1
|
Tamura Y, Maeda S, Takahashi H, Aoto Y, Matsuki T, Seki K. GABAergic circuit interaction between central amygdala and bed nucleus of the stria terminalis in lipopolysaccharide-induced despair-like behavior. Physiol Behav 2024; 288:114753. [PMID: 39551417 DOI: 10.1016/j.physbeh.2024.114753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Hyperexcitability of central amygdala (CeA) induces depressive symptoms. The bed nucleus of the stria terminalis (BNST) receives GABAergic input from the CeA. However, it remains unclear whether the GABAergic neurons in the CeA projecting to BNST contribute to major depression. Here, we investigated the roles of GABAergic neurons in CeA and BNST in lipopolysaccharide (LPS)-induced despair-like behavior. We generated adeno-associated virus vectors (AAV) carrying shRNA against Gad67 to knock down GAD67 expression in CeA (Gad67-KD-CeA) or BNST (Gad67-KD-BNST) in C57BL/6J male mice. Despair-like behavior was assessed by tail suspension test (TST) 24 h after LPS administration. Saline-treated Gad67-KD-CeA mice exhibited longer immobility during TST than saline-treated AAV-injected control (AAV-Cont) mice. Although LPS increased immobility time in AAV-Cont mice, it did not affect immobility time in Gad67-KD-CeA mice. While LPS did not affect the immobility time in Gad67-KD-BNST mice, it increased immobility time in AAV-Cont mice. We injected GFP-expressing AAV with a Dlx promoter, specifically expressed in GABAergic neurons, into CeA, and FluoroGold, a retrograde neuronal tracer, into the BNST. GFP signals associated with CeA GABAergic neurons were detected in the BNST, contacting c-fos and GAD67-expressed cells following LPS. We detected the FluoroGold signals in GAD67- and c-fos-expressed neurons in the CeA after LPS administration. Bilateral intra-BNST injection of muscimol (2 pmol), a GABAA receptor agonist, increased immobility time during TST. These findings suggest that LPS-decreased GABAergic activity in the CeA may lead to disinhibition of GABAergic interneurons in the BNST, resulting in GABAA receptor activation and subsequently induces despair-like behavior.
Collapse
Affiliation(s)
- Yuka Tamura
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Sakura Maeda
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Haruna Takahashi
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Yuta Aoto
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Tohru Matsuki
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi 480-0392, Japan.
| | - Kenjiro Seki
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan.
| |
Collapse
|
2
|
Takahashi A. Associations of the immune system in aggression traits and the role of microglia as mediators. Neuropharmacology 2024; 256:110021. [PMID: 38825308 DOI: 10.1016/j.neuropharm.2024.110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
There is an important relationship between the immune system and aggressive behavior. Aggressive encounters acutely increase the levels of proinflammatory cytokines, and there are positive correlations between aggressive traits and peripheral proinflammatory cytokines. Endotoxin lipopolysaccharide (LPS) treatment, which results in peripheral immune activation, decreases aggressive behavior as one of the sickness behavioral symptoms. In contrast, certain brain infections and chronic interferon treatment are associated with increased aggression. Indeed, the effects of proinflammatory cytokines on the brain in aggressive behavior are bidirectional, depending on the type and dose of cytokine, target brain region, and type of aggression. Some studies have suggested that microglial activation and neuroinflammation influence intermale aggression in rodent models. In addition, pathological conditions as well as physiological levels of cytokines produced by microglia play an important role in social and aggressive behavior in adult animals. Furthermore, microglial function in early development is necessary for the establishment of the social brain and the expression of juvenile social behaviors, including play fighting. Overall, this review discusses the important link between the immune system and aggressive traits and the role of microglia as mediators of this link.
Collapse
Affiliation(s)
- Aki Takahashi
- Laboratory of Behavioral Neurobiology, Institute of Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
3
|
Kondo T, Okada Y, Shizuya S, Yamaguchi N, Hatakeyama S, Maruyama K. Neuroimmune modulation by tryptophan derivatives in neurological and inflammatory disorders. Eur J Cell Biol 2024; 103:151418. [PMID: 38729083 DOI: 10.1016/j.ejcb.2024.151418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
The nervous and immune systems are highly developed, and each performs specialized physiological functions. However, they work together, and their dysfunction is associated with various diseases. Specialized molecules, such as neurotransmitters, cytokines, and more general metabolites, are essential for the appropriate regulation of both systems. Tryptophan, an essential amino acid, is converted into functional molecules such as serotonin and kynurenine, both of which play important roles in the nervous and immune systems. The role of kynurenine metabolites in neurodegenerative and psychiatric diseases has recently received particular attention. Recently, we found that hyperactivity of the kynurenine pathway is a critical risk factor for septic shock. In this review, we first outline neuroimmune interactions and tryptophan derivatives and then summarized the changes in tryptophan metabolism in neurological disorders. Finally, we discuss the potential of tryptophan derivatives as therapeutic targets for neuroimmune disorders.
Collapse
Affiliation(s)
- Takeshi Kondo
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido 060-8636, Japan
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama 641-0012, Japan
| | - Saika Shizuya
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama 641-0012, Japan
| | - Naoko Yamaguchi
- Department of Pharmacology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido 060-8636, Japan
| | - Kenta Maruyama
- Department of Pharmacology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan.
| |
Collapse
|
4
|
Decker Ramirez EB, Arnold ME, McConnell KT, Solomon MG, Amico KN, Schank JR. The effects of lipopolysaccharide exposure on social interaction, cytokine expression, and alcohol consumption in male and female mice. Physiol Behav 2023; 265:114159. [PMID: 36931488 PMCID: PMC10121933 DOI: 10.1016/j.physbeh.2023.114159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/10/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Much recent research has demonstrated a role of inflammatory pathways in depressive-like behavior and excess alcohol consumption. Lipopolysaccharide (LPS) is a cell wall component of gram-negative bacteria that can be used to trigger a strong inflammatory response in rodents in a preclinical research setting to study the mechanisms behind this relationship. In our study, we exposed male and female mice to LPS and assessed depressive-like behavior using the social interaction (SI) test, alcohol consumption in the two-bottle choice procedure, and expression of inflammatory mediators using quantitative PCR. We found that LPS administration decreased SI in female mice but had no significant impact on male mice when assessed 24 h after injection. LPS resulted in increased proinflammatory cytokine expression in both male and female mice; however, some aspects of the cytokine upregulation observed was greater in female mice as compared to males. A separate cohort of male and female mice underwent drinking for 12 days before receiving a saline or LPS injection, which we found to increase alcohol intake in both males and females. We have previously observed a role of the neurokinin-1 receptor (NK1R) in escalated alcohol intake, and in the inflammatory and behavioral response to LPS. The NK1R is the endogenous target of the neuropeptide SP, and this system has wide ranging roles in depression, anxiety, drug/alcohol seeking, pain, and inflammation. Thus, we administered a NK1R antagonist prior to alcohol access. This treatment reduced escalated alcohol consumption in female mice treated with LPS but did not affect drinking in males. Taken together, these results indicate that females are more sensitive to some physiological and behavioral effects of LPS administration, but that LPS escalates alcohol consumption in both sexes. Furthermore, NK1R antagonism can reduce alcohol consumption that is escalated by LPS treatment, in line with our previous findings.
Collapse
Affiliation(s)
- E B Decker Ramirez
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA
| | - M E Arnold
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA
| | - K T McConnell
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA
| | - M G Solomon
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA
| | - K N Amico
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA
| | - J R Schank
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA.
| |
Collapse
|
5
|
Loh MK, Stickling C, Schrank S, Hanshaw M, Ritger AC, Dilosa N, Finlay J, Ferrara NC, Rosenkranz JA. Liposaccharide-induced sustained mild inflammation fragments social behavior and alters basolateral amygdala activity. Psychopharmacology (Berl) 2023; 240:647-671. [PMID: 36645464 DOI: 10.1007/s00213-023-06308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/02/2023] [Indexed: 01/17/2023]
Abstract
RATIONALE Conditions with sustained low-grade inflammation have high comorbidity with depression and anxiety and are associated with social withdrawal. The basolateral amygdala (BLA) is critical for affective and social behaviors and is sensitive to inflammatory challenges. Large systemic doses of lipopolysaccharide (LPS) initiate peripheral inflammation, increase BLA neuronal activity, and disrupt social and affective measures in rodents. However, LPS doses commonly used in behavioral studies are high enough to evoke sickness syndrome, which can confound interpretation of amygdala-associated behaviors. OBJECTIVES AND METHODS The objectives of this study were to find a LPS dose that triggers mild peripheral inflammation but not observable sickness syndrome in adult male rats, to test the effects of sustained mild inflammation on BLA and social behaviors. To accomplish this, we administered single doses of LPS (0-100 μg/kg, intraperitoneally) and measured open field behavior, or repeated LPS (5 μg/kg, 3 consecutive days), and measured BLA neuronal firing, social interaction, and elevated plus maze behavior. RESULTS Repeated low-dose LPS decreased BLA neuron firing rate but increased the total number of active BLA neurons. Repeated low-dose LPS also caused early disengagement during social bouts and less anogenital investigation and an overall pattern of heightened social caution associated with reduced gain of social familiarity over the course of a social session. CONCLUSIONS These results provide evidence for parallel shifts in social interaction and amygdala activity caused by prolonged mild inflammation. This effect of inflammation may contribute to social symptoms associated with comorbid depression and chronic inflammatory conditions.
Collapse
Affiliation(s)
- Maxine K Loh
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Courtney Stickling
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Sean Schrank
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Discipline of Neuroscience, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, North Chicago, USA
| | - Madison Hanshaw
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Alexandra C Ritger
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Discipline of Neuroscience, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, North Chicago, USA
| | - Naijila Dilosa
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Joshua Finlay
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Nicole C Ferrara
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - J Amiel Rosenkranz
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA. .,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
6
|
Lipopolysaccharide Exacerbates Ketamine-Induced Psychotic-Like Behavior, Oxidative Stress, and Neuroinflammation in Mice: Ameliorative Effect of Diosmin. J Mol Neurosci 2023; 73:129-142. [PMID: 36652038 DOI: 10.1007/s12031-022-02077-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/07/2022] [Indexed: 01/19/2023]
Abstract
Schizophrenia, a neuropsychiatric disorder has been associated with aberrant neurotransmission affecting behaviors, social preference, and cognition. Limitations in understanding its pathogenesis via the dopamine hypothesis have engendered other hypotheses such as the glutamate hypothesis. That antagonism of the N-methyl-D-aspartate receptor (NMDAR) elicits schizophrenia-like behaviors indistinguishable from the disorder in animal and human models. There are growing concerns that redox imbalance and neuro-immuno dysfunction may play role in aggravating the symptomologies of this disorder. This 14-day treatment study was designed to investigate the effect of diosmin on lipopolysaccharide (LPS) plus ketamine (NMDAR antagonist). Mice were divided into 4 groups (n = 6). Group 1 was administered 5% DMSO (10 mL/kg, i.p) while group 2-4 received LPS (0.1 mg/kg, i.p) daily for 14 days. Diosmin (50 mg/kg, i.p) and risperidone (0.5 mg/kg, i.p) were given to groups 3 and 4 respectively. Groups 2-4 were given KET (20 mg/kg, i.p.) daily from days 8-14. Behavioral tests were done 30 min after the last dose, and oxidative stress and neuroinflammatory maker were assayed. LPS plus ketamine-induced hyperlocomotion, stereotypy, decreased social preference, and memory impairment. Furthermore, LPS plus-ketamine-induced oxidative stress (reduced GSH, CAT, SOD, and increased MDA and nitrite levels) and marked pro-inflammatory cytokines TNF-α and IL-6 suggesting neuroinflammation. However, diosmin attenuated behavioral deficits and improved memory. Additionally, diosmin potentiated antioxidant level via increased GSH, CAT, and SOD while reducing MDA and nitrite levels. Finally, diosmin reduced TNF-α and IL-6 suggesting anti-neuro-immuno activity. Conclusively, diosmin attenuated LPS plus ketamine-induced behavioral deficits, oxidative stress, neuroinflammation, and improved memory.
Collapse
|
7
|
Points of divergence on a bumpy road: early development of brain and immune threat processing systems following postnatal adversity. Mol Psychiatry 2023; 28:269-283. [PMID: 35705633 DOI: 10.1038/s41380-022-01658-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 01/11/2023]
Abstract
Lifelong indices of maladaptive behavior or illness often stem from early physiological aberrations during periods of dynamic development. This is especially true when dysfunction is attributable to early life adversity (ELA), when the environment itself is unsuitable to support development of healthy behavior. Exposure to ELA is strongly associated with atypical sensitivity and responsivity to potential threats-a characteristic that could be adaptive in situations where early adversity prepares individuals for lifelong danger, but which often manifests in difficulties with emotion regulation and social relationships. By synthesizing findings from animal research, this review will consider threat sensitivity through the lenses of associated corticolimbic brain circuitry and immune mechanisms, both of which are immature early in life to maximize adaptation for protection against environmental challenges to an individual's well-being. The forces that drive differential development of corticolimbic circuits include caretaking stimuli, physiological and psychological stressors, and sex, which influences developmental trajectories. These same forces direct developmental processes of the immune system, which bidirectionally communicates with sensory systems and emotion regulation circuits within the brain. Inflammatory signals offer a further force influencing the timing and nature of corticolimbic plasticity, while also regulating sensitivity to future threats from the environment (i.e., injury or pathogens). The early development of these systems programs threat sensitivity through juvenility and adolescence, carving paths for probable function throughout adulthood. To strategize prevention or management of maladaptive threat sensitivity in ELA-exposed populations, it is necessary to fully understand these early points of divergence.
Collapse
|
8
|
Stone TW, Clanchy FIL, Huang YS, Chiang NY, Darlington LG, Williams RO. An integrated cytokine and kynurenine network as the basis of neuroimmune communication. Front Neurosci 2022; 16:1002004. [PMID: 36507331 PMCID: PMC9729788 DOI: 10.3389/fnins.2022.1002004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Two of the molecular families closely associated with mediating communication between the brain and immune system are cytokines and the kynurenine metabolites of tryptophan. Both groups regulate neuron and glial activity in the central nervous system (CNS) and leukocyte function in the immune system, although neither group alone completely explains neuroimmune function, disease occurrence or severity. This essay suggests that the two families perform complementary functions generating an integrated network. The kynurenine pathway determines overall neuronal excitability and plasticity by modulating glutamate receptors and GPR35 activity across the CNS, and regulates general features of immune cell status, surveillance and tolerance which often involves the Aryl Hydrocarbon Receptor (AHR). Equally, cytokines and chemokines define and regulate specific populations of neurons, glia or immune system leukocytes, generating more specific responses within restricted CNS regions or leukocyte populations. In addition, as there is a much larger variety of these compounds, their homing properties enable the superimposition of dynamic variations of cell activity upon local, spatially limited, cell populations. This would in principle allow the targeting of potential treatments to restricted regions of the CNS. The proposed synergistic interface of 'tonic' kynurenine pathway affecting baseline activity and the superimposed 'phasic' cytokine system would constitute an integrated network explaining some features of neuroimmune communication. The concept would broaden the scope for the development of new treatments for disorders involving both the CNS and immune systems, with safer and more effective agents targeted to specific CNS regions.
Collapse
Affiliation(s)
- Trevor W. Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom,*Correspondence: Trevor W. Stone,
| | - Felix I. L. Clanchy
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Yi-Shu Huang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Nien-Yi Chiang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - L. Gail Darlington
- Department of Internal Medicine, Ashtead Hospital, Ashtead, United Kingdom
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Lu X, Liu H, Cai Z, Hu Z, Ye M, Gu Y, Wang Y, Wang D, Lu Q, Shen Z, Shen X, Huang C. ERK1/2-dependent BDNF synthesis and signaling is required for the antidepressant effect of microglia stimulation. Brain Behav Immun 2022; 106:147-160. [PMID: 35995236 DOI: 10.1016/j.bbi.2022.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/27/2022] [Accepted: 08/13/2022] [Indexed: 10/31/2022] Open
Abstract
Depressed mice have lower numbers of microglia in the dentate gyrus (DG). Reversal of this decline by a single low dose of lipopolysaccharide (LPS) may have antidepressant effects, but there is little information on the molecular mechanisms underlying this effect. It is known that impairment of brain-derived neurotrophic factor (BDNF) signaling is involved in the development of depression. Here, we used a combination of neutralizing antibodies, mutant mice, and pharmacological approaches to test the role of BDNF-tyrosine kinase receptor B (TrkB) signaling in the DG in the effect of microglial stimulation. Our results suggest that inhibition of BDNF signaling by infusion of an anti-BDNF antibody, the BDNF receptor antagonist K252a, or knock-in of the mutant BDNF Val68Met allele abolished the antidepressant effect of LPS in chronically stressed mice. Increased BDNF synthesis in DG, mediated by extracellular signal-regulated kinase1/2 (ERK1/2) signaling but not protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling, was essential for the antidepressant effect of microglial stimulation. These results suggest that increased BDNF synthesis through activation of ERK1/2 caused by a single LPS injection and subsequent TrkB signaling are required for the antidepressant effect of hippocampal microglial stimulation.
Collapse
Affiliation(s)
- Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Huijun Liu
- Department of Pharmacy, Yancheng First Hospital, the Fourth Affiliated Hospital of Nantong University, #66 Renmin South Road, Yancheng 224006, Jiangsu, China
| | - Zixuan Cai
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Zhichao Hu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Minxiu Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Yue Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Yue Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Dan Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Qun Lu
- Department of Pharmacy, Nantong Third Hospital Affiliated to Nantong University, #60 Middle Qingnian Road, Nantong 226006, Jiangsu, China
| | - Zhongxia Shen
- Department of Psychosomatic and Psychiatric Diseases, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, #2088 Tiaoxi East Road, Huzhou 313000, Zhejiang, China
| | - Xinhua Shen
- Department of Psychosomatic and Psychiatric Diseases, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, #2088 Tiaoxi East Road, Huzhou 313000, Zhejiang, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
10
|
Lyra E Silva NM, Barros-Aragão FGQ, De Felice FG, Ferreira ST. Inflammation at the crossroads of COVID-19, cognitive deficits and depression. Neuropharmacology 2022; 209:109023. [PMID: 35257690 PMCID: PMC8894741 DOI: 10.1016/j.neuropharm.2022.109023] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Natalia M Lyra E Silva
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada; Department of Psychiatry, Queen's University, Kingston, ON, Canada.
| | - Fernanda G Q Barros-Aragão
- D'OR Institute for Research & Education, RJ, Brazil; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, RJ, Brazil.
| | - Fernanda G De Felice
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada; Department of Psychiatry, Queen's University, Kingston, ON, Canada; D'OR Institute for Research & Education, RJ, Brazil; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, RJ, Brazil
| | - Sergio T Ferreira
- D'OR Institute for Research & Education, RJ, Brazil; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, RJ, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, RJ, Brazil
| |
Collapse
|
11
|
Synaptic effects of IL-1β and CRF in the central amygdala after protracted alcohol abstinence in male rhesus macaques. Neuropsychopharmacology 2022; 47:847-856. [PMID: 34837077 PMCID: PMC8882167 DOI: 10.1038/s41386-021-01231-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
A major barrier to remission from an alcohol use disorder (AUD) is the continued risk of relapse during abstinence. Assessing the neuroadaptations after chronic alcohol and repeated abstinence is important to identify mechanisms that may contribute to relapse. In this study, we used a rhesus macaque model of long-term alcohol use and repeated abstinence, providing a platform to extend mechanistic findings from rodents to primates. The central amygdala (CeA) displays elevated GABA release following chronic alcohol in rodents and in abstinent male macaques, highlighting this neuroadaptation as a conserved mechanism that may underlie excessive alcohol consumption. Here, we determined circulating interleukin-1β (IL-1β) levels, CeA transcriptomic changes, and the effects of IL-1β and corticotropin releasing factor (CRF) signaling on CeA GABA transmission in male controls and abstinent drinkers. While no significant differences in peripheral IL-1β or the CeA transcriptome were observed, pathway analysis identified several canonical immune-related pathways. We addressed this potential dysregulation of CeA immune signaling in abstient drinkers with an electrophysiological approach. We found that IL-1β decreased CeA GABA release in controls while abstinent drinkers were less sensitive to IL-1β's effects, suggesting adaptations in the neuromodulatory role of IL-1β. In contrast, CRF enhanced CeA GABA release similarly in controls and abstinent drinkers, consistent with rodent studies. Notably, CeA CRF expression was inversely correlated with intoxication, suggesting that CRF levels during abstinence may predict future intoxication. Together, our findings highlight conserved and divergent actions of chronic alcohol on neuroimmune and stress signaling on CeA GABA transmission across rodents and macaques.
Collapse
|
12
|
Cytokines in the Brain and Neuroinflammation: We Didn’t Starve the Fire! Pharmaceuticals (Basel) 2022; 15:ph15020140. [PMID: 35215252 PMCID: PMC8878213 DOI: 10.3390/ph15020140] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
In spite of the brain-protecting tissues of the skull, meninges, and blood-brain barrier, some forms of injury to or infection of the CNS can give rise to cerebral cytokine production and action and result in drastic changes in brain function and behavior. Interestingly, peripheral infection-induced systemic inflammation can also be accompanied by increased cerebral cytokine production. Furthermore, it has been recently proposed that some forms of psychological stress may have similar CNS effects. Different conditions of cerebral cytokine production and action will be reviewed here against the background of neuroinflammation. Within this context, it is important to both deepen our understanding along already taken paths as well as to explore new ways in which neural functioning can be modified by cytokines. This, in turn, should enable us to put forward different modes of cerebral cytokine production and action in relation to distinct forms of neuroinflammation.
Collapse
|
13
|
Brain Perivascular Macrophages Do Not Mediate Interleukin-1-Induced Sickness Behavior in Rats. Pharmaceuticals (Basel) 2021; 14:ph14101030. [PMID: 34681254 PMCID: PMC8541198 DOI: 10.3390/ph14101030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Sickness behavior, characterized by on overall reduction in behavioral activity, is commonly observed after bacterial infection. Sickness behavior can also be induced by the peripheral administration of Gram-negative bacterial lipopolysaccharide (LPS) or interleukin-1beta (IL-1β), a pro-inflammatory cytokine released by LPS-activated macrophages. In addition to the microglia, the brain contains perivascular macrophages, which express the IL-1 type 1 receptor (IL-1R1). In the present study, we assessed the role of brain perivascular macrophages in mediating IL-1β-induced sickness behavior in rats. To do so, we used intracerebroventricular (icv) administration of an IL-1β-saporin conjugate, known to eliminate IL-R1-expressing brain cells, prior to systemic or central IL-1β injection. Icv IL-1β-saporin administration resulted in a reduction in brain perivascular macrophages, without altering subsequent icv or ip IL-1β-induced reductions in food intake, locomotor activity, and social interactions. In conclusion, the present work shows that icv IL-1β-saporin administration is an efficient way to target brain perivascular macrophages, and to determine whether these cells are involved in IL-1β-induced sickness behavior.
Collapse
|
14
|
Catorce MN, Gevorkian G. Evaluation of Anti-inflammatory Nutraceuticals in LPS-induced Mouse Neuroinflammation Model: An Update. Curr Neuropharmacol 2021; 18:636-654. [PMID: 31934839 PMCID: PMC7457421 DOI: 10.2174/1570159x18666200114125628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/26/2019] [Accepted: 01/11/2020] [Indexed: 02/08/2023] Open
Abstract
It is known that peripheral infections, accompanied by inflammation, represent significant risk factors for the development of neurological disorders by modifying brain development or affecting normal brain aging. The acute effects of systemic inflammation on progressive and persistent brain damage and cognitive impairment are well documented. Anti-inflammatory therapies may have beneficial effects on the brain, and the protective properties of a wide range of synthetic and natural compounds have been extensively explored in recent years. In our previous review, we provided an extensive analysis of one of the most important and widely-used animal models of peripherally induced neuroinflammation and neurodegeneration - lipopolysaccharide (LPS)-treated mice. We addressed the data reproducibility in published research and summarized basic features and data on the therapeutic potential of various natural products, nutraceuticals, with known anti-inflammatory effects, for reducing neuroinflammation in this model. Here, recent data on the suitability of the LPS-induced murine neuroinflammation model for preclinical assessment of a large number of nutraceuticals belonging to different groups of natural products such as flavonoids, terpenes, non-flavonoid polyphenols, glycosides, heterocyclic compounds, organic acids, organosulfur compounds and xanthophylls, are summarized. Also, the proposed mechanisms of action of these molecules are discussed.
Collapse
Affiliation(s)
- Miryam Nava Catorce
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF, Mexico
| |
Collapse
|
15
|
Smith CJ, Bilbo SD. Sickness and the Social Brain: Love in the Time of COVID. Front Psychiatry 2021; 12:633664. [PMID: 33692712 PMCID: PMC7937950 DOI: 10.3389/fpsyt.2021.633664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
As a highly social species, inclusion in social networks and the presence of strong social bonds are critical to our health and well-being. Indeed, impaired social functioning is a component of numerous neuropsychiatric disorders including depression, anxiety, and substance use disorder. During the current COVID-19 pandemic, our social networks are at risk of fracture and many are vulnerable to the negative consequences of social isolation. Importantly, infection itself leads to changes in social behavior as a component of "sickness behavior." Furthermore, as in the case of COVID-19, males and females often differ in their immunological response to infection, and, therefore, in their susceptibility to negative outcomes. In this review, we discuss the many ways in which infection changes social behavior-sometimes to the benefit of the host, and in some instances for the sake of the pathogen-in species ranging from eusocial insects to humans. We also explore the neuroimmune mechanisms by which these changes in social behavior occur. Finally, we touch upon the ways in which the social environment (group living, social isolation, etc.) shapes the immune system and its ability to respond to challenge. Throughout we emphasize how males and females differ in their response to immune activation, both behaviorally and physiologically.
Collapse
Affiliation(s)
- Caroline J Smith
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| |
Collapse
|
16
|
Whylings J, Rigney N, de Vries GJ, Petrulis A. Removal of vasopressin cells from the paraventricular nucleus of the hypothalamus enhances lipopolysaccharide-induced sickness behaviour in mice. J Neuroendocrinol 2021; 33:e12915. [PMID: 33617060 PMCID: PMC8543850 DOI: 10.1111/jne.12915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/07/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022]
Abstract
Vasopressin (AVP) cells in the paraventricular nucleus of the hypothalamus (PVN) are activated during sickness and project to multiple nuclei responsible for the anxiety, social and motivated behaviours affected during sickness, suggesting that these cells may play a role in sickness behaviours, typically expressed as reduced mobility, increased anxiety, anhedonia and social withdrawal. In the present study, we selectively ablated AVP neurones in the PVN of male and female mice (Mus musculus) and induced sickness behaviour via injection of bacterial lipopolysaccharide (LPS). We found that PVN AVP ablation increased the effects of LPS, specifically by further decreasing sucrose preference in males and females and decreasing the social preference of males, monitored within 24 hours of LPS injection. These results suggest that PVN AVP contributes to the change in motivated behaviours during sickness and may help promote recovery from infection..
Collapse
Affiliation(s)
- Jack Whylings
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Nicole Rigney
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Geert J de Vries
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Aras Petrulis
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
17
|
Neonatal immune challenge induces female-specific changes in social behavior and somatostatin cell number. Brain Behav Immun 2020; 90:332-345. [PMID: 32860938 PMCID: PMC7556772 DOI: 10.1016/j.bbi.2020.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022] Open
Abstract
Decreases in social behavior are a hallmark aspect of acute "sickness behavior" in response to infection. However, immune insults that occur during the perinatal period may have long-lasting consequences for adult social behavior by impacting the developmental organization of underlying neural circuits. Microglia, the resident immune cells of the central nervous system, are sensitive to immune stimulation and play a critical role in the developmental sculpting of neural circuits, making them likely mediators of this process. Here, we investigated the impact of a postnatal day (PND) 4 lipopolysaccharide (LPS) challenge on social behavior in adult mice. Somewhat surprisingly, neonatal LPS treatment decreased sociability in adult female, but not male mice. LPS-treated females also displayed reduced social interaction and social memory in a social discrimination task as compared to saline-treated females. Somatostatin (SST) interneurons within the anterior cingulate cortex (ACC) have recently been suggested to modulate a variety of social behaviors. Interestingly, the female-specific changes in social behavior observed here were accompanied by an increase in SST interneuron number in the ACC. Finally, these changes in social behavior and SST cell number do not appear to depend on microglial inflammatory signaling, because microglia-specific genetic knock-down of myeloid differentiation response protein 88 (MyD88; the removal of which prevents LPS from increasing proinflammatory cytokines such as TNFα and IL-1β) did not prevent these LPS-induced changes. This study provides novel evidence for enduring effects of neonatal immune activation on social behavior and SST interneurons in females, largely independent of microglial inflammatory signaling.
Collapse
|
18
|
Li W, Luo S, Wan C. Characterization of fever and sickness behavior regulated by cytokines during infection. BEHAVIOUR 2020. [DOI: 10.1163/1568539x-bja10028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
In response to invasion of pathogens, hosts present fever and a series of behavioural changes including reduced grooming, reduction of foraging, decreased locomotion, withdrawing from social activities and reproductive process, which are collectively termed sickness behaviour. Fever as well as sickness behaviour are adaptive and benefit the host to reduce pathology caused by infections and opportunity costs for time away from foraging, reproduction and predator avoidance. Antipathogenic fever and sickness behaviour are mediated proximately by cytokines including pro- and anti-inflammatory cytokines. Pro-inflammation cytokines trigger these sickness responses, while anti-inflammatory cytokines constrain these responses and prevent damage to host from exaggerated responses. The present study reviews the characterization of fever and sickness behaviour regulated by cytokines during infection.
Collapse
Affiliation(s)
- Weiran Li
- aDepartment of Pediatrics, West China Second University Hospital, Sichuan University, No 20, 3rd section of Renmin South Road, Chengdu 610041, P.R. China
- bKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, P.R. China
| | - Shuanghong Luo
- aDepartment of Pediatrics, West China Second University Hospital, Sichuan University, No 20, 3rd section of Renmin South Road, Chengdu 610041, P.R. China
- bKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, P.R. China
| | - Chaomin Wan
- aDepartment of Pediatrics, West China Second University Hospital, Sichuan University, No 20, 3rd section of Renmin South Road, Chengdu 610041, P.R. China
- bKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, P.R. China
| |
Collapse
|
19
|
Lasselin J, Schedlowski M, Karshikoff B, Engler H, Lekander M, Konsman JP. Comparison of bacterial lipopolysaccharide-induced sickness behavior in rodents and humans: Relevance for symptoms of anxiety and depression. Neurosci Biobehav Rev 2020; 115:15-24. [PMID: 32433924 DOI: 10.1016/j.neubiorev.2020.05.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/24/2020] [Accepted: 05/02/2020] [Indexed: 12/26/2022]
Abstract
Increasing evidence from animal and human studies suggests that inflammation may be involved in mood disorders. Sickness behavior and emotional changes induced by experimental inflammatory stimuli have been extensively studied in humans and rodents to better understand the mechanisms underlying inflammation-driven mood alterations. However, research in animals and humans have remained compartmentalized and a comprehensive comparison of inflammation-induced sickness and depressive-like behavior between rodents and humans is lacking. Thus, here, we highlight similarities and differences in the effects of bacterial lipopolysaccharide administration on the physiological (fever and cytokines), behavioral and emotional components of the sickness response in rodents and humans, and discuss the translational challenges involved. We also emphasize the differences between observable sickness behavior and subjective sickness reports, and advocate for the need to obtain both subjective reports and objective measurements of sickness behavior in humans. We aim to provide complementary insights for translational clinical and experimental research on inflammation-induced behavioral and emotional changes, and their relevance for mood disorders such as depression.
Collapse
Affiliation(s)
- Julie Lasselin
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Manfred Schedlowski
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany
| | - Bianka Karshikoff
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany
| | - Mats Lekander
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Pieter Konsman
- Institute for Cognitive and Integrative Neuroscience, CNRS UMR 5287, University of Bordeaux, France
| |
Collapse
|
20
|
Carabelli B, Delattre AM, Waltrick APF, Araújo G, Suchecki D, Machado RB, de Souza LER, Zanata SM, Zanoveli JM, Ferraz AC. Fish-oil supplementation decreases Indoleamine-2,3-Dioxygenase expression and increases hippocampal serotonin levels in the LPS depression model. Behav Brain Res 2020; 390:112675. [PMID: 32407816 DOI: 10.1016/j.bbr.2020.112675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/07/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
AIM To test the hypothesis that the antidepressant-like effect of omega-3 polyunsaturated fatty acids is related to the Indoleamine-2,3-Dioxygenase (IDO) inhibition. METHODS Animals were supplemented for 50 days with 3.0 g/kg of Fish Oil (FO) or received water (Control group - C), via gavage. At the end of this period, both groups were injected with LPS 24 h before the modified forced swim test (MFST) and the open field. To assess the possible involvement of IDO in the FO effects, we performed two independent experiments, using two IDO inhibitors: the direct inhibitor 1-methyl-DL-tryptophan (1-MT) and the anti-inflammatory drug minocycline (MINO), administered 23 h, 5 h and 1 h before the tests. After the tests, the animals' hippocampi were removed for quantification of serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) by HPLC, and for IDO expression by western blot. RESULTS LPS induced a depressive-like state in the animals, and this effect was blocked by 1-MT, MINO and FO. Regardless of IDO inhibition, FO supplemented animals displayed an antidepressant-like response by increasing swimming and decreasing immobility frequencies in the MFST when compared to the control group. The immune challenge induced an over-expression of IDO and reduced hippocampal 5-HT levels, both of which were reversed by MINO and FO. CONCLUSION FO induced a pronounced antidepressant-like effect and prevented LPS-induced depressive-like behavior, and this effect was related to decreased IDO expression and increased 5-HT levels in the hippocampus.
Collapse
Affiliation(s)
- Bruno Carabelli
- Departamento de Fisiologia, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | - Ana Márcia Delattre
- Departamento de Fisiologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | - Giulia Araújo
- Departamento de Fisiologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Deborah Suchecki
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | - Silvio M Zanata
- Departamento de Patologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | - Anete Curte Ferraz
- Departamento de Fisiologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
21
|
Sayd A, Vargas-Caraveo A, Perea-Romero I, Robledo-Montaña J, Caso JR, Madrigal JLM, Leza JC, Orio L, Garcia-Bueno B. Depletion of brain perivascular macrophages regulates acute restraint stress-induced neuroinflammation and oxidative/nitrosative stress in rat frontal cortex. Eur Neuropsychopharmacol 2020; 34:50-64. [PMID: 32245674 DOI: 10.1016/j.euroneuro.2020.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 01/30/2020] [Accepted: 03/06/2020] [Indexed: 12/30/2022]
Abstract
The central nervous system can respond to peripheral immune stimuli through the activation of the neurovascular unit. One of the cellular types implicated are perivascular macrophages (PVMs), hematopoietic-derived brain-resident cells located in the perivascular space. PVMs have been implicated in the immune surveillance and in the regulation of the accumulation/trafficking of macromolecules in brain-blood interfaces. Recent studies suggested that the role of PVMs could vary depending on the nature and duration of the immune challenge applied. Here, we investigate the role of PVMs in stress-induced neuroinflammation and oxidative/nitrosative consequences. The basal phagocytic activity of PVMs was exploited to selectively deplete them by ICV injection of liposomes encapsulating the pro-apoptotic drug clodronate. Acute restraint stress-induced neuroinflammation and oxidative/nitrosative stress in rat brain frontal cortex samples were assessed by western blot and RT-PCR analyses. The depletion of PVMs: (1) decreased tumor necrosis-α levels (2) prevented the Janus kinase/signal transducers and activators of transcription pathway and increased interleukin-6 receptor protein-expression in stress conditions; (3) prevented the stress-induced Toll-like receptor 4/Myeloid differentiation primary response 88 protein signaling pathway; (4) down-regulated the pro-inflammatory nuclear factor κB/cyclooxygenase-2 pathway; (5) prevented stress-induced lipid peroxidation and the concomitant increase of the endogenous antioxidant mediators nuclear factor (erythroid-derived 2)-like 2, glutathione reductase 1 and Parkinsonism-associated deglycase mRNA expression. Our results point to PVMs as regulators of stress-induced neuroinflammation and oxidative/nitrosative stress. Much more scientific effort is still needed to evaluate whether their selective manipulation is promising as a therapeutic strategy for the treatment of stress-related neuropsychopathologies.
Collapse
Affiliation(s)
- Aline Sayd
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, Madrid 28040, Spain
| | - Alejandra Vargas-Caraveo
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, Madrid 28040, Spain; Campus Lerma, Biological and Health Sciences Division, Metropolitan Autonomous University (UAM), Lerma 52005, Mexico
| | - Irene Perea-Romero
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, Madrid 28040, Spain
| | - Javier Robledo-Montaña
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, Madrid 28040, Spain
| | - Javier R Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, Madrid 28040, Spain
| | - Jose L M Madrigal
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, Madrid 28040, Spain
| | - Juan C Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, Madrid 28040, Spain
| | - Laura Orio
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, Red de Trastornos Adictivos (RTA) del Instituto de Salud Carlos III (ISCIII), Spain
| | - Borja Garcia-Bueno
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, Madrid 28040, Spain.
| |
Collapse
|
22
|
Whylings J, Rigney N, Peters NV, de Vries GJ, Petrulis A. Sexually dimorphic role of BNST vasopressin cells in sickness and social behavior in male and female mice. Brain Behav Immun 2020; 83:68-77. [PMID: 31550501 PMCID: PMC6906230 DOI: 10.1016/j.bbi.2019.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/29/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023] Open
Abstract
Circumstantial evidence supports the hypothesis that the sexually dimorphic vasopressin (AVP) innervation of the brain tempers sickness behavior in males. Here we test this hypothesis directly, by comparing sickness behavior in animals with or without ablations of BNST AVP cells, a major source of sexually dimorphic AVP in the brain. We treated male and female AVP-iCre+ and AVP-iCre- mice that had been injected with viral Cre-dependent caspase-3 executioner construct into the BNST with lipopolysaccharide (LPS) or sterile saline, followed by behavioral analysis. In all groups, LPS treatment reliably reduced motor behavior, increased anxiety-related behavior, and reduced sucrose preference and consumption. Male mice, whose BNST AVP cells had been ablated (AVP-iCre+), displayed only minor reductions in LPS-induced sickness behavior, whereas their female counterparts displayed, if anything, an increase in sickness behaviors. All saline-treated mice with BNST AVP cell ablations consumed more sucrose than did control mice, and males, but not females, with BNST AVP cell ablations showed reduced preference for novel conspecifics compared to control mice. These data confirm that BNST AVP cells control social behavior in a sexually dimorphic way, but do not play a critical role in altering sickness behavior.
Collapse
Affiliation(s)
- Jack Whylings
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| | - Nicole Rigney
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| | - Nicole V Peters
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Geert J de Vries
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA; Department of Biology, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| | - Aras Petrulis
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| |
Collapse
|
23
|
Griton M, Dhaya I, Nicolas R, Raffard G, Periot O, Hiba B, Konsman JP. Experimental sepsis-associated encephalopathy is accompanied by altered cerebral blood perfusion and water diffusion and related to changes in cyclooxygenase-2 expression and glial cell morphology but not to blood-brain barrier breakdown. Brain Behav Immun 2020; 83:200-213. [PMID: 31622656 DOI: 10.1016/j.bbi.2019.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) refers to brain dysfunction, including delirium, occurs during severe infection and is associated with development of post-traumatic stress disorder. SAE has been proposed to be related to reduced cerebral blood flow (CBF), blood-brain barrier breakdown (BBB), white matter edema and disruption and glia cell activation, but their exact relationships remain to be determined. In the present work, we set out to study CBF using Arterial Spin Labeling (ASL) and grey and white matter structure with T2- and diffusion magnetic resonance imaging (dMRI) in rats with cecal ligation and puncture (CLP)-induced encephalopathy. Using immunohistochemistry, the distribution of the vasoactive prostaglandin-synthesizing enzyme cyclooxygenase-2 (COX-2), perivascular immunoglobulins G (IgG), aquaporin-4 (AQP4) and the morphology of glial cell were subsequently assessed in brains of the same animals. CLP induced deficits in the righting reflex and resulted in higher T2-weighted contrast intensities in the cortex, striatum and at the base of the brain, decreased blood perfusion distribution to the cortex and increased water diffusion parallel to the fibers of the corpus callosum compared to sham surgery. In addition, CLP reduced staining for microglia- and astrocytic-specific proteins in the corpus callosum, decreased neuronal COX-2 and AQP4 expression in the cortex while inducing perivascular COX-2 expression, but did not induce widespread perivascular IgG diffusion. In conclusion, our findings indicate that experimental SAE can occur in the absence of BBB breakdown and is accompanied by increased water diffusion anisotropy and altered glia cell morphology in brain white matter.
Collapse
Affiliation(s)
- Marion Griton
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France; Service de Réanimation Anesthésie Neurochirurgicale, Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Ibtihel Dhaya
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France; Laboratoire de Neurophysiologie Fonctionnelle et Pathologies, UR/11ES09, Faculté des Sciences Mathématiques, Physiques et Naturelles, Université de Tunis El Manar, Tunis, Tunisia
| | - Renaud Nicolas
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France
| | - Gérard Raffard
- CNRS, Résonance Magnétique des Systèmes Biologiques, UMR 5536, Bordeaux, France; Univ. Bordeaux, RMSB, UMR 5536, Bordeaux, France
| | - Olivier Periot
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France; Service de Médecine Nucléaire, Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Bassem Hiba
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France; CNRS UMR 5229, Centre de Neurosciences Cognitives Marc Jeannerod, Bron, France
| | - Jan Pieter Konsman
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France.
| |
Collapse
|
24
|
Chaskiel L, Bristow AD, Bluthé RM, Dantzer R, Blomqvist A, Konsman JP. Interleukin-1 reduces food intake and body weight in rat by acting in the arcuate hypothalamus. Brain Behav Immun 2019; 81:560-573. [PMID: 31310797 DOI: 10.1016/j.bbi.2019.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022] Open
Abstract
A reduction in food intake is commonly observed after bacterial infection, a phenomenon that can be reproduced by peripheral administration of Gram-negative bacterial lipopolysaccharide (LPS) or interleukin-1beta (IL-1β), a pro-inflammatory cytokine released by LPS-activated macrophages. The arcuate nucleus of the hypothalamus (ARH) plays a major role in food intake regulation and expresses IL-1 type 1 receptor (IL-1R1) mRNA. In the present work, we tested the hypothesis that IL-1R1 expressing cells in the ARH mediate IL-1β and/or LPS-induced hypophagia in the rat. To do so, we developed an IL-1β-saporin conjugate, which eliminated IL-R1-expressing neurons in the hippocampus, and micro-injected it into the ARH prior to systemic IL-1β and LPS administration. ARH IL-1β-saporin injection resulted in loss of neuropeptide Y-containing cells and attenuated hypophagia and weight loss after intraperitoneal IL-1β, but not LPS, administration. In conclusion, the present study shows that ARH NPY-containing neurons express functional IL-1R1s that mediate peripheral IL-1β-, but not LPS-, induced hypophagia. Our present and previous findings indicate that the reduction of food intake after IL-1β and LPS are mediated by different neural pathways.
Collapse
Affiliation(s)
- Léa Chaskiel
- Psychoneuroimmunology, Nutrition and Genetics, UMR CNRS 5226-INRA 1286, University of Bordeaux, 33076 Bordeaux, France
| | - Adrian D Bristow
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Rose-Marie Bluthé
- Psychoneuroimmunology, Nutrition and Genetics, UMR CNRS 5226-INRA 1286, University of Bordeaux, 33076 Bordeaux, France
| | - Robert Dantzer
- Department of Symptom Research, MD Anderson Cancer Center, The University of Texas, Houston, TX 770030, USA
| | - Anders Blomqvist
- Division of Neurobiology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | - Jan Pieter Konsman
- UMR CNRS 5287 Aquitaine Institute for Integrative and Cognitive Neuroscience, University of Bordeaux, 33076 Bordeaux, France.
| |
Collapse
|
25
|
Perkins AE, Varlinskaya EI, Deak T. From adolescence to late aging: A comprehensive review of social behavior, alcohol, and neuroinflammation across the lifespan. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:231-303. [PMID: 31733665 DOI: 10.1016/bs.irn.2019.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The passage of time dictates the pace at which humans and other organisms age but falls short of providing a complete portrait of how environmental, lifestyle and underlying biological processes contribute to senescence. Two fundamental features of the human experience that change dramatically across the lifespan include social interactions and, for many, patterns of alcohol consumption. Rodent models show great utility for understanding complex interactions among aging, social behavior and alcohol use and abuse, yet little is known about the neural changes in late aging that contribute to the natural decline in social behavior. Here, we posit that aging-related neuroinflammation contributes to the insipid loss of social motivation across the lifespan, an effect that is exacerbated by patterns of repeated alcohol consumption observed in many individuals. We provide a comprehensive review of (i) neural substrates crucial for the expression of social behavior under non-pathological conditions; (ii) unique developmental/lifespan vulnerabilities that may contribute to the divergent effects of low-and high-dose alcohol exposure; and (iii) aging-associated changes in neuroinflammation that may sit at the intersection between social processes and alcohol exposure. In doing so, we provide an overview of correspondence between lifespan/developmental periods between common rodent models and humans, give careful consideration to model systems used to aptly probe social behavior, identify points of coherence between human and animal models, and point toward a multitude of unresolved issues that should be addressed in future studies. Together, the combination of low-dose and high-dose alcohol effects serve to disrupt the normal development and maintenance of social relationships, which are critical for both healthy aging and quality of life across the lifespan. Thus, a more complete understanding of neural systems-including neuroinflammatory processes-which contribute to alcohol-induced changes in social behavior will provide novel opportunities and targets for promoting healthy aging.
Collapse
Affiliation(s)
- Amy E Perkins
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Elena I Varlinskaya
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States.
| |
Collapse
|
26
|
Abstract
The innate immune system plays a critical role in the ethanol-induced neuroimmune response in the brain. Ethanol initiates the innate immune response via activation of the innate immune receptors Toll-like receptors (TLRs, e.g., TLR4, TLR3, TLR7) and NOD-like receptors (inflammasome NLRs) leading to a release of a plethora of chemokines and cytokines and development of the innate immune response. Cytokines and chemokines can have pro- or anti-inflammatory properties through which they regulate the immune response. In this chapter, we will focus on key cytokines (e.g., IL-1, IL-6, TNF-α) and chemokines (e.g., MCP-1/CCL2) that mediate the ethanol-induced neuroimmune responses. In this regard, we will use IL-1β, as an example cytokine, to discuss the neuromodulatory properties of cytokines on cellular properties and synaptic transmission. We will discuss their involvement through a set of evidence: (1) changes in gene and protein expression following ethanol exposure, (2) association of gene polymorphisms (humans) and alterations in gene expression (animal models) with increased alcohol intake, and (3) modulation of alcohol-related behaviors by transgenic or pharmacological manipulations of chemokine and cytokine systems. Over the last years, our understanding of the molecular mechanisms mediating cytokine- and chemokine-dependent regulation of immune responses has advanced tremendously, and we review evidence pointing to cytokines and chemokines serving as neuromodulators and regulators of neurotransmission.
Collapse
Affiliation(s)
- Marisa Roberto
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA.
| | - Reesha R Patel
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Michal Bajo
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
27
|
Kopec AM, Smith CJ, Bilbo SD. Neuro-Immune Mechanisms Regulating Social Behavior: Dopamine as Mediator? Trends Neurosci 2019; 42:337-348. [PMID: 30890276 DOI: 10.1016/j.tins.2019.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/08/2019] [Accepted: 02/22/2019] [Indexed: 12/17/2022]
Abstract
Social interactions are fundamental to survival and overall health. The mechanisms underlying social behavior are complex, but we now know that immune signaling plays a fundamental role in the regulation of social interactions. Prolonged or exaggerated alterations in social behavior often accompany altered immune signaling and function in pathological states. Thus, unraveling the link between social behavior and immune signaling is a fundamental challenge, not only to advance our understanding of human health and development, but for the design of comprehensive therapeutic approaches for neural disorders. In this review, we synthesize literature demonstrating the bidirectional relationship between social behavior and immune signaling and highlight recent work linking social behavior, immune function, and dopaminergic signaling in adolescent neural and behavioral development.
Collapse
Affiliation(s)
- Ashley M Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Caroline J Smith
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Staci D Bilbo
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA, USA.
| |
Collapse
|
28
|
Acute transient cognitive dysfunction and acute brain injury induced by systemic inflammation occur by dissociable IL-1-dependent mechanisms. Mol Psychiatry 2019; 24:1533-1548. [PMID: 29875474 PMCID: PMC6510649 DOI: 10.1038/s41380-018-0075-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 02/12/2018] [Accepted: 04/03/2018] [Indexed: 01/06/2023]
Abstract
Systemic inflammation can impair cognition with relevance to dementia, delirium and post-operative cognitive dysfunction. Episodes of delirium also contribute to rates of long-term cognitive decline, implying that these acute events induce injury. Whether systemic inflammation-induced acute dysfunction and acute brain injury occur by overlapping or discrete mechanisms remains unexplored. Here we show that systemic inflammation, induced by bacterial LPS, produces both working-memory deficits and acute brain injury in the degenerating brain and that these occur by dissociable IL-1-dependent processes. In normal C57BL/6 mice, LPS (100 µg/kg) did not affect working memory but impaired long-term memory consolidation. However prior hippocampal synaptic loss left mice selectively vulnerable to LPS-induced working memory deficits. Systemically administered IL-1 receptor antagonist (IL-1RA) was protective against, and systemic IL-1β replicated, these working memory deficits. Dexamethasone abolished systemic cytokine synthesis and was protective against working memory deficits, without blocking brain IL-1β synthesis. Direct application of IL-1β to ex vivo hippocampal slices induced non-synaptic depolarisation and irreversible loss of membrane potential in CA1 neurons from diseased animals and systemic LPS increased apoptosis in the degenerating brain, in an IL-1RI-dependent fashion. The data suggest that LPS induces working memory dysfunction via circulating IL-1β but direct hippocampal action of IL-1β causes neuronal dysfunction and may drive neuronal death. The data suggest that acute systemic inflammation produces both reversible cognitive deficits, resembling delirium, and acute brain injury contributing to long-term cognitive impairment but that these events are mechanistically dissociable. These data have significant implications for management of cognitive dysfunction during acute illness.
Collapse
|
29
|
Patel RR, Khom S, Steinman MQ, Varodayan FP, Kiosses WB, Hedges DM, Vlkolinsky R, Nadav T, Polis I, Bajo M, Roberts AJ, Roberto M. IL-1β expression is increased and regulates GABA transmission following chronic ethanol in mouse central amygdala. Brain Behav Immun 2019; 75:208-219. [PMID: 30791967 PMCID: PMC6383367 DOI: 10.1016/j.bbi.2018.10.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/09/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022] Open
Abstract
The interleukin-1 system (IL-1) is a prominent pro-inflammatory pathway responsible for the initiation and regulation of immune responses. Human genetic and preclinical studies suggest a critical role for IL-1β signaling in ethanol drinking and dependence, but little is known about the effects of chronic ethanol on the IL-1 system in addiction-related brain regions such as the central amygdala (CeA). In this study, we generated naïve, non-dependent (Non-Dep) and dependent (Dep) male mice using a paradigm of chronic-intermittent ethanol vapor exposure interspersed with two-bottle choice to examine 1) the expression of IL-1β, 2) the role of the IL-1 system on GABAergic transmission, and 3) the potential interaction with the acute effects of ethanol in the CeA. Immunohistochemistry with confocal microscopy was used to assess expression of IL-1β in microglia and neurons in the CeA, and whole-cell patch clamp recordings were obtained from CeA neurons to measure the effects of IL-1β (50 ng/ml) or the endogenous IL-1 receptor antagonist (IL-1ra; 100 ng/ml) on action potential-dependent spontaneous inhibitory postsynaptic currents (sIPSCs). Overall, we found that IL-1β expression is significantly increased in microglia and neurons of Dep compared to Non-Dep and naïve mice, IL-1β and IL-1ra bi-directionally modulate GABA transmission through both pre- and postsynaptic mechanisms in all three groups, and IL-1β and IL-1ra do not alter the facilitation of GABA release induced by acute ethanol. These data suggest that while ethanol dependence induces a neuroimmune response in the CeA, as indicated by increased IL-1β expression, this does not significantly alter the neuromodulatory role of IL-1β on synaptic transmission.
Collapse
Affiliation(s)
- Reesha R Patel
- The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Sophia Khom
- The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Michael Q Steinman
- The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Florence P Varodayan
- The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - William B Kiosses
- The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - David M Hedges
- The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Roman Vlkolinsky
- The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Tali Nadav
- The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Ilham Polis
- The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Michal Bajo
- The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Amanda J Roberts
- The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Marisa Roberto
- The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
30
|
Munshi S, Rosenkranz JA. Effects of Peripheral Immune Challenge on In Vivo Firing of Basolateral Amygdala Neurons in Adult Male Rats. Neuroscience 2018; 390:174-186. [PMID: 30170159 DOI: 10.1016/j.neuroscience.2018.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/07/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022]
Abstract
Peripheral inflammation often causes changes in mood and emergence of depressive behavior, and is characterized by a group of physical manifestations including lethargy, malaise, listlessness, decreased appetite, anhedonia, and fever. These behavioral changes are induced at the molecular level by pro-inflammatory cytokines like interleukin (IL)-1β, IL-6 and TNF-α. The basolateral amygdala (BLA) is a key brain region involved in mood and may mediate some of the behavioral effects of inflammation. However, it is unknown whether peripheral inflammatory state affects the activity of BLA neurons. To test this, adult male Sprague-Dawley rats were treated with IL-1β (1 μg, intraperitoneal (i.p.)), and behavioral and electrophysiological measures were obtained. IL-1β reduced locomotion in the open-field test and also reduced home-cage mobility, consistent with features of sickness-like behavior. Using in vivo single-unit extracellular electrophysiological recordings from anesthetized rats, we found that spontaneous BLA neuronal firing was acutely (<30 min) increased after IL-1β, followed by a return to baseline level, particularly in the basal nucleus of the BLA complex. To verify and expand on effects of peripheral inflammation, we tested whether another, long-lasting inflammagen also changes BLA neuronal firing. Lipopolysaccharide (250 μg/kg, i.p.) increased BLA firing rate acutely (<30 min) and persistently. The findings demonstrate a rapid effect of peripheral inflammation on BLA activity and suggest a link between BLA neuronal firing and triggering of behavioral consequences of peripheral inflammation. These findings are a first step toward understanding the neuronal basis of depressive behavior caused by acute peripheral inflammation.
Collapse
Affiliation(s)
- Soumyabrata Munshi
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA; Department of Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - J Amiel Rosenkranz
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA; Center for Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.
| |
Collapse
|
31
|
Dantzer R. Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa. Physiol Rev 2018; 98:477-504. [PMID: 29351513 PMCID: PMC5866360 DOI: 10.1152/physrev.00039.2016] [Citation(s) in RCA: 558] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 06/05/2017] [Accepted: 06/18/2017] [Indexed: 12/14/2022] Open
Abstract
Because of the compartmentalization of disciplines that shaped the academic landscape of biology and biomedical sciences in the past, physiological systems have long been studied in isolation from each other. This has particularly been the case for the immune system. As a consequence of its ties with pathology and microbiology, immunology as a discipline has largely grown independently of physiology. Accordingly, it has taken a long time for immunologists to accept the concept that the immune system is not self-regulated but functions in close association with the nervous system. These associations are present at different levels of organization. At the local level, there is clear evidence for the production and use of immune factors by the central nervous system and for the production and use of neuroendocrine mediators by the immune system. Short-range interactions between immune cells and peripheral nerve endings innervating immune organs allow the immune system to recruit local neuronal elements for fine tuning of the immune response. Reciprocally, immune cells and mediators play a regulatory role in the nervous system and participate in the elimination and plasticity of synapses during development as well as in synaptic plasticity at adulthood. At the whole organism level, long-range interactions between immune cells and the central nervous system allow the immune system to engage the rest of the body in the fight against infection from pathogenic microorganisms and permit the nervous system to regulate immune functioning. Alterations in communication pathways between the immune system and the nervous system can account for many pathological conditions that were initially attributed to strict organ dysfunction. This applies in particular to psychiatric disorders and several immune-mediated diseases. This review will show how our understanding of this balance between long-range and short-range interactions between the immune system and the central nervous system has evolved over time, since the first demonstrations of immune influences on brain functions. The necessary complementarity of these two modes of communication will then be discussed. Finally, a few examples will illustrate how dysfunction in these communication pathways results in what was formerly considered in psychiatry and immunology to be strict organ pathologies.
Collapse
Affiliation(s)
- Robert Dantzer
- Department of Symptom Research, University of Texas MD Anderson Cancer Center , Houston, Texas
| |
Collapse
|
32
|
Dhaya I, Griton M, Raffard G, Amri M, Hiba B, Konsman JP. Bacterial lipopolysaccharide-induced systemic inflammation alters perfusion of white matter-rich regions without altering flow in brain-irrigating arteries: Relationship to blood-brain barrier breakdown? J Neuroimmunol 2018; 314:67-80. [DOI: 10.1016/j.jneuroim.2017.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/31/2017] [Accepted: 11/13/2017] [Indexed: 01/24/2023]
|
33
|
Hamasato EK, Lovelock D, Palermo-Neto J, Deak T. Assessment of social behavior directed toward sick partners and its relation to central cytokine expression in rats. Physiol Behav 2017; 182:128-136. [PMID: 29031549 PMCID: PMC5672824 DOI: 10.1016/j.physbeh.2017.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/26/2017] [Accepted: 10/10/2017] [Indexed: 10/18/2022]
Abstract
Acute illness not only reduces the expression of social behavior by sick rodents, but can also lead to avoidance responses when detected by healthy, would-be social partners. When healthy animals interact with a sick partner, an intriguing question arises: does exposure to a sick conspecific elicit an anticipatory immune response that would facilitate defense against future infection? To address this question, healthy adult male Sprague-Dawley rats (N=64) were given a brief social interaction (30min) with a partner that was either sick (250μg/kg injection with lipopolysaccharide [LPS] 3h prior to test) or healthy (sterile saline injection). During this exposure, social behavior directed toward the healthy or sick conspecific was measured. Additionally, the impact of housing condition was assessed, with rats group- or isolate-housed. Immediately after social interaction, brains were harvested for cytokine assessments within socially-relevant brain structures (olfactory bulb, amygdala, hippocampus and PVN). As expected, behavioral results demonstrated that (i) there was a robust suppression of social interaction directed against sick conspecifics; and (ii) isolate-housing generally increased social behavior. Furthermore, examination of central cytokine expression in healthy experimental subjects revealed a modest increase in TNF-α in rats that interacted with a sick social partner, but only in the olfactory bulb. Among the LPS-injected partners, expected increases in IL-1β, IL-6, and TNF-α expression were observed across all brain sites. Moreover, IL-1β and IL-6 expression was exacerbated in LPS-injected partners that interacted with isolate-housed experimental subjects. Together, these data replicate and extend our prior work showing that healthy rats avoid sick conspecifics, and provide preliminary evidence for an anticipatory cytokine response when rats are exposed to a sick partner. These data also provide new evidence to suggest that recent housing history potently modulates cytokine responses evoked by LPS.
Collapse
Affiliation(s)
- Eduardo Kenji Hamasato
- Neuroimmunomodulation Research Group, Department of Pathology, School of Veterinary Medicine, University of São Paulo (USP), São Paulo, Brazil; Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States
| | - Dennis Lovelock
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States
| | - João Palermo-Neto
- Neuroimmunomodulation Research Group, Department of Pathology, School of Veterinary Medicine, University of São Paulo (USP), São Paulo, Brazil
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States.
| |
Collapse
|
34
|
Makinson R, Lloyd K, Rayasam A, McKee S, Brown A, Barila G, Grissom N, George R, Marini M, Fabry Z, Elovitz M, Reyes TM. Intrauterine inflammation induces sex-specific effects on neuroinflammation, white matter, and behavior. Brain Behav Immun 2017; 66:277-288. [PMID: 28739513 PMCID: PMC6916731 DOI: 10.1016/j.bbi.2017.07.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 02/06/2023] Open
Abstract
Exposure to inflammation during pregnancy has been linked to adverse neurodevelopmental consequences for the offspring. One common route through which a developing fetus is exposed to inflammation is with intrauterine inflammation. To that end, we utilized an animal model of intrauterine inflammation (IUI; intrauterine lipopolysaccharide (LPS) administration, 50µg, E15) to assess placental and fetal brain inflammatory responses, white matter integrity, anxiety-related behaviors (elevated zero maze, light dark box, open field), microglial counts, and the CNS cytokine response to an acute injection of LPS in both males and females. These studies revealed that for multiple endpoints (fetal brain cytokine levels, cytokine response to adult LPS challenge) male IUI offspring were uniquely affected by intrauterine inflammation, while for other endpoints (behavior, microglial number) both sexes were similarly affected. These data advance our understanding of sex-specific effects of early life exposure to inflammation in a translationally- relevant model.
Collapse
Affiliation(s)
- Ryan Makinson
- University of Cincinnati, College of Medicine, Cincinnati, OH
| | - Kelsey Lloyd
- University of Cincinnati, College of Medicine, Cincinnati, OH
| | - Aditya Rayasam
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison
| | - Sarah McKee
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA
| | - Amy Brown
- Maternal and Child Health Research Center, Department of OBGYN, University of Pennsylvania, Philadelphia, PA
| | - Guillermo Barila
- Maternal and Child Health Research Center, Department of OBGYN, University of Pennsylvania, Philadelphia, PA
| | - Nicola Grissom
- University of Cincinnati, College of Medicine, Cincinnati, OH
| | - Robert George
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA
| | - Matt Marini
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison
| | - Michal Elovitz
- Maternal and Child Health Research Center, Department of OBGYN, University of Pennsylvania, Philadelphia, PA
| | - Teresa M. Reyes
- University of Cincinnati, College of Medicine, Cincinnati, OH
| |
Collapse
|
35
|
Xu YH, Yu M, Wei H, Yao S, Chen SY, Zhu XL, Li YF. Fibroblast growth factor 22 is a novel modulator of depression through interleukin-1β. CNS Neurosci Ther 2017; 23:907-916. [PMID: 28948716 DOI: 10.1111/cns.12760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND AIMS Emerging evidence shows that fibroblast growth factor 22 (FGF22) plays a critical role in the etiology of depression. However, the molecular mechanisms of FGF22 are not fully comprehended. Here, the effect of FGF22 in depression and its relationship with interleukin-1β (IL-1β) were investigated in clinical, animal, and cell experiments. METHODS Serum from depressive patients was collected, and the levels of FGF22 and IL-1β were analyzed by ELISA. The chronic unpredictable mild stress (CUMS) model was established, and primary hippocampal neuronal cells were cultured to examine changes in FGF22 and IL-1β levels in rat hippocampus. RESULTS The results revealed a negative correlation between serum FGF22 levels and serum IL-1β levels. The expression of IL-1β in the CUMS rat hippocampus decreased, and the apoptosis of hippocampal cells improved after the injection of lentiviral vector-mediated FGF22 (LV-FGF22). Further tests in primary hippocampal neuronal cells also showed a reduction in IL-1β and the cell apoptosis rate after treatment with FGF22. CONCLUSION In conclusion, the results revealed that FGF22 plays a role in alleviating depression, which may be mediated by reduced expression of IL-1β.
Collapse
Affiliation(s)
- Yu-Hao Xu
- Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ming Yu
- Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hong Wei
- Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shun Yao
- Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Si-Yuan Chen
- Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiao-Lan Zhu
- The Forth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yue-Feng Li
- Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
36
|
Kaufmann FN, Costa AP, Ghisleni G, Diaz AP, Rodrigues ALS, Peluffo H, Kaster MP. NLRP3 inflammasome-driven pathways in depression: Clinical and preclinical findings. Brain Behav Immun 2017; 64:367-383. [PMID: 28263786 DOI: 10.1016/j.bbi.2017.03.002] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/13/2017] [Accepted: 03/01/2017] [Indexed: 12/12/2022] Open
Abstract
Over the past three decades, an intricate interaction between immune activation, release of pro-inflammatory cytokines and changes in brain circuits related to mood and behavior has been described. Despite extensive efforts, questions regarding when inflammation becomes detrimental or how we can target the immune system to develop new therapeutic strategies for the treatment of psychiatric disorders remain unresolved. In this context, novel aspects of the neuroinflammatory process activated in response to stressful challenges have recently been documented in major depressive disorder (MDD). The Nod-like receptor pyrin containing 3 inflammasome (NLRP3) is an intracellular multiprotein complex responsible for a number of innate immune processes associated with infection, inflammation and autoimmunity. Recent data have demonstrated that NLRP3 activation appears to bridge the gap between immune activation and metabolic danger signals or stress exposure, which are key factors in the pathogenesis of psychiatric disorders. In this review, we discuss both preclinical and clinical evidence that links the assembly of the NLRP3 complex and the subsequent proteolysis and release of the pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) in chronic stress models and patients with MDD. Importantly, we also focus on the therapeutic potential of targeting the NLRP3 inflammasome complex to improve stress resilience and depressive symptoms.
Collapse
Affiliation(s)
- Fernanda N Kaufmann
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ana Paula Costa
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Gabriele Ghisleni
- Department of Life and Health Sciences, Catholic University of Pelotas, Rio Grande do Sul, Brazil
| | - Alexandre P Diaz
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Santa Catarina, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Hugo Peluffo
- Neuroinflammation and Gene Therapy Lab., Institut Pasteur de Montevideo, Uruguay; Dept. Histology and Embryology, Faculty of Medicine, UDELAR, Uruguay
| | - Manuella P Kaster
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
37
|
Pyter LM, Suarez-Kelly LP, Carson WE, Kaur J, Bellisario J, Bever SR. Novel rodent model of breast cancer survival with persistent anxiety-like behavior and inflammation. Behav Brain Res 2017; 330:108-117. [PMID: 28479263 PMCID: PMC5899888 DOI: 10.1016/j.bbr.2017.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/28/2017] [Accepted: 05/03/2017] [Indexed: 01/06/2023]
Abstract
Breast cancer survivors are an expanding population that is troubled by lasting mental health problems, including depression and anxiety. These issues reduce quality-of-life throughout survivorhood. Research indicates that tumor biology, cancer treatments, and stress contribute to these mood disturbances. Although the mechanisms underlying these various causes remain under investigation, neuroinflammation is a leading hypothesis. To date, rodent models of recurrence-free tumor survival for understanding mechanisms by which these behavioral issues persist after cancer are lacking. Here, we test the extent to which potential behavioral symptoms persist after mammary tumor removal in mice (i.e., establishment of a cancer survivor model), while also empirically testing the causal role of tumors in the development of neuroinflammatory-mediated affective-like behaviors. Complete surgical resection of a non-metastatic orthotopic, syngeneic mammary tumor reversed tumor-induced increases of circulating cytokines (IL-6, CXCL1, IL-10) and myeloid-derived cells and modulated neuroinflammatory gene expression (Cd11b, Cxcl1). Multiple anxiety-like behaviors and some central and peripheral immune markers persisted or progressed three weeks after tumor resection. Together, these data indicate that persistent behavioral changes into cancer survivorhood may be due, in part, to changes in immunity that remain even after successful tumor removal. This novel survivor paradigm represents an improvement in modeling prevalent cancer survivorship issues and studying the basic mechanisms by which cancer/cancer treatments influence the brain and behavior.
Collapse
Affiliation(s)
- Leah M Pyter
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA; Department of Neuroscience, Ohio State University, Columbus, OH, USA; Behavioral Neuroendocrinology Group, Ohio State University, Columbus, OH, USA; Arthur G. James Comprehensive Cancer Center and Solove Research Institute, Ohio State University, Columbus, OH USA.
| | - Lorena P Suarez-Kelly
- Arthur G. James Comprehensive Cancer Center and Solove Research Institute, Ohio State University, Columbus, OH USA
| | - William E Carson
- Arthur G. James Comprehensive Cancer Center and Solove Research Institute, Ohio State University, Columbus, OH USA; Department of Surgery, Ohio State University, Columbus, OH, USA
| | - Jasskiran Kaur
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Joshua Bellisario
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Savannah R Bever
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA
| |
Collapse
|
38
|
Mazarati AM, Lewis ML, Pittman QJ. Neurobehavioral comorbidities of epilepsy: Role of inflammation. Epilepsia 2017; 58 Suppl 3:48-56. [DOI: 10.1111/epi.13786] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Andrey M. Mazarati
- Neurology Division; Department of Pediatrics; David Geffen School of Medicine; University of California Los Angeles; Los Angeles California U.S.A
| | - Megan L. Lewis
- Department of Physiology & Pharmacology; Hotchkiss Brain Institute; University of Calgary; Calgary Alberta Canada
| | - Quentin J. Pittman
- Department of Physiology & Pharmacology; Hotchkiss Brain Institute; University of Calgary; Calgary Alberta Canada
| |
Collapse
|
39
|
Grissom NM, George R, Reyes TM. Suboptimal nutrition in early life affects the inflammatory gene expression profile and behavioral responses to stressors. Brain Behav Immun 2017; 63:115-126. [PMID: 27756624 DOI: 10.1016/j.bbi.2016.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/06/2016] [Accepted: 10/14/2016] [Indexed: 12/15/2022] Open
Abstract
Nutritional conditions in early life can have a lasting impact on health and disease risk, though the underlying mechanisms are incompletely understood. In the healthy individual, physiological and behavioral responses to stress are coordinated in such a way as to mobilize resources necessary to respond to the stressor and to terminate the stress response at the appropriate time. Induction of proinflammatory gene expression within the brain is one such example that is initiated in response to both physiological and psychological stressors, and is the focus of the current study. We tested the hypothesis that early life nutrition would impact the proinflammatory transcriptional response to a stressor. Pregnant and lactating dams were fed one of three diets; a low-protein diet, a high fat diet, or the control diet through pregnancy and lactation. Adult male offspring were then challenged with either a physiological stressor (acute lipopolysaccharide injection, IP) or a psychological stressor (15 min restraint). Expression of 20 proinflammatory and stress-related genes was evaluated in hypothalamus, prefrontal cortex, amygdala and ventral tegmental area. In a second cohort, behavioral responses (food intake, locomotor activity, metabolic rate) were evaluated. Offspring from low protein fed dams showed a generally reduced transcriptional response, particularly to LPS, and resistance to behavioral changes associated with restraint, while HF offspring showed an exacerbated transcriptional response within the PFC, a reduced transcriptional response in hypothalamus and amygdala, and an exacerbation of the LPS-induced reduction of locomotor activity. The present data identify differential proinflammatory transcriptional responses throughout the brain driven by perinatal diet as an important variable that may affect risk or resilience to stressors.
Collapse
Affiliation(s)
- Nicola M Grissom
- University of Minnesota, Department of Psychology, Minneapolis, MN, USA
| | - Robert George
- University of Pennsylvania, Department of Pharmacology, Philadelphia, PA, USA
| | - Teresa M Reyes
- University of Cincinnati, Department of Psychiatry and Behavioral Neuroscience, Cincinnati, OH, USA.
| |
Collapse
|
40
|
Villéga F, Delpech JC, Griton M, André C, Franconi JM, Miraux S, Konsman JP. Circulating bacterial lipopolysaccharide-induced inflammation reduces flow in brain-irrigating arteries independently from cerebrovascular prostaglandin production. Neuroscience 2017; 346:160-172. [DOI: 10.1016/j.neuroscience.2017.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 01/07/2017] [Accepted: 01/11/2017] [Indexed: 12/24/2022]
|
41
|
Sánchez-Catalán MJ, Faivre F, Yalcin I, Muller MA, Massotte D, Majchrzak M, Barrot M. Response of the Tail of the Ventral Tegmental Area to Aversive Stimuli. Neuropsychopharmacology 2017; 42:638-648. [PMID: 27468916 PMCID: PMC5240171 DOI: 10.1038/npp.2016.139] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/19/2016] [Accepted: 07/22/2016] [Indexed: 12/26/2022]
Abstract
The GABAergic tail of the ventral tegmental area (tVTA), also named rostromedial tegmental nucleus (RMTg), exerts an inhibitory control on dopamine neurons of the VTA and substantia nigra. The tVTA has been implicated in avoidance behaviors, response to drugs of abuse, reward prediction error, and motor functions. Stimulation of the lateral habenula (LHb) inputs to the tVTA, or of the tVTA itself, induces avoidance behaviors, which suggests a role of the tVTA in processing aversive information. Our aim was to test the impact of aversive stimuli on the molecular recruitment of the tVTA, and the behavioral consequences of tVTA lesions. In rats, we assessed Fos response to lithium chloride (LiCl), β-carboline, naloxone, lipopolysaccharide (LPS), inflammatory pain, neuropathic pain, foot-shock, restraint stress, forced swimming, predator odor, and opiate withdrawal. We also determined the effect of tVTA bilateral ablation on physical signs of opiate withdrawal, and on LPS- and LiCl-induced conditioned taste aversion (CTA). Naloxone-precipitated opiate withdrawal induced Fos in μ-opioid receptor-positive (15%) and -negative (85%) tVTA cells, suggesting the presence of both direct and indirect mechanisms in tVTA recruitment during withdrawal. However, tVTA lesion did not impact physical signs of opiate withdrawal. Fos induction was also present with repeated, but not single, foot-shock delivery. However, such induction was mostly absent with other aversive stimuli. Moreover, tVTA ablation had no impact on CTA. Although stimulation of the tVTA favors avoidance behaviors, present findings suggest that this structure may be important to the response to some, but not all, aversive stimuli.
Collapse
Affiliation(s)
- María-José Sánchez-Catalán
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France,Unitat Predepartamental de Medicina, Universitat Jaume I, Castelló de la Plana, Spain,Unitat Predepartamental de Medicina, Universitat Jaume I, Avenue Vicent Sos Baynat, s/n, 13071 Castelló de la Plana, Spain, Tel: +34 964 38 74 40, Fax: +34 964 72 90 16, E-mail:
| | - Fanny Faivre
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Ipek Yalcin
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Marc-Antoine Muller
- Université de Strasbourg, Strasbourg, France,Laboratoire de Neurosciences Cognitives et Adaptatives, Faculté de Psychologie, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Dominique Massotte
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Monique Majchrzak
- Université de Strasbourg, Strasbourg, France,Laboratoire de Neurosciences Cognitives et Adaptatives, Faculté de Psychologie, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Michel Barrot
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| |
Collapse
|
42
|
Almeida-Suhett CP, Graham A, Chen Y, Deuster P. Behavioral changes in male mice fed a high-fat diet are associated with IL-1β expression in specific brain regions. Physiol Behav 2016; 169:130-140. [PMID: 27876639 DOI: 10.1016/j.physbeh.2016.11.016] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/18/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022]
Abstract
High-fat diet (HFD)-induced obesity is associated with not only increased risk of metabolic and cardiovascular diseases, but cognitive deficit, depression and anxiety disorders. Obesity also leads to low-grade peripheral inflammation, which plays a major role in the development of metabolic alterations. Previous studies suggest that obesity-associated central inflammation may underlie the development of neuropsychiatric deficits, but further research is needed to clarify this relationship. We used 48 male C57BL/6J mice to investigate whether chronic consumption of a high-fat diet leads to increased expression of interleukin-1β (IL-1β) in the hippocampus, amygdala and frontal cortex. We also determined whether IL-1β expression in those brain regions correlates with changes in the Y-maze, open field, elevated zero maze and forced swim tests. After 16weeks on dietary treatments, HFD mice showed cognitive impairment on the Y-maze test, greater anxiety-like behavior during the open field and elevated zero maze tests, and increased depressive-like behavior in the forced swim test. Hippocampal and amygdalar expression of IL-1β were significantly higher in HFD mice than in control mice fed a standard diet (SD). Additionally, hippocampal GFAP and Iba1 immunoreactivity were increased in HFD mice when compared to SD controls. Cognitive performance negatively correlated with level of IL-1β in the hippocampus and amygdala whereas an observed increase in anxiety-like behavior was positively correlated with higher expression of IL-1β in the amygdala. However, we observed no association between depressive-like behavior and IL-1β expression in any of the brain regions investigated. Together our data provide evidence that mice fed a HFD exhibit cognitive deficits, anxiety and depressive-like behaviors. Our results also suggest that increased expression of IL-1β in the hippocampus and amygdala may be associated with the development of cognitive deficits and anxiety-like behavior, respectively.
Collapse
Affiliation(s)
- Camila P Almeida-Suhett
- Military and Emergency Medicine, Consortium for Health and Military Performance, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Alice Graham
- Military and Emergency Medicine, Consortium for Health and Military Performance, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Yifan Chen
- Military and Emergency Medicine, Consortium for Health and Military Performance, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Patricia Deuster
- Military and Emergency Medicine, Consortium for Health and Military Performance, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
43
|
Parrott JM, Redus L, Santana-Coelho D, Morales J, Gao X, O'Connor JC. Neurotoxic kynurenine metabolism is increased in the dorsal hippocampus and drives distinct depressive behaviors during inflammation. Transl Psychiatry 2016; 6:e918. [PMID: 27754481 PMCID: PMC5315555 DOI: 10.1038/tp.2016.200] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/28/2016] [Accepted: 08/17/2016] [Indexed: 12/30/2022] Open
Abstract
The kynurenine pathway of tryptophan metabolism has an important role in mediating the behavioral effects of inflammation, which has implications in understanding neuropsychiatric comorbidity and for the development of novel therapies. Inhibition of the rate-limiting enzyme, indoleamine 2,3-dioxygenase (IDO), prevents the development of many of these inflammation-induced preclinical behaviors. However, dysregulation in the balance of downstream metabolism, where neuroactive kynurenines are generated, is hypothesized to be a functionally important pathogenic feature of inflammation-induced depression. Here we utilized two novel transgenic mouse strains to directly test the hypothesis that neurotoxic kynurenine metabolism causes depressive-like behavior following peripheral immune activation. Wild-type (WT) or kynurenine 3-monooxygenase (KMO)-deficient (KMO-/-) mice were administered either lipopolysaccharide (LPS, 0.5 mg kg-1) or saline intraperitoneally. Depressive-like behavior was measured across multiple domains 24 h after immune challenge. LPS precipitated a robust depressive-like phenotype, but KMO-/- mice were specifically protected from LPS-induced immobility in the tail suspension test (TST) and reduced spontaneous alternations in the Y-maze. Direct administration of 3-hydroxykynurenine, the metabolic product of KMO, caused a dose-dependent increase in depressive-like behaviors. Mice with targeted deletion of 3-hydroxyanthranilic acid dioxygenase (HAAO), the enzyme that generates quinolinic acid, were similarly challenged with LPS. Similar to KMO-/- mice, LPS failed to increase immobility during the TST. Whereas kynurenine metabolism was generally increased in behaviorally salient brain regions, a distinct shift toward KMO-dependent kynurenine metabolism occurred in the dorsal hippocampus in response to LPS. Together, these results demonstrate that KMO is a pivotal mediator of hippocampal-dependent depressive-like behaviors induced by peripheral LPS challenge.
Collapse
Affiliation(s)
- J M Parrott
- Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - L Redus
- Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - D Santana-Coelho
- Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - J Morales
- Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - X Gao
- Department of Biochemistry, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - J C O'Connor
- Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health System, San Antonio, TX, USA,Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, 216B Medical Building MC-7764, San Antonio, TX 78229, USA. E-mail:
| |
Collapse
|
44
|
Du RH, Wu FF, Lu M, Shu XD, Ding JH, Wu G, Hu G. Uncoupling protein 2 modulation of the NLRP3 inflammasome in astrocytes and its implications in depression. Redox Biol 2016; 9:178-187. [PMID: 27566281 PMCID: PMC5007434 DOI: 10.1016/j.redox.2016.08.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial uncoupling protein 2 (UCP2) has been well characterized to control the production of reactive oxygen species (ROS) and astrocytes are the major cells responsible for the ROS production and the inflammatory responses in the brain. However, the function of UCP2 in astrocytes and the contribution of astrocytic UCP2 to depression remain undefined. Herein, we demonstrated that UCP2 knockout (KO) mice displayed aggravated depressive-like behaviors, impaired neurogenesis, and enhanced loss of astrocytes in the chronic mild stress (CMS)-induced anhedonia model of depression. We further found that UCP2 ablation significantly enhanced the activation of the nod-like receptor protein 3 (NLRP3) inflammasome in the hippocampus and in astrocytes. Furthermore, UCP2 deficiency promoted the injury of mitochondria, the generation of ROS and the physical association between thioredoxin-interacting protein (TXNIP) and NLRP3 in astrocytes. Moreover, transiently expressing exogenous UCP2 partially rescued the deleterious effects of UCP2 ablation on the astrocytes. These data indicate that UCP2 negatively regulates the activation of NLRP3 inflammasome and inhibited the ROS-TXNIP-NLRP3 pathway in astrocytes. Collectively, our findings reveal that UCP2 regulates inflammation responses in astrocytes and plays an important role in the pathogenesis of depression and that UCP2 may be a promising therapeutic target for depression.
Collapse
Affiliation(s)
- Ren-Hong Du
- Jiangsu Key Laboratory of Neurogeneration, Department of Pharmacology, Nanjing Medical University, 101 Nongmian Road, Nanjing, Jiangsu 210029, PR China
| | - Fang-Fang Wu
- Jiangsu Key Laboratory of Neurogeneration, Department of Pharmacology, Nanjing Medical University, 101 Nongmian Road, Nanjing, Jiangsu 210029, PR China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurogeneration, Department of Pharmacology, Nanjing Medical University, 101 Nongmian Road, Nanjing, Jiangsu 210029, PR China
| | - Xiao-Dong Shu
- Jiangsu Key Laboratory of Neurogeneration, Department of Pharmacology, Nanjing Medical University, 101 Nongmian Road, Nanjing, Jiangsu 210029, PR China
| | - Jian-Hua Ding
- Jiangsu Key Laboratory of Neurogeneration, Department of Pharmacology, Nanjing Medical University, 101 Nongmian Road, Nanjing, Jiangsu 210029, PR China
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents, 1459 Laney Walker Blvd., Augusta, GA 30912, United States
| | - Gang Hu
- Jiangsu Key Laboratory of Neurogeneration, Department of Pharmacology, Nanjing Medical University, 101 Nongmian Road, Nanjing, Jiangsu 210029, PR China; Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
45
|
Leite HR, Oliveira-Lima OCD, Pereira LDM, Oliveira VEDM, Prado VF, Prado MAM, Pereira GS, Massensini AR. Vesicular acetylcholine transporter knock down-mice are more susceptible to inflammation, c-Fos expression and sickness behavior induced by lipopolysaccharide. Brain Behav Immun 2016; 57:282-292. [PMID: 27179819 DOI: 10.1016/j.bbi.2016.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/01/2016] [Accepted: 05/10/2016] [Indexed: 01/14/2023] Open
Abstract
In addition to the well-known functions as a neurotransmitter, acetylcholine (ACh) can modulate of the immune system. Nonetheless, how endogenous ACh release inflammatory responses is still not clear. To address this question, we took advantage of an animal model with a decreased ACh release due a reduction (knockdown) in vesicular acetylcholine transporter (VAChT) expression (VAChT-KD(HOM)). These animals were challenged with lipopolysaccharide (LPS). Afterwards, we evaluated sickness behavior and quantified systemic and cerebral inflammation as well as neuronal activation in the dorsal vagal complex (DVC). VAChT-KD(HOM) mice that were injected with LPS (10mg/kg) showed increased mortality rate as compared to control mice. In line with this result, a low dose of LPS (0.1mg/kg) increased the levels of pro-inflammatory (TNF-α, IL-1β, and IL-6) and anti-inflammatory (IL-10) cytokines in the spleen and brain of VAChT-KD(HOM) mice in comparison with controls. Similarly, serum levels of TNF-α and IL-6 were increased in VAChT-KD(HOM) mice. This excessive cytokine production was completely prevented by administration of a nicotinic receptor agonist (0.4mg/kg) prior to the LPS injection. Three hours after the LPS injection, c-Fos expression increased in the DVC region of VAChT-KD(HOM) mice compared to controls. In addition, VAChT-KD(HOM) mice showed behavioral changes such as lowered locomotor and exploratory activity and reduced social interaction after the LPS challenge, when compared to control mice. Taken together, our results show that the decreased ability to release ACh exacerbates systemic and cerebral inflammation and promotes neural activation and behavioral changes induced by LPS. In conclusion, our findings support the notion that activity of cholinergic pathways, which can be modulated by VAChT expression, controls inflammatory and neural responses to LPS challenge.
Collapse
Affiliation(s)
- Hércules Ribeiro Leite
- Laboratório de Inflamação e Metabolismo (LIM), Programa de Pós-graduação em Ciências Fisiológicas, Centro Integrado de Pesquisa e Pós-Graduação em Saúde - CIPq-Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK, Alto da Jacuba, Minas Gerais 39100 000, Brazil; Núcleo de Neurociências (NNC), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, Pampulha, n° 6627, Belo Horizonte, Minas Gerais 31270 901, Brazil.
| | - Onésia Cristina de Oliveira-Lima
- Núcleo de Neurociências (NNC), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, Pampulha, n° 6627, Belo Horizonte, Minas Gerais 31270 901, Brazil
| | - Luciana de Melo Pereira
- Núcleo de Neurociências (NNC), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, Pampulha, n° 6627, Belo Horizonte, Minas Gerais 31270 901, Brazil
| | - Vinícius Elias de Moura Oliveira
- Núcleo de Neurociências (NNC), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, Pampulha, n° 6627, Belo Horizonte, Minas Gerais 31270 901, Brazil
| | - Vania Ferreira Prado
- Molecular Medicine, Robarts Research Institute, Department of Physiology and Pharmacology, Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Marco Antônio Máximo Prado
- Molecular Medicine, Robarts Research Institute, Department of Physiology and Pharmacology, Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Grace Schenatto Pereira
- Núcleo de Neurociências (NNC), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, Pampulha, n° 6627, Belo Horizonte, Minas Gerais 31270 901, Brazil
| | - André Ricardo Massensini
- Núcleo de Neurociências (NNC), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, Pampulha, n° 6627, Belo Horizonte, Minas Gerais 31270 901, Brazil.
| |
Collapse
|
46
|
Montesinos J, Alfonso-Loeches S, Guerri C. Impact of the Innate Immune Response in the Actions of Ethanol on the Central Nervous System. Alcohol Clin Exp Res 2016; 40:2260-2270. [PMID: 27650785 DOI: 10.1111/acer.13208] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/02/2016] [Indexed: 12/25/2022]
Abstract
The innate immune response in the central nervous system (CNS) participates in both synaptic plasticity and neural damage. Emerging evidence from human and animal studies supports the role of the neuroimmune system response in many actions of ethanol (EtOH) on the CNS. Research studies have shown that alcohol stimulates brain immune cells, microglia, and astrocytes, by activating innate immune receptors Toll-like receptors (TLRs) and NOD-like receptors (inflammasome NLRs) triggering signaling pathways, which culminate in the production of pro-inflammatory cytokines and chemokines that lead to neuroinflammation. This review focuses on evidence that indicates the participation of TLRs and the inflammasome NLRs signaling response in many effects of EtOH on the CNS, such as neuroinflammation associated with brain damage, cognitive and behavioral dysfunction, and adolescent brain development alterations. It also reviews findings that indicate the role of TLR4-dependent signaling immune molecules in alcohol consumption, reward, and addiction. The research data suggest that overactivation of TLR4 or NLRs increases pro-inflammatory cytokines and mediators to cause neural damage in the cerebral cortex and hippocampus, while modest TLR4 activation, along with the generation of certain cytokines and chemokines in specific brain areas (e.g., amygdala, ventral tegmental area), modulate neurotransmission, alcohol drinking, and alcohol rewards. Elimination of TLR4 and NLRP3 abolishes many neuroimmune effects of EtOH. Despite much progress being made in this area, there are some research gaps and unanswered questions that this review discusses. Finally, potential therapies that target neuroimmune pathways to treat neuropathological and behavioral consequences of alcohol abuse are also evaluated.
Collapse
Affiliation(s)
- Jorge Montesinos
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain
| | - Silvia Alfonso-Loeches
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain.
| |
Collapse
|
47
|
Ryan KM, Griffin ÉW, Ryan KJ, Tanveer R, Vanattou-Saifoudine N, McNamee EN, Fallon E, Heffernan S, Harkin A, Connor TJ. Clenbuterol activates the central IL-1 system via the β2-adrenoceptor without provoking inflammatory response related behaviours in rats. Brain Behav Immun 2016; 56:114-29. [PMID: 26928198 DOI: 10.1016/j.bbi.2016.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/18/2016] [Accepted: 02/25/2016] [Indexed: 01/09/2023] Open
Abstract
The long-acting, highly lipophilic, β2-adrenoceptor agonist clenbuterol may represent a suitable therapeutic agent for the treatment of neuroinflammation as it drives an anti-inflammatory response within the CNS. However, clenbuterol is also known to increase the expression of IL-1β in the brain, a potent neuromodulator that plays a role in provoking sickness related symptoms including anxiety and depression-related behaviours. Here we demonstrate that, compared to the immunological stimulus lipopolysaccharide (LPS, 250μg/kg), clenbuterol (0.5mg/kg) selectively up-regulates expression of the central IL-1 system resulting in a mild stress-like response which is accompanied by a reduction in locomotor activity and food consumption in rats. We provide further evidence that clenbuterol-induced activation of the central IL-1 system occurs in a controlled and selective manner in tandem with its negative regulators IL-1ra and IL-1RII. Furthermore, we demonstrate that peripheral β2-adrenoceptors mediate the suppression of locomotor activity and food consumption induced by clenbuterol and that these effects are not linked to the central induction of IL-1β. Moreover, despite increasing central IL-1β expression, chronic administration of clenbuterol (0.03mg/kg; twice daily for 21days) fails to induce anxiety or depressive-like behaviour in rats in contrast to reports of the ability of exogenously administered IL-1 to induce these symptoms in rodents. Overall, our findings suggest that clenbuterol or other selective β2-adrenoceptor agonists could have the potential to combat neuroinflammatory or neurodegenerative disorders without inducing unwanted symptoms of depression and anxiety.
Collapse
Affiliation(s)
- Karen M Ryan
- Neuroimmunology Research Group, Trinity College Institute of Neuroscience, Department of Physiology & School of Medicine, Trinity College, Dublin 2, Ireland
| | - Éadaoin W Griffin
- Neuroimmunology Research Group, Trinity College Institute of Neuroscience, Department of Physiology & School of Medicine, Trinity College, Dublin 2, Ireland
| | - Katie J Ryan
- Neuroimmunology Research Group, Trinity College Institute of Neuroscience, Department of Physiology & School of Medicine, Trinity College, Dublin 2, Ireland
| | - Riffat Tanveer
- Neuroimmunology Research Group, Trinity College Institute of Neuroscience, Department of Physiology & School of Medicine, Trinity College, Dublin 2, Ireland
| | - Natacha Vanattou-Saifoudine
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Eoin N McNamee
- Neuroimmunology Research Group, Trinity College Institute of Neuroscience, Department of Physiology & School of Medicine, Trinity College, Dublin 2, Ireland
| | - Emer Fallon
- Neuroimmunology Research Group, Trinity College Institute of Neuroscience, Department of Physiology & School of Medicine, Trinity College, Dublin 2, Ireland
| | - Sheena Heffernan
- Neuroimmunology Research Group, Trinity College Institute of Neuroscience, Department of Physiology & School of Medicine, Trinity College, Dublin 2, Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland.
| | - Thomas J Connor
- Neuroimmunology Research Group, Trinity College Institute of Neuroscience, Department of Physiology & School of Medicine, Trinity College, Dublin 2, Ireland
| |
Collapse
|
48
|
Parrott JM, Redus L, O'Connor JC. Kynurenine metabolic balance is disrupted in the hippocampus following peripheral lipopolysaccharide challenge. J Neuroinflammation 2016; 13:124. [PMID: 27233247 PMCID: PMC4884395 DOI: 10.1186/s12974-016-0590-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/20/2016] [Indexed: 12/14/2022] Open
Abstract
Background Inflammation increases the risk of developing depression-related symptoms, and tryptophan metabolism is an important mediator of these behavior changes. Peripheral immune activation results in central up-regulation of pro-inflammatory cytokine expression, microglia activation, and the production of neurotoxic kynurenine metabolites. The neuroinflammatory and kynurenine metabolic response to peripheral immune activation has been largely characterized at the whole brain level. It is unknown if this metabolic response exhibits regional specificity even though the unique indoleamine 2,3-dioxygenase (IDO)-dependent depressive-like behaviors are known to be controlled by discrete brain regions. Therefore, regional characterization of neuroinflammation and kynurenine metabolism might allow for better understanding of the potential mechanisms that mediate inflammation-associated behavior changes. Methods Following peripheral immune challenge with lipopolysaccharide (LPS), brain tissue from behaviorally relevant regions was analyzed for changes in mRNA of neuroinflammatory targets and kynurenine pathway enzymes. The metabolic balance of the kynurenine pathway was also determined in the peripheral circulation and these brain regions. Results Peripheral LPS treatment resulted in region-independent up-regulation of brain expression of pro-inflammatory cytokines and glial cellular markers indicative of a neuroinflammatory response. The expression of kynurenine pathway enzymes was also largely region-independent. While the kynurenine/tryptophan ratio was elevated significantly in both the plasma and in each brain regions evaluated, the balance of kynurenine metabolism was skewed toward production of neurotoxic metabolites in the hippocampus. Conclusions The upstream neuroinflammatory processes, such as pro-inflammatory cytokine production, glial cell activation, and kynurenine production, may be similar throughout the brain. However, it appears that the balance of downstream kynurenine metabolism is a tightly regulated brain region-dependent process.
Collapse
Affiliation(s)
- Jennifer M Parrott
- Department of Pharmacology, School of Medicine, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 422D Medical Building MC-7764, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Laney Redus
- Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, 418D Medical Building MC-7764, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Jason C O'Connor
- Department of Pharmacology, School of Medicine, Center for Biomedical Neuroscience and Mood Disorders Translational Research Core, University of Texas Health Science Center at San Antonio, 216B Medical Building MC-7764, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA. .,Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health System, 7400 Merton Minter, San Antonio, Texas, 78229-4404, USA.
| |
Collapse
|
49
|
Chaskiel L, Paul F, Gerstberger R, Hübschle T, Konsman JP. Brainstem metabotropic glutamate receptors reduce food intake and activate dorsal pontine and medullar structures after peripheral bacterial lipopolysaccharide administration. Neuropharmacology 2016; 107:146-159. [PMID: 27016016 DOI: 10.1016/j.neuropharm.2016.03.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 12/20/2022]
Abstract
During infection-induced inflammation food intake is reduced. Vagal and brainstem pathways are important both in feeding regulation and immune-to-brain communication. Glutamate is released by vagal afferent terminals in the nucleus of the solitary tract and by its neurons projecting to the parabrachial nuclei. We therefore studied the role of brainstem glutamate receptors in spontaneous food intake of healthy animals and during sickness-associated hypophagia after peripheral administration of bacterial lipopolysaccharides or interleukin-1beta. Brainstem group I and II metabotropic, but not ionotropic, glutamate receptor antagonism increased food intake both in saline- and lipopolysaccharide-treated rats. In these animals, expression of the cellular activation marker c-Fos in the lateral parabrachial nuclei and lipopolysaccharide-induced activation of the nucleus of the solitary tract rostral to the area postrema were suppressed. Group I metabotropic glutamate receptors did not colocalize with c-Fos or neurons regulating gastric function in these structures. Group I metabotropic glutamate receptors were, however, found on raphé magnus neurons that were part of the brainstem circuit innervating the stomach and on trigeminal and hypoglossal motor neurons. In conclusion, our findings show that brainstem metabotropic glutamate receptors reduce food intake and activate the lateral parabrachial nuclei as well as the rostral nucleus of the solitary tract after peripheral bacterial lipopolysaccharide administration. They also provide insight into potential group I metabotropic glutamate receptor-dependent brainstem circuits mediating these effects.
Collapse
Affiliation(s)
- Léa Chaskiel
- CNRS, PsychoNeuroImmunologie, Nutrition et Génétique, UMR 5226, Bordeaux, France; Univ. Bordeaux, PsyNuGen, UMR 5226, Bordeaux, France
| | - Flora Paul
- CNRS, PsychoNeuroImmunologie, Nutrition et Génétique, UMR 5226, Bordeaux, France; Univ. Bordeaux, PsyNuGen, UMR 5226, Bordeaux, France
| | - Rüdiger Gerstberger
- Institut für Veterinär-Physiologie und -Biochemie, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
| | - Thomas Hübschle
- Institut für Veterinär-Physiologie und -Biochemie, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
| | - Jan Pieter Konsman
- CNRS, PsychoNeuroImmunologie, Nutrition et Génétique, UMR 5226, Bordeaux, France; Univ. Bordeaux, PsyNuGen, UMR 5226, Bordeaux, France.
| |
Collapse
|
50
|
Ingiosi AM, Opp MR. Sleep and immunomodulatory responses to systemic lipopolysaccharide in mice selectively expressing interleukin-1 receptor 1 on neurons or astrocytes. Glia 2016; 64:780-91. [PMID: 26775112 DOI: 10.1002/glia.22961] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/23/2015] [Accepted: 12/16/2015] [Indexed: 12/22/2022]
Abstract
Sleep-wake behavior is altered in response to immune challenge. Although the precise mechanisms that govern sickness-induced changes in sleep are not fully understood, interleukin-1β (IL-1) is one mediator of these responses. To better understand mechanisms underlying sleep and inflammatory responses to immune challenge, we used two transgenic mouse strains that express IL-1 receptor 1 (IL1R1) only in the central nervous system and selectively on neurons or astrocytes. Electroencephalographic recordings from transgenic and wild-type mice reveal that systemic challenge with lipopolysaccharide (LPS) fragments sleep, suppresses rapid eye movement sleep (REMS), increases non-REMS (NREMS), diminishes NREM delta power, and induces fever in all genotypes. However, the magnitude of REMS suppression is greater in mice expressing IL1R1 on astrocytes compared with mice in which IL1R1 is selectively expressed on neurons. Furthermore, there is a delayed increase in NREM delta power when IL1R1 is expressed on astrocytes. LPS-induced sleep fragmentation is reduced in mice expressing IL1R1 on neurons. Although LPS increases IL-1 and IL-6 in brain of all genotypes, this response is attenuated when IL1R1 is expressed selectively on neurons or on astrocytes. Collectively, these data suggest that in these transgenic mice under the conditions of this study it is neuronal IL1R1 that plays a greater role in LPS-induced suppression of REMS and NREM delta power, whereas astroglial IL1R1 is more important for sleep fragmentation after this immune challenge. Thus, aspects of central responses to LPS are modulated by IL1R1 in a cell type-specific manner.
Collapse
Affiliation(s)
- Ashley M Ingiosi
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan.,Program in Biomedical Sciences, University of Michigan, Ann Arbor, Michigan.,Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Mark R Opp
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington.,Graduate Program in Neuroscience, University of Washington, Seattle, Washington
| |
Collapse
|