obviously. Lastly, the most significant reductions in malondialdehyde content and relative electrical conductivity were observed in the combination-treated fruit. CONCLUSIONS The combined treatment could control fungal diseases, besides delay the decline of quality and antioxidant parameters, so as to achieve the purpose of fresh keeping for harvested peach fruit. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yanfei Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Jingjing Yin
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
44
|
Sousa RHV, Carvalho FEL, Lima-Melo Y, Alencar VTCB, Daloso DM, Margis-Pinheiro M, Komatsu S, Silveira JAG. Impairment of peroxisomal APX and CAT activities increases protection of photosynthesis under oxidative stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:627-639. [PMID: 30312463 PMCID: PMC6322566 DOI: 10.1093/jxb/ery354] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/03/2018] [Indexed: 05/21/2023]
Abstract
Retrograde signalling pathways that are triggered by changes in cellular redox homeostasis remain poorly understood. Transformed rice plants that are deficient in peroxisomal ascorbate peroxidase APX4 (OsAPX4-RNAi) are known to exhibit more effective protection of photosynthesis against oxidative stress than controls when catalase (CAT) is inhibited, but the mechanisms involved have not been characterized. An in-depth physiological and proteomics analysis was therefore performed on OsAPX4-RNAi CAT-inhibited rice plants. Loss of APX4 function led to an increased abundance of several proteins that are involved in essential metabolic pathways, possibly as a result of increased tissue H2O2 levels. Higher photosynthetic activities observed in the OsAPX4-RNAi plants under CAT inhibition were accompanied by higher levels of Rubisco, higher maximum rates of Rubisco carboxylation, and increased photochemical efficiencies, together with large increases in photosynthesis-related proteins. Large increases were also observed in the levels of proteins involved in the ascorbate/glutathione cycle and in other antioxidant-related pathways, and these changes may be important in the protection of photosynthesis in the OsAPX4-RNAi plants. Large increases in the abundance of proteins localized in the nuclei and mitochondria were also observed, together with increased levels of proteins involved in important cellular pathways, particularly protein translation. Taken together, the results show that OsAPX4-RNAi plants exhibit significant metabolic reprogramming, which incorporates a more effective antioxidant response to protect photosynthesis under conditions of impaired CAT activity.
Collapse
Affiliation(s)
- Rachel H V Sousa
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Fabricio E L Carvalho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Yugo Lima-Melo
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Vicente T C B Alencar
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Danilo M Daloso
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Marcia Margis-Pinheiro
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Joaquim A G Silveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Correspondence:
| |
Collapse
|
45
|
Filiz E, Ozyigit II, Saracoglu IA, Uras ME, Sen U, Yalcin B. Abiotic stress-induced regulation of antioxidant genes in different Arabidopsis ecotypes: microarray data evaluation. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1556120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ertugrul Filiz
- Department of Crop and Animal Production, Cilimli Vocational School, Duzce University, Cilimli, Duzce, Turkey
| | - Ibrahim Ilker Ozyigit
- Department of Biology, Faculty of Science and Arts, Marmara University, Goztepe, Istanbul, Turkey
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Ibrahim Adnan Saracoglu
- Department of Chemistry, Faculty of Science and Arts, Marmara University, Goztepe, Istanbul, Turkey
| | - Mehmet Emin Uras
- Department of Biology, Faculty of Science and Arts, Marmara University, Goztepe, Istanbul, Turkey
| | - Ugur Sen
- Department of Biology, Faculty of Science and Arts, Marmara University, Goztepe, Istanbul, Turkey
| | - Bahattin Yalcin
- Department of Chemistry, Faculty of Science and Arts, Marmara University, Goztepe, Istanbul, Turkey
| |
Collapse
|
46
|
Cao J, Gulyás Z, Kalapos B, Boldizsár Á, Liu X, Pál M, Yao Y, Galiba G, Kocsy G. Identification of a redox-dependent regulatory network of miRNAs and their targets in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:85-99. [PMID: 30260414 DOI: 10.1093/jxb/ery339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
Reactive oxygen species and antioxidants have an important role in the regulation of plant growth and development under both optimal and stress conditions. In this study, we investigate a possible redox control of miRNAs in wheat (Triticum aestivum ssp. aestivum). Treatment of seedlings with 10 mM H2O2 via the roots for 24 h resulted in decreased glutathione content, increased half-cell reduction potential of the glutathione disulphide/glutathione redox pair, and greater ascorbate peroxidase activity compared to the control plants. These changes were accompanied by alterations in the miRNA transcript profile, with 70 miRNAs being identified with at least 1.5-fold difference in their expression between control and treated (0, 3, 6 h) seedlings. Degradome sequencing identified 86 target genes of these miRNAs, and 6722 possible additional target genes were identified using bioinformatics tools. The H2O2-responsiveness of 1647 target genes over 24 h of treatment was also confirmed by transcriptome analysis, and they were mainly found to be related to the control of redox processes, transcription, and protein phosphorylation and degradation. In a time-course experiment (0-24 h of treatment) a correlation was found between the levels of glutathione, other antioxidants, and the transcript levels of the H2O2-responsive miRNAs and their target mRNAs. This relationship together with bioinformatics modelling of the regulatory network indicated glutathione-related redox control of miRNAs and their targets, which allows the adjustment of the metabolism to changing environmental conditions.
Collapse
Affiliation(s)
- Jie Cao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, China
| | - Zsolt Gulyás
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Balázs Kalapos
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Deák Ferenc str. 16., Hungary
| | - Ákos Boldizsár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Xinye Liu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, China
| | - Magda Pál
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, China
| | - Gábor Galiba
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Deák Ferenc str. 16., Hungary
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| |
Collapse
|
47
|
Su T, Li W, Wang P, Ma C. Dynamics of Peroxisome Homeostasis and Its Role in Stress Response and Signaling in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:705. [PMID: 31214223 PMCID: PMC6557986 DOI: 10.3389/fpls.2019.00705] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/13/2019] [Indexed: 05/19/2023]
Abstract
Peroxisomes play vital roles in plant growth, development, and environmental stress response. During plant development and in response to environmental stresses, the number and morphology of peroxisomes are dynamically regulated to maintain peroxisome homeostasis in cells. To execute their various functions in the cell, peroxisomes associate and communicate with other organelles. Under stress conditions, reactive oxygen species (ROS) produced in peroxisomes and other organelles activate signal transduction pathways, in a process known as retrograde signaling, to synergistically regulate defense systems. In this review, we focus on the recent advances in the plant peroxisome field to provide an overview of peroxisome biogenesis, degradation, crosstalk with other organelles, and their role in response to environmental stresses.
Collapse
|
48
|
Gao M, Liu Y, Dong Y, Song Z. Photosynthetic and antioxidant response of wheat to di(2-ethylhexyl) phthalate (DEHP) contamination in the soil. CHEMOSPHERE 2018; 209:258-267. [PMID: 29933162 DOI: 10.1016/j.chemosphere.2018.06.090] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a commonly used, artificially-synthesized, industrial chemical that can be released into the soil. However, to date, there is no comprehensive study on the effects of DEHP on photosynthesis, induction of reactive oxygen species, and response of the antioxidant defense system in wheat plants growing in DEHP contaminated soil. This study was conducted to address this gap in knowledge. Our results showed that after application of 10, 20, and 40 mg/kg DEHP, photosynthetic parameters, fluorescence parameters, and chlorophyll content of wheat leaves at seedling, jointing, and booting stages decreased, while the intercellular carbon dioxide concentration increased. This indicates that the observed decrease in net photosynthetic rate in wheat leaves was due to a non-stomatal limitation, wherein DEHP seems to have hindered the photoelectron transfer process. Both superoxide anion (O2-) and hydrogen peroxide (H2O2) content increased in the roots, stems, and leaves in plant under DEHP treatment compared with those in the control plants. Antioxidant enzyme activity increased with increasing DEHP stress, except under the 40 mg/kg treatment at the seedling stage. The antioxidant system had a certain protective effect on wheat, but DEHP still caused peroxidation of cell membrane lipids. The extent of DEHP damage to the roots, stems, and leaves was concentration dependent. Furthermore, enzymatic activity tolerance increased with metabolism, and long-term effects of DEHP gradually decreased with plant growth. Finally, the toxic effects of DEHP on root tissues were more serious at the seedling and jointing stages.
Collapse
Affiliation(s)
- Minling Gao
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, No. 399 Binshui West Road, Xiqing District, Tianjin 300387, China; Stockbridge School of Agriculture College of Natural Sciences University of Masschusetts, Amherst, USA
| | - Yu Liu
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, No. 399 Binshui West Road, Xiqing District, Tianjin 300387, China
| | - Youming Dong
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, No. 399 Binshui West Road, Xiqing District, Tianjin 300387, China
| | - Zhengguo Song
- Agro-Environmental Protection Institute, Ministry of Agriculture of China, Tianjin 300191, China.
| |
Collapse
|
49
|
Du X, Ren X, Wang L, Yang K, Xin G, Jia G, Ni X, Liu W. Calcium oxalate degradation is involved in aerenchyma formation in Typha angustifolia leaves. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:922-934. [PMID: 32291056 DOI: 10.1071/fp17349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/05/2018] [Indexed: 06/11/2023]
Abstract
Typha angustifolia L. (Typhaceae) is an emergent aquatic plant, and aerenchyma is formed through cell lysis in its leaves. The developing aerenchyma of T. angustifolia contains many CaOx crystals (raphides). Oxalate oxidase (OXO) (oxalate:oxygen oxidoreductase, EC1.2.3.4) can degrades calcium oxalate to carbon dioxide and hydrogen peroxide (H2O2). High level of H2O2 acts as a key inducer for different types of developmentally and environmentally programmed cell death (PCD) and can promote the formation of aerenchyma. Therefore, the objective of this study was to describe the relationship between aerenchyma formation and the degradation of CaOx crystals. Light and transmission electron microscopy (TEM) results showed that CaOx crystals occurred between PCD-susceptible cells in the early phase of aerenchyma formation, and those cells and CaOx crystals were degraded at aerenchyma maturation. Cytochemical localisation was used to detect H2O2, and H2O2 was found in crystal idioblasts. In addition, the oxalate content, H2O2 content and OXO activity were determined. The results showed that the concentration of oxalate was the highest in the third cavity formation stage and the H2O2 concentration was also highest at this stage. Meanwhile, the activity of OXO was also high in the third cavity formation stage. TpOXO was highly expressed during the CaOx crystal degradation period by quantitative real-time PCR analysis. These results show that the degradation of CaOx crystals is involved in the regulation of the PCD process of aerenchyma. This study will contribute to understanding the changes in CaOx crystals during the formation of aerenchyma in T. angustifolia.
Collapse
Affiliation(s)
- Xiaomin Du
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Xiaolong Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Lingli Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Ke Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Guiliang Xin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Guolun Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Xilu Ni
- State Key Laboratory of Seedling Bioengineering, Ningxia Forestry Institute, Yinchuan, 750004, China
| | - Wenzhe Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| |
Collapse
|
50
|
Mullineaux PM, Exposito-Rodriguez M, Laissue PP, Smirnoff N. ROS-dependent signalling pathways in plants and algae exposed to high light: Comparisons with other eukaryotes. Free Radic Biol Med 2018; 122:52-64. [PMID: 29410363 DOI: 10.1016/j.freeradbiomed.2018.01.033] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/27/2018] [Accepted: 01/31/2018] [Indexed: 01/09/2023]
Abstract
Like all aerobic organisms, plants and algae co-opt reactive oxygen species (ROS) as signalling molecules to drive cellular responses to changes in their environment. In this respect, there is considerable commonality between all eukaryotes imposed by the constraints of ROS chemistry, similar metabolism in many subcellular compartments, the requirement for a high degree of signal specificity and the deployment of thiol peroxidases as transducers of oxidising equivalents to regulatory proteins. Nevertheless, plants and algae carry out specialised signalling arising from oxygenic photosynthesis in chloroplasts and photoautotropism, which often induce an imbalance between absorption of light energy and the capacity to use it productively. A key means of responding to this imbalance is through communication of chloroplasts with the nucleus to adjust cellular metabolism. Two ROS, singlet oxygen (1O2) and hydrogen peroxide (H2O2), initiate distinct signalling pathways when photosynthesis is perturbed. 1O2, because of its potent reactivity means that it initiates but does not transduce signalling. In contrast, the lower reactivity of H2O2 means that it can also be a mobile messenger in a spatially-defined signalling pathway. How plants translate a H2O2 message to bring about changes in gene expression is unknown and therefore, we draw on information from other eukaryotes to propose a working hypothesis. The role of these ROS generated in other subcellular compartments of plant cells in response to HL is critically considered alongside other eukaryotes. Finally, the responses of animal cells to oxidative stress upon high irradiance exposure is considered for new comparisons between plant and animal cells.
Collapse
Affiliation(s)
- Philip M Mullineaux
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| | | | | | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|