1
|
Chen J, Han Z, Wang Z, Chen L, Wang S, Yao W, Xue Z. Identification of immune traits associated with neurodevelopmental disorders by two-sample Mendelian randomization analysis. BMC Psychiatry 2024; 24:728. [PMID: 39448971 PMCID: PMC11515564 DOI: 10.1186/s12888-024-06148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND One of the main causes of health-related issues in children is neurodevelopmental disorders (NDDs), which include attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and Tourette syndrome (TS). Nonetheless, there is relatively little prior research looking at the link between immunological inflammation and NDDs. Our work uses a two-sample Mendelian Randomization (MR) approach to provide a thorough evaluation of the causal effects of immune traits on ADHD, ASD, and TS. METHODS As exposures, 731 immunological traits' genetic associations were chosen, and the outcomes were genome-wide association data for ADHD, ASD, and TS. The inverse-variance weighted (IVW), weighted median (WM), and MR-Egger methods were used to conduct MR analysis. The results' robustness, heterogeneity, and horizontal pleiotropy were confirmed using extensive sensitivity analysis. RESULTS With single-nucleotide polymorphisms serving as instruments and false discovery rate (FDR) correction applied, the study found that significantly higher expression of CD62L on CD62L+ myeloid DC (IVW, OR: 0.926, 95% CI 0.896~0.958, P = 9.42 × 10-6, FDR = 0.007) and suggestively higher absolute cell count (AC) of CD28 + DN (CD4-CD8-) (IVW, OR: 0.852, 95% CI = 0.780 ∼ 0.932, P-value = 4.65 × 10-4, FDR = 0.170) was associated with a lower risk of ADHD. There was no pleiotropy, and the causal relationships were strong according to sensitivity, leave-one-out, and MR-Steiger directionality tests. For ASD and TS, no harmful or protective immune traits were observed. CONCLUSIONS The results of the study lend credence to the theory that deficiency in CD62L on CD62L+ myeloid DC and CD28 + DN (CD4-CD8) AC may contribute to the onset of ADHD.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Shanghai, People's Republic of China
- Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zhaopeng Han
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Shanghai, People's Republic of China
| | - Zhuiyue Wang
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Shanghai, People's Republic of China
| | - Lifei Chen
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Shanghai, People's Republic of China
| | - Shuxia Wang
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Shanghai, People's Republic of China
| | - Wenbo Yao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Shanghai, People's Republic of China.
| | - Zheng Xue
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Shanghai, People's Republic of China.
| |
Collapse
|
2
|
Gaire BP, Koronyo Y, Fuchs DT, Shi H, Rentsendorj A, Danziger R, Vit JP, Mirzaei N, Doustar J, Sheyn J, Hampel H, Vergallo A, Davis MR, Jallow O, Baldacci F, Verdooner SR, Barron E, Mirzaei M, Gupta VK, Graham SL, Tayebi M, Carare RO, Sadun AA, Miller CA, Dumitrascu OM, Lahiri S, Gao L, Black KL, Koronyo-Hamaoui M. Alzheimer's disease pathophysiology in the Retina. Prog Retin Eye Res 2024; 101:101273. [PMID: 38759947 PMCID: PMC11285518 DOI: 10.1016/j.preteyeres.2024.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
The retina is an emerging CNS target for potential noninvasive diagnosis and tracking of Alzheimer's disease (AD). Studies have identified the pathological hallmarks of AD, including amyloid β-protein (Aβ) deposits and abnormal tau protein isoforms, in the retinas of AD patients and animal models. Moreover, structural and functional vascular abnormalities such as reduced blood flow, vascular Aβ deposition, and blood-retinal barrier damage, along with inflammation and neurodegeneration, have been described in retinas of patients with mild cognitive impairment and AD dementia. Histological, biochemical, and clinical studies have demonstrated that the nature and severity of AD pathologies in the retina and brain correspond. Proteomics analysis revealed a similar pattern of dysregulated proteins and biological pathways in the retina and brain of AD patients, with enhanced inflammatory and neurodegenerative processes, impaired oxidative-phosphorylation, and mitochondrial dysfunction. Notably, investigational imaging technologies can now detect AD-specific amyloid deposits, as well as vasculopathy and neurodegeneration in the retina of living AD patients, suggesting alterations at different disease stages and links to brain pathology. Current and exploratory ophthalmic imaging modalities, such as optical coherence tomography (OCT), OCT-angiography, confocal scanning laser ophthalmoscopy, and hyperspectral imaging, may offer promise in the clinical assessment of AD. However, further research is needed to deepen our understanding of AD's impact on the retina and its progression. To advance this field, future studies require replication in larger and diverse cohorts with confirmed AD biomarkers and standardized retinal imaging techniques. This will validate potential retinal biomarkers for AD, aiding in early screening and monitoring.
Collapse
Affiliation(s)
- Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ron Danziger
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jean-Philippe Vit
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jonah Doustar
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Miyah R Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ousman Jallow
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Filippo Baldacci
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | | | - Ernesto Barron
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia; Department of Clinical Medicine, Macquarie University, Sydney, NSW, Australia
| | - Mourad Tayebi
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Roxana O Carare
- Department of Clinical Neuroanatomy, University of Southampton, Southampton, UK
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Carol A Miller
- Department of Pathology Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Shouri Lahiri
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Liang Gao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Zhang Q, Yang G, Luo Y, Jiang L, Chi H, Tian G. Neuroinflammation in Alzheimer's disease: insights from peripheral immune cells. Immun Ageing 2024; 21:38. [PMID: 38877498 PMCID: PMC11177389 DOI: 10.1186/s12979-024-00445-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Alzheimer's disease (AD) is a serious brain disorder characterized by the presence of beta-amyloid plaques, tau pathology, inflammation, neurodegeneration, and cerebrovascular dysfunction. The presence of chronic neuroinflammation, breaches in the blood-brain barrier (BBB), and increased levels of inflammatory mediators are central to the pathogenesis of AD. These factors promote the penetration of immune cells into the brain, potentially exacerbating clinical symptoms and neuronal death in AD patients. While microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in AD, recent evidence suggests the infiltration of cerebral vessels and parenchyma by peripheral immune cells, including neutrophils, T lymphocytes, B lymphocytes, NK cells, and monocytes in AD. These cells participate in the regulation of immunity and inflammation, which is expected to play a huge role in future immunotherapy. Given the crucial role of peripheral immune cells in AD, this article seeks to offer a comprehensive overview of their contributions to neuroinflammation in the disease. Understanding the role of these cells in the neuroinflammatory response is vital for developing new diagnostic markers and therapeutic targets to enhance the diagnosis and treatment of AD patients.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, USA
| | - Yuan Luo
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, China
| | - Lai Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China.
| | - Gang Tian
- Department of Laboratory Medicine, Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China.
| |
Collapse
|
4
|
Poxleitner M, Hoffmann SHL, Berezhnoy G, Ionescu TM, Gonzalez-Menendez I, Maier FC, Seyfried D, Ehrlichmann W, Quintanilla-Martinez L, Schmid AM, Reischl G, Trautwein C, Maurer A, Pichler BJ, Herfert K, Beziere N. Western diet increases brain metabolism and adaptive immune responses in a mouse model of amyloidosis. J Neuroinflammation 2024; 21:129. [PMID: 38745337 PMCID: PMC11092112 DOI: 10.1186/s12974-024-03080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/29/2024] [Indexed: 05/16/2024] Open
Abstract
Diet-induced increase in body weight is a growing health concern worldwide. Often accompanied by a low-grade metabolic inflammation that changes systemic functions, diet-induced alterations may contribute to neurodegenerative disorder progression as well. This study aims to non-invasively investigate diet-induced metabolic and inflammatory effects in the brain of an APPPS1 mouse model of Alzheimer's disease. [18F]FDG, [18F]FTHA, and [18F]GE-180 were used for in vivo PET imaging in wild-type and APPPS1 mice. Ex vivo flow cytometry and histology in brains complemented the in vivo findings. 1H- magnetic resonance spectroscopy in the liver, plasma metabolomics and flow cytometry of the white adipose tissue were used to confirm metaflammatory condition in the periphery. We found disrupted glucose and fatty acid metabolism after Western diet consumption, with only small regional changes in glial-dependent neuroinflammation in the brains of APPPS1 mice. Further ex vivo investigations revealed cytotoxic T cell involvement in the brains of Western diet-fed mice and a disrupted plasma metabolome. 1H-magentic resonance spectroscopy and immunological results revealed diet-dependent inflammatory-like misbalance in livers and fatty tissue. Our multimodal imaging study highlights the role of the brain-liver-fat axis and the adaptive immune system in the disruption of brain homeostasis in amyloid models of Alzheimer's disease.
Collapse
Affiliation(s)
- Marilena Poxleitner
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sabrina H L Hoffmann
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Georgy Berezhnoy
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Tudor M Ionescu
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Irene Gonzalez-Menendez
- Department of Pathology and Neuropathology, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Florian C Maier
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Dominik Seyfried
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Walter Ehrlichmann
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Department of Pathology and Neuropathology, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Andreas M Schmid
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Gerald Reischl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Kristina Herfert
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - Nicolas Beziere
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany.
- Cluster of Excellence CMFI (EXC 2124) "Controlling Microbes to Fight Infections", Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
5
|
Cuní-López C, Stewart R, Oikari LE, Nguyen TH, Roberts TL, Sun Y, Guo CC, Lupton MK, White AR, Quek H. Advanced patient-specific microglia cell models for pre-clinical studies in Alzheimer's disease. J Neuroinflammation 2024; 21:50. [PMID: 38365833 PMCID: PMC10870454 DOI: 10.1186/s12974-024-03037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is an incurable neurodegenerative disorder with a rapidly increasing prevalence worldwide. Current approaches targeting hallmark pathological features of AD have had no consistent clinical benefit. Neuroinflammation is a major contributor to neurodegeneration and hence, microglia, the brain's resident immune cells, are an attractive target for potentially more effective therapeutic strategies. However, there is no current in vitro model system that captures AD patient-specific microglial characteristics using physiologically relevant and experimentally flexible culture conditions. METHODS To address this shortcoming, we developed novel 3D Matrigel-based monocyte-derived microglia-like cell (MDMi) mono-cultures and co-cultures with neuro-glial cells (ReNcell VM). We used single-cell RNA sequencing (scRNAseq) analysis to compare the transcriptomic signatures of MDMi between model systems (2D, 3D and 3D co-culture) and against published human microglia datasets. To demonstrate the potential of MDMi for use in personalized pre-clinical strategies, we generated and characterized MDMi models from sixteen AD patients and matched healthy controls, and profiled cytokine responses upon treatment with anti-inflammatory drugs (dasatinib and spiperone). RESULTS MDMi in 3D exhibited a more branched morphology and longer survival in culture compared to 2D. scRNAseq uncovered distinct MDMi subpopulations that exhibit higher functional heterogeneity and best resemble human microglia in 3D co-culture. AD MDMi in 3D co-culture showed altered cell-to-cell interactions, growth factor and cytokine secretion profiles and responses to amyloid-β. Drug testing assays revealed patient- and model-specific cytokine responses. CONCLUSION Our study presents a novel, physiologically relevant and AD patient-specific 3D microglia cell model that opens avenues towards improving personalized drug development strategies in AD.
Collapse
Affiliation(s)
- Carla Cuní-López
- Mental Health and Neuroscience Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, 4006, Australia
| | - Romal Stewart
- Mental Health and Neuroscience Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- UQ Centre for Clinical Research, The University of Queensland, Brisbane City, QLD, 4029, Australia
| | - Lotta E Oikari
- Mental Health and Neuroscience Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane City, QLD, 4000, Australia
| | - Tam Hong Nguyen
- Scientific Services, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Tara L Roberts
- UQ Centre for Clinical Research, The University of Queensland, Brisbane City, QLD, 4029, Australia
- Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW, 2170, Australia
| | - Yifan Sun
- Mental Health and Neuroscience Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Christine C Guo
- Mental Health and Neuroscience Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- ActiGraph LLC, Pensacola, FL, 32502, USA
| | - Michelle K Lupton
- Mental Health and Neuroscience Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, 4006, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane City, QLD, 4000, Australia
| | - Anthony R White
- Mental Health and Neuroscience Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia.
- Faculty of Medicine, The University of Queensland, Herston, QLD, 4006, Australia.
| | - Hazel Quek
- Mental Health and Neuroscience Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia.
- School of Biomedical Sciences, The University of Queensland, Lucia, QLD, 4072, Australia.
- School of Biomedical Sciences, Queensland University of Technology, Brisbane City, QLD, 4000, Australia.
| |
Collapse
|
6
|
Huang Z, Gong Z, Lin Y, Yang F, Chen W, Xiang S, Huang Y, Xiao H, Xu S, Duan J. Treatment with glatiramer acetate in APPswe/PS1dE9 mice at an early stage of Alzheimer's disease prior to amyloid-beta deposition delays the disease's pathological development and ameliorates cognitive decline. Front Aging Neurosci 2024; 16:1267780. [PMID: 38352237 PMCID: PMC10861656 DOI: 10.3389/fnagi.2024.1267780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024] Open
Abstract
Background Alzheimer's disease (AD) is characterized by neuroinflammation, which is frequently accompanied by immune system dysfunction. Although the mechanism of neurodegenerative lesions is unclear, various clinical trials have highlighted that early intervention in AD is crucial to the success of treatment. In order to explore the potential of immunotherapy in the early period of AD, the present study evaluated whether application of glatiramer acetate (GA), an immunomodulatory agent approved for remitting-relapsing multiple sclerosis (RRMS), in the early stages of AD prior to amyloid beta (Aβ) deposition altered the Aβ pathology and cognitive impairments in APPswe/PSEN1dE9 (APP/PS1) transgenic mice. Methods We treated two cohorts of pre-depositing and amyloid-depositing (2- and 6-month-old) APP/PS1 mice with weekly-GA subcutaneous injection over a 12-week period. We then tested spatial learning and memory using the Morris water maze (MWM) and the Y maze. Immunohistochemistry staining was utilized to analyze Aβ burden in the brain as well as activated microglia. Furthermore, the inflammatory cytokine milieu within brains was estimated by quantitative real-time polymerase chain reaction, and the peripheral CD4+CD25+Foxp3+ regulatory T cells (Tregs) in the spleen were measured by flow cytometry. Results We found that early GA administration reduced Aβ burden and ameliorated cognitive decline. Meanwhile, the immune microenvironment had changed in the brain, with an increase in the production of anti-inflammatory cytokines and a decrease in microglial activation. Interestingly, early GA administration also modulated the peripheral immune system through the amplification of Tregs in the spleen. Conclusion Overall, our findings revealed that GA treatment might enhance the central and peripheral immune systems' protective capabilities in the early stages of AD, eventually improving cognitive deficits. Our research supports the advantages of immunomodulatory treatments for AD at an early stage.
Collapse
Affiliation(s)
- Zengyong Huang
- Eastern Department of Neurology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangdong Geriatrics Institute and Guangdong Cardiovascular Institute, Southern Medical University, Guangzhou, China
- Shantou Central Hospital, Shantou, China
| | - Zhuo Gong
- Shantou Central Hospital, Shantou, China
| | - Yongtai Lin
- Eastern Department of Neurology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangdong Geriatrics Institute and Guangdong Cardiovascular Institute, Southern Medical University, Guangzhou, China
| | - Fan Yang
- Eastern Department of Neurology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangdong Geriatrics Institute and Guangdong Cardiovascular Institute, Southern Medical University, Guangzhou, China
| | - Weiping Chen
- Eastern Department of Neurology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangdong Geriatrics Institute and Guangdong Cardiovascular Institute, Southern Medical University, Guangzhou, China
| | - Shaotong Xiang
- Eastern Department of Neurology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangdong Geriatrics Institute and Guangdong Cardiovascular Institute, Southern Medical University, Guangzhou, China
| | - Yuedong Huang
- Eastern Department of Neurology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangdong Geriatrics Institute and Guangdong Cardiovascular Institute, Southern Medical University, Guangzhou, China
| | - Hao Xiao
- Eastern Department of Neurology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangdong Geriatrics Institute and Guangdong Cardiovascular Institute, Southern Medical University, Guangzhou, China
| | - Shuwen Xu
- Eastern Department of Neurology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangdong Geriatrics Institute and Guangdong Cardiovascular Institute, Southern Medical University, Guangzhou, China
| | - Jinhai Duan
- Eastern Department of Neurology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangdong Geriatrics Institute and Guangdong Cardiovascular Institute, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Li C, Liu K, Zhu J, Zhu F. The effects of high plasma levels of Aβ 1-42 on mononuclear macrophage in mouse models of Alzheimer's disease. Immun Ageing 2023; 20:39. [PMID: 37525137 PMCID: PMC10388532 DOI: 10.1186/s12979-023-00366-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
More and more evidences are proving that microglia play a crucial role in the pathogenesis of Alzheimer's disease (AD) and the plasma Aβ1-42 levels significantly increased 15 years before the onset of dominantly inherited AD. However, the effects of high plasma levels of Aβ1-42 on mononuclear macrophage, the peripheral counterparts of microglia, remain unclear. In the present study, we used APP/PS1 transgenic (Tg) mice and a parabiotic model of wild type (Wt) mice and Tg mice (Parabiotic Wt-Tg, Pa (Wt-Tg)) to investigate the effects of high plasma levels of Aβ1-42 on peripheral mononuclear macrophage. Our results showed that in the early stage of Tg mice (7 months) and Pa (Wt-Tg) mice (4 months), the proportions of pro-inflammatory macrophages in peritoneal cavity, myeloid derived suppressor cells (MDSCs) in spleen, granulocyte-monocyte progenitors (GMPs) in bone marrow, and the plasma levels of interleukin-6 (IL-6) were significantly decreased. While the proportions of pro-inflammatory macrophages, MDSCs, GMPs, and the plasma levels of IL-6 and tumor necrosis factor (TNF)-α, as well as the numbers of bone marrow-derived macrophages (BMDMs) in mice brain were increased in the late stage of Tg mice (11 months) and Pa (Wt-Tg) mice (8 months). In addition, the proportions of monocytes in spleen and the proliferation of bone marrow cells (BMCs) were enhanced consistently, and the phagocytic function of macrophages kept stably after high plasma levels of Aβ1-42 sustaining stimulation. These results demonstrated that high plasma levels of Aβ1-42 play a biphasic regulating role at different stages of the disease, namely inhibiting effects on peripheral pro-inflammatory macrophages in the early stage of AD model, while promoting effects in the late stage of AD model. The mechanism behind this may be associated with their effects on MDSCs in spleen and myeloid progenitor cells in bone marrow. Therefore, intervening the effects of plasma Aβ1-42 on pro-inflammatory macrophages might offer a new therapeutic approach to AD.
Collapse
Affiliation(s)
- Chunrong Li
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021, China
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518055, China
| | - Kangding Liu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021, China
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
8
|
Danziger R, Fuchs DT, Koronyo Y, Rentsendorj A, Sheyn J, Hayden EY, Teplow DB, Black KL, Fuchs S, Bernstein KE, Koronyo-Hamaoui M. The effects of enhancing angiotensin converting enzyme in myelomonocytes on ameliorating Alzheimer's-related disease and preserving cognition. Front Physiol 2023; 14:1179315. [PMID: 37427403 PMCID: PMC10326285 DOI: 10.3389/fphys.2023.1179315] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
This review examines the role of angiotensin-converting enzyme (ACE) in the context of Alzheimer's disease (AD) and its potential therapeutic value. ACE is known to degrade the neurotoxic 42-residue long alloform of amyloid β-protein (Aβ42), a peptide strongly associated with AD. Previous studies in mice, demonstrated that targeted overexpression of ACE in CD115+ myelomonocytic cells (ACE10 models) improved their immune responses to effectively reduce viral and bacterial infection, tumor growth, and atherosclerotic plaque. We further demonstrated that introducing ACE10 myelomonocytes (microglia and peripheral monocytes) into the double transgenic APPSWE/PS1ΔE9 murine model of AD (AD+ mice), diminished neuropathology and enhanced the cognitive functions. These beneficial effects were dependent on ACE catalytic activity and vanished when ACE was pharmacologically blocked. Moreover, we revealed that the therapeutic effects in AD+ mice can be achieved by enhancing ACE expression in bone marrow (BM)-derived CD115+ monocytes alone, without targeting central nervous system (CNS) resident microglia. Following blood enrichment with CD115+ ACE10-monocytes versus wild-type (WT) monocytes, AD+ mice had reduced cerebral vascular and parenchymal Aβ burden, limited microgliosis and astrogliosis, as well as improved synaptic and cognitive preservation. CD115+ ACE10-versus WT-monocyte-derived macrophages (Mo/MΦ) were recruited in higher numbers to the brains of AD+ mice, homing to Aβ plaque lesions and exhibiting a highly Aβ-phagocytic and anti-inflammatory phenotype (reduced TNFα/iNOS and increased MMP-9/IGF-1). Moreover, BM-derived ACE10-Mo/MΦ cultures had enhanced capability to phagocytose Aβ42 fibrils, prion-rod-like, and soluble oligomeric forms that was associated with elongated cell morphology and expression of surface scavenger receptors (i.e., CD36, Scara-1). This review explores the emerging evidence behind the role of ACE in AD, the neuroprotective properties of monocytes overexpressing ACE and the therapeutic potential for exploiting this natural mechanism for ameliorating AD pathogenesis.
Collapse
Affiliation(s)
- Ron Danziger
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
| | - Eric Y. Hayden
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer’s Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, United States
| | - David B. Teplow
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer’s Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, United States
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
| | - Sebastien Fuchs
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Kenneth E. Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
9
|
Rentsendorj A, Raedschelders K, Fuchs DT, Sheyn J, Vaibhav V, Porritt RA, Shi H, Dagvadorj J, de Freitas Germano J, Koronyo Y, Arditi M, Black KL, Gaire BP, Van Eyk JE, Koronyo-Hamaoui M. Osteopontin depletion in macrophages perturbs proteostasis via regulating UCHL1-UPS axis and mitochondria-mediated apoptosis. Front Immunol 2023; 14:1155935. [PMID: 37325640 PMCID: PMC10266348 DOI: 10.3389/fimmu.2023.1155935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Osteopontin (OPN; also known as SPP1), an immunomodulatory cytokine highly expressed in bone marrow-derived macrophages (BMMΦ), is known to regulate diverse cellular and molecular immune responses. We previously revealed that glatiramer acetate (GA) stimulation of BMMΦ upregulates OPN expression, promoting an anti-inflammatory, pro-healing phenotype, whereas OPN inhibition triggers a pro-inflammatory phenotype. However, the precise role of OPN in macrophage activation state is unknown. Methods Here, we applied global proteome profiling via mass spectrometry (MS) analysis to gain a mechanistic understanding of OPN suppression versus induction in primary macrophage cultures. We analyzed protein networks and immune-related functional pathways in BMMΦ either with OPN knockout (OPNKO) or GA-mediated OPN induction compared with wild type (WT) macrophages. The most significant differentially expressed proteins (DEPs) were validated using immunocytochemistry, western blot, and immunoprecipitation assays. Results and discussion We identified 631 DEPs in OPNKO or GA-stimulated macrophages as compared to WT macrophages. The two topmost downregulated DEPs in OPNKO macrophages were ubiquitin C-terminal hydrolase L1 (UCHL1), a crucial component of the ubiquitin-proteasome system (UPS), and the anti-inflammatory Heme oxygenase 1 (HMOX-1), whereas GA stimulation upregulated their expression. We found that UCHL1, previously described as a neuron-specific protein, is expressed by BMMΦ and its regulation in macrophages was OPN-dependent. Moreover, UCHL1 interacted with OPN in a protein complex. The effects of GA activation on inducing UCHL1 and anti-inflammatory macrophage profiles were mediated by OPN. Functional pathway analyses revealed two inversely regulated pathways in OPN-deficient macrophages: activated oxidative stress and lysosome-mitochondria-mediated apoptosis (e.g., ROS, Lamp1-2, ATP-synthase subunits, cathepsins, and cytochrome C and B subunits) and inhibited translation and proteolytic pathways (e.g., 60S and 40S ribosomal subunits and UPS proteins). In agreement with the proteome-bioinformatics data, western blot and immunocytochemical analyses revealed that OPN deficiency perturbs protein homeostasis in macrophages-inhibiting translation and protein turnover and inducing apoptosis-whereas OPN induction by GA restores cellular proteostasis. Taken together, OPN is essential for macrophage homeostatic balance via the regulation of protein synthesis, UCHL1-UPS axis, and mitochondria-mediated apoptotic processes, indicating its potential application in immune-based therapies.
Collapse
Affiliation(s)
- Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Koen Raedschelders
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Vineet Vaibhav
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Rebecca A. Porritt
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | | | | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Moshe Arditi
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jennifer E. Van Eyk
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
10
|
Tsuda M, Masuda T, Kohno K. Microglial diversity in neuropathic pain. Trends Neurosci 2023:S0166-2236(23)00124-8. [PMID: 37244781 DOI: 10.1016/j.tins.2023.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
Microglia play pivotal roles in controlling CNS functions in diverse physiological and pathological contexts, including neuropathic pain, a chronic pain condition caused by lesions or diseases of the somatosensory nervous system. In this review article, we summarize evidence primarily from basic research on the role of microglia in the development and remission of neuropathic pain. The identification of a subset of microglia that emerged after pain development and that was necessary for remission of neuropathic pain highlights the highly divergent and dynamic nature of microglia in the course of neuropathic pain. Understanding microglial diversity in terms of gene expression, physiological states, and functional roles could lead to new strategies that aid in the diagnosis and management of neuropathic pain, and that may not have been anticipated from the viewpoint of targeting all microglia uniformly.
Collapse
Affiliation(s)
- Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Kyushu University Institute for Advanced Study, Fukuoka, Japan.
| | - Takahiro Masuda
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keita Kohno
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
Wijesinghe P, Whitmore CA, Campbell M, Li C, Tsuyuki M, To E, Haynes J, Pham W, Matsubara JA. Ergothioneine, a dietary antioxidant improves amyloid beta clearance in the neuroretina of a mouse model of Alzheimer’s disease. Front Neurosci 2023; 17:1107436. [PMID: 36998724 PMCID: PMC10043244 DOI: 10.3389/fnins.2023.1107436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/02/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionErgothioneine (Ergo) is a naturally occurring dietary antioxidant. Ergo uptake is dependent on the transporter, organic cation transporter novel-type 1 (OCTN1) distribution. OCTN1 is highly expressed in blood cells (myeloid lineage cells), brain and ocular tissues that are likely predisposed to oxidative stress. Ergo may protect the brain and eye against oxidative damage and inflammation, however, the underlying mechanism remains unclear. Amyloid beta (Aβ) clearance is a complex process mediated by various systems and cell types including vascular transport across the blood–brain barrier, glymphatic drainage, and engulfment and degradation by resident microglia and infiltrating innate immune cells. Impaired Aβ clearance is a major cause for Alzheimer’s disease (AD). Here we investigated neuroretinas to explore the neuroprotective effect of Ergo in a transgenic AD mouse model.MethodsAge-matched groups of Ergo-treated 5XFAD, non-treated 5XFAD, and C57BL/6J wildtype (WT controls) were used to assess Ergo transporter OCTN1 expression and Aβ load along with microglia/macrophage (IBA1) and astrocyte (GFAP) markers in wholemount neuroretinas (n = 26) and eye cross-sections (n = 18). Immunoreactivity was quantified by fluorescence or by semi-quantitative assessments.Results and discussionOCTN1 immunoreactivity was significantly low in the eye cross-sections of Ergo-treated and non-treated 5XFAD vs. WT controls. Strong Aβ labeling, detected in the superficial layers in the wholemounts of Ergo-treated 5XFAD vs. non-treated 5XFAD reflects the existence of an effective Aβ clearance system. This was supported by imaging of cross-sections where Aβ immunoreactivity was significantly low in the neuroretina of Ergo-treated 5XFAD vs. non-treated 5XFAD. Moreover, semi-quantitative analysis in wholemounts identified a significantly reduced number of large Aβ deposits or plaques, and a significantly increased number of IBA1(+)ve blood-derived phagocytic macrophages in Ergo-treated 5XFAD vs. non-treated 5XFAD. In sum, enhanced Aβ clearance in Ergo-treated 5XFAD suggests that Ergo uptake may promote Aβ clearance possibly by blood-derived phagocytic macrophages and via perivascular drainage.
Collapse
Affiliation(s)
- Printha Wijesinghe
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, Eye Care Centre, The University of British Columbia, Vancouver, BC, Canada
| | - Clayton A. Whitmore
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Matthew Campbell
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, Eye Care Centre, The University of British Columbia, Vancouver, BC, Canada
| | - Charles Li
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, Eye Care Centre, The University of British Columbia, Vancouver, BC, Canada
| | - Miranda Tsuyuki
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, Eye Care Centre, The University of British Columbia, Vancouver, BC, Canada
| | - Eleanor To
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, Eye Care Centre, The University of British Columbia, Vancouver, BC, Canada
| | - Justin Haynes
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Wellington Pham
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Joanne A. Matsubara
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, Eye Care Centre, The University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Joanne A. Matsubara,
| |
Collapse
|
12
|
Suzzi S, Croese T, Ravid A, Gold O, Clark AR, Medina S, Kitsberg D, Adam M, Vernon KA, Kohnert E, Shapira I, Malitsky S, Itkin M, Brandis A, Mehlman T, Salame TM, Colaiuta SP, Cahalon L, Slyper M, Greka A, Habib N, Schwartz M. N-acetylneuraminic acid links immune exhaustion and accelerated memory deficit in diet-induced obese Alzheimer's disease mouse model. Nat Commun 2023; 14:1293. [PMID: 36894557 PMCID: PMC9998639 DOI: 10.1038/s41467-023-36759-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
Systemic immunity supports lifelong brain function. Obesity posits a chronic burden on systemic immunity. Independently, obesity was shown as a risk factor for Alzheimer's disease (AD). Here we show that high-fat obesogenic diet accelerated recognition-memory impairment in an AD mouse model (5xFAD). In obese 5xFAD mice, hippocampal cells displayed only minor diet-related transcriptional changes, whereas the splenic immune landscape exhibited aging-like CD4+ T-cell deregulation. Following plasma metabolite profiling, we identified free N-acetylneuraminic acid (NANA), the predominant sialic acid, as the metabolite linking recognition-memory impairment to increased splenic immune-suppressive cells in mice. Single-nucleus RNA-sequencing revealed mouse visceral adipose macrophages as a potential source of NANA. In vitro, NANA reduced CD4+ T-cell proliferation, tested in both mouse and human. In vivo, NANA administration to standard diet-fed mice recapitulated high-fat diet effects on CD4+ T cells and accelerated recognition-memory impairment in 5xFAD mice. We suggest that obesity accelerates disease manifestation in a mouse model of AD via systemic immune exhaustion.
Collapse
Grants
- R01 DK095045 NIDDK NIH HHS
- R01 DK099465 NIDDK NIH HHS
- the Vera and John Schwartz Family Center for Metabolic Biology.
- the National Institutes of Health (NIH) grants DK095045 and DK099465, the Cure Alzheimer’s Fund, the Chan Zuckerberg Foundation, and the Carlos Slim Foundation.
- the Israel Science Foundation (ISF) research grant no. 1709/19, the European Research Council grant 853409, the MOST-IL-China research grant no. 3-15687, and the Myers Foundation. N.H. holds the Goren-Khazzam chair in neuroscience.
- the Advanced European Research Council grants 232835 and 741744, the European Seventh Framework Program HEALTH-2011 (279017), the Israel Science Foundation (ISF)-research grant no. 991/16, the ISF-Legacy Heritage Bio-medical Science Partnership research grant no. 1354/15, and the Thompson Foundation and Adelis Foundation.
Collapse
Affiliation(s)
- Stefano Suzzi
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel.
| | - Tommaso Croese
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Adi Ravid
- The Hebrew University of Jerusalem, Edmond & Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Or Gold
- The Hebrew University of Jerusalem, Edmond & Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Abbe R Clark
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sedi Medina
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Daniel Kitsberg
- The Hebrew University of Jerusalem, Edmond & Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Miriam Adam
- The Hebrew University of Jerusalem, Edmond & Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Katherine A Vernon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Eva Kohnert
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Inbar Shapira
- The Hebrew University of Jerusalem, Edmond & Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Sergey Malitsky
- Weizmann Institute of Science, Life Sciences Core Facilities, Rehovot, Israel
| | - Maxim Itkin
- Weizmann Institute of Science, Life Sciences Core Facilities, Rehovot, Israel
| | - Alexander Brandis
- Weizmann Institute of Science, Life Sciences Core Facilities, Rehovot, Israel
| | - Tevie Mehlman
- Weizmann Institute of Science, Life Sciences Core Facilities, Rehovot, Israel
| | - Tomer M Salame
- Weizmann Institute of Science, Life Sciences Core Facilities, Rehovot, Israel
| | - Sarah P Colaiuta
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Liora Cahalon
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Michal Slyper
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Anna Greka
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Naomi Habib
- The Hebrew University of Jerusalem, Edmond & Lily Safra Center for Brain Sciences, Jerusalem, Israel.
| | - Michal Schwartz
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel.
| |
Collapse
|
13
|
Peralta Ramos JM, Kviatcovsky D, Schwartz M. Targeting the immune system towards novel therapeutic avenues to fight brain aging and neurodegeneration. Eur J Neurosci 2022; 56:5413-5427. [PMID: 35075702 DOI: 10.1111/ejn.15609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
The incidence of age-related dementia is growing with increased longevity, yet there are currently no disease-modifying therapies for these devastating disorders. Studies over the last several years have led to an evolving awareness of the role of the immune system in supporting brain maintenance and repair, displaying a diverse repertoire of functions while orchestrating the crosstalk between the periphery and the brain. Here, we provide insights into the current understanding of therapeutic targets that could be adopted to modulate immune cell fate, either systemically or locally, to defeat brain aging and neurodegeneration.
Collapse
Affiliation(s)
| | - Denise Kviatcovsky
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Schwartz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
14
|
Zieneldien T, Kim J, Sawmiller D, Cao C. The Immune System as a Therapeutic Target for Alzheimer’s Disease. Life (Basel) 2022; 12:life12091440. [PMID: 36143476 PMCID: PMC9506058 DOI: 10.3390/life12091440] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a heterogeneous neurodegenerative disorder and is the most common cause of dementia. Furthermore, aging is considered the most critical risk factor for AD. However, despite the vast amount of research and resources allocated to the understanding and development of AD treatments, setbacks have been more prominent than successes. Recent studies have shown that there is an intricate connection between the immune and central nervous systems, which can be imbalanced and thereby mediate neuroinflammation and AD. Thus, this review examines this connection and how it can be altered with AD. Recent developments in active and passive immunotherapy for AD are also discussed as well as suggestions for improving these therapies moving forward.
Collapse
Affiliation(s)
- Tarek Zieneldien
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Janice Kim
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Darrell Sawmiller
- MegaNano BioTech, Inc., 3802 Spectrum Blvd. Suite 122, Tampa, FL 33612, USA
| | - Chuanhai Cao
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA
- Correspondence:
| |
Collapse
|
15
|
Kasindi A, Fuchs DT, Koronyo Y, Rentsendorj A, Black KL, Koronyo-Hamaoui M. Glatiramer Acetate Immunomodulation: Evidence of Neuroprotection and Cognitive Preservation. Cells 2022; 11:1578. [PMID: 35563884 PMCID: PMC9099707 DOI: 10.3390/cells11091578] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Novel, neuroprotective uses of Copaxone (generic name: glatiramer acetate-GA) are being examined, primarily in neurological conditions involving cognitive decline. GA is a well-studied synthetic copolymer that is FDA-approved for immune-based treatment of relapsing remitting multiple sclerosis (RRMS). Clinical studies have explored the potential mechanism of action (MOA) and outcomes of GA immunization in patients. Furthermore, results from these and animal studies suggest that GA has a direct immunomodulatory effect on adaptive and innate immune cell phenotypes and responses. These MOAs have been postulated to have a common neuroprotective impact in several neuroinflammatory and neurodegenerative diseases. Notably, several clinical studies report that the use of GA mitigated MS-associated cognitive decline. Its propensity to ameliorate neuro-proinflammatory and degenerative processes ignites increased interest in potential alternate uses such as in age-related macular degeneration (AMD), amyotrophic lateral sclerosis (ALS), and Alzheimer's disease (AD). Preclinical studies are exploring less frequent subcutaneous administration of GA, such as once weekly or monthly or a single dosing regimen. Indeed, cognitive functions were found to be either preserved, reversed, or improved after the less frequent treatment regimens with GA in animal models of AD. In this systematic review, we examine the potential novel uses of GA across clinical and pre-clinical studies, with evidence for its beneficial impact on cognition. Future investigation in large-size, double-blind clinical trials is warranted to establish the impact of GA immunomodulation on neuroprotection and cognitive preservation in various neurological conditions.
Collapse
Affiliation(s)
- Arielle Kasindi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.K.); (D.-T.F.); (Y.K.); (A.R.); (K.L.B.)
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.K.); (D.-T.F.); (Y.K.); (A.R.); (K.L.B.)
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.K.); (D.-T.F.); (Y.K.); (A.R.); (K.L.B.)
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.K.); (D.-T.F.); (Y.K.); (A.R.); (K.L.B.)
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.K.); (D.-T.F.); (Y.K.); (A.R.); (K.L.B.)
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.K.); (D.-T.F.); (Y.K.); (A.R.); (K.L.B.)
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
16
|
Fighting fire with fire: the immune system might be key in our fight against Alzheimer's disease. Drug Discov Today 2022; 27:1261-1283. [PMID: 35032668 DOI: 10.1016/j.drudis.2022.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/25/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
The ultimate cause of Alzheimer's disease (AD) is still unknown and no disease-modifying treatment exists. Emerging evidence supports the concept that the immune system has a key role in AD pathogenesis. This awareness leads to the idea that specific parts of the immune system must be engaged to ward off the disease. Immunotherapy has dramatically improved the management of several previously untreatable cancers and could hold similar promise as a novel therapy for treating AD. However, before potent immunotherapies can be rationally designed as treatment against AD, we need to fully understand the dynamic interplay between AD and the different parts of our immune system. Accordingly, here we review the most important aspects of both the innate and adaptive immune system in relation to AD pathology. Teaser: Emerging results support the concept that Alzheimer's disease is affected by the inability of the immune system to contain the pathology of the brain. Here, we discuss how we can engage our immune system to fight this devastating disease.
Collapse
|
17
|
Dionisio-Santos DA, Karaahmet B, Belcher EK, Owlett LD, Trojanczyk LA, Olschowka JA, O'Banion MK. Evaluating Effects of Glatiramer Acetate Treatment on Amyloid Deposition and Tau Phosphorylation in the 3xTg Mouse Model of Alzheimer's Disease. Front Neurosci 2021; 15:758677. [PMID: 34744620 PMCID: PMC8569891 DOI: 10.3389/fnins.2021.758677] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/28/2021] [Indexed: 12/22/2022] Open
Abstract
Neuroinflammation driven by the accumulation of amyloid β (Aβ) can lead to neurofibrillary tangle formation in Alzheimer's Disease (AD). To test the hypothesis that an anti-inflammatory immunomodulatory agent might have beneficial effects on amyloid and tau pathology, as well as microglial phenotype, we evaluated glatiramer acetate (GA), a multiple sclerosis drug thought to bias type 2 helper T (Th2) cell responses and alternatively activate myeloid cells. We administered weekly subcutaneous injections of GA or PBS to 15-month-old 3xTg AD mice, which develop both amyloid and tau pathology, for a period of 8 weeks. We found that subcutaneous administration of GA improved behavioral performance in novel object recognition and decreased Aβ plaque in the 3xTg AD mice. Changes in tau phosphorylation were mixed with specific changes in phosphoepitopes seen in immunohistochemistry but not observed in western blot. In addition, we found that there was a trend toward increased microglia complexity in 3xTg mice treated with GA, suggesting a shift toward homeostasis. These findings correlated with subtle changes in the microglial transcriptome, in which the most striking difference was the upregulation of Dcstamp. Lastly, we found no evidence of changes in proportions of major helper T cell (Th) subtypes in the periphery. Overall, our study provides further evidence for the benefits of immunomodulatory therapies that alter the adaptive immune system with the goal of modifying microglia responses for the treatment of Alzheimer's Disease.
Collapse
Affiliation(s)
- Dawling A Dionisio-Santos
- Department of Neuroscience, School of Medicine and Dentistry, Del Monte Neuroscience Institute, University of Rochester, Rochester, NY, United States
| | - Berke Karaahmet
- Department of Neuroscience, School of Medicine and Dentistry, Del Monte Neuroscience Institute, University of Rochester, Rochester, NY, United States
| | - Elizabeth K Belcher
- Department of Neuroscience, School of Medicine and Dentistry, Del Monte Neuroscience Institute, University of Rochester, Rochester, NY, United States
| | - Laura D Owlett
- Department of Neuroscience, School of Medicine and Dentistry, Del Monte Neuroscience Institute, University of Rochester, Rochester, NY, United States
| | - Lee A Trojanczyk
- Department of Neuroscience, School of Medicine and Dentistry, Del Monte Neuroscience Institute, University of Rochester, Rochester, NY, United States
| | - John A Olschowka
- Department of Neuroscience, School of Medicine and Dentistry, Del Monte Neuroscience Institute, University of Rochester, Rochester, NY, United States
| | - M Kerry O'Banion
- Department of Neuroscience, School of Medicine and Dentistry, Del Monte Neuroscience Institute, University of Rochester, Rochester, NY, United States
| |
Collapse
|
18
|
Chen SH, He CY, Shen YY, Zeng GH, Tian DY, Cheng Y, Xu MY, Fan DY, Tan CR, Shi AY, Bu XL, Wang YJ. Polysaccharide Krestin Prevents Alzheimer's Disease-type Pathology and Cognitive Deficits by Enhancing Monocyte Amyloid-β Processing. Neurosci Bull 2021; 38:290-302. [PMID: 34611829 PMCID: PMC8975919 DOI: 10.1007/s12264-021-00779-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/18/2021] [Indexed: 10/20/2022] Open
Abstract
Deficits in the clearance of amyloid β protein (Aβ) by the peripheral system play a critical role in the pathogenesis of sporadic Alzheimer's disease (AD). Impaired uptake of Aβ by dysfunctional monocytes is deemed to be one of the major mechanisms underlying deficient peripheral Aβ clearance in AD. In the current study, flow cytometry and biochemical and behavioral techniques were applied to investigate the effects of polysaccharide krestin (PSK) on AD-related pathology in vitro and in vivo. We found that PSK, widely used in therapy for various cancers, has the potential to enhance Aβ uptake and intracellular processing by human monocytes in vitro. After administration of PSK by intraperitoneal injection, APP/PS1 mice performed better in behavioral tests, along with reduced Aβ deposition, neuroinflammation, neuronal loss, and tau hyperphosphorylation. These results suggest that PSK holds promise as a preventive agent for AD by strengthening the Aβ clearance by blood monocytes and alleviating AD-like pathology.
Collapse
Affiliation(s)
- Si-Han Chen
- grid.410570.70000 0004 1760 6682Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042 China ,grid.410570.70000 0004 1760 6682The Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400042 China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042 China ,grid.449525.b0000 0004 1798 4472Department of Neurology, Nanchong Central Hospital, The Second Clinical Medical School, North Sichuan Medical College, Nanchong, 637000 China
| | - Chen-Yang He
- grid.410570.70000 0004 1760 6682Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042 China ,grid.410570.70000 0004 1760 6682The Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400042 China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042 China
| | - Ying-Ying Shen
- grid.410570.70000 0004 1760 6682Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042 China ,grid.410570.70000 0004 1760 6682The Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400042 China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042 China
| | - Gui-Hua Zeng
- grid.410570.70000 0004 1760 6682Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042 China ,grid.410570.70000 0004 1760 6682The Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400042 China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042 China
| | - Ding-Yuan Tian
- grid.410570.70000 0004 1760 6682Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042 China ,grid.410570.70000 0004 1760 6682The Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400042 China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042 China
| | - Yuan Cheng
- grid.410570.70000 0004 1760 6682Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042 China ,grid.410570.70000 0004 1760 6682The Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400042 China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042 China
| | - Man-Yu Xu
- grid.410570.70000 0004 1760 6682Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042 China ,grid.410570.70000 0004 1760 6682The Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400042 China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042 China
| | - Dong-Yu Fan
- grid.410570.70000 0004 1760 6682Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042 China ,grid.410570.70000 0004 1760 6682The Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400042 China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042 China
| | - Cheng-Rong Tan
- grid.410570.70000 0004 1760 6682Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042 China ,grid.410570.70000 0004 1760 6682The Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400042 China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042 China
| | - An-Yu Shi
- grid.410570.70000 0004 1760 6682Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042 China ,grid.410570.70000 0004 1760 6682The Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400042 China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042 China
| | - Xian-Le Bu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China. .,The Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400042, China. .,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China. .,State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China. .,The Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400042, China. .,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China. .,State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, 400042, China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 201200, China.
| |
Collapse
|
19
|
Cisbani G, Rivest S. Targeting innate immunity to protect and cure Alzheimer's disease: opportunities and pitfalls. Mol Psychiatry 2021; 26:5504-5515. [PMID: 33854189 DOI: 10.1038/s41380-021-01083-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/10/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Innate immunity has been the focus of many new directions to understand the mechanisms involved in the aetiology of brain diseases, especially Alzheimer's disease (AD). AD is a multifactorial disorder, with the innate immune response and neuroinflammation at the forefront of the pathology. Thus, microglial cells along with peripheral circulating monocytes and more generally the innate immune response have been the target of several pre-clinical and clinical studies. More than a decade ago, inhibiting innate immune cells was considered to be the critical angle for preventing and treating brain diseases. After the failing of numerous clinical trials and the discovery that it may actually be the opposite in various pre-clinical models, the field has changed considerably. Here, we present both sides of the story with a particular emphasis on the beneficial properties of innate immune cells and how they can be targeted to have neuroprotective properties.
Collapse
Affiliation(s)
- Giulia Cisbani
- Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Serge Rivest
- CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, QC, Canada.
| |
Collapse
|
20
|
Palumbo ML, Moroni AD, Quiroga S, Castro MM, Burgueño AL, Genaro AM. Immunomodulation induced by central nervous system-related peptides as a therapeutic strategy for neurodegenerative disorders. Pharmacol Res Perspect 2021; 9:e00795. [PMID: 34609083 PMCID: PMC8491457 DOI: 10.1002/prp2.795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/23/2021] [Indexed: 12/29/2022] Open
Abstract
Neurodegenerative diseases (NDD) are disorders characterized by the progressive loss of neurons affecting motor, sensory, and/or cognitive functions. The incidence of these diseases is increasing and has a great impact due to their high morbidity and mortality. Unfortunately, current therapeutic strategies only temporarily improve the patients' quality of life but are insufficient for completely alleviating the symptoms. An interaction between the immune system and the central nervous system (CNS) is widely associated with neuronal damage in NDD. Usually, immune cell infiltration has been identified with inflammation and is considered harmful to the injured CNS. However, the immune system has a crucial role in the protection and regeneration of the injured CNS. Nowadays, there is a consensus that deregulation of immune homeostasis may represent one of the key initial steps in NDD. Dr. Michal Schwartz originally conceived the concept of "protective autoimmunity" (PA) as a well-controlled peripheral inflammatory reaction after injury, essential for neuroprotection and regeneration. Several studies suggested that immunizing with a weaker version of the neural self-antigen would generate PA without degenerative autoimmunity. The development of CNS-related peptides with immunomodulatory neuroprotective effect led to important research to evaluate their use in chronic and acute NDD. In this review, we refer to the role of PA and the potential applications of active immunization as a therapeutic option for NDD treatment. In particular, we focus on the experimental and clinical promissory findings for CNS-related peptides with beneficial immunomodulatory effects.
Collapse
Affiliation(s)
- María Laura Palumbo
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA)‐UNNOBA‐UNsADA‐CONICETJunínArgentina
| | - Alejandro David Moroni
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA)‐UNNOBA‐UNsADA‐CONICETJunínArgentina
| | - Sofía Quiroga
- Instituto de Investigaciones BiomédicasConsejo Nacional de Investigaciones Científicas y Técnicas (CONICETPontificia Universidad Católica ArgentinaBuenos AiresArgentina
| | - María Micaela Castro
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA)‐UNNOBA‐UNsADA‐CONICETJunínArgentina
| | - Adriana Laura Burgueño
- Instituto de Investigaciones BiomédicasConsejo Nacional de Investigaciones Científicas y Técnicas (CONICETPontificia Universidad Católica ArgentinaBuenos AiresArgentina
| | - Ana María Genaro
- Instituto de Investigaciones BiomédicasConsejo Nacional de Investigaciones Científicas y Técnicas (CONICETPontificia Universidad Católica ArgentinaBuenos AiresArgentina
| |
Collapse
|
21
|
Nagu P, Parashar A, Behl T, Mehta V. Gut Microbiota Composition and Epigenetic Molecular Changes Connected to the Pathogenesis of Alzheimer's Disease. J Mol Neurosci 2021; 71:1436-1455. [PMID: 33829390 DOI: 10.1007/s12031-021-01829-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, and its pathogenesis is not fully known. Although there are several hypotheses, such as neuroinflammation, tau hyperphosphorylation, amyloid-β plaques, neurofibrillary tangles, and oxidative stress, none of them completely explain the origin and progression of AD. Emerging evidence suggests that gut microbiota and epigenetics can directly influence the pathogenesis of AD via their effects on multiple pathways, including neuroinflammation, oxidative stress, and amyloid protein. Various gut microbes such as Actinobacteria, Bacteroidetes, E. coli, Firmicutes, Proteobacteria, Tenericutes, and Verrucomicrobia are known to play a crucial role in the pathogenesis of AD. These microbes and their metabolites modulate various physiological processes that contribute to AD pathogenesis, such as neuroinflammation and other inflammatory processes, amyloid deposition, cytokine storm syndrome, altered BDNF and NMDA signaling, impairing neurodevelopmental processes. Likewise, epigenetic markers associated with AD mainly include histone modifications and DNA methylation, which are under the direct control of a variety of enzymes, such as acetylases and methylases. The activity of these enzymes is dependent upon the metabolites generated by the host's gut microbiome, suggesting the significance of epigenetics in AD pathogenesis. It is interesting to know that both gut microbiota and epigenetics are dynamic processes and show a high degree of variation according to diet, stressors, and environmental factors. The bidirectional relation between the gut microbiota and epigenetics suggests that they might work in synchrony to modulate AD representation, its pathogenesis, and progression. They both also provide numerous targets for early diagnostic biomarkers and for the development of AD therapeutics. This review discusses the gut microbiota and epigenetics connection in the pathogenesis of AD and aims to highlight vast opportunities for diagnosis and therapeutics of AD.
Collapse
Affiliation(s)
- Priyanka Nagu
- Department of Pharmaceutics, Govt. College of Pharmacy, Rohru, Himachal Pradesh, India.,Department of Pharmacy, Shri Jagdishprasad Jhabarmal Tibrewala University, Jhunjhunu, Rajasthan, India
| | - Arun Parashar
- Faculty of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Vineet Mehta
- Department of Pharmacology, Govt. College of Pharmacy, Rohru, Himachal Pradesh, India.
| |
Collapse
|
22
|
Chen SH, Tian DY, Shen YY, Cheng Y, Fan DY, Sun HL, He CY, Sun PY, Bu XL, Zeng F, Liu J, Deng J, Xu ZQ, Chen Y, Wang YJ. Amyloid-beta uptake by blood monocytes is reduced with ageing and Alzheimer's disease. Transl Psychiatry 2020; 10:423. [PMID: 33293506 PMCID: PMC7722845 DOI: 10.1038/s41398-020-01113-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/07/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Deficits in the clearance of amyloid β-protein (Aβ) play a pivotal role in the pathogenesis of sporadic Alzheimer's disease (AD). The roles of blood monocytes in the development of AD remain unclear. In this study, we sought to investigate the alterations in the Aβ phagocytosis function of peripheral monocytes during ageing and in AD patients. A total of 104 cognitively normal participants aged 22-89 years, 24 AD patients, 25 age- and sex-matched cognitively normal (CN) subjects, 15 Parkinson's disease patients (PD), and 15 age- and sex-matched CN subjects were recruited. The Aβ uptake by blood monocytes was measured and its alteration during ageing and in AD patients were investigated. Aβ1-42 uptake by monocytes decreased during ageing and further decreased in AD but not in PD patients. Aβ1-42 uptake by monocytes was associated with Aβ1-42 levels in the blood. Among the Aβ uptake-related receptors and enzymes, the expression of Toll-like receptor 2 (TLR2) was reduced in monocytes from AD patients. Our findings suggest that monocytes regulate the blood levels of Aβ and might be involved in the development of AD. The recovery of the Aβ uptake function by blood monocytes represents a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Si-Han Chen
- grid.410570.70000 0004 1760 6682Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China ,grid.410570.70000 0004 1760 6682The Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Ding-Yuan Tian
- grid.410570.70000 0004 1760 6682Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China ,grid.410570.70000 0004 1760 6682The Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Ying-Ying Shen
- grid.410570.70000 0004 1760 6682Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China ,grid.410570.70000 0004 1760 6682The Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Yuan Cheng
- grid.410570.70000 0004 1760 6682Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China ,grid.410570.70000 0004 1760 6682The Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Dong-Yu Fan
- grid.410570.70000 0004 1760 6682Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China ,grid.410570.70000 0004 1760 6682The Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Hao-Lun Sun
- grid.410570.70000 0004 1760 6682Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China ,grid.410570.70000 0004 1760 6682The Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Chen-Yang He
- grid.410570.70000 0004 1760 6682Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China ,grid.410570.70000 0004 1760 6682The Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Pu-Yang Sun
- grid.410570.70000 0004 1760 6682Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China ,grid.410570.70000 0004 1760 6682The Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Xian-Le Bu
- grid.410570.70000 0004 1760 6682Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China ,grid.410570.70000 0004 1760 6682The Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Fan Zeng
- grid.410570.70000 0004 1760 6682Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China ,grid.410570.70000 0004 1760 6682The Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Juan Liu
- grid.410570.70000 0004 1760 6682Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China ,grid.410570.70000 0004 1760 6682The Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Juan Deng
- grid.410570.70000 0004 1760 6682Department of Health Management, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zhi-Qiang Xu
- grid.410570.70000 0004 1760 6682Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China ,grid.410570.70000 0004 1760 6682The Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Yang Chen
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China. .,The Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China. .,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China. .,The Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China. .,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China. .,State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
23
|
Doustar J, Rentsendorj A, Torbati T, Regis GC, Fuchs D, Sheyn J, Mirzaei N, Graham SL, Shah PK, Mastali M, Van Eyk JE, Black KL, Gupta VK, Mirzaei M, Koronyo Y, Koronyo‐Hamaoui M. Parallels between retinal and brain pathology and response to immunotherapy in old, late-stage Alzheimer's disease mouse models. Aging Cell 2020; 19:e13246. [PMID: 33090673 PMCID: PMC7681044 DOI: 10.1111/acel.13246] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/14/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022] Open
Abstract
Despite growing evidence for the characteristic signs of Alzheimer's disease (AD) in the neurosensory retina, our understanding of retina-brain relationships, especially at advanced disease stages and in response to therapy, is lacking. In transgenic models of AD (APPSWE/PS1∆E9; ADtg mice), glatiramer acetate (GA) immunomodulation alleviates disease progression in pre- and early-symptomatic disease stages. Here, we explored the link between retinal and cerebral AD-related biomarkers, including response to GA immunization, in cohorts of old, late-stage ADtg mice. This aged model is considered more clinically relevant to the age-dependent disease. Levels of synaptotoxic amyloid β-protein (Aβ)1-42, angiopathic Aβ1-40, non-amyloidogenic Aβ1-38, and Aβ42/Aβ40 ratios tightly correlated between paired retinas derived from oculus sinister (OS) and oculus dexter (OD) eyes, and between left and right posterior brain hemispheres. We identified lateralization of Aβ burden, with one-side dominance within paired retinal and brain tissues. Importantly, OS and OD retinal Aβ levels correlated with their cerebral counterparts, with stronger contralateral correlations and following GA immunization. Moreover, immunomodulation in old ADtg mice brought about reductions in cerebral vascular and parenchymal Aβ deposits, especially of large, dense-core plaques, and alleviation of microgliosis and astrocytosis. Immunization further enhanced cerebral recruitment of peripheral myeloid cells and synaptic preservation. Mass spectrometry analysis identified new parallels in retino-cerebral AD-related pathology and response to GA immunization, including restoration of homeostatic glutamine synthetase expression. Overall, our results illustrate the viability of immunomodulation-guided CNS repair in old AD model mice, while shedding light onto similar retino-cerebral responses to intervention, providing incentives to explore retinal AD biomarkers.
Collapse
Affiliation(s)
- Jonah Doustar
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
| | - Altan Rentsendorj
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
| | - Tania Torbati
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
- College of Osteopathic Medicine of the PacificWestern University of Health SciencesPomonaCAUSA
| | - Giovanna C. Regis
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
| | - Dieu‐Trang Fuchs
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
| | - Julia Sheyn
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
| | - Nazanin Mirzaei
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
| | - Stuart L. Graham
- Department of Clinical MedicineMacquarie UniversitySydneyNSWAustralia
- Save Sight InstituteSydney UniversitySydneyNSWAustralia
| | - Prediman K. Shah
- Oppenheimer Atherosclerosis Research CenterCedars‐Sinai Heart InstituteLos AngelesCAUSA
| | - Mitra Mastali
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCAUSA
- Cedars‐Sinai Medical CenterSmidt Heart InstituteLos AngelesCAUSA
| | - Jennifer E. Van Eyk
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCAUSA
- Barbara Streisand Women’s Heart CenterCedars‐Sinai Medical CenterLos AngelesCAUSA
- Department of MedicineCedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Keith L. Black
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
| | - Vivek K. Gupta
- Department of Molecular SciencesMacquarie UniversitySydneyNSWAustralia
| | - Mehdi Mirzaei
- Department of Clinical MedicineMacquarie UniversitySydneyNSWAustralia
- Department of Molecular SciencesMacquarie UniversitySydneyNSWAustralia
- Australian Proteome Analysis FacilityMacquarie UniversitySydneyNSWAustralia
| | - Yosef Koronyo
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
| | - Maya Koronyo‐Hamaoui
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCAUSA
| |
Collapse
|
24
|
Mirzaei N, Shi H, Oviatt M, Doustar J, Rentsendorj A, Fuchs DT, Sheyn J, Black KL, Koronyo Y, Koronyo-Hamaoui M. Alzheimer's Retinopathy: Seeing Disease in the Eyes. Front Neurosci 2020; 14:921. [PMID: 33041751 PMCID: PMC7523471 DOI: 10.3389/fnins.2020.00921] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/10/2020] [Indexed: 01/18/2023] Open
Abstract
The neurosensory retina emerges as a prominent site of Alzheimer's disease (AD) pathology. As a CNS extension of the brain, the neuro retina is easily accessible for noninvasive, high-resolution imaging. Studies have shown that along with cognitive decline, patients with mild cognitive impairment (MCI) and AD often suffer from visual impairments, abnormal electroretinogram patterns, and circadian rhythm disturbances that can, at least in part, be attributed to retinal damage. Over a decade ago, our group identified the main pathological hallmark of AD, amyloid β-protein (Aβ) plaques, in the retina of patients including early-stage clinical cases. Subsequent histological, biochemical and in vivo retinal imaging studies in animal models and in humans corroborated these findings and further revealed other signs of AD neuropathology in the retina. Among these signs, hyperphosphorylated tau, neuronal degeneration, retinal thinning, vascular abnormalities and gliosis were documented. Further, linear correlations between the severity of retinal and brain Aβ concentrations and plaque pathology were described. More recently, extensive retinal pericyte loss along with vascular platelet-derived growth factor receptor-β deficiency were discovered in postmortem retinas of MCI and AD patients. This progressive loss was closely associated with increased retinal vascular amyloidosis and predicted cerebral amyloid angiopathy scores. These studies brought excitement to the field of retinal exploration in AD. Indeed, many questions still remain open, such as queries related to the temporal progression of AD-related pathology in the retina compared to the brain, the relations between retinal and cerebral changes and whether retinal signs can predict cognitive decline. The extent to which AD affects the retina, including the susceptibility of certain topographical regions and cell types, is currently under intense investigation. Advances in retinal amyloid imaging, hyperspectral imaging, optical coherence tomography, and OCT-angiography encourage the use of such modalities to achieve more accurate, patient- and user-friendly, noninvasive detection and monitoring of AD. In this review, we summarize the current status in the field while addressing the many unknowns regarding Alzheimer's retinopathy.
Collapse
Affiliation(s)
- Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mia Oviatt
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jonah Doustar
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
25
|
Koronyo-Hamaoui M, Sheyn J, Hayden EY, Li S, Fuchs DT, Regis GC, Lopes DHJ, Black KL, Bernstein KE, Teplow DB, Fuchs S, Koronyo Y, Rentsendorj A. Peripherally derived angiotensin converting enzyme-enhanced macrophages alleviate Alzheimer-related disease. Brain 2020; 143:336-358. [PMID: 31794021 DOI: 10.1093/brain/awz364] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/17/2019] [Accepted: 10/01/2019] [Indexed: 11/13/2022] Open
Abstract
Targeted overexpression of angiotensin-converting enzyme (ACE), an amyloid-β protein degrading enzyme, to brain resident microglia and peripheral myelomonocytes (ACE10 model) substantially diminished Alzheimer's-like disease in double-transgenic APPSWE/PS1ΔE9 (AD+) mice. In this study, we explored the impact of selective and transient angiotensin-converting enzyme overexpression on macrophage behaviour and the relative contribution of bone marrow-derived ACE10 macrophages, but not microglia, in attenuating disease progression. To this end, two in vivo approaches were applied in AD+ mice: (i) ACE10/GFP+ bone marrow transplantation with head shielding; and (ii) adoptive transfer of CD115+-ACE10/GFP+ monocytes to the peripheral blood. Extensive in vitro studies were further undertaken to establish the unique ACE10-macrophage phenotype(s) in response to amyloid-β1-42 fibrils and oligomers. The combined in vivo approaches showed that increased cerebral infiltration of ACE10 as compared to wild-type monocytes (∼3-fold increase; P < 0.05) led to reductions in cerebral soluble amyloid-β1-42, vascular and parenchymal amyloid-β deposits, and astrocytosis (31%, 47-80%, and 33%, respectively; P < 0.05-0.0001). ACE10 macrophages surrounded brain and retinal amyloid-β plaques and expressed 3.2-fold higher insulin-like growth factor-1 (P < 0.01) and ∼60% lower tumour necrosis factor-α (P < 0.05). Importantly, blood enrichment with CD115+-ACE10 monocytes in symptomatic AD+ mice resulted in pronounced synaptic and cognitive preservation (P < 0.05-0.001). In vitro analysis of macrophage response to well-defined amyloid-β1-42 conformers (fibrils, prion rod-like structures, and stabilized soluble oligomers) revealed extensive resistance to amyloid-β1-42 species by ACE10 macrophages. They exhibited 2-5-fold increased surface binding to amyloid-β conformers as well as substantially more effective amyloid-β1-42 uptake, at least 8-fold higher than those of wild-type macrophages (P < 0.0001), which were associated with enhanced expression of surface scavenger receptors (i.e. CD36, scavenger receptor class A member 1, triggering receptor expressed on myeloid cells 2, CD163; P < 0.05-0.0001), endosomal processing (P < 0.05-0.0001), and ∼80% increased extracellular degradation of amyloid-β1-42 (P < 0.001). Beneficial ACE10 phenotype was reversed by the angiotensin-converting enzyme inhibitor (lisinopril) and thus was dependent on angiotensin-converting enzyme catalytic activity. Further, ACE10 macrophages presented distinct anti-inflammatory (low inducible nitric oxide synthase and lower tumour necrosis factor-α), pro-healing immune profiles (high insulin-like growth factor-1, elongated cell morphology), even following exposure to Alzheimer's-related amyloid-β1-42 oligomers. Overall, we provide the first evidence for therapeutic roles of angiotensin-converting enzyme-overexpressing macrophages in preserving synapses and cognition, attenuating neuropathology and neuroinflammation, and enhancing resistance to defined pathognomonic amyloid-β forms.
Collapse
Affiliation(s)
- Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eric Y Hayden
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Songlin Li
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Institute of Neuroscience and Chemistry, and Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Giovanna C Regis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dahabada H J Lopes
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kenneth E Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David B Teplow
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Sebastien Fuchs
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
26
|
Schwartz M, Peralta Ramos JM, Ben-Yehuda H. A 20-Year Journey from Axonal Injury to Neurodegenerative Diseases and the Prospect of Immunotherapy for Combating Alzheimer's Disease. THE JOURNAL OF IMMUNOLOGY 2020; 204:243-250. [PMID: 31907265 DOI: 10.4049/jimmunol.1900844] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
The understanding of the dialogue between the brain and the immune system has undergone dramatic changes over the last two decades, with immense impact on the perception of neurodegenerative diseases, mental dysfunction, and many other brain pathologic conditions. Accumulated results have suggested that optimal function of the brain is dependent on support from the immune system, provided that this immune response is tightly controlled. Moreover, in contrast to the previous prevailing dogma, it is now widely accepted that circulating immune cells are needed for coping with brain pathologies and that their optimal effect is dependent on their type, location, and activity. In this perspective, we describe our own scientific journey, reviewing the milestones in attaining this understanding of the brain-immune axis integrated with numerous related studies by others. We then explain their significance in demonstrating the possibility of harnessing the immune system in a well-controlled manner for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Michal Schwartz
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142; and .,Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Hila Ben-Yehuda
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
27
|
Zuroff LR, Torbati T, Hart NJ, Fuchs DT, Sheyn J, Rentsendorj A, Koronyo Y, Hayden EY, Teplow DB, Black KL, Koronyo-Hamaoui M. Effects of IL-34 on Macrophage Immunological Profile in Response to Alzheimer's-Related Aβ 42 Assemblies. Front Immunol 2020; 11:1449. [PMID: 32765504 PMCID: PMC7378440 DOI: 10.3389/fimmu.2020.01449] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
Interleukin-34 (IL-34) is a recently discovered cytokine that acts as a second ligand of the colony stimulating factor 1 receptor (CSF1R) in addition to macrophage colony-stimulating factor (M-CSF). Similar to M-CSF, IL-34 also stimulates bone marrow (BM)-derived monocyte survival and differentiation into macrophages. Growing evidence suggests that peripheral BM-derived monocyte/macrophages (BMMO) play a key role in the physiological clearance of cerebral amyloid β-protein (Aβ). Aβ42 forms are especially neurotoxic and highly associated with Alzheimer's disease (AD). As a ligand of CSF1R, IL-34 may be relevant to innate immune responses in AD. To investigate how IL-34 affects macrophage phenotype in response to structurally defined and stabilized Aβ42 oligomers and preformed fibrils, we characterized murine BMMO cultured in media containing M-CSF, IL-34, or regimens involving both cytokines. We found that the immunological profile and activation phenotype of IL-34-stimulated BMMO differed significantly from those cultured with M-CSF alone. Specifically, macrophage uptake of fibrillar or oligomeric Aβ42 was markedly reduced following exposure to IL-34 compared to M-CSF. Surface expression of type B scavenger receptor CD36, known to facilitate Aβ recognition and uptake, was modified following treatment with IL-34. Similarly, IL-34 macrophages expressed lower levels of proteins involved in both Aβ uptake (triggering receptor expressed on myeloid cells 2, TREM2) as well as Aβ-degradation (matrix metallopeptidase 9, MMP-9). Interestingly, intracellular compartmentalization of Aβ visualized by staining of early endosome antigen 1 (EEA1) was not affected by IL-34. Macrophage characteristics associated with an anti-inflammatory and pro-wound healing phenotype, including processes length and morphology, were also quantified, and macrophages stimulated with IL-34 alone displayed less process elongation in response to Aβ42 compared to those cultured with M-CSF. Further, monocytes treated with IL-34 alone yielded fewer mature macrophages than those treated with M-CSF alone or in combination with IL-34. Our data indicate that IL-34 impairs monocyte differentiation into macrophages and reduces their ability to uptake pathological forms of Aβ. Given the critical role of macrophage-mediated Aβ clearance in both murine models and patients with AD, future work should investigate the therapeutic potential of modulating IL-34 in vivo to increase macrophage-mediated Aβ clearance and prevent disease development.
Collapse
Affiliation(s)
- Leah R Zuroff
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Tania Torbati
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States.,Western University of Health Sciences College of Osteopathic Medicine of the Pacific, Pomona, CA, United States
| | - Nadav J Hart
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Dieu-Trang Fuchs
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Julia Sheyn
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Altan Rentsendorj
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yosef Koronyo
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Eric Y Hayden
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - David B Teplow
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Keith L Black
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Maya Koronyo-Hamaoui
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Applied Cellular Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
28
|
Jiao H, Downie LE, Huang X, Wu M, Oberrauch S, Keenan RJ, Jacobson LH, Chinnery HR. Novel alterations in corneal neuroimmune phenotypes in mice with central nervous system tauopathy. J Neuroinflammation 2020; 17:136. [PMID: 32345316 PMCID: PMC7189727 DOI: 10.1186/s12974-020-01803-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/03/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tauopathy in the central nervous system (CNS) is a histopathological hallmark of frontotemporal dementia (FTD) and Alzheimer's disease (AD). Although AD is accompanied by various ocular changes, the effects of tauopathy on the integrity of the cornea, which is densely innervated by the peripheral nervous system and is populated by resident dendritic cells, is still unknown. The aim of this study was to investigate if neuroimmune interactions in the cornea are affected by CNS tauopathy. METHODS Corneas from wild type (WT) and transgenic rTg4510 mice that express the P301L tau mutation were examined at 2, 6, 8, and 11 months. Clinical assessment of the anterior segment of the eye was performed using spectral domain optical coherence tomography. The density of the corneal epithelial sensory nerves and the number and field area of resident epithelial dendritic cells were assessed using immunofluorescence. The immunological activation state of corneal and splenic dendritic cells was examined using flow cytometry and compared between the two genotypes at 9 months of age. RESULTS Compared to age-matched WT mice, rTg4510 mice had a significantly lower density of corneal nerve axons at both 8 and 11 months of age. Corneal nerves in rTg4510 mice also displayed a higher percentage of beaded nerve axons and a lower density of epithelial dendritic cells compared to WT mice. From 6 months of age, the size of the corneal dendritic cells was significantly smaller in rTg4510 compared to WT mice. Phenotypic characterization by flow cytometry demonstrated an activated state of dendritic cells (CD86+ and CD45+ CD11b+CD11c+) in the corneas of rTg4510 compared to WT mice, with no distinct changes in the spleen monocytes/dendritic cells. At 2 months of age, there were no significant differences in the neural or immune structures between the two genotypes. CONCLUSIONS Corneal sensory nerves and epithelial dendritic cells were altered in the rTg4510 mouse model of tauopathy, with temporal changes observed with aging. The activation of corneal dendritic cells prior to the gradual loss of neighboring sensory nerves suggests an early involvement of corneal immune cells in tau-associated pathology originating in the CNS.
Collapse
Affiliation(s)
- Haihan Jiao
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
| | - Xin Huang
- Innate Phagocytosis Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Mengliang Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
| | - Sara Oberrauch
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Australia.,Sleep and Cognition Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Ryan J Keenan
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Australia.,Sleep and Cognition Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Laura H Jacobson
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Australia. .,Sleep and Cognition Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, Australia.
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
29
|
Yang Y, He Z, Xing Z, Zuo Z, Yuan L, Wu Y, Jiang M, Qi F, Yao Z. Influenza vaccination in early Alzheimer's disease rescues amyloidosis and ameliorates cognitive deficits in APP/PS1 mice by inhibiting regulatory T cells. J Neuroinflammation 2020; 17:65. [PMID: 32075657 PMCID: PMC7029575 DOI: 10.1186/s12974-020-01741-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/10/2020] [Indexed: 11/25/2022] Open
Abstract
Background Alzheimer’s disease (AD) is a neurodegenerative disorder strongly correlated with a dysfunctional immune system. Our previous results demonstrated that inactivated influenza vaccine (IIV) facilitates hippocampal neurogenesis and blocks lipopolysaccharide (LPS)-induced cognitive impairment. However, whether IIV improves cognitive deficits in an AD mouse model remains unclear. In addition, early interventions in AD have been encouraged in recent years. Here, we investigated whether IIV immunization at the preclinical stage of AD alters the brain pathology and cognitive deficits in an APP/ PS1 mouse model. Methods We assessed spatial learning and memory using Morris water maze (MWM). The brain β-amyloid (Aβ) plaque burden and activated microglia were investigated by immunohistochemistry. Furthermore, flow cytometry was utilized to analyze the proportions of Treg cells in the spleen. A cytokine antibody array was performed to measure the alteration of cytokines in the brain and peripheral immune system. Results Five IIV immunizations activated microglia, reduced the Aβ burden and improved the cognitive impairment. Simultaneously, the IIV-induced immune response broke peripheral immunosuppression by reducing Foxp3+ regulatory T cell (Treg) activities, whereas the restoration of Treg level in the periphery using all-trans retinoic acid (ATRA) blunted the protective effects of IIV on Aβ burden and cognitive functions. Interestingly, IIV immunization might increase proinflammatory and anti-inflammatory cytokine expression in the brain of APP/PS1 mice, enhanced microglial activation, and enhanced the clustering and phagocytosis of Aβ, thereby creating new homeostasis in the disordered immune microenvironment. Conclusions Altogether, our results suggest that early multiple IIV immunizations exert a beneficial immunomodulatory effect in APP/PS1 mice by breaking Treg-mediated systemic immune tolerance, maintaining the activation of microglia and removing of Aβ plaques, eventually improving cognitive deficits.
Collapse
Affiliation(s)
- Yunjie Yang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Zitian He
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Zhiwei Xing
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Zejie Zuo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Lifang Yuan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Yingying Wu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Mei Jiang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Fangfang Qi
- Teaching and Research Bureau of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China. .,Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China.
| | - Zhibin Yao
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan No. 2 Road, Guangzhou, 510080, China.
| |
Collapse
|
30
|
Li S, Hayden EY, Garcia VJ, Fuchs DT, Sheyn J, Daley DA, Rentsendorj A, Torbati T, Black KL, Rutishauser U, Teplow DB, Koronyo Y, Koronyo-Hamaoui M. Activated Bone Marrow-Derived Macrophages Eradicate Alzheimer's-Related Aβ 42 Oligomers and Protect Synapses. Front Immunol 2020; 11:49. [PMID: 32082319 PMCID: PMC7005081 DOI: 10.3389/fimmu.2020.00049] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Impaired synaptic integrity and function due to accumulation of amyloid β-protein (Aβ42) oligomers is thought to be a major contributor to cognitive decline in Alzheimer's disease (AD). However, the exact role of Aβ42 oligomers in synaptotoxicity and the ability of peripheral innate immune cells to rescue synapses remain poorly understood due to the metastable nature of oligomers. Here, we utilized photo-induced cross-linking to stabilize pure oligomers and study their effects vs. fibrils on synapses and protection by Aβ-phagocytic macrophages. We found that cortical neurons were more susceptible to Aβ42 oligomers than fibrils, triggering additional neuritic arborization retraction, functional alterations (hyperactivity and spike waveform), and loss of VGluT1- and PSD95-excitatory synapses. Co-culturing neurons with bone marrow-derived macrophages protected synapses against Aβ42 fibrils; moreover, immune activation with glatiramer acetate (GA) conferred further protection against oligomers. Mechanisms involved increased Aβ42 removal by macrophages, amplified by GA stimulation: fibrils were largely cleared through intracellular CD36/EEA1+-early endosomal proteolysis, while oligomers were primarily removed via extracellular/MMP-9 enzymatic degradation. In vivo studies in GA-immunized or CD115+-monocyte-grafted APPSWE/PS1ΔE9-transgenic mice followed by pre- and postsynaptic analyses of entorhinal cortex and hippocampal substructures corroborated our in vitro findings of macrophage-mediated synaptic preservation. Together, our data demonstrate that activated macrophages effectively clear Aβ42 oligomers and rescue VGluT1/PSD95 synapses, providing rationale for harnessing macrophages to treat AD.
Collapse
Affiliation(s)
- Songlin Li
- Institute of Neuroscience and Chemistry, Wenzhou University, Wenzhou, China
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Eric Y. Hayden
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Veronica J. Garcia
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Julia Sheyn
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - David A. Daley
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Altan Rentsendorj
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Tania Torbati
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Keith L. Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - David B. Teplow
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yosef Koronyo
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
31
|
Tyrtyshnaia AA, Manzhulo IV, Konovalova SP, Zaglyadkina AA, Starinets AA. The Effects of Neuropathic Pain on the State of Glial Cells and Hippocampal Neurogenesis in Old Animals. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419030140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Rahman SO, Singh RK, Hussain S, Akhtar M, Najmi AK. A novel therapeutic potential of cysteinyl leukotrienes and their receptors modulation in the neurological complications associated with Alzheimer's disease. Eur J Pharmacol 2018; 842:208-220. [PMID: 30389631 DOI: 10.1016/j.ejphar.2018.10.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/16/2018] [Accepted: 10/29/2018] [Indexed: 01/28/2023]
Abstract
Cysteinyl leukotrienes (cysLTs) are member of eicosanoid inflammatory lipid mediators family produced by oxidation of arachidonic acid by action of the enzyme 5-lipoxygenase (5-LOX). 5-LOX is activated by enzyme 5-Lipoxygenase-activating protein (FLAP), which further lead to production of cysLTs i.e. leukotriene C4 (LTC4), leukotriene D4 (LTD4) and leukotriene E4 (LTE4). CysLTs then produce their potent inflammatory actions by activating CysLT1 and CysLT2 receptors. Inhibitors of cysLTs are indicated in asthma, allergic rhinitis and other inflammatory disorders. Earlier studies have associated cysLTs and their receptors in several neurodegenerative disorders diseases like, multiple sclerosis, Parkinson's disease, Huntington's disease, epilepsy and Alzheimer's disease (AD). These inflammatory lipid mediators have previously shown effects on various aggravating factors of AD. However, not much data has been elucidated to test their role against AD clinically. Herein, through this review, we have provided the current and emerging information on the role of cysLTs and their receptors in various neurological complications responsible for the development of AD. In addition, literature evidences for the effect of cysLT inhibitors on distinct aspects of abnormalities in AD has also been reviewed. Promising advancement in understanding on the role of cysLTs on the various neuromodulatory processes and mechanisms may contribute to the development of newer and safer therapy for the treatment of AD in future.
Collapse
Affiliation(s)
- Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Rakesh Kumar Singh
- School of Pharmaceutical Sciences, Apeejay Stya University, Sohna-Palwal Road, Sohna, Gurgaon 122013, Haryana, India.
| | - Salman Hussain
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
33
|
Cao W, Zheng H. Peripheral immune system in aging and Alzheimer's disease. Mol Neurodegener 2018; 13:51. [PMID: 30285785 PMCID: PMC6169078 DOI: 10.1186/s13024-018-0284-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) represents an urgent public health mandate. AD is no longer considered a neural-centric disease; rather, a plethora of recent studies strongly implicate a critical role played by neuroinflammation in the pathogeneses of AD and other neurodegenerative conditions. A close functional connection between the immune system and central nervous system is increasingly recognized. In late-onset AD, aging represents the most significant risk factor. Here, from an immunological perspective, we summarize the prominent molecular and cellular changes in the periphery of aging individuals and AD patients. Moreover, we review the knowledge gained in the past several years that implicate specific arms of the peripheral immune system and other types of immune responses in modulating AD progression. Taken together, these findings collectively emphasize a dynamic role of a concert of brain-extrinsic, peripheral signals in the aging and degenerative processes in the CNS. We believe that a systematic view synthesizing the vast amounts of existing results will help guide the development of next-generation therapeutics and inform future directions of AD investigation.
Collapse
Affiliation(s)
- Wei Cao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Huffington Center on Aging, Houston, TX, 77030, USA.
| | - Hui Zheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Huffington Center on Aging, Houston, TX, 77030, USA.
| |
Collapse
|
34
|
Salminen A, Kaarniranta K, Kauppinen A. The potential importance of myeloid-derived suppressor cells (MDSCs) in the pathogenesis of Alzheimer's disease. Cell Mol Life Sci 2018; 75:3099-3120. [PMID: 29779041 PMCID: PMC11105369 DOI: 10.1007/s00018-018-2844-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/30/2018] [Accepted: 05/16/2018] [Indexed: 02/08/2023]
Abstract
The exact cause of Alzheimer's disease (AD) is still unknown, but the deposition of amyloid-β (Aβ) plaques and chronic inflammation indicates that immune disturbances are involved in AD pathogenesis. Recent genetic studies have revealed that many candidate genes are expressed in both microglia and myeloid cells which infiltrate into the AD brains. Invading myeloid cells controls the functions of resident microglia in pathological conditions, such as AD pathology. AD is a neurologic disease with inflammatory component where the immune system is not able to eliminate the perpetrator, while, concurrently, it should prevent neuronal injuries induced by inflammation. Recent studies have indicated that AD brains are an immunosuppressive microenvironment, e.g., microglial cells are hyporesponsive to Aβ deposits and anti-inflammatory cytokines enhance Aβ deposition. Immunosuppression is a common element in pathological disorders involving chronic inflammation. Studies on cancer-associated inflammation have demonstrated that myeloid-derived suppressor cells (MDSCs) have a crucial role in the immune escape of tumor cells. Immunosuppression is not limited to tumors, since MDSCs can be recruited into chronically inflamed tissues where inflammatory mediators enhance the proliferation and activation of MDSCs. AD brains express a range of chemokines and cytokines which could recruit and expand MDSCs in inflamed AD brains and thus generate an immunosuppressive microenvironment. Several neuroinflammatory disorders, e.g., the early phase of AD pathology, have been associated with an increase in the level of circulating MDSCs. We will elucidate the immunosuppressive armament of MDSCs and present evidences in support of the crucial role of MDSCs in the pathogenesis of AD.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
35
|
Brezovakova V, Valachova B, Hanes J, Novak M, Jadhav S. Dendritic Cells as an Alternate Approach for Treatment of Neurodegenerative Disorders. Cell Mol Neurobiol 2018; 38:1207-1214. [PMID: 29948552 DOI: 10.1007/s10571-018-0598-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/11/2018] [Indexed: 12/17/2022]
Abstract
Despite years of research, Alzheimer's disease (AD) remains incurable and thus poses a major health challenge in coming years. This neurodegenerative disease belongs to a heterogeneous group of human tauopathies, characterized by the extracellular deposition of beta amyloid-Aβ and intracellular accumulation of tau protein in neuronal and glial cells, whereby tau pathology best correlates with disease progression. For decades, several disease-modifying agents were brought to clinical studies with promising efficacy in preclinical trials; however, all of the subsequent clinical trials failed. Therefore, the pursuit for therapeutic agents for the treatment of AD and other tauopathies still continue. Recent evidences show previously unidentified role of peripheral immune system in regulating the inflammatory status of the brain, mainly the dendritic cells. A decrease in functionality and count of dendritic cells has been observed in Alzheimer's disease. Here, we discuss a potential role of dendritic cell-based vaccines as therapeutic approach in ameliorating disease pathogenesis in AD and other tauopathies.
Collapse
Affiliation(s)
- Veronika Brezovakova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dúbravská cesta 9, 845 10, Bratislava, Slovak Republic
| | - Bernadeta Valachova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dúbravská cesta 9, 845 10, Bratislava, Slovak Republic
- Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dúbravská cesta 9, 845 10, Bratislava, Slovak Republic
- Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Michal Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dúbravská cesta 9, 845 10, Bratislava, Slovak Republic
- Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Santosh Jadhav
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dúbravská cesta 9, 845 10, Bratislava, Slovak Republic.
- Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic.
| |
Collapse
|
36
|
Kiyota T, Machhi J, Lu Y, Dyavarshetty B, Nemati M, Yokoyama I, Mosley RL, Gendelman HE. Granulocyte-macrophage colony-stimulating factor neuroprotective activities in Alzheimer's disease mice. J Neuroimmunol 2018; 319:80-92. [PMID: 29573847 PMCID: PMC5916331 DOI: 10.1016/j.jneuroim.2018.03.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/27/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022]
Abstract
We investigated the effects of granulocyte-macrophage colony stimulating factor (GM-CSF) on behavioral and pathological outcomes in Alzheimer's disease (AD) and non-transgenic mice. GM-CSF treatment in AD mice reduced brain amyloidosis, increased plasma Aβ, and rescued cognitive impairment with increased hippocampal expression of calbindin and synaptophysin and increased levels of doublecortin-positive cells in the dentate gyrus. These data extend GM-CSF pleiotropic neuroprotection mechanisms in AD and include regulatory T cell-mediated immunomodulation of microglial function, Aβ clearance, maintenance of synaptic integrity, and induction of neurogenesis. Together these data support further development of GM-CSF as a neuroprotective agent for AD.
Collapse
Affiliation(s)
- Tomomi Kiyota
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bhagyalaxmi Dyavarshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maryam Nemati
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Izumi Yokoyama
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - R L Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
37
|
Cronk JC, Filiano AJ, Louveau A, Marin I, Marsh R, Ji E, Goldman DH, Smirnov I, Geraci N, Acton S, Overall CC, Kipnis J. Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia. J Exp Med 2018; 215:1627-1647. [PMID: 29643186 PMCID: PMC5987928 DOI: 10.1084/jem.20180247] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 11/04/2022] Open
Abstract
Peripherally derived macrophages infiltrate the brain after bone marrow transplantation and during central nervous system (CNS) inflammation. It was initially suggested that these engrafting cells were newly derived microglia and that irradiation was essential for engraftment to occur. However, it remains unclear whether brain-engrafting macrophages (beMφs) acquire a unique phenotype in the brain, whether long-term engraftment may occur without irradiation, and whether brain function is affected by the engrafted cells. In this study, we demonstrate that chronic, partial microglia depletion is sufficient for beMφs to populate the niche and that the presence of beMφs does not alter behavior. Furthermore, beMφs maintain a unique functional and transcriptional identity as compared with microglia. Overall, this study establishes beMφs as a unique CNS cell type and demonstrates that therapeutic engraftment of beMφs may be possible with irradiation-free conditioning regimens.
Collapse
Affiliation(s)
- James C Cronk
- Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA.,Department of Neuroscience, University of Virginia, Charlottesville, VA.,Graduate Program in Neuroscience, University of Virginia, Charlottesville, VA.,Medical Scientist Training Program, University of Virginia, Charlottesville, VA
| | - Anthony J Filiano
- Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA.,Department of Neuroscience, University of Virginia, Charlottesville, VA
| | - Antoine Louveau
- Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA.,Department of Neuroscience, University of Virginia, Charlottesville, VA
| | - Ioana Marin
- Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA.,Department of Neuroscience, University of Virginia, Charlottesville, VA.,Graduate Program in Neuroscience, University of Virginia, Charlottesville, VA
| | - Rachel Marsh
- Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA.,Department of Neuroscience, University of Virginia, Charlottesville, VA
| | - Emily Ji
- Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA.,Department of Neuroscience, University of Virginia, Charlottesville, VA
| | - Dylan H Goldman
- Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA.,Department of Neuroscience, University of Virginia, Charlottesville, VA.,Graduate Program in Neuroscience, University of Virginia, Charlottesville, VA
| | - Igor Smirnov
- Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA.,Department of Neuroscience, University of Virginia, Charlottesville, VA
| | - Nicholas Geraci
- Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA
| | - Scott Acton
- Virginia Image and Video Analysis Laboratory, Department of Electrical and Computer Engineering and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Christopher C Overall
- Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA .,Department of Neuroscience, University of Virginia, Charlottesville, VA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA .,Department of Neuroscience, University of Virginia, Charlottesville, VA.,Graduate Program in Neuroscience, University of Virginia, Charlottesville, VA.,Medical Scientist Training Program, University of Virginia, Charlottesville, VA
| |
Collapse
|
38
|
Emerging Roles of Immune Cells in Postoperative Cognitive Dysfunction. Mediators Inflamm 2018; 2018:6215350. [PMID: 29670465 PMCID: PMC5835271 DOI: 10.1155/2018/6215350] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/25/2017] [Indexed: 02/03/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD), a long-lasting cognitive decline after surgery, is currently a major clinical problem with no clear pathophysiological mechanism or effective therapy. Accumulating evidence suggests that neuroinflammation plays a critical role in POCD. After surgery, alarmins are leaked from the injury sites and proinflammatory cytokines are increased in the peripheral circulation. Neurons in the hippocampus, which is responsible for learning and memory, can be damaged by cytokines transmitted to the brain parenchyma. Microglia, bone marrow-derived macrophages, mast cells, and T cells in the central nervous system (CNS) can be activated to secrete more cytokines, further aggravating neuroinflammation after surgery. Conversely, blocking the inflammation network between these immune cells and related cytokines alleviates POCD in experimental animals. Thus, a deeper understanding of the roles of immune cells and the crosstalk between them in POCD may uncover promising therapeutic targets for POCD treatment and prevention. Here, we reviewed several major immune cells and discussed their functional roles in POCD.
Collapse
|
39
|
Rentsendorj A, Sheyn J, Fuchs DT, Daley D, Salumbides BC, Schubloom HE, Hart NJ, Li S, Hayden EY, Teplow DB, Black KL, Koronyo Y, Koronyo-Hamaoui M. A novel role for osteopontin in macrophage-mediated amyloid-β clearance in Alzheimer's models. Brain Behav Immun 2018; 67:163-180. [PMID: 28860067 PMCID: PMC5865478 DOI: 10.1016/j.bbi.2017.08.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/11/2017] [Accepted: 08/28/2017] [Indexed: 12/16/2022] Open
Abstract
Osteopontin (OPN), a matricellular immunomodulatory cytokine highly expressed by myelomonocytic cells, is known to regulate immune cell migration, communication, and response to brain injury. Enhanced cerebral recruitment of monocytes achieved through glatiramer acetate (GA) immunization or peripheral blood enrichment with bone marrow (BM)-derived CD115+ monocytes (MoBM) curbs amyloid β-protein (Aβ) neuropathology and preserves cognitive function in murine models of Alzheimer's disease (ADtg mice). To elucidate the beneficial mechanisms of these immunomodulatory approaches in AD, we focused on the potential role of OPN in macrophage-mediated Aβ clearance. Here, we found extensive OPN upregulation along with reduction of vascular and parenchymal Aβ burden in cortices and hippocampi of GA-immunized ADtg mice. Treatment combining GA with blood-grafted MoBM further increased OPN levels surrounding residual Aβ plaques. In brains from AD patients and ADtg mice, OPN was also elevated and predominantly expressed by infiltrating GFP+- or Iba1+-CD45high monocyte-derived macrophages engulfing Aβ plaques. Following GA immunization, we detected a significant increase in a subpopulation of inflammatory blood monocytes (CD115+CD11b+Ly6Chigh) expressing OPN, and subsequently, an elevated population of OPN-expressing CD11b+Ly6C+CD45high monocyte/macrophages in the brains of these ADtg mice. Correlogram analyses indicate a strong linear correlation between cerebral OPN levels and macrophage infiltration, as well as a tight inverse relation between OPN and Aβ-plaque burden. In vitro studies corroborate in vivo findings by showing that GA directly upregulates OPN expression in BM-derived macrophages (MФBM). Further, OPN promotes a phenotypic shift that is highly phagocytic (increased uptake of Aβ fibrils and surface scavenger receptors) and anti-inflammatory (altered cell morphology, reduced iNOS, and elevated IL-10 and Aβ-degrading enzyme MMP-9). Inhibition of OPN expression in MФBM, either by siRNA, knockout (KOOPN), or minocycline, impairs uptake of Aβ fibrils and hinders GA's neuroprotective effects on macrophage immunological profile. Addition of human recombinant OPN reverses the impaired Aβ phagocytosis in KOOPN-MФBM. This study demonstrates that OPN has an essential role in modulating macrophage immunological profile and their ability to resist pathogenic forms of Aβ.
Collapse
Affiliation(s)
- Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | - David Daley
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | - Brenda C Salumbides
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | - Hannah E Schubloom
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | - Nadav J Hart
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | - Songlin Li
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA; Institute of Life Sciences, Wenzhou University, 276 Xueyuan Middle Rd, Lucheng Qu, Wenzhou Shi, Zhejiang Sheng 325027, China
| | - Eric Y Hayden
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, 635 Charles E. Young Dr. S., Los Angeles, CA 90095, USA
| | - David B Teplow
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, 635 Charles E. Young Dr. S., Los Angeles, CA 90095, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA.
| |
Collapse
|
40
|
Negi N, Das BK. CNS: Not an immunoprivilaged site anymore but a virtual secondary lymphoid organ. Int Rev Immunol 2017; 37:57-68. [DOI: 10.1080/08830185.2017.1357719] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Neema Negi
- Department of Molecular Biology, Umea University, Umea, Sweden
| | - Bimal K. Das
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar (West), New Delhi, India
| |
Collapse
|
41
|
Al-Ali H, Gao H, Dalby-Hansen C, Peters VA, Shi Y, Brambilla R. High content analysis of phagocytic activity and cell morphology with PuntoMorph. J Neurosci Methods 2017; 291:43-50. [PMID: 28789994 DOI: 10.1016/j.jneumeth.2017.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Phagocytosis is essential for maintenance of normal homeostasis and healthy tissue. As such, it is a therapeutic target for a wide range of clinical applications. The development of phenotypic screens targeting phagocytosis has lagged behind, however, due to the difficulties associated with image-based quantification of phagocytic activity. NEW METHOD We present a robust algorithm and cell-based assay system for high content analysis of phagocytic activity. The method utilizes fluorescently labeled beads as a phagocytic substrate with defined physical properties. The algorithm employs statistical modeling to determine the mean fluorescence of individual beads within each image, and uses the information to conduct an accurate count of phagocytosed beads. In addition, the algorithm conducts detailed and sophisticated analysis of cellular morphology, making it a standalone tool for high content screening. RESULTS We tested our assay system using microglial cultures. Our results recapitulated previous findings on the effects of microglial stimulation on cell morphology and phagocytic activity. Moreover, our cell-level analysis revealed that the two phenotypes associated with microglial activation, specifically cell body hypertrophy and increased phagocytic activity, are not highly correlated. This novel finding suggests the two phenotypes may be under the control of distinct signaling pathways. COMPARISON WITH EXISTING METHODS We demonstrate that our assay system outperforms preexisting methods for quantifying phagocytic activity in multiple dimensions including speed, accuracy, and resolution. CONCLUSIONS We provide a framework to facilitate the development of high content assays suitable for drug screening. For convenience, we implemented our algorithm in a standalone software package, PuntoMorph.
Collapse
Affiliation(s)
- Hassan Al-Ali
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Han Gao
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Camilla Dalby-Hansen
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Vanessa Ann Peters
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Yan Shi
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
42
|
Lund H, Pieber M, Harris RA. Lessons Learned about Neurodegeneration from Microglia and Monocyte Depletion Studies. Front Aging Neurosci 2017; 9:234. [PMID: 28804456 PMCID: PMC5532389 DOI: 10.3389/fnagi.2017.00234] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/05/2017] [Indexed: 12/20/2022] Open
Abstract
While bone marrow-derived Ly6Chi monocytes can infiltrate the central nervous system (CNS) they are developmentally and functionally distinct from resident microglia. Our understanding of the relative importance of these two populations in the distinct processes of pathogenesis and resolution of inflammation during neurodegenerative disorders was limited by a lack of tools to specifically manipulate each cell type. During recent years, the development of experimental cell-specific depletion models has enabled this issue to be addressed. Herein we compare and contrast the different depletion approaches that have been used, focusing on the respective functionalities of microglia and monocyte-derived macrophages in a range of neurodegenerative disease states, and discuss their prospects for immunotherapy.
Collapse
Affiliation(s)
- Harald Lund
- Department of Clinical Neuroscience, Karolinska Institutet, Centre for Molecular Medicine, Karolinska Hospital at SolnaSolna, Sweden
| | - Melanie Pieber
- Department of Clinical Neuroscience, Karolinska Institutet, Centre for Molecular Medicine, Karolinska Hospital at SolnaSolna, Sweden
| | - Robert A Harris
- Department of Clinical Neuroscience, Karolinska Institutet, Centre for Molecular Medicine, Karolinska Hospital at SolnaSolna, Sweden
| |
Collapse
|
43
|
Eyre H, Siddarth P, Cyr N, Yang H, Cole S, Forbes M, Lavretsky H. Comparing the Immune-Genomic Effects of Vilazodone and Paroxetine in Late-Life Depression: A Pilot Study. PHARMACOPSYCHIATRY 2017; 50:256-263. [PMID: 28444658 DOI: 10.1055/s-0043-107033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vilazodone is a novel antidepressant agent that combines selective serotonin (5-HT) reuptake inhibitor (SSRI) activity and 5-HT(1A) receptor partial agonist activity. A pilot study was conducted to compare vilazodone (novel compound) and paroxetine (gold standard) on antidepressant effects, tolerability, and inflammation and immune modulation. A 12-week, double-blind, randomized clinical trial was conducted with 56 nondemented older adults diagnosed with major depressive disorder (MDD). Between-group differences in mood, tolerability, and safety, as well as genomic markers of inflammation and immune modulation, were examined. Both treatment groups demonstrated similar improvement in depressed mood. Leukocyte gene expression profiles demonstrated reduction of specific proinflammatory gene transcripts and bioinformatic indications of reduced nuclear factor kappa B (NF-κB), activator protein (AP)-1, and cAMP response element binding (CREB) activity in the vilazodone group compared to the paroxetine group. Transcript origin analyses implicated monocytes and dendritic cells as the primary cellular origins of transcript reductions in the vilazodone-treated group. Vilazodone's antidepressant effects may be associated with reduction of proinflammatory gene expression and immune modulation. Further research is required.
Collapse
Affiliation(s)
- Harris Eyre
- Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California, United State of America (USA).,Discipline of Psychiatry, University of Adelaide, Adelaide, South Australia, Australia.,Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia.,IMPACT SRC, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Prabha Siddarth
- Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California, United State of America (USA)
| | - Natalie Cyr
- Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California, United State of America (USA)
| | - Hongyu Yang
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, UCLA, Los Angeles, California, USA
| | - Steve Cole
- Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California, United State of America (USA).,Department of Medicine, Hematology-Oncology, UCLA, Los Angeles, California, USA
| | - Malcolm Forbes
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Helen Lavretsky
- Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California, United State of America (USA)
| |
Collapse
|
44
|
T Lymphocytes and Inflammatory Mediators in the Interplay between Brain and Blood in Alzheimer's Disease: Potential Pools of New Biomarkers. J Immunol Res 2017; 2017:4626540. [PMID: 28293644 PMCID: PMC5331319 DOI: 10.1155/2017/4626540] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/22/2016] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the main cause of dementia. The disease is among the leading medical concerns of the modern world, because only symptomatic therapies are available, and no reliable, easily accessible biomarkers exist for AD detection and monitoring. Therefore extensive research is conducted to elucidate the mechanisms of AD pathogenesis, which seems to be heterogeneous and multifactorial. Recently much attention has been given to the neuroinflammation and activation of glial cells in the AD brain. Reports also highlighted the proinflammatory role of T lymphocytes infiltrating the AD brain. However, in AD molecular and cellular alterations involving T cells and immune mediators occur not only in the brain, but also in the blood and the cerebrospinal fluid (CSF). Here we review alterations concerning T lymphocytes and related immune mediators in the AD brain, CSF, and blood and the mechanisms by which peripheral T cells cross the blood brain barrier and the blood-CSF barrier. This knowledge is relevant for better AD therapies and for identification of novel biomarkers for improved AD diagnostics in the blood and the CSF. The data will be reviewed with the special emphasis on possibilities for development of AD biomarkers.
Collapse
|
45
|
Zuroff L, Daley D, Black KL, Koronyo-Hamaoui M. Clearance of cerebral Aβ in Alzheimer's disease: reassessing the role of microglia and monocytes. Cell Mol Life Sci 2017; 74:2167-2201. [PMID: 28197669 PMCID: PMC5425508 DOI: 10.1007/s00018-017-2463-7] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/07/2017] [Accepted: 01/11/2017] [Indexed: 01/03/2023]
Abstract
Deficiency in cerebral amyloid β-protein (Aβ) clearance is implicated in the pathogenesis of the common late-onset forms of Alzheimer’s disease (AD). Accumulation of misfolded Aβ in the brain is believed to be a net result of imbalance between its production and removal. This in turn may trigger neuroinflammation, progressive synaptic loss, and ultimately cognitive decline. Clearance of cerebral Aβ is a complex process mediated by various systems and cell types, including vascular transport across the blood–brain barrier, glymphatic drainage, and engulfment and degradation by resident microglia and infiltrating innate immune cells. Recent studies have highlighted a new, unexpected role for peripheral monocytes and macrophages in restricting cerebral Aβ fibrils, and possibly soluble oligomers. In AD transgenic (ADtg) mice, monocyte ablation or inhibition of their migration into the brain exacerbated Aβ pathology, while blood enrichment with monocytes and their increased recruitment to plaque lesion sites greatly diminished Aβ burden. Profound neuroprotective effects in ADtg mice were further achieved through increased cerebral recruitment of myelomonocytes overexpressing Aβ-degrading enzymes. This review summarizes the literature on cellular and molecular mechanisms of cerebral Aβ clearance with an emphasis on the role of peripheral monocytes and macrophages in Aβ removal.
Collapse
Affiliation(s)
- Leah Zuroff
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente, AHSP A8115, Los Angeles, CA, 90048, USA.,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Daley
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente, AHSP A8115, Los Angeles, CA, 90048, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente, AHSP A8115, Los Angeles, CA, 90048, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente, AHSP A8115, Los Angeles, CA, 90048, USA. .,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
46
|
Corces MR, Buenrostro JD, Wu B, Greenside PG, Chan SM, Koenig JL, Snyder MP, Pritchard JK, Kundaje A, Greenleaf WJ, Majeti R, Chang HY. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat Genet 2016; 48:1193-203. [PMID: 27526324 PMCID: PMC5042844 DOI: 10.1038/ng.3646] [Citation(s) in RCA: 744] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 07/18/2016] [Indexed: 02/07/2023]
Abstract
We define the chromatin accessibility and transcriptional landscapes in 13 human primary blood cell types that span the hematopoietic hierarchy. Exploiting the finding that the enhancer landscape better reflects cell identity than mRNA levels, we enable 'enhancer cytometry' for enumeration of pure cell types from complex populations. We identify regulators governing hematopoietic differentiation and further show the lineage ontogeny of genetic elements linked to diverse human diseases. In acute myeloid leukemia (AML), chromatin accessibility uncovers unique regulatory evolution in cancer cells with a progressively increasing mutation burden. Single AML cells exhibit distinctive mixed regulome profiles corresponding to disparate developmental stages. A method to account for this regulatory heterogeneity identified cancer-specific deviations and implicated HOX factors as key regulators of preleukemic hematopoietic stem cell characteristics. Thus, regulome dynamics can provide diverse insights into hematopoietic development and disease.
Collapse
Affiliation(s)
- M Ryan Corces
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California, USA
| | - Jason D Buenrostro
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California, USA
- Department of Genetics, Stanford University, Stanford, California, USA
- Broad Institute of MIT and Harvard, Harvard University, Cambridge, Massachusetts, USA
| | - Beijing Wu
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Peyton G Greenside
- Department of Genetics, Stanford University, Stanford, California, USA
- Program in Biomedical Informatics, Stanford University School of Medicine, Stanford, California, USA
| | - Steven M Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Julie L Koenig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Michael P Snyder
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California, USA
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Jonathan K Pritchard
- Department of Genetics, Stanford University, Stanford, California, USA
- Department of Biology, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, California, USA
- Department of Computer Science, Stanford University, Stanford, California, USA
| | - William J Greenleaf
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California, USA
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Ravindra Majeti
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
47
|
Schwartz M, Deczkowska A. Neurological Disease as a Failure of Brain–Immune Crosstalk: The Multiple Faces of Neuroinflammation. Trends Immunol 2016; 37:668-679. [DOI: 10.1016/j.it.2016.08.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/02/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022]
|
48
|
Dá Mesquita S, Ferreira AC, Sousa JC, Correia-Neves M, Sousa N, Marques F. Insights on the pathophysiology of Alzheimer's disease: The crosstalk between amyloid pathology, neuroinflammation and the peripheral immune system. Neurosci Biobehav Rev 2016; 68:547-562. [PMID: 27328788 DOI: 10.1016/j.neubiorev.2016.06.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 06/09/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, whose prevalence is growing along with the increased life expectancy. Although the accumulation and deposition of amyloid beta (Aβ) peptides in the brain is viewed as one of the pathological hallmarks of AD and underlies, at least in part, brain cell dysfunction and behavior alterations, the etiology of this neurodegenerative disease is still poorly understood. Noticeably, increased amyloid load is accompanied by marked inflammatory alterations, both at the level of the brain parenchyma and at the barriers of the brain. However, it is debatable whether the neuroinflammation observed in aging and in AD, together with alterations in the peripheral immune system, are responsible for increased amyloidogenesis, decreased clearance of Aβ out of the brain and/or the marked deficits in memory and cognition manifested by AD patients. Herein, we scrutinize some important traits of the pathophysiology of aging and AD, focusing on the interplay between the amyloidogenic pathway, neuroinflammation and the peripheral immune system.
Collapse
Affiliation(s)
- Sandro Dá Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimaraes, Portugal
| | - Ana Catarina Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimaraes, Portugal
| | - João Carlos Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimaraes, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimaraes, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimaraes, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimaraes, Portugal.
| |
Collapse
|
49
|
Oron A, Oron U. Low-Level Laser Therapy to the Bone Marrow Ameliorates Neurodegenerative Disease Progression in a Mouse Model of Alzheimer's Disease: A Minireview. Photomed Laser Surg 2016; 34:627-630. [PMID: 27294393 DOI: 10.1089/pho.2015.4072] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE This communication reviews the ability of low-level laser therapy (LLLT) to stimulate mesenchymal stem cells (MSCs) in autologous bone marrow (BM) to enhance the capacity of MSCs to infiltrate the brain, clear β-amyloid, and improve cognition. BACKGROUND We recently reported that LLLT applied to the BM enhanced the proliferation of MSCs and their mobilization toward the ischemic heart region, suggesting a possible application of this approach in regenerative medicine and neurodegenerative diseases. It was also shown that circulating monocytes can infiltrate the brain and reduce brain amyloid load in an Alzheimer's disease (AD) mouse model. METHODS AND RESULTS MSCs from wild-type mice stimulated with LLLT demonstrated an increased ability to maturate toward a monocyte lineage and to increase phagocytosis of soluble Aβ in vitro. Furthermore, weekly LLLT for 2 months to the BM, starting at 4 months of age (progressive stage of the disease in these 5XFAD transgenic male mice), improved memory and spatial learning, compared to a sham-treated AD mouse model. Histology revealed a significant reduction in Aβ brain burden in the laser-treated mice compared to the nonlaser-treated ones. CONCLUSIONS The application of LLLT to the BM is suggested as a therapeutic approach in progressive stages of AD, and its potential role in mediating MSC therapy in brain amyloidogenic disease is implied.
Collapse
Affiliation(s)
- Amir Oron
- 1 Department of Orthopedic Surgery, Kaplan Medical Center , Rehovot, Israel
| | - Uri Oron
- 2 Department of Zoology, George S. Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University , Tel Aviv, Israel
| |
Collapse
|
50
|
Ciaramella A, Salani F, Bizzoni F, Orfei MD, Caltagirone C, Spalletta G, Bossù P. Myeloid dendritic cells are decreased in peripheral blood of Alzheimer's disease patients in association with disease progression and severity of depressive symptoms. J Neuroinflammation 2016; 13:18. [PMID: 26811068 PMCID: PMC4727381 DOI: 10.1186/s12974-016-0483-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/16/2016] [Indexed: 12/22/2022] Open
Abstract
Background Dendritic cells (DCs) are major orchestrators of immune responses and inflammation. They are migratory cells, which may play a role in Alzheimer’s disease (AD), as suggested by prior in vitro studies. With the intent to investigate the clinical relevance of DC modifications in vivo, the present study was aimed to evaluate the levels of blood DCs in AD patients, in relation to the progression of the disease, the severity of its symptoms, and the treatment with acetylcholinesterase inhibitors (AChEIs), a class of drugs used to improve cognitive functioning in people with dementia. Methods The two main subpopulations of immature blood DCs, namely myeloid (mDCs) and plasmacytoid (pDCs) cells, were evaluated by flow cytometry analysis in 106 AD patients, in comparison with the same cells from 65 individuals with mild cognitive impairment (MCI) and 73 healthy control subjects (HC). The relationship between blood DC levels and symptom severity was also assessed in AD patients, and their blood DC frequency was considered both in the absence or presence of treatment with AChEIs. Results A significant depletion in blood mDCs was observed in AD patients, as compared to HC and MCI subjects. At variance, pDC levels were comparable among the three groups of subjects. The mDC decrease was evident only after the emergence of AD clinical symptoms, as confirmed by the follow-up analysis of a subgroup of MCI subjects who exhibited a significant decline in mDCs after their conversion to AD. Notably, the mDC decline was inversely correlated in AD patients with the frequency and severity of depressive symptoms. Eventually, the mDC depletion was not observable in patients treated with AChEIs. Conclusions Our results provide the first evidence that blood mDC levels are dysregulated in AD. This phenomenon appears mainly linked to AD progression, associated with stronger severity of AD-related symptoms, and influenced by AChEI treatment. Taken all together, these data suggest that blood mDCs may serve as a cell source to test disease-induced and treatment-related changes and support the innovative notion that DCs play a role in AD, as ultimate evidence of the immune system participation in disease progression.
Collapse
Affiliation(s)
- Antonio Ciaramella
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Experimental Neuro-psychobiology Lab, Via Ardeatina 306, 00179, Rome, Italy.
| | - Francesca Salani
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Experimental Neuro-psychobiology Lab, Via Ardeatina 306, 00179, Rome, Italy.
| | - Federica Bizzoni
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Experimental Neuro-psychobiology Lab, Via Ardeatina 306, 00179, Rome, Italy.
| | - Maria Donata Orfei
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Experimental Neuro-psychobiology Lab, Via Ardeatina 306, 00179, Rome, Italy.
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Experimental Neuro-psychobiology Lab, Via Ardeatina 306, 00179, Rome, Italy. .,Department of Neuroscience, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | - Gianfranco Spalletta
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Experimental Neuro-psychobiology Lab, Via Ardeatina 306, 00179, Rome, Italy. .,Neuropsychology Unit, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy. .,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.
| | - Paola Bossù
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Experimental Neuro-psychobiology Lab, Via Ardeatina 306, 00179, Rome, Italy.
| |
Collapse
|