1
|
Jagadeesan K, Krishnan N, Sirari A, Mohindru B, Dhkal M. Variable infection mechanisms of mungbean yellow mosaic India virus in diverse Vigna species: New insights from differential gene expression. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:153-162. [PMID: 39901952 PMCID: PMC11787106 DOI: 10.1007/s12298-025-01547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/02/2024] [Accepted: 01/01/2025] [Indexed: 02/05/2025]
Abstract
The extent of viral infection significantly shapes disease susceptibility. Yellow mosaic disease induced by the begomovirus pathogen mungbean yellow mosaic India virus (MYMIV), revealed varying infection levels in both compatible and incompatible interactions across three distinct Vigna species such black gram, green gram, and rice bean. Differential gene expression analysis focused on MYMIV coat protein (AV1) and replication protein (AC1) highlighted elevated AV1 expression in the susceptible green gram genotype SML1082 compared to the black gram genotype KUG253. Conversely, AC1 showed higher expression in black gram than green gram, illustrating complex infection mechanisms among compatible MYMIV-Vigna interactions. A novel infection pathway, termed "Lack of Efficient Assembly (LEA)," has been hypothesized in MYMIV-Vigna interactions. Additionally, a whitefly-mediated artificial transmission model for begomoviruses, named Transparent Airflow Stress-free Container (TASC), has been designed and demonstrated for the efficient transmission of MYMIV. This study enhances the understanding of begomovirus infection dynamics in diverse Vigna species, offering insights into disease management strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-025-01547-9.
Collapse
Affiliation(s)
- Kuppuraj Jagadeesan
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Nagendran Krishnan
- Molecular Virology Lab, ICAR-National Research Centre for Banana, Tiruchirappalli, Tamil Nadu 620102 India
| | - Asmita Sirari
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Bharathi Mohindru
- Department of Entomology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Manmohan Dhkal
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| |
Collapse
|
2
|
Hoh D, Froehlich JE, Kramer DM. Redox regulation in chloroplast thylakoid lumen: The pmf changes everything, again. PLANT, CELL & ENVIRONMENT 2024; 47:2749-2765. [PMID: 38111217 DOI: 10.1111/pce.14789] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023]
Abstract
Photosynthesis is the foundation of life on Earth. However, if not well regulated, it can also generate excessive reactive oxygen species (ROS), which can cause photodamage. Regulation of photosynthesis is highly dynamic, responding to both environmental and metabolic cues, and occurs at many levels, from light capture to energy storage and metabolic processes. One general mechanism of regulation involves the reversible oxidation and reduction of protein thiol groups, which can affect the activity of enzymes and the stability of proteins. Such redox regulation has been well studied in stromal enzymes, but more recently, evidence has emerged of redox control of thylakoid lumenal enzymes. This review/hypothesis paper summarizes the latest research and discusses several open questions and challenges to achieving effective redox control in the lumen, focusing on the distinct environments and regulatory components of the thylakoid lumen, including the need to transport electrons across the thylakoid membrane, the effects of pH changes by the proton motive force (pmf) in the stromal and lumenal compartments, and the observed differences in redox states. These constraints suggest that activated oxygen species are likely to be major regulatory contributors to lumenal thiol redox regulation, with key components and processes yet to be discovered.
Collapse
Affiliation(s)
- Donghee Hoh
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - John E Froehlich
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - David M Kramer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Marzorati F, Rossi R, Bernardo L, Mauri P, Silvestre DD, Lauber E, Noël LD, Murgia I, Morandini P. Arabidopsis thaliana Early Foliar Proteome Response to Root Exposure to the Rhizobacterium Pseudomonas simiae WCS417. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:737-748. [PMID: 37470457 DOI: 10.1094/mpmi-05-23-0071-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Pseudomonas simiae WCS417 is a plant growth-promoting rhizobacterium that improves plant health and development. In this study, we investigate the early leaf responses of Arabidopsis thaliana to WCS417 exposure and the possible involvement of formate dehydrogenase (FDH) in such responses. In vitro-grown A. thaliana seedlings expressing an FDH::GUS reporter show a significant increase in FDH promoter activity in their roots and shoots after 7 days of indirect exposure (without contact) to WCS417. After root exposure to WCS417, the leaves of FDH::GUS plants grown in the soil also show an increased FDH promoter activity in hydathodes. To elucidate early foliar responses to WCS417 as well as FDH involvement, the roots of A. thaliana wild-type Col and atfdh1-5 knock-out mutant plants grown in soil were exposed to WCS417, and proteins from rosette leaves were subjected to proteomic analysis. The results reveal that chloroplasts, in particular several components of the photosystems PSI and PSII, as well as members of the glutathione S-transferase family, are among the early targets of the metabolic changes induced by WCS417. Taken together, the alterations in the foliar proteome, as observed in the atfdh1-5 mutant, especially after exposure to WCS417 and involving stress-responsive genes, suggest that FDH is a node in the early events triggered by the interactions between A. thaliana and the rhizobacterium WCS417. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Francesca Marzorati
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Rossana Rossi
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Letizia Bernardo
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Pierluigi Mauri
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Dario Di Silvestre
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Emmanuelle Lauber
- Laboratoire des interactions plantes-microbes-environnement CNRS-INRAE, University of Toulouse, Castanet-Tolosan, France
| | - Laurent D Noël
- Laboratoire des interactions plantes-microbes-environnement CNRS-INRAE, University of Toulouse, Castanet-Tolosan, France
| | - Irene Murgia
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Piero Morandini
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Ojosnegros S, Alvarez JM, Grossmann J, Gagliardini V, Quintanilla LG, Grossniklaus U, Fernández H. Proteome and Interactome Linked to Metabolism, Genetic Information Processing, and Abiotic Stress in Gametophytes of Two Woodferns. Int J Mol Sci 2023; 24:12429. [PMID: 37569809 PMCID: PMC10419320 DOI: 10.3390/ijms241512429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Ferns and lycophytes have received scant molecular attention in comparison to angiosperms. The advent of high-throughput technologies allowed an advance towards a greater knowledge of their elusive genomes. In this work, proteomic analyses of heart-shaped gametophytes of two ferns were performed: the apomictic Dryopteris affinis ssp. affinis and its sexual relative Dryopteris oreades. In total, a set of 218 proteins shared by these two gametophytes were analyzed using the STRING database, and their proteome associated with metabolism, genetic information processing, and responses to abiotic stress is discussed. Specifically, we report proteins involved in the metabolism of carbohydrates, lipids, and nucleotides, the biosynthesis of amino acids and secondary compounds, energy, oxide-reduction, transcription, translation, protein folding, sorting and degradation, and responses to abiotic stresses. The interactome of this set of proteins represents a total network composed of 218 nodes and 1792 interactions, obtained mostly from databases and text mining. The interactions among the identified proteins of the ferns D. affinis and D. oreades, together with the description of their biological functions, might contribute to a better understanding of the function and development of ferns as well as fill knowledge gaps in plant evolution.
Collapse
Affiliation(s)
- Sara Ojosnegros
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain; (S.O.); (J.M.A.)
| | - José Manuel Alvarez
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain; (S.O.); (J.M.A.)
| | - Jonas Grossmann
- Functional Genomic Center Zurich, University and ETH Zurich, 8092 Zurich, Switzerland;
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Valeria Gagliardini
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland; (V.G.); (U.G.)
| | - Luis G. Quintanilla
- Department of Biology and Geology, Physics and Inorganic Chemistry, University Rey Juan Carlos, 28933 Móstoles, Spain;
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland; (V.G.); (U.G.)
| | - Helena Fernández
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain; (S.O.); (J.M.A.)
| |
Collapse
|
5
|
Széles E, Kuntam S, Vidal-meireles A, Nagy V, Nagy K, ÁBrahám Á, Kovács L, Tóth S. Single-cell microfluidics in combination with chlorophyll a fluorescence measurements to assess the lifetime of the Chlamydomonas PSBO protein. PHOTOSYNTHETICA 2023; 61:417-424. [PMID: 39649489 PMCID: PMC11586836 DOI: 10.32615/ps.2023.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/11/2023] [Indexed: 12/10/2024]
Abstract
PSBO is an essential subunit of the oxygen-evolving complex and we recently demonstrated that its lifetime depends on environmental conditions in Chlamydomonas reinhardtii. To assess PSBO lifetime with a high time resolution, we employed (1) a microfluidic platform enabling the trapping of single cells and the parallel measurement of photosynthetic activity, and (2) a nitrate-inducible PSBO amiRNA line. Our microfluidic platform allowed the rapid replacement of the nutrient solution necessary for induction. It also enabled the precise monitoring of the decline in the Fv/Fm value, reflecting PSBO loss. We found that in the dark, at medium and high light intensity, the Fv/Fm value decreased with halftimes of about 25, 12.5, and 5 h, respectively. We also observed that photosynthetic activity was better sustained upon carbon limitation. In the absence of acetate, the halftimes of Fv/Fm diminishment doubled to quadrupled compared with the control, acetate-supplied cultures.
Collapse
Affiliation(s)
- E. Széles
- Institute of Plant Biology, Biological Research Centre, Szeged, H-6726 Szeged, Hungary
- Doctoral School of Biology, University of Szeged, H-6722 Szeged, Hungary
| | - S. Kuntam
- Institute of Plant Biology, Biological Research Centre, Szeged, H-6726 Szeged, Hungary
| | - A. Vidal-meireles
- Institute of Plant Biology, Biological Research Centre, Szeged, H-6726 Szeged, Hungary
| | - V. Nagy
- Institute of Plant Biology, Biological Research Centre, Szeged, H-6726 Szeged, Hungary
| | - K. Nagy
- Institute of Biophysics, Biological Research Centre, Szeged, H-6726 Szeged, Hungary
| | - Á. ÁBrahám
- Institute of Biophysics, Biological Research Centre, Szeged, H-6726 Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, H-6720 Szeged, Hungary
| | - L. Kovács
- Institute of Plant Biology, Biological Research Centre, Szeged, H-6726 Szeged, Hungary
| | - S.Z. Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, H-6726 Szeged, Hungary
| |
Collapse
|
6
|
Jiang T, Zhou T. Unraveling the Mechanisms of Virus-Induced Symptom Development in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2830. [PMID: 37570983 PMCID: PMC10421249 DOI: 10.3390/plants12152830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Plant viruses, as obligate intracellular parasites, induce significant changes in the cellular physiology of host cells to facilitate their multiplication. These alterations often lead to the development of symptoms that interfere with normal growth and development, causing USD 60 billion worth of losses per year, worldwide, in both agricultural and horticultural crops. However, existing literature often lacks a clear and concise presentation of the key information regarding the mechanisms underlying plant virus-induced symptoms. To address this, we conducted a comprehensive review to highlight the crucial interactions between plant viruses and host factors, discussing key genes that increase viral virulence and their roles in influencing cellular processes such as dysfunction of chloroplast proteins, hormone manipulation, reactive oxidative species accumulation, and cell cycle control, which are critical for symptom development. Moreover, we explore the alterations in host metabolism and gene expression that are associated with virus-induced symptoms. In addition, the influence of environmental factors on virus-induced symptom development is discussed. By integrating these various aspects, this review provides valuable insights into the complex mechanisms underlying virus-induced symptoms in plants, and emphasizes the urgency of addressing viral diseases to ensure sustainable agriculture and food production.
Collapse
Affiliation(s)
| | - Tao Zhou
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Mehrez M, Romand S, Field B. New perspectives on the molecular mechanisms of stress signalling by the nucleotide guanosine tetraphosphate (ppGpp), an emerging regulator of photosynthesis in plants and algae. THE NEW PHYTOLOGIST 2023; 237:1086-1099. [PMID: 36349398 PMCID: PMC10107265 DOI: 10.1111/nph.18604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The nucleotides guanosine tetraphosphate and guanosine pentaphosphate (together (p)ppGpp) are found in a wide range of prokaryotic and eukaryotic organisms where they are associated with stress signalling. In this review, we will discuss recent research highlighting the role of (p)ppGpp signalling as a conserved regulator of photosynthetic activity in the chloroplasts of plants and algae, and the latest discoveries that open up new perspectives on the emerging roles of (p)ppGpp in acclimation to environmental stress. We explore how rapid advances in the study of (p)ppGpp signalling in prokaryotes are now revealing large gaps in our understanding of the molecular mechanisms of signalling by (p)ppGpp and related nucleotides in plants and algae. Filling in these gaps is likely to lead to the discovery of conserved as well as new plant- and algal-specific (p)ppGpp signalling mechanisms that will offer new insights into the taming of the chloroplast and the regulation of stress tolerance.
Collapse
Affiliation(s)
- Marwa Mehrez
- Aix‐Marseille University, CEA, CNRS, BIAM, UMR726513009MarseilleFrance
- Faculty of Sciences of Tunis, Laboratory of Molecular Genetics, Immunology and BiotechnologyUniversity of Tunis El Manar2092TunisTunisia
| | - Shanna Romand
- Aix‐Marseille University, CEA, CNRS, BIAM, UMR726513009MarseilleFrance
| | - Ben Field
- Aix‐Marseille University, CEA, CNRS, BIAM, UMR726513009MarseilleFrance
| |
Collapse
|
8
|
Vidal‐Meireles A, Kuntam S, Széles E, Tóth D, Neupert J, Bock R, Tóth SZ. The lifetime of the oxygen-evolving complex subunit PSBO depends on light intensity and carbon availability in Chlamydomonas. PLANT, CELL & ENVIRONMENT 2023; 46:422-439. [PMID: 36320098 PMCID: PMC10100022 DOI: 10.1111/pce.14481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
PSBO is essential for the assembly of the oxygen-evolving complex in plants and green algae. Despite its importance, we lack essential information on its lifetime and how it depends on the environmental conditions. We have generated nitrate-inducible PSBO amiRNA lines in the green alga Chlamydomonas reinhardtii. Transgenic strains grew normally under non-inducing conditions, and their photosynthetic performance was comparable to the control strain. Upon induction of the PSBO amiRNA constructs, cell division halted. In acetate-containing medium, cellular PSBO protein levels decreased by 60% within 24 h in the dark, by 75% in moderate light, and in high light, the protein completely degraded. Consequently, the photosynthetic apparatus became strongly damaged, probably due to 'donor-side-induced photoinhibition', and cellular ultrastructure was also severely affected. However, in the absence of acetate during induction, PSBO was remarkably stable at all light intensities and less substantial changes occurred in photosynthesis. Our results demonstrate that the lifetime of PSBO strongly depends on the light intensity and carbon availability, and thus, on the metabolic status of the cells. We also confirm that PSBO is required for photosystem II stability in C. reinhardtii and demonstrate that its specific loss also entails substantial changes in cell morphology and cell cycle.
Collapse
Affiliation(s)
- André Vidal‐Meireles
- Laboratory for Molecular Photobioenergetics, Biological Research CentreInstitute of Plant BiologySzegedHungary
- Present address:
Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms‐Universität Münster (WWU)MünsterGermany
| | - Soujanya Kuntam
- Laboratory for Molecular Photobioenergetics, Biological Research CentreInstitute of Plant BiologySzegedHungary
| | - Eszter Széles
- Laboratory for Molecular Photobioenergetics, Biological Research CentreInstitute of Plant BiologySzegedHungary
- Doctoral School of BiologyUniversity of SzegedSzegedHungary
| | - Dávid Tóth
- Laboratory for Molecular Photobioenergetics, Biological Research CentreInstitute of Plant BiologySzegedHungary
- Doctoral School of BiologyUniversity of SzegedSzegedHungary
| | - Juliane Neupert
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Szilvia Z. Tóth
- Laboratory for Molecular Photobioenergetics, Biological Research CentreInstitute of Plant BiologySzegedHungary
| |
Collapse
|
9
|
Xiao K, Qiao K, Cui W, Xu X, Pan H, Wang F, Wang S, Yang F, Xuan Y, Li A, Han X, Song Z, Liu J. Comparative transcriptome profiling reveals the importance of GmSWEET15 in soybean susceptibility to Sclerotinia sclerotiorum. Front Microbiol 2023; 14:1119016. [PMID: 36778863 PMCID: PMC9909833 DOI: 10.3389/fmicb.2023.1119016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Soybean sclerotinia stem rot (SSR) is a disease caused by Sclerotinia sclerotiorum that causes incalculable losses in soybean yield each year. Considering the lack of effective resistance resources and the elusive resistance mechanisms, we are urged to develop resistance genes and explore their molecular mechanisms. Here, we found that loss of GmSWEET15 enhanced the resistance to S. sclerotiorum, and we explored the molecular mechanisms by which gmsweet15 mutant exhibit enhanced resistance to S. sclerotiorum by comparing transcriptome. At the early stage of inoculation, the wild type (WT) showed moderate defense response, whereas gmsweet15 mutant exhibited more extensive and intense transcription reprogramming. The gmsweet15 mutant enriched more biological processes, including the secretory pathway and tetrapyrrole metabolism, and it showed stronger changes in defense response, protein ubiquitination, MAPK signaling pathway-plant, plant-pathogen interaction, phenylpropanoid biosynthesis, and photosynthesis. The more intense and abundant transcriptional reprogramming of gmsweet15 mutant may explain how it effectively delayed colonization by S. sclerotiorum. In addition, we identified common and specific differentially expressed genes between WT and gmsweet15 mutant after inoculation with S. sclerotiorum, and gene sets and genes related to gmsweet15_24 h were identified through Gene Set Enrichment Analysis. Moreover, we constructed the protein-protein interaction network and gene co-expression networks and identified several groups of regulatory networks of gmsweet15 mutant in response to S. sclerotiorum, which will be helpful for the discovery of candidate functional genes. Taken together, our results elucidate molecular mechanisms of delayed colonization by S. sclerotiorum after loss of GmSWEET15 in soybean, and we propose novel resources for improving resistance to SSR.
Collapse
Affiliation(s)
- Kunqin Xiao
- College of Plant Sciences, Jilin University, Changchun, China
| | - Kaibin Qiao
- College of Plant Sciences, Jilin University, Changchun, China
| | - Wenjing Cui
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xun Xu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| | - Fengting Wang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Shoudong Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Feng Yang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Anmo Li
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xiao Han
- College of Plant Sciences, Jilin University, Changchun, China
| | - Zhuojian Song
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China,*Correspondence: Jinliang Liu,
| |
Collapse
|
10
|
Transcriptome analysis of mulberry (Morus alba L.) leaves to identify differentially expressed genes associated with post-harvest shelf-life elongation. Sci Rep 2022; 12:18195. [PMID: 36307466 PMCID: PMC9616847 DOI: 10.1038/s41598-022-21828-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/04/2022] [Indexed: 12/31/2022] Open
Abstract
Present study deals with molecular expression patterns responsible for post-harvest shelf-life extension of mulberry leaves. Quantitative profiling showed retention of primary metabolite and accumulation of stress markers in NS7 and CO7 respectively. The leaf mRNA profiles was sequenced using the Illumina platform to identify DEGs. A total of 3413 DEGs were identified between the treatments. Annotation with Arabidopsis database has identified 1022 DEGs unigenes. STRING generated protein-protein interaction, identified 1013 DEGs nodes with p < 1.0e-16. KEGG classifier has identified genes and their participating biological processes. MCODE and BiNGO detected sub-networking and ontological enrichment, respectively at p ≤ 0.05. Genes associated with chloroplast architecture, photosynthesis, detoxifying ROS and RCS, and innate-immune response were significantly up-regulated, responsible for extending shelf-life in NS7. Loss of storage sucrose, enhanced activity of senescence-related hormones, accumulation of xenobiotics, and development of osmotic stress inside tissue system was the probable reason for tissue deterioration in CO7. qPCR validation of DEGs was in good agreement with RNA sequencing results, indicating the reliability of the sequencing platform. Present outcome provides a molecular insight regarding involvement of genes in self-life extension, which might help the sericulture industry to overcome their pre-existing problems related to landless farmers and larval feeding during monsoon.
Collapse
|
11
|
Penzler JF, Marino G, Reiter B, Kleine T, Naranjo B, Leister D. Commonalities and specialties in photosynthetic functions of PROTON GRADIENT REGULATION5 variants in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:1866-1882. [PMID: 35946785 PMCID: PMC9614465 DOI: 10.1093/plphys/kiac362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/13/2022] [Indexed: 05/19/2023]
Abstract
The PROTON GRADIENT REGULATION5 (PGR5) protein is required for trans-thylakoid proton gradient formation and acclimation to fluctuating light (FL). PGR5 functionally interacts with two other thylakoid proteins, PGR5-like 1 (PGRL1) and 2 (PGRL2); however, the molecular details of these interactions are largely unknown. In the Arabidopsis (Arabidopsis thaliana) pgr5-1 mutant, the PGR5G130S protein accumulates in only small amounts. In this work, we generated a knockout allele of PGR5 (pgr5-Cas) using CRISPR-Cas9 technology. Like pgr5-1, pgr5-Cas is seedling-lethal under FL, but photosynthesis and particularly cyclic electron flow, as well as chlorophyll content, are less severely affected in both pgr5-Cas and pgrl1ab (which lacks PGRL1 and PGR5) than in pgr5-1. These differences are associated with changes in the levels of 260 proteins, including components of the Calvin-Benson cycle, photosystems II and I, and the NDH complex, in pgr5-1 relative to the wild type (WT), pgr5-Cas, and pgrl1ab. Some of the differences between pgr5-1 and the other mutant lines could be tentatively assigned to second-site mutations in the pgr5-1 line, identified by whole-genome sequencing. However, others, particularly the more pronounced photosynthetic defects and PGRL1 depletion (compared to pgr5-Cas), are clearly due to specific negative effects of the amino-acid substitution in PGR5G130S, as demonstrated by complementation analysis. Moreover, pgr5-1 and pgr5-Cas plants are less tolerant to long-term exposure to high light than pgrl1ab plants. These results imply that, in addition to the previously reported necessity of PGRL1 for optimal PGR5 function, PGR5 is required alongside PGRL1 to avoid harmful effects on plant performance.
Collapse
Affiliation(s)
| | | | - Bennet Reiter
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
| | | | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
12
|
Cai WH, Zheng XQ, Liang YR. High-Light-Induced Degradation of Photosystem II Subunits’ Involvement in the Albino Phenotype in Tea Plants. Int J Mol Sci 2022; 23:ijms23158522. [PMID: 35955658 PMCID: PMC9369412 DOI: 10.3390/ijms23158522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
The light-sensitive (LS) albino tea plant grows albinic shoots lacking chlorophylls (Chls) under high-light (HL) conditions, and the albinic shoots re-green under low light (LL) conditions. The albinic shoots contain a high level of amino acids and are preferential materials for processing quality green tea. The young plants of the albino tea cultivars are difficult to be cultivated owing to lacking Chls. The mechanisms of the tea leaf bleaching and re-greening are unknown. We detected the activity and composition of photosystem II (PSII) subunits in LS albino tea cultivar “Huangjinya” (HJY), with a normal green-leaf cultivar “Jinxuan” (JX) as control so as to find the relationship of PSII impairment to the albino phenotype in tea. The PSII of HJY is more vulnerable to HL-stress than JX. HL-induced degradation of PSII subunits CP43, CP47, PsbP, PsbR. and light-harvest chlorophyll–protein complexes led to the exposure and degradation of D1 and D2, in which partial fragments of the degraded subunits were crosslinked to form larger aggregates. Two copies of subunits PsbO, psbN, and Lhcb1 were expressed in response to HL stress. The cDNA sequencing of CP43 shows that there is no difference in sequences of PsbC cDNA and putative amino acids of CP43 between HJY and JX. The de novo synthesis and/or repair of PSII subunits is considered to be involved in the impairment of PSII complexes, and the latter played a predominant role in the albino phenotype in the LS albino tea plant.
Collapse
|
13
|
Graça AT, Hall M, Persson K, Schröder WP. High-resolution model of Arabidopsis Photosystem II reveals the structural consequences of digitonin-extraction. Sci Rep 2021; 11:15534. [PMID: 34330992 PMCID: PMC8324835 DOI: 10.1038/s41598-021-94914-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022] Open
Abstract
In higher plants, the photosynthetic process is performed and regulated by Photosystem II (PSII). Arabidopsis thaliana was the first higher plant with a fully sequenced genome, conferring it the status of a model organism; nonetheless, a high-resolution structure of its Photosystem II is missing. We present the first Cryo-EM high-resolution structure of Arabidopsis PSII supercomplex with average resolution of 2.79 Å, an important model for future PSII studies. The digitonin extracted PSII complexes demonstrate the importance of: the LHG2630-lipid-headgroup in the trimerization of the light-harvesting complex II; the stabilization of the PsbJ subunit and the CP43-loop E by DGD520-lipid; the choice of detergent for the integrity of membrane protein complexes. Furthermore, our data shows at the anticipated Mn4CaO5-site a single metal ion density as a reminiscent early stage of Photosystem II photoactivation.
Collapse
Affiliation(s)
- André T Graça
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Michael Hall
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Karina Persson
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | | |
Collapse
|
14
|
Modulation of photosynthesis and other proteins during water-stress. Mol Biol Rep 2021; 48:3681-3693. [PMID: 33856605 DOI: 10.1007/s11033-021-06329-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/31/2021] [Indexed: 10/25/2022]
Abstract
Protein changes under drought or water stress conditions have been widely investigated. These investigations have given us enormous understanding of how drought is manifested in plants and how plants respond and adopt to such conditions. Chlorophyll fluoroescence, gas exchange, OMICS, biochemical and molecular analyses have shed light on regulation of physiology and photosynthesis of plants under drought. Use of proteomics has greatly increased the repertoire of drought-associated proteins which nevertheless, need to be investigated for their mechanistic and functional roles. Roles of such proteins have been succinctly discussed in various review articles, however more information on their functional role in countering drought is needed. In this review, recent developments in the field, alterations in the abundance of plant proteins in response to drought, monitored through numerous proteomic and immuno-blot analyses, and how these could affect plants growth and development, are discussed.
Collapse
|
15
|
Podmaniczki A, Nagy V, Vidal-Meireles A, Tóth D, Patai R, Kovács L, Tóth SZ. Ascorbate inactivates the oxygen-evolving complex in prolonged darkness. PHYSIOLOGIA PLANTARUM 2021; 171:232-245. [PMID: 33215703 DOI: 10.1111/ppl.13278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Ascorbate (Asc, vitamin C) is an essential metabolite participating in multiple physiological processes of plants, including environmental stress management and development. In this study, we acquired knowledge on the role of Asc in dark-induced leaf senescence using Arabidopsis thaliana as a model organism. One of the earliest effects of prolonged darkness is the inactivation of oxygen-evolving complexes (OEC) as demonstrated here by fast chlorophyll a fluorescence and thermoluminescence measurements. We found that inactivation of OEC due to prolonged darkness was attenuated in the Asc-deficient vtc2-4 mutant. On the other hand, the severe photosynthetic phenotype of a psbo1 knockout mutant, lacking the major extrinsic OEC subunit PSBO1, was further aggravated upon a 24-h dark treatment. The psbr mutant, devoid of the PSBR subunit of OEC, performed only slightly disturbed photosynthetic activity under normal growth conditions, whereas it showed a strongly diminished B thermoluminescence band upon dark treatment. We have also generated a double psbo1 vtc2 mutant, and it showed a slightly milder photosynthetic phenotype than the single psbo1 mutant. Our results, therefore, suggest that Asc leads to the inactivation of OEC in prolonged darkness by over-reducing the Mn-complex that is probably enabled by a dark-induced dissociation of the extrinsic OEC subunits. Our study is an example that Asc may negatively affect certain cellular processes and thus its concentration and localization need to be highly controlled.
Collapse
Affiliation(s)
- Anna Podmaniczki
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Valéria Nagy
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | | | - Dávid Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Roland Patai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
16
|
Rantala M, Rantala S, Aro EM. Composition, phosphorylation and dynamic organization of photosynthetic protein complexes in plant thylakoid membrane. Photochem Photobiol Sci 2021; 19:604-619. [PMID: 32297616 DOI: 10.1039/d0pp00025f] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The photosystems (PS), catalyzing the photosynthetic reactions of higher plants, are unevenly distributed in the thylakoid membrane: PSII, together with its light harvesting complex (LHC)II, is enriched in the appressed grana stacks, while PSI-LHCI resides in the non-appressed stroma thylakoids, which wind around the grana stacks. The two photosystems interact in a third membrane domain, the grana margins, which connect the grana and stroma thylakoids and allow the loosely bound LHCII to serve as an additional antenna for PSI. The light harvesting is balanced by reversible phosphorylation of LHCII proteins. Nevertheless, light energy also damages PSII and the repair process is regulated by reversible phosphorylation of PSII core proteins. Here, we discuss the detailed composition and organization of PSII-LHCII and PSI-LHCI (super)complexes in the thylakoid membrane of angiosperm chloroplasts and address the role of thylakoid protein phosphorylation in dynamics of the entire protein complex network of the photosynthetic membrane. Finally, we scrutinize the phosphorylation-dependent dynamics of the protein complexes in context of thylakoid ultrastructure and present a model on the reorganization of the entire thylakoid network in response to changes in thylakoid protein phosphorylation.
Collapse
Affiliation(s)
- Marjaana Rantala
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520, Turku, Finland
| | - Sanna Rantala
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520, Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520, Turku, Finland.
| |
Collapse
|
17
|
Huang WL, Wu FL, Huang HY, Huang WT, Deng CL, Yang LT, Huang ZR, Chen LS. Excess Copper-Induced Alterations of Protein Profiles and Related Physiological Parameters in Citrus Leaves. PLANTS (BASEL, SWITZERLAND) 2020; 9:E291. [PMID: 32121140 PMCID: PMC7154894 DOI: 10.3390/plants9030291] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 01/31/2023]
Abstract
This present study examined excess copper (Cu) effects on seedling growth, leaf Cu concentration, gas exchange, and protein profiles identified by a two-dimensional electrophoresis (2-DE) based mass spectrometry (MS) approach after Citrus sinensis and Citrus grandis seedlings were treated for six months with 0.5 (control), 200, 300, or 400 μM CuCl2. Forty-one and 37 differentially abundant protein (DAP) spots were identified in Cu-treated C. grandis and C. sinensis leaves, respectively, including some novel DAPs that were not reported in leaves and/or roots. Most of these DAPs were identified only in C. grandis or C. sinensis leaves. More DAPs increased in abundances than DAPs decreased in abundances were observed in Cu-treated C. grandis leaves, but the opposite was true in Cu-treated C. sinensis leaves. Over 50% of DAPs were associated with photosynthesis, carbohydrate, and energy metabolism. Cu-toxicity-induced reduction in leaf CO2 assimilation might be caused by decreased abundances of proteins related to photosynthetic electron transport chain (PETC) and CO2 assimilation. Cu-effects on PETC were more pronounced in C. sinensis leaves than in C. grandis leaves. DAPs related to antioxidation and detoxification, protein folding and assembly (viz., chaperones and folding catalysts), and signal transduction might be involved in Citrus Cu-toxicity and Cu-tolerance.
Collapse
Affiliation(s)
- Wei-Lin Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Feng-Lin Wu
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Hui-Yu Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Wei-Tao Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Chong-Ling Deng
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin 541004, China; (C.-L.D.); (Z.-R.H.)
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Zeng-Rong Huang
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin 541004, China; (C.-L.D.); (Z.-R.H.)
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- The Higher Education Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
18
|
Ševčíková H, Mašková P, Lipavská H. Root cultures of potato mutant lacking MSPI isoform, indispensable for photosynthetic light reactions, exhibit characteristics similar to intact plant roots. JOURNAL OF PLANT PHYSIOLOGY 2020; 245:153091. [PMID: 31887556 DOI: 10.1016/j.jplph.2019.153091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/20/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
Potato (Solanum tuberosum) mutant (ST) lacking one isoform of manganese-stabilizing protein (MSPI) of photosystem II exhibited besides spontaneous tuberization also growth changes with strongly impaired root system development. Previous studies revealed marked changes in carbohydrate levels and allocation within ST plant body. To verify causal relationship between changed carbohydrate balance and root growth restriction we engaged dark grown sucrose-supplied root organ-cultures of ST plants to exclude/confirm shoot effects. Unexpectedly, in ST root cultures we observed large alterations in growth and architecture as well as saccharide status similar to those found in the intact plant roots. The gene expression analysis, however, proved PsbO1 transcript (coding MSPI protein) neither in ST nor in WT root-organ cultures. Therefore, the results point to indirect effects of PsbO1 allele absence connected possibly with some epigenetic modulations.
Collapse
Affiliation(s)
- Hana Ševčíková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12843, Prague, Czech Republic
| | - Petra Mašková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12843, Prague, Czech Republic.
| | - Helena Lipavská
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12843, Prague, Czech Republic
| |
Collapse
|
19
|
Huang S, Zuo T, Ni W. Important roles of glycinebetaine in stabilizing the structure and function of the photosystem II complex under abiotic stresses. PLANTA 2020; 251:36. [PMID: 31903497 DOI: 10.1007/s00425-019-03330-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/14/2019] [Indexed: 05/08/2023]
Abstract
The molecular and physiological mechanisms of glycinebetaine stabilizing photosystem II complex under abiotic stresses are discussed, helping to address food shortage problems threatening the survival of growing population. In the backdrop of climate change, the frequency, dimensions and duration of extreme events have increased sharply, which may have unintended consequences for agricultural. The acclimation of plants to a constantly changing environment involves the accumulation of compatible solutes. Various compatible solutes enable plants to tolerate abiotic stresses, and glycinebetaine (GB) is one of the most-studied. The biosynthesis and accumulation of GB appear in numerous plant species, especially under environmental stresses. The exogenous application of GB and GB-accumulating transgenic plants have been proven to further promote plant development under stresses. Early research on GB focused on the maintenance of osmotic potential in plants. Subsequent experimental evidence demonstrated that it also protects proteins including the photosystem II complex (PSII) from denaturation and deactivation. As reviewed here, multiple experimental evidences have indicated considerable progress in the roles of GB in stabilizing PSII under abiotic stresses. Based on these advances, we've concluded two effects of GB on PSII: (1) it stabilizes the structure of PSII by protecting extrinsic proteins from dissociation or by promoting protein synthesize; (2) it enhances the oxygen-evolving activity of PSII or promotes the repair of the photosynthetic damage of PSII.
Collapse
Affiliation(s)
- Shan Huang
- College of Environmental and Resource Sciences, Zhejiang University, Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, Hangzhou, 310058, China
| | - Ting Zuo
- College of Environmental and Resource Sciences, Zhejiang University, Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, Hangzhou, 310058, China
| | - Wuzhong Ni
- College of Environmental and Resource Sciences, Zhejiang University, Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, Hangzhou, 310058, China.
| |
Collapse
|
20
|
Wang S, Li QP, Wang J, Yan Y, Zhang GL, Yan Y, Zhang H, Wu J, Chen F, Wang X, Kang Z, Dubcovsky J, Gou JY. YR36/WKS1-Mediated Phosphorylation of PsbO, an Extrinsic Member of Photosystem II, Inhibits Photosynthesis and Confers Stripe Rust Resistance in Wheat. MOLECULAR PLANT 2019; 12:1639-1650. [PMID: 31622682 DOI: 10.1016/j.molp.2019.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Wheat stripe rust, due to infection by Puccinia striiformis f. sp. tritici (Pst), is a devastating disease that causes significant global grain yield losses. Yr36, which encodes Wheat Kinase START1 (WKS1), is an effective high-temperature adult-plant resistance gene and confers resistance to a broad spectrum of Pst races. We previously showed that WKS1 phosphorylates the thylakoid ascorbate peroxidase protein and reduces its ability to detoxify peroxides, which may contribute to the accumulation of reactive oxygen species (ROS). WKS1-mediated Pst resistance is accompanied by leaf chlorosis in Pst-infected regions, but the underlying mechanisms remain elusive. Here, we show that WKS1 interacts with and phosphorylates PsbO, an extrinsic member of photosystem II (PSII), to reduce photosynthesis, regulate leaf chlorosis, and confer Pst resistance. A point mutation in PsbO-A1 or reduction in its transcript levels by RNA interference resulted in chlorosis and reduced Pst sporulation. Biochemical analyses revealed that WKS1 phosphorylates PsbO at two conserved amino acids involved in physical interactions with PSII and reduces the binding affinity of PsbO with PSII. Presumably, phosphorylated PsbO proteins dissociate from the PSII complex and then undergo rapid degradation by cysteine and aspartic proteases. Taken together, these results demonstrate that perturbations of wheat PsbO by point mutation or phosphorylation by WKS1 reduce the rate of photosynthesis and delay the growth of Pst pathogen before the induction of ROS.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory of Genetic Engineering, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, MOE Engineering Research Center of Gene Technology, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiu-Ping Li
- State Key Laboratory of Genetic Engineering, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, MOE Engineering Research Center of Gene Technology, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yan Yan
- State Key Laboratory of Genetic Engineering, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, MOE Engineering Research Center of Gene Technology, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; Agronomy College/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Guo-Liang Zhang
- State Key Laboratory of Genetic Engineering, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, MOE Engineering Research Center of Gene Technology, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yan Yan
- State Key Laboratory of Genetic Engineering, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, MOE Engineering Research Center of Gene Technology, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Huifei Zhang
- State Key Laboratory of Crop Biology/College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology/College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Feng Chen
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Jin-Ying Gou
- State Key Laboratory of Genetic Engineering, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, MOE Engineering Research Center of Gene Technology, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
21
|
Shiri Y, Solouki M, Ebrahimie E, Emamjomeh A, Zahiri J. Gibberellin causes wide transcriptional modifications in the early stage of grape cluster development. Genomics 2019; 112:820-830. [PMID: 31136791 DOI: 10.1016/j.ygeno.2019.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/01/2019] [Accepted: 05/24/2019] [Indexed: 10/26/2022]
Abstract
Yaghooti grape of Sistan is seedless, early ripening but has compact clusters. To study gibberellin effect on cluster compactness of Yaghooti grape, it has been studied transcriptomic changes in three developmental stages (cluster formation, berry formation and final size of cluster). We found out that 5409 of 22,756 genes in cluster tissue showed significant changes under gibberellin. Finally, it was showed that 2855, 2862 and 497 genes have critically important role on above developmental stages, respectively. GO enrichment analysis showed that gibberellin enhances biochemical pathways activity. Moreover, genes involved in ribosomal structure and photosynthesis rate in cluster tissue were up- and down- regulated, respectively. In addition, we observed location of metabolomic activities was transferred from nucleus to cytoplasm and from cytoplasm to cell wall and intercellular spaces during cluster development; but there is not such situation in gibberellin treated samples.
Collapse
Affiliation(s)
- Yasoub Shiri
- Department of Agronomy and Plant Breeding, Agriculture Research Center, University of Zabol, Zabol, Iran
| | - Mahmood Solouki
- Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran.
| | - Esmaeil Ebrahimie
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia; Genomics Research Platform, School of Life Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Abbasali Emamjomeh
- Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran.
| | - Javad Zahiri
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
22
|
Quantitative Phosphoproteomic and Physiological Analyses Provide Insights into the Formation of the Variegated Leaf in Catalpa fargesii. Int J Mol Sci 2019; 20:ijms20081895. [PMID: 30999580 PMCID: PMC6514904 DOI: 10.3390/ijms20081895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/29/2022] Open
Abstract
Variegated plants are valuable materials for investigating leaf color regulated mechanisms. To unveil the role of posttranslational modification in the variegated phenotype, we conducted global quantitative phosphoproteomic analysis on different leaf color sectors of Maiyuanjinqiu and the corresponding of Catalpa fargesii using Ti4+-IMAC phosphopeptide enrichment. A total of 3778 phosphorylated sites assigned to 1646 phosphoproteins were identified, and 3221 in 1434 proteins were quantified. Differential phosphoproteins (above 1.5 or below 1/1.5) in various leaf color sectors were selected for functional enrichment analyses. Gene ontology (GO) enrichment revealed that processes of photosynthesis, regulation of the generation of precursor metabolites, response to stress, homeostasis, amino acid metabolism, transport–related processes, and most of the energy metabolisms might contribute to leaf color. KEGG pathway enrichment analysis was performed based on differential phosphoproteins (DPs) in different organelles. The result showed that most enriched pathways were located in the chloroplasts and cytosol. The phosphorylation levels of glycometabolism enzymes might greatly affect leaf variegation. Measurements of fluorescence parameters and enzyme activities confirmed that protein phosphorylation could affect plant physiology by regulating enzyme activity. These results provide new clues for further study the formation mechanisms of naturally variegated phenotype.
Collapse
|
23
|
Photosystem II Extrinsic Proteins and Their Putative Role in Abiotic Stress Tolerance in Higher Plants. PLANTS 2018; 7:plants7040100. [PMID: 30441780 PMCID: PMC6313935 DOI: 10.3390/plants7040100] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 01/08/2023]
Abstract
Abiotic stress remains one of the major challenges in managing and preventing crop loss. Photosystem II (PSII), being the most susceptible component of the photosynthetic machinery, has been studied in great detail over many years. However, much of the emphasis has been placed on intrinsic proteins, particularly with respect to their involvement in the repair of PSII-associated damage. PSII extrinsic proteins include PsbO, PsbP, PsbQ, and PsbR in higher plants, and these are required for oxygen evolution under physiological conditions. Changes in extrinsic protein expression have been reported to either drastically change PSII efficiency or change the PSII repair system. This review discusses the functional role of these proteins in plants and indicates potential areas of further study concerning these proteins.
Collapse
|
24
|
Zhang J, Li Q, Qi YP, Huang WL, Yang LT, Lai NW, Ye X, Chen LS. Low pH-responsive proteins revealed by a 2-DE based MS approach and related physiological responses in Citrus leaves. BMC PLANT BIOLOGY 2018; 18:188. [PMID: 30208853 PMCID: PMC6134590 DOI: 10.1186/s12870-018-1413-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 08/31/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Rare data are available on the molecular responses of higher plants to low pH. Seedlings of 'Sour pummelo' (Citrus grandis) and 'Xuegan' (Citrus sinensis) were treated daily with nutrient solution at a pH of 2.5, 3, or 6 (control) for nine months. Thereafter, we first used 2-dimensional electrophoresis (2-DE) to investigate low pH-responsive proteins in Citrus leaves. Meanwhile, we examined low pH-effects on leaf gas exchange, carbohydrates, ascorbate, dehydroascorbate and malondialdehyde. The objectives were to understand the adaptive mechanisms of Citrus to low pH and to identify the possible candidate proteins for low pH-tolerance. RESULTS Our results demonstrated that Citrus were tolerant to low pH, with a slightly higher low pH-tolerance in the C. sinensis than in the C. grandis. Using 2-DE, we identified more pH 2.5-responsive proteins than pH 3-responsive proteins in leaves. This paper discussed mainly on the pH 2.5-responsive proteins. pH 2.5 decreased the abundances of proteins involved in ribulose bisphosphate carboxylase/oxygenase activation, Calvin cycle, carbon fixation, chlorophyll biosynthesis and electron transport, hence lowering chlorophyll level, electron transport rate and photosynthesis. The higher oxidative damage in the pH 2.5-treated C. grandis leaves might be due to a combination of factors including higher production of reactive oxygen species, more proteins decreased in abundance involved in antioxidation and detoxification, and lower ascorbate level. Protein and amino acid metabolisms were less affected in the C. sinensis leaves than those in the C. grandis leaves when exposed to pH 2.5. The abundances of proteins related to jasmonic acid biosynthesis and signal transduction were increased and decreased in the pH 2.5-treated C. sinensis and C. grandis leaves, respectively. CONCLUSIONS This is the first report on low pH-responsive proteins in higher plants. Thus, our results provide some novel information on low pH-toxicity and -tolerance in higher plants.
Collapse
Affiliation(s)
- Jiang Zhang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
| | - Qiang Li
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou, 350001 China
| | - Wei-Lin Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
| | - Ning-Wei Lai
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
| | - Xin Ye
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, FAFU, Fuzhou, 350002 China
- The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, College of Resources and Environment, FAFU, Fuzhou, 350002 China
| |
Collapse
|
25
|
Liu X, Yang M, Wang Y, Chen Z, Zhang J, Lin X, Ge F, Zhao J. Effects of PSII Manganese-Stabilizing Protein Succinylation on Photosynthesis in the Model Cyanobacterium Synechococcus sp. PCC 7002. PLANT & CELL PHYSIOLOGY 2018; 59:1466-1482. [PMID: 29912468 DOI: 10.1093/pcp/pcy080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 04/14/2018] [Indexed: 06/08/2023]
Abstract
Lysine succinylation is a newly identified protein post-translational modification and plays important roles in various biological pathways in both prokaryotes and eukaryotes, but its extent and function in photosynthetic organisms remain largely unknown. Here, we performed the first systematic studies of lysine succinylation in cyanobacteria, which are the only prokaryotes capable of oxygenic photosynthesis and the established model organisms for studying photosynthetic mechanisms. By using mass spectrometry analysis in combination with the enrichment of succinylated peptides from digested cell lysates, we identified 1,704 lysine succinylation sites on 691 proteins in a model cyanobacterium Synechococcus sp. PCC 7002. Bioinformatic analysis revealed that a large proportion of the succinylation sites were present on proteins in photosynthesis and metabolism. Among all identified succinylated proteins involved in photosynthesis, the PSII manganese-stabilizing protein (PsbO) was found to be succinylated on Lys99 and Lys234. Functional studies of PsbO were performed by site-directed mutagenesis, and mutants mimicking either constitutively succinylated (K99E and K234E) or non-succinylated states (K99R and K234R) were constructed. The succinylation-mimicking K234E mutant exhibited a decreased oxygen evolution rate of the PSII center and the efficiency of energy transfer during the photosynthetic reaction. Molecular dynamics simulations suggested a mechanism that may allow succinylation to influence the efficiency of photosynthesis by altering the conformation of PsbO, thereby hindering the interaction between PsbO and the PSII core. Our findings suggest that reversible succinylation may be an important regulatory mechanism during photosynthesis in Synechococcus, as well as in other photosynthetic organisms.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingkun Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuo Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jia Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaohuang Lin
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jindong Zhao
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
26
|
Jiang T, Oh ES, Bonea D, Zhao R. HSP90C interacts with PsbO1 and facilitates its thylakoid distribution from chloroplast stroma in Arabidopsis. PLoS One 2017; 12:e0190168. [PMID: 29281724 PMCID: PMC5745004 DOI: 10.1371/journal.pone.0190168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/08/2017] [Indexed: 11/29/2022] Open
Abstract
Arabidopsis plastidic HSP90C is an HSP90 family molecular chaperone that is required for chloroplast development and function. To understand the mechanism of action of HSP90C within the chloroplast, we conducted a yeast two-hybrid screening and revealed it interacts directly with the photosystem II extrinsic protein PsbO1, which performs a canonical function in the thylakoid lumen. To understand the biological significance of HSP90C-PsbO1 interaction, we investigated the role of HSP90C in modulating the stromal and thylakoid distribution of PsbO1GFP fusion protein. Fusion to GFP significantly delays the PsbO1 thylakoid transport and induces a variegation phenotype. Overexpression of HSP90C promotes the thylakoid distribution of PsbO1GFP and alleviates the leaf variegation. By tracking the chloroplast maturation during photomorphogenesis, we observed PsbO1GFP tends to form distinct fluorescent clusters within the stroma with delayed thylakoid membrane biogenesis, while HSP90C overexpression corrects these adverse effects. We also demonstrated that active HSP90C function is specifically required for stable accumulation of mature PsbO1GFP in thylakoid by using specific inhibitor geldanamycin. This study therefore not only identified novel HSP90C interactors, but also reports for the first time that PsbO1 enroute from the cytoplasm to thylakoid lumen is tightly regulated by the HSP90C chaperone complex in plastid stroma; whereas the proper HSP90C homeostasis is also critical for chloroplast maturation and function.
Collapse
Affiliation(s)
- Tim Jiang
- Departments of Biological Sciences and Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Edward Saehong Oh
- Departments of Biological Sciences and Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Diana Bonea
- Departments of Biological Sciences and Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rongmin Zhao
- Departments of Biological Sciences and Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
27
|
Miller MAE, O’Cualain R, Selley J, Knight D, Karim MF, Hubbard SJ, Johnson GN. Dynamic Acclimation to High Light in Arabidopsis thaliana Involves Widespread Reengineering of the Leaf Proteome. FRONTIERS IN PLANT SCIENCE 2017; 8:1239. [PMID: 28775726 PMCID: PMC5517461 DOI: 10.3389/fpls.2017.01239] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/30/2017] [Indexed: 05/18/2023]
Abstract
Leaves of Arabidopsis thaliana transferred from low to high light increase their capacity for photosynthesis, a process of dynamic acclimation. A mutant, gpt2, lacking a chloroplast glucose-6-phosphate/phosphate translocator, is deficient in its ability to acclimate to increased light. Here, we have used a label-free proteomics approach, to perform relative quantitation of 1993 proteins from Arabidopsis wild type and gpt2 leaves exposed to increased light. Data are available via ProteomeXchange with identifier PXD006598. Acclimation to light is shown to involve increases in electron transport and carbon metabolism but no change in the abundance of photosynthetic reaction centers. The gpt2 mutant shows a similar increase in total protein content to wild type but differences in the extent of change of certain proteins, including in the relative abundance of the cytochrome b6f complex and plastocyanin, the thylakoid ATPase and selected Benson-Calvin cycle enzymes. Changes in leaf metabolite content as plants acclimate can be explained by changes in the abundance of enzymes involved in metabolism, which were reduced in gpt2 in some cases. Plants of gpt2 invest more in stress-related proteins, suggesting that their reduced ability to acclimate photosynthetic capacity results in increased stress.
Collapse
Affiliation(s)
- Matthew A. E. Miller
- School of Earth and Environmental Sciences, University of ManchesterManchester, United Kingdom
| | - Ronan O’Cualain
- School of Biological Sciences, University of ManchesterManchester, United Kingdom
| | - Julian Selley
- School of Biological Sciences, University of ManchesterManchester, United Kingdom
| | - David Knight
- School of Biological Sciences, University of ManchesterManchester, United Kingdom
| | - Mohd F. Karim
- School of Earth and Environmental Sciences, University of ManchesterManchester, United Kingdom
| | - Simon J. Hubbard
- School of Biological Sciences, University of ManchesterManchester, United Kingdom
| | - Giles N. Johnson
- School of Earth and Environmental Sciences, University of ManchesterManchester, United Kingdom
| |
Collapse
|
28
|
Ševčíková H, Mašková P, Tarkowská D, Mašek T, Lipavská H. Carbohydrates and gibberellins relationship in potato tuberization. JOURNAL OF PLANT PHYSIOLOGY 2017; 214:53-63. [PMID: 28441523 DOI: 10.1016/j.jplph.2017.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
Potato represents the third most important crop worldwide and therefore to understand regulations of tuber onset is crucial from both theoretical and practical points of view. Photosynthesis and related carbohydrate status along with phytohormone balance belong to the essential factors in regulation of plant development including storage organ formation. In our work we used potato (Solanum tuberosum) cv. Lada and its spontaneously tuberizing mutant (ST plants) grown in vitro under low carbohydrate availability (non-inductive conditions). Small plant phenotype and readiness to tuberization of ST plants was, however, not accompanied by lower gibberellins levels, as determined by UHPLC-MS/MS. Therefore, we focused on the other inducing factor, carbohydrate status. Using HPLC, we followed changes in carbohydrate distribution under mixotrophic (2.5% sucrose in medium) and photoautotrophic conditions (no sucrose addition and higher gas and light availability) and observed changes in soluble carbohydrate allocation and starch deposition, favouring basal stem part in mutants. In addition, the determination of tuber-inducing marker gene expressions revealed increased levels of StSP6A in ST leaves. Collectively these data point towards the possibility of two parallel cross-talking pathways (carbohydrate - and gibberellin- dependent ones) with the power of both to outcompete the other one when its signal is for some reason extraordinary strong.
Collapse
Affiliation(s)
- Hana Ševčíková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ-12844 Prague, Czech Republic.
| | - Petra Mašková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ-12844 Prague, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany Academy of Sciences of the Czech Republic and Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Tomáš Mašek
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, CZ-12844 Prague, Czech Republic
| | - Helena Lipavská
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ-12844 Prague, Czech Republic
| |
Collapse
|
29
|
Asad MAU, Lavoie M, Song H, Jin Y, Fu Z, Qian H. Interaction of chiral herbicides with soil microorganisms, algae and vascular plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:1287-1299. [PMID: 28003051 DOI: 10.1016/j.scitotenv.2016.12.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
Chiral herbicides are often used in agriculture as racemic mixtures, although studies have shown that the fate and toxicity of herbicide enantiomers to target and non-target plants can be enantioselective and that herbicide toxicity can be mediated by only one enantiomer. If one enantiomer is active against the target plant, the use of enantiomer-rich herbicide mixtures instead of racemic herbicides could decrease the amount of herbicide applied to a crop and the cost of herbicide application, as well as unintended toxic herbicide effects in the environment. Such a change in the management of herbicide applications requires in-depth knowledge and a critical analysis of the fate and effects of herbicide enantiomers in the environment. This review article first synthesizes the current state of knowledge on soil and plant biodegradation of herbicide enantiomers. Second, we discuss our understanding of the biochemical toxicity mechanisms associated with both enantiomers in target and non-target plants gained from state-of-the-art genomic, proteomic and metabolomic tools. Third, we present the emerging view on the "side effects" of herbicides in the root microbiome and their repercussions on target or non-target plant metabolism. Although our review of the literature indicates that the toxicity of herbicide enantiomers is highly variable depending on plant species and herbicides, we found general trends in the enantioselective toxic effects of different herbicides in vascular plants and algae. The present study will be helpful for pesticide risk assessments as well as for the management of applying enriched-enantiomer herbicides.
Collapse
Affiliation(s)
- Muhammad Asad Ullah Asad
- College of Biotechnological and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Michel Lavoie
- Quebec-Ocean and Takuvik Joint International Research Unit, Université Laval, Québec G1VOA6, Canada
| | - Hao Song
- College of Environment, Zhejiang University of technology, Hangzhou 310032, PR China
| | - Yujian Jin
- College of Biotechnological and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhengwei Fu
- College of Biotechnological and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of technology, Hangzhou 310032, PR China.
| |
Collapse
|
30
|
Dana S, Herdean A, Lundin B, Spetea C. Each of the chloroplast potassium efflux antiporters affects photosynthesis and growth of fully developed Arabidopsis rosettes under short-day photoperiod. PHYSIOLOGIA PLANTARUM 2016; 158:483-491. [PMID: 27080934 DOI: 10.1111/ppl.12452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/08/2016] [Accepted: 03/12/2016] [Indexed: 06/05/2023]
Abstract
In Arabidopsis thaliana, the chloroplast harbors three potassium efflux antiporters (KEAs), namely KEA1 and KEA2 in the inner envelope and KEA3 in the thylakoid membrane. They may play redundant physiological roles as in our previous analyses of young developing Arabidopsis rosettes under long-day photoperiod (16 h light per day), chloroplast kea single mutants resembled the wild-type plants, whereas kea1kea2 and kea1kea2kea3 mutants were impaired in chloroplast development and photosynthesis resulting in stunted growth. Here, we aimed to study whether chloroplast KEAs play redundant roles in chloroplast function of older Arabidopsis plants with fully developed rosettes grown under short-day photoperiod (8 h light per day). Under these conditions, we found defects in photosynthesis and growth in the chloroplast kea single mutants, and most dramatic defects in the kea1kea2 double mutant. The mechanism behind these defects in the single mutants involves reduction in the electron transport rate (kea1 and kea3), and stomata conductance (kea1, kea2 and kea3), which in turn affect CO2 fixation rates. The kea1kea2 mutant, in addition to these alterations, displayed reduced levels of photosynthetic machinery. Taken together, our data suggest that, in addition to the previously reported roles in chloroplast development in young rosettes, each chloroplast KEA affects photosynthesis and growth of Arabidopsis fully developed rosettes.
Collapse
Affiliation(s)
- Somnath Dana
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Andrei Herdean
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Björn Lundin
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| |
Collapse
|
31
|
Urban MO, Vašek J, Klíma M, Krtková J, Kosová K, Prášil IT, Vítámvás P. Proteomic and physiological approach reveals drought-induced changes in rapeseeds: Water-saver and water-spender strategy. J Proteomics 2016; 152:188-205. [PMID: 27838467 DOI: 10.1016/j.jprot.2016.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/21/2016] [Accepted: 11/03/2016] [Indexed: 01/05/2023]
Abstract
The cultivar-dependent differences in Brassica napus L. seed yield are significantly affected by drought stress. Here, the response of leaf proteome to long-term drought (28days) was studied in cultivars (cvs): Californium (C), Cadeli (D), Navajo (N), and Viking (V). Analysis of twenty-four 2-D DIGE gels revealed 134 spots quantitatively changed at least 2-fold; from these, 79 proteins were significantly identified by MALDI-TOF/TOF. According to the differences in water use, the cultivars may be assigned to two categories: water-savers or water-spenders. In the water-savers group (cvs C+D), proteins related to nitrogen assimilation, ATP and redox homeostasis were increased under stress, while in the water-spenders category (cvs N+V), carbohydrate/energy, photosynthesis, stress related and rRNA processing proteins were increased upon stress. Taking all data together, we indicated cv C as a drought-adaptable water-saver, cv D as a medium-adaptable water-saver, cv N as a drought-adaptable water-spender, and cv V as a low-adaptable drought sensitive water-spender rapeseed. Proteomic data help to evaluate the impact of drought and the extent of genotype-based adaptability and contribute to the understanding of their plasticity. These results provide new insights into the provenience-based drought acclimation/adaptation strategy of contrasting winter rapeseeds and link data at gasometric, biochemical, and proteome level. SIGNIFICANCE Soil moisture deficit is a real problem for every crop. The data in this study demonstrates for the first time that in stem-prolongation phase cultivars respond to progressive drought in different ways and at different levels. Analysis of physiological and proteomic data showed two different water regime-related strategies: water-savers and spenders. However, not only water uptake rate itself, but also individual protein abundances, gasometric and biochemical parameters together with final biomass accumulation after stress explained genotype-based responses. Interestingly, under a mixed climate profile, both water-use patterns (savers or spenders) can be appropriate for drought adaptation. These data suggest, than complete "acclimation image" of rapeseeds in stem-prolongation phase under drought could be reached only if these characteristics are taken, explained and understood together.
Collapse
Affiliation(s)
- Milan Oldřich Urban
- Crop Research Institute, Department of Genetics and Plant Breeding, Drnovská 507/73, Prague, Czech Republic; Charles University, Department of Experimental Plant Biology, Viničná 5, Prague, Czech Republic.
| | - Jakub Vašek
- Czech University of Life Sciences Prague, Department of Genetics and Breeding, Kamýcká 129, Prague, Czech Republic
| | - Miroslav Klíma
- Crop Research Institute, Department of Genetics and Plant Breeding, Drnovská 507/73, Prague, Czech Republic
| | - Jana Krtková
- Charles University, Department of Experimental Plant Biology, Viničná 5, Prague, Czech Republic
| | - Klára Kosová
- Crop Research Institute, Department of Genetics and Plant Breeding, Drnovská 507/73, Prague, Czech Republic
| | - Ilja Tom Prášil
- Crop Research Institute, Department of Genetics and Plant Breeding, Drnovská 507/73, Prague, Czech Republic
| | - Pavel Vítámvás
- Crop Research Institute, Department of Genetics and Plant Breeding, Drnovská 507/73, Prague, Czech Republic
| |
Collapse
|
32
|
Yousuf PY, Ahmad A, Aref IM, Ozturk M, Ganie AH, Iqbal M. Salt-stress-responsive chloroplast proteins in Brassica juncea genotypes with contrasting salt tolerance and their quantitative PCR analysis. PROTOPLASMA 2016; 253:1565-1575. [PMID: 26638208 DOI: 10.1007/s00709-015-0917-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/23/2015] [Indexed: 05/21/2023]
Abstract
Brassica juncea is mainly cultivated in the arid and semi-arid regions of India where its production is significantly affected by soil salinity. Adequate knowledge of the mechanisms underlying the salt tolerance at sub-cellular levels must aid in developing the salt-tolerant plants. A proper functioning of chloroplasts under salinity conditions is highly desirable to maintain crop productivity. The adaptive molecular mechanisms offered by plants at the chloroplast level to cope with salinity stress must be a prime target in developing the salt-tolerant plants. In the present study, we have analyzed differential expression of chloroplast proteins in two Brassica juncea genotypes, Pusa Agrani (salt-sensitive) and CS-54 (salt-tolerant), under the effect of sodium chloride. The chloroplast proteins were isolated and resolved using 2DE, which facilitated identification and quantification of 12 proteins that differed in expression in the salt-tolerant and salt-sensitive genotypes. The identified proteins were related to a variety of chloroplast-associated molecular processes, including oxygen-evolving process, PS I and PS II functioning, Calvin cycle and redox homeostasis. Expression analysis of genes encoding differentially expressed proteins through real time PCR supported our findings with proteomic analysis. The study indicates that modulating the expression of chloroplast proteins associated with stabilization of photosystems and oxidative defence plays imperative roles in adaptation to salt stress.
Collapse
Affiliation(s)
- Peerzada Yasir Yousuf
- Department of Botany, Molecular Ecology Laboratory, Jamia Hamdard, New Delhi, 110062, India
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Ibrahim M Aref
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, Post Box 2460, Riyadh, 11451, Saudi Arabia
| | - Munir Ozturk
- Department of Biology, Ege University, Izmir, 350000, Turkey
| | - Arshid Hussain Ganie
- Department of Botany, Molecular Ecology Laboratory, Jamia Hamdard, New Delhi, 110062, India
| | - Muhammad Iqbal
- Department of Botany, Molecular Ecology Laboratory, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
33
|
Yousuf PY, Ganie AH, Khan I, Qureshi MI, Ibrahim MM, Sarwat M, Iqbal M, Ahmad A. Nitrogen-Efficient and Nitrogen-Inefficient Indian Mustard Showed Differential Expression Pattern of Proteins in Response to Elevated CO2 and Low Nitrogen. FRONTIERS IN PLANT SCIENCE 2016; 7:1074. [PMID: 27524987 PMCID: PMC4965474 DOI: 10.3389/fpls.2016.01074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
Carbon (C) and nitrogen (N) are two essential elements that influence plant growth and development. The C and N metabolic pathways influence each other to affect gene expression, but little is known about which genes are regulated by interaction between C and N or the mechanisms by which the pathways interact. In the present investigation, proteome analysis of N-efficient and N-inefficient Indian mustard, grown under varied combinations of low-N, sufficient-N, ambient [CO2], and elevated [CO2] was carried out to identify proteins and the encoding genes of the interactions between C and N. Two-dimensional gel electrophoresis (2-DE) revealed 158 candidate protein spots. Among these, 72 spots were identified by matrix-assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF). The identified proteins are related to various molecular processes including photosynthesis, energy metabolism, protein synthesis, transport and degradation, signal transduction, nitrogen metabolism and defense to oxidative, water and heat stresses. Identification of proteins like PII-like protein, cyclophilin, elongation factor-TU, oxygen-evolving enhancer protein and rubisco activase offers a peculiar overview of changes elicited by elevated [CO2], providing clues about how N-efficient cultivar of Indian mustard adapt to low N supply under elevated [CO2] conditions. This study provides new insights and novel information for a better understanding of adaptive responses to elevated [CO2] under N deficiency in Indian mustard.
Collapse
Affiliation(s)
| | - Arshid H. Ganie
- Department of Botany, Faculty of ScienceJamia Hamdard, New Delhi, India
| | - Ishrat Khan
- Department of Botany, Faculty of ScienceJamia Hamdard, New Delhi, India
| | - Mohammad I. Qureshi
- Proteomics and Bioinformatics Laboratory, Department of Biotechnology, Faculty of Natural SciencesJamia Millia Islamia, New Delhi, India
| | - Mohamed M. Ibrahim
- Department of Botany and Microbiology, Science College, King Saud UniversityRiyadh, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Alexandria UniversityAlexandria, Egypt
| | - Maryam Sarwat
- Pharmaceutic Biotechnology, Amity Institute of Pharmacy, Amity UniversityNoida, India
| | - Muhammad Iqbal
- Department of Botany, Faculty of ScienceJamia Hamdard, New Delhi, India
| | - Altaf Ahmad
- Proteomics and Nanobiotechnology Laboratory, Department of Botany, Faculty of Life Sciences, Aligarh Muslim UniversityAligarh, India
| |
Collapse
|
34
|
Deeba F, Pandey AK, Pandey V. Organ Specific Proteomic Dissection of Selaginella bryopteris Undergoing Dehydration and Rehydration. FRONTIERS IN PLANT SCIENCE 2016; 7:425. [PMID: 27092152 PMCID: PMC4824794 DOI: 10.3389/fpls.2016.00425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/18/2016] [Indexed: 05/06/2023]
Abstract
To explore molecular mechanisms underlying the physiological response of Selaginella bryopteris, a comprehensive proteome analysis was carried out in roots and fronds undergoing dehydration and rehydration. Plants were dehydrated for 7 days followed by 2 and 24 h of rehydration. In roots out of 59 identified spots, 58 protein spots were found to be up-regulated during dehydration stress. The identified proteins were related to signaling, stress and defense, protein and nucleotide metabolism, carbohydrate and energy metabolism, storage and epigenetic control. Most of these proteins remained up-regulated on first rehydration, suggesting their role in recovery phase also. Among the 90 identified proteins in fronds, about 49% proteins were up-regulated during dehydration stress. Large number of ROS scavenging proteins was enhanced on dehydration. Many other proteins involved in energy, protein turnover and nucleotide metabolism, epigenetic control were also highly upregulated. Many photosynthesis related proteins were upregulated during stress. This would have helped plant to recover rapidly on rehydration. This study provides a comprehensive picture of different cellular responses elucidated by the proteome changes during dehydration and rehydration in roots and fronds as expected from a well-choreographed response from a resurrection plant.
Collapse
Affiliation(s)
| | | | - Vivek Pandey
- Plant Ecology and Environmental Science, CSIR-National Botanical Research InstituteLucknow, India
| |
Collapse
|
35
|
Chen Z, Zou Y, Wang J, Li M, Wen Y. Phytotoxicity of chiral herbicide bromacil: Enantioselectivity of photosynthesis in Arabidopsis thaliana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 548-549:139-147. [PMID: 26802342 DOI: 10.1016/j.scitotenv.2016.01.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 06/05/2023]
Abstract
With the wide application of chiral herbicides and the frequent detection of photosystem II (PSII) herbicides, it is of great importance to assess the direct effects of PSII herbicides on photosynthesis in an enantiomeric level. In the present study, the enantioselective phytotoxicity of bromacil (BRO), typical photosynthesis inhibition herbicide, on Arabidopsis thaliana was investigated. The results showed that S-BRO exhibited a greater inhibition of electron transmission in photosystem I (PSI) of A. thaliana than R-BRO by inhibiting the transcription of fnr 1. S-BRO also changed the chlorophyll fluorescence parameters Y (II), Y (NO), and Y (NPQ) to a greater extent than R-Bro. Transcription of genes psbO2, Lhcb3 and Lhcb6 was down-regulated in an enantioselective rhythm and S-BRO caused more serious influence, indicating that S-BRO did worse damage to the photosystem II (PSII) of A. thaliana than R-BRO. This study suggested that S-BRO disturbed the photosynthesis of plants to a larger extent than R-BRO and provided a new sight to evaluate the phytotoxicity of chiral herbicides.
Collapse
Affiliation(s)
- Zunwei Chen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuqin Zou
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jia Wang
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meichao Li
- Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
36
|
Kang ZH, Wang GX. Redox regulation in the thylakoid lumen. JOURNAL OF PLANT PHYSIOLOGY 2016; 192:28-37. [PMID: 26812087 DOI: 10.1016/j.jplph.2015.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 06/05/2023]
Abstract
Higher plants need to balance the efficiency of light energy absorption and dissipative photo-protection when exposed to fluctuations in light quantity and quality. This aim is partially realized through redox regulation within the chloroplast, which occurs in all chloroplast compartments except the envelope intermembrane space. In contrast to the chloroplast stroma, less attention has been paid to the thylakoid lumen, an inner, continuous space enclosed by the thylakoid membrane in which redox regulation is also essential for photosystem biogenesis and function. This sub-organelle compartment contains at least 80 lumenal proteins, more than 30 of which are known to contain disulfide bonds. Thioredoxins (Trx) in the chloroplast stroma are photo-reduced in the light, transferring reducing power to the proteins in the thylakoid membrane and ultimately the lumen through a trans-thylakoid membrane-reduced, equivalent pathway. The discovery of lumenal thiol oxidoreductase highlights the importance of the redox regulation network in the lumen for controlling disulfide bond formation, which is responsible for protein activity and folding and even plays a role in photo-protection. In addition, many lumenal members involved in photosystem assembly and non-photochemical quenching are likely required for reduction and/or oxidation to maintain their proper efficiency upon changes in light intensity. In light of recent findings, this review summarizes the multiple redox processes that occur in the thylakoid lumen in great detail, highlighting the essential auxiliary roles of lumenal proteins under fluctuating light conditions.
Collapse
Affiliation(s)
- Zhen-Hui Kang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Gui-Xue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
37
|
Paudel B, Das A, Tran M, Boe A, Palmer NA, Sarath G, Gonzalez-Hernandez JL, Rushton PJ, Rohila JS. Proteomic Responses of Switchgrass and Prairie Cordgrass to Senescence. FRONTIERS IN PLANT SCIENCE 2016; 7:293. [PMID: 27014316 PMCID: PMC4789367 DOI: 10.3389/fpls.2016.00293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/24/2016] [Indexed: 05/03/2023]
Abstract
Senescence in biofuel grasses is a critical issue because early senescence decreases potential biomass production by limiting aerial growth and development. 2-Dimensional, differential in-gel electrophoresis (2D-DIGE) followed by mass spectrometry of selected protein spots was used to evaluate differences between leaf proteomes of early (ES)- and late- senescing (LS) genotypes of Prairie cordgrass (ES/LS PCG) and switchgrass (ES/LS SG), just before and after senescence was initiated. Analysis of the manually filtered and statistically evaluated data indicated that 69 proteins were significantly differentially abundant across all comparisons, and a majority (41%) were associated with photosynthetic processes as determined by gene ontology analysis. Ten proteins were found in common between PCG and SG, and nine and 18 proteins were unique to PCG and SG respectively. Five of the 10 differentially abundant spots common to both species were increased in abundance, and five were decreased in abundance. Leaf proteomes of the LS genotypes of both grasses analyzed before senescence contained significantly higher abundances of a 14-3-3 like protein and a glutathione-S-transferase protein when compared to the ES genotypes, suggesting differential cellular metabolism in the LS vs. the ES genotypes. The higher abundance of 14-3-3 like proteins may be one factor that impacts the senescence process in both LS PCG and LS SG. Aconitase dehydratase was found in greater abundance in all four genotypes after the onset of senescence, consistent with literature reports from genetic and transcriptomic studies. A Rab protein of the Ras family of G proteins and an s-adenosylmethionine synthase were more abundant in ES PCG when compared with the LS PCG. In contrast, several proteins associated with photosynthesis and carbon assimilation were detected in greater abundance in LS PCG when compared to ES PCG, suggesting that a loss of these proteins potentially contributed to the ES phenotype in PCG. Overall, this study provides important data that can be utilized toward delaying senescence in both PCG and SG, and sets a foundational base for future improvement of perennial grass germplasm for greater aerial biomass productivity.
Collapse
Affiliation(s)
- Bimal Paudel
- Department of Biology and Microbiology, South Dakota State UniversityBrookings, SD, USA
| | - Aayudh Das
- Department of Biology and Microbiology, South Dakota State UniversityBrookings, SD, USA
| | - Michaellong Tran
- Department of Biology and Microbiology, South Dakota State UniversityBrookings, SD, USA
| | - Arvid Boe
- Department of Plant Science, South Dakota State UniversityBrookings, SD, USA
| | - Nathan A. Palmer
- Grain, Forage and Bioenergy Research Unit, United States Department of Agriculture - Agricultural Research ServiceLincoln, NE, USA
| | - Gautam Sarath
- Grain, Forage and Bioenergy Research Unit, United States Department of Agriculture - Agricultural Research ServiceLincoln, NE, USA
| | | | | | - Jai S. Rohila
- Department of Biology and Microbiology, South Dakota State UniversityBrookings, SD, USA
- Department of Plant Science, South Dakota State UniversityBrookings, SD, USA
| |
Collapse
|
38
|
Suorsa M, Rossi F, Tadini L, Labs M, Colombo M, Jahns P, Kater MM, Leister D, Finazzi G, Aro EM, Barbato R, Pesaresi P. PGR5-PGRL1-Dependent Cyclic Electron Transport Modulates Linear Electron Transport Rate in Arabidopsis thaliana. MOLECULAR PLANT 2016; 9:271-288. [PMID: 26687812 DOI: 10.1016/j.molp.2015.12.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/01/2015] [Accepted: 12/01/2015] [Indexed: 05/05/2023]
Abstract
Plants need tight regulation of photosynthetic electron transport for survival and growth under environmental and metabolic conditions. For this purpose, the linear electron transport (LET) pathway is supplemented by a number of alternative electron transfer pathways and valves. In Arabidopsis, cyclic electron transport (CET) around photosystem I (PSI), which recycles electrons from ferrodoxin to plastoquinone, is the most investigated alternative route. However, the interdependence of LET and CET and the relative importance of CET remain unclear, largely due to the difficulties in precise assessment of the contribution of CET in the presence of LET, which dominates electron flow under physiological conditions. We therefore generated Arabidopsis mutants with a minimal water-splitting activity, and thus a low rate of LET, by combining knockout mutations in PsbO1, PsbP2, PsbQ1, PsbQ2, and PsbR loci. The resulting Δ5 mutant is viable, although mature leaves contain only ∼ 20% of wild-type naturally less abundant PsbO2 protein. Δ5 plants compensate for the reduction in LET by increasing the rate of CET, and inducing a strong non-photochemical quenching (NPQ) response during dark-to-light transitions. To identify the molecular origin of such a high-capacity CET, we constructed three sextuple mutants lacking the qE component of NPQ (Δ5 npq4-1), NDH-mediated CET (Δ5 crr4-3), or PGR5-PGRL1-mediated CET (Δ5 pgr5). Their analysis revealed that PGR5-PGRL1-mediated CET plays a major role in ΔpH formation and induction of NPQ in C3 plants. Moreover, while pgr5 dies at the seedling stage under fluctuating light conditions, Δ5 pgr5 plants are able to survive, which underlines the importance of PGR5 in modulating the intersystem electron transfer.
Collapse
Affiliation(s)
- Marjaana Suorsa
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Fabio Rossi
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Luca Tadini
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Mathias Labs
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Monica Colombo
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, 38010, San Michele all'Adige, Italy
| | - Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Martin M Kater
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Dario Leister
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire & Végétale, Unité Mixte de Recherche 5168, Centre National de la Recherche Scientifique, 38054 Grenoble, France
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Roberto Barbato
- Dipartimento di Scienze dell'Ambiente e della Vita, Università del Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Paolo Pesaresi
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy.
| |
Collapse
|
39
|
Karlsson PM, Herdean A, Adolfsson L, Beebo A, Nziengui H, Irigoyen S, Ünnep R, Zsiros O, Nagy G, Garab G, Aronsson H, Versaw WK, Spetea C. The Arabidopsis thylakoid transporter PHT4;1 influences phosphate availability for ATP synthesis and plant growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:99-110. [PMID: 26255788 DOI: 10.1111/tpj.12962] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 07/14/2015] [Accepted: 08/03/2015] [Indexed: 05/24/2023]
Abstract
The Arabidopsis phosphate transporter PHT4;1 was previously localized to the chloroplast thylakoid membrane. Here we investigated the physiological consequences of the absence of PHT4;1 for photosynthesis and plant growth. In standard growth conditions, two independent Arabidopsis knockout mutant lines displayed significantly reduced leaf size and biomass but normal phosphorus content. When mutants were grown in high-phosphate conditions, the leaf phosphorus levels increased and the growth phenotype was suppressed. Photosynthetic measurements indicated that in the absence of PHT4;1 stromal phosphate was reduced to levels that limited ATP synthase activity. This resulted in reduced CO2 fixation and accumulation of soluble sugars, limiting plant growth. The mutants also displayed faster induction of non-photochemical quenching than the wild type, in line with the increased contribution of ΔpH to the proton-motive force across thylakoids. Small-angle neutron scattering showed a smaller lamellar repeat distance, whereas circular dichroism spectroscopy indicated a perturbed long-range order of photosystem II (PSII) complexes in the mutant thylakoids. The absence of PHT4;1 did not alter the PSII repair cycle, as indicated by wild-type levels of phosphorylation of PSII proteins, inactivation and D1 protein degradation. Interestingly, the expression of genes for several thylakoid proteins was downregulated in the mutants, but the relative levels of the corresponding proteins were either not affected or could not be discerned. Based on these data, we propose that PHT4;1 plays an important role in chloroplast phosphate compartmentation and ATP synthesis, which affect plant growth. It also maintains the ionic environment of thylakoids, which affects the macro-organization of complexes and induction of photoprotective mechanisms.
Collapse
Affiliation(s)
- Patrik M Karlsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, Gothenburg, 405 30, Sweden
| | - Andrei Herdean
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, Gothenburg, 405 30, Sweden
| | - Lisa Adolfsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, Gothenburg, 405 30, Sweden
| | - Azeez Beebo
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, Gothenburg, 405 30, Sweden
| | - Hugues Nziengui
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, Gothenburg, 405 30, Sweden
| | - Sonia Irigoyen
- Department of Biology, Texas A&M University, 3258, TAMU College Station, TX, 77843, USA
| | - Renáta Ünnep
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, Villigen PSI, 5232, Switzerland
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Box 49, Budapest, H-1525, Hungary
| | - Ottó Zsiros
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Box 521, Szeged, H-6701, Hungary
| | - Gergely Nagy
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, Villigen PSI, 5232, Switzerland
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Box 49, Budapest, H-1525, Hungary
| | - Győző Garab
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Box 521, Szeged, H-6701, Hungary
| | - Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, Gothenburg, 405 30, Sweden
| | - Wayne K Versaw
- Department of Biology, Texas A&M University, 3258, TAMU College Station, TX, 77843, USA
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, Gothenburg, 405 30, Sweden
| |
Collapse
|
40
|
Gururani MA, Venkatesh J, Tran LSP. Regulation of Photosynthesis during Abiotic Stress-Induced Photoinhibition. MOLECULAR PLANT 2015; 8:1304-20. [PMID: 25997389 DOI: 10.1016/j.molp.2015.05.005] [Citation(s) in RCA: 386] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 05/18/2023]
Abstract
Plants as sessile organisms are continuously exposed to abiotic stress conditions that impose numerous detrimental effects and cause tremendous loss of yield. Abiotic stresses, including high sunlight, confer serious damage on the photosynthetic machinery of plants. Photosystem II (PSII) is one of the most susceptible components of the photosynthetic machinery that bears the brunt of abiotic stress. In addition to the generation of reactive oxygen species (ROS) by abiotic stress, ROS can also result from the absorption of excessive sunlight by the light-harvesting complex. ROS can damage the photosynthetic apparatus, particularly PSII, resulting in photoinhibition due to an imbalance in the photosynthetic redox signaling pathways and the inhibition of PSII repair. Designing plants with improved abiotic stress tolerance will require a comprehensive understanding of ROS signaling and the regulatory functions of various components, including protein kinases, transcription factors, and phytohormones, in the responses of photosynthetic machinery to abiotic stress. Bioenergetics approaches, such as chlorophyll a transient kinetics analysis, have facilitated our understanding of plant vitality and the assessment of PSII efficiency under adverse environmental conditions. This review discusses the current understanding and indicates potential areas of further studies on the regulation of the photosynthetic machinery under abiotic stress.
Collapse
Affiliation(s)
| | - Jelli Venkatesh
- Department of Bioresource and Food Science, Konkuk University, Seoul 143-701, Korea
| | - Lam Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
41
|
Gururani MA, Mohanta TK, Bae H. Current Understanding of the Interplay between Phytohormones and Photosynthesis under Environmental Stress. Int J Mol Sci 2015; 16:19055-85. [PMID: 26287167 PMCID: PMC4581286 DOI: 10.3390/ijms160819055] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 07/30/2015] [Accepted: 08/11/2015] [Indexed: 12/18/2022] Open
Abstract
Abiotic stress accounts for huge crop losses every year across the globe. In plants, the photosynthetic machinery gets severely damaged at various levels due to adverse environmental conditions. Moreover, the reactive oxygen species (ROS) generated as a result of stress further promote the photosynthetic damage by inhibiting the repair system of photosystem II. Earlier studies have suggested that phytohormones are not only required for plant growth and development, but they also play a pivotal role in regulating plants’ responses to different abiotic stress conditions. Although, phytohormones have been studied in great detail in the past, their influence on the photosynthetic machinery under abiotic stress has not been studied. One of the major factors that limits researchers fromelucidating the precise roles of phytohormones is the highly complex nature of hormonal crosstalk in plants. Another factor that needs to be elucidated is the method used for assessing photosynthetic damage in plants that are subjected to abiotic stress. Here, we review the current understanding on the role of phytohormones in the photosynthetic machinery under various abiotic stress conditions and discuss the potential areas for further research.
Collapse
Affiliation(s)
| | - Tapan Kumar Mohanta
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbook 712-749, Korea.
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbook 712-749, Korea.
| |
Collapse
|
42
|
Pigolev AV, Klimov VV. The green alga Chlamydomonas reinhardtii as a tool for in vivo study of site-directed mutations in PsbO protein of photosystem II. BIOCHEMISTRY (MOSCOW) 2015; 80:662-73. [DOI: 10.1134/s0006297915060036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Duchoslav M, Fischer L. Parallel subfunctionalisation of PsbO protein isoforms in angiosperms revealed by phylogenetic analysis and mapping of sequence variability onto protein structure. BMC PLANT BIOLOGY 2015; 15:133. [PMID: 26051374 PMCID: PMC4459440 DOI: 10.1186/s12870-015-0523-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/11/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND PsbO, the manganese-stabilising protein, is an indispensable extrinsic subunit of photosystem II. It plays a crucial role in the stabilisation of the water-splitting Mn4CaO5 cluster, which catalyses the oxidation of water to molecular oxygen by using light energy. PsbO was also demonstrated to have a weak GTPase activity that could be involved in regulation of D1 protein turnover. Our analysis of psbO sequences showed that many angiosperm species express two psbO paralogs, but the pairs of isoforms in one species were not orthologous to pairs of isoforms in distant species. RESULTS Phylogenetic analysis of 91 psbO sequences from 49 land plant species revealed that psbO duplication occurred many times independently, generally at the roots of modern angiosperm families. In spite of this, the level of isoform divergence was similar in different species. Moreover, mapping of the differences on the protein tertiary structure showed that the isoforms in individual species differ from each other on similar positions, mostly on the luminally exposed end of the β-barrel structure. Comparison of these differences with the location of differences between PsbOs from diverse angiosperm families indicated various selection pressures in PsbO evolution and potential interaction surfaces on the PsbO structure. CONCLUSIONS The analyses suggest that similar subfunctionalisation of PsbO isoforms occurred parallelly in various lineages. We speculate that the presence of two PsbO isoforms helps the plants to finely adjust the photosynthetic apparatus in response to variable conditions. This might be mediated by diverse GTPase activity, since the isoform differences predominate near the predicted GTP-binding site.
Collapse
Affiliation(s)
- Miloš Duchoslav
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5,, 128 44 Praha 2, Czech Republic.
| | - Lukáš Fischer
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5,, 128 44 Praha 2, Czech Republic.
| |
Collapse
|
44
|
Wang Y, Zeng L, Xing D. ROS-mediated enhanced transcription of CYP38 promotes the plant tolerance to high light stress by suppressing GTPase activation of PsbO2. FRONTIERS IN PLANT SCIENCE 2015; 6:777. [PMID: 26483802 PMCID: PMC4586435 DOI: 10.3389/fpls.2015.00777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/10/2015] [Indexed: 05/20/2023]
Abstract
As a member of the Immunophilin family, cyclophilin38 (CYP38) is discovered to be localized in the thylakoid lumen, and is reported to be a participant in the function regulation of thylakoid membrane protein. However, the molecule mechanisms remain unclear. We found that, CYP38 plays an important role in the process of regulating and protecting the plant to resist high light (HL) stress. Under HL condition, the gene expression of CYP38 is enhanced, and if CYP38 gene is deficient, photochemistry efficiency, and chlorophyll content falls distinctly, and excessive reactive oxygen species synthesis occurs in the chloroplast. Western blot results showed that the D1 degradation rate of cyp38 mutant plants is faster than that of wide type plants. Interestingly, both gene expression and activity of PsbO2 were drastically enhanced in cyp38 mutant plants and less changed when the deleted gene of CYP38 was restored under HL treatment. This indicates that CYP38 may impose a negative regulation effect on PsbO2, which exerts a positive regulation effect in facilitating the dephosphorylation and subsequent degradation of D1. It is also found that, under HL condition, the cytoplasmic calcium ([Ca(2+)]cyt) concentration and the gene expression level of calmodulin 3 (CaM3) arose markedly, which occurs upstream of CYP38 gene expression. In conclusion, our results indicate that CYP38 plays an important role in plant strengthening HL resistibility, which provides a new insight in the research of mechanisms of CYP38 protein in plants.
Collapse
Affiliation(s)
| | | | - Da Xing
- *Correspondence: Da Xing, MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Shipai, Tianhe District, Guangzhou 510631, China,
| |
Collapse
|
45
|
Chen X, Chan WL, Zhu FY, Lo C. Phosphoproteomic analysis of the non-seed vascular plant model Selaginella moellendorffii. Proteome Sci 2014; 12:16. [PMID: 24628833 PMCID: PMC4022089 DOI: 10.1186/1477-5956-12-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/06/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Selaginella (Selaginella moellendorffii) is a lycophyte which diverged from other vascular plants approximately 410 million years ago. As the first reported non-seed vascular plant genome, Selaginella genome data allow comparative analysis of genetic changes that may be associated with land plant evolution. Proteomics investigations on this lycophyte model have not been extensively reported. Phosphorylation represents the most common post-translational modifications and it is a ubiquitous regulatory mechanism controlling the functional expression of proteins inside living organisms. RESULTS In this study, polyethylene glycol fractionation and immobilized metal ion affinity chromatography were employed to isolate phosphopeptides from wild-growing Selaginella. Using liquid chromatography-tandem mass spectrometry analysis, 1593 unique phosphopeptides spanning 1104 non-redundant phosphosites with confirmed localization on 716 phosphoproteins were identified. Analysis of the Selaginella dataset revealed features that are consistent with other plant phosphoproteomes, such as the relative proportions of phosphorylated Ser, Thr, and Tyr residues, the highest occurrence of phosphosites in the C-terminal regions of proteins, and the localization of phosphorylation events outside protein domains. In addition, a total of 97 highly conserved phosphosites in evolutionary conserved proteins were identified, indicating the conservation of phosphorylation-dependent regulatory mechanisms in phylogenetically distinct plant species. On the other hand, close examination of proteins involved in photosynthesis revealed phosphorylation events which may be unique to Selaginella evolution. Furthermore, phosphorylation motif analyses identified Pro-directed, acidic, and basic signatures which are recognized by typical protein kinases in plants. A group of Selaginella-specific phosphoproteins were found to be enriched in the Pro-directed motif class. CONCLUSIONS Our work provides the first large-scale atlas of phosphoproteins in Selaginella which occupies a unique position in the evolution of terrestrial plants. Future research into the functional roles of Selaginella-specific phosphorylation events in photosynthesis and other processes may offer insight into the molecular mechanisms leading to the distinct evolution of lycophytes.
Collapse
Affiliation(s)
- Xi Chen
- School of Biological Sciences, The University of Hong Kong, Pokfulam Hong Kong, China.,Wuhan Institute of Biotechnology, Wuhan, Hubei, China
| | - Wai Lung Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Hong Kong, China
| | - Fu-Yuan Zhu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Hong Kong, China
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam Hong Kong, China
| |
Collapse
|
46
|
Dodd AN, Kusakina J, Hall A, Gould PD, Hanaoka M. The circadian regulation of photosynthesis. PHOTOSYNTHESIS RESEARCH 2014; 119:181-90. [PMID: 23529849 DOI: 10.1007/s11120-013-9811-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 03/08/2013] [Indexed: 05/25/2023]
Abstract
Correct circadian regulation increases plant productivity, and photosynthesis is circadian-regulated. Here, we discuss the regulatory basis for the circadian control of photosynthesis. We discuss candidate mechanisms underpinning circadian oscillations of light harvesting and consider how the circadian clock modulates CO2 fixation by Rubisco. We show that new techniques may provide a platform to better understand the signalling pathways that couple the circadian clock with the photosynthetic apparatus. Finally, we discuss how understanding circadian regulation in model systems is underpinning research into the impact of circadian regulation in crop species.
Collapse
Affiliation(s)
- Antony N Dodd
- School of Biological Sciences, University of Bristol, Bristol, BS8 1UG, UK,
| | | | | | | | | |
Collapse
|
47
|
Järvi S, Gollan PJ, Aro EM. Understanding the roles of the thylakoid lumen in photosynthesis regulation. FRONTIERS IN PLANT SCIENCE 2013; 4:434. [PMID: 24198822 PMCID: PMC3813922 DOI: 10.3389/fpls.2013.00434] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/12/2013] [Indexed: 05/20/2023]
Abstract
It has been known for a long time that the thylakoid lumen provides the environment for oxygen evolution, plastocyanin-mediated electron transfer, and photoprotection. More recently lumenal proteins have been revealed to play roles in numerous processes, most often linked with regulating thylakoid biogenesis and the activity and turnover of photosynthetic protein complexes, especially the photosystem II and NAD(P)H dehydrogenase-like complexes. Still, the functions of the majority of lumenal proteins in Arabidopsis thaliana are unknown. Interestingly, while the thylakoid lumen proteome of at least 80 proteins contains several large protein families, individual members of many protein families have highly divergent roles. This is indicative of evolutionary pressure leading to neofunctionalization of lumenal proteins, emphasizing the important role of the thylakoid lumen for photosynthetic electron transfer and ultimately for plant fitness. Furthermore, the involvement of anterograde and retrograde signaling networks that regulate the expression and activity of lumen proteins is increasingly pertinent. Recent studies have also highlighted the importance of thiol/disulfide modulation in controlling the functions of many lumenal proteins and photosynthetic regulation pathways.
Collapse
Affiliation(s)
| | | | - Eva-Mari Aro
- *Correspondence: Eva-Mari Aro, Molecular Plant Biology, Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland e-mail:
| |
Collapse
|
48
|
D'Alessandro A, Taamalli M, Gevi F, Timperio AM, Zolla L, Ghnaya T. Cadmium stress responses in Brassica juncea: hints from proteomics and metabolomics. J Proteome Res 2013; 12:4979-97. [PMID: 24074147 DOI: 10.1021/pr400793e] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Among heavy metal stressors, cadmium (Cd) pollution is one leading threat to the environment. In this view, research efforts have been increasingly put forward to promote the individuation of phytoextractor plants that are capable of accumulating and withstanding the toxic metals, including Cd, in the aerial parts. We hereby adopted the hyperaccumulator B. juncea (Indian mustard) as a model to investigate plant responses to Cd stress at low (25 μM) and high (100 μM) doses. Analytical strategies included mass-spectrometry-based determination of Cd and the assessment of its effect on the leaf proteome and metabolome. Results were thus integrated with routine physiological data. Taken together, physiology results highlighted the deregulation of photosynthesis efficiency, ATP synthesis, reduced transpiration, and the impairment of light-independent carbon fixation reactions. These results were supported at the proteomics level by the observed Cd-dependent alteration of photosystem components and the alteration of metabolic enzymes, including ATP synthase subunits, carbonic anhydrase, and enzymes involved in antioxidant responses (especially glutathione and phytochelatin homeostasis) and the Calvin cycle. Metabolomics results confirmed the alterations of energy-generating metabolic pathways, sulfur-compound metabolism (GSH and PCs), and Calvin cycle. Besides, metabolomics results highlighted the up-regulation of phosphoglycolate, a byproduct of the photorespiration metabolism. This was suggestive of the likely increased photorespiration rate as a means to cope with Cd-induced unbalance in stomatal conductance and deregulation of CO2 homeostasis, which would, in turn, promote CO2 depletion and O2 (and thus oxidative stress) accumulation under prolonged photosynthesis in the leaves from plants exposed to high doses of CdCl2. Overall, it emerges that Cd-stressed B. juncea might rely on photorespiration, an adaptation that would prevent the over-reduction of the photosynthetic electron transport chain and photoinhibition.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Ecological and Biological Sciences, University of Tuscia , Largo dell'Università, snc, 01100 Viterbo, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Pagliano C, Saracco G, Barber J. Structural, functional and auxiliary proteins of photosystem II. PHOTOSYNTHESIS RESEARCH 2013; 116:167-88. [PMID: 23417641 DOI: 10.1007/s11120-013-9803-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 02/07/2013] [Indexed: 05/06/2023]
Abstract
Photosystem II (PSII) is the water-splitting enzyme complex of photosynthesis and consists of a large number of protein subunits. Most of these proteins have been structurally and functionally characterized, although there are differences between PSII of plants, algae and cyanobacteria. Here we catalogue all known PSII proteins giving a brief description, where possible of their genetic origin, physical properties, structural relationships and functions. We have also included details of auxiliary proteins known at present to be involved in the in vivo assembly, maintenance and turnover of PSII and which transiently bind to the reaction centre core complex. Finally, we briefly give details of the proteins which form the outer light-harvesting systems of PSII in different types of organisms.
Collapse
Affiliation(s)
- Cristina Pagliano
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Viale T. Michel 5, 15121, Torino, Alessandria, Italy,
| | | | | |
Collapse
|
50
|
Offenbacher AR, Polander BC, Barry BA. An intrinsically disordered photosystem II subunit, PsbO, provides a structural template and a sensor of the hydrogen-bonding network in photosynthetic water oxidation. J Biol Chem 2013; 288:29056-68. [PMID: 23940038 DOI: 10.1074/jbc.m113.487561] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosystem II (PSII) is a membrane-bound enzyme that utilizes solar energy to catalyze the photooxidation of water. Molecular oxygen is evolved after four sequential light-driven oxidation reactions at the Mn4CaO5 oxygen-evolving complex, producing five sequentially oxidized states, Sn. PSII is composed of 17 membrane-spanning subunits and three extrinsic subunits, PsbP, PsbQ, and PsbO. PsbO is intrinsically disordered and plays a role in facilitation of the water oxidizing cycle. Native PsbO can be removed and substituted with recombinant PsbO, thereby restoring steady-state activity. In this report, we used reaction-induced Fourier transform infrared spectroscopy to obtain information concerning the role of PsbP, PsbQ, and PsbO during the S state cycle. Light-minus-dark difference spectra were acquired, monitoring structural changes associated with each accessible flash-induced S state transition in a highly purified plant PSII preparation (Triton X-100, octylthioglucoside). A comparison of S2 minus S1 spectra revealed that removal of PsbP and PsbQ had no significant effect on the data, whereas amide frequency and intensity changes were associated with PsbO removal. These data suggest that PsbO acts as an organizational template for the PSII reaction center. To identify any coupled conformational changes arising directly from PsbO, global (13)C-PsbO isotope editing was employed. The reaction-induced Fourier transform infrared spectra of accessible S states provide evidence that PsbO spectral contributions are temperature (263 and 277 K) and S state dependent. These experiments show that PsbO undergoes catalytically relevant structural dynamics, which are coupled over long distance to hydrogen-bonding changes at the Mn4CaO5 cluster.
Collapse
Affiliation(s)
- Adam R Offenbacher
- From the School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | | | | |
Collapse
|