1
|
Li YN, Lei C, Yang Q, Yu X, Li S, Sun Y, Ji C, Zhang C, Xue JA, Cui H, Li R. Identification and expression analysis of calcium-dependent protein kinase family in oat ( Avena sativa L.) and their functions in response to saline-alkali stresses. FRONTIERS IN PLANT SCIENCE 2024; 15:1395696. [PMID: 39450084 PMCID: PMC11499199 DOI: 10.3389/fpls.2024.1395696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024]
Abstract
Calcium-dependent protein kinases (CDPKs) serve as calcium ion sensors and play crucial roles in all aspects of plant life cycle. While CDPK gene family has been extensively studied in various plants, there is limited information available for CDPK members in oat, an important cereal crop worldwide. Totally, 60 AsCDPK genes were identified in oat genome and were classified into four subfamilies based on their phylogenetic relationship. The members within each subfamily shared similar gene structure and conserved motifs. Collinearity analysis revealed that AsCDPK gene amplification was attributed to segmental duplication events and underwent strong purifying selection. AsCDPK promoters were predicted to contain cis-acting elements associated with hormones, biotic and abiotic stresses. AsCDPK gene expressions were induced by different salt stresses, exhibiting stress-specific under different salt treatments. Moreover, overexpression of AsCDPK26 gene enhanced salt resistance in C. reinhardtii, a single-cell photoautotrophic model plants. Further analysis revealed a significant correlation between AsCDPK26 and Na+/H+ antiporter 1 (p<0.05), suggesting that AsCDPK26 may interact with ion transporter to modulate salt resistance. These results not only provide valuable insights into AsCDPK genes in response to different salt stresses, but also lay the foundation to mine novel candidates for improving salt tolerance in oat and other crops.
Collapse
Affiliation(s)
- Ya-nan Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunyan Lei
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Qian Yang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Xiao Yu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Siming Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yan Sun
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunli Ji
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunhui Zhang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jin-ai Xue
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Hongli Cui
- Key Laboratory of Coastal Biology and Bio-Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandon, China
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| |
Collapse
|
2
|
Hou X, Zhang Y, Shi X, Duan W, Fu X, Liu J, Xiao K. TaCDPK1-5A positively regulates drought response through modulating osmotic stress responsive-associated processes in wheat (Triticum aestivum). PLANT CELL REPORTS 2024; 43:256. [PMID: 39375249 DOI: 10.1007/s00299-024-03344-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
KEY MESSAGE Wheat TaCDPK1-5A plays critical roles in mediating drought tolerance through regulating osmotic stress-associated physiological processes. Calcium (Ca2+) acts as an essential second messenger in plant signaling pathways and impacts plant abiotic stress responses. This study reported the function of TaCDPK1-5A, a calcium-dependent protein kinase (CDPK) gene in T. aestivum, in mediating drought tolerance. TaCDPK1-5A sensitively responded to drought and exogenous abscisic acid (ABA) signaling, displaying induced transcripts in plants under drought and ABA treatments. Yeast two-hybrid and co-immunoprecipitation assays revealed that TaCDPK1-5A interacts with the mitogen-activated protein kinase TaMAPK4-7D whereas the latter with ABF transcription factor TaABF1-3A, suggesting that TaCDPK1-5A constitutes a signaling module with above partners to transduce signals initiated by drought/ABA stressors. Overexpression of TaCDPK1-5A, TaMAPK4-7D and TaABF1-3A enhanced plant drought adaptation by modulating the osmotic stress-related physiological indices, including increased osmolyte contents, enlarged root morphology, and promoted stomata closure. Yeast one-hybrid assays indicated the binding ability of TaABF1-3A with promoters of TaP5CS1-1B, TaPIN3-5A, and TaSLAC1-3-2A, the genes encoding P5CS enzyme, PIN-FORMED protein, and slow anion channel, respectively. ChIP-PCR and transcriptional activation assays confirmed that TaABF1-3A regulates these genes at transcriptional level. Moreover, transgene analysis indicated that these stress-responsive genes positively regulated proline biosynthesis (TaP5CS1-1B), root morphology (TaPIN3-5A), and stomata closing (TaSLAC1-3-2A) upon drought signaling. Positive correlations were observed between yield and the transcripts of TaCDPK1-5A signaling partners in wheat cultivars under drought condition, with haplotype TaCDPK1-5A-Hap1 contributing to improved drought tolerance. Our study concluded that TaCDPK1-5A positively regulates drought adaptation and is a valuable target for molecular breeding the drought-tolerant cultivars in T. aestivum.
Collapse
Affiliation(s)
- Xiaoyang Hou
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, People's Republic of China
- College of Agronomy, Hebei Agricultural University, Baoding, People's Republic of China
| | - Yongli Zhang
- National Key Laboratory of Wheat Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xinxin Shi
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, People's Republic of China
- College of Agronomy, Hebei Agricultural University, Baoding, People's Republic of China
| | - Wanrong Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, People's Republic of China
- College of Agronomy, Hebei Agricultural University, Baoding, People's Republic of China
| | - Xiaojin Fu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, People's Republic of China
- College of Agronomy, Hebei Agricultural University, Baoding, People's Republic of China
| | - Jinzhi Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, People's Republic of China
- College of Agronomy, Hebei Agricultural University, Baoding, People's Republic of China
| | - Kai Xiao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, People's Republic of China.
- College of Agronomy, Hebei Agricultural University, Baoding, People's Republic of China.
| |
Collapse
|
3
|
Liu Y, You H, Li H, Zhang C, Guo H, Huang X, Zhang Q, Zhang X, Ma C, Wang Y, Li T, Ji W, Kang Z, Zhang H. TaNAC1 boosts powdery mildew resistance by phosphorylation-dependent regulation of TaSec1a and TaCAMTA4 via PP2Ac/CDPK20. THE NEW PHYTOLOGIST 2024; 244:635-653. [PMID: 39183373 DOI: 10.1111/nph.20070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/01/2024] [Indexed: 08/27/2024]
Abstract
The integrity of wheat (Triticum aestivum) production is increasingly jeopardized by the fungal pathogen Blumeria graminis f. sp. tritici (Bgt), particularly amid the vicissitudes of climate change. Here, we delineated the role of a wheat transcription factor, TaNAC1, which precipitates cellular apoptosis and fortifies resistance against Bgt. Utilizing BiFC, co-immunoprecipitation, protein quantification, luciferase report assays, we determined that cytoplasmic TaNAC1-7A undergoes phosphorylation at the S184/S258 sites by TaCDPK20, facilitating its nuclear translocation. This migration appears to prime further phosphorylation by TaMPK1, thereby enhancing transcriptional regulatory activity. Notably, the apoptotic activity of phosphorylated TaNAC1-7A is negatively modulated by the nuclear protein phosphatase PP2Ac. Furthermore, activation of TaNAC1 phosphorylation initiates transcription of downstream genes TaSec1a and TaCAMTA4, through binding to the C[T/G]T[N7]A[A/C]G nucleic acid motif. Suppression of TaNAC1, TaCDPK20, and TaMPK1 in wheat compromises its resistance to Bgt strain E09, whereas overexpression of TaNAC1 and silencing of PP2Ac markedly elevate resistance levels. Our results reveal the pivotal role of TaNAC1 in basal resistance which is mediated by its effects on homotypic fusion, vacuolar protein sorting, and the expression of defense-related genes. The findings highlight the potential through targeting TaNAC1 and its regulators as a strategy for improving wheat's resistance to fungal pathogens.
Collapse
Affiliation(s)
- Yuanming Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hongguang You
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hanping Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chujun Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huan Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xueling Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qiong Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiangyu Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chuang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yajuan Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tingdong Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wanquan Ji
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hong Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
4
|
Wang Q, Cang X, Yan H, Zhang Z, Li W, He J, Zhang M, Lou L, Wang R, Chang M. Activating plant immunity: the hidden dance of intracellular Ca 2+ stores. THE NEW PHYTOLOGIST 2024; 242:2430-2439. [PMID: 38586981 DOI: 10.1111/nph.19717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
Calcium ion (Ca2+) serves as a versatile and conserved second messenger in orchestrating immune responses. In plants, plasma membrane-localized Ca2+-permeable channels can be activated to induce Ca2+ influx from extracellular space to cytosol upon pathogen infection. Notably, different immune elicitors can induce dynamic Ca2+ signatures in the cytosol. During pattern-triggered immunity, there is a rapid and transient increase in cytosolic Ca2+, whereas in effector-triggered immunity, the elevation of cytosolic Ca2+ is strong and sustained. Numerous Ca2+ sensors are localized in the cytosol or different intracellular organelles, which are responsible for detecting and converting Ca2+ signals. In fact, Ca2+ signaling coordinated by cytosol and subcellular compartments plays a crucial role in activating plant immune responses. However, the complete Ca2+ signaling network in plant cells is still largely ambiguous. This review offers a comprehensive insight into the collaborative role of intracellular Ca2+ stores in shaping the Ca2+ signaling network during plant immunity, and several intriguing questions for future research are highlighted.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyan Cang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Haiqiao Yan
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zilu Zhang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Li
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyu He
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Laiqing Lou
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ran Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ming Chang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
5
|
Ahsan N, Kataya ARA, Rao RSP, Swatek KN, Wilson RS, Meyer LJ, Tovar-Mendez A, Stevenson S, Maszkowska J, Dobrowolska G, Yao Q, Xu D, Thelen JJ. Decoding Arabidopsis thaliana CPK/SnRK Superfamily Kinase Client Signaling Networks Using Peptide Library and Mass Spectrometry. PLANTS (BASEL, SWITZERLAND) 2024; 13:1481. [PMID: 38891291 PMCID: PMC11174488 DOI: 10.3390/plants13111481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Members of the calcium-dependent protein kinase (CDPK/CPK) and SNF-related protein kinase (SnRK) superfamilies are commonly found in plants and some protists. Our knowledge of client specificity of the members of this superfamily is fragmentary. As this family is represented by over 30 members in Arabidopsis thaliana, the identification of kinase-specific and overlapping client relationships is crucial to our understanding the nuances of this large family of kinases as directed towards signal transduction pathways. Herein, we used the kinase client (KiC) assay-a relative, quantitative, high-throughput mass spectrometry-based in vitro phosphorylation assay-to identify and characterize potential CPK/SnRK targets of Arabidopsis. Eight CPKs (1, 3, 6, 8, 17, 24, 28, and 32), four SnRKs (subclass 1 and 2), and PPCK1 and PPCK2 were screened against a synthetic peptide library that contains 2095 peptides and 2661 known phosphorylation sites. A total of 625 in vitro phosphorylation sites corresponding to 203 non-redundant proteins were identified. The most promiscuous kinase, CPK17, had 105 candidate target proteins, many of which had already been discovered. Sequence analysis of the identified phosphopeptides revealed four motifs: LxRxxS, RxxSxxR, RxxS, and LxxxxS, that were significantly enriched among CPK/SnRK clients. The results provide insight into both CPK- and SnRK-specific and overlapping signaling network architectures and recapitulate many known in vivo relationships validating this large-scale approach towards discovering kinase targets.
Collapse
Affiliation(s)
- Nagib Ahsan
- Division of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Chemistry and Biochemistry, Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, The University of Oklahoma, Norman, OK 73019, USA
| | - Amr R. A. Kataya
- Division of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - R. Shyama Prasad Rao
- Division of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Center for Bioinformatics, NITTE Deemed to be University, Mangaluru 575018, India
| | - Kirby N. Swatek
- Division of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Rashaun S. Wilson
- Division of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Arvinas, Inc., New Haven, CT 06511, USA
| | - Louis J. Meyer
- Division of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Bayer Crop Science, St. Louis, MO 63141, USA
| | - Alejandro Tovar-Mendez
- Division of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Elemental Enzymes, St. Louis, MO 63132, USA
| | - Severin Stevenson
- Division of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Justyna Maszkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland (G.D.)
| | - Grazyna Dobrowolska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland (G.D.)
| | - Qiuming Yao
- Department of Electrical Engineering & Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Dong Xu
- Department of Electrical Engineering & Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jay J. Thelen
- Division of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
6
|
Mo Z, Zhang Y, Hou M, Hu L, Zhai M, Xuan J. Transcriptional dynamics reveals the asymmetrical events underlying graft union formation in pecan (Carya illinoinensis). TREE PHYSIOLOGY 2024; 44:tpae040. [PMID: 38598328 DOI: 10.1093/treephys/tpae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Grafting is a widely used technique for pecan propagation; however, the background molecular events underlying grafting are still poorly understood. In our study, the graft partners during pecan [Carya illinoinensis (Wangenh.) K. Koch] graft union formation were separately sampled for RNA-seq, and the transcriptional dynamics were described via weighted gene co-expression network analysis. To reveal the main events underlying grafting, the correlations between modules and grafting traits were analyzed. Functional annotation showed that during the entire graft process, signal transduction was activated in the scion, while messenger RNA splicing was induced in the rootstock. At 2 days after grafting, the main processes occurring in the scion were associated with protein synthesis and processing, while the primary processes occurring in the rootstock were energy release-related. During the period of 7-14 days after grafting, defense response was a critical process taking place in the scion; however, the main process functioning in the rootstock was photosynthesis. From 22 to 32 days after grafting, the principal processes taking place in the scion were jasmonic acid biosynthesis and defense response, whereas the highly activated processes associated with the rootstock were auxin biosynthesis and plant-type secondary cell wall biogenesis. To further prove that the graft partners responded asymmetrically to stress, hydrogen peroxide contents as well as peroxidase and β-1,3-glucanase activities were detected, and the results showed that their levels were increased in the scion not the rootstock at certain time points after grafting. Our study reveals that the scion and rootstock might respond asymmetrically to grafting in pecan, and the scion was likely associated with stress response, while the rootstock was probably involved in energy supply and xylem bridge differentiation during graft union formation.
Collapse
Affiliation(s)
- Zhenghai Mo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, NO. 1 Road, Qianhuhou Villiage, Xuanwu District, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, NO. 1 Road, Qianhuhou Villiage, Xuanwu District, Nanjing 210014, China
| | - Yan Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, NO. 1 Road, Qianhuhou Villiage, Xuanwu District, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, NO. 1 Road, Qianhuhou Villiage, Xuanwu District, Nanjing 210014, China
| | - Mengxin Hou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, NO. 1 Road, Qianhuhou Villiage, Xuanwu District, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, NO. 1 Road, Qianhuhou Villiage, Xuanwu District, Nanjing 210014, China
| | - Longjiao Hu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, NO. 1 Road, Qianhuhou Villiage, Xuanwu District, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, NO. 1 Road, Qianhuhou Villiage, Xuanwu District, Nanjing 210014, China
| | - Min Zhai
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, NO. 1 Road, Qianhuhou Villiage, Xuanwu District, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, NO. 1 Road, Qianhuhou Villiage, Xuanwu District, Nanjing 210014, China
| | - Jiping Xuan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, NO. 1 Road, Qianhuhou Villiage, Xuanwu District, Nanjing 210014, China
- Jiangsu Engineering Research Center for the Germplasm Innovation and Utilization of Pecan, NO. 1 Road, Qianhuhou Villiage, Xuanwu District, Nanjing 210014, China
| |
Collapse
|
7
|
Zvereva AS, Klingenbrunner M, Teige M. Calcium signaling: an emerging player in plant antiviral defense. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1265-1273. [PMID: 37940194 PMCID: PMC10901205 DOI: 10.1093/jxb/erad442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Calcium is a universal messenger in different kingdoms of living organisms and regulates most physiological processes, including defense against pathogens. The threat of viral infections in humans has become very clear in recent years, and this has triggered detailed research into all aspects of host-virus interactions, including the suppression of calcium signaling in infected cells. At the same time, however, the threat of plant viral infections is underestimated in society, and research in the field of calcium signaling during plant viral infections is scarce. Here we highlight an emerging role of calcium signaling for antiviral protection in plants, in parallel with the known evidence from studies of animal cells. Obtaining more knowledge in this domain might open up new perspectives for future crop protection and the improvement of food security.
Collapse
Affiliation(s)
- Anna S Zvereva
- Department of Functional & Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Michael Klingenbrunner
- Department of Functional & Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Markus Teige
- Department of Functional & Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
8
|
Keil L, Mehlmer N, Cavelius P, Garbe D, Haack M, Ritz M, Awad D, Brück T. The Time-Resolved Salt Stress Response of Dunaliella tertiolecta-A Comprehensive System Biology Perspective. Int J Mol Sci 2023; 24:15374. [PMID: 37895054 PMCID: PMC10607294 DOI: 10.3390/ijms242015374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Algae-driven processes, such as direct CO2 fixation into glycerol, provide new routes for sustainable chemical production in synergy with greenhouse gas mitigation. The marine microalgae Dunaliella tertiolecta is reported to accumulate high amounts of intracellular glycerol upon exposure to high salt concentrations. We have conducted a comprehensive, time-resolved systems biology study to decipher the metabolic response of D. tertiolecta up to 24 h under continuous light conditions. Initially, due to a lack of reference sequences required for MS/MS-based protein identification, a high-quality draft genome of D. tertiolecta was generated. Subsequently, a database was designed by combining the genome with transcriptome data obtained before and after salt stress. This database allowed for detection of differentially expressed proteins and identification of phosphorylated proteins, which are involved in the short- and long-term adaptation to salt stress, respectively. Specifically, in the rapid salt adaptation response, proteins linked to the Ca2+ signaling pathway and ion channel proteins were significantly increased. While phosphorylation is key in maintaining ion homeostasis during the rapid adaptation to salt stress, phosphofructokinase is required for long-term adaption. Lacking β-carotene, synthesis under salt stress conditions might be substituted by the redox-sensitive protein CP12. Furthermore, salt stress induces upregulation of Calvin-Benson cycle-related proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany; (L.K.); (N.M.); (P.C.); (D.G.); (M.H.); (M.R.); (D.A.)
| |
Collapse
|
9
|
Chen L, Zhang B, Xia L, Yue D, Han B, Sun W, Wang F, Lindsey K, Zhang X, Yang X. The GhMAP3K62-GhMKK16-GhMPK32 kinase cascade regulates drought tolerance by activating GhEDT1-mediated ABA accumulation in cotton. J Adv Res 2023; 51:13-25. [PMID: 36414168 PMCID: PMC10491974 DOI: 10.1016/j.jare.2022.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Drought is the principal abiotic stress that severely impacts cotton (Gossypium hirsutum) growth and productivity. Upon sensing drought, plants activate stress-related signal transduction pathways, including ABA signal and mitogen-activated protein kinase (MAPK) cascade. However, as the key components with the fewest members in the MAPK cascade, the function and regulation of GhMKKs need to be elucidated. In addition, the relationship between MAPK module and the ABA core signaling pathway remains incompletely understood. OBJECTIVE Here we aim to elucidate the molecular mechanism of cotton response to drought, with a focus on mitogen-activated protein kinase (MAPK) cascades activating ABA signaling. METHODS Biochemical, molecular and genetic analysis were used to study the GhMAP3K62-GhMKK16-GhMPK32-GhEDT1 pathway genes. RESULTS A nucleus- and membrane-localized MAPK cascade pathway GhMAP3K62-GhMKK16-GhMPK32, which targets and phosphorylates the nuclear-localized transcription factor GhEDT1, to activate downstream GhNCED3 to mediate ABA-induced stomatal closure and drought response was characterized in cotton. Overexpression of GhMKK16 promotes ABA accumulation, and enhances drought tolerance via regulating stomatal closure under drought stress. Conversely, RNAi-mediated knockdown of GhMKK16 expression inhibits ABA accumulation, and reduces drought tolerance. Virus-induced gene silencing (VIGS)-mediated knockdown of either GhMAP3K62, GhMPK32 or GhEDT1 expression represses ABA accumulation and reduces drought tolerance through inhibiting stomatal closure. Expression knockdown of GhMPK32 or GhEDT1 in GhMKK16-overexpressing cotton reinstates ABA content and stomatal opening-dependent drought sensitivity to wild type levels. GhEDT1 could bind to the HD boxes in the promoter of GhNCED3 to activate its expression, resulting in ABA accumulation. We propose that the MAPK cascade GhMAP3K62-GhMKK16-GhMPK32 pathway functions on drought response through ABA-dependent stomatal movement in cotton.
Collapse
Affiliation(s)
- Lin Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Bing Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China
| | - Linjie Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China
| | - Dandan Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China
| | - Bei Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China
| | - Weinan Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China
| | - Fengjiao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Keith Lindsey
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
10
|
Lai L, Ruan J, Xiao C, Yi P. The putative myristoylome of Physcomitrium patens reveals conserved features of myristoylation in basal land plants. PLANT CELL REPORTS 2023; 42:1107-1124. [PMID: 37052714 DOI: 10.1007/s00299-023-03016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/03/2023] [Indexed: 05/12/2023]
Abstract
KEYMESSAGE The putative myristoylome of moss P. patens opens an avenue for studying myristoylation substrates in non-canonical model plants. A myristoylation signal was shown sufficient for membrane targeting and useful for membrane dynamics visualization during cell growth. N-myristoylation (MYR) is one form of lipid modification catalyzed by N-myristoyltransferase that enables protein-membrane association. MYR is highly conserved in all eukaryotes. However, the study of MYR is limited to a few models such as yeasts, humans, and Arabidopsis. Here, using prediction tools, we report the characterization of the putative myristoylome of the moss Physcomitrium patens. We show that basal land plants display a similar signature of MYR to Arabidopsis and may have organism-specific substrates. Phylogenetically, MYR signals have mostly co-evolved with protein function but also exhibit variability in an organism-specific manner. We also demonstrate that the MYR motif of a moss brassinosteroid-signaling kinase is an efficient plasma membrane targeting signal and labels lipid-rich domains in tip-growing cells. Our results provide insights into the myristoylome in a basal land plant and lay the foundation for future studies on MYR and its roles in plant evolution.
Collapse
Affiliation(s)
- Linyu Lai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Wuhou District, Chengdu, Sichuan, 610064, People's Republic of China
| | - Jingtong Ruan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Wuhou District, Chengdu, Sichuan, 610064, People's Republic of China
| | - Chaowen Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Wuhou District, Chengdu, Sichuan, 610064, People's Republic of China
| | - Peishan Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Wuhou District, Chengdu, Sichuan, 610064, People's Republic of China.
| |
Collapse
|
11
|
Rezayian M, Zarinkamar F. Nitric oxide, calmodulin and calcium protein kinase interactions in the response of Brassica napus to salinity stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:411-419. [PMID: 36779525 DOI: 10.1111/plb.13511] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Involvement of nitric oxide (NO) in plant metabolism and its connection with phytohormones has not been fully described, thus information about the role of this molecule in signalling pathways remains fragmented. In this study, the effects of NO on calmodulin (CAM), calcium protein kinase (CPK), content of phytohormones and secondary metabolites in canola plants under salinity stress were investigated. We applied 100 μM sodium nitroprusside as an NO source to canola plants grown under saline (100 mM NaCl) and non-saline conditions at the vegetative stage. Plant growth was negatively affected by salinity, but exogenous NO treatment improved growth. NO caused a significant increase in activity of CAT, SOD and POX through their enhanced gene expression in stressed canola. Salinity-responsive genes, namely CAM and CPK, were induced by NO in plants grown under salinity. NO application enhanced phenolic compounds, such as gallic acid and coumaric acid and flavonoid compound,s catechin, diadzein and kaempferol, in plants subjected to salinity. NO treatment enhanced abscisic acid and brassinosteroids but decreased auxin and gibberellin in stressed canola plants. The impacts of NO in improving stress tolerance in canola required CAM and CPK. Also, NO signalling re-established the phytohormone balance and resulted in enhanced tolerance to salt stress. Furthermore, NO improved salinity tolerance in canola by increasing enzymatic and non-enzymatic antioxidant content.
Collapse
Affiliation(s)
- M Rezayian
- Department of Plant Biology, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| | - F Zarinkamar
- Department of Plant Biology, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
12
|
Sun Q, Zhai L, Zhao D, Gao M, Wu Y, Wu T, Zhang X, Xu X, Han Z, Wang Y. Kinase MxMPK4-1 and calmodulin-binding protein MxIQM3 enhance apple root acidification during Fe deficiency. PLANT PHYSIOLOGY 2023; 191:1968-1984. [PMID: 36534987 PMCID: PMC10022619 DOI: 10.1093/plphys/kiac587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Iron (Fe) deficiency is a long-standing issue in plant mineral nutrition. Ca2+ signals and the mitogen-activated protein kinase (MAPK) cascade are frequently activated in parallel to perceive external cues, but their interplay under Fe deficiency stress remains largely unclear. Here, the kinase MxMPK4-1, which is induced during the response to Fe deficiency stress in apple rootstock Malus xiaojinensis, cooperates with IQ-motif containing protein3 (MxIQM3). MxIQM3 gene expression, protein abundance, and phosphorylation level increased under Fe deficiency stress. The overexpression of MxIQM3 in apple calli and rootstocks mitigated the Fe deficiency phenotype and improved stress tolerance, whereas RNA interference or silencing of MxIQM3 in apple calli and rootstocks, respectively, worsened the phenotype and reduced tolerance to Fe deficiency. MxMPK4-1 interacted with MxIQM3 and subsequently phosphorylated MxIQM3 at Ser393, and co-expression of MxMPK4-1 and MxIQM3 in apple calli and rootstocks enhanced Fe deficiency responses. Furthermore, MxIQM3 interacted with the central-loop region of the plasma membrane (PM) H+-ATPase MxHA2. Phospho-mimicking mutation of MxIQM3 at Ser393 inhibited binding to MxHA2, but phospho-abolishing mutation promoted interaction with both the central-loop and C terminus of MxHA2, demonstrating phosphorylation of MxIQM3 caused dissociation from MxHA2 and therefore increased H+ secretion. Moreover, Ca2+/MxCAM7 (Calmodulin7) regulated the MxMPK4-1-MxIQM3 module in response to Fe deficiency stress. Overall, our results demonstrate that MxMPK4-1-MxIQM3 forms a functional complex and positively regulates PM H+-ATPase activity in Fe deficiency responses, revealing a versatile mechanism of Ca2+/MxCAM7 signaling and MAPK cascade under Fe deficiency stress.
Collapse
Affiliation(s)
- Qiran Sun
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Longmei Zhai
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Danrui Zhao
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Min Gao
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Yue Wu
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| |
Collapse
|
13
|
Xu L, Zhang L, Liu Y, Sod B, Li M, Yang T, Gao T, Yang Q, Long R. Overexpression of the elongation factor MtEF1A1 promotes salt stress tolerance in Arabidopsis thaliana and Medicago truncatula. BMC PLANT BIOLOGY 2023; 23:138. [PMID: 36907846 PMCID: PMC10009949 DOI: 10.1186/s12870-023-04139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Elongation factor 1 A (EF1A), an essential regulator for protein synthesis, has been reported to participate in abiotic stress responses and environmental adaption in plants. However, the role of EF1A in abiotic stress response was barely studied in Medicago truncatula. Here, we identified elongation factor (EF) genes of M. truncatula and studied the salt stress response function of MtEF1A1 (MTR_6g021805). RESULTS A total of 34 EF genes were identified in the M. truncatula genome. Protein domains and motifs of EFs were highly conserved in plants. MtEF1A1 has the highest expression levels in root nodules and roots, followed by the leaves and stems. Transgenic Arabidopsis thaliana overexpressing MtEF1A1 was more resistant to salt stress treatment, with higher germination rate, longer roots, and more lateral roots than wild type plant. In addition, lower levels of H2O2 and malondialdehyde (MDA) were also detected in transgenic Arabidopsis. Similarly, MtEF1A1 overexpressing M. truncatula was more resistant to salt stress and had lower levels of reactive oxygen species (ROS) in leaves. Furthermore, the expression levels of abiotic stress-responsive genes (MtRD22A and MtCOR15A) and calcium-binding genes (MtCaM and MtCBL4) were upregulated in MtEF1A1 overexpressing lines of M. truncatula. CONCLUSION These results suggested that MtEF1A1 play a positive role in salt stress regulation. MtEF1A1 may realize its function by binding to calmodulin (CaM) or by participating in Ca2+-dependent signaling pathway. This study revealed that MtEF1A1 is an important regulator for salt stress response in M. truncatula, and provided potential strategy for salt-tolerant plant breeding.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100000, China
| | - Lixia Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100000, China
| | - Yajiao Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100000, China
| | - Bilig Sod
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100000, China
| | - Mingna Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100000, China
| | - Tianhui Yang
- Institute of Animal Sciences, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750000, China
| | - Ting Gao
- Institute of Animal Sciences, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750000, China
| | - Qingchuan Yang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100000, China
| | - Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100000, China.
| |
Collapse
|
14
|
Zhang Q, Li Y, Cao K, Xu H, Zhou X. Transcriptome and proteome depth analysis indicate ABA, MAPK cascade and Ca 2+ signaling co-regulate cold tolerance in Rhododendron chrysanthum Pall. FRONTIERS IN PLANT SCIENCE 2023; 14:1146663. [PMID: 36895874 PMCID: PMC9989302 DOI: 10.3389/fpls.2023.1146663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Cold stress is a global common problem that significantly limits plant development and geographical distribution. Plants respond to low temperature stress by evolving interrelated regulatory pathways to respond and adapt to their environment in a timely manner. Rhodoendron chrysanthum Pall. (R. chrysanthum) is a perennial evergreen dwarf shrub used for adornment and medicine that thrives in the Changbai Mountains at high elevations and subfreezing conditions. METHODS In this study, a comprehensive investigation of cold tolerance (4°C, 12h) in R. chrysanthum leaves under cold using physiological combined with transcriptomic and proteomic approaches. RESULTS There were 12,261 differentially expressed genes (DEGs) and 360 differentially expressed proteins (DEPs) in the low temperature (LT) and normal treatment (Control). Integrated transcriptomic and proteomic analyses showed that MAPK cascade, ABA biosynthesis and signaling, plant-pathogen interaction, linoleic acid metabolism and glycerophospholipid metabolism were significantly enriched in response to cold stress of R. chrysanthum leaves. DISCUSSION We analyzed the involvement of ABA biosynthesis and signaling, MAPK cascade, and Ca2+ signaling, that may jointly respond to stomatal closure, chlorophyll degradation, and ROS homeostasis under low temperature stress. These results propose an integrated regulatory network of ABA, MAPK cascade and Ca2+ signaling comodulating the cold stress in R. chrysanthum, which will provide some insights to elucidate the molecular mechanisms of cold tolerance in plants.
Collapse
Affiliation(s)
| | | | | | - Hongwei Xu
- *Correspondence: Xiaofu Zhou, ; Hongwei Xu,
| | | |
Collapse
|
15
|
Hu CH, Li BB, Chen P, Shen HY, Xi WG, Zhang Y, Yue ZH, Wang HX, Ma KS, Li LL, Chen KM. Identification of CDPKs involved in TaNOX7 mediated ROS production in wheat. FRONTIERS IN PLANT SCIENCE 2023; 13:1108622. [PMID: 36756230 PMCID: PMC9900008 DOI: 10.3389/fpls.2022.1108622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
As the critical sensors and decoders of calcium signal, calcium-dependent protein kinase (CDPK) has become the focus of current research, especially in plants. However, few resources are available on the properties and functions of CDPK gene family in Triticum aestivum (TaCDPK). Here, a total of 79 CDPK genes were identified in the wheat genome. These TaCDPKs could be classified into four subgroups on phylogenesis, while they may be classified into two subgroups based on their tissue and organ-spatiotemporal expression profiles or three subgroups according to their induced expression patterns. The analysis on the signal network relationships and interactions of TaCDPKs and NADPH (reduced nicotinamide adenine dinucleotide phosphate oxidases, NOXs), the key producers for reactive oxygen species (ROS), showed that there are complicated cross-talks between these two family proteins. Further experiments demonstrate that, two members of TaCDPKs, TaCDPK2/4, can interact with TaNOX7, an important member of wheat NOXs, and enhanced the TaNOX7-mediated ROS production. All the results suggest that TaCDPKs are highly expressed in wheat with distinct tissue or organ-specificity and stress-inducible diversity, and play vital roles in plant development and response to biotic and abiotic stresses by directly interacting with TaNOXs for ROS production.
Collapse
Affiliation(s)
- Chun-Hong Hu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Bin-Bin Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Peng Chen
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Hai-Yan Shen
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Wei-Gang Xi
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Yi Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Zong-Hao Yue
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Hong-Xing Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Ke-Shi Ma
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Li-Li Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
16
|
Liu Y, Yin F, Liao L, Shuai L. Genome-wide identification and expression analysis of calmodulin-like proteins in cucumber. PeerJ 2023; 11:e14637. [PMID: 36655051 PMCID: PMC9841910 DOI: 10.7717/peerj.14637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/05/2022] [Indexed: 01/15/2023] Open
Abstract
Background The calmodulin-like (CML) protein is a crucial Ca2+-binding protein that can sense and conduct the Ca2+ signal in response to extracellular stimuli. The CML protein families have been identified and characterized in many species. Nevertheless, scarce information on cucumber CML is retrievable. Methods In this study, bioinformatic analyses, including gene structure, conserved domain, phylogenetic relationship, chromosome distribution, and gene synteny, were comprehensively performed to identify and characterize CsCML gene members. Spatiotemporal expression analysis in different organs and environment conditions were assayed with real-time quantitative polymerase chain reaction (qRT-PCR). Results Forty-four CsCMLs family members were well characterized, and the results showed that the 44 CsCML proteins contained one to four EF-hand domains without other functional domains. Most of the CsCML proteins were intron-less and unevenly distributed on seven chromosomes; two tandemly duplicated gene pairs and three segmentally duplicated gene pairs were identified in the cucumber genome. Cis-acting element analysis showed that the hormone, stress, and plant growth and development-related elements were in the promotor regions. In addition, spatiotemporal expression analysis revealed distinctive expression patterns for CsCML genes in different tissues and environmental conditions, and a putative protein interaction network also confirmed their potential role in responding to various stimuli. These results provide a foundation for understanding CsCMLs and provide a theoretical basis for further study of the physiological functions of CsCMLs.
Collapse
Affiliation(s)
- Yunfen Liu
- College of Food and Biological Engineering/Institute of Food Science and Engineering Techology, Hezhou University, Hezhou, Guangxi, China,Guangxi Key Laboratory of Health Care Food Science and Technology, Hezhou University, Hezhou, Guangxi, China
| | - Feilong Yin
- College of Food and Biological Engineering/Institute of Food Science and Engineering Techology, Hezhou University, Hezhou, Guangxi, China
| | - Lingyan Liao
- College of Food and Biological Engineering/Institute of Food Science and Engineering Techology, Hezhou University, Hezhou, Guangxi, China
| | - Liang Shuai
- College of Food and Biological Engineering/Institute of Food Science and Engineering Techology, Hezhou University, Hezhou, Guangxi, China,Guangxi Key Laboratory of Health Care Food Science and Technology, Hezhou University, Hezhou, Guangxi, China
| |
Collapse
|
17
|
Arefian M, Prasad TSK. Susceptibility of Rice Crop to Salt Threat: Proteomic, Metabolomic, and Physiological Inspections. J Proteome Res 2023; 22:152-169. [PMID: 36417662 DOI: 10.1021/acs.jproteome.2c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Rice is a staple food crop worldwide; however, salinity stress is estimated to reduce its global production by 50%. Knowledge about initial molecular signaling and proteins associated with sensing salinity among crop plants is limited. We characterized early salt effects on the proteome and metabolome of rice tissues. Omics results were validated by western blotting and multiple reaction monitoring assays and integrated with physiological changes. We identified 8160 proteins and 2045 metabolites in rice tissues. Numerous signaling pathways were induced rapidly or partially by salinity. Combined data showed the most susceptible proteins or metabolites in each pathway that likely affected the sensitivity of rice to salinity, such as PLA1, BON3 (involved in sensing stress), SnRK2, pro-resilin, GDT1, G-proteins, calmodulin activators (Ca2+ and abscisic acid signaling), MAPK3/5, MAPKK1/3 (MAPK pathway), SOS1, ABC F/D, PIP2-7, and K+ transporter-23 (transporters), OPR1, JAR1, COL1, ABA2, and MAPKK3 (phytohormones). Additionally, our results expanded the stress-sensing function of receptor-like kinases, phosphatidylinositols, and Na+ sensing proteins (IPUT1). Combined analyses revealed the most sensitive components of signaling pathways causing salt-susceptibility in rice and suggested potential targets for crop improvement.
Collapse
Affiliation(s)
- Mohammad Arefian
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Mangalore 575018, India
| | | |
Collapse
|
18
|
Dekomah SD, Bi Z, Dormatey R, Wang Y, Haider FU, Sun C, Yao P, Bai J. The role of CDPKs in plant development, nutrient and stress signaling. Front Genet 2022; 13:996203. [PMID: 36246614 PMCID: PMC9561101 DOI: 10.3389/fgene.2022.996203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
The second messenger calcium (Ca2+) is a ubiquitous intracellular signaling molecule found in eukaryotic cells. In plants, the multigene family of calcium-dependent protein kinases (CDPKs) plays an important role in regulating plant growth, development, and stress tolerance. CDPKs sense changes in intracellular Ca2+ concentration and translate them into phosphorylation events that initiate downstream signaling processes. Several functional and expression studies on different CDPKs and their encoding genes have confirmed their multifunctional role in stress. Here, we provide an overview of the signal transduction mechanisms and functional roles of CDPKs. This review includes details on the regulation of secondary metabolites, nutrient uptake, regulation of flower development, hormonal regulation, and biotic and abiotic stress responses.
Collapse
Affiliation(s)
- Simon Dontoro Dekomah
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Zhenzhen Bi
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Richard Dormatey
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yihao Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Fasih Ullah Haider
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Chao Sun
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Panfeng Yao
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
| | - Jiangping Bai
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Jiangping Bai,
| |
Collapse
|
19
|
Scandola S, Mehta D, Li Q, Rodriguez Gallo MC, Castillo B, Uhrig RG. Multi-omic analysis shows REVEILLE clock genes are involved in carbohydrate metabolism and proteasome function. PLANT PHYSIOLOGY 2022; 190:1005-1023. [PMID: 35670757 PMCID: PMC9516735 DOI: 10.1093/plphys/kiac269] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/12/2022] [Indexed: 06/01/2023]
Abstract
Plants are able to sense changes in their light environments, such as the onset of day and night, as well as anticipate these changes in order to adapt and survive. Central to this ability is the plant circadian clock, a molecular circuit that precisely orchestrates plant cell processes over the course of a day. REVEILLE (RVE) proteins are recently discovered members of the plant circadian circuitry that activate the evening complex and PSEUDO-RESPONSE REGULATOR genes to maintain regular circadian oscillation. The RVE8 protein and its two homologs, RVE 4 and 6 in Arabidopsis (Arabidopsis thaliana), have been shown to limit the length of the circadian period, with rve 4 6 8 triple-knockout plants possessing an elongated period along with increased leaf surface area, biomass, cell size, and delayed flowering relative to wild-type Col-0 plants. Here, using a multi-omics approach consisting of phenomics, transcriptomics, proteomics, and metabolomics we draw new connections between RVE8-like proteins and a number of core plant cell processes. In particular, we reveal that loss of RVE8-like proteins results in altered carbohydrate, organic acid, and lipid metabolism, including a starch excess phenotype at dawn. We further demonstrate that rve 4 6 8 plants have lower levels of 20S proteasome subunits and possess significantly reduced proteasome activity, potentially explaining the increase in cell-size observed in RVE8-like mutants. Overall, this robust, multi-omic dataset provides substantial insight into the far-reaching impact RVE8-like proteins have on the diel plant cell environment.
Collapse
Affiliation(s)
| | | | - Qiaomu Li
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | - Brigo Castillo
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
20
|
Liu J, Xue C, Lin Y, Yan Q, Chen J, Wu R, Zhang X, Chen X, Yuan X. Genetic analysis and identification of VrFRO8, a salt tolerance-related gene in mungbean. Gene 2022; 836:146658. [PMID: 35714797 DOI: 10.1016/j.gene.2022.146658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/09/2022] [Accepted: 06/02/2022] [Indexed: 12/20/2022]
Abstract
Mungbean (Vigna radiata (L.) R. Wilczek) is an important legume crop of Asia. Salt concentrations typically causes major yield reductions in mungbean. Although the biochemical and genetic basis of salt tolerance-related gene are well studied in Arabidopsis and soybean, limited information concerning the salt tolerance-related genes in mungbean. To address this issue, we mined salt tolerance related genes using the survival rate trait and 160,1405 SNPs in 112 mungbean accessions. As a result, VrFRO8 significantly associated with salt-stress were identified in the GWAS analysis. The candidate gene VrFRO8 was evidenced by comparative genomics, transcriptome and RT-qPCR analysis. The expression level of VrFRO8 was significantly up-regulated (P-value = 0.001) after salt treatment compared with the control group. Moreover, 188 genes and 158 transcription factors related to salt-stress signal transduction pathway were mined, and 18 genes (18/188) had higher expression level in the salt-tolerant varieties than salt-sensitive varieties. And, the function of VrFRO8 was predicted in mungbean, the protein interaction between VrFRO8 and seven related-genes were found by molecular structure analysis. VrFRO8 might reduce SOD contents by influence Fe2+/Fe3+ ratio under the damage of salt stress. This study used multi-omics data to mine a key genes significantly associated with salt tolerance, and constructed a VrFRO8-related PPI network for salt tolerance, which would lay a solid foundation for further molecular biology research of VrFRO8 and mungbean breeding.
Collapse
Affiliation(s)
- Jinyang Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China
| | - Chenchen Xue
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China
| | - Qiang Yan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China
| | - Jingbin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China
| | - Ranran Wu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China
| | - Xiaoyan Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China.
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China.
| |
Collapse
|
21
|
Li Q, Song J, Zhou Y, Chen Y, Zhang L, Pang Y, Zhang B. Full-Length Transcriptomics Reveals Complex Molecular Mechanism of Salt Tolerance in Bromus inermis L. FRONTIERS IN PLANT SCIENCE 2022; 13:917338. [PMID: 35755679 PMCID: PMC9219601 DOI: 10.3389/fpls.2022.917338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/09/2022] [Indexed: 05/31/2023]
Abstract
Bromus inermis L. (commonly known as smooth bromegrass) is a grass species with high nutritional value, great palatability, cold tolerance, and grazing resistance, which has been widely cultivated for pasture and sand fixation in northern and northwestern China. Salt stress is a main environmental factor limiting growth and production of smooth bromegrass. In this study, we performed PacBio Iso-Seq to construct the first full-length transcriptome database for smooth bromegrass under 300 mM NaCl treatment at different time points. Third-generation full-length transcriptome sequencing yielded 19.67 G polymerase read bases, which were assembled into 355,836 full-length transcripts with an average length of 2,542 bp. A total of 116,578 differentially expressed genes were obtained by comparing the results of third-generation sequencing and second-generation sequencing. GO and KEGG enrichment analyses revealed that multiple pathways were differently activated in leaves and roots. In particular, a number of genes participating in the molecular network of plant signal perception, signal transduction, transcription regulation, antioxidant defense, and ion regulation were affected by NaCl treatment. In particular, the CBL-CIPK, MAPK, ABA signaling network, and SOS core regulatory pathways of Ca2+ signal transduction were activated to regulate salt stress response. In addition, the expression patterns of 10 salt-responsive genes were validated by quantitative real-time PCR, which were consistent with those detected by RNA-Seq. Our results reveal the molecular regulation of smooth bromegrass in response to salt stress, which are important for further investigation of critical salt responsive genes and molecular breeding of salt-tolerant smooth bromegrass.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, Ministry of Education, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
- Key Laboratory of Grassland Resources and Ecology of Xinjiang, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaxing Song
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yi Zhou
- School of Agriculture Food and Wine, The University of Adelaide, Urrbrae, SA, Australia
| | - Yingxia Chen
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, Ministry of Education, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
- Key Laboratory of Grassland Resources and Ecology of Xinjiang, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
| | - Lei Zhang
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, Ministry of Education, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
- Key Laboratory of Grassland Resources and Ecology of Xinjiang, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Zhang
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, Ministry of Education, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
- Key Laboratory of Grassland Resources and Ecology of Xinjiang, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
22
|
Zhang B, Song Y, Zhang X, Wang Q, Li X, He C, Luo H. Identification and expression assay of calcium-dependent protein kinase family genes in Hevea brasiliensis and determination of HbCDPK5 functions in disease resistance. TREE PHYSIOLOGY 2022; 42:1070-1083. [PMID: 35022787 DOI: 10.1093/treephys/tpab156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Calcium (Ca2+) signaling is one of the earliest factors to coordinate plant adaptive responses. As direct sensors and activators of Ca2+ signals, calcium-dependent protein kinases (CDPKs) were reported to be widely involved in regulating different biotic and abiotic stress stimuli. In this study, 32 Hevea brasiliensis CDPK (HbCDPK) genes were predicted and classified into four subgroups. Among them, the full-length coding sequences of 28 HbCDPK genes were confirmed by RT-PCR and verified by sequencing. Putative cis-elements assay in the promoters of HbCDPKs showed that most of the HbCDPK genes contained gibberellic acid-responsive element (GARE), abscisic acid-responsive element (ABRE), salicylic acid-responsive element (SARE), defense and stress responsive element (TC-rich repeats) and low-temperature response element (LTR), which could be activated by different biotic and abiotic stresses. Real-time PCR analysis indicated that 28 HbCDPK genes respond to infection of pathogenic fungi and a variety of phytohormones. Subcellular localization was observed with most HbCDPKs located in cell membrane, cytoplasm or organelles. Some HbCDPKs were confirmed to cause reactive oxygen species (ROS) production and accumulation in rubber tree mesophyll protoplast directly. HbCDPK5 was strongly induced by the inoculation with Colletotrichum gloeosporioides and was chosen for further analysis. HbCDPK5 localized to the cell membrane and cytoplasm, and obviously regulated the accumulation of ROS in rubber tree mesophyll protoplast. Overexpression of HbCDPK5 in Arabidopsis enhanced the resistance to Botrytis cinerea. These results indicate that rubber tree CDPK genes play important roles in plant disease resistance.
Collapse
Affiliation(s)
- Bei Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, 58# Renmin Road, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Hainan University, 58# Renmin Road, Haikou 570228, China
| | - Yufeng Song
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, 58# Renmin Road, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Hainan University, 58# Renmin Road, Haikou 570228, China
| | - Xiaodong Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, 58# Renmin Road, Haikou 570228, China
| | - Qiannan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, 58# Renmin Road, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Hainan University, 58# Renmin Road, Haikou 570228, China
| | - Xiuqiong Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, 58# Renmin Road, Haikou 570228, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, 58# Renmin Road, Haikou 570228, China
| | - Hongli Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, 58# Renmin Road, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Hainan University, 58# Renmin Road, Haikou 570228, China
| |
Collapse
|
23
|
Comparative Transcriptomics Reveals the Molecular Mechanism of the Parental Lines of Maize Hybrid An'nong876 in Response to Salt Stress. Int J Mol Sci 2022; 23:ijms23095231. [PMID: 35563623 PMCID: PMC9100555 DOI: 10.3390/ijms23095231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023] Open
Abstract
Maize (Zea mays L.) is an essential food crop worldwide, but it is highly susceptible to salt stress, especially at the seedling stage. In this study, we conducted physiological and comparative transcriptome analyses of seedlings of maize inbred lines An’nong876 paternal (cmh15) and An’nong876 maternal (CM37) under salt stress. The cmh15 seedlings were more salt-tolerant and had higher relative water content, lower electrolyte leakage, and lower malondialdehyde levels in the leaves than CM37. We identified 2559 upregulated and 1770 downregulated genes between salt-treated CM37 and the controls, and 2757 upregulated and 2634 downregulated genes between salt-treated cmh15 and the controls by RNA sequencing analysis. Gene ontology functional enrichment analysis of the differentially expressed genes showed that photosynthesis-related and oxidation-reduction processes were deeply involved in the responses of cmh15 and CM37 to salt stress. We also found differences in the hormone signaling pathway transduction and regulation patterns of transcription factors encoded by the differentially expressed genes in both cmh15 and CM37 under salt stress. Together, our findings provide insights into the molecular networks that mediate salt stress tolerance of maize at the seedling stage.
Collapse
|
24
|
Deepika D, Poddar N, Kumar S, Singh A. Molecular Characterization Reveals the Involvement of Calcium Dependent Protein Kinases in Abiotic Stress Signaling and Development in Chickpea ( Cicer arietinum). FRONTIERS IN PLANT SCIENCE 2022; 13:831265. [PMID: 35498712 PMCID: PMC9039462 DOI: 10.3389/fpls.2022.831265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are a major group of calcium (Ca2+) sensors in plants. CDPKs play a dual function of "Ca2+ sensor and responder." These sensors decode the "Ca2+ signatures" generated in response to adverse growth conditions such as drought, salinity, and cold and developmental processes. However, knowledge of the CDPK family in the legume crop chickpea is missing. Here, we have identified a total of 22 CDPK genes in the chickpea genome. The phylogenetic analysis of the chickpea CDPK family with other plants revealed their evolutionary conservation. Protein homology modeling described the three-dimensional structure of chickpea CDPKs. Defined arrangements of α-helix, β-strands, and transmembrane-helix represent important structures like kinase domain, inhibitory junction domain, N and C-lobes of EF-hand motifs. Subcellular localization analysis revealed that CaCDPK proteins are localized mainly at the cytoplasm and in the nucleus. Most of the CaCDPK promoters had abiotic stress and development-related cis-regulatory elements, suggesting the functional role of CaCDPKs in abiotic stress and development-related signaling. RNA sequencing (RNA-seq) expression analysis indicated the role of the CaCDPK family in various developmental stages, including vegetative, reproductive development, senescence stages, and during seed stages of early embryogenesis, late embryogenesis, mid and late seed maturity. The real-time quantitative PCR (qRT-PCR) analysis revealed that several CaCDPK genes are specifically as well as commonly induced by drought, salt, and Abscisic acid (ABA). Overall, these findings indicate that the CDPK family is probably involved in abiotic stress responses and development in chickpeas. This study provides crucial information on the CDPK family that will be utilized in generating abiotic stress-tolerant and high-yielding chickpea varieties.
Collapse
Affiliation(s)
- Deepika Deepika
- Stress Signaling Lab, National Institute of Plant Genome Research, New Delhi, India
| | - Nikita Poddar
- Bioinformatics Lab, National Institute of Plant Genome Research, New Delhi, India
| | - Shailesh Kumar
- Bioinformatics Lab, National Institute of Plant Genome Research, New Delhi, India
| | - Amarjeet Singh
- Stress Signaling Lab, National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
25
|
Qiu T, Du K, Jing Y, Zeng Q, Liu Z, Li Y, Ren Y, Yang J, Kang X. Integrated transcriptome and miRNA sequencing approaches provide insights into salt tolerance in allotriploid Populus cathayana. PLANTA 2021; 254:25. [PMID: 34226949 DOI: 10.1007/s00425-021-03600-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/18/2021] [Indexed: 06/13/2023]
Abstract
Some salt-stress responsive DEGs, mainly involved in ion transmembrane transport, hormone regulation, antioxidant system, osmotic regulation, and some miRNA jointly regulated the salt response process in allotriploid Populus cathayana. The molecular mechanism of plant polyploid stress resistance has been a hot topic in biological research. In this study, Populus diploids and first division restitution (FDR) and second division restitution (SDR) triploids were selected as research materials. All materials were treated with 70 mM NaCl solutions for 30 days in the same pot environment. We observed the growth state of triploids and diploids and determined the ratio of potassium and sodium ions, peroxidase (POD) activity, proline content, and ABA and jasmonic acid (JA) hormone content in leaves in the same culture environment with the same concentration of NaCl solution treatment. In addition, RNA-seq technology was used to study the differential expression of mRNA and miRNA. The results showed that triploid Populus grew well and the K+ content and the K+/Na+ ratio in the salt treatment were significantly lower than those in the control. The contents of ABA, JA, POD, and proline were increased compared with contents in diploid under salt stress. The salt-stress responsive DEGs were mainly involved in ion transport, cell homeostasis, the MAPK signaling pathway, peroxisome, citric acid cycle, and other salt response and growth pathways. The transcription factors mainly included NAC, MYB, MYB_related and AP2/ERF. Moreover, the differentially expressed miRNAs involved 32 families, including 743 miRNAs related to predicted target genes, among which 22 miRNAs were significantly correlated with salt-stress response genes and related to the regulation of hormones, ion transport, reactive oxygen species (ROS) and other biological processes. Our results provided insights into the physiological and molecular aspects for further research into the response mechanisms of allotriploid Populus cathayana to salt stress. This study provided valuable information for the salt tolerance mechanism of allopolyploids.
Collapse
Affiliation(s)
- Tong Qiu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Kang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yanchun Jing
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Qingqing Zeng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zhao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yun Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yongyu Ren
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jun Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xiangyang Kang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
- National Engineering Laboratory for Tree Breeding, Ministry of Education, Beijing Forestry University, Beijing, 100083, China.
- Beijing Laboratory of Urban and Rural Ecological Environment, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
26
|
Understanding the Integrated Pathways and Mechanisms of Transporters, Protein Kinases, and Transcription Factors in Plants under Salt Stress. Int J Genomics 2021; 2021:5578727. [PMID: 33954166 PMCID: PMC8057909 DOI: 10.1155/2021/5578727] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/06/2021] [Indexed: 12/31/2022] Open
Abstract
Abiotic stress is the major threat confronted by modern-day agriculture. Salinity is one of the major abiotic stresses that influence geographical distribution, survival, and productivity of various crops across the globe. Plants perceive salt stress cues and communicate specific signals, which lead to the initiation of defence response against it. Stress signalling involves the transporters, which are critical for water transport and ion homeostasis. Various cytoplasmic components like calcium and kinases are critical for any type of signalling within the cell which elicits molecular responses. Stress signalling instils regulatory proteins and transcription factors (TFs), which induce stress-responsive genes. In this review, we discuss the role of ion transporters, protein kinases, and TFs in plants to overcome the salt stress. Understanding stress responses by components collectively will enhance our ability in understanding the underlying mechanism, which could be utilized for crop improvement strategies for achieving food security.
Collapse
|
27
|
Shao A, Wang W, Fan S, Xu X, Yin Y, Erick A, Li X, Wang G, Wang H, Fu J. Comprehensive transcriptional analysis reveals salt stress-regulated key pathways, hub genes and time-specific responsive gene categories in common bermudagrass (Cynodon dactylon (L.) Pers.) roots. BMC PLANT BIOLOGY 2021; 21:175. [PMID: 33838660 PMCID: PMC8035780 DOI: 10.1186/s12870-021-02939-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/25/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Despite its good salt-tolerance level, key genes and pathways involved with temporal salt response of common bermudagrass (Cynodon dactylon (L.) Pers.) have not been explored. Therefore, in this study, to understand the underlying regulatory mechanism following the different period of salt exposure, a comprehensive transcriptome analysis of the bermudagrass roots was conducted. RESULTS The transcripts regulated after 1 h, 6 h, or 24 h of hydroponic exposure to 200 mM NaCl in the roots of bermudagrass were investigated. Dataset series analysis revealed 16 distinct temporal salt-responsive expression profiles. Enrichment analysis identified potentially important salt responsive genes belonging to specific categories, such as hormonal metabolism, secondary metabolism, misc., cell wall, transcription factors and genes encoded a series of transporters. Weighted gene co-expression network analysis (WGCNA) revealed that lavenderblush2 and brown4 modules were significantly positively correlated with the proline content and peroxidase activity and hub genes within these two modules were further determined. Besides, after 1 h of salt treatment, genes belonging to categories such as signalling receptor kinase, transcription factors, tetrapyrrole synthesis and lipid metabolism were immediately and exclusively up-enriched compared to the subsequent time points, which indicated fast-acting and immediate physiological responses. Genes involved in secondary metabolite biosynthesis such as simple phenols, glucosinolates, isoflavones and tocopherol biosynthesis were exclusively up-regulated after 24 h of salt treatment, suggesting a slightly slower reaction of metabolic adjustment. CONCLUSION Here, we revealed salt-responsive genes belonging to categories that were commonly or differentially expressed in short-term salt stress, suggesting possible adaptive salt response mechanisms in roots. Also, the distinctive salt-response pathways and potential salt-tolerant hub genes investigated can provide useful future references to explore the molecular mechanisms of bermudagrass.
Collapse
Affiliation(s)
- An Shao
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China
| | - Wei Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China
| | - Shugao Fan
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China
| | - Xiao Xu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China
| | - Yanling Yin
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China
| | - Amombo Erick
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China
| | - Xiaoning Li
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China
| | - Guangyang Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China
| | - Hongli Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China
| | - Jinmin Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China.
| |
Collapse
|
28
|
Gouguet P, Gronnier J, Legrand A, Perraki A, Jolivet MD, Deroubaix AF, German-Retana S, Boudsocq M, Habenstein B, Mongrand S, Germain V. Connecting the dots: from nanodomains to physiological functions of REMORINs. PLANT PHYSIOLOGY 2021; 185:632-649. [PMID: 33793872 PMCID: PMC8133660 DOI: 10.1093/plphys/kiaa063] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/31/2020] [Indexed: 05/11/2023]
Abstract
REMORINs (REMs) are a plant-specific protein family, proposed regulators of membrane-associated molecular assemblies and well-established markers of plasma membrane nanodomains. REMs play a diverse set of functions in plant interactions with pathogens and symbionts, responses to abiotic stresses, hormone signaling and cell-to-cell communication. In this review, we highlight the established and more putative roles of REMs throughout the literature. We discuss the physiological functions of REMs, the mechanisms underlying their nanodomain-organization and their putative role as regulators of nanodomain-associated molecular assemblies. Furthermore, we discuss how REM phosphorylation may regulate their functional versatility. Overall, through data-mining and comparative analysis of the literature, we suggest how to further study the molecular mechanisms underpinning the functions of REMs.
Collapse
Affiliation(s)
- Paul Gouguet
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de Bordeaux, Villenave d’Ornon, France
- ZMBP, Universität Tübingen, Auf der Morgenstelle 32 72076 Tübingen, Germany
| | - Julien Gronnier
- Department of Plant and Microbial Biology University of Zürich, Zollikerstrasse, Zürich, Switzerland
| | - Anthony Legrand
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de Bordeaux, Villenave d’Ornon, France
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Université de Bordeaux, Institut Polytechnique de Bordeaux, A11, Geoffroy Saint-Hilaire, Pessac, France
| | - Artemis Perraki
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, UK
- Present address: Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology – Hellas, Heraklion, Crete, Greece
| | - Marie-Dominique Jolivet
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de Bordeaux, Villenave d’Ornon, France
| | - Anne-Flore Deroubaix
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de Bordeaux, Villenave d’Ornon, France
| | - Sylvie German-Retana
- Equipe de Virologie, Institut Scientifique de Recherche Agronomique and Université de Bordeaux, BP81, 33883 Villenave d’Ornon, France
| | - Marie Boudsocq
- Université Paris-Saclay, CNRS, INRAE, Université d’Evry, Institute of Plant Sciences Paris Saclay (IPS2), Université de Paris, Orsay, France
| | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Université de Bordeaux, Institut Polytechnique de Bordeaux, A11, Geoffroy Saint-Hilaire, Pessac, France
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de Bordeaux, Villenave d’Ornon, France
- Author for communication: (S.M.)
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de Bordeaux, Villenave d’Ornon, France
| |
Collapse
|
29
|
Zheng X, Li Y, Xi X, Ma C, Sun Z, Yang X, Li X, Tian Y, Wang C. Exogenous Strigolactones alleviate KCl stress by regulating photosynthesis, ROS migration and ion transport in Malus hupehensis Rehd. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:113-122. [PMID: 33359960 DOI: 10.1016/j.plaphy.2020.12.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/14/2020] [Indexed: 05/23/2023]
Abstract
AIMS In recent years, the application of large amounts of potash fertilizer in apple orchards leads to worsening KCl stress. Strigolactone (SL), as a novel phytohormone, reportedly participates in plant tolerance to NaCl and drought stresses. However, the underlying mechanism and the effects of exogenous SL on the KCl stress of apple seedlings remain unclear. METHODS We sprayed different concentrations of exogenous SL on Malus hupehensis Rehd. under KCl stress and measured the physiological indexes like, photosynthetic parameter, content of ROS, osmolytes and mineral element. In addition, the expressions of KCl-responding genes and SL-signaling genes were also detected and analyzed. RESULTS Application of exogenous SL protected the chlorophyll and maintained the photosynthetic rate of apple seedlings under KCl stress. Exogenous SL strengthened the enzyme activities of peroxidase and catalase, thereby eliminating reactive oxygen species production induced by KCl stress, promoting the accumulation of proline, and maintaining osmotic balance. Exogenous SL expelled K+ outside of the cytoplasm and compartmentalized K+ into the vacuole, increased the contents of Na+, Mg2+, Fe2+, and Mn2+ in the cytoplasm to maintain the ion homeostasis under KCl stress. CONCLUSIONS Exogenous SL can regulate photosynthesis, ROS migration and ion transport in apple seedlings to alleviate KCl stress.
Collapse
Affiliation(s)
- Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao 266109, China
| | - Yuqi Li
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao 266109, China
| | - Xiangli Xi
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao 266109, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao 266109, China
| | - Zhijuan Sun
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao 266109, China; College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xueqing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao 266109, China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao 266109, China.
| |
Collapse
|
30
|
De novo transcriptome in roots of switchgrass (Panicum virgatum L.) reveals gene expression dynamic and act network under alkaline salt stress. BMC Genomics 2021; 22:82. [PMID: 33509088 PMCID: PMC7841905 DOI: 10.1186/s12864-021-07368-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022] Open
Abstract
Background Soil salinization is a major limiting factor for crop cultivation. Switchgrass is a perennial rhizomatous bunchgrass that is considered an ideal plant for marginal lands, including sites with saline soil. Here we investigated the physiological responses and transcriptome changes in the roots of Alamo (alkaline-tolerant genotype) and AM-314/MS-155 (alkaline-sensitive genotype) under alkaline salt stress. Results Alkaline salt stress significantly affected the membrane, osmotic adjustment and antioxidant systems in switchgrass roots, and the ASTTI values between Alamo and AM-314/MS-155 were divergent at different time points. A total of 108,319 unigenes were obtained after reassembly, including 73,636 unigenes in AM-314/MS-155 and 65,492 unigenes in Alamo. A total of 10,219 DEGs were identified, and the number of upregulated genes in Alamo was much greater than that in AM-314/MS-155 in both the early and late stages of alkaline salt stress. The DEGs in AM-314/MS-155 were mainly concentrated in the early stage, while Alamo showed greater advantages in the late stage. These DEGs were mainly enriched in plant-pathogen interactions, ubiquitin-mediated proteolysis and glycolysis/gluconeogenesis pathways. We characterized 1480 TF genes into 64 TF families, and the most abundant TF family was the C2H2 family, followed by the bZIP and bHLH families. A total of 1718 PKs were predicted, including CaMK, CDPK, MAPK and RLK. WGCNA revealed that the DEGs in the blue, brown, dark magenta and light steel blue 1 modules were associated with the physiological changes in roots of switchgrass under alkaline salt stress. The consistency between the qRT-PCR and RNA-Seq results confirmed the reliability of the RNA-seq sequencing data. A molecular regulatory network of the switchgrass response to alkaline salt stress was preliminarily constructed on the basis of transcriptional regulation and functional genes. Conclusions Alkaline salt tolerance of switchgrass may be achieved by the regulation of ion homeostasis, transport proteins, detoxification, heat shock proteins, dehydration and sugar metabolism. These findings provide a comprehensive analysis of gene expression dynamic and act network induced by alkaline salt stress in two switchgrass genotypes and contribute to the understanding of the alkaline salt tolerance mechanism of switchgrass and the improvement of switchgrass germplasm. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07368-w.
Collapse
|
31
|
Wu M, Liu H, Gao Y, Shi Y, Pan F, Xiang Y. The moso bamboo drought-induced 19 protein PheDi19-8 functions oppositely to its interacting partner, PheCDPK22, to modulate drought stress tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110605. [PMID: 32900443 DOI: 10.1016/j.plantsci.2020.110605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Drought-induced 19 (Di19) proteins play crucial roles in regulating stress responses, but the exact mechanisms underlying their involvement in moso bamboo are not fully understood. In this study, PheDi19-8 of moso bamboo (Phyllostachys edulis) was isolated and characterized. PheDi19-8 was a nuclear protein and has a high expression under various abiotic stresses, including drought and salt. As revealed by phenotypic and physiological analyses, ectopic overexpression of PheDi19-8 in Arabidopsis and rice enhanced drought tolerance. Under drought stress, the PheDi19-8-overexpressing lines showed smaller stomatal apertures and higher survival rate in comparison to the wild-type plants, as well as the PheDi19-8-overexpressing lines had higher biomass and souble sugar, but lower relative electrolyte leakage and malondialdehyde. Further investigation revealed that PheDi19-8 interacted with PheCDPK22, and their interaction decreased the DNA-binding activity of PheDi19-8. However, overexpression of PheCDPK22 enhanced Arabidopsis sensitivity to drought stress. Moreover, the expression of marker genes, including LEA, RD22, DREB2A and RD29A, was up-regulated in the PheDi19-8-overexpressing lines but down-regulated in the PheCDPK22-overexpressing. Further yeast one-hybrid and EMSA assays indicated that PheDi19-8 directly binds to the promoter of DREB2A. These results provided new insight into the interaction of PheCDPK22 and PheDi19-8 that functions oppositely to regulate drought stress in plants.
Collapse
Affiliation(s)
- Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Huanlong Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Yameng Gao
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Yanan Shi
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Feng Pan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
32
|
Gharsallah C, Gharsallah Chouchane S, Werghi S, Mehrez M, Fakhfakh H, Gorsane F. Tomato contrasting genotypes responses under combined salinity and viral stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1411-1424. [PMID: 32647458 PMCID: PMC7326896 DOI: 10.1007/s12298-020-00835-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/08/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Tomato yellow leaf curl disease (TYLCD) and salinity stress adversely affect tomato production worldwide by causing extensive damages. In Tunisia, identifying TYLCD resistant cultivars selected in different environments is useful to devise counter-measures. To this end, 20 tomato commercial cultivars were screened for different Ty gene alleles' combinations and evaluated either for TYLCD incidence or salinity constraint. We built a biological multi-layer network for integrating, visualizing and modelling generated data. It is a simple representation view linking allelic combinations to tomato cultivars behaviour under viral and salt stresses. In addition, we analyzed differential expression of transcriptions factors (TFs) belonging to WRKY and ERF families in selected resistant (R) and susceptible (S) tomato cultivars. Gene expression was evaluated for short- and long stress exposure to either TYLCSV infection or to both viral and salinity stresses. Evidence is that TFs promote resistance to abiotic and biotic stresses through a complex regulatory network.
Collapse
Affiliation(s)
- Charfeddine Gharsallah
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of Sciences of Tunis, University of Tunis ElManar, 2092 Tunis, Tunisia
| | - Sonia Gharsallah Chouchane
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of Sciences of Tunis, University of Tunis ElManar, 2092 Tunis, Tunisia
- Higher Institute of Biotechnology, University of Manouba, 2020 Sidi Thabet, Tunisia
| | - Sirine Werghi
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of Sciences of Tunis, University of Tunis ElManar, 2092 Tunis, Tunisia
| | - Marwa Mehrez
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of Sciences of Tunis, University of Tunis ElManar, 2092 Tunis, Tunisia
| | - Hatem Fakhfakh
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of Sciences of Tunis, University of Tunis ElManar, 2092 Tunis, Tunisia
- Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Faten Gorsane
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of Sciences of Tunis, University of Tunis ElManar, 2092 Tunis, Tunisia
- Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| |
Collapse
|
33
|
Chen F, Fang P, Zeng W, Ding Y, Zhuang Z, Peng Y. Comparing transcriptome expression profiles to reveal the mechanisms of salt tolerance and exogenous glycine betaine mitigation in maize seedlings. PLoS One 2020; 15:e0233616. [PMID: 32470066 PMCID: PMC7259585 DOI: 10.1371/journal.pone.0233616] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/09/2020] [Indexed: 01/29/2023] Open
Abstract
Salt stress is a common abiotic stress that limits the growth, development and yield of maize (Zea mays L.). To better understand the response of maize to salt stress and the mechanism by which exogenous glycine betaine (GB) alleviates the damaging effects of salt stress, the morphology, physiological and biochemical indexes, and root transcriptome expression profiles of seedlings of salt-sensitive inbred line P138 and salt-tolerant inbred line 8723 were compared under salt stress and GB-alleviated salt stress conditions. The results showed that under salt stress the growth of P138 was significantly inhibited and the vivo ion balance was disrupted, whereas 8723 could prevent salt injury by maintaining a high ratio of K+ to Na+. The addition of a suitable concentration of GB could effectively alleviate the damage caused by salt stress, and the mitigating effect on salt-sensitive inbred line P138 was more obvious than that on 8723. Transcriptome analysis revealed that 219 differentially expressed genes (DEGs) were up-regulated and 153 DEGs were down-regulated in both P138 and 8723 under NaCl treatment, and that 487 DEGs were up-regulated and 942 DEGs were down-regulated in both P138 and 8723 under salt plus exogenous GB treatment. In 8723 the response to salt stress is mainly achieved through stabilizing ion homeostasis, strong signal transduction activation, increasing reactive oxygen scavenging. GB alleviates salt stress in maize mainly by inducing gene expression changes to enhance the ion balance, secondary metabolic level, reactive oxygen scavenging mechanism, signal transduction activation. In addition, the transcription factors involved in the regulation of salt stress response and exogenous GB mitigation mainly belong to the MYB, MYB-related, AP2-EREBP, bHLH, and NAC families. We verified 10 selected up-regulated DEGs by quantitative real-time polymerase chain reaction (qRT-PCR), and the expression results were basically consistent with the transcriptome expression profiles. Our results from this study may provide the theoretical basis for determining maize salt tolerance mechanisms and the mechanism by which GB regulates salt tolerance.
Collapse
Affiliation(s)
- Fenqi Chen
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Peng Fang
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Wenjing Zeng
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yongfu Ding
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Zelong Zhuang
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yunling Peng
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, China
| |
Collapse
|
34
|
Zhao J, Quan P, Liu H, Li L, Qi S, Zhang M, Zhang B, Li H, Zhao Y, Ma B, Han M, Zhang H, Xing L. Transcriptomic and Metabolic Analyses Provide New Insights into the Apple Fruit Quality Decline during Long-Term Cold Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4699-4716. [PMID: 32078318 DOI: 10.1021/acs.jafc.9b07107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Long-term low-temperature conditioning (LT-LTC) decreases apple fruit quality, but the underlying physiological and molecular basis is relatively uncharacterized. We identified 12 clusters of differentially expressed genes (DEGs) involved in multiple biological processes (i.e., sugar, malic acid, fatty acid, lipid, complex phytohormone, and stress-response pathways). The expression levels of genes in sugar pathways were correlated with decreasing starch levels during LT-LTC. Specifically, starch-synthesis-related genes (e.g., BE, SBE, and GBSS genes) exhibited downregulated expression, whereas sucrose-metabolism-related gene expression levels were up- or downregulated. The expression levels of genes in the malic acid pathway (ALMT9, AATP1, and AHA2) were upregulated, as well as the content of malic acid in apple fruit during LT-LTC. A total of 151 metabolites, mainly related to amino acids and their isoforms, amines, organic acids, fatty acids, sugars, and polyols, were identified during LT-LTC. Additionally, 35 organic-acid-related metabolites grouped into three clusters, I (3), II (22), and III (10), increased in abundance during LT-LTC. Multiple phytohormones regulated the apple fruit chilling injury response. The ethylene (ET) and abscisic acid (ABA) levels increased at CS2 and CS3, and jasmonate (JA) levels also increased during LT-LTC. Furthermore, the expression levels of genes involved in ET, ABA, and JA synthesis and response pathways were upregulated. Finally, some key transcription factor genes (MYB, bHLH, ERF, NAC, and bZIP genes) related to the apple fruit cold acclimation response were differentially expressed. Our results suggest that the multilayered mechanism underlying apple fruit deterioration during LT-LTC is a complex, transcriptionally regulated process involving cell structures, sugars, lipids, hormones, and transcription factors.
Collapse
Affiliation(s)
- Juan Zhao
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Pengkun Quan
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Hangkong Liu
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Lei Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Siyan Qi
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Mengsheng Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Bo Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Hao Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Yanru Zhao
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Baiquan Ma
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Haihui Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Libo Xing
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| |
Collapse
|
35
|
Cheng G, Yang Z, Zhang H, Zhang J, Xu J. Remorin interacting with PCaP1 impairs Turnip mosaic virus intercellular movement but is antagonised by VPg. THE NEW PHYTOLOGIST 2020; 225:2122-2139. [PMID: 31657467 DOI: 10.1111/nph.16285] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Group 1 Remorins (REMs) are extensively involved in virus trafficking through plasmodesmata (PD). However, their roles in Potyvirus cell-to-cell movement are not known. The plasma membrane (PM)-associated Ca2+ binding protein 1 (PCaP1) interacts with the P3N-PIPO of Turnip mosaic virus (TuMV) and is required for TuMV cell-to-cell movement, but the underlying mechanism remains elusive. The mutant plants with overexpression or knockout of REM1.2 were used to investigate its role in TuMV cell-to-cell movement. Arabidopsis thaliana complementary mutants of pcap1 were used to investigate the role of PCaP1 in TuMV cell-to-cell movement. Yeast-two-hybrid, bimolecular fluorescence complementation, co-immunoprecipitation and RT-qPCR assays were employed to investigate the underlying molecular mechanism. The results show that TuMV-P3N-PIPO recruits PCaP1 to PD and the actin filament-severing activity of PCaP1 is required for TuMV intercellular movement. REM1.2 negatively regulates the cell-to-cell movement of TuMV via competition with PCaP1 for binding actin filaments. As a counteractive response, TuMV mediates REM1.2 degradation via both 26S ubiquitin-proteasome and autophagy pathways through the interaction of VPg with REM1.2 to establish systemic infection in Arabidopsis. This work unveils the actin cytoskeleton and PM nanodomain-associated molecular events underlying the cell-to-cell movement of potyviruses.
Collapse
Affiliation(s)
- Guangyuan Cheng
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Zongtao Yang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Hai Zhang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Jisen Zhang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Jingsheng Xu
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| |
Collapse
|
36
|
Zhang X, Chen L, Shi Q, Ren Z. SlMYB102, an R2R3-type MYB gene, confers salt tolerance in transgenic tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110356. [PMID: 31928668 DOI: 10.1016/j.plantsci.2019.110356] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/07/2019] [Accepted: 11/21/2019] [Indexed: 05/26/2023]
Abstract
Salinity threatens the productivity of tomato (Solanum lycopersicum L.). R2R3-type MYB transcription factors are important regulators in response to environmental stress. Here, we analyzed the function of the tomato R2R3-type MYB gene SlMYB102. A transcriptional activation assay showed that SlMYB102 had transactivation activity in yeast. Promoter analysis showed that multiple stress-related elements were found in the promoter of SlMYB102. Furthermore, SlMYB102 was induced by osmotic stress, particularly by salt stress. The overexpression of SlMYB102 in tomato affected multiple parameters under salinity stress. Under long-term salt stress, the degree of growth inhibition was significantly reduced in the two overexpression (OE) lines. In addition, the two OE lines maintained a better K+/Na+ ratio, lower reactive oxygen species (ROS) generation (O2•- production rate and H2O2 content) and lower electrolytic leakage rates than the wild type (WT). The activity of ROS scavenging enzymes including superoxide dismutase, peroxidase, catalase and ascorbate peroxidase, and the accumulation of antioxidants (ascorbic acid and glutathione) and proline was higher in the two OE lines compared with WT. The qRT-PCR analysis confirmed that the transcript abundance of many salt stress-related genes (SlSOS1, SlSOS2, SlNHX3, SlNHX4, SlHAK5, SlCPK1 and SlCPK3) was upregulated in two OE lines under salt stress. Collectively, these results suggest that SlMYB102 participates in tomato tolerance through the regulation of a series of molecular and physiological processes.
Collapse
Affiliation(s)
- Xu Zhang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang- Huai Region, Ministry of Agriculture, State Key Laboratory of Crop Biology, Tai' an, Shandong 271018, China.
| | - Lichen Chen
- College of Horticultural Science and Engineering, Shandong Agricultural University, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang- Huai Region, Ministry of Agriculture, State Key Laboratory of Crop Biology, Tai' an, Shandong 271018, China.
| | - Qinghua Shi
- College of Horticultural Science and Engineering, Shandong Agricultural University, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang- Huai Region, Ministry of Agriculture, State Key Laboratory of Crop Biology, Tai' an, Shandong 271018, China.
| | - Zhonghai Ren
- College of Horticultural Science and Engineering, Shandong Agricultural University, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang- Huai Region, Ministry of Agriculture, State Key Laboratory of Crop Biology, Tai' an, Shandong 271018, China.
| |
Collapse
|
37
|
Wen F, Ye F, Xiao Z, Liao L, Li T, Jia M, Liu X, Wu X. Genome-wide survey and expression analysis of calcium-dependent protein kinase (CDPK) in grass Brachypodium distachyon. BMC Genomics 2020; 21:53. [PMID: 31948407 PMCID: PMC6966850 DOI: 10.1186/s12864-020-6475-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/09/2020] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Ca2+ played as a ubiquitous secondary messenger involved in plant growth, development, and responses to various environmental stimuli. Calcium-dependent protein kinases (CDPK) were important Ca2+ sensors, which could directly translate Ca2+ signals into downstream phosphorylation signals. Considering the importance of CDPKs as Ca2+ effectors for regulation of plant stress tolerance and few studies on Brachypodium distachyon were available, it was of interest for us to isolate CDPKs from B. distachyon. RESULTS A systemic analysis of 30 CDPK family genes in B. distachyon was performed. Results showed that all BdCDPK family members contained conserved catalytic Ser/Thr protein kinase domain, autoinhibitory domain, and EF-hand domain, and a variable N-terminal domain, could be divided into four subgroup (I-IV), based upon sequence homology. Most BdCDPKs had four EF-hands, in which EF2 and EF4 revealed high variability and strong divergence from EF-hand in AtCDPKs. Synteny results indicated that large number of syntenic relationship events existed between rice and B. distachyon, implying their high conservation. Expression profiles indicated that most of BdCDPK genes were involved in phytohormones signal transduction pathways and regulated physiological process in responding to multiple environmental stresses. Moreover, the co-expression network implied that BdCDPKs might be both the activator and the repressor involved in WRKY transcription factors or MAPK cascade genes mediated stress response processes, base on their complex regulatory network. CONCLUSIONS BdCDPKs might play multiple function in WRKY or MAPK mediated abiotic stresses response and phytohormone signaling transduction in B. distachyon. Our genomics analysis of BdCDPKs could provide fundamental information for further investigation the functions of CDPKs in integrating Ca2+ signalling pathways in response to environments stresses in B. distachyon.
Collapse
Affiliation(s)
- Feng Wen
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| | - Feng Ye
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Zhulong Xiao
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Liang Liao
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Tongjian Li
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Mingliang Jia
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xinsheng Liu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xiaozhu Wu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| |
Collapse
|
38
|
Li P, Lu YJ, Chen H, Day B. The Lifecycle of the Plant Immune System. CRITICAL REVIEWS IN PLANT SCIENCES 2020; 39:72-100. [PMID: 33343063 PMCID: PMC7748258 DOI: 10.1080/07352689.2020.1757829] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Throughout their life span, plants confront an endless barrage of pathogens and pests. To successfully defend against biotic threats, plants have evolved a complex immune system responsible for surveillance, perception, and the activation of defense. Plant immunity requires multiple signaling processes, the outcome of which vary according to the lifestyle of the invading pathogen(s). In short, these processes require the activation of host perception, the regulation of numerous signaling cascades, and transcriptome reprograming, all of which are highly dynamic in terms of temporal and spatial scales. At the same time, the development of a single immune event is subjective to the development of plant immune system, which is co-regulated by numerous processes, including plant ontogenesis and the host microbiome. In total, insight into each of these processes provides a fuller understanding of the mechanisms that govern plant-pathogen interactions. In this review, we will discuss the "lifecycle" of plant immunity: the development of individual events of defense, including both local and distal processes, as well as the development and regulation of the overall immune system by ontogenesis regulatory genes and environmental microbiota. In total, we will integrate the output of recent discoveries and theories, together with several hypothetical models, to present a dynamic portrait of plant immunity.
Collapse
Affiliation(s)
- Pai Li
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Yi-Ju Lu
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Huan Chen
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- Graduate Program in Genetics and Genome Sciences, Michigan State University, East Lansing, MI, USA
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- Graduate Program in Genetics and Genome Sciences, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
39
|
Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y. Abscisic acid dynamics, signaling, and functions in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:25-54. [PMID: 31850654 DOI: 10.1111/jipb.12899] [Citation(s) in RCA: 643] [Impact Index Per Article: 160.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/16/2019] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) is an important phytohormone regulating plant growth, development, and stress responses. It has an essential role in multiple physiological processes of plants, such as stomatal closure, cuticular wax accumulation, leaf senescence, bud dormancy, seed germination, osmotic regulation, and growth inhibition among many others. Abscisic acid controls downstream responses to abiotic and biotic environmental changes through both transcriptional and posttranscriptional mechanisms. During the past 20 years, ABA biosynthesis and many of its signaling pathways have been well characterized. Here we review the dynamics of ABA metabolic pools and signaling that affects many of its physiological functions.
Collapse
Affiliation(s)
- Kong Chen
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guo-Jun Li
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ray A Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| |
Collapse
|
40
|
Zhou Z, Wang J, Zhang S, Yu Q, Lan H. Investigation of the Nature of CgCDPK and CgbHLH001 Interaction and the Function of bHLH Transcription Factor in Stress Tolerance in Chenopodium glaucum. FRONTIERS IN PLANT SCIENCE 2020; 11:603298. [PMID: 33552098 PMCID: PMC7862342 DOI: 10.3389/fpls.2020.603298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/11/2020] [Indexed: 05/22/2023]
Abstract
Calcium-dependent protein kinase (CDPK) and its substrates play important roles in plant response to stress. So far, the documentation on the characterization of the CDPK and downstream interaction components (especially transcription factors, TFs) is limited. In the present study, an interaction between CgCDPK (protein kinase) (accession no. MW26306) and CgbHLH001 (TF) (accession no. MT797813) from a halophyte Chenopodium glaucum was further dissected. Firstly, we revealed that the probable nature between the CgCDPK and CgbHLH001 interaction was the phosphorylation, and the N-terminus of CgbHLH001, especially the 96th serine (the potential phosphorylation site) within it, was essential for the interaction, whereas the mutation of 96Ser to alanine did not change its nuclear localization, which was determined by the N-terminus and bHLH domain together. Furthermore, we verified the function of CgbHLH001 gene in response to stress by ectopic overexpression in tobacco; the transgenic lines presented enhanced stress tolerance probably by improving physiological performance and stress-related gene expression. In conclusion, we characterized the biological significance of the interaction between CDPK and bHLH in C. glaucum and verified the positive function of CgbHLH001 in stress tolerance, which may supply more evidence in better understanding of the CDPK signaling pathway in response to adversity.
Collapse
Affiliation(s)
- Zixin Zhou
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Shiyue Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- *Correspondence: Qinghui Yu,
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- Haiyan Lan,
| |
Collapse
|
41
|
Khalid MHB, Raza MA, Yu HQ, Khan I, Sun FA, Feng LY, Qu JT, Fu FL, Li WC. Expression, Subcellular Localization, and Interactions of CPK Family Genes in Maize. Int J Mol Sci 2019; 20:E6173. [PMID: 31817801 PMCID: PMC6940914 DOI: 10.3390/ijms20246173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/30/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
Calcium-dependent protein kinase (CPKs) is a key player in the calcium signaling pathway to decode calcium signals into various physiological responses. cDNA sequences of 9 ZmCPK genes were successfully cloned from all four phylogenetic groups in maize. qRT-PCR analysis showed the expression variation of these selected genes under abscisic acid (ABA) and calcium chloride (CaCl2) treatment. Due to the presence of N-myristoylation/palmitoylation sites, the selected ZmCPK members were localized in a plasma membrane. To clarify whether ZmCPK, a key player in calcium signaling, interacts with key players of ABA, protein phosphatase 2Cs (PP2Cs) and the SNF1-related protein kinase 2s (SnRK2s) and mitogen-activated protein kinase (MAPK) signaling pathways in maize, we examined the interaction between 9 CPKs, 8 PP2Cs, 5 SnRKs, and 20 members of the MPK family in maize by using yeast two-hybrid assay. Our results showed that three ZmCPKs interact with three different members of ZmSnRKs while four ZmCPK members had a positive interaction with 13 members of ZmMPKs in different combinations. These four ZmCPK proteins are from three different groups in maize. These findings of physical interactions between ZmCPKs, ZmSnRKs, and ZmMPKs suggested that these signaling pathways do not only have indirect influence but also have direct crosstalk that may involve the defense mechanism in maize. The present study may improve the understanding of signal transduction in plants.
Collapse
Affiliation(s)
- Muhammad Hayder Bin Khalid
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.H.B.K.); (H.Q.Y.); (F.A.S.); (J.T.Q.)
| | - Muhammad Ali Raza
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (M.A.R.); (L.Y.F.)
| | - Hao Qiang Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.H.B.K.); (H.Q.Y.); (F.A.S.); (J.T.Q.)
| | - Imran Khan
- Department of Grassland Science, Sichuan Agricultural University, Chengdu 611130, China;
| | - Fu Ai Sun
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.H.B.K.); (H.Q.Y.); (F.A.S.); (J.T.Q.)
| | - Ling Yang Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (M.A.R.); (L.Y.F.)
| | - Jing Tao Qu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.H.B.K.); (H.Q.Y.); (F.A.S.); (J.T.Q.)
| | - Feng Ling Fu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.H.B.K.); (H.Q.Y.); (F.A.S.); (J.T.Q.)
| | - Wan Chen Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.H.B.K.); (H.Q.Y.); (F.A.S.); (J.T.Q.)
| |
Collapse
|
42
|
Atif RM, Shahid L, Waqas M, Ali B, Rashid MAR, Azeem F, Nawaz MA, Wani SH, Chung G. Insights on Calcium-Dependent Protein Kinases (CPKs) Signaling for Abiotic Stress Tolerance in Plants. Int J Mol Sci 2019; 20:E5298. [PMID: 31653073 PMCID: PMC6862689 DOI: 10.3390/ijms20215298] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022] Open
Abstract
Abiotic stresses are the major limiting factors influencing the growth and productivity of plants species. To combat these stresses, plants can modify numerous physiological, biochemical, and molecular processes through cellular and subcellular signaling pathways. Calcium-dependent protein kinases (CDPKs or CPKs) are the unique and key calcium-binding proteins, which act as a sensor for the increase and decrease in the calcium (Ca) concentrations. These Ca flux signals are decrypted and interpreted into the phosphorylation events, which are crucial for signal transduction processes. Several functional and expression studies of different CPKs and their encoding genes validated their versatile role for abiotic stress tolerance in plants. CPKs are indispensable for modulating abiotic stress tolerance through activation and regulation of several genes, transcription factors, enzymes, and ion channels. CPKs have been involved in supporting plant adaptation under drought, salinity, and heat and cold stress environments. Diverse functions of plant CPKs have been reported against various abiotic stresses in numerous research studies. In this review, we have described the evaluated functions of plant CPKs against various abiotic stresses and their role in stress response signaling pathways.
Collapse
Affiliation(s)
- Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Luqman Shahid
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Muhammad Waqas
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Babar Ali
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Muhammad Abdul Rehman Rashid
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38040, Pakistan.
| | - Muhammad Amjad Nawaz
- Education Scientific Center of Nanotechnology, Far Eastern Federal University, 690950 Vladivostok, Russia.
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190001, India.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam 59626, Korea.
| |
Collapse
|
43
|
Yi J, Zhao D, Chu J, Yan J, Liu J, Wu M, Cheng J, Jiang H, Zeng Y, Liu D. AtDPG1 is involved in the salt stress response of Arabidopsis seedling through ABI4. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110180. [PMID: 31481194 DOI: 10.1016/j.plantsci.2019.110180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 05/08/2023]
Abstract
Although the genes controlling chloroplast development play important roles in plant responses to environmental stresses, the molecular mechanisms remain largely unclear. In this study, an Arabidopsis mutant dpg1 (delayed pale-greening1) with a chloroplast development defect was studied. By using quantitative RT-PCR and histochemical GUS assays, we demonstrated that AtDPG1 was mainly expressed in the green tissues of Arabidopsis seedlings and could be induced by salt stress. Phenotypic analysis showed that mutation in AtDPG1 lead to an enhanced sensitivity to salt stress in Arabidopsis seedlings. Further studies demonstrated that disruption of the AtDPG1 in Arabidopsis increases its sensitivity to salt stress in an ABA-dependent manner. Moreover, expression levels of various stress-responsive and ABA signal-related genes were remarkably altered in the dpg1 plants under NaCl treatment. Notably, the transcript levels of ABI4 in dpg1 mutant increased more significantly than that in wild type plants under salt conditions. The seedlings of dpg1/abi4 double mutant exhibited stronger resistance to salt stress after salt treatment compared with the dpg1 single mutant, suggesting that the salt-hypersensitive phenotype of dpg1 seedlings could be rescued via loss of ABI4 function. These results reveal that AtDPG1 is involved in the salt stress response of Arabidopsis seedling through ABI4.
Collapse
Affiliation(s)
- Jian Yi
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dongming Zhao
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jijun Yan
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinsong Liu
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Meijia Wu
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jianfeng Cheng
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Haiyan Jiang
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yongjun Zeng
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dong Liu
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
44
|
Yip Delormel T, Boudsocq M. Properties and functions of calcium-dependent protein kinases and their relatives in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2019; 224:585-604. [PMID: 31369160 DOI: 10.1111/nph.16088] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/19/2019] [Indexed: 05/20/2023]
Abstract
Calcium is a ubiquitous second messenger that mediates plant responses to developmental and environmental cues. Calcium-dependent protein kinases (CDPKs) are key actors of plant signaling that convey calcium signals into physiological responses by phosphorylating various substrates including ion channels, transcription factors and metabolic enzymes. This large diversity of targets confers pivotal roles of CDPKs in shoot and root development, pollen tube growth, stomatal movements, hormonal signaling, transcriptional reprogramming and stress tolerance. On the one hand, specificity in CDPK signaling is achieved by differential calcium sensitivities, expression patterns, subcellular localizations and substrates. On the other hand, CDPKs also target some common substrates to ensure key cellular processes indispensable for plant growth and survival in adverse environmental conditions. In addition, the CDPK-related protein kinases (CRKs) might be closer to some CDPKs than previously anticipated and could contribute to calcium signaling despite their inability to bind calcium. This review highlights the regulatory properties of Arabidopsis CDPKs and CRKs that coordinate their multifaceted functions in development, immunity and abiotic stress responses.
Collapse
Affiliation(s)
- Tiffany Yip Delormel
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry Val d'Essonne, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marie Boudsocq
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry Val d'Essonne, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
45
|
Wang PH, Lee CE, Lin YS, Lee MH, Chen PY, Chang HC, Chang IF. The Glutamate Receptor-Like Protein GLR3.7 Interacts With 14-3-3ω and Participates in Salt Stress Response in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:1169. [PMID: 31632419 DOI: 10.3389/fpls.2019.01169/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/27/2019] [Indexed: 05/25/2023]
Abstract
Ionotropic glutamate receptors (iGluRs) are ligand-gated cation channels that mediate fast excitatory neurotransmission in the mammalian central nervous system. In the model plant Arabidopsis thaliana, a family of 20 glutamate receptor-like proteins (GLRs) shares similarities to animal iGluRs in sequence and predicted secondary structure. However, the function of GLRs in plants is little known. In the present study, a serine site (Ser-860) of AtGLR3.7 phosphorylated by a calcium-dependent protein kinase (CDPK) was identified and confirmed by an in vitro kinase assay. Using a bimolecular fluorescence complementation and quartz crystal microbalance analyses, the physical interaction between AtGLR3.7 and the 14-3-3ω protein was confirmed. The mutation of Ser-860 to alanine abolished this interaction, indicating that Ser-860 is the 14-3-3ω binding site of AtGLR3.7. Compared with wild type, seed germination of the glr3.7-2 mutant was more sensitive to salt stress. However, the primary root growth of GLR3.7-S860A overexpression lines was less sensitive to salt stress than that of the wild-type line. In addition, the increase of cytosolic calcium ion concentration by salt stress was significantly lower in the glr3.7-2 mutant line than in the wild-type line. Moreover, association of 14-3-3 proteins to microsomal fractions was less in GLR3.7-S860A overexpression lines than in GLR3.7 overexpression line under 150 mM NaCl salt stress condition. Overall, our results indicated that GLR3.7 is involved in salt stress response in A. thaliana by affecting calcium signaling.
Collapse
Affiliation(s)
- Po-Hsun Wang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Cheng-En Lee
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Yi-Sin Lin
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Man-Hsuan Lee
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Pei-Yuan Chen
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Hui-Chun Chang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Ing-Feng Chang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
46
|
Seifikalhor M, Aliniaeifard S, Shomali A, Azad N, Hassani B, Lastochkina O, Li T. Calcium signaling and salt tolerance are diversely entwined in plants. PLANT SIGNALING & BEHAVIOR 2019; 14:1665455. [PMID: 31564206 PMCID: PMC6804723 DOI: 10.1080/15592324.2019.1665455] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 05/11/2023]
Abstract
In plants dehydration imposed by salinity can invoke physical changes at the interface of the plasma membrane and cell wall. Changes in hydrostatic pressure activate ion channels and cause depolarization of the plasma membrane due to disturbance in ion transport. During the initial phases of salinity stress, the relatively high osmotic potential of the rhizosphere enforces the plant to use a diverse spectrum of strategies to optimize water and nutrient uptake. Signals of salt stress are recognized by specific root receptors that activate an osmosensing network. Plant response to hyperosmotic tension is closely linked to the calcium (Ca2+) channels and interacting proteins such as calmodulin. A rapid rise in cytosolic Ca2+ levels occurs within seconds of exposure to salt stress. Plants employ multiple sensors and signaling components to sense and respond to salinity stress, of which most are closely related to Ca2+ sensing and signaling. Several tolerance strategies such as osmoprotectant accumulation, antioxidant boosting, polyaminses and nitric oxide (NO) machineries are also coordinated by Ca2+ signaling. Substantial research has been done to discover the salt stress pathway and tolerance mechanism in plants, resulting in new insights into the perception of salt stress and the downstream signaling that happens in response. Nevertheless, the role of multifunctional components such as Ca2+ has not been sufficiently addressed in the context of salt stress. In this review, we elaborate that the salt tolerance signaling pathway converges with Ca2+ signaling in diverse pathways. We summarize knowledge related to different dimensions of salt stress signaling pathways in the cell by emphasizing the administrative role of Ca2+ signaling on salt perception, signaling, gene expression, ion homeostasis and adaptive responses.
Collapse
Affiliation(s)
- Maryam Seifikalhor
- Department of Plant Biology, College of Science, University of Tehran, Tehran, Iran
| | - Sasan Aliniaeifard
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Aida Shomali
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Nikoo Azad
- Department of Plant Biology, College of Science, University of Tehran, Tehran, Iran
| | - Batool Hassani
- Department of Plant Sciences, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Oksana Lastochkina
- Ufa Federal Research Centre, Russian Academy of Sciences, Bashkir Research Institute of Agriculture, Ufa, Russia
- Ufa Federal Research Centre, Russian Academy of Sciences, Institute of Biochemistry and Genetics, Ufa, Russia
| | - Tao Li
- Chinese Academy of Agricultural Science, Institute of Environment and Sustainable Development in Agriculture, Beijing, China
| |
Collapse
|
47
|
Fu L, Ding Z, Sun X, Zhang J. Physiological and Transcriptomic Analysis Reveals Distorted Ion Homeostasis and Responses in the Freshwater Plant Spirodela polyrhiza L. under Salt Stress. Genes (Basel) 2019; 10:genes10100743. [PMID: 31554307 PMCID: PMC6826491 DOI: 10.3390/genes10100743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/14/2019] [Accepted: 09/21/2019] [Indexed: 01/02/2023] Open
Abstract
Duckweeds are a family of freshwater angiosperms with morphology reduced to fronds and propagation by vegetative budding. Unlike other angiosperm plants such as Arabidopsis and rice that have physical barriers between their photosynthetic organs and soils, the photosynthetic organs of duckweeds face directly to their nutrient suppliers (waters), therefore, their responses to salinity may be distinct. In this research, we found that the duckweed Spirodela polyrhiza L. accumulated high content of sodium and reduced potassium and calcium contents in large amounts under salt stress. Fresh weight, Rubisco and AGPase activities, and starch content were significantly decreaseded in the first day but recovered gradually in the following days and accumulated more starch than control from Day 3 to Day 5 when treated with 100 mM and 150 mM NaCl. A total of 2156 differentially expressed genes were identified. Overall, the genes related to ethylene metabolism, major CHO degradation, lipid degradation, N-metabolism, secondary metabolism of flavonoids, and abiotic stress were significantly increased, while those involved in cell cycle and organization, cell wall, mitochondrial electron transport of ATP synthesis, light reaction of photosynthesis, auxin metabolism, and tetrapyrrole synthesis were greatly inhibited. Moreover, salt stress also significantly influenced the expression of transcription factors that are mainly involved in abiotic stress and cell differentiation. However, most of the osmosensing calcium antiporters (OSCA) and the potassium inward channels were downregulated, Na+/H+ antiporters (SOS1 and NHX) and a Na+/Ca2+ exchanger were slightly upregulated, but most of them did not respond significantly to salt stress. These results indicated that the ion homeostasis was strongly disturbed. Finally, the shared and distinct regulatory networks of salt stress responses between duckweeds and other plants were intensively discussed. Taken together, these findings provide novel insights into the underlying mechanisms of salt stress response in duckweeds, and can be served as a useful foundation for salt tolerance improvement of duckweeds for the application in salinity conditions.
Collapse
Affiliation(s)
- Lili Fu
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Academy of Tropical Agricultural Resource, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China.
| | - Zehong Ding
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Academy of Tropical Agricultural Resource, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China.
| | - Xuepiao Sun
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Academy of Tropical Agricultural Resource, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China.
| | - Jiaming Zhang
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Academy of Tropical Agricultural Resource, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China.
| |
Collapse
|
48
|
Celis-Plá PSM, Rodríguez-Rojas F, Méndez L, Moenne F, Muñoz PT, Lobos MG, Díaz P, Sánchez-Lizaso JL, Brown MT, Moenne A, Sáez CA. MAPK Pathway under Chronic Copper Excess in Green Macroalgae (Chlorophyta): Influence on Metal Exclusion/Extrusion Mechanisms and Photosynthesis. Int J Mol Sci 2019; 20:E4547. [PMID: 31540294 PMCID: PMC6769437 DOI: 10.3390/ijms20184547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 01/23/2023] Open
Abstract
There is currently no information regarding the role that whole mitogen activated protein kinase (MAPK) pathways play in counteracting environmental stress in photosynthetic organisms. To address this gap, we exposed Ulva compressa to chronic levels of copper (10 µM) specific inhibitors of Extracellular Signal Regulated Kinases (ERK), c-Jun N-terminal Kinases (JNK), and Cytokinin Specific Binding Protein (p38) MAPKs alone or in combination. Intracellular copper accumulation and photosynthetic activity (in vivo chlorophyll a fluorescence) were measured after 6 h, 24 h, 48 h, and 6 days of exposure. By day 6, when one (except JNK) or more of the MAPK pathways were inhibited under copper stress, there was a decrease in copper accumulation compared with algae exposed to copper alone. When at least two MAPKs were blocked, there was a decrease in photosynthetic activity expressed in lower productivity (ETRmax), efficiency (αETR), and saturation of irradiance (EkETR), accompanied by higher non-photochemical quenching (NPQmax), compared to both the control and copper-only treatments. In terms of accumulation, once the MAPK pathways were partially or completely blocked under copper, there was crosstalk between these and other signaling mechanisms to enhance metal extrusion/exclusion from cells. Crosstalk occurred among MAPK pathways to maintain photosynthesis homeostasis, demonstrating the importance of the signaling pathways for physiological performance. This study is complemented by a parallel/complementary article Rodríguez-Rojas et al. on the role of MAPKs in copper-detoxification.
Collapse
Affiliation(s)
- Paula S M Celis-Plá
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile.
| | - Fernanda Rodríguez-Rojas
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile.
| | - Lorena Méndez
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile.
| | - Fabiola Moenne
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile.
| | - Pamela T Muñoz
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile.
- Doctorado Interdisciplinario en Ciencias Ambientales, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso 2340000, Chile.
- Doctorado en Ciencias del Mar y Biología Aplicada, Departamento de Ciencias del Mar y Biología Aplicada, Universidad de Alicante, 03080 Alicante, Spain.
| | - M Gabriela Lobos
- Laboratory of Environmental and Analytical Chemistry, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 234000, Chile.
| | - Patricia Díaz
- Laboratory of Environmental and Analytical Chemistry, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 234000, Chile.
| | - José Luis Sánchez-Lizaso
- Departamento de Ciencias del Mar y Biología Aplicada, Universidad de Alicante, 03080 Alicante, Spain.
| | - Murray T Brown
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK.
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile.
| | - Claudio A Sáez
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile.
- HUB-AMBIENTAL UPLA, Universidad de Playa Ancha, Valparaíso 2340000, Chile.
| |
Collapse
|
49
|
Chang HC, Tsai MC, Wu SS, Chang IF. Regulation of ABI5 expression by ABF3 during salt stress responses in Arabidopsis thaliana. BOTANICAL STUDIES 2019; 60:16. [PMID: 31399930 PMCID: PMC6689043 DOI: 10.1186/s40529-019-0264-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/31/2019] [Indexed: 05/02/2023]
Abstract
Background Basic region/leucine zippers (bZIPs) are transcription factors (TFs) encoded by a large gene family in plants. ABF3 and ABI5 are Group A bZIP TFs that are known to be important in abscisic acid (ABA) signaling. However, questions of whether ABF3 regulates ABI5 are still present. Results In vitro kinase assay results showed that Thr-128, Ser-134, and Thr-451 of ABF3 are calcium-dependent protein kinase phosphorylation sites. Bimolecular fluorescence complementation (BiFC) analysis results showed a physical interaction between ABF3 and 14-3-3ω. A Thr-451 to Ala point mutation abolished the interaction but did not change the subcellular localization. In addition, the Arabidopsis protoplast transactivation assay using a luciferase reporter exhibited ABI5 activation by either ABF3 alone or by co-expression of ABF3 and 14-3-3ω. Moreover, chromatin immunoprecipitation-qPCR results showed that in Arabidopsis, ABI5 ABA-responsive element binding proteins (ABREs) of the promoter region (between − 1376 and − 455) were enriched by ABF3 binding under normal and 150 mM NaCl salt stress conditions. Conclusion Taken together, our results demonstrated that ABI5 expression is regulated by ABF3, which could contribute to salt stress tolerance in Arabidopsis thaliana. Electronic supplementary material The online version of this article (10.1186/s40529-019-0264-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui-Chun Chang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Min-Chieh Tsai
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Sih-Sian Wu
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Ing-Feng Chang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
50
|
Li M, Hu W, Ren L, Jia C, Liu J, Miao H, Guo A, Xu B, Jin Z. Identification, Expression, and Interaction Network Analyses of the CDPK Gene Family Reveal Their Involvement in the Development, Ripening, and Abiotic Stress Response in Banana. Biochem Genet 2019; 58:40-62. [PMID: 31144068 DOI: 10.1007/s10528-019-09916-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 03/27/2019] [Indexed: 11/25/2022]
Abstract
Calcium-dependent protein kinases (CDPKs) play vital roles in the regulation of plant growth, development, and tolerance to various abiotic stresses. However, little information is available for this gene family in banana. In this study, 44 CDPKs were identified in banana and were classified into four groups based on phylogenetic, gene structure, and conserved motif analyses. The majority of MaCDPKs generally exhibited similar expression patterns in the different tissues. Transcriptome analyses revealed that many CDPKs showed strong transcript accumulation at the early stages of fruit development and postharvest ripening in both varieties. Interaction network and co-expression analysis further identified some CDPKs-mediated network that was potentially active at the early stages of fruit development. Comparative expression analysis suggested that the high levels of CDPK expression in FJ might be related to its fast ripening characteristic. CDPK expression following the abiotic stress treatments indicated a significant transcriptional response to osmotic, cold, and salt treatment, as well as differential expression profiles, between BX and FJ. The findings of this study elucidate the transcriptional control of CDPKs in development, ripening, and the abiotic stress response in banana. Some tissue-specific, development/ripening-dependent, and abiotic stress-responsive candidate MaCDPK genes were identified for further genetic improvement of banana.
Collapse
Affiliation(s)
- Meiying Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Licheng Ren
- Department of Biology, Hainan Medical College, Haikou, China
| | - Caihong Jia
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Juhua Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Hongxia Miao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Anping Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Biyu Xu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Zhiqiang Jin
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.
| |
Collapse
|