1
|
Li H, Wu M, Chao H, Yin Y, Xia Y, Cheng X, Chen K, Yan S, Wang X, Xiong Y, He J, Fan S, Ding Y, Zhang L, Jia H, Zhang C, Li M. A rare dominant allele DYSOC1 determines seed coat color and improves seed oil content in Brassica napus. SCIENCE ADVANCES 2025; 11:eads7620. [PMID: 39752491 PMCID: PMC11698099 DOI: 10.1126/sciadv.ads7620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
Yellow seed coat color (SCC) is a valuable trait in Brassica napus, which is significantly correlated to high seed oil content (SOC) and low seed lignocellulose content (SLC). However, no dominant yellow SCC genes were identified in B. napus. In this study, a dominant yellow SCC B. napus N53-2 was verified, and then 58,981 eQTLs and 25 trans-eQTL hotspots were identified in a double haploid population derived from N53-2 and black SCC material Ken-C8. A rare dominant allele DYSOC1 (dominant gene of yellow seed coat color and improved seed oil content 1) was subsequently cloned in a trans-eQTL hotspot that colocated with SCC, SOC, and SLC QTL hotspot on ChrA09 through QTL fine mapping and multi-omics analysis. Transgenic experiments revealed that the expression of DYSOC1 produced yellow SCC seeds with significantly increased SOC and decreased SLC. Our result provides a rare dominant yellow SCC allele in B. napus, which has excellent potential for yellow SCC and high SOC rapeseed breeding.
Collapse
Affiliation(s)
- Huaixin Li
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingli Wu
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongbo Chao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yongtai Yin
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Yutian Xia
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Cheng
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kang Chen
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuxiang Yan
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaodong Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Yiyi Xiong
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianjie He
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shipeng Fan
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiran Ding
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Libin Zhang
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Wuhan 430074, China
| | - Haibo Jia
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chunyu Zhang
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Maoteng Li
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
2
|
Florez-Rueda AM, Miguel CM, Figueiredo DD. Comparative transcriptomics of seed nourishing tissues: uncovering conserved and divergent pathways in seed plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1134-1157. [PMID: 38709819 DOI: 10.1111/tpj.16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
The evolutionary and ecological success of spermatophytes is intrinsically linked to the seed habit, which provides a protective environment for the initial development of the new generation. This environment includes an ephemeral nourishing tissue that supports embryo growth. In gymnosperms this tissue originates from the asexual proliferation of the maternal megagametophyte, while in angiosperms it is a product of fertilization, and is called the endosperm. The emergence of these nourishing tissues is of profound evolutionary value, and they are also food staples for most of the world's population. Here, using Orthofinder to infer orthologue genes among newly generated and previously published datasets, we provide a comparative transcriptomic analysis of seed nourishing tissues from species of several angiosperm clades, including those of early diverging lineages, as well as of one gymnosperm. Our results show that, although the structure and composition of seed nourishing tissues has seen significant divergence along evolution, there are signatures that are conserved throughout the phylogeny. Conversely, we identified processes that are specific to species within the clades studied, and thus illustrate their functional divergence. With this, we aimed to provide a foundation for future studies on the evolutionary history of seed nourishing structures, as well as a resource for gene discovery in future functional studies.
Collapse
Affiliation(s)
- Ana Marcela Florez-Rueda
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
- University of Potsdam, Karl-Liebknechts-Str. 24-25, Haus 26, 14476, Potsdam, Germany
| | - Célia M Miguel
- Faculty of Sciences, Biosystems and Integrative Sciences Institute (BioISI), University of Lisbon, Lisboa, Portugal
| | - Duarte D Figueiredo
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
3
|
Jiang W, Yin Q, Liu J, Su X, Han X, Li Q, Zhang J, Pang Y. The APETALA2-MYBL2 module represses proanthocyanidin biosynthesis by affecting formation of the MBW complex in seeds of Arabidopsis thaliana. PLANT COMMUNICATIONS 2024; 5:100777. [PMID: 38053331 PMCID: PMC10943577 DOI: 10.1016/j.xplc.2023.100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/02/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
Proanthocyanidins (PAs) are the second most abundant plant phenolic natural products. PA biosynthesis is regulated by the well-documented MYB/bHLH/WD40 (MBW) complex, but how this complex itself is regulated remains ill defined. Here, in situ hybridization and β-glucuronidase staining show that APETALA2 (AP2), a well-defined regulator of flower and seed development, is strongly expressed in the seed coat endothelium, where PAs accumulate. AP2 negatively regulates PA content and expression levels of key PA pathway genes. AP2 activates MYBL2 transcription and interacts with MYBL2, a key suppressor of the PA pathway. AP2 exerts its function by directly binding to the AT-rich motifs near the promoter region of MYBL2. Molecular and biochemical analyses revealed that AP2 forms AP2-MYBL2-TT8/EGL3 complexes, disrupting the MBW complex and thereby repressing expression of ANR, TT12, TT19, and AHA10. Genetic analyses revealed that AP2 functions upstream of MYBL2, TT2, and TT8 in PA regulation. Our work reveals a new role of AP2 as a key regulator of PA biosynthesis in Arabidopsis. Overall, this study sheds new light on the comprehensive regulation network of PA biosynthesis as well as the dual regulatory roles of AP2 in seed development and accumulation of major secondary metabolites in Arabidopsis.
Collapse
Affiliation(s)
- Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Qinggang Yin
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinyue Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaojia Su
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaoyan Han
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qian Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jin Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
4
|
Li H, Yu K, Zhang Z, Yu Y, Wan J, He H, Fan C. Targeted mutagenesis of flavonoid biosynthesis pathway genes reveals functional divergence in seed coat colour, oil content and fatty acid composition in Brassica napus L. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:445-459. [PMID: 37856327 PMCID: PMC10826991 DOI: 10.1111/pbi.14197] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/08/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023]
Abstract
Yellow-seed is widely accepted as a good-quality trait in Brassica crops. Previous studies have shown that the flavonoid biosynthesis pathway is essential for the development of seed colour, but its function in Brassica napus, an important oil crop, is poorly understood. To systematically explore the gene functions of the flavonoid biosynthesis pathway in rapeseed, several representative TRANSPARENT TESTA (TT) genes, including three structural genes (BnaTT7, BnaTT18, BnaTT10), two regulatory genes (BnaTT1, BnaTT2) and a transporter (BnaTT12), were selected for targeted mutation by CRISPR/Cas9 in the present study. Seed coat colour, lignin content, seed quality and yield-related traits were investigated in these Bnatt mutants together with Bnatt8 generated previously. These Bnatt mutants produced seeds with an elevated seed oil content and decreased pigment and lignin accumulation in the seed coat without any serious defects in the yield-related traits. In addition, the fatty acid (FA) composition was also altered to different degrees, i.e., decreased oleic acid and increased linoleic acid and α-linolenic acid, in all Bnatt mutants except Bnatt18. Furthermore, gene expression analysis revealed that most of BnaTT mutations resulted in the down-regulation of key genes related to flavonoid and lignin synthesis, and the up-regulation of key genes related to lipid synthesis and oil body formation, which may contribute to the phenotype. Collectively, our study generated valuable resources for breeding programs, and more importantly demonstrated the functional divergence and overlap of flavonoid biosynthesis pathway genes in seed coat colour, oil content and FA composition of rapeseed.
Collapse
Affiliation(s)
- Huailin Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Kaidi Yu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Zilu Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Yalun Yu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Jiakai Wan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Hanzi He
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| |
Collapse
|
5
|
Yu L, Liu D, Yin F, Yu P, Lu S, Zhang Y, Zhao H, Lu C, Yao X, Dai C, Yang QY, Guo L. Interaction between phenylpropane metabolism and oil accumulation in the developing seed of Brassica napus revealed by high temporal-resolution transcriptomes. BMC Biol 2023; 21:202. [PMID: 37775748 PMCID: PMC10543336 DOI: 10.1186/s12915-023-01705-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Brassica napus is an important oilseed crop providing high-quality vegetable oils for human consumption and non-food applications. However, the regulation between embryo and seed coat for the synthesis of oil and phenylpropanoid compounds remains largely unclear. RESULTS Here, we analyzed the transcriptomes in developing seeds at 2-day intervals from 14 days after flowering (DAF) to 64 DAF. The 26 high-resolution time-course transcriptomes are clearly clustered into five distinct groups from stage I to stage V. A total of 2217 genes including 136 transcription factors, are specifically expressed in the seed and show high temporal specificity by being expressed only at certain stages of seed development. Furthermore, we analyzed the co-expression networks during seed development, which mainly included master regulatory transcription factors, lipid, and phenylpropane metabolism genes. The results show that the phenylpropane pathway is prominent during seed development, and the key enzymes in the phenylpropane metabolic pathway, including TT5, BAN, and the transporter TT19, were directly or indirectly related to many key enzymes and transcription factors involved in oil accumulation. We identified candidate genes that may regulate seed oil content based on the co-expression network analysis combined with correlation analysis of the gene expression with seed oil content and seed coat content. CONCLUSIONS Overall, these results reveal the transcriptional regulation between lipid and phenylpropane accumulation during B. napus seed development. The established co-expression networks and predicted key factors provide important resources for future studies to reveal the genetic control of oil accumulation in B. napus seeds.
Collapse
Affiliation(s)
- Liangqian Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dongxu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feifan Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pugang Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuting Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaofu Lu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, 59717, USA
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Yazhouwan National Laboratory, Sanya, 572025, China.
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Yazhouwan National Laboratory, Sanya, 572025, China.
| |
Collapse
|
6
|
Martínez-Rivas FJ, Blanco-Portales R, Serratosa MP, Ric-Varas P, Guerrero-Sánchez V, Medina-Puche L, Moyano L, Mercado JA, Alseekh S, Caballero JL, Fernie AR, Muñoz-Blanco J, Molina-Hidalgo FJ. FaMYB123 interacts with FabHLH3 to regulate the late steps of anthocyanin and flavonol biosynthesis during ripening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:683-698. [PMID: 36840368 DOI: 10.1111/tpj.16166] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 02/17/2023] [Indexed: 05/10/2023]
Abstract
In this work, we identified and functionally characterized the strawberry (Fragaria × ananassa) R2R3 MYB transcription factor FaMYB123. As in most genes associated with organoleptic properties of ripe fruit, FaMYB123 expression is ripening-related, receptacle-specific, and antagonistically regulated by ABA and auxin. Knockdown of FaMYB123 expression by RNAi in ripe strawberry fruit receptacles downregulated the expression of enzymes involved in the late steps of anthocyanin/flavonoid biosynthesis. Transgenic fruits showed a parallel decrease in the contents of total anthocyanin and flavonoid, especially malonyl derivatives of pelargonidin and cyanidins. The decrease was concomitant with accumulation of proanthocyanin, propelargonidins, and other condensed tannins associated mainly with green receptacles. Potential coregulation between FaMYB123 and FaMYB10, which may act on different sets of genes for the enzymes involved in anthocyanin production, was explored. FaMYB123 and FabHLH3 were found to interact and to be involved in the transcriptional activation of FaMT1, a gene responsible for the malonylation of anthocyanin components during ripening. Taken together, these results demonstrate that FaMYB123 regulates the late steps of the flavonoid pathway in a specific manner. In this study, a new function for an R2R3 MYB transcription factor, regulating the expression of a gene that encodes a malonyltransferase, has been elucidated.
Collapse
Affiliation(s)
- Félix J Martínez-Rivas
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Rosario Blanco-Portales
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - María P Serratosa
- Department of Agricultural Chemistry, University of Cordoba, Edificio Marie Curie, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Pablo Ric-Varas
- Department of Plant Biology, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, University of Málaga, Campus de Teatinos, E-29071, Málaga, Spain
| | - Víctor Guerrero-Sánchez
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Laura Medina-Puche
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany
| | - Lourdes Moyano
- Department of Agricultural Chemistry, University of Cordoba, Edificio Marie Curie, Campus de Rabanales, E-14014, Córdoba, Spain
| | - José A Mercado
- Department of Plant Biology, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, University of Málaga, Campus de Teatinos, E-29071, Málaga, Spain
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, Plovdiv, 4000, Bulgaria
| | - José L Caballero
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, Plovdiv, 4000, Bulgaria
| | - Juan Muñoz-Blanco
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Francisco J Molina-Hidalgo
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| |
Collapse
|
7
|
Li Y, Li H, Wang S, Li J, Bacha SAS, Xu G, Li J. Metabolomic and transcriptomic analyses of the flavonoid biosynthetic pathway in blueberry ( Vaccinium spp.). FRONTIERS IN PLANT SCIENCE 2023; 14:1082245. [PMID: 37152168 PMCID: PMC10157174 DOI: 10.3389/fpls.2023.1082245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/29/2023] [Indexed: 05/09/2023]
Abstract
As a highly economic small fruit crop, blueberry is enjoyed by most people in terms of color, taste, and rich nutrition. To better understand its coloring mechanism on the process of ripening, an integrative analysis of the metabolome and transcriptome profiles was performed in three blueberry varieties at three developmental stages. In this study, 41 flavonoid metabolites closely related to the coloring in blueberry samples were analyzed. It turned out that the most differential metabolites in the ripening processes were delphinidin-3-O-arabinoside (dpara), peonidin-3-O-glucoside (pnglu), and delphinidin-3-O-galactoside (dpgal), while the most differential metabolites among different varieties were flavonols. Furthermore, to obtain more accurate and comprehensive transcripts of blueberry during the developmental stages, PacBio and Illumina sequencing technology were combined to obtain the transcriptome of the blueberry variety Misty, for the very first time. Finally, by applying the gene coexpression network analysis, the darkviolet and bisque4 modules related to flavonoid synthesis were determined, and the key genes related to two flavonoid 3', 5'-hydroxylase (F3'5'H) genes in the darkviolet module and one bHLH transcription factor in the bisque4 module were predicted. It is believed that our findings could provide valuable information for the future study on the molecular mechanism of flavonoid metabolites and flavonoid synthesis pathways in blueberries.
Collapse
Affiliation(s)
- Yinping Li
- Laboratory of Quality and Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Haifei Li
- Laboratory of Quality and Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Shiyao Wang
- Department of Applied Biosciences, Toyo University, Ora-gun, Japan
| | - Jing Li
- Laboratory of Quality and Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Syed Asim Shah Bacha
- Laboratory of Quality and Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Guofeng Xu
- Laboratory of Quality and Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Jing Li
- Laboratory of Quality and Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| |
Collapse
|
8
|
Guan M, Shi X, Chen S, Wan Y, Tang Y, Zhao T, Gao L, Sun F, Yin N, Zhao H, Lu K, Li J, Qu C. Comparative transcriptome analysis identifies candidate genes related to seed coat color in rapeseed. FRONTIERS IN PLANT SCIENCE 2023; 14:1154208. [PMID: 36993847 PMCID: PMC10042178 DOI: 10.3389/fpls.2023.1154208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/17/2023] [Indexed: 06/19/2023]
Abstract
Yellow seed coat in rapeseed (Brassica napus) is a desirable trait that can be targeted to improve the quality of this oilseed crop. To better understand the inheritance mechanism of the yellow-seeded trait, we performed transcriptome profiling of developing seeds in yellow- and black-seeded rapeseed with different backgrounds. The differentially expressed genes (DEGs) during seed development showed significant characteristics, these genes were mainly enriched for the Gene Ontology (GO) terms carbohydrate metabolic process, lipid metabolic process, photosynthesis, and embryo development. Moreover, 1206 and 276 DEGs, which represent candidates to be involved in seed coat color, were identified between yellow- and black-seeded rapeseed during the middle and late stages of seed development, respectively. Based on gene annotation, GO enrichment analysis, and protein-protein interaction network analysis, the downregulated DEGs were primarily enriched for the phenylpropanoid and flavonoid biosynthesis pathways. Notably, 25 transcription factors (TFs) involved in regulating flavonoid biosynthesis pathway, including known (e.g., KNAT7, NAC2, TTG2 and STK) and predicted TFs (e.g., C2H2-like, bZIP44, SHP1, and GBF6), were identified using integrated gene regulatory network (iGRN) and weight gene co-expression networks analysis (WGCNA). These candidate TF genes had differential expression profiles between yellow- and black-seeded rapeseed, suggesting they might function in seed color formation by regulating genes in the flavonoid biosynthesis pathway. Thus, our results provide in-depth insights that facilitate the exploration of candidate gene function in seed development. In addition, our data lay the foundation for revealing the roles of genes involved in the yellow-seeded trait in rapeseed.
Collapse
Affiliation(s)
- Mingwei Guan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Xiangtian Shi
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Si Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yuanyuan Wan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yunshan Tang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Tian Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Lei Gao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Fujun Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Nengwen Yin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Huiyan Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Jiana Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
9
|
Patel MK, Chaudhary R, Taak Y, Pardeshi P, Nanjundan J, Vinod KK, Saini N, Vasudev S, Yadava DK. Seed coat colour of Indian mustard [ Brassica juncea (L.) Czern. and Coss.] is associated with Bju.TT8 homologs identifiable by targeted functional markers. FRONTIERS IN PLANT SCIENCE 2022; 13:1012368. [PMID: 36275533 PMCID: PMC9581272 DOI: 10.3389/fpls.2022.1012368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Seed coat colour is an important trait in Indian mustard. Breeding for seed coat colour needs precise knowledge of mode of inheritance and markers linked to it. The present study was focussed on genetics and development of functional markers for seed coat colour. F1s (direct and reciprocal) and F2 populations were developed by crossing two contrasting parents for seed coat colour (DRMRIJ-31, brown seeded and RLC-3, yellow seeded). Phenotypic results have shown that the seed coat colour trait was under the influence of maternal effect and controlled by digenic-duplicate gene action. Further, Bju.TT8 homologs of both parents (DRMRIJ-31 and RLC-3) were cloned and sequenced. Sequencing results of Bju.TT8 homologs revealed that in RLC-3, gene Bju.ATT8 had an insertion of 1279bp in the 7th exon; whereas, gene Bju.BTT8 had an SNP (C→T) in the 7th exon. These two mutations were found to be associated with yellow seed coat colour. Using sequence information, functional markers were developed for both Bju.TT8 homologs, validated on F2 population and were found highly reliable with no recombination between the markers and the phenotype. Further, these markers were subjected to a germplasm assembly of Indian mustard, and their allelic combination for the seed coat colour genes has been elucidated. The comparative genomics of TT8 genes revealed high degree of similarity between and across the Brassica species, and the respective diploid progenitors in tetraploid Brassica species are the possible donors of TT8 homologs. This study will help in the marker-assisted breeding for seed coat colour, and aid in understanding seed coat colour genetics more precisely.
Collapse
Affiliation(s)
- Manoj Kumar Patel
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajat Chaudhary
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Yashpal Taak
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Priya Pardeshi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Joghee Nanjundan
- Indian Council of Agricultural Research (ICAR)- Indian Agricultural Research Institute, Regional Research Station, Wellington, India
| | - K. K. Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Navinder Saini
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sujata Vasudev
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - D. K. Yadava
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
10
|
Shi C, Liu L, Wei Z, Liu J, Li M, Yan Z, Gao D. Anthocyanin Accumulation and Molecular Analysis of Correlated Genes by Metabolomics and Transcriptomics in Sister Line Apple Cultivars. Life (Basel) 2022; 12:life12081246. [PMID: 36013425 PMCID: PMC9410521 DOI: 10.3390/life12081246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022] Open
Abstract
Red coloration in apples, an important quality trait, is primarily attributed to the accumulation of anthocyanins. Centuries of breeding have produced a wide variety of apples with different levels of anthocyanins in response to genetic and environmental stimuli. The Huashuo apple shows a much darker red color than its sister line, Huarui. Thirteen different anthocyanins were detected in Huashuo and Huarui apples, of which ten were significantly more abundant in Huashuo apples, confirming that the color difference is indeed attributed to high anthocyanins accumulation rather than the types of anthocyanins. In particular, the contents of cyanidin 3-O-galactoside levels were highest among anthocyanins in both cultivars, reaching >5000 μg·g−1 at the last color transition stage in Huashuo apples, while only >3000 μg·g−1 in Huarui apples. Moreover, the expression of most structural genes, especially DFR, CHI, and 4CL associated with anthocyanin synthesis, were higher in Huashuo apples than in Huarui apples. Combined transcriptomics, metabolomics, and qRT-PCR analysis revealed that six transcription factors from the MYB and bZIP transcription factor families likely play key roles in the dark coloring of Huashuo apples. These results provide deeper insights into apple coloring and suggest a series of candidate genes for breeding anthocyanin-rich cultivars.
Collapse
|
11
|
Genome-Wide Identification and Expression Analysis of nsLTP Gene Family in Rapeseed (Brassica napus) Reveals Their Critical Roles in Biotic and Abiotic Stress Responses. Int J Mol Sci 2022; 23:ijms23158372. [PMID: 35955505 PMCID: PMC9368849 DOI: 10.3390/ijms23158372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022] Open
Abstract
Non-specific lipid transfer proteins (nsLTPs) are small cysteine-rich basic proteins which play essential roles in plant growth, development and abiotic/biotic stress response. However, there is limited information about the nsLTP gene (BnLTP) family in rapeseed (Brassica napus). In this study, 283 BnLTP genes were identified in rapeseed, which were distributed randomly in 19 chromosomes of rapeseed. Phylogenetic analysis showed that BnLTP proteins were divided into seven groups. Exon/intron structure and MEME motifs both remained highly conserved in each BnLTP group. Segmental duplication and hybridization of rapeseed’s two sub-genomes mainly contributed to the expansion of the BnLTP gene family. Various potential cis-elements that respond to plant growth, development, biotic/abiotic stresses, and phytohormone signals existed in BnLTP gene promoters. Transcriptome analysis showed that BnLTP genes were expressed in various tissues/organs with different levels and were also involved in the response to heat, drought, NaCl, cold, IAA and ABA stresses, as well as the treatment of fungal pathogens (Sclerotinia sclerotiorum and Leptosphaeria maculans). The qRT-PCR assay validated the results of RNA-seq expression analysis of two top Sclerotinia-responsive BnLTP genes, BnLTP129 and BnLTP161. Moreover, batches of BnLTPs might be regulated by BnTT1 and BnbZIP67 to play roles in the development, metabolism or adaptability of the seed coat and embryo in rapeseed. This work provides an important basis for further functional study of the BnLTP genes in rapeseed quality improvement and stress resistance.
Collapse
|
12
|
Jiang W, Xia Y, Su X, Pang Y. ARF2 positively regulates flavonols and proanthocyanidins biosynthesis in Arabidopsis thaliana. PLANTA 2022; 256:44. [PMID: 35857143 DOI: 10.1007/s00425-022-03936-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Auxin response factor 2 acts as a positive regulator to fine-tune the spatial and temporal accumulation of flavonoid compounds, mainly flavonols and proanthocyanidins in Arabidopsis. Auxin response factor (ARF) proteins are reported to involve in auxin-mediated regulation of flavonoid biosynthesis. However, the detailed regulation mechanism of ARF remains still unknown. Here, we provide genetic and molecular evidence that one of the twenty-three ARF members-ARF2-positively regulates flavonoid biosynthesis at multi-level in tissue-specific manner in Arabidopsis thaliana. Loss-of-function mutation of ARF2 led to significant reduction in flavonoid content (e.g., flavonols and proanthocyanidins) in the seedlings and seeds of the Arabidopsis arf2 mutants. Over-expression of ARF2 increased flavonols and proanthocyanidins content in Arabidopsis. Additionally, the changes of flavonoid content correlate well with the transcript abundance of several regulatory genes (e.g., MYB11, MYB12, MYB111, TT2, and GL3), and key biosynthetic genes (e.g., CHS, F3'H, FLS, ANS, ANR, TT12, TT19, and TT15), in the arf2 mutant and ARF2 over-expression lines. Transient transactivation assays with site-directed mutagenesis confirmed that ARF2 directly regulates the expression of MYB12 and FLS genes in the flavonol pathway and ANR in the proanthocyanidin pathway, and indirectly regulates MYB11 and MYB111 genes in the flavonol pathway, and ANS, TT12, TT19 and TT15 genes in the proanthocyanidin pathway. Further genetic results indicated that ARF2 acts upstream of MYB12 to regulate flavonol accumulation, and of TT2 to regulate proanthocyanidins accumulation. In particular, yeast two-hybrid assays revealed that ARF2 physically interacts with TT2, a master regulator of proanthocyanidins biosynthesis. Combined together, these results indicated that ARF2 functions as a positive regulator for the fine-tuned spatial and temporal regulation of flavonoids (mainly flavonols and proanthocyanidins) accumulation in Arabidopsis.
Collapse
Affiliation(s)
- Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yaying Xia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojia Su
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
13
|
Metabolome and Transcriptome Profiling Unveil the Mechanisms of Polyphenol Synthesis in the Developing Endopleura of Walnut ( Juglans regia L.). Int J Mol Sci 2022; 23:ijms23126623. [PMID: 35743068 PMCID: PMC9224426 DOI: 10.3390/ijms23126623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
Walnut (Juglans regia L.) is an important woody nut tree species, and its endopleura (the inner coating of a seed) is rich in many polyphenols. Thus far, the pathways and essential genes involved in polyphenol biosynthesis in developing walnut endopleura remain largely unclear. We compared metabolite differences between endopleura and embryo in mature walnuts, and analyzed the changes of metabolites in endopleura at 35, 63, 91, 119, and 147 days after pollination (DAP). A total of 760 metabolites were detected in the metabolome, and the polyphenol contents in endopleura were higher than those in embryos. A total of 15 types of procyanidins, 10 types of kaempferol glycosides, and 21 types of quercetin glycosides that accumulated during endopleura development were identified. The analysis of the phenylpropane metabolic pathway showed that phenylalanine was gradually transformed into proanthocyanidins and other secondary metabolites with the development of endopleura. A total of 49 unigenes related to polyphenol synthesis were identified by transcriptome analysis of endopleura. The expression patterns of PAL, C4H, 4CL, CHS, CHI, F3H, LDOX, and ANR were similar, and their expression levels were highest in endopleura at maturity. Transcriptome and metabolome analysis showed that endopleura rapidly synthesized and accumulated polyphenols during maturation. Moreover, the transcription factor MYB111 played an important role in synthesizing polyphenols in endopleura, and its expression pattern was positively correlated with the accumulation pattern of quercetin, kaempferol, and proanthocyanidins. MYB111 was co-expressed with NAP, NAC, ATR1, and other genes related to cell senescence and abiotic stress response. Our study analyzed the composition and molecular synthesis mechanism of polyphenols in walnut endopleura, and provided new perspectives and insights regarding the nutritional research of walnut nuts.
Collapse
|
14
|
Leal AR, Sapeta H, Beeckman T, Barros PM, Oliveira MM. Spatiotemporal development of suberized barriers in cork oak taproots. TREE PHYSIOLOGY 2022; 42:1269-1285. [PMID: 34970982 DOI: 10.1093/treephys/tpab176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
The longevity and high activity of the cork cambium (or phellogen) from Quercus suber L. (cork oak) are the cornerstones for the sustainable exploitation of a unique raw material. Cork oak is a symbolic model to study cork development and cell wall suberization, yet most genetic and molecular studies on these topics have targeted other model plants. In this study, we explored the potential of taproots as a model system to study phellem development and suberization in cork oak, thereby avoiding the time constraints imposed when studying whole plants. In roots, suberin deposition is found in mature endodermis cells during primary development and in phellem cells during secondary development. By investigating the spatiotemporal characteristics of both endodermis and phellem suberization in young seedling taproots, we demonstrated that secondary growth and phellogen activity are initiated very early in cork oak taproots (approx. 8 days after sowing). We further compared the transcriptomic profile of root segments undergoing primary (PD) and secondary development (SD) and identified multiple candidate genes with predicted roles in cell wall modifications, mainly lignification and suberization, in addition to several regulatory genes, particularly transcription factor- and hormone-related genes. Our results indicate that the molecular regulation of suberization and secondary development in cork oak roots is relatively conserved with other species. The provided morphological characterization creates new opportunities to allow a faster assessment of phellogen activity (as compared with studies using stem tissues) and to tackle fundamental questions regarding its regulation.
Collapse
Affiliation(s)
- Ana Rita Leal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS Unit, Av. da República, Oeiras 2780-157, Portugal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent B-9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, Ghent B-9052, Belgium
| | - Helena Sapeta
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS Unit, Av. da República, Oeiras 2780-157, Portugal
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent B-9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, Ghent B-9052, Belgium
| | - Pedro M Barros
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS Unit, Av. da República, Oeiras 2780-157, Portugal
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS Unit, Av. da República, Oeiras 2780-157, Portugal
| |
Collapse
|
15
|
Du Y, Roldan MVG, Haraghi A, Haili N, Izhaq F, Verdenaud M, Boualem A, Bendahmane A. Spatially expressed WIP genes control Arabidopsis embryonic root development. NATURE PLANTS 2022; 8:635-645. [PMID: 35710883 DOI: 10.1038/s41477-022-01172-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Development of plant organs is a highly organized process. In Arabidopsis, proper root development requires that distinct cell types and tissue layers are specified and formed in a restricted manner in space and over time. Despite its importance, genetic controls underlying such regularity remain elusive. Here we found that WIP genes expressed in the embryo and suspensor functionally oppose those expressed in the surrounding maternal tissues to orchestrate cell division orientation and cell fate specification in the embryonic root, thereby promoting regular root formation. The maternal WIPs act non-cell autonomously to repress root cell fate specification through SIMILAR TO RADICAL-INDUCED CELL DEATH ONE (SRO) family members. When losing all WIPs, root cells divide irregularly in the early embryo, but this barely alters their fate specification and the morphology of post-embryonic roots. Our results reveal cross-communication between the embryonic and maternal WIPs in controlling root development.
Collapse
Affiliation(s)
- Yujuan Du
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France.
| | - Maria Victoria Gomez Roldan
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France
| | - Aimen Haraghi
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France
| | - Nawel Haili
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France
| | - Farhaj Izhaq
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France
| | - Marion Verdenaud
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France
| | - Adnane Boualem
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France.
| |
Collapse
|
16
|
Lin M, Zhou Z, Mei Z. Integrative Analysis of Metabolome and Transcriptome Identifies Potential Genes Involved in the Flavonoid Biosynthesis in Entada phaseoloides Stem. FRONTIERS IN PLANT SCIENCE 2022; 13:792674. [PMID: 35620699 PMCID: PMC9127681 DOI: 10.3389/fpls.2022.792674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Entada phaseoloides stem is known for its high medicinal benefits and ornamental value. Flavonoids are one of the main active constituents in E. phaseoloides stem. However, the regulatory mechanism of flavonoids accumulation in E. phaseoloides is lacking. Here, phytochemical compounds and transcripts from stems at different developmental stages in E. phaseoloides were investigated by metabolome and transcriptome analysis. The metabolite profiling of the oldest stem was obviously different from young and older stem tissues. A total of 198 flavonoids were detected, and flavones, flavonols, anthocyanins, isoflavones, and flavanones were the main subclasses. The metabolome data showed that the content of acacetin was significantly higher in the young stem and older stem than the oldest stem. Rutin and myricitrin showed significantly higher levels in the oldest stem. A total of 143 MYBs and 143 bHLHs were identified and classified in the RNA-seq data. Meanwhile, 34 flavonoid biosynthesis structural genes were identified. Based on the expression pattern of structural genes involved in flavonoid biosynthesis, it indicated that flavonol, anthocyanin, and proanthocyanin biosynthesis were first active during the development of E. phaseoloides stem, and the anthocyanin or proanthocyanin biosynthesis branch was dominant; the flavone biosynthesis branch was active at the late developmental stage of the stem. Through the correlation analysis of transcriptome and metabolome data, the potential candidate genes related to regulating flavonoid synthesis and transport were identified. Among them, the MYBs, bHLH, and TTG1 are coregulated biosynthesis of flavonols and structural genes, bHLH and transporter genes are coregulated biosynthesis of anthocyanins. In addition, the WDR gene TTG1-like (AN11) may regulate dihydrochalcones and flavonol biosynthesis in specific combinations with IIIb bHLH and R2R3-MYB proteins. Furthermore, the transport gene protein TRANSPARENT TESTA 12-like gene is positively regulated the accumulation of rutin, and the homolog of ABC transporter B family member gene is positively correlated with the content of flavone acacetin. This study offered candidate genes involved in flavonoid biosynthesis, information of flavonoid composition and characteristics of flavonoids accumulation, improved our understanding of the MYBs and bHLHs-related regulation networks of flavonoid biosynthesis in E. phaseoloides stem, and provided references for the metabolic engineering of flavonoid biosynthesis in E. phaseoloides stem.
Collapse
Affiliation(s)
- Min Lin
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
- Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, China
| | - Zhuqing Zhou
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
- Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, China
| | - Zhinan Mei
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
- Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
17
|
Naik J, Misra P, Trivedi PK, Pandey A. Molecular components associated with the regulation of flavonoid biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111196. [PMID: 35193745 DOI: 10.1016/j.plantsci.2022.111196] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Flavonoids exhibit amazing structural diversity and play different roles in plants. Besides, these compounds have been associated with several health benefits in humans. Several exogenous and endogenous cues, for example, light, temperature, nutrient status, and phytohormones have been reported as modulators of biosynthesis and accumulation of flavonoids. Thus, multiple hormones and stress-related signaling pathways are involved in the regulation of gene expression associated with this pathway. The transcriptional regulators belonging to the MYB and bHLH family transcription factors are well documented as the direct regulators of the structural genes associated with flavonoid biosynthesis. Recent studies also suggest that some of these factors are regulated by molecular components involved in stress and hormone signaling pathways. Adapter proteins for transcriptional activation or repression via recruitment of co-activators and co-repressors, respectively, E2 ubiquitin ligases, miRNA processing complex, and DNA methylation/demethylation factors have been recently discovered in various plants to play key roles in fine-tuning flavonoids synthesis. In the present review, we aim to provide comprehensive information about the role of different factors in the regulation of flavonoid biosynthesis. Besides, we describe the potential upstream regulators involved in the regulation of flavonoid biosynthesis within the context of available information. To sum up, the present review furnishes an updated account of signal transduction pathways modulating the biosynthesis of flavonoids.
Collapse
Affiliation(s)
- Jogindra Naik
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Prashant Misra
- Plant Science and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | | | - Ashutosh Pandey
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
18
|
Liu S, Xie L, Su J, Tian B, Fang A, Yu Y, Bi C, Yang Y. Integrated Metabolo-transcriptomics Reveals the Defense Response of Homogentisic Acid in Wheat against Puccinia striiformis f. sp. tritici. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3719-3729. [PMID: 35293725 DOI: 10.1021/acs.jafc.2c00231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stripe rust is a widespread and harmful wheat disease caused by Puccinia striiformis f. sp. tritici (Pst) worldwide. Targeted metabolome and transcriptomics analyses of CYR23 infected leaves were performed to identify the differential metabolites and differentially expressed genes related to wheat disease resistance. We observed upregulation of 33 metabolites involved in the primary and secondary metabolism, especially for homogentisic acid (HGA), p-coumaroylagmatine, and saccharopine. These three metabolites were mainly involved in the phenylpropanoid metabolic pathway, hydroxycinnamic acid amides pathway, and saccharopine pathway. Combined with transcriptome data on non-compatible interaction, the synthesis-related genes of these three differential metabolites were all upregulated significantly. The gene regulatory network involved in response to Pst infection was constructed, which revealed that several transcription factor families including WRKYs, MYBs, and bZIPs were identified as potentially hubs in wheat resistance response against Pst. An in vitro test showed that HGA effectively inhibited the germination of stripe rust fungus urediniospores and reduced the occurrence of wheat stripe rust. The results of gene silencing and overexpression of HGA synthesis-related gene 4-hydroxyphenylpyruvate dioxygenase proved that HGA was involved in wheat disease resistance. These results provided a further understanding of the disease resistance of wheat and indicated that HGA can be developed as a potential agent against Pst.
Collapse
Affiliation(s)
- Saifei Liu
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Liyang Xie
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jiaxuan Su
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Binnian Tian
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| |
Collapse
|
19
|
Wu Y, Zhang C, Huang Z, Lyu L, Li W, Wu W. Integrative analysis of the metabolome and transcriptome provides insights into the mechanisms of flavonoid biosynthesis in blackberry. Food Res Int 2022; 153:110948. [DOI: 10.1016/j.foodres.2022.110948] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/28/2022]
|
20
|
Wei HT, Hou D, Ashraf MF, Lu HW, Zhuo J, Pei JL, Qian QX. Metabolic Profiling and Transcriptome Analysis Reveal the Key Role of Flavonoids in Internode Coloration of Phyllostachys violascens cv. Viridisulcata. FRONTIERS IN PLANT SCIENCE 2022; 12:788895. [PMID: 35154183 PMCID: PMC8832037 DOI: 10.3389/fpls.2021.788895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Bamboo, being an ornamental plant, has myriad aesthetic and economic significance. Particularly, Phyllostachys violascens cv. Viridisulcata contains an internode color phenotype in variation in green and yellow color between the sulcus and culm, respectively. This color variation is unique, but the underlying regulatory mechanism is still unknown. In this study, we used metabolomic and transcriptomic strategies to reveal the underlying mechanism of variation in internode color. A total of 81 metabolites were identified, and among those, prunin as a flavanone and rhoifolin as a flavone were discovered at a high level in the culm. We also found 424 differentially expressed genes and investigated three genes (PvGL, PvUF7GT, and PvC12RT1) that might be involved in prunin or rhoifolin biosynthesis. Their validation by qRT-PCR confirmed high transcript levels in the culm. The results revealed that PvGL, PvUF7GT, and PvC12RT1 might promote the accumulation of prunin and rhoifolin which were responsible for the variation in internode color of P. violascens. Our study also provides a glimpse into phenotypic coloration and is also a valuable resource for future studies.
Collapse
Affiliation(s)
- Han-tian Wei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’An, China
| | - Dan Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’An, China
| | - Muhammad Furqan Ashraf
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’An, China
| | - Hai-Wen Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’An, China
| | - Juan Zhuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’An, China
| | - Jia-long Pei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’An, China
| | - Qi-xia Qian
- College of Landscape Architecture, Zhejiang A&F University, Lin’An, China
| |
Collapse
|
21
|
Li C, Duan Y, Miao H, Ju M, Wei L, Zhang H. Identification of Candidate Genes Regulating the Seed Coat Color Trait in Sesame ( Sesamum indicum L.) Using an Integrated Approach of QTL Mapping and Transcriptome Analysis. Front Genet 2021; 12:700469. [PMID: 34422002 PMCID: PMC8371934 DOI: 10.3389/fgene.2021.700469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Seed coat color is an important seed quality trait in sesame. However, the genetic mechanism of seed coat color variation remains elusive in sesame. We conducted a QTL mapping of the seed coat color trait in sesame using an F2 mapping population. With the aid of the newly constructed superdense genetic linkage map comprised of 22,375 bins distributed in 13 linkage groups (LGs), 17 QTLs of the three indices (i.e., L, a, and b values) of seed coat color were detected in seven intervals on four LGs, with a phenotype variance explanation rate of 4.46-41.53%. A new QTL qSCa6.1 on LG 6 and a QTL hotspot containing at least four QTLs on LG 9 were further identified. Variants screening of the target intervals showed that there were 84 genes which possessed the variants that were high-impact and co-segregating with the seed coat color trait. Meanwhile, we performed the transcriptome comparison of the developing seeds of a white- and a black-seeded variety, and found that the differentially expressed genes were significantly enriched in 37 pathways, including three pigment biosynthesis related pathways. Integration of variants screening and transcriptome comparison results suggested that 28 candidate genes probably participated in the regulation of the seed coat color in sesame; of which, 10 genes had been proved or suggested to be involved in pigments biosynthesis or accumulation during seed formation. The findings gave the basis for the mechanism of seed coat color regulation in sesame, and exhibited the effects of the integrated approach of genome resequencing and transcriptome analysis on the genetics analysis of the complex traits.
Collapse
Affiliation(s)
- Chun Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China.,Henan Key Laboratory of Specific Oilseed Crops Genomics, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yinghui Duan
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China.,Henan Key Laboratory of Specific Oilseed Crops Genomics, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hongmei Miao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China.,Henan Key Laboratory of Specific Oilseed Crops Genomics, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Ming Ju
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China.,Henan Key Laboratory of Specific Oilseed Crops Genomics, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Libin Wei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China.,Henan Key Laboratory of Specific Oilseed Crops Genomics, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
22
|
Genome-Wide Identification and Expression Patterns of the C2H2-Zinc Finger Gene Family Related to Stress Responses and Catechins Accumulation in Camellia sinensis [L.] O. Kuntze. Int J Mol Sci 2021; 22:ijms22084197. [PMID: 33919599 PMCID: PMC8074030 DOI: 10.3390/ijms22084197] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 11/18/2022] Open
Abstract
The C2H2-zinc finger protein (C2H2-ZFP) is essential for the regulation of plant development and widely responsive to diverse stresses including drought, cold and salt stress, further affecting the late flavonoid accumulation in higher plants. Tea is known as a popular beverage worldwide and its quality is greatly dependent on the physiological status and growing environment of the tea plant. To date, the understanding of C2H2-ZFP gene family in Camellia sinensis [L.] O. Kuntze is not yet available. In the present study, 134 CsC2H2-ZFP genes were identified and randomly distributed on 15 chromosomes. The CsC2H2-ZFP gene family was classified into four clades and gene structures and motif compositions of CsC2H2-ZFPs were similar within the same clade. Segmental duplication and negative selection were the main forces driving the expansion of the CsC2H2-ZFP gene family. Expression patterns suggested that CsC2H2-ZFPs were responsive to different stresses including drought, salt, cold and methyl jasmonate (MeJA) treatment. Specially, several C2H2-ZFPs showed a significant correlation with the catechins content and responded to the MeJA treatment, which might contribute to the tea quality and specialized astringent taste. This study will lay the foundations for further research of C2H2-type zinc finger proteins on the stress responses and quality-related metabolites accumulation in C. sinensis.
Collapse
|
23
|
CRISPR/Cas9-Mediated Knockout of HOS1 Reveals Its Role in the Regulation of Secondary Metabolism in Arabidopsis thaliana. PLANTS 2021; 10:plants10010104. [PMID: 33419060 PMCID: PMC7825447 DOI: 10.3390/plants10010104] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 11/17/2022]
Abstract
In Arabidopsis, the RING finger-containing E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1) functions as a main regulator of the cold signaling. In this study, CRISPR/Cas9-mediated targeted mutagenesis of the HOS1 gene in the first exon was performed. DNA sequencing showed that frameshift indels introduced by genome editing of HOS1 resulted in the appearance of premature stop codons, disrupting the open reading frame. Obtained hos1Cas9 mutant plants were compared with the SALK T-DNA insertion mutant, line hos1-3, in terms of their tolerance to abiotic stresses, accumulation of secondary metabolites and expression levels of genes participating in these processes. Upon exposure to cold stress, enhanced tolerance and expression of cold-responsive genes were observed in both hos1-3 and hos1Cas9 plants. The hos1 mutation caused changes in the synthesis of phytoalexins in transformed cells. The content of glucosinolates (GSLs) was down-regulated by 1.5-times, while flavonol glycosides were up-regulated by 1.2 to 4.2 times in transgenic plants. The transcript abundance of the corresponding MYB and bHLH transcription factors, which are responsible for the regulation of secondary metabolism in Arabidopsis, were also altered. Our data suggest a relationship between HOS1-regulated downstream signaling and phytoalexin biosynthesis.
Collapse
|
24
|
Zhao L, Song Z, Wang B, Gao Y, Shi J, Sui X, Chen X, Zhang Y, Li Y. R2R3-MYB Transcription Factor NtMYB330 Regulates Proanthocyanidin Biosynthesis and Seed Germination in Tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:819247. [PMID: 35111187 PMCID: PMC8801704 DOI: 10.3389/fpls.2021.819247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/27/2021] [Indexed: 05/14/2023]
Abstract
Proanthocyanidins (PAs) are important phenolic compounds and PA biosynthesis is regulated by a ternary MBW complex consisting of a R2R3-MYB regulator, a bHLH factor and a WDR protein. In this study, a tobacco R2R3-MYB factor NtMYB330 was characterized as the PA-specific regulator in which the PA biosynthesis was promoted in the flowers of NtMYB330-overexpressing lines while decreased in the flowers of ntmyb330 mutants. NtMYB330 can interact with flavonoid-related bHLH partner NtAn1b and WDR protein NtAn11-1, and the NtMYB330-NtAn1b complex is required to achieve strong transcriptional activation of the PA-related structural genes NtDFR1, NtANS1, NtLAR1 and NtANR1. Our data reveal that NtMYB330 regulates PA biosynthesis in seeds and affects seed germination, in which NtMYB330-overexpressing lines showed higher PA accumulations in seed coats and inhibited germination, while ntmyb330 mutants had reduced seed coat PAs and improved germination. NtMYB330 affects seed germination possibly through two mechanisms: modulating seed coat PAs to affect coat-imposed dormancy. In addition, NtMYB330 regulates the expressions of abscisic acid (ABA) and gibberellin acid (GA) signaling-related genes, affecting ABA-GA crosstalk and seed germination. This study reveals that NtMYB330 specifically regulates PA biosynthesis via formation of the MBW complex in tobacco flowers and affects germination through adjustment of PA concentrations and ABA/GA signaling in tobacco seeds.
Collapse
Affiliation(s)
- Lu Zhao
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- *Correspondence: Lu Zhao,
| | - Zhongbang Song
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Bingwu Wang
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Yulong Gao
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Junli Shi
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Xueyi Sui
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Xuejun Chen
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Yihan Zhang
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Yongping Li
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- Yongping Li,
| |
Collapse
|
25
|
Corso M, Perreau F, Mouille G, Lepiniec L. Specialized phenolic compounds in seeds: structures, functions, and regulations. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110471. [PMID: 32540001 DOI: 10.1016/j.plantsci.2020.110471] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 05/24/2023]
Abstract
Plants produce a huge diversity of specialized metabolites (SM) throughout their life cycle that play important physiological and ecological functions. SM can protect plants and seeds against diseases, predators, and abiotic stresses, or support their interactions with beneficial or symbiotic organisms. They also have strong impacts on human nutrition and health. Despite this importance, the biosynthesis and biological functions of most of the SM remain elusive and their diversity and/or quantity have been reduced in most crops during domestication. Seeds present a large number of SM that are important for their physiological, agronomic, nutritional or industrial qualities and hence, provide interesting models for both studying biosynthesis and producing large amounts of specialized metabolites. For instance, phenolics are abundant and widely distributed in seeds. More specifically, flavonoid pathway has been instrumental for understanding environmental or developmental regulations of specialized metabolic pathways, at the molecular and cellular levels. Here, we summarize current knowledge on seed phenolics as model, and discuss how recent progresses in omics approaches could help to further characterize their diversity, regulations, and the underlying molecular mechanisms involved.
Collapse
Affiliation(s)
- Massimiliano Corso
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| | - François Perreau
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| |
Collapse
|
26
|
Ku YS, Ng MS, Cheng SS, Lo AWY, Xiao Z, Shin TS, Chung G, Lam HM. Understanding the Composition, Biosynthesis, Accumulation and Transport of Flavonoids in Crops for the Promotion of Crops as Healthy Sources of Flavonoids for Human Consumption. Nutrients 2020; 12:nu12061717. [PMID: 32521660 PMCID: PMC7352743 DOI: 10.3390/nu12061717] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
Flavonoids are a class of polyphenolic compounds that naturally occur in plants. Sub-groups of flavonoids include flavone, flavonol, flavanone, flavanonol, anthocyanidin, flavanol and isoflavone. The various modifications on flavonoid molecules further increase the diversity of flavonoids. Certain crops are famous for being enriched in specific flavonoids. For example, anthocyanins, which give rise to a purplish color, are the characteristic compounds in berries; flavanols are enriched in teas; and isoflavones are uniquely found in several legumes. It is widely accepted that the antioxidative properties of flavonoids are beneficial for human health. In this review, we summarize the classification of the different sub-groups of flavonoids based on their molecular structures. The health benefits of flavonoids are addressed from the perspective of their molecular structures. The flavonoid biosynthesis pathways are compared among different crops to highlight the mechanisms that lead to the differential accumulation of different sub-groups of flavonoids. In addition, the mechanisms and genes involved in the transport and accumulation of flavonoids in crops are discussed. We hope the understanding of flavonoid accumulation in crops will guide the proper balance in their consumption to improve human health.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (Y.-S.K.); (M.-S.N.); (S.-S.C.); (A.W.-Y.L.); (Z.X.)
| | - Ming-Sin Ng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (Y.-S.K.); (M.-S.N.); (S.-S.C.); (A.W.-Y.L.); (Z.X.)
| | - Sau-Shan Cheng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (Y.-S.K.); (M.-S.N.); (S.-S.C.); (A.W.-Y.L.); (Z.X.)
| | - Annie Wing-Yi Lo
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (Y.-S.K.); (M.-S.N.); (S.-S.C.); (A.W.-Y.L.); (Z.X.)
| | - Zhixia Xiao
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (Y.-S.K.); (M.-S.N.); (S.-S.C.); (A.W.-Y.L.); (Z.X.)
| | - Tai-Sun Shin
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea;
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea
- Correspondence: (G.C.); (H.-M.L.); Tel.: +82-61-659-7302 (G.C.); +852-3943-6336 (H.-M.L.)
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (Y.-S.K.); (M.-S.N.); (S.-S.C.); (A.W.-Y.L.); (Z.X.)
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China
- Correspondence: (G.C.); (H.-M.L.); Tel.: +82-61-659-7302 (G.C.); +852-3943-6336 (H.-M.L.)
| |
Collapse
|
27
|
Li J, Chen T, Huang F, Dai P, Cao F, Li M. Ectopic expression of a R2R3 MYB transcription factor of dove tree (Davidia involucrata) aggravates seed abortion in Arabidopsis thaliana. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:454-463. [PMID: 32213273 DOI: 10.1071/fp19317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Serious seed abortion of dove tree (Davidia involucrate Baill.) is one of the critical factors leading to the low fecundity of this species. Seed abortion is a complicated process and various factors have been verified to synergistically determine the fate of seeds. To reveal the mechanism of seed abortion in D. involucrata, we performed transcriptome analysis in normal and abortive seeds of D. involucrata. According to the transcriptome data, we noticed that most of the genes encoding a MYB transcription factor were predominantly expressed in abortive seeds. Among these, a gene named DiMYB1 was selected and its function was validated in this study. Overexpression of DiMYB1 resulted in obviously reduced viability of transgenic seeds and seedlings, and caused a significantly higher seed abortion rate. The vegetative growth of transgenic plants was hindered, resulting in an earlier flowering time. In addition, colour changes occurred in transgenic plants. Some transgenic sprouts, stems and pods appeared purple instead of green in colour. Our finding demonstrated that DiMYB1 participates in multiple plant developmental processes, especially in seed development in Arabidopsis thaliana (L.) Heynh., which indicated the similar role of this gene in D. involucrata.
Collapse
Affiliation(s)
- Jian Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; and Hunan Research Center of Engineering Technology for Utilisation of Environmental and Resources Plant, Changsha 410004, China
| | - Tian Chen
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Fengzhen Huang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; and Hunan Research Center of Engineering Technology for Utilisation of Environmental and Resources Plant, Changsha 410004, China
| | - Penghui Dai
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; and Hunan Research Center of Engineering Technology for Utilisation of Environmental and Resources Plant, Changsha 410004, China
| | - Fuxiang Cao
- Hunan Research Center of Engineering Technology for Utilisation of Environmental and Resources Plant, Changsha 410004, China; and College of Horticulture and Landscape, Hunan Agricultural University, Changsha 410004, China
| | - Meng Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; and Hunan Research Center of Engineering Technology for Utilisation of Environmental and Resources Plant, Changsha 410004, China; and College of Horticulture and Landscape, Hunan Agricultural University, Changsha 410004, China; and Corresponding author.
| |
Collapse
|
28
|
Jiang N, Lee YS, Mukundi E, Gomez-Cano F, Rivero L, Grotewold E. Diversity of genetic lesions characterizes new Arabidopsis flavonoid pigment mutant alleles from T-DNA collections. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110335. [PMID: 31928687 DOI: 10.1016/j.plantsci.2019.110335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 05/22/2023]
Abstract
The visual phenotypes afforded by flavonoid pigments have provided invaluable tools for modern genetics. Many Arabidopsis transparent testa (tt) mutants lacking the characteristic proanthocyanidin (PA) seed coat pigmentation and often failing to accumulate anthocyanins in vegetative tissues have been characterized. These mutants have significantly contributed to our understanding of flavonoid biosynthesis, regulation, and transport. A comprehensive screening for tt mutants in available large T-DNA collection lines resulted in the identification of 16 independent lines lacking PAs and anthocyanins, or with seed coat pigmentation clearly distinct from wild type. Segregation analyses and the characterization of second alleles in the genes disrupted by the indexed T-DNA insertions demonstrated that all the lines contained at least one additional mutation responsible for the tt phenotypes. Using a combination of RNA-Seq and whole genome re-sequencing and confirmed through complementation, we show here that these mutations correspond to novel alleles of ttg1 (two alleles), tt3 (two alleles), tt5 (two alleles), ban (two alleles), tt1 (two alleles), and tt8 (six alleles), which harbored additional T-DNA insertions, indels, missense mutations, and large genomic deletion. Several of the identified alleles offer interesting perspectives on flavonoid biosynthesis and regulation.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Yun Sun Lee
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Eric Mukundi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Fabio Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Luz Rivero
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA.
| |
Collapse
|
29
|
Chatham LA, Paulsmeyer M, Juvik JA. Prospects for economical natural colorants: insights from maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2927-2946. [PMID: 31451836 DOI: 10.1007/s00122-019-03414-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Anthocyanin pigments from maize offer a natural yet economical alternative to artificial dyes. Breeding for optimal colorant production requires understanding and integrating all facets of anthocyanin chemistry and genetics research. Replacing artificial dyes with natural colorants is becoming increasingly popular in foods and beverages. However, natural colorants are often expensive, have lower stability, and reduced variability in hue. Purple corn is rich in anthocyanins and offers a scalable and affordable alternative to synthetic dyes ranging in color from orange to reddish-purple. This diversity is attributable to differences in anthocyanin composition and concentration. Here we review the chemistry, biosynthesis, and genetics of purple corn and outline key factors associated with the feasibility of producing an economical source of natural colorants. Anthocyanin compositional modifications including acylation, methylation, and polymerization with flavan-3-ols can influence color stability and hue, yet there is more to learn regarding the genetic factors responsible for these modifications. Activators and repressors of anthocyanin biosynthesis structural genes as well as factors controlling trafficking and storage largely control anthocyanin yield. Further knowledge of these mechanisms will allow breeders to apply molecular strategies that accelerate the production of purple corn hybrids to meet growing demands for natural colorants.
Collapse
Affiliation(s)
- Laura A Chatham
- University of Illinois Urbana Champaign, Urbana, IL, 61802, USA
| | | | - John A Juvik
- University of Illinois Urbana Champaign, Urbana, IL, 61802, USA.
| |
Collapse
|
30
|
Liu Y, Lv J, Liu Z, Wang J, Yang B, Chen W, Ou L, Dai X, Zhang Z, Zou X. Integrative analysis of metabolome and transcriptome reveals the mechanism of color formation in pepper fruit (Capsicum annuum L.). Food Chem 2019; 306:125629. [PMID: 31629298 DOI: 10.1016/j.foodchem.2019.125629] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 11/28/2022]
Abstract
To understand the mechanism of the color formation of pepper fruit, integrative analysis of the metabolome and transcriptome profiles was performed in pepper varieties with 4 different fruit colors. A total of 188 flavonoids were identified, and most of the anthocyanins, flavonols and flavones showed markedly higher abundances in purple variety than in other varieties, which was linked to the high expression of flavonoid synthesis and regulatory genes. Using weighted gene co-expression network analyses, modules related to flavonoid synthesis and candidate genes that regulate flavonoid synthesis and transport were identified. Furthermore, the analysis of 12 carotenoids showed that the content of xanthophylls at 50 days after anthesis was significantly different between the four pepper varieties, which was resulted from the differential expressions of genes downstream of the carotenoid pathway. Our results provide new insights into the understanding of the synthesis and accumulation of flavonoids and carotenoids in pepper fruit.
Collapse
Affiliation(s)
- Yuhua Liu
- Longping Branch, Graduate School of Hunan University, Changsha, Hunan 410125, China; Vegetable Institution of Hunan Academy of Agricultural Science, Changsha, Hunan 410125, China.
| | - Junheng Lv
- Longping Branch, Graduate School of Hunan University, Changsha, Hunan 410125, China; Vegetable Institution of Hunan Academy of Agricultural Science, Changsha, Hunan 410125, China.
| | - Zhoubin Liu
- Longping Branch, Graduate School of Hunan University, Changsha, Hunan 410125, China; Vegetable Institution of Hunan Academy of Agricultural Science, Changsha, Hunan 410125, China
| | - Jing Wang
- Longping Branch, Graduate School of Hunan University, Changsha, Hunan 410125, China
| | - Bozhi Yang
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha, Hunan 410125, China
| | - Wenchao Chen
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha, Hunan 410125, China
| | - Lijun Ou
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiongze Dai
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Zhuqing Zhang
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha, Hunan 410125, China.
| | - Xuexiao Zou
- Longping Branch, Graduate School of Hunan University, Changsha, Hunan 410125, China; College of Horticulture and Landscape, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
31
|
Coen O, Lu J, Xu W, De Vos D, Péchoux C, Domergue F, Grain D, Lepiniec L, Magnani E. Deposition of a cutin apoplastic barrier separating seed maternal and zygotic tissues. BMC PLANT BIOLOGY 2019; 19:304. [PMID: 31291882 PMCID: PMC6617593 DOI: 10.1186/s12870-019-1877-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/09/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND In flowering plants, proper seed development is achieved through the constant interplay of fertilization products, embryo and endosperm, and maternal tissues. Communication between these compartments is supposed to be tightly regulated at their interfaces. Here, we characterize the deposition pattern of an apoplastic lipid barrier between the maternal inner integument and fertilization products in Arabidopsis thaliana seeds. RESULTS We demonstrate that an apoplastic lipid barrier is first deposited by the ovule inner integument and undergoes de novo cutin deposition following central cell fertilization and relief of the FERTILIZATION INDEPENDENT SEED Polycomb group repressive mechanism. In addition, we show that the WIP zinc-finger TRANSPARENT TESTA 1 and the MADS-Box TRANSPARENT TESTA 16 transcription factors act maternally to promote its deposition by regulating cuticle biosynthetic pathways. Finally, mutant analyses indicate that this apoplastic barrier allows correct embryo sliding along the seed coat. CONCLUSIONS Our results revealed that the deposition of a cutin apoplastic barrier between seed maternal and zygotic tissues is part of the seed coat developmental program.
Collapse
Affiliation(s)
- Olivier Coen
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
- École Doctorale 567 Sciences du Végétal, University Paris-Sud, University of Paris-Saclay, bat 360, 91405 Orsay Cedex, France
| | - Jing Lu
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
- École Doctorale 567 Sciences du Végétal, University Paris-Sud, University of Paris-Saclay, bat 360, 91405 Orsay Cedex, France
| | - Wenjia Xu
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
| | - Delphine De Vos
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
| | - Christine Péchoux
- INRA, Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Cedex, 78352 Jouy-en-Josas, France
| | - Frédéric Domergue
- Laboratoire de Biogenèse Membranaire, University of Bordeaux, UMR 5200, CNRS /, 71 av. E. Bourleaux, CS 20032, 33140 Villenave d’Ornon, France
| | - Damaris Grain
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
| | - Enrico Magnani
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
| |
Collapse
|
32
|
Fine mapping of the major QTL for seed coat color in Brassica rapa var. Yellow Sarson by use of NIL populations and transcriptome sequencing for identification of the candidate genes. PLoS One 2019; 14:e0209982. [PMID: 30716096 PMCID: PMC6361427 DOI: 10.1371/journal.pone.0209982] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 12/15/2018] [Indexed: 11/19/2022] Open
Abstract
Yellow seed is a desirable trait in Brassica oilseed crops. The B. rapa var. Yellow Sarson carry unique yellow seed color genes which are not only important for the development of yellow-seeded oilseed B. rapa cultivars but this variant can also be used to develop yellow-seeded B. napus. In this study, we developed near-isogenic lines (NILs) of Yellow Sarson for the major seed coat color QTL SCA9-2 of the chromosome A9 and used the NILs to fine map this QTL region and to identify the candidate genes through linkage mapping and transcriptome sequencing of the developing seeds. From the 18.4 to 22.79 Mb region of SCA9-2, six SSR markers showing 0.63 to 5.65% recombination were developed through linkage analysis and physical mapping. A total of 55 differentially expressed genes (DEGs) were identified in the SCA9-2 region through transcriptome analysis; these included three transcription factors, Bra028039 (NAC), Bra023223 (C2H2 type zinc finger), Bra032362 (TIFY), and several other genes which encode unknown or nucleic acid binding protein; these genes might be the candidates and involved in the regulation of seed coat color in the materials used in this study. Several biosynthetic pathways, including the flavonoid, phenylpropanoid and suberin biosynthetic pathways were significantly enriched through GO and KEGG enrichment analysis of the DEGs. This is the first comprehensive study to understand the yellow seed trait of Yellow Sarson through employing linkage mapping and global transcriptome analysis approaches.
Collapse
|
33
|
Coen O, Lu J, Xu W, Pateyron S, Grain D, Péchoux C, Lepiniec L, Magnani E. A TRANSPARENT TESTA Transcriptional Module Regulates Endothelium Polarity. FRONTIERS IN PLANT SCIENCE 2019; 10:1801. [PMID: 32117351 PMCID: PMC7015901 DOI: 10.3389/fpls.2019.01801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/23/2019] [Indexed: 05/06/2023]
Abstract
Seeds have greatly contributed to the successful colonization of land by plants. Compared to spores, seeds carry nutrients, rely less on water for germination, provide a higher degree of protection against biotic and abiotic stresses, and can disperse in different ways. Such advantages are, to a great extent, provided by the seed coat. The evolution of a multi-function seed-coat is inheritably linked to the evolution of tissue polarity, which allows the development of morphologically and functionally distinct domains. Here, we show that the endothelium, the innermost cell layer of the seed coat, displays distinct morphological features along the proximal-distal axis. Furthermore, we identified a TRANSPARENT TESTA transcriptional module that contributes to establishing endothelium polarity and responsiveness to fertilization. Finally, we characterized its downstream gene pathway by whole-genome transcriptional analyses. We speculate that such a regulatory module might have been responsible for the evolution of morphological diversity in seed shape, micropylar pore formation, and cuticle deposition.
Collapse
Affiliation(s)
- Olivier Coen
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Versailles, France
- École Doctorale 567 Sciences du Végétal, University Paris-Sud, University of Paris-Saclay, Orsay, France
| | - Jing Lu
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Versailles, France
- École Doctorale 567 Sciences du Végétal, University Paris-Sud, University of Paris-Saclay, Orsay, France
| | - Wenjia Xu
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Versailles, France
| | - Stéphanie Pateyron
- TranscriptOmic Platform of IPS2, Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
| | - Damaris Grain
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Versailles, France
| | - Christine Péchoux
- INRA, Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Versailles, France
| | - Enrico Magnani
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Versailles, France
- *Correspondence: Enrico Magnani,
| |
Collapse
|
34
|
Francoz E, Lepiniec L, North HM. Seed coats as an alternative molecular factory: thinking outside the box. PLANT REPRODUCTION 2018; 31:327-342. [PMID: 30056618 DOI: 10.1007/s00497-018-0345-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/13/2018] [Indexed: 05/15/2023]
Abstract
Seed coats as commodities. Seed coats play important roles in the protection of the embryo from biological attack and physical damage by the environment as well as dispersion strategies. A significant part of the energy devoted by the mother plant to seed production is channeled into the production of the cell layers and metabolites that surround the embryo. Nevertheless, in crop species these are often discarded post-harvest and are a wasted resource that could be processed to yield co-products. The production of novel compounds from existing metabolites is also a possibility. A number of macromolecules are already accumulated in these maternal layers that could be exploited in industrial applications either directly or via green chemistry, notably flavonoids, lignin, lignan, polysaccharides, lipid polyesters and waxes. Here, we summarize our knowledge of the in planta biosynthesis pathways of these macromolecules and their molecular regulation as well as potential applications. We also outline recent work aimed at providing further tools for increasing yields of existing molecules or the development of novel biotech approaches, as well as trial studies aimed at exploiting this underused resource.
Collapse
Affiliation(s)
- Edith Francoz
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Helen M North
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France.
| |
Collapse
|
35
|
Genome-wide identification and characterization of mRNAs and lncRNAs involved in cold stress in the wild banana (Musa itinerans). PLoS One 2018; 13:e0200002. [PMID: 29985922 PMCID: PMC6037364 DOI: 10.1371/journal.pone.0200002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/18/2018] [Indexed: 12/19/2022] Open
Abstract
Cold stress seriously affects banana growth, yield and fruit quality. Long noncoding RNAs (lncRNAs) have been demonstrated as key regulators of biotic and abiotic stress in plants, but the identification and prediction of cold responsive mRNAs and lncRNAs in wild banana remains unexplored. In present study, a cold resistant wild banana line from China was used to profile the cold-responsive mRNAs and lncRNAs by RNA-seq under cold stress conditions, i.e. 13°C (critical growth temperature), 4°C (chilling temperature), 0°C (freezing temperature) and normal growing condition, i.e. 28°C (control group). A total of 12,462 lncRNAs were identified in cold-stressed wild banana. In mRNA, much more alternative splicing events occurred in wild banana under the cold stress conditions compared with that in the normal growing condition. The GO analysis of differential expression genes (DEGs) showed the biochemical processes and membrane related genes responded positively to the cold stress. The KEGG pathway enrichment analysis of the DEGs showed that the pathways of photosynthesis, photosynthesis–antenna proteins, circadian rhythm–plant, glutathione metabolism, starch and sucrose metabolism, cutin/suberine/biosynthesis were altered or affected by the cold stress conditions. Our analyses of the generated transcriptome and lncRNAs provide new insights into regulating expression of genes and lncRNAs that respond to cold stress in the wild banana.
Collapse
|
36
|
Ren G, Li L, Huang Y, Wang Y, Zhang W, Zheng R, Zhong C, Wang X. GhWIP2, a WIP zinc finger protein, suppresses cell expansion in Gerbera hybrida by mediating crosstalk between gibberellin, abscisic acid, and auxin. THE NEW PHYTOLOGIST 2018; 219:728-742. [PMID: 29681133 DOI: 10.1111/nph.15175] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/19/2018] [Indexed: 05/19/2023]
Abstract
Cell expansion is a key determinant for the final size and shape of plant organ, and is regulated by various phytohormones. Zinc finger proteins (ZFPs) consist of a superfamily involved in multiple aspects of organ morphogenesis. However, little is known about WIP-type ZFP function in phytohormone-mediated organ growth. Using reverse genetics, RNA-seq and phytohormone quantification, we elucidated the role of a new WIP-type ZFP from Gerbera hybrida, GhWIP2, in controlling organ growth via regulation of cell expansion. GhWIP2 localizes to the nucleus and acts as a transcriptional repressor. Constitutive overexpression of GhWIP2 (GhWIP2OE) in both Gerbera and Arabidopsis thaliana caused major developmental defects associated with cell expansion, including dwarfism, short petals, scapes, and petioles. Furthermore, GhWIP2OE plants were hypersensitive to GA, but not to ABA, and showed a reduction in endogenous GA and auxin, but not ABA concentrations. Consistent with these observations, RNA-seq analysis revealed that genes involved in GA and auxin signaling were down-regulated, while those involved in ABA signaling were up-regulated in GhWIP2OE plants. Our findings suggest that GhWIP2 acts as a transcriptional repressor, suppressing cell expansion during organ growth by modulating crosstalk between GA, ABA, and auxin.
Collapse
Affiliation(s)
- Guiping Ren
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Lingfei Li
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, Guangdong, China
| | - Yuhua Huang
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Yaqin Wang
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Wenbin Zhang
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Rouyan Zheng
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Chunmei Zhong
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Xiaojing Wang
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| |
Collapse
|
37
|
Ke S, Liu XJ, Luan X, Yang W, Zhu H, Liu G, Zhang G, Wang S. Genome-wide transcriptome profiling provides insights into panicle development of rice (Oryza sativa L.). Gene 2018; 675:285-300. [PMID: 29969697 DOI: 10.1016/j.gene.2018.06.105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/26/2018] [Accepted: 06/28/2018] [Indexed: 12/19/2022]
Abstract
Panicle architecture is an important component of agronomic trait in rice, which is also a key ingredient that could influence yield and quality of rice. In the panicle growth and development process, there are a series of complicated molecular and cellular events which are regulated by many interlinking genes. In this study, to explore the potential mechanism and identify genes and pathways involved in the formation of rice panicle, we compared the transcriptional profile of rice panicles (NIL-GW8 and NIL-gw8Amol) at three different stages of panicle development: In5 (formation of higher-order branches), In6 (differentiation of glumes) and In7 (differentiation of floral organs). A range of 40.5 to 54.1 million clean reads was aligned to 31,209 genes in our RNA-Seq analysis. In addition, we investigated transcriptomic changes between the two rice lines during different stages. A total of 726, 1121 and 2584 differentially expressed genes (DEGs) were identified at stages 1, 2 and 3, respectively. Based on an impact analysis of the DEGs, we hypothesize that MADS-box gene family, cytochrome P450 (CYP) and pentatricopeptide repeat (PPR) protein and various transcription factors may be involved in regulation of panicle development. Further, we also explored the functional properties of DEGs by gene ontology analysis, and the results showed that different numbers of DEGs genes were associated with 53 GO groups. In KEGG pathway enrichment analysis, many DEGs related to biosynthesis of secondary metabolites and plant hormone signal transduction, suggesting their important roles during panicle development. This study provides the first examination of changes in gene expression between different panicle development stages in rice. Our results of transcriptomic characterization provide important information to elucidate the complex molecular and cellular events about the panicle formation in rice or other cereal crops. Also, the findings will be helpful for the further identification of the genes related to panicle development.
Collapse
Affiliation(s)
- Shanwen Ke
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xin-Jiang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xin Luan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Weifeng Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Haitao Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Guifu Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Guiquan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China..
| | - Shaokui Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China..
| |
Collapse
|
38
|
Wan L, Li B, Lei Y, Yan L, Huai D, Kang Y, Jiang H, Tan J, Liao B. Transcriptomic profiling reveals pigment regulation during peanut testa development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 125:116-125. [PMID: 29438896 DOI: 10.1016/j.plaphy.2018.01.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 06/08/2023]
Abstract
Although peanut (Arachis hypogaea L.) is one of the most important edible oil crops globally, pigments present in the testa influence both the processing efficiency and the quality of the oil. In peanut, polymeric phenolic compounds are present in the episperm rather than in the endothelium and their levels increase during ripening; therefore, to better understand testa development, and especially the accumulation of pigments, RNA-Seq was applied to elucidate the mechanisms underlying the regulation of peanut testae at three different developmental stages (i.e., at 20 days after flowering - 20DAF - and at 40DAF and 60DAF). A total of 5452 differentially expressed unigenes (DEGs) were obtained encompassing these three stages; comparative results showed that phenylpropanoid biosynthesis, phenylalanine metabolism, flavonoid biosynthesis, and plant hormone signal transduction comprised the principal KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways expressed during peanut testa development. Further studies revealed that the expression patterns of the flavonoid biosynthesis pathway genes PAL, C4H, CHS, and CHI (early biosynthetic genes - EBGs) were consistent with the accumulation of testa pigments. Thus, the results of this study demonstrate that EBGs, as well as the homologs of AtMYB111 (i.e., c35101_g4 and c37398_g2), are likely the principal regulators of testa pigment accumulation; the gene database assembled here is therefore a sequencing resource for future research and provides a foundation for understanding the regulation of pink testa pigmentation in peanuts.
Collapse
Affiliation(s)
- Liyun Wan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Bei Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Liying Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Dongxin Huai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yanping Kang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jiazhuang Tan
- Zhanjiang Academy of Agricultural Sciences, Zhanjiang, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China.
| |
Collapse
|
39
|
Kocábek T, Mishra AK, Matoušek J, Patzak J, Lomnická A, Khare M, Krofta K. The R2R3 transcription factor HlMYB8 and its role in flavonoid biosynthesis in hop (Humulus lupulus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 269:32-46. [PMID: 29606215 DOI: 10.1016/j.plantsci.2018.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 05/25/2023]
Abstract
Hop is an important source of medicinally valuable secondary metabolites including bioactive prenylated chalcones. To gain in-depth knowledge of the regulatory mechanisms of hop flavonoids biosynthesis, full-length cDNA of HlMyb8 transcription factor gene was isolated from lupulin glands. The deduced amino acid sequence of HlMyb8 showed high similarity to a flavonol-specific regulator of phenylpropanoid biosynthesis AtMYB12 from Arabidopsis thaliana. Transient expression studies and qRT-PCR analysis of transgenic hop plants overexpressing HlMyb8 revealed that HlMYB8 activates expression of chalcone synthase HlCHS_H1 as well as other structural genes from the flavonoid pathway branch leading to the production of flavonols (F3H, F'3H, FLS) but not prenylflavonoids (PT1, OMT1) or bitter acids (VPS, PT1). HlMyb8 could cross-activate Arabidopsis flavonol-specific genes but to a much lesser extent than AtMyb12. Reciprocally, AtMyb12 could cross-activate hop flavonol-specific genes. Transcriptome sequence analysis of hop leaf tissue overexpressing HlMyb8 confirmed the modulation of several other genes related to flavonoid biosynthesis pathways (PAL, 4CL, ANR, DFR, LDOX). Analysis of metabolites in hop female cones confirmed that overexpression of HlMyb8 does not increase prenylflavonoid or bitter acids content in lupulin glands. It follows from our results that HlMYB8 plays role in a competition between flavonol and prenylflavonoid or bitter acid pathways by diverting the flux of CHS_H1 gene product and thus, may influence the level of these metabolites in hop lupulin.
Collapse
Affiliation(s)
- Tomáš Kocábek
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Ajay Kumar Mishra
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Jaroslav Matoušek
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Josef Patzak
- Hop Research Institute Co. Ltd., Kadaňská 2525, 438 46 Žatec, Czech Republic
| | - Anna Lomnická
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic; University of South Bohemia in České Budějovice, Faculty of Science, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Mudra Khare
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Karel Krofta
- Hop Research Institute Co. Ltd., Kadaňská 2525, 438 46 Žatec, Czech Republic
| |
Collapse
|
40
|
Zhang B, Schrader A. TRANSPARENT TESTA GLABRA 1-Dependent Regulation of Flavonoid Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2017; 6:E65. [PMID: 29261137 PMCID: PMC5750641 DOI: 10.3390/plants6040065] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/02/2017] [Accepted: 12/16/2017] [Indexed: 12/25/2022]
Abstract
The flavonoid composition of various tissues throughout plant development is of biological relevance and particular interest for breeding. Arabidopsis thaliana TRANSPARENT TESTA GLABRA 1 (AtTTG1) is an essential regulator of late structural genes in flavonoid biosynthesis. Here, we provide a review of the regulation of the pathway's core enzymes through AtTTG1-containing R2R3-MYELOBLASTOSIS-basic HELIX-LOOP-HELIX-WD40 repeat (MBW(AtTTG1)) complexes embedded in an evolutionary context. We present a comprehensive collection of A. thalianattg1 mutants and AtTTG1 orthologs. A plethora of MBW(AtTTG1) mechanisms in regulating the five major TTG1-dependent traits is highlighted.
Collapse
Affiliation(s)
- Bipei Zhang
- Botanical Institute, University of Cologne, Zuelpicher Str 47B, 50674 Cologne, Germany.
| | - Andrea Schrader
- Botanical Institute, University of Cologne, Zuelpicher Str 47B, 50674 Cologne, Germany.
| |
Collapse
|
41
|
Lloyd A, Brockman A, Aguirre L, Campbell A, Bean A, Cantero A, Gonzalez A. Advances in the MYB-bHLH-WD Repeat (MBW) Pigment Regulatory Model: Addition of a WRKY Factor and Co-option of an Anthocyanin MYB for Betalain Regulation. PLANT & CELL PHYSIOLOGY 2017; 58:1431-1441. [PMID: 28575507 PMCID: PMC5914458 DOI: 10.1093/pcp/pcx075] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/11/2017] [Indexed: 05/19/2023]
Abstract
Flavonoids are secondary metabolites derived from the general phenylpropanoid pathway and are widespread throughout the plant kingdom. The functions of flavonoids are diverse, including defense against phytopathogens, protection against UV light damage and oxidative stress, regulation of auxin transport and allelopathy. One of the most conspicuous functions of flavonoids has long attracted the attention of pollinators and scientist alike: the vivid shades of red, pink, orange, blue and purple on display in the flowers of angiosperms. Thus, flavonoid pigments have perhaps been the most intensely studied phenylpropanoids. From Mendel to McClintock and up to the present, studies centered on flavonoid pigments have resulted in some of the most important scientific discoveries of the last 150 years, including the first examples of transcriptional regulation in plants. Here we focus on the highly conserved MYB-bHLH-WD repeat (MBW) transcriptional complex model for the regulation of the flavonoid pigment pathway. We will survey the history of the MBW model spanning the last three decades, highlighting the major findings that have contributed to our current understanding. In particular, recent discoveries regarding WRKY protein control of the flavonoid pigment pathway and its relationship to the MBW complex will be emphasized. In addition, we will discuss recent findings about the regulation of the beet betalain pigment pathway, and how a MYB member of the MBW complex was co-opted to regulate this chemically unrelated but functionally equivalent pathway.
Collapse
Affiliation(s)
- Alan Lloyd
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Austen Brockman
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lyndsey Aguirre
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Annabelle Campbell
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Alex Bean
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Araceli Cantero
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Antonio Gonzalez
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
42
|
Ren Y, He Q, Ma X, Zhang L. Characteristics of Color Development in Seeds of Brown- and Yellow-Seeded Heading Chinese Cabbage and Molecular Analysis of Brsc, the Candidate Gene Controlling Seed Coat Color. FRONTIERS IN PLANT SCIENCE 2017; 8:1410. [PMID: 28855913 PMCID: PMC5558542 DOI: 10.3389/fpls.2017.01410] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/31/2017] [Indexed: 06/01/2023]
Abstract
The proanthocyanidin (PA) is the main flavonoids which affect the seed coat color in Brassica species. In this paper, characteristics of color development and accumulation of flavonoids were analyzed in the seeds of brown-seeded (B147) and yellow-seeded (B80) heading Chinese cabbage (Brassica rapa L. ssp. Pekinensis). It is found that the content of phenolic compounds in B147 were significantly more than that of B80 by using dimethylaminocinnamaldehyde (DMACA) staining and toluidine blue O (TBO) staining. In previous studies, the locus associated with seed coat color has been mapped. The results of whole genome re-sequencing showed that there are large fragment deletions variation in the mapping region between the brown-seeded parent '92S105' and the yellow-seeded parent '91-125.' Based on the B. rapa genome annotation information, the TRANSPARENT TESTA GLABRA 1 (TTG1), is likely to be the candidate gene controlling seed coat color. A 94-base deletion was found in the 96th base downstream of the initiation codon in the TTG1 of yellow seed, thus, the termination codon TGA was occurred in the 297th base which makes the full length of TTG1 of yellow seed is 300 bp. Based on the differential sequences of TTG1 of brown and yellow seed, a functional marker, Brsc-yettg1, was developed to detect the variation of TTG1. Quantitative real-time PCR analysis of BrTTG1 in different tissues showed that expression levels of BrTTG1 was not tissue-specific. During the whole seed development period, the expression of BrTTG1 in B147 was higher than that of B80. The expression levels of four structural genes, BrDFR, BrANS, BrANR1, and BrANR2 in B147 were also higher than those in B80. The co-segregation molecular markers obtained in this report and TTG1 related information provide a basis for further understanding of the molecular mechanism of seed coat color in heading Chinese cabbage.
Collapse
|
43
|
Ezura K, Ji-Seong K, Mori K, Suzuki Y, Kuhara S, Ariizumi T, Ezura H. Genome-wide identification of pistil-specific genes expressed during fruit set initiation in tomato (Solanum lycopersicum). PLoS One 2017; 12:e0180003. [PMID: 28683065 PMCID: PMC5500324 DOI: 10.1371/journal.pone.0180003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 06/07/2017] [Indexed: 11/19/2022] Open
Abstract
Fruit set involves the developmental transition of an unfertilized quiescent ovary in the pistil into a fruit. While fruit set is known to involve the activation of signals (including various plant hormones) in the ovary, many biological aspects of this process remain elusive. To further expand our understanding of this process, we identified genes that are specifically expressed in tomato (Solanum lycopersicum L.) pistils during fruit set through comprehensive RNA-seq-based transcriptome analysis using 17 different tissues including pistils at six different developmental stages. First, we identified 532 candidate genes that are preferentially expressed in the pistil based on their tissue-specific expression profiles. Next, we compared our RNA-seq data with publically available transcriptome data, further refining the candidate genes that are specifically expressed within the pistil. As a result, 108 pistil-specific genes were identified, including several transcription factor genes that function in reproductive development. We also identified genes encoding hormone-like peptides with a secretion signal and cysteine-rich residues that are conserved among some Solanaceae species, suggesting that peptide hormones may function as signaling molecules during fruit set initiation. This study provides important information about pistil-specific genes, which may play specific roles in regulating pistil development in relation to fruit set.
Collapse
Affiliation(s)
- Kentaro Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kim Ji-Seong
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuki Mori
- Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Satoru Kuhara
- Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Tohru Ariizumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
44
|
Xu W, Bobet S, Le Gourrierec J, Grain D, De Vos D, Berger A, Salsac F, Kelemen Z, Boucherez J, Rolland A, Mouille G, Routaboul JM, Lepiniec L, Dubos C. TRANSPARENT TESTA 16 and 15 act through different mechanisms to control proanthocyanidin accumulation in Arabidopsis testa. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2859-2870. [PMID: 28830101 PMCID: PMC5853933 DOI: 10.1093/jxb/erx151] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/07/2017] [Indexed: 05/27/2023]
Abstract
Flavonoids are secondary metabolites that fulfil a multitude of functions during the plant life cycle. In Arabidopsis proanthocyanidins (PAs) are flavonoids that specifically accumulate in the innermost integuments of the seed testa (i.e. endothelium), as well as in the chalaza and micropyle areas, and play a vital role in protecting the embryo against various biotic and abiotic stresses. PAs accumulation in the endothelium requires the activity of the MADS box transcription factor TRANSPARENT TESTA (TT) 16 (ARABIDOPSIS B-SISTER/AGAMOUS-LIKE 32) and the UDP-glycosyltransferase TT15 (UGT80B1). Interestingly tt16 and tt15 mutants display a very similar flavonoid profiles and patterns of PA accumulation. By using a combination of genetic, molecular, biochemical, and histochemical methods, we showed that both TT16 and TT15 act upstream the PA biosynthetic pathway, but through two distinct genetic routes. We also demonstrated that the activity of TT16 in regulating cell fate determination and PA accumulation in the endothelium is required in the chalaza prior to the globular stage of embryo development. Finally this study provides new insight showing that TT16 and TT15 functions extend beyond PA biosynthesis in the inner integuments of the Arabidopsis seed coat.
Collapse
Affiliation(s)
- W Xu
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Saclay Plant Sciences, Université Paris-Saclay, Versailles, France
| | - S Bobet
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Saclay Plant Sciences, Université Paris-Saclay, Versailles, France
| | - J Le Gourrierec
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Saclay Plant Sciences, Université Paris-Saclay, Versailles, France
| | - D Grain
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Saclay Plant Sciences, Université Paris-Saclay, Versailles, France
| | - D De Vos
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Saclay Plant Sciences, Université Paris-Saclay, Versailles, France
| | - A Berger
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Saclay Plant Sciences, Université Paris-Saclay, Versailles, France
| | - F Salsac
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Saclay Plant Sciences, Université Paris-Saclay, Versailles, France
| | - Z Kelemen
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Saclay Plant Sciences, Université Paris-Saclay, Versailles, France
| | - J Boucherez
- Biochimie et Physiologie Moleculaire des Plantes (BPMP), INRA, CNRS, SupAgro-M, Université de Montpellier, Montpellier Cedex, France
| | - A Rolland
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Saclay Plant Sciences, Université Paris-Saclay, Versailles, France
| | - G Mouille
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Saclay Plant Sciences, Université Paris-Saclay, Versailles, France
| | - J M Routaboul
- Genomic and Biotechnology of Fruit, UMR 990 INRA/INP-ENSAT, 24 Chemin de Borderouge-Auzeville, CS, Castanet-Tolosan Cedex, France
| | - L Lepiniec
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Saclay Plant Sciences, Université Paris-Saclay, Versailles, France
| | - C Dubos
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Saclay Plant Sciences, Université Paris-Saclay, Versailles, France
- Biochimie et Physiologie Moleculaire des Plantes (BPMP), INRA, CNRS, SupAgro-M, Université de Montpellier, Montpellier Cedex, France
| |
Collapse
|
45
|
Zhuang Y, Tripp EA. Genome-scale transcriptional study of hybrid effects and regulatory divergence in an F 1 hybrid Ruellia (Wild Petunias: Acanthaceae) and its parents. BMC PLANT BIOLOGY 2017; 17:15. [PMID: 28095782 PMCID: PMC5240417 DOI: 10.1186/s12870-016-0962-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/22/2016] [Indexed: 05/30/2023]
Abstract
BACKGROUND New combinations of divergent genomes can give rise to novel genetic functions in resulting hybrid progeny. Such functions may yield opportunities for ecological divergence, contributing ultimately to reproductive isolation and evolutionary longevity of nascent hybrid lineages. In plants, the degree to which transgressive genotypes contribute to floral novelty remains a question of key interest. Here, we generated an F1 hybrid plant between the red-flowered Ruellia elegans and yellow flowered R. speciosa. RNA-seq technology was used to explore differential gene expression between the hybrid and its two parents, with emphasis on genetic elements involved in the production of floral anthocyanin pigments. RESULTS The hybrid was purple flowered and produced novel floral delphinidin pigments not manufactured by either parent. We found that nearly a fifth of all 86,475 unigenes expressed were unique to the hybrid. The majority of hybrid unigenes (80.97%) showed a pattern of complete dominance to one parent or the other although this ratio was uneven, suggesting asymmetrical influence of parental genomes on the progeny transcriptome. However, 8.87% of all transcripts within the hybrid were expressed at significantly higher or lower mean levels than observed for either parent. A total of 28 unigenes coding putatively for eight core enzymes in the anthocyanin pathway were recovered, along with three candidate MYBs involved in anthocyanin regulation. CONCLUSION Our results suggest that models of gene evolution that explain phenotypic novelty and hybrid establishment in plants may need to include transgressive effects. Additionally, our results lend insight into the potential for floral novelty that derives from unions of divergent genomes. These findings serve as a starting point to further investigate molecular mechanisms involved in flower color transitions in Ruellia.
Collapse
Affiliation(s)
- Yongbin Zhuang
- Department of Ecology and Evolutionary Biology, University of Colorado, UCB 334, Boulder, CO 80309 USA
- Museum of Natural History, University of Colorado, UCB 350, Boulder, CO 80309 USA
| | - Erin A. Tripp
- Department of Ecology and Evolutionary Biology, University of Colorado, UCB 334, Boulder, CO 80309 USA
- Museum of Natural History, University of Colorado, UCB 350, Boulder, CO 80309 USA
| |
Collapse
|
46
|
Hong M, Hu K, Tian T, Li X, Chen L, Zhang Y, Yi B, Wen J, Ma C, Shen J, Fu T, Tu J. Transcriptomic Analysis of Seed Coats in Yellow-Seeded Brassica napus Reveals Novel Genes That Influence Proanthocyanidin Biosynthesis. FRONTIERS IN PLANT SCIENCE 2017; 8:1674. [PMID: 29051765 PMCID: PMC5633857 DOI: 10.3389/fpls.2017.01674] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/12/2017] [Indexed: 05/18/2023]
Abstract
Yellow seeds are a favorable trait for Brassica crops breeding due to better quality than their black-seeded counterparts. Here, we compared the Brassica napus seed coat transcriptomes between yellow- and brown-seeded near-isogenic lines (Y-NIL and B-NIL) that were developed from the resynthesized yellow-seeded line No. 2127-17. A total of 4,974 differentially expressed genes (DEG) were identified during seed development, involving 3,128 up-regulated and 1,835 down-regulated genes in yellow seed coats. Phenylpropanoid and flavonoid biosynthesis pathways were enriched in down-regulated genes, whereas the top two pathways for up-regulated genes were plant-pathogen interaction and plant hormone signal transduction. Twelve biosynthetic genes and three regulatory genes involved in the flavonoid pathway exhibited similar expression patterns in seed coats during seed development, of which the down-regulation mainly contributed to the reduction of proanthocyanidins (PAs) in yellow seed coats, indicating that these genes associated with PA biosynthesis may be regulated by an unreported common regulator, possibly corresponding to the candidate for the dominant black-seeded gene D in the NILs. Three transcription factor (TF) genes, including one bHLH gene and two MYB-related genes that are located within the previous seed coat color quantitative trait locus (QTL) region on chromosome A09, also showed similar developmental expression patterns to the key PA biosynthetic genes and they might thus potentially involved participate in flavonoid biosynthesis regulation. Our study identified novel potential TFs involved in PAs accumulation and will provide pivotal information for identifying the candidate genes for seed coat color in B. napus.
Collapse
|
47
|
Lian J, Lu X, Yin N, Ma L, Lu J, Liu X, Li J, Lu J, Lei B, Wang R, Chai Y. Silencing of BnTT1 family genes affects seed flavonoid biosynthesis and alters seed fatty acid composition in Brassica napus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 254:32-47. [PMID: 27964783 DOI: 10.1016/j.plantsci.2016.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/29/2016] [Accepted: 10/31/2016] [Indexed: 05/07/2023]
Abstract
TRANSPARENT TESTA1 (TT1) is a zinc finger protein that contains a WIP domain. It plays important roles in controlling differentiation and pigmentation of the seed coat endothelium, and can affect the expression of early biosynthetic genes and late biosynthetic genes of flavonoid biosynthesis in Arabidopsis thaliana. In Brassica napus (AACC, 2n=38), the functions of BnTT1 genes remain unknown and few studies have focused on their roles in fatty acid (FA) biosynthesis. In this study, BnTT1 family genes were silenced by RNA interference, which resulted in yellow rapeseed, abnormal testa development (a much thinner testa), decreased seed weight, and altered seed FA composition in B. napus. High-throughput sequencing of genes differentially expressed between developing transgenic B. napus and wild-type seeds revealed altered expression of numerous genes involved in flavonoid and FA biosynthesis. As a consequence of this altered expression, we detected a marked decrease of oleic acid (C18:1) and notable increases of linoleic acid (C18:2) and α-linolenic acid (C18:3) in mature transgenic B. napus seeds by gas chromatography and near-infrared reflectance spectroscopy. Meanwhile, liquid chromatography-mass spectrometry showed reduced accumulation of flavonoids in transgenic seeds. Therefore, we propose that BnTT1s are involved in the regulation of flavonoid biosynthesis, and may also play a role in FA biosynthesis in B. napus.
Collapse
Affiliation(s)
- Jianping Lian
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Xiaochun Lu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Nengwen Yin
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Lijuan Ma
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Jing Lu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Xue Liu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Jiana Li
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Jun Lu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Bo Lei
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Rui Wang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China
| | - Yourong Chai
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China.
| |
Collapse
|
48
|
Wang Y, Xiao L, Guo S, An F, Du D. Fine Mapping and Whole-Genome Resequencing Identify the Seed Coat Color Gene in Brassica rapa. PLoS One 2016; 11:e0166464. [PMID: 27829069 PMCID: PMC5102352 DOI: 10.1371/journal.pone.0166464] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/28/2016] [Indexed: 11/19/2022] Open
Abstract
A yellow seed coat is a desirable agronomic trait in the seeds of oilseed-type Brassica crops. In this study, we identified a candidate gene for seed coat color in Dahuang, a landrace of Brassica rapa. A previous study of Dahuang mapped the seed coat color gene Brsc1 to a 2.8-Mb interval on chromosome A9 of B. rapa. In the present study, the density of the linkage map for Brsc1 was increased by adding simple sequence repeat (SSR) markers, and the candidate region for Brsc1 was narrowed to 1.04 Mb. In addition, whole-genome resequencing with bulked segregant analysis (BSA) was conducted to identify candidate intervals for Brsc1. A genome-wide comparison of SNP profiles was performed between yellow-seeded and brown-seeded bulk samples. SNP index analyses identified a major candidate interval on chromosome A9 (A09:18,255,838-18,934,000, 678 kb) containing a long overlap with the target region recovered from the fine mapping results. According to gene annotation, Bra028067 (BrTT1) is an important candidate gene for Brsc1 in the overlapping region. Quantitative reverse transcription (qRT)-PCR revealed that BrTT1 mainly functions in the seed. Point mutations and small deletions in BrTT1 were found between yellow- and brown-seeded Dahuang plants. Collectively, the expression and sequence analysis results provide preliminary evidence that BrTT1 is a candidate gene for the seed coat color trait in Dahuang.
Collapse
Affiliation(s)
- Yanhua Wang
- Key Laboratory of Spring Rapeseed Genetic Improvement, The Qinghai Research Branch of the National Rapeseed Genetic Improvement Center, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
| | - Lu Xiao
- Key Laboratory of Spring Rapeseed Genetic Improvement, The Qinghai Research Branch of the National Rapeseed Genetic Improvement Center, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
| | - Shaomin Guo
- Key Laboratory of Spring Rapeseed Genetic Improvement, The Qinghai Research Branch of the National Rapeseed Genetic Improvement Center, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
| | - Fengyun An
- Key Laboratory of Spring Rapeseed Genetic Improvement, The Qinghai Research Branch of the National Rapeseed Genetic Improvement Center, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
| | - Dezhi Du
- Key Laboratory of Spring Rapeseed Genetic Improvement, The Qinghai Research Branch of the National Rapeseed Genetic Improvement Center, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- * E-mail:
| |
Collapse
|
49
|
Gonzalez A, Brown M, Hatlestad G, Akhavan N, Smith T, Hembd A, Moore J, Montes D, Mosley T, Resendez J, Nguyen H, Wilson L, Campbell A, Sudarshan D, Lloyd A. TTG2 controls the developmental regulation of seed coat tannins in Arabidopsis by regulating vacuolar transport steps in the proanthocyanidin pathway. Dev Biol 2016; 419:54-63. [PMID: 27046632 DOI: 10.1016/j.ydbio.2016.03.031] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 03/24/2016] [Accepted: 03/31/2016] [Indexed: 12/15/2022]
Abstract
The brown color of Arabidopsis seeds is caused by the deposition of proanthocyanidins (PAs or condensed tannins) in their inner testa layer. A transcription factor complex consisting of TT2, TT8 and TTG1 controls expression of PA biosynthetic genes, just as similar TTG1-dependent complexes have been shown to control flavonoid pigment pathway gene expression in general. However, PA synthesis is controlled by at least one other gene. TTG2 mutants lack the pigmentation found in wild-type seeds, but produce other flavonoid compounds, such as anthocyanins in the shoot, suggesting that TTG2 regulates genes in the PA biosynthetic branch of the flavonoid pathway. We analyzed the expression of PA biosynthetic genes within the developing seeds of ttg2-1 and wild-type plants for potential TTG2 regulatory targets. We found that expression of TT12, encoding a MATE type transporter, is dependent on TTG2 and that TTG2 can bind to the upstream regulatory region of TT12 suggesting that TTG2 directly regulates TT12. Ectopic expression of TT12 in ttg2-1 plants partially restores seed coat pigmentation. Moreover, we show that TTG2 regulation of TT12 is dependent on TTG1 and that TTG1 and TTG2 physically interact. The observation that TTG1 interacts with TTG2, a WRKY type transcription factor, proposes the existence of a novel TTG1-containing complex, and an addendum to the existing paradigm of flavonoid pathway regulation.
Collapse
Affiliation(s)
- Antonio Gonzalez
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA; The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Matthew Brown
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Greg Hatlestad
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Neda Akhavan
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Tyler Smith
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Austin Hembd
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Joshua Moore
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - David Montes
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Trenell Mosley
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA; The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Juan Resendez
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Huy Nguyen
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lyndsey Wilson
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Annabelle Campbell
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Duncan Sudarshan
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Alan Lloyd
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| |
Collapse
|
50
|
Bulgakov VP, Avramenko TV, Tsitsiashvili GS. Critical analysis of protein signaling networks involved in the regulation of plant secondary metabolism: focus on anthocyanins. Crit Rev Biotechnol 2016; 37:685-700. [PMID: 26912350 DOI: 10.3109/07388551.2016.1141391] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Anthocyanin biosynthesis in Arabidopsis is a convenient and relatively simple model for investigating the basic principles of secondary metabolism regulation. In recent years, many publications have described links between anthocyanin biosynthesis and general defense reactions in plants as well as photomorphogenesis and hormonal signaling. These relationships are complex, and they cannot be understood intuitively. Upon observing the lacuna in the Arabidopsis interactome (an interaction map of the factors involved in the regulation of Arabidopsis secondary metabolism is not available), we attempted to connect various cellular processes that affect anthocyanin biosynthesis. In this review, we revealed the main signaling protein modules that regulate anthocyanin biosynthesis. To our knowledge, this is the first reconstruction of a network of proteins involved in plant secondary metabolism.
Collapse
Affiliation(s)
- Victor P Bulgakov
- a Institute of Biology and Soil Science, Far East Branch of the Russian Academy of Sciences , Vladivostok 690022 , Russia and.,b Far Eastern Federal University , Vladivostok 690950 , Russia , and
| | - Tatiana V Avramenko
- a Institute of Biology and Soil Science, Far East Branch of the Russian Academy of Sciences , Vladivostok 690022 , Russia and
| | | |
Collapse
|