1
|
Zhang L, Chen S, Zou R, Shu X, Zhang J, He X, Su M, Wang L, Wang B, Sha D. Cocaine amphetamine-regulated transcription peptide inhibits apoptosis in oxygen-glucose deprived neural stem cells. Front Neurosci 2024; 18:1424719. [PMID: 39228411 PMCID: PMC11368759 DOI: 10.3389/fnins.2024.1424719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
Background Apoptosis has been recognized as a critical pathophysiological process during cerebral ischemia. The neuroprotective effect of CART on ischemic brain injury is determined. However, there is little research on the protective effect of CART on neural stem cells (NSCs). Methods Primary cultured rat NSCs were utilized as the research subject. In vitro oxygen glucose deprivation (OGD) treatment was employed, and NSCs were extracted from SD pregnant rats following previous experimental protocols and identified through cell immunofluorescence staining. The appropriate concentration of CART affecting OGD NSCs was initially screened using Cell Counting Kit-8 (CCK-8) and Lactate Dehydrogenase (LDH) assays. EdU staining and Western blotting (WB) techniques were employed to assess the impact of the suitable CART concentration on the proliferation and apoptosis of OGD NSCs. Finally, Western blot analysis was conducted to investigate the cAMP-response element binding protein (CREB) pathway and expression levels of related proteins after KG-501 treatment in order to elucidate the mechanism underlying apoptosis and proliferation regulation in OGD NSCs. Results CCK-8 and LDH assays indicated that a concentration of 0.8 nM CART may be the optimal concentration for modulating the proliferation of OGD NSCs. Subsequently, cellular immunofluorescence and EdU detection experiments further confirmed the findings obtained from CCK-8 analysis. Western blot analysis of apoptosis-related protein expression also demonstrated that an appropriate concentration of CART could suppress the apoptosis of OGD NSCs. Finally, Western blotting was conducted to examine the CREB pathway and related protein expression after treatment with KG-501, revealing that an appropriate concentration of CART regulated both apoptosis and proliferation in OGD NSCs through CREB signaling. Conclusion The concentration of CART at 0.8 nM may be deemed appropriate for inhibiting apoptosis and promoting proliferation in OGD NSCs in vitro. The mechanism maybe through activating the CREB pathway.
Collapse
Affiliation(s)
- Lu Zhang
- Department of General Practice, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shan Chen
- Department of General Practice, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Renfang Zou
- Department of General Practice, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xin Shu
- Department of General Practice, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, China
| | - Jingxuan Zhang
- Department of General Practice, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xuan He
- Department of General Practice, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Moxi Su
- Department of General Practice, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Luna Wang
- Department of General Practice, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Bin Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, China
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Dujuan Sha
- Department of General Practice, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of General Practice, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, China
- Department of General Practice, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Wang Y, Wang Z, Peng Z, Feng L, Tian W, Zhang S, Cao L, Li J, Yang L, Xu Y, Gao Y, Liu J, Yan J, Ma X, Sun W, Guo L, Li X, Shen Y, Qi Z. Cocaine and amphetamine-regulated transcript improves myocardial ischemia-reperfusion injury through PI3K/AKT signalling pathway. Clin Exp Pharmacol Physiol 2024; 51:e13904. [PMID: 38923060 DOI: 10.1111/1440-1681.13904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/13/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a common clinic scenario that occurs in the context of reperfusion therapy for acute myocardial infarction. It has been shown that cocaine and amphetamine-regulated transcript (CART) can ameliorate cerebral ischemia-reperfusion (I/R) injury, but the effect of CART on MIRI has not been studied yet. Here, we revealed that CART protected the heart during I/R process by inhibiting apoptosis and excessive autophagy, indicating that CART would be a potential drug candidate for the treatment of MIRI. Further analysis showed that CART upregulated the activation of phospho-AKT, leading to downregulation of lactate dehydrogenase (LDH) release, apoptosis, oxidative stress and excessive autophagy after I/R, which was inhibited by PI3K inhibitor, LY294002. Collectively, CART attenuated MIRI through inhibition of cardiomyocytes apoptosis and excessive autophagy, and the protective effect was dependent on PI3K/AKT signalling pathway.
Collapse
Affiliation(s)
- Yachen Wang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
| | - Ziwei Wang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
- NanKai University Eye Institute, Tianjin, China
| | - Zeyan Peng
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Lifeng Feng
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Wencong Tian
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
| | - Shengzheng Zhang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Lei Cao
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
| | - Jing Li
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Liang Yang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
| | - Yang Xu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Yang Gao
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
| | - Jie Liu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Jie Yan
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Xiaodong Ma
- Fifth People's Hospital of Dongying, Shandong, China
| | - Wangchun Sun
- Fifth People's Hospital of Dongying, Shandong, China
| | - Lihong Guo
- Shengli Oilfield Central Hospital Gastrointestinal Disease Research Institute, Shandong, China
| | - Xuan Li
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
| | - Yanna Shen
- School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Zhi Qi
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
- NanKai University Eye Institute, Tianjin, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
- Shengli Oilfield Central Hospital Gastrointestinal Disease Research Institute, Shandong, China
- Xinjiang Production and Construction Corps Hospital, Xinjiang, China
| |
Collapse
|
3
|
Cho A, Lee H, Cheon DH, Yoo SY, Pyeon A, Chun JW, Back JH, Park YE, Kim DJ, Lee JE, Choi JS. Decreased Serum Cocaine- and Amphetamine-Regulated Transcript Level in Internet Gaming Disorder. Psychiatry Investig 2024; 21:755-761. [PMID: 39089701 PMCID: PMC11298268 DOI: 10.30773/pi.2023.0397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/09/2024] [Accepted: 05/16/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE Vulnerability to internet gaming disorder (IGD) has increased as internet gaming continues to grow. Cocaine- and amphetamine-regulated transcript (CART) is a hormone that plays a role in reward, anxiety, and stress. The purpose of this study was to identify the role of CART in the pathophysiology of IGD. METHODS The serum CART levels were measured by enzyme-linked immunosorbent assay, and the associations of the serum CART level with psychological variables were analyzed in patients with IGD (n=31) and healthy controls (HC) (n=42). RESULTS The serum CART level was significantly lower in the IGD than HC group. The IGD group scored significantly higher than the HC group on the psychological domains of depression, anxiety, the reward response in the Behavioral Activation System and Behavioral Inhibition System. There were no significant correlations between serum CART level and other psychological variables in the IGD group. CONCLUSION Our results indicate that a decrease in the expression of the serum CART level is associated with the vulnerability of developing IGD. This study supports the possibility that CART is a biomarker in the pathophysiology of IGD.
Collapse
Affiliation(s)
- Ara Cho
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Heejin Lee
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Huey Cheon
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - So Young Yoo
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Arom Pyeon
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji-Won Chun
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hyun Back
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Yae Eun Park
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Dai-Jin Kim
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Eun Lee
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Jung-Seok Choi
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Kouchaeknejad A, Van Der Walt G, De Donato MH, Puighermanal E. Imaging and Genetic Tools for the Investigation of the Endocannabinoid System in the CNS. Int J Mol Sci 2023; 24:15829. [PMID: 37958825 PMCID: PMC10648052 DOI: 10.3390/ijms242115829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
As central nervous system (CNS)-related disorders present an increasing cause of global morbidity, mortality, and high pressure on our healthcare system, there is an urgent need for new insights and treatment options. The endocannabinoid system (ECS) is a critical network of endogenous compounds, receptors, and enzymes that contribute to CNS development and regulation. Given its multifaceted involvement in neurobiology and its significance in various CNS disorders, the ECS as a whole is considered a promising therapeutic target. Despite significant advances in our understanding of the ECS's role in the CNS, its complex architecture and extensive crosstalk with other biological systems present challenges for research and clinical advancements. To bridge these knowledge gaps and unlock the full therapeutic potential of ECS interventions in CNS-related disorders, a plethora of molecular-genetic tools have been developed in recent years. Here, we review some of the most impactful tools for investigating the neurological aspects of the ECS. We first provide a brief introduction to the ECS components, including cannabinoid receptors, endocannabinoids, and metabolic enzymes, emphasizing their complexity. This is followed by an exploration of cutting-edge imaging tools and genetic models aimed at elucidating the roles of these principal ECS components. Special emphasis is placed on their relevance in the context of CNS and its associated disorders.
Collapse
Affiliation(s)
| | | | | | - Emma Puighermanal
- Neuroscience Institute, Autonomous University of Barcelona, 08193 Bellaterra, Spain; (A.K.); (G.V.D.W.); (M.H.D.D.)
| |
Collapse
|
5
|
Jankowski MM, Ignatowska-Jankowska BM, Glac W, Wiergowski M, Kazmierska-Grebowska P, Swiergiel AH. Intravenous haloperidol and cocaine alter the distribution of T CD3 + CD4 + , non-T/NK and NKT cells in rats. Clin Exp Pharmacol Physiol 2023; 50:453-462. [PMID: 36802086 DOI: 10.1111/1440-1681.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/20/2023]
Abstract
The modulation of dopamine transmission evokes strong behavioural effects that can be achieved by commonly used psychoactive drugs such as haloperidol or cocaine. Cocaine non-specifically increases dopamine transmission by blocking dopamine active transporter (DAT) and evokes behavioural arousal, whereas haloperidol is a non-specific D2-like dopamine receptor antagonist with sedative effects. Interestingly, dopamine has been found to affect immune cells in addition to its action in the central nervous system. Here, we address the possible interactions between haloperidol and cocaine and their effects on both immune cells and behaviour in freely moving rats. We use an intravenous model of haloperidol and binge cocaine administration to evaluate the drugs' impact on the distribution of lymphocyte subsets in both the peripheral blood and the spleen. We assess the drugs' behavioural effects by measuring locomotor activity. Cocaine evoked a pronounced locomotor response and stereotypic behaviours, both of which were completely blocked after pretreatment with haloperidol. The results suggest that blood lymphopenia, which was induced by haloperidol and cocaine (except for natural killer T cells), is independent of D2-like dopaminergic activity and most likely results from the massive secretion of corticosterone. Haloperidol pretreatment prevented the cocaine-induced decrease in NKT cell numbers. Moreover, the increased systemic D2-like dopaminergic activity after cocaine administration is a significant factor in retaining T CD3+ CD4+ lymphocytes and non-T/NK CD45RA+ cells in the spleen.
Collapse
Affiliation(s)
- Maciej M Jankowski
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Bogna M Ignatowska-Jankowska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland.,Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Wojciech Glac
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Marek Wiergowski
- Department of Forensic Medicine, Medical University of Gdansk, Gdansk, Poland
| | | | - Artur H Swiergiel
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
6
|
Sharma VK, Singh TG, Mehta V, Mannan A. Biomarkers: Role and Scope in Neurological Disorders. Neurochem Res 2023; 48:2029-2058. [PMID: 36795184 DOI: 10.1007/s11064-023-03873-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 02/17/2023]
Abstract
Neurological disorders pose a great threat to social health and are a major cause for mortality and morbidity. Effective drug development complemented with the improved drug therapy has made considerable progress towards easing symptoms associated with neurological illnesses, yet poor diagnosis and imprecise understanding of these disorders has led to imperfect treatment options. The scenario is complicated by the inability to extrapolate results of cell culture studies and transgenic models to clinical applications which has stagnated the process of improving drug therapy. In this context, the development of biomarkers has been viewed as beneficial to easing various pathological complications. A biomarker is measured and evaluated in order to gauge the physiological process or a pathological progression of a disease and such a marker can also indicate the clinical or pharmacological response to a therapeutic intervention. The development and identification of biomarkers for neurological disorders involves several issues including the complexity of the brain, unresolved discrepant data from experimental and clinical studies, poor clinical diagnostics, lack of functional endpoints, and high cost and complexity of techniques yet research in the area of biomarkers is highly desired. The present work describes existing biomarkers for various neurological disorders, provides support for the idea that biomarker development may ease our understanding underlying pathophysiology of these disorders and help to design and explore therapeutic targets for effective intervention.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, 140401, India.,Government College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, 140401, India.
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, 140401, India
| |
Collapse
|
7
|
Pawlak P, Burren A, Seitz A, Pietsch C. Effects of different acute stressors on the regulation of appetite genes in the carp ( Cyprinus carpio L.) brain. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230040. [PMID: 36816841 PMCID: PMC9929511 DOI: 10.1098/rsos.230040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Our understanding of the timing of stress responses and specific roles of different regulatory pathways that drive stress responses is incomplete. In particular, the regulation of appetite genes as a consequence of exposure to different stressors has not been studied in sufficient detail in fish. Therefore, a stress trial was conducted with koi carp, aiming at identifying typical effects of stress on regulation of appetite genes. The stressors tank manipulation, air exposure and feed rewarding were chosen. The responses to these stressors were evaluated 10, 30 and 60 min after the stressors were applied. Orexigenic and anorexigenic genes were investigated in four different brain regions (telencephalon, hypothalamus, optic tectum and rhombencephalon). The results show that, apart from the typical appetite regulation in the hypothalamus, the different brain regions also display pronounced responses of appetite genes to the different stressors. In addition, several genes in the serotonergic, dopaminergic and gaba-related pathways were investigated. These genes revealed that rearing in pairs of two and opening of the tank lid affected anorexigenic genes, such as cart and cck, which were not changed by air exposure or feed rewarding. Moreover, distress and eustress led to limited, but distinguishable gene expression pattern changes in the investigated brain regions.
Collapse
Affiliation(s)
- Paulina Pawlak
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, CH-3032, Hinterkappelen, Bern, Switzerland
| | - Alexander Burren
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
| | - Andreas Seitz
- Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, Zürich CH-8820, Switzerland
| | - Constanze Pietsch
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
| |
Collapse
|
8
|
Job MO, Kuhar MJ. Commentary: GPR160 De-Orphanization Reveals Critical Roles in Neuropathic Pain in Rodents (Finally, a Receptor for CART Peptide). ADVANCES IN DRUG AND ALCOHOL RESEARCH 2021; 1:10012. [PMID: 38410642 PMCID: PMC10896429 DOI: 10.3389/adar.2021.10012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/26/2021] [Indexed: 02/28/2024]
Affiliation(s)
- Martin O Job
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Michael J Kuhar
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
9
|
Pingale T, Gupta GL. Current and emerging therapeutic targets for Parkinson's disease. Metab Brain Dis 2021; 36:13-27. [PMID: 33090348 DOI: 10.1007/s11011-020-00636-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is characterized by gradual neurodegeneration and forfeiture of dopamine neurons in substantia nigra pars compacta which ultimately leads to depletion of dopamine levels. PD patients not only display motor features such as rigidity, tremor, and bradykinesia but also non-motor features such as depression, anxiety, etc. Various treatments are available for PD patients such as dopamine replacement are well established but it is only partially or transiently effective. As these therapies not able to restore dopaminergic neurons and delay the development of Parkinson's disease, therefore, the need for an effective therapeutic approach is crucial. The present review discusses a comprehensive overview of current novel targets for PD which includes molecular chaperone, neuroinflammation, mitochondrial dysfunction, neuromelanin, Ubiquitin-proteasome system, protein Abelson, Synaptic vesicle glycoprotein 2C, and Cocaine-amphetamine-regulated transcript, etc. These approaches will help to identify new targets for the treatment of disease and may provide a ray of hope for PD patient treatment. Graphical abstract.
Collapse
Affiliation(s)
- Tanvi Pingale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, Maharashtra, India
| | - Girdhari Lal Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, Maharashtra, India.
- Department of Pharmacology, School of Pharmacy & Technology Management, SVKM'S NMIMS, Shirpur, 425 405, Maharashtra, India.
| |
Collapse
|
10
|
Song N, Du J, Gao Y, Yang S. Epitranscriptome of the ventral tegmental area in a deep brain-stimulated chronic unpredictable mild stress mouse model. Transl Neurosci 2020; 11:402-418. [PMID: 33343932 PMCID: PMC7724003 DOI: 10.1515/tnsci-2020-0146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/08/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Deep brain stimulation (DBS) applied to the nucleus accumbens (NAc) alleviates the depressive symptoms of major depressive disorders. We investigated the mechanism of this effect by assessing gene expression and RNA methylation changes in the ventral tegmental area (VTA) following NAc-DBS in a chronic unpredictable mild stress (CUMS) mouse model of depression. Gene expression and N 6-methyladenosine (m6A) levels in the VTA were measured in mice subjected to CUMS and then DBS, and transcriptome-wide m6A changes were profiled using immunoprecipitated methylated RNAs with microarrays, prior to gene ontology analysis. The expression levels of genes linked to neurotransmitter receptors, transporters, transcription factors, neuronal activities, synaptic functions, and mitogen-activated protein kinase and dopamine signaling were upregulated in the VTA upon NAc-DBS. Furthermore, m6A modifications included both hypermethylation and hypomethylation, and changes were positively correlated with the upregulation of some genes. Moreover, the effects of CUMS on gene expression and m6A-mRNA modification were reversed by DBS for some genes. Interestingly, while the expression of certain genes was not changed by DBS, long-term stimulation did alter their m6A modifications. NAc-DBS-induced modifications are correlated largely with upregulation but sometimes downregulation of genes in CUMS mice. Our findings improve the current understanding of the molecular mechanisms underlying DBS effects on depression.
Collapse
Affiliation(s)
- Nan Song
- Center of Military Brain Science, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences (AMMS), The Academy of Military Sciences, No. 27 Taiping Road, Haidian District, Beijing, China, 100850
| | - Jun Du
- Center of Military Brain Science, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences (AMMS), The Academy of Military Sciences, No. 27 Taiping Road, Haidian District, Beijing, China, 100850
| | - Yan Gao
- Center of Military Brain Science, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences (AMMS), The Academy of Military Sciences, No. 27 Taiping Road, Haidian District, Beijing, China, 100850
| | - Shenglian Yang
- Center of Military Brain Science, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences (AMMS), The Academy of Military Sciences, No. 27 Taiping Road, Haidian District, Beijing, China, 100850
| |
Collapse
|
11
|
Tominaga M, Ichikawa S, Sakashita F, Tadaishi M, Shimizu M, Kobayashi-Hattori K. Anorexic action of fusarenon-x in the hypothalamus and intestine. Toxicon 2020; 187:57-64. [PMID: 32882257 DOI: 10.1016/j.toxicon.2020.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/05/2020] [Accepted: 08/30/2020] [Indexed: 10/23/2022]
Abstract
There is a lack of information available on the anorexic action of fusarenon-x (FX), which is a sesquiterpenoid mycotoxin. In this study, we investigated the changes in the hypothalamus and small intestine related to appetite after oral FX exposure. The time-course change of food intake after oral FX exposure (0.5, 1.0, and 2.5 mg/kg bw) in B6C3F1 mice showed that 2.5 mg/kg bw of FX significantly suppressed food intake during 3-6 h compared to the control. Furthermore, the total food intake for 24 h was lower in the group exposed to FX than in the control. The FX exposure (2.5 mg/kg bw for 3 h) significantly increased mRNA levels of anorexic hormones (pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcription (CART)) without changing the mRNA levels of orexigenic hormones. In addition, FX exposure indicated significantly higher mRNA levels of possible downstream targets of anorexic POMC neurons, such as the melanocortin 4 receptor (MC4R), brain-derived neurotrophic factor (BDNF) and tyrosine kinase receptor B (TrkB), in the hypothalamus compared to the control. FX exposure also significantly increased the mRNA level of inflammatory cytokines (tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β)) and activated nuclear factor-kappa B (NF-κB), which is a regulatory factor for POMC in the hypothalamus. In the intestine, FX exposure did not affect the mRNA level of anorexic peptide YY but significantly elevated that of anorexic cholecystokinin (CCK) and regulatory factors for CCK (calcium-sensing receptor (CaSR), the transient receptor potential ankyrin-1 channel (TRPA1), and transient receptor potential cation channel subfamily M member 5 (TRPM5)). These results suggest that FX sequentially induces inflammatory cytokine expression, NF-κB activation, and POMC expression in the hypothalamus. FX also induces CCK expression in the intestine possibly via induction of CaSR, TRPM5, and TRPA1 expression. These changes will eventually lead to the anorexic action of FX.
Collapse
Affiliation(s)
- Misa Tominaga
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Saori Ichikawa
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Fumiko Sakashita
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Miki Tadaishi
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Makoto Shimizu
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Kazuo Kobayashi-Hattori
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.
| |
Collapse
|
12
|
Psilopanagioti A, Makrygianni M, Nikou S, Logotheti S, Papadaki H. Nucleobindin 2/nesfatin-1 expression and colocalisation with neuropeptide Y and cocaine- and amphetamine-regulated transcript in the human brainstem. J Neuroendocrinol 2020; 32:e12899. [PMID: 32902020 DOI: 10.1111/jne.12899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 11/26/2022]
Abstract
Feeding is a complex behaviour entailing elaborate interactions between forebrain, hypothalamic and brainstem neuronal circuits via multiple orexigenic and anorexigenic neuropeptides. Nucleobindin-2 (NUCB2)/nesfatin-1 is a negative regulator of food intake and body weight with a widespread distribution in rodent brainstem nuclei. However, its localisation pattern in the human brainstem is unknown. The present study aimed to explore NUCB2/nesfatin-1 immunoexpression in human brainstem nuclei and its possible correlation with body weight. Sections of human brainstem from 20 autopsy cases (13 males, seven females; eight normal weight, six overweight, six obese) were examined using immunohistochemistry and double immunofluorescence labelling. Strong immunoreactivity for NUCB2/nesfatin-1 was displayed in various brainstem areas, including the locus coeruleus, medial and lateral parabrachial nuclei, pontine nuclei, raphe nuclei, nucleus of the solitary tract, dorsal motor nucleus of vagus (10N), area postrema, hypoglossal nucleus, reticular formation, inferior olive, cuneate nucleus, and spinal trigeminal nucleus. NUCB2/nesfatin-1 was shown to extensively colocalise with neuropeptide Y and cocaine- and amphetamine-regulated transcript in the locus coeruleus, dorsal raphe nucleus and solitary tract. Interestingly, in the examined cases, NUCB2/nesfatin-1 protein expression was lower in obese than normal weight subjects in the solitary tract (P = 0.020). The findings of the present study provide neuroanatomical support for a role for NUCB2/nesfatin-1 in feeding behaviour and energy balance. The widespread distribution of NUCB2/nesfatin-1 in the human brainstem nuclei may be indicative of its pleiotropic effects on autonomic, neuroendocrine and behavioural processes. In the solitary tract, a key integrator of energy status, altered neurochemistry may contribute to obesity. Further research is necessary to decipher human brainstem energy homeostasis circuitry, which, despite its importance, remains inadequately characterised.
Collapse
Affiliation(s)
- Aristea Psilopanagioti
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Patras, Greece
| | - Maria Makrygianni
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Patras, Greece
| | - Sofia Nikou
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Patras, Greece
| | - Souzana Logotheti
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece
| | - Helen Papadaki
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
13
|
Zhang Z, Cao X, Bao X, Zhang Y, Xu Y, Sha D. Cocaine- and amphetamine-regulated transcript protects synaptic structures in neurons after ischemic cerebral injury. Neuropeptides 2020; 81:102023. [PMID: 32005500 DOI: 10.1016/j.npep.2020.102023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/05/2019] [Accepted: 01/23/2020] [Indexed: 01/26/2023]
Abstract
Cocaine-regulated and amphetamine-regulated transcript (CART) is a neuropeptide with reported neuroprotective effects in ischemic cerebral injury. However, its mechanism has not yet been elucidated. Herein, we investigated the role and mechanism of CART in synaptic plasticity in neurons after ischemic cerebral stroke. We found that the survival rate of the oxygen-glucose deprivation (OGD) neurons was increased after CART treatment. Moreover, CART treatment significantly attenuated ischemia-induced neuronal synaptic damage and increased synaptophysin expression. In addition, the number of presynaptic vesicles was increased and the postsynaptic density (PSD) was thickened after CART treatment. Mechanistically, CART treatment enhanced the expression of Arc mRNA in a cAMP response element binding protein (CREB) dependent manner in OGD neurons, and blockade of CREB by KG-501 eliminated the protective effect of CART. Collectively, CART protected the synaptic structure in neurons after ischemic cerebral injury by increasing the Arc expression via upregulating p-CREB.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xinyu Bao
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yan Zhang
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Dujuan Sha
- Department of Emergency, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| |
Collapse
|
14
|
Yosten GL, Harada CM, Haddock C, Giancotti LA, Kolar GR, Patel R, Guo C, Chen Z, Zhang J, Doyle TM, Dickenson AH, Samson WK, Salvemini D. GPR160 de-orphanization reveals critical roles in neuropathic pain in rodents. J Clin Invest 2020; 130:2587-2592. [PMID: 31999650 PMCID: PMC7190928 DOI: 10.1172/jci133270] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/23/2020] [Indexed: 01/15/2023] Open
Abstract
Treating neuropathic pain is challenging and novel non-opioid-based medicines are needed. Using unbiased receptomics, transcriptomic analyses, immunofluorescence, and in situ hybridization, we found that the expression of the orphan GPCR Gpr160 and GPR160 increased in the rodent dorsal horn of the spinal cord following traumatic nerve injury. Genetic and immunopharmacological approaches demonstrated that GPR160 inhibition in the spinal cord prevented and reversed neuropathic pain in male and female rodents without altering normal pain response. GPR160 inhibition in the spinal cord attenuated sensory processing in the thalamus, a key relay in the sensory discriminative pathways of pain. We also identified cocaine- and amphetamine-regulated transcript peptide (CARTp) as a GPR160 ligand. Inhibiting endogenous CARTp signaling in spinal cord attenuated neuropathic pain, whereas exogenous intrathecal CARTp evoked painful hypersensitivity through GPR160-dependent ERK and cAMP response element-binding protein (CREB). Our findings de-orphanize GPR160, identify it as a determinant of neuropathic pain and potential therapeutic target, and provide insights into its signaling pathways. CARTp is involved in many diseases including depression and reward and addiction; de-orphanization of GPR160 is a major step forward understanding the role of CARTp signaling in health and disease.
Collapse
Affiliation(s)
- Gina L.C. Yosten
- Department of Pharmacology and Physiology
- Henry and Amelia Nasrallah Center for Neuroscience, and
| | - Caron M. Harada
- Department of Pharmacology and Physiology
- Henry and Amelia Nasrallah Center for Neuroscience, and
| | - Chris Haddock
- Department of Pharmacology and Physiology
- Henry and Amelia Nasrallah Center for Neuroscience, and
| | | | - Grant R. Kolar
- Henry and Amelia Nasrallah Center for Neuroscience, and
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Ryan Patel
- Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Chun Guo
- Department of Pharmacology and Physiology
| | - Zhoumou Chen
- Department of Pharmacology and Physiology
- Henry and Amelia Nasrallah Center for Neuroscience, and
| | - Jinsong Zhang
- Department of Pharmacology and Physiology
- Henry and Amelia Nasrallah Center for Neuroscience, and
| | - Timothy M. Doyle
- Department of Pharmacology and Physiology
- Henry and Amelia Nasrallah Center for Neuroscience, and
| | - Anthony H. Dickenson
- Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Willis K. Samson
- Department of Pharmacology and Physiology
- Henry and Amelia Nasrallah Center for Neuroscience, and
| | - Daniela Salvemini
- Department of Pharmacology and Physiology
- Henry and Amelia Nasrallah Center for Neuroscience, and
| |
Collapse
|
15
|
Malboosi N, Nasehi M, Hashemi M, Vaseghi S, Zarrindast MR. The neuroprotective effect of NeuroAid on morphine-induced amnesia with respect to the expression of TFAM, PGC-1α, ΔfosB and CART genes in the hippocampus of male Wistar rats. Gene 2020; 742:144601. [PMID: 32198124 DOI: 10.1016/j.gene.2020.144601] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/16/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
Morphine is a natural alkaloid which derived from the opium poppy Papaver somniferum. Many studies have reported the effect of morphine on learning, memory and gene expression. CART (cocaine-amphetamine regulated transcript)is an important neuropeptide which has a critical role in physiological processes including drug dependence and antioxidant activity. ΔfosB is a transcription factor which modulates synaptic plasticity and affects learning and memory. TFAM (the mitochondrial transcription factor A) and PGC-1α (Peroxisome proliferator-activated receptor γ coactivator-1α) are critically involved in mitochondrial biogenesis and antioxidant pathways. NeuroAid is a Chinese medicine that induces neuroprotective and anti-apoptotic effects. In this research, we aimed to investigate the effect of NeuroAid on morphine-induced amnesia with respect to the expression of TFAM, PGC-1α, ΔfosB and CART in the rat's hippocampus. In this study, Morphine sulfate (at increasing doses), Naloxone hydrochloride (2.5 mg/kg) and NeuroAid (2.5 mg/kg) were administered intraperitoneal and real-time PCR reactions were done to assess gene expression. The results showed, morphine impaired memory of step-through passive avoidance, while NeuroAid had no effect. NeuroAid attenuated (but not reversed) morphine-induced memory impairment in morphine-addicted rats. Morphine increased the expression of PGC-1α and decreased the expression of CART. However, NeuroAid increased the expression of TFAM, PGC-1α, ΔfosB and CART. NeuroAid restored the effect of morphine on the expression of CART and PGC-1α. In conclusion, morphine impaired memory of step-through passive avoidance and NeuroAid attenuated this effect. The effect of NeuroAid on morphine-induced memory impairment/gene expression may be related to its anti-apoptotic and neuroprotective effects.
Collapse
Affiliation(s)
- Nasrin Malboosi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Petrella C, Di Certo MG, Barbato C, Gabanella F, Ralli M, Greco A, Possenti R, Severini C. Neuropeptides in Alzheimer’s Disease: An Update. Curr Alzheimer Res 2019; 16:544-558. [DOI: 10.2174/1567205016666190503152555] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/19/2019] [Accepted: 04/30/2019] [Indexed: 12/19/2022]
Abstract
Neuropeptides are small proteins broadly expressed throughout the central nervous system, which act as neurotransmitters, neuromodulators and neuroregulators. Growing evidence has demonstrated the involvement of many neuropeptides in both neurophysiological functions and neuropathological conditions, among which is Alzheimer’s disease (AD). The role exerted by neuropeptides in AD is endorsed by the evidence that they are mainly neuroprotective and widely distributed in brain areas responsible for learning and memory processes. Confirming this point, it has been demonstrated that numerous neuropeptide-containing neurons are pathologically altered in brain areas of both AD patients and AD animal models. Furthermore, the levels of various neuropeptides have been found altered in both Cerebrospinal Fluid (CSF) and blood of AD patients, getting insights into their potential role in the pathophysiology of AD and offering the possibility to identify novel additional biomarkers for this pathology. We summarized the available information about brain distribution, neuroprotective and cognitive functions of some neuropeptides involved in AD. The main focus of the current review was directed towards the description of clinical data reporting alterations in neuropeptides content in both AD patients and AD pre-clinical animal models. In particular, we explored the involvement in the AD of Thyrotropin-Releasing Hormone (TRH), Cocaine- and Amphetamine-Regulated Transcript (CART), Cholecystokinin (CCK), bradykinin and chromogranin/secretogranin family, discussing their potential role as a biomarker or therapeutic target, leaving the dissertation of other neuropeptides to previous reviews.
Collapse
Affiliation(s)
- Carla Petrella
- Department of Sense Organs, CNR, Institute of Cell Biology and Neurobiology, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Maria Grazia Di Certo
- Department of Sense Organs, CNR, Institute of Cell Biology and Neurobiology, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Christian Barbato
- Department of Sense Organs, CNR, Institute of Cell Biology and Neurobiology, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Francesca Gabanella
- Department of Sense Organs, CNR, Institute of Cell Biology and Neurobiology, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Roberta Possenti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Cinzia Severini
- Department of Sense Organs, CNR, Institute of Cell Biology and Neurobiology, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
17
|
Korucu B, Erten YT, Yeter HH, Altinova A, Pasaoglu OT, Pasaoglu H, Sindel MS, Arinsoy ST, Yetkin I. Hypothalamic Energy Regulatory Peptides in Chronic Kidney Disease. Ther Apher Dial 2019; 23:437-443. [DOI: 10.1111/1744-9987.12798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Berfu Korucu
- Department of NephrologyGazi University Faculty of Medicine Ankara Turkey
| | - Yasemin T Erten
- Department of NephrologyGazi University Faculty of Medicine Ankara Turkey
| | - Haci H Yeter
- Department of NephrologyGazi University Faculty of Medicine Ankara Turkey
| | - Alev Altinova
- Department of EndocrinologyGazi University Faculty of Medicine Ankara Turkey
| | - Ozge T Pasaoglu
- Department of BiochemistryGazi University Faculty of Medicine Ankara Turkey
| | - Hatice Pasaoglu
- Department of BiochemistryGazi University Faculty of Medicine Ankara Turkey
| | - Mahmut S Sindel
- Department of NephrologyGazi University Faculty of Medicine Ankara Turkey
| | - Selim T Arinsoy
- Department of NephrologyGazi University Faculty of Medicine Ankara Turkey
| | - Ilhan Yetkin
- Department of EndocrinologyGazi University Faculty of Medicine Ankara Turkey
| |
Collapse
|
18
|
Kozłowska A, Godlewski J, Majewski M. Distribution Patterns of Cocaine- and Amphetamine-Regulated Transcript- and/or Galanin-Containing Neurons and Nerve Fibers Located in the Human Stomach Wall Affected by Tumor. Int J Mol Sci 2018; 19:ijms19113357. [PMID: 30373200 PMCID: PMC6275062 DOI: 10.3390/ijms19113357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022] Open
Abstract
The aim of the study was to investigate the distribution patterns of cocaine- and amphetamine-regulated transcript- (CART-) and galanin-immunoreactive (GAL-IR) neuronal structures in the human stomach wall, focusing on differences observed in regions directly affected by the cancer process, and those from the surgical margin. Samples from the stomach wall were collected from 10 patients (3 women and 7 men, the mean age 67.0 ± 11.9). Next, triple-immunofluorescence staining was used to visualize the changes in the frequency of neurons inside myenteric plexi and intramural fibers containing CART and/or GAL, as well as protein gene product 9.5 (as panneuronal marker). Tumor into the stomach wall caused a decrease in the number of CART-positive (+) nerve fibers in the longitudinal (LML) and circular muscle layers (CML). Notable changes in the dense network of CART+/GAL+ nerve fibers (an increase) were observed in the LML and lamina muscularis mucosae (LMM) within carcinoma-affected areas of the human stomach. Additionally, an elevated number of these nerve fibers from LMM were accompanied by an increase in the number of fibers containing GAL in the vicinity of the neoplastic proliferation. Obtained results suggest that a carcinoma invasion may affect the innervation pattern of the human stomach wall and their function(s).
Collapse
Affiliation(s)
- Anna Kozłowska
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Av 30, 10-082 Olsztyn, Poland.
| | - Janusz Godlewski
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Av 30, 10-082 Olsztyn, Poland.
| | - Mariusz Majewski
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Av 30, 10-082 Olsztyn, Poland.
| |
Collapse
|
19
|
Jin J, Wang H, Hua X, Chen D, Huang C, Chen Z. An outline for the pharmacological effect of icariin in the nervous system. Eur J Pharmacol 2018; 842:20-32. [PMID: 30342950 DOI: 10.1016/j.ejphar.2018.10.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/13/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Icariin is a major active component of the traditional herb Epimedium, also known as Horny Goat Weed. It has been extensively studied throughout the past several years and is known to exert anti-oxidative, anti-neuroinflammatory, and anti-apoptotic effects. It is now being considered as a potential therapeutic agent for a wide variety of disorders, ranging from neoplasm to cardiovascular disease. More recent studies have shown that icariin exhibits potential preventive and/or therapeutic effects in the nervous system. For example, icariin can prevent the production of amyloid β (1-42) and inhibit the expression of amyloid precursor protein (APP) and β-site APP cleaving enzyme 1 (BACE-1) in animal models of Alzheimer's disease (AD). Icariin has been shown to mitigate pro-inflammatory responses of microglia in culture and in animal models of cerebral ischemia, depression, Parkinson's disease (PD), and multiple sclerosis (MS). Icariin also prevents the neurotoxicity induced by hydrogen peroxide (H2O2), endoplasmic reticulum (ER) stress, ibotenic acid, and homocysteine. In addition, icariin is implicated in facilitating learning and memory in both normal aging animals and disease models. To date, we still have no consolidated source of knowledge about the pharmacological effects of icariin in the nervous system, though its roles in other tissues have been reviewed in recent years. Here, we summarize the pharmacological development of icariin as well as its possible mechanisms in prevention and/or therapy of disorders afflicting the nervous system in hope of expanding the knowledge about the preventive and/or therapeutic effect of icariin in brain disorders.
Collapse
Affiliation(s)
- Jie Jin
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, Jiangsu 226001, China
| | - Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China; Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, 675 Hoes lane, Piscataway, 08854 New Jersey, United States
| | - Xiaoying Hua
- Department of Pharmacology, Wuxi Ninth People's Hospital, #999 Liangxi Road, Wu xi, Jiangsu 226001, China
| | - Dongjian Chen
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, Jiangsu 226001, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, Jiangsu 226001, China.
| |
Collapse
|
20
|
Lin L, Sun D, Chang J, Ma M, Zhou X, Zhao M, Li J. Cocaine‑ and amphetamine‑regulated transcript (CART) is associated with dopamine and is protective against ischemic stroke. Mol Med Rep 2018; 18:3298-3304. [PMID: 30066844 PMCID: PMC6102650 DOI: 10.3892/mmr.2018.9296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/02/2018] [Indexed: 11/05/2022] Open
Abstract
Cocaine and amphetamine‑regulated transcript (CART) is a neuropeptide that can protect brains against ischemic injury. The aim of the present study was to investigate the effects of the CART within ischemic stroke and it possible mechanism. The expression levels of dopamine (DA) and CART in ischemic brain tissues of mice were measured following middle cerebral artery occlusion (MCAO). After receiving the treatment of DA and CART, the infarct volume of brain was measured in mice with MCAO. In addition, the function and potential mechanism of CART in ischemic stroke were further investigated. DA and CART expression was significantly decreased in mice with MCAO compared with normal control mice. Treatment of mice with MCAO with exogenous CART significantly decreased the extent of brain injury compared with untreated mice with MCAO. Treatment with exogenous CART promoted the survival of ex vivo neurons following oxygen‑glucose deprivation (OGD), while exogenous DA induced CART mRNA expression in a dose‑dependent manner, which suggested an association between CART and DA. Apoptosis of ex vivo neurons was significantly increased following OGD, however treatment with exogenous CART significantly inhibited this effect. The potential mechanism of CART was determined to be associated with inflammatory cytokines and related apoptotic genes. CART therefore appears to be associated with DA in its effect on ischemic stroke and is protective against brain injury following ischemic stroke by reducing inflammation activation; it may provide a promising means to treat ischemic stroke patients.
Collapse
Affiliation(s)
- Lili Lin
- Department of Pharmacy, Wuxi Higher Health Vocational Technology School, Wuxi, Jiangsu 214028, P.R. China
| | - Da Sun
- Department of Pharmacy, Wuxi Higher Health Vocational Technology School, Wuxi, Jiangsu 214028, P.R. China
| | - Jing Chang
- Department of Pharmacy, Wuxi Higher Health Vocational Technology School, Wuxi, Jiangsu 214028, P.R. China
| | - Ming Ma
- Department of Pharmacy, Wuxi Higher Health Vocational Technology School, Wuxi, Jiangsu 214028, P.R. China
| | - Xiaoying Zhou
- Department of Nursing, Wuxi Higher Health Vocational Technology School, Wuxi, Jiangsu 214028, P.R. China
| | - Min Zhao
- Department of Pharmacy, Wuxi Higher Health Vocational Technology School, Wuxi, Jiangsu 214028, P.R. China
| | - Jian Li
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| |
Collapse
|
21
|
Saedi S, Khoradmehr A, Mohammad Reza JS, Tamadon A. The role of neuropeptides and neurotransmitters on kisspeptin/kiss1r-signaling in female reproduction. J Chem Neuroanat 2018; 92:71-82. [PMID: 30008384 DOI: 10.1016/j.jchemneu.2018.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/01/2018] [Accepted: 07/02/2018] [Indexed: 01/08/2023]
Abstract
Reproductive function is regulated by the hypothalamic-pituitary-gonads (HPG) axis. Hypothalamic neurons synthesizing kisspeptin play a fundamental role in the central regulation of the timing of puberty onset and reproduction in mammals. Kisspeptin is a regulator of gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH). In female rodent, the kisspeptin (encoded by kiss1 gene), neurokinin B (Tac3) and dynorphin neurons form the basis for the "KNDy neurons" in the arcuate nucleus and play a fundamental role in the regulation of GnRH/LH release. Furthermore, various factors including neurotransmitters and neuropeptides may cooperate with kisspeptin signaling to modulate GnRH function. Many neuropeptides including proopiomelanocortin, neuropeptide Y, agouti-related protein, and other neuropeptides, as well as neurotransmitters, dopamine, norepinephrine and γ-aminobutyric acid are suggested to control feeding and HPG axis, the underlying mechanisms are not well known. Nonetheless, to date, information about the neurochemical factors of kisspeptin neurons remains incomplete in rodent. This review is intended to provide an overview of KNDy neurons; major neuropeptides and neurotransmitters interfere in kisspeptin signaling to modulate GnRH function for regulation of puberty onset and reproduction, with a focus on the female rodent.
Collapse
Affiliation(s)
- Saman Saedi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Arezoo Khoradmehr
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | | | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
22
|
Oponowicz A, Kozłowska A, Gonkowski S, Godlewski J, Majewski M. Changes in the Distribution of Cocaine- and Amphetamine-Regulated Transcript-Containing Neural Structures in the Human Colon Affected by the Neoplastic Process. Int J Mol Sci 2018; 19:E414. [PMID: 29385033 PMCID: PMC5855636 DOI: 10.3390/ijms19020414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 01/10/2023] Open
Abstract
The present study analysed changes in the distribution pattern of cocaine- and amphetamine-regulated transcript (CART) in the enteric nervous system (ENS) of the human colon challenged by adenocarcinoma invasion, using the double-labelling immunofluorescence technique. In control specimens, CART immunoreactivity was found in neurons of all studied plexuses, representing 30.1 ± 4.1%, 12.9 ± 5.2%, and 4.1 ± 1.3% of all neurons forming the myenteric plexus (MP), outer submucous plexus (OSP), and inner submucous plexus (ISP), respectively. Tumour growth into the colon wall caused an increase in the relative frequency of CART-like immunoreactive (CART-LI) neurons in enteric plexuses located in the vicinity of the infiltrating neoplasm (to 36.1 ± 6.7%, 32.7 ± 7.3% and 12.1 ± 3.8% of all neurons in MP, OSP and ISP, respectively). The density of CART-LI nerves within particular layers of the intestinal wall did not differ between control and adenocarcinoma-affected areas of the human colon. This is the first detailed description of the CART distribution pattern within the ENS during the adenocarcinoma invasion of the human colon wall. The obtained results suggest that CART probably acts as a neuroprotective factor and may be involved in neuronal plasticity evoked by the progression of a neoplastic process.
Collapse
Affiliation(s)
- Agnieszka Oponowicz
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, ul. Warszawska 30, 10-561 Olsztyn, Poland.
| | - Anna Kozłowska
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, ul. Warszawska 30, 10-561 Olsztyn, Poland.
| | - Sławomir Gonkowski
- Departement of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul Oczapowskiego 13, 10-718 Olsztyn, Poland.
| | - Janusz Godlewski
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, ul. Warszawska 30, 10-561 Olsztyn, Poland.
| | - Mariusz Majewski
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, ul. Warszawska 30, 10-561 Olsztyn, Poland.
| |
Collapse
|
23
|
Kuhar MJ, Job MO. CART Peptide Regulates Psychostimulant-Induced Activity and Exhibits a Rate Dependency. ACTA ACUST UNITED AC 2017; 6. [PMID: 29225992 DOI: 10.4303/jdar/236032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Michael J Kuhar
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, NE Atlanta, GA 30329, USA
| | - Martin O Job
- Psychobiology Section, Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, Intramural Research Program, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
24
|
Yu C, Zhou X, Fu Q, Peng Q, Oh KW, Hu Z. A New Insight into the Role of CART in Cocaine Reward: Involvement of CaMKII and Inhibitory G-Protein Coupled Receptor Signaling. Front Cell Neurosci 2017; 11:244. [PMID: 28860971 PMCID: PMC5559471 DOI: 10.3389/fncel.2017.00244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/02/2017] [Indexed: 11/13/2022] Open
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptides are neuropeptides that are expressed in brain regions associated with reward, such as the nucleus accumbens (NAc), and play a role in cocaine reward. Injection of CART into the NAc can inhibit the behavioral effects of cocaine, and injecting CART into the ventral tegmental area (VTA) reduces cocaine-seeking behavior. However, the exact mechanism of these effects is not clear. Recent research has demonstrated that Ca2+/calmodulin-dependent protein kinase II (CaMKII) and inhibitory G-protein coupled receptor (GPCR) signaling are involved in the mechanism of the effect of CART on cocaine reward. Hence, we review the role of CaMKII and inhibitory GPCR signaling in the effect of CART on cocaine reward and provide a new insight into the mechanism of that effect. In this article, we will first review the biological function of CART and discuss the role of CART in cocaine reward. Then, we will focus on the role of CaMKII and inhibitory GPCR signaling in cocaine reward. Furthermore, we will discuss how CaMKII and inhibitory GPCR signaling are involved in the mechanistic action of CART in cocaine reward. Finally, we will provide our opinions regarding the future directions of research on the role of CaMKII and inhibitory GPCR signaling in the effect of CART on cocaine reward.
Collapse
Affiliation(s)
- ChengPeng Yu
- The Second Clinic Medical College, School of Medicine, Nanchang UniversityNanchang, China
| | - XiaoYan Zhou
- Department of Pathophysiology, College of Medicine, Nanchang UniversityNanchang, China
| | - Qiang Fu
- Department of Respiration, The Fourth Affiliated Hospital, Nanchang UniversityNanchang, China.,Department of Respiration, Department Two, Jiangxi Provincial People's HospitalNanchang, China
| | - QingHua Peng
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang UniversityNanchang, China
| | - Ki-Wan Oh
- College of Pharmacy, Chungbuk National UniversityCheongju, South Korea
| | - ZhenZhen Hu
- Department of Pathophysiology, College of Medicine, Nanchang UniversityNanchang, China.,Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University Medical CollegeNanchang, China
| |
Collapse
|
25
|
Rakovska A, Baranyi M, Windisch K, Petkova-Kirova P, Gagov H, Kalfin R. Neurochemical evidence that cocaine- and amphetamine-regulated transcript (CART) 55-102 peptide modulates the dopaminergic reward system by decreasing the dopamine release in the mouse nucleus accumbens. Brain Res Bull 2017; 134:246-252. [PMID: 28802898 DOI: 10.1016/j.brainresbull.2017.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/05/2017] [Accepted: 08/07/2017] [Indexed: 01/11/2023]
Abstract
CART (Cocaine- and Amphetamine-Regulated Transcript) peptide is a neurotransmitter naturally occurring in the CNS and found mostly in nucleus accumbens, ventrotegmental area, ventral pallidum, amygdalae and striatum, brain regions associated with drug addiction. In the nucleus accumbens, known for its significant role in motivation, pleasure, reward and reinforcement learning, CART peptide inhibits cocaine and amphetamine-induced dopamine-mediated increases in locomotor activity and behavior, suggesting a CART peptide interaction with the dopaminergic system. Thus in the present study, we examined the effect of CART (55-102) peptide on the basal, electrical field stimulation-evoked (EFS-evoked) (30V, 2Hz, 120 shocks) and returning basal dopamine (DA) release and on the release of the DA metabolites 3,4-dihydroxyphenyl acetaldehyde (DOPAL), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 3,4-dihydroxyphenylethanol (DOPET), 3-methoxytyramine (3-MT) as well as on norepinephrine (NE) and dopamine-o-quinone (Daq) in isolated mouse nucleus accumbens, in a preparation, in which any CART peptide effects on the dendrites or soma of ventral tegmental projection neurons have been excluded. We further extended our study to assess the effect of CART (55-102) peptide on basal cocaine-induced release of dopamine and its metabolites DOPAL, DOPAC, HVA, DOPET and 3-MT as well as on NE and Daq. To analyze the amount of [3H]dopamine, dopamine metabolites, Daq and NE in the nucleus accumbens superfusate, a high-pressure liquid chromatography (HPLC), coupled with electrochemical, UV and radiochemical detections was used. CART (55-102) peptide, 0.1μM, added alone, exerted: (i) a significant decrease in the basal and EFS-evoked levels of extracellular dopamine (ii) a significant increase in the EFS-evoked and returning basal levels of the dopamine metabolites DOPAC and HVA, major products of dopamine degradation and (iii) a significant decrease in the returning basal levels of DOPET. At the same concentration, 0.1μM, CART (55-102) peptide did not have any effect on the release of noradrenaline. In the presence of CART (55-102) peptide, 0.1μM, the effect of cocaine, 30μM, on the basal dopamine release was inhibited and the effect on the basal DOPAC release substantially increased. To our knowledge, our findings are the first to show direct neurochemical evidence that CART (55-102) peptide plays a neuromodulatory role on the dopaminergic reward system by decreasing dopamine in the mouse nucleus accumbens and by attenuating cocaine-induced effects on dopamine release.
Collapse
Affiliation(s)
- Angelina Rakovska
- Lab. "Neuropeptides", Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria.
| | - Maria Baranyi
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43, H-1083, Budapest, Hungary
| | - Katalin Windisch
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43, H-1083, Budapest, Hungary
| | - Polina Petkova-Kirova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, 1113, Sofia, Bulgaria
| | - Hristo Gagov
- Faculty of Biology, Sofia University St. Kliment Ohridski, Dragan Tsankov Str. 8, 1164, Sofia, Bulgaria
| | - Reni Kalfin
- Lab. "Neuropeptides", Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria
| |
Collapse
|
26
|
Rønnestad I, Gomes AS, Murashita K, Angotzi R, Jönsson E, Volkoff H. Appetite-Controlling Endocrine Systems in Teleosts. Front Endocrinol (Lausanne) 2017; 8:73. [PMID: 28458653 PMCID: PMC5394176 DOI: 10.3389/fendo.2017.00073] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
Mammalian studies have shaped our understanding of the endocrine control of appetite and body weight in vertebrates and provided the basic vertebrate model that involves central (brain) and peripheral signaling pathways as well as environmental cues. The hypothalamus has a crucial function in the control of food intake, but other parts of the brain are also involved. The description of a range of key neuropeptides and hormones as well as more details of their specific roles in appetite control continues to be in progress. Endocrine signals are based on hormones that can be divided into two groups: those that induce (orexigenic), and those that inhibit (anorexigenic) appetite and food consumption. Peripheral signals originate in the gastrointestinal tract, liver, adipose tissue, and other tissues and reach the hypothalamus through both endocrine and neuroendocrine actions. While many mammalian-like endocrine appetite-controlling networks and mechanisms have been described for some key model teleosts, mainly zebrafish and goldfish, very little knowledge exists on these systems in fishes as a group. Fishes represent over 30,000 species, and there is a large variability in their ecological niches and habitats as well as life history adaptations, transitions between life stages and feeding behaviors. In the context of food intake and appetite control, common adaptations to extended periods of starvation or periods of abundant food availability are of particular interest. This review summarizes the recent findings on endocrine appetite-controlling systems in fish, highlights their impact on growth and survival, and discusses the perspectives in this research field to shed light on the intriguing adaptations that exist in fish and their underlying mechanisms.
Collapse
Affiliation(s)
- Ivar Rønnestad
- Department of Biology, University of Bergen, Bergen, Norway
| | - Ana S. Gomes
- Department of Biology, University of Bergen, Bergen, Norway
| | - Koji Murashita
- Department of Biology, University of Bergen, Bergen, Norway
- Research Center for Aquaculture Systems, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Tamaki, Mie, Japan
| | - Rita Angotzi
- Department of Biology, University of Bergen, Bergen, Norway
| | - Elisabeth Jönsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St John’s, NL, Canada
| |
Collapse
|
27
|
CART peptide in the nucleus accumbens regulates psychostimulants: Correlations between psychostimulant and CART peptide effects. Neuroscience 2017; 348:135-142. [PMID: 28215744 DOI: 10.1016/j.neuroscience.2017.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 12/12/2022]
Abstract
In this study, we reexamined the effect of Cocaine-and-Amphetamine-Regulated-Transcript (CART) peptide on psychostimulant (PS)-induced locomotor activity (LMA) in individual rats. The Methods utilized were as previously published. The PS-induced LMA was defined as the distance traveled after PS administration (intraperitoneal), and the CART peptide effect was defined as the change in the PS-induced activity after bilateral intra-NAc administration of CART peptide. The experiments included both male and female Sprague-Dawley rats, and varying the CART peptide dose and the PS dose. While the average effect of CART peptide was to inhibit PS-induced LMA, the effect of CART peptide on individual PS-treated animals was not always inhibitory and sometimes even produced an increase or no change in PS-induced LMA. Upon further analysis, we observed a linear correlation, reported for the first time, between the magnitude of PS-induced LMA and the CART peptide effect. Because CART peptide inhibits PS-induced LMA when it is large, and increases PS-induced LMA when it is small, the peptide can be considered a homeostatic regulator of dopamine-induced LMA, which supports our earlier homeostatic hypothesis.
Collapse
|
28
|
Gilon P. Cocaine- and amphetamine-regulated transcript: a novel regulator of energy homeostasis expressed in a subpopulation of pancreatic islet cells. Diabetologia 2016; 59:1855-9. [PMID: 27421727 DOI: 10.1007/s00125-016-4052-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes is characterised by chronic hyperglycaemia and its incidence is highly increased by exaggerated food consumption. It results from a lack of insulin action/production, but growing evidence suggests that it might also involve hyperglucagonaemia and impaired control of glucose homeostasis by the brain. In recent years, the cocaine and amphetamine-regulated transcript (CART) peptides have generated a lot of interest in the battle against obesity because, via the brain, they exert anorexic effects and they increase energy expenditure. They are also localised, outside the brain, in discrete regions of the body and play a hormonal role in controlling various functions. In this issue of Diabetologia, the Wierup group (doi: 10.1007/s00125-016-4020-6 ) shows that CART peptides are expressed heterogeneously in islet cells of various species, including humans, and that their expression is upregulated in diabetes. The authors also shine a spotlight on some interesting effects of CART peptides on islet function, including stimulation of insulin secretion and inhibition of glucagon release. CART peptides would thus be at the centre of a cooperation between the brain and the endocrine pancreas to control glucose homeostasis. Although the mechanisms of action of CART peptides remain enigmatic because no specific receptor for these peptides has so far been discovered, their potential therapeutic use is evident and represents a new challenge for future research.
Collapse
Affiliation(s)
- Patrick Gilon
- Pôle d'endocrinologie, diabète et nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, B1.55.06, 1200, Brussels, Belgium.
| |
Collapse
|
29
|
Abstract
Earlier studies suggesting an involvement of cocaine and amphetamine regulated transcript peptide (CARTp) in the actions of drugs of abuse are confirmed in the most recent publications. This seems especially true for the psychostimulants where CARTp in the nucleus accumbens inhibits or regulates the actions of these drugs; the regulation is lost after repeated drug use which may be an important mechanism in addiction. The other drugs, including nicotine, alcohol, opiates, and perhaps caffeine can affect CARTp or CART mRNA levels. While the exact mechanism is not always clear, the hope is that these findings may provide some insight for the development of medications. While binding studies indicate the existence of specific G-protein coupled receptors (GPCR) receptors for CARTp, major work to be done is the cloning of these receptors.
Collapse
Affiliation(s)
- Michael J Kuhar
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA 30329, USA
| |
Collapse
|
30
|
Ameliorating antipsychotic-induced weight gain by betahistine: Mechanisms and clinical implications. Pharmacol Res 2016; 106:51-63. [DOI: 10.1016/j.phrs.2016.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 01/08/2023]
|
31
|
Bakhtazad A, Vousooghi N, Garmabi B, Zarrindast MR. CART peptide and opioid addiction: Expression changes in male rat brain. Neuroscience 2016; 325:63-73. [PMID: 26955782 DOI: 10.1016/j.neuroscience.2016.02.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/09/2016] [Accepted: 02/29/2016] [Indexed: 01/21/2023]
Abstract
Previous studies have shown the prominence of cocaine- and amphetamine-regulated transcript (CART) peptide in rewarding and reinforcing effects of drugs of abuse specially psychostimulants. The data regarding the effects of different stages of opioid addiction on CART expression and the interconnection between CART and opioids are not much available. Here we have studied the changes in the expression level of CART mRNA and protein in various parts of the brain reward pathway in different stages of opioid addiction. Groups of male rats received acute low-dose (10mg/kg), acute high-dose (80mg/kg) and chronic escalating doses of morphine. In addition, withdrawal and abstinence states were evaluated after injection of naloxone (1mg/kg) and long-term maintenance of addicted animals, respectively. Expression of CART mRNA in the brain was measured by real-time PCR method. Western blotting was used to quantify the protein level. CART mRNA and protein were both up-regulated in high-dose morphine-administered animals and also in the withdrawal group in the nucleus accumbens (NAc), striatum and prefrontal cortex (PFC). In the addicted group, CART mRNA and protein were both down-regulated in NAc and striatum. In the abstinent group, CART mRNA was down-regulated in NAc. In the hippocampus, the only observed change was the up-regulation of CART mRNA in the withdrawal group. We suggest that the modulatory role of CART peptide in rewarding and reinforcing effects of opioids weakens when opioids are used for a long time and is stimulated when acute stress such as naloxone-induced withdrawal syndrome or acute high-dose administration of morphine occurs to the animal.
Collapse
Affiliation(s)
- A Bakhtazad
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - N Vousooghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - B Garmabi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - M R Zarrindast
- Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran; Genomics Center, School of Advanced Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran; School of Cognitive Sciences, Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran.
| |
Collapse
|
32
|
Abstract
An odor induces food-seeking behaviors when humans and animals learned to associate the odor with food, whereas the same odor elicits aversive behaviors following odor-danger association learning. It is poorly understood how central olfactory circuits transform the learned odor cue information into appropriate motivated behaviors. The olfactory tubercle (OT) is an intriguing area of the olfactory cortex in that it contains medium spiny neurons as principal neurons and constitutes a part of the ventral striatum. The OT is therefore a candidate area for participation in odor-induced motivated behaviors. Here we mapped c-Fos activation of medium spiny neurons in different domains of the mouse OT following exposure to learned odor cues. Mice were trained to associate odor cues to a sugar reward or foot shock punishment to induce odor-guided approach behaviors or aversive behaviors. Regardless of odorant types, the anteromedial domain of the OT was activated by learned odor cues that induced approach behaviors, whereas the lateral domain was activated by learned odor cues that induced aversive behaviors. In each domain, a larger number of dopamine receptor D1 type neurons were activated than D2 type neurons. These results indicate that specific domains of the OT represent odor-induced distinct motivated behaviors rather than odor stimuli, and raise the possibility that neuronal type-specific activation in individual domains of the OT plays crucial roles in mediating the appropriate learned odor-induced motivated behaviors. Significance statement: Although animals learn to associate odor cues with various motivated behaviors, the underlying circuit mechanisms are poorly understood. The olfactory tubercle (OT), a subarea of the olfactory cortex, also constitutes the ventral striatum. Here, we trained mice to associate odors with either reward or punishment and mapped odor-induced c-Fos activation in the OT. Regardless of odorant types, the anteromedial domain was activated by approach behavior-inducing odors, whereas the lateral domain was activated by aversive behavior-inducing odors. In each domain, dopamine receptor D1 neurons were preferentially activated over D2 neurons. The results indicate that specific OT domains represent odor-induced distinct motivated behaviors rather than odor types, and suggest the importance of neuronal type-specific activation in individual domains in mediating appropriate behaviors.
Collapse
|
33
|
Gancarz A, Jouroukhin Y, Saito A, Shevelkin A, Mueller LE, Kamiya A, Dietz DM, Pletnikov MV. DISC1 signaling in cocaine addiction: Towards molecular mechanisms of co-morbidity. Neurosci Res 2015; 105:70-4. [PMID: 26385055 DOI: 10.1016/j.neures.2015.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 11/30/2022]
Abstract
Substance abuse and other psychiatric diseases may share molecular pathology. In order to test this hypothesis, we examined the role of Disrupted In Schizophrenia 1 (DISC1), a psychiatric risk factor, in cocaine self-administration (SA). Cocaine SA significantly increased expression of DISC1 in the nucleus accumbens (NAc); while knockdown of DISC1 in NAc significantly increased cocaine SA and decreased phosphorylation of GSK-3β at Ser9 compared to scrambled shRNA. Our study provides the first mechanistic evidence of a critical role of DISC1 in drug-induced behavioral neuroadaptations and sheds more light at the shared molecular pathology of drug abuse and other major psychiatric disorders.
Collapse
Affiliation(s)
- Amy Gancarz
- The State University of New York at Buffalo, Buffalo, NY, USA
| | - Yan Jouroukhin
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Atsushi Saito
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Alexey Shevelkin
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, USA
| | | | - Atsushi Kamiya
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, USA
| | - David M Dietz
- The State University of New York at Buffalo, Buffalo, NY, USA.
| | - Mikhail V Pletnikov
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, USA; Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA.
| |
Collapse
|
34
|
CART treatment improves memory and synaptic structure in APP/PS1 mice. Sci Rep 2015; 5:10224. [PMID: 25959573 PMCID: PMC4426675 DOI: 10.1038/srep10224] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 04/07/2015] [Indexed: 01/11/2023] Open
Abstract
Major characteristics of Alzheimer’s disease (AD) include deposits of β-amyloid (Aβ) peptide in the brain, loss of synapses, and cognitive dysfunction. Cocaine- and amphetamine-regulated transcript (CART) has recently been reported to attenuate Aβ-induced toxicity. In this study, CART localization in APP/PS1 mice was characterized and the protective effects of exogenous CART treatment were examined. Compared to age-matched wild type mice, 8-month-old APP/PS1 mice had significantly greater CART immunoreactivity in the hippocampus and cortex. A strikingly similar pattern of Aβ plaque-associated CART immunoreactivity was observed in the cortex of AD cases. Treatment of APP/PS1 mice with exogenous CART ameliorated memory deficits; this effect was associated with improvements in synaptic ultrastructure and long-term potentiation, but not a reduction of the Aβ plaques. Exogenous CART treatment in APP/PS1 mice prevented depolarization of the mitochondrial membrane and stimulated mitochondrial complex I and II activities, resulting in an increase in ATP levels. CART treatment of APP/PS1 mice also reduced reactive oxygen species and 4-hydroxynonenal, and mitigated oxidative DNA damage. In summary, CART treatment reduced multiple neuropathological measures and improved memory in APP/PS1 mice, and may therefore be a promising and novel therapy for AD.
Collapse
|
35
|
Chu SC, Chen PN, Ho YJ, Yu CH, Hsieh YS, Kuo DY. Both neuropeptide Y knockdown and Y1 receptor inhibition modulate CART-mediated appetite control. Horm Behav 2015; 67:38-47. [PMID: 25461972 DOI: 10.1016/j.yhbeh.2014.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 01/18/2023]
Abstract
Amphetamine (AMPH)-induced appetite suppression has been attributed to its inhibition of neuropeptide Y (NPY)-containing neurons in the hypothalamus. This study examined whether hypothalamic cocaine- and amphetamine-regulated transcript (CART)-containing neurons and NPY Y1 receptor (Y1R) were involved in the action of AMPH. Rats were treated daily with AMPH for four days, and changes in feeding behavior and expression levels of NPY, CART, and POMC were assessed and compared. The results showed that both feeding behavior and NPY expression decreased during AMPH treatment, with the biggest reduction occurring on Day 2. By contrast, the expression of CART and melanocortin 3 receptor (MC3R), a member of the POMC neurotransmission, increased with the maximum response on Day 2, directly opposite to the NPY expression results. The intracerebroventricular infusion of NPY antisense or Y1R inhibitor both modulated AMPH-induced anorexia and the expression levels of MC3R and CART. The results suggest that in the hypothalamus both POMC- and CART-containing neurons participate in regulating NPY-mediated appetite control during AMPH treatment. These results may advance the knowledge of molecular mechanism of anorectic drugs.
Collapse
Affiliation(s)
- Shu-Chen Chu
- Department of Food Science, Central Taiwan University of Science and Technology, Taichung City 406, Taiwan, ROC
| | - Pei-Ni Chen
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan, ROC
| | - Ying-Jui Ho
- School of Psychology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan, ROC
| | - Ching-Han Yu
- Department of Physiology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan, ROC
| | - Yih-Shou Hsieh
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan, ROC
| | - Dong-Yih Kuo
- Department of Physiology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan, ROC.
| |
Collapse
|
36
|
Lau J, Herzog H. CART in the regulation of appetite and energy homeostasis. Front Neurosci 2014; 8:313. [PMID: 25352770 PMCID: PMC4195273 DOI: 10.3389/fnins.2014.00313] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/17/2014] [Indexed: 12/20/2022] Open
Abstract
The cocaine- and amphetamine-regulated transcript (CART) has been the subject of significant interest for over a decade. Work to decipher the detailed mechanism of CART function has been hampered by the lack of specific pharmacological tools like antagonists and the absence of a specific CART receptor(s). However, extensive research has been devoted to elucidate the role of the CART peptide and it is now evident that CART is a key neurotransmitter and hormone involved in the regulation of diverse biological processes, including food intake, maintenance of body weight, reward and addiction, stress response, psychostimulant effects and endocrine functions (Rogge et al., 2008; Subhedar et al., 2014). In this review, we focus on knowledge gained on CART's role in controlling appetite and energy homeostasis, and also address certain species differences between rodents and humans.
Collapse
Affiliation(s)
- Jackie Lau
- Neuroscience Division, Garvan Institute of Medical Research Sydney, NSW, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research Sydney, NSW, Australia
| |
Collapse
|
37
|
Lei BH, Chen JH, Yin HS. Repeated amphetamine treatment alters spinal magnetic resonance signals and pain sensitivity in mice. Neurosci Lett 2014; 583:70-5. [PMID: 25246351 DOI: 10.1016/j.neulet.2014.09.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) has been extensively used in studying the structural and functional features of the central nervous system (CNS). Divalent manganese ion (Mn(2+)) not only enhances MRI contrast, but also enters cells via voltage-gated calcium channels or ionotropic glutamate receptors, which represents an index of neural activities. In the current mouse model, following the repeated amphetamine (Amph) treatment, a reduction of reactivity to thermal pain stimulus was noticed. Since the spinal dorsal horn is the first relay station for pain transmission in CNS, we examined the changes of neural activity in the dorsal spinal cord, particularly the superficial dorsal horn, by analyzing manganese-enhanced T1-weighted MR images (T1WIs). Our data revealed a temporal correlation between reduced pain sensitivity and increased MEMR signals in the spinal dorsal horn subsequent to repeated Amph treatments.
Collapse
Affiliation(s)
- Bing-Hsuan Lei
- Interdisciplinary MRI/MRS Lab, Graduate Institute of Electrical Engineering, National Taiwan University, Taiwan, ROC; National Taiwan University Molecular Imaging Center, Taiwan, ROC
| | - Jyh-Horng Chen
- Interdisciplinary MRI/MRS Lab, Graduate Institute of Electrical Engineering, National Taiwan University, Taiwan, ROC; National Taiwan University Molecular Imaging Center, Taiwan, ROC; Neurobiology and Cognitive Science Center, National Taiwan University, Taiwan, ROC.
| | - Hsiang-Shu Yin
- Neurobiology and Cognitive Science Center, National Taiwan University, Taiwan, ROC; Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taiwan, ROC.
| |
Collapse
|
38
|
Yu Y, Fu Y, Watson C. The inferior olive of the C57BL/6J mouse: a chemoarchitectonic study. Anat Rec (Hoboken) 2014; 297:289-300. [PMID: 24443186 DOI: 10.1002/ar.22866] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/09/2013] [Accepted: 09/21/2013] [Indexed: 12/31/2022]
Abstract
We have used the histochemical and immunohistochemical staining methods and maps of gene expression to analyze the structure of the inferior olive of the C57BL mouse. As in other mammals, the inferior olive of the C57BL mouse contains three major nuclei, the medial nucleus, the principal nucleus, and the dorsal nucleus. The medial nucleus can be divided into a rostral medial nucleus and a more complex caudal part, which is formed by subnuclei C, B, A, the cap of Kooy, and the beta subnucleus. The principal nucleus includes the major principal nucleus and the arcuate subnucleus. Most of the inferior olive neurons are small to medium size, the smallest of which are found in the arcuate subnucleus. Calbindin and the vesicular glutamate transporter 2 gene are expressed in nearly all inferior olive neurons, but acetylcholinesterase, glutamate decarboxylase 1 gene, cocaine- and amphetamine-regulated transcript protein prepropeptide gene, galanin gene, and calretinin are selectively expressed within different subnuclei. These findings are consistent with a pattern of extensive functional differentiation among the neuron groups of the inferior olive.
Collapse
Affiliation(s)
- You Yu
- Neuroscience Research Australia, Randwick, New South Wales, 2031, Australia; Department of Pediatric Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | | | | |
Collapse
|
39
|
Cocaine- and amphetamine-regulated transcript peptide increases mitochondrial respiratory chain complex II activity and protects against oxygen–glucose deprivation in neurons. Brain Res 2014; 1582:107-13. [DOI: 10.1016/j.brainres.2014.07.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/26/2014] [Accepted: 07/29/2014] [Indexed: 11/22/2022]
|
40
|
Volkoff H. Appetite regulating peptides in red-bellied piranha, Pygocentrus nattereri: cloning, tissue distribution and effect of fasting on mRNA expression levels. Peptides 2014; 56:116-24. [PMID: 24721336 DOI: 10.1016/j.peptides.2014.03.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/30/2014] [Accepted: 03/31/2014] [Indexed: 11/24/2022]
Abstract
cDNAs encoding the appetite regulating peptides apelin, cocaine and amphetamine regulated transcript (CART), cholecystokinin (CCK), peptide YY (PYY) and orexin were isolated in red-bellied piranha and their mRNA tissue and brain distributions examined. When compared to other fish, the sequences obtained for all peptides were most similar to that of other Characiforme fish, as well as to Cypriniformes. All peptides were widely expressed within the brain and in several peripheral tissues, including gastrointestinal tract. In order to assess the role of these peptides in the regulation of feeding of red-bellied piranha, we compared the brain mRNA expression levels of these peptides, as well as the gut mRNA expression of CCK and PYY, between fed and 7-day fasted fish. Within the brain, fasting induced a significant increase in both apelin and orexin mRNA expressions and a decrease in CART mRNA expression, but there where were no significant differences for either PYY or CCK brain mRNA expressions between fed and fasted fish. Within the intestine, PYY mRNA expression was lower in fasted fish compared to fed fish but there was no significant difference for CCK intestine mRNA expression between fed and fasted fish. Our results suggest that these peptides, perhaps with the exception of CCK, play a major role in the regulation of feeding of red-bellied piranha.
Collapse
Affiliation(s)
- Hélène Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada; Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
41
|
Job MO, Perry J, Shen LL, Kuhar MJ. Cocaine-and-Amphetamine Regulated Transcript (CART) peptide attenuates dopamine- and cocaine-mediated locomotor activity in both male and female rats: lack of sex differences. Neuropeptides 2014; 48:75-81. [PMID: 24630272 PMCID: PMC4023686 DOI: 10.1016/j.npep.2014.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 11/24/2022]
Abstract
Cocaine-and-Amphetamine Regulated Transcript peptide (CART peptide) is known for having an inhibitory effect on dopamine (DA)- and cocaine-mediated actions and is postulated to be a homeostatic, regulatory factor in the nucleus accumbens (NAc). Some sex differences in cocaine-mediated locomotor activity (LMA) and in the expression and function of CART peptide have been reported. However, it is not known if the inhibitory effect of CART peptide on cocaine-mediated LMA is sexually dimorphic. In this study, the effects of CART 55-102 on LMA due to intra-NAc DA and i.p. cocaine were determined in male and female Sprague-Dawley rats. The results show that CART 55-102 blunted or reduced both the DA- and cocaine-induced LMA in both males and females. In conclusion, CART peptide is effective in blunting DA- and cocaine-mediated LMA in both males and females.
Collapse
Affiliation(s)
- Martin O Job
- Yerkes National Primate Research Center of Emory University, 954 Gatewood Rd. NE, Atlanta, GA 30329, USA.
| | - Joanna Perry
- Yerkes National Primate Research Center of Emory University, 954 Gatewood Rd. NE, Atlanta, GA 30329, USA
| | - Li L Shen
- Yerkes National Primate Research Center of Emory University, 954 Gatewood Rd. NE, Atlanta, GA 30329, USA
| | - Michael J Kuhar
- Yerkes National Primate Research Center of Emory University, 954 Gatewood Rd. NE, Atlanta, GA 30329, USA
| |
Collapse
|
42
|
Penney CC, Volkoff H. Peripheral injections of cholecystokinin, apelin, ghrelin and orexin in cavefish (Astyanax fasciatus mexicanus): effects on feeding and on the brain expression levels of tyrosine hydroxylase, mechanistic target of rapamycin and appetite-related hormones. Gen Comp Endocrinol 2014; 196:34-40. [PMID: 24287340 DOI: 10.1016/j.ygcen.2013.11.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 12/27/2022]
Abstract
The effects of intraperitoneal injections of cholecystokinin (CCK), apelin, ghrelin, and orexin on food intake were examined in the blind cavefish Astyanax fasciatus mexicanus. CCK (50ng/g) induced a decrease in food intake whereas apelin (100ng/g), orexin (100ng/g), and ghrelin (100ng/g) induced an increase in food intake as compared to saline-injected control fish. In order to better understand the central mechanism by which these hormones act, we examined the effects of injections on the brain mRNA expression of two metabolic enzymes, tyrosine hydroxylase (TH), and mechanistic target of rapamycin (mTOR), and of appetite-regulating peptides, CCK, orexin, apelin and cocaine and amphetamine regulated transcript (CART). CCK injections induced a decrease in brain apelin injections, apelin injections induced an increase in TH, mTOR, and orexin brain expressions, orexin treatment increased brain TH expression and ghrelin injections induced an increase in mTOR and orexin brain expressions. CART expression was not affected by any of the injection treatments. Our results suggest that the enzymes TH and mTOR and the hormones CCK, apelin, orexin, and ghrelin all regulate food intake in cavefish through a complex network of interactions.
Collapse
Affiliation(s)
- Carla C Penney
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
43
|
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. To date, there is no effective treatment that halts its progression. Increasing evidence indicates that mitochondria play an important role in the development of PD. Hence mitochondria-targeted approaches or agents may have therapeutic promise for treatment of the disease. Neuropeptide CART (cocaine-amphetamine-regulated transcript), a hypothalamus and midbrain enriched neurotransmitter with an antioxidant property, can be found in mitochondria, which is the main source of reactive oxygen species. Systemic administration of CART has been found to ameliorate dopaminergic neuronal loss and improve motor functions in a mouse model of PD. In this article, we summarize recent progress in studies investigating the relationship between CART, dopamine, and the pathophysiology of PD, with a focus on mitochondria-related topics.
Collapse
|
44
|
A cocaine-regulated and amphetamine-regulated transcript inhibits oxidative stress in neurons deprived of oxygen and glucose. Neuroreport 2013; 24:698-703. [DOI: 10.1097/wnr.0b013e328363f7a1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Volkoff H. The effects of amphetamine injections on feeding behavior and the brain expression of orexin, CART, tyrosine hydroxylase (TH) and thyrotropin releasing hormone (TRH) in goldfish (Carassius auratus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:979-991. [PMID: 23229307 DOI: 10.1007/s10695-012-9756-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/01/2012] [Indexed: 06/01/2023]
Abstract
In this study, the effects of peripheral (intraperitoneal) injections of D-amphetamine on feeding behavior were assessed in goldfish. Compared with the saline-injected group, amphetamine injections decreased food intake at doses ranging from 1 to 75 μg/g, but not 0.5 μg/g, but increased locomotor behavior, as indicated by the increased number of total feeding and non-feeding acts, at doses ranging from 2.5 to 25 μg/g. Amphetamine at high doses inhibited both food intake (at 25, 50 and 75 μg/g) and feeding behavior (at 75 μg/g). In the hypothalamus, the expression of orexin was down-regulated, and both CART 1 and CART 2 expressions were up-regulated in amphetamine-treated fish (50 μg/g) as compared to saline-injected fish, but amphetamine treatment had no effect on either hypothalamic TH or TRH expression. In the telencephalon, amphetamine treatment (50 μg/g) up-regulated CART 1, CART 2 and TH mRNA expressions but had no effect on either orexin or TRH. Our results suggest that, as in mammals, the orexin, CART and TH systems might be involved in amphetamine-induced feeding/locomotor responses in goldfish.
Collapse
Affiliation(s)
- Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
46
|
Selvaraju S, Folger JK, Gupta PSP, Ireland JJ, Smith GW. Stage-specific expression and effect of bone morphogenetic protein 2 on bovine granulosa cell estradiol production: regulation by cocaine and amphetamine regulated transcript. Domest Anim Endocrinol 2013; 44:115-20. [PMID: 23313114 DOI: 10.1016/j.domaniend.2012.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 11/25/2022]
Abstract
Members of the bone morphogenetic protein (BMP) family regulate follicular development and granulosa cell function. However, changes in expression of BMP2 and its receptors during follicular waves in cattle and ability of BMP2 to modulate bovine granulosa cell estradiol production are not well understood. The objectives of this study were to determine temporal regulation of mRNA for BMP2 and its type I and II receptors (BMPR1A and BMPR2) in bovine follicles collected at specific stages of a follicular wave (predeviation, early dominance, mid dominance, preovulatory), ability of BMP2 to modulate bovine granulosa cell steroidogenesis, and whether effects of BMP2 on granulosa cell estradiol production are influenced by cotreatment with cocaine- and amphetamine-regulated transcript (CART), an intrafollicular regulatory peptide shown to inhibit estradiol production in response to other trophic hormones (FSH and IGF1). Relative abundance of mRNAs for Bmp2 and Bmpr2 was elevated at the mid dominance stage relative to earlier stages of the follicular wave and further increased at the preovulatory stage. Abundance of mRNA for Bmpr1a was lowest at early dominance stage and highest at preovulatory stage relative to other stages of the follicular wave examined. Treatment of bovine granulosa cells in vitro with BMP2 increased estradiol but decreased progesterone concentrations. Co-incubation with CART reduced the BMP2-stimulated increase in granulosa cell estradiol production. Results suggest that BMP2 may play a regulatory role in development of bovine follicles to the preovulatory stage and that CART can inhibit granulosa cell estradiol production in response to multiple hormones/growth factors, including BMP2.
Collapse
Affiliation(s)
- S Selvaraju
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
47
|
Blechová M, Nagelová V, Záková L, Demianová Z, Zelezná B, Maletínská L. New analogs of the CART peptide with anorexigenic potency: the importance of individual disulfide bridges. Peptides 2013; 39:138-44. [PMID: 23174349 DOI: 10.1016/j.peptides.2012.09.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 11/17/2022]
Abstract
The CART (cocaine- and amphetamine-regulated transcript) peptide is an anorexigenic neuropeptide that acts in the hypothalamus. The receptor and the mechanism of action of this peptide are still unknown. In our previous study, we showed that the CART peptide binds specifically to PC12 rat pheochromocytoma cells in both the native and differentiated into neuronal phenotype. Two biologically active forms, CART(55-102) and CART(61-102), with equal biological activity, contain three disulfide bridges. To clarify the importance of each of these disulfide bridges in maintaining the biological activity of CART(61-102), an Ala scan at particular S-S bridges forming cysteines was performed, and analogs with only one or two disulfide bridges were synthesized. In this study, a stabilized CART(61-102) analog with norleucine instead of methionine at position 67 was also prepared and was found to bind to PC12 cells with an anorexigenic potency similar to that of CART(61-102). The binding study revealed that out of all analogs tested, [Ala(68,86)]CART(61-102), which contains two disulfide bridges (positions 74-94 and 88-101), preserved a high affinity to both native PC12 cells and those that had been differentiated into neurons. In food intake and behavioral tests with mice after intracerebroventricular administration, this analog showed strong and long-lasting anorexigenic potency. Therefore, the disulfide bridge between cysteines 68 and 86 in CART(61-102) can be omitted without a loss of biological activity, but the preservation of two other disulfide bridges and the full-length peptide are essential for biological activity.
Collapse
Affiliation(s)
- Miroslava Blechová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
48
|
Hu G. Neuron damage and protection. Introduction. Clin Exp Pharmacol Physiol 2012; 39:564-5. [PMID: 22490086 DOI: 10.1111/j.1440-1681.2012.05710.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gang Hu
- Nanjing Medical University, Nanjing, China.
| |
Collapse
|