1
|
Chen C, Han Z, Luo J, Wang J, Liu T, Zhang J, Zhang C. Synergistic effects of heterophyllin B with nintedanib against experimental pulmonary fibrosis in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 144:156922. [PMID: 40513322 DOI: 10.1016/j.phymed.2025.156922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 05/19/2025] [Accepted: 05/26/2025] [Indexed: 06/16/2025]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a chronic, lethal lung disease marked by permanent alterations to the lung tissue architecture. Although nintedanib (NDN) has been approved for clinical use, its therapeutic potential is substantially hampered by severe gastrointestinal side effects, notably diarrhea, which compromise patient adherence and quality of life. PURPOSE This study aimed to investigate whether heterophyllin B (HB) could augment the antifibrotic efficacy of NDN while mitigating its gastrointestinal toxicity. METHODS The therapeutic potential of HB was evaluated in a bleomycin (BLM)-induced murine model of PF. Alterations in gut microbiota and serum metabolic profiles were determined via 16S rRNA gene sequencing and untargeted metabolomics, respectively. Mechanistic insights were performed in NCM460 colonic epithelial cells through IDO1 silencing, ferroptosis inhibition, CETSA and molecular dynamics experiments. Furthermore, the synergistic and protective effects of HB on NDN were investigated in BLM-induced mice, along with analysis of intestinal microbiota composition. The active constituents of the EtOAc extract of Radix Pseudostellariae were identified using UPLC-Q-TOF-MS/MS, GNPS, and NMR spectroscopy. RESULTS Administration of HB (40 mg/kg/day for approximately 14 days) significantly attenuated lung fibrosis progression and substantially alleviated diarrhea in BLM-induced PF mice. HB reshaped the intestinal microecology and reprogrammed serum metabolism, notably by reducing the abundance of Escherichia-Shigella, as revealed by 16S rRNA sequencing and untargeted metabolomics analyses. Furthermore, the co-treatment of HB and NDN demonstrated enhanced efficacy and reduced gastrointestinal toxicity both in vivo and in vitro. Mechanistic investigations indicated that HB-enriched 3-hydroxybutyric acid (3-HA) restored intestinal mucosal barrier integrity by inhibiting IDO1-mediated ferroptosis. Additionally, extracts of Radix Pseudostellariae containing HB-like cyclopeptides significantly improved PF symptoms and intestinal epithelial injury in BLM-induced mice. Nine cyclopeptide compounds (Herterophyllin A-B, D and Psedostellarin A-E, G) were identified in the extract via UPLC-Q-TOF-MS/MS analysis. CONCLUSION HB offers dual protection against pulmonary fibrosis and intestinal damage through its regulatory impact on the gut-lung axis and suppression of ferroptosis mechanisms. Collectively, HB offers a promising adjuvant to optimize NDN-based antifibrotic therapy, offering a novel strategy for integrated pulmonary and gastrointestinal protection in PF management.
Collapse
Affiliation(s)
- Ce Chen
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Zeyu Han
- Xi'an jiaotong- Liverpool University, Academy of Pharmacy, Suzhou, 111 Renai Road, PR China
| | - Jiawen Luo
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jialin Wang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Tingting Liu
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jie Zhang
- Xi'an jiaotong- Liverpool University, Academy of Pharmacy, Suzhou, 111 Renai Road, PR China.
| | - Chaofeng Zhang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
2
|
Kilari G, Tran J, Blyth GAD, Cobo ER. Human cathelicidin LL-37 rapidly disrupted colonic epithelial integrity. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184410. [PMID: 39837472 DOI: 10.1016/j.bbamem.2025.184410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
The intestinal barrier, held together by epithelial cells and intercellular tight junction (TJ) proteins, prevents the penetration of microbial pathogens. Concurrently, intestinal epithelial cells secrete antimicrobial peptides, including cathelicidin. Cathelicidin has direct antibacterial and immunomodulatory functions, although its role in intestinal integrity remains elusive. In this study, we demonstrate that direct stimulation of human colonic epithelial (T84) cells with human cathelicidin, LL-37, resulted in a rapid and transient increase in epithelial cell permeability. This increased permeability was associated with the TJ proteins occludin and claudin-2 degradation, mediated by these specific proteins' endocytosis and lysosomal degradation. While murine cathelicidin (CRAMP) failed to modify T84 cell permeability, LL-37 degraded TJ proteins in murine rectal epithelial (CMT-93) cells. The stimulus of (CMT-93) cells with LL-37 aggravated the cell permeability and furthered TJ degradation provoked by the intestinal pathogen, attaching/effacing (A/E) Citrobacter rodentium (C. rodentium). The number of C. rodentium that colonized CMT-93 cells was not severely impacted by the presence of LL-37. While a temporary disruption of tight junctions by LL-37 may lead to a 'leaky gut,' this study demonstrates that LL-37 increases epithelial cell permeability by degrading TJ proteins occludin and claudin-2 through endocytosis and lysosomal degradation. These immunomodulatory actions occurring at concentrations lower than those microbicidal uncover a new guise for cathelicidin modulating the epithelial barrier against A/E pathogens. Recognizing native cathelicidin's functions in a specified disease setting (e.g., colitis) will help establish it as an anti-infectious immunomodulator.
Collapse
Affiliation(s)
- Geeta Kilari
- Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Jacquelyn Tran
- Faculty of Veterinary Medicine, University of Calgary, Canada
| | | | - Eduardo R Cobo
- Faculty of Veterinary Medicine, University of Calgary, Canada.
| |
Collapse
|
3
|
Kim S, Cho J, Keum GB, Kwak J, Doo H, Choi Y, Kang J, Kim H, Chae Y, Kim ES, Song M, Kim HB. Investigation of the impact of multi-strain probiotics containing Saccharomyces cerevisiae on porcine production. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:876-890. [PMID: 39398307 PMCID: PMC11466735 DOI: 10.5187/jast.2024.e79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 10/15/2024]
Abstract
A balanced intestinal microbiome controls intestinal bacterial diseases, helps regulate immunity, and digests and utilizes nutrients, ultimately having a positive effect on the productivity of industrial animals. Yeasts help in the digestion process by breaking down indigestible fibers and producing organic acids, vitamins, and minerals. In particular, polysaccharides such as beta-glucan and mannan-oligosaccharides, which are present in the cell wall of yeast, inhibit the adhesion of pathogens to the surface of the gastrointestinal tract and increase resistance to disease to help maintain and improve intestinal health. Among the yeast additives used in animal feed, Saccharomyces cerevisiae is one of the most commonly used probiotics. However, it does not naturally reside in the intestine, so if it is supplied in combination with other species of probiotics that can compensate for it, many benefits and synergies can be expected for pigs in terms of maintaining intestinal health such as supplementing the immune system and improving digestion. A number of previous studies have demonstrated that dietary complex probiotic supplementation has growth-promoting effects in pigs, suggesting that multiple strains of probiotics may be more effective than single strain probiotics due to their additive and synergistic effects. In practice, however, the effects of complex probiotics are not always consistent, and can be influenced by a variety of factors. Therefore, this review comprehensively examines and discusses the literature related to the effects of complex probiotics using Saccharomyces cerevisiae in pig production.
Collapse
Affiliation(s)
- Sheena Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Jinho Cho
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
| | - Gi Beom Keum
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Jinok Kwak
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Hyunok Doo
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Yejin Choi
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Juyoun Kang
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Haram Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Yeongjae Chae
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Eun Sol Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Minho Song
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 31434, Korea
| | - Hyeun Bum Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| |
Collapse
|
4
|
Bao X, Ju T, Tollenaar S, Sergi C, Willing BP, Wu J. Ovomucin and its hydrolysates differentially influenced colitis severity in Citrobacter rodentium-infected mice. Food Funct 2024; 15:8496-8509. [PMID: 39056151 DOI: 10.1039/d4fo01813c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Egg white protein ovomucin and its hydrolysates were previously reported to exhibit anti-inflammatory and anti-adhesive activities. However, their potential to regulate pathogen colonization and disease severity has not been fully characterized. To investigate the effects of ovomucin (OVM) and its hydrolysates including ovomucin-Protex 26L (OP) and -pepsin/pancreatin (OPP) on host resistance to pathogen infection, a well-documented colitis model in mice for attaching and effacing E. coli pathogens, Citrobacter rodentium, was used in the current study. C57Bl/6J female mice were fed on a basal diet supplemented with OVM or its hydrolysates for 3 weeks prior to the C. rodentium challenge, with the dietary treatments continued for seven days. Body weight was not affected throughout the experimental period. OP supplementation resulted in lower (P < 0.05) pathogen loads at 7 dpi. Attenuated colitis severity was observed in mice that received OVM and OP, as indicated by reduced colonic pathological scores and pro-inflammatory responses compared with the infected control group. In contrast, OPP consumption resulted in enhanced C. rodentium colonization and disease severity. Notably, reduced microbial diversity indices of the gut microbiota were observed in the OPP-supplemented mice compared with the OVM- and OP-supplemented groups. This study showed the potential of OVM and OP to alleviate the severity of colitis induced by infection while also suggesting the opposite outcome of OPP in mitigating enteric infection.
Collapse
Affiliation(s)
- Xiaoyu Bao
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Tingting Ju
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada.
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Stephanie Tollenaar
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Consolato Sergi
- Division of Anatomic Pathology, Children's Hospital of Eastern Ontario (CHEO), Ottawa, Ontario, Canada
| | - Benjamin P Willing
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
5
|
Bonetti L, Horkova V, Grusdat M, Longworth J, Guerra L, Kurniawan H, Franchina DG, Soriano-Baguet L, Binsfeld C, Verschueren C, Spath S, Ewen A, Koncina E, Gérardy JJ, Kobayashi T, Dostert C, Farinelle S, Härm J, Fan YT, Chen Y, Harris IS, Lang PA, Vasiliou V, Waisman A, Letellier E, Becher B, Mittelbronn M, Brenner D. A Th17 cell-intrinsic glutathione/mitochondrial-IL-22 axis protects against intestinal inflammation. Cell Metab 2024; 36:1726-1744.e10. [PMID: 38986617 DOI: 10.1016/j.cmet.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/06/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
The intestinal tract generates significant reactive oxygen species (ROS), but the role of T cell antioxidant mechanisms in maintaining intestinal homeostasis is poorly understood. We used T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), which impaired glutathione (GSH) production, crucially reducing IL-22 production by Th17 cells in the lamina propria, which is critical for gut protection. Under steady-state conditions, Gclc deficiency did not alter cytokine secretion; however, C. rodentium infection induced increased ROS and disrupted mitochondrial function and TFAM-driven mitochondrial gene expression, resulting in decreased cellular ATP. These changes impaired the PI3K/AKT/mTOR pathway, reducing phosphorylation of 4E-BP1 and consequently limiting IL-22 translation. The resultant low IL-22 levels led to poor bacterial clearance, severe intestinal damage, and high mortality. Our findings highlight a previously unrecognized, essential role of Th17 cell-intrinsic GSH in promoting mitochondrial function and cellular signaling for IL-22 protein synthesis, which is critical for intestinal integrity and defense against gastrointestinal infections.
Collapse
Affiliation(s)
- Lynn Bonetti
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Veronika Horkova
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Melanie Grusdat
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Joseph Longworth
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Luana Guerra
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Henry Kurniawan
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Davide G Franchina
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Leticia Soriano-Baguet
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Carole Binsfeld
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Charlène Verschueren
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Sabine Spath
- Institute of Experimental Immunology, Inflammation Research, University of Zurich, 8057 Zurich, Switzerland; Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Anouk Ewen
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Eric Koncina
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - Jean-Jacques Gérardy
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg; Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg
| | - Takumi Kobayashi
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Catherine Dostert
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Sophie Farinelle
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Janika Härm
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Yu-Tong Fan
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Isaac S Harris
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - Burkhard Becher
- Institute of Experimental Immunology, Inflammation Research, University of Zurich, 8057 Zurich, Switzerland
| | - Michel Mittelbronn
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg; Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg; Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), 1526 Luxembourg, Luxembourg
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
6
|
Peña-Díaz J, Woodward SE, Creus-Cuadros A, Serapio-Palacios A, Ortiz-Jiménez S, Deng W, Finlay BB. Quorum sensing modulates bacterial virulence and colonization dynamics of the gastrointestinal pathogen Citrobacter rodentium. Gut Microbes 2023; 15:2267189. [PMID: 37842938 PMCID: PMC10580866 DOI: 10.1080/19490976.2023.2267189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023] Open
Abstract
Quorum Sensing (QS) is a form of cell-to-cell communication that enables bacteria to modify behavior according to their population density. While QS has been proposed as a potential intervention against pathogen infection, QS-mediated communication within the mammalian digestive tract remains understudied. Using an LC-MS/MS approach, we discovered that Citrobacter rodentium, a natural murine pathogen used to model human infection by pathogenic Escherichia coli, utilizes the CroIR system to produce three QS-molecules. We then profiled their accumulation both in vitro and across different gastrointestinal sites over the course of infection. Importantly, we found that in the absence of QS capabilities the virulence of C. rodentium is enhanced. This highlights the role of QS as an effective mechanism to regulate virulence according to the pathogen's spatio-temporal context to optimize colonization and transmission success. These results also demonstrate that inhibiting QS may not always be an effective strategy for the control of virulence.
Collapse
Affiliation(s)
- Jorge Peña-Díaz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Sarah E. Woodward
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Anna Creus-Cuadros
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Antonio Serapio-Palacios
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie Ortiz-Jiménez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Wanyin Deng
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - B. Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Bonetti L, Horkova V, Longworth J, Guerra L, Kurniawan H, Franchina DG, Soriano-Baguet L, Grusdat M, Spath S, Koncina E, Ewen A, Binsfeld C, Verschueren C, Gérardy JJ, Kobayashi T, Dostert C, Farinelle S, Härm J, Chen Y, Harris IS, Lang PA, Vasiliou V, Waisman A, Letellier E, Becher B, Mittelbronn M, Brenner D. A Th17 cell-intrinsic glutathione/mitochondrial-IL-22 axis protects against intestinal inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547932. [PMID: 37489135 PMCID: PMC10363291 DOI: 10.1101/2023.07.06.547932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Although the intestinal tract is a major site of reactive oxygen species (ROS) generation, the mechanisms by which antioxidant defense in gut T cells contribute to intestinal homeostasis are currently unknown. Here we show, using T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that the ensuing loss of glutathione (GSH) impairs the production of gut-protective IL-22 by Th17 cells within the lamina propria. Although Gclc ablation does not affect T cell cytokine secretion in the gut of mice at steady-state, infection with C. rodentium increases ROS, inhibits mitochondrial gene expression and mitochondrial function in Gclc-deficient Th17 cells. These mitochondrial deficits affect the PI3K/AKT/mTOR pathway, leading to reduced phosphorylation of the translation repressor 4E-BP1. As a consequence, the initiation of translation is restricted, resulting in decreased protein synthesis of IL-22. Loss of IL-22 results in poor bacterial clearance, enhanced intestinal damage, and high mortality. ROS-scavenging, reconstitution of IL-22 expression or IL-22 supplementation in vivo prevent the appearance of these pathologies. Our results demonstrate the existence of a previously unappreciated role for Th17 cell-intrinsic GSH coupling to promote mitochondrial function, IL-22 translation and signaling. These data reveal an axis that is essential for maintaining the integrity of the intestinal barrier and protecting it from damage caused by gastrointestinal infection.
Collapse
Affiliation(s)
- Lynn Bonetti
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Veronika Horkova
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Joseph Longworth
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Luana Guerra
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Henry Kurniawan
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Davide G. Franchina
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Leticia Soriano-Baguet
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Melanie Grusdat
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Sabine Spath
- Institute of Experimental Immunology, Inflammation Research, University of Zurich, 8057 Zurich, Switzerland
- Center for Fundamental Immunology, Benaroya Research Institute; Seattle, WA 98101, USA
| | - Eric Koncina
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - Anouk Ewen
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Carole Binsfeld
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Charlène Verschueren
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Jean-Jacques Gérardy
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, L-3555, Luxembourg
| | - Takumi Kobayashi
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Catherine Dostert
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Sophie Farinelle
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Janika Härm
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Isaac S. Harris
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Philipp A. Lang
- Department of Molecular Medicine II, Medical Faculty Heinrich Heine University Düsseldorf, Germany
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - Burkhard Becher
- Institute of Experimental Immunology, Inflammation Research, University of Zurich, 8057 Zurich, Switzerland
| | - Michel Mittelbronn
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, L-3555, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, L-4362, Luxembourg
- Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), Luxembourg, L-1526, Luxembourg
| | - Dirk Brenner
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Liu L, Xu M, Zhang Z, Qiao Z, Tang Z, Wan F, Lan L. TRPA1 protects mice from pathogenic Citrobacter rodentium infection via maintaining the colonic epithelial barrier function. FASEB J 2023; 37:e22739. [PMID: 36583647 DOI: 10.1096/fj.202200483rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is expressed in gastrointestinal tract and plays important roles in intestinal motility and visceral hypersensitivity. However, the potential role of TRPA1 in host defense, particularly against intestinal pathogens, is unknown. Here, we show that Trpa1 knockout mice exhibited increased susceptibility to Citrobacter rodentium infection, associated with the increased severity of diarrhea and intestinal permeability associated with the disrupted tight junctions (TJs) in colonic epithelia. We further demonstrated the expression of TRPA1 in murine colonic epithelial cells (CECs) and human epithelial Caco-2 cells both at protein level and transcription level. Using calcium imaging, TRPA1 agonists allyl isothiocyanates (AITC) and hydrogen peroxide were observed to induce a transient Ca2+ response in Caco-2 cells, respectively. Moreover, TRPA1 knockdown in Caco-2 cells resulted in the decreased expression of TJ proteins, ZO-1 and Occludin, and in the increased paracellular permeabilities and the reduced TEER values of Caco-2 monolayers in vitro. Furthermore, inhibition of TRPA1 by HC-030031 in the confluent Caco-2 cells caused the altered distribution and expression of TJ proteins, ZO-1, Occludin, and Claudin-3, and exacerbated the bacterial endotoxin lipopolysaccharide (LPS)-induced damage to these TJ proteins and actin cytoskeleton. By contrast, AITC pretreatment restored the distribution and expression of these TJ proteins in the confluent Caco-2 cells upon LPS challenge. Our results identify an unrecognized protective role of TRPA1 in host defense against an enteric bacterial pathogen by maintaining colonic epithelium barrier function, at least in part, via preserving the distribution and expression of TJ proteins in CECs.
Collapse
Affiliation(s)
- Lin Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, PR China
| | - Min Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, PR China
| | - Zhudi Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, PR China
| | - Zhao Qiao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, PR China
| | - Zongxiang Tang
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, School of medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lei Lan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, PR China
| |
Collapse
|
9
|
Popov G, Fiebig-Comyn A, Syriste L, Little DJ, Skarina T, Stogios PJ, Birstonas S, Coombes BK, Savchenko A. Distinct Molecular Features of NleG Type 3 Secreted Effectors Allow for Different Roles during Citrobacter rodentium Infection in Mice. Infect Immun 2023; 91:e0050522. [PMID: 36511702 PMCID: PMC9872709 DOI: 10.1128/iai.00505-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 12/15/2022] Open
Abstract
The NleGs are the largest family of type 3 secreted effectors in attaching and effacing (A/E) pathogens, such as enterohemorrhagic Escherichia coli (EHEC), enteropathogenic E. coli, and Citrobacter rodentium. NleG effectors contain a conserved C-terminal U-box domain acting as a ubiquitin protein ligase and target host proteins via a variable N-terminal portion. The specific roles of these effectors during infection remain uncertain. Here, we demonstrate that the three NleG effectors-NleG1Cr, NleG7Cr, and NleG8Cr-encoded by C. rodentium DBS100 play distinct roles during infection in mice. Using individual nleGCr knockout strains, we show that NleG7Cr contributes to bacterial survival during enteric infection while NleG1Cr promotes the expression of diarrheal symptoms and NleG8Cr contributes to accelerated lethality in susceptible mice. Furthermore, the NleG8Cr effector contains a C-terminal PDZ domain binding motif that enables interaction with the host protein GOPC. Both the PDZ domain binding motif and the ability to engage with host ubiquitination machinery via the intact U-box domain proved to be necessary for NleG8Cr function, contributing to the observed phenotype during infection. We also establish that the PTZ binding motif in the EHEC NleG8 (NleG8Ec) effector, which shares 60% identity with NleG8Cr, is engaged in interactions with human GOPC. The crystal structure of the NleG8Ec C-terminal peptide in complex with the GOPC PDZ domain, determined to 1.85 Å, revealed a conserved interaction mode similar to that observed between GOPC and eukaryotic PDZ domain binding motifs. Despite these common features, nleG8Ec does not complement the ΔnleG8Cr phenotype during infection, revealing functional diversification between these NleG effectors.
Collapse
Affiliation(s)
- Georgy Popov
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Aline Fiebig-Comyn
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Lukas Syriste
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Dustin J. Little
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, Toronto University, Toronto, Ontario, Canada
| | - Peter J. Stogios
- Department of Chemical Engineering and Applied Chemistry, Toronto University, Toronto, Ontario, Canada
| | - Sarah Birstonas
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Brian K. Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Alexei Savchenko
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Chemical Engineering and Applied Chemistry, Toronto University, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Li Y, Zhu Y, Chu B, Liu N, Chen S, Wang J, Zou Y. Map of Enteropathogenic Escherichia coli Targets Mitochondria and Triggers DRP-1-Mediated Mitochondrial Fission and Cell Apoptosis in Bovine Mastitis. Int J Mol Sci 2022; 23:ijms23094907. [PMID: 35563295 PMCID: PMC9105652 DOI: 10.3390/ijms23094907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
Bovine mastitis seriously affects bovine health and dairy product quality. Escherichia coli is the most important pathogen in the environment and dairy products. Enteropathogenic Escherichia coli (EPEC) is a zoonotic pathogen, which seriously threatens the health of people and dairy cows. We recently reported that E. coli can induce endogenous apoptosis in bovine mammary epithelial cells. However, the mechanism of EPEC-damaged mitochondria and -induced bovine mastitis is unclear. In this study, we found that EPEC can induce DRP-1-dependent mitochondrial fission and apoptosis. This was verified by the application of Mdivi, a DRP-1 inhibitor. Meanwhile, in order to verify the role of the Map virulence factor in EPEC-induced bovine mastitis, we constructed a map mutant, complementary strain, and recombinant plasmid MapHis. In the present study, we find that Map induced DRP-1-mediated mitochondrial fission, resulting in mitochondrial dysfunction and apoptosis. These inferences were further verified in vivo by establishing a mouse mastitis model. After the map gene was knocked out, breast inflammation and apoptosis in mice were significantly alleviated. All results show that EPEC targets mitochondria by secreting the Map virulence factor to induce DRP-1-mediated mitochondrial fission, mitochondrial dysfunction, and endogenous apoptosis in bovine mastitis.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiufeng Wang
- Correspondence: (J.W.); (Y.Z.); Tel.: +86-10-6273-1094 (J.W.)
| | - Yunjing Zou
- Correspondence: (J.W.); (Y.Z.); Tel.: +86-10-6273-1094 (J.W.)
| |
Collapse
|
11
|
Tang Q, Xu E, Wang Z, Xiao M, Cao S, Hu S, Wu Q, Xiong Y, Jiang Z, Wang F, Yang G, Wang L, Yi H. Dietary Hermetia illucens Larvae Meal Improves Growth Performance and Intestinal Barrier Function of Weaned Pigs Under the Environment of Enterotoxigenic Escherichia coli K88. Front Nutr 2022; 8:812011. [PMID: 35118109 PMCID: PMC8805673 DOI: 10.3389/fnut.2021.812011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to evaluate the effect of Hermetia illucens larvae meal (HI) on the growth performance and intestinal barrier function of weaned pigs. To achieve this, 72 weaned pigs [28-day-old, 8.44 ± 0.04 kg body weight (BW)] were randomly assigned to three dietary treatments: basal diet (negative control, NC), zinc oxide-supplemented diet (positive control, PC), and HI-supplemented diet [100% replacement of fishmeal (FM), HI], for 28 days in the presence of enterotoxigenic Escherichia coli (ETEC). The results showed that HI and PC increased (p < 0.05) the average daily gain (ADG) and average daily feed intake (ADFI) of weaned pigs from day 1 to 14, and decreased diarrhea incidence from day 1 to 28. Additionally, HI increased (p < 0.05) claudin-1, occludin, mucin-1 (MUC-1), and MUC-2 expression, goblet cell number, and secretory immunoglobulin A (sIgA) concentration in the intestine of weaned pigs. Compared with NC, HI downregulated (p < 0.05) interleukin-1β (IL-1β) and IL-8 expression, and upregulated IL-10, transforming growth factor-β (TGF-β), antimicrobial peptide [porcine β defensin 1 (pBD1), pBD2, protegrin 1-5 (PG1-5)] expression in the jejunum or ileum. Moreover, HI decreased (p < 0.05) toll-like receptor 2 (TLR2), phosphorylated nuclear factor-κB (p-NF-κB), and phosphorylated mitogen-activated protein kinase (p-MAPK) expression, and increased sirtuin 1 (SIRT1) expression in the ileum. Additionally, HI increased histone deacetylase 3 (HDAC3) expression and acetylation of histone 3 lysine 27 (acH3k27) in the ileum. Furthermore, HI positively influenced the intestinal microbiota composition and diversity of weaned pigs and increased (p < 0.05) butyrate and valerate concentrations. Overall, dietary HI improved growth performance and intestinal barrier function, as well as regulated histone acetylation and TLR2-NF-κB/MAPK signaling pathways in weaned pigs.
Collapse
Affiliation(s)
- Qingsong Tang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Institute of Animal Nutrition and Feed Science, College of Animal Science, Ministry of Education, Guizhou University, Guiyang, China
| | - E. Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Institute of Animal Nutrition and Feed Science, College of Animal Science, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhikang Wang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Mingfei Xiao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Institute of Animal Nutrition and Feed Science, College of Animal Science, Ministry of Education, Guizhou University, Guiyang, China
| | - Shuting Cao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shenglan Hu
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiwen Wu
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yunxia Xiong
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fengying Wang
- Guangzhou AnRuiJie Environmental Protection Technology Co., Ltd., Guangzhou, China
| | - Geling Yang
- Guangzhou AnRuiJie Environmental Protection Technology Co., Ltd., Guangzhou, China
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Li Wang
| | - Hongbo Yi
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Hongbo Yi
| |
Collapse
|
12
|
Meynier M, Baudu E, Rolhion N, Defaye M, Straube M, Daugey V, Modoux M, Wawrzyniak I, Delbac F, Villéger R, Méleine M, Borras Nogues E, Godfraind C, Barnich N, Ardid D, Poirier P, Sokol H, Chatel JM, Langella P, Livrelli V, Bonnet M, Carvalho FA. AhR/IL-22 pathway as new target for the treatment of post-infectious irritable bowel syndrome symptoms. Gut Microbes 2022; 14:2022997. [PMID: 35090380 PMCID: PMC8803069 DOI: 10.1080/19490976.2021.2022997] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/12/2021] [Accepted: 12/10/2021] [Indexed: 02/04/2023] Open
Abstract
Alterations in brain/gut/microbiota axis are linked to Irritable Bowel Syndrome (IBS) physiopathology. Upon gastrointestinal infection, chronic abdominal pain and anxio-depressive comorbidities may persist despite pathogen clearance leading to Post-Infectious IBS (PI-IBS). This study assesses the influence of tryptophan metabolism, and particularly the microbiota-induced AhR expression, on intestinal homeostasis disturbance following gastroenteritis resolution, and evaluates the efficacy of IL-22 cytokine vectorization on PI-IBS symptoms. The Citrobacter rodentium infection model in C57BL6/J mice was used to mimic Enterobacteria gastroenteritis. Intestinal homeostasis was evaluated as low-grade inflammation, permeability, mucosa-associated microbiota composition, and colonic sensitivity. Cognitive performances and emotional state of animals were assessed using several tests. Tryptophan metabolism was analyzed by targeted metabolomics. AhR activity was evaluated using a luciferase reporter assay method. One Lactococcus lactis strain carrying an eukaryotic expression plasmid for murine IL-22 (L. lactisIL-22) was used to induce IL-22 production in mouse colonic mucosa. C. rodentium-infected mice exhibited persistent colonic hypersensitivity and cognitive impairments and anxiety-like behaviors after pathogen clearance. These post-infectious disorders were associated with low-grade inflammation, increased intestinal permeability, decrease of Lactobacillaceae abundance associated with the colonic layer, and increase of short-chain fatty acids (SCFAs). During post-infection period, the indole pathway and AhR activity were decreased due to a reduction of tryptophol production. Treatment with L. lactisIL-22 restored gut permeability and normalized colonic sensitivity, restored cognitive performances and decreased anxiety-like behaviors. Data from the video-tracking system suggested an upgrade of welfare for mice receiving the L.lactisIL-22 strain. Our findings revealed that AhR/IL-22 signaling pathway is altered in a preclinical PI-IBS model. IL-22 delivering alleviate PI-IBS symptoms as colonic hypersensitivity, cognitive impairments, and anxiety-like behaviors by acting on intestinal mucosa integrity. Thus, therapeutic strategies targeting this pathway could be developed to treat IBS patients suffering from chronic abdominal pain and associated well-being disorders.
Collapse
Affiliation(s)
- Maëva Meynier
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, INRAE USC 2018, Clermont-Ferrand63001, France
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand63001, France
| | - Elodie Baudu
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, INRAE USC 2018, Clermont-Ferrand63001, France
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand63001, France
| | - Nathalie Rolhion
- Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, F-75012Paris, France
- Paris Centre for Microbiome Medicine FHU, Paris, France
| | - Manon Defaye
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand63001, France
- Department of Physiology and Pharmacology, Inflammation Research Network, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- LMGE, CNRS 6023, University of Clermont Auvergne, Clermont-Ferrand63001, France
| | - Marjolène Straube
- Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, F-75012Paris, France
| | - Valentine Daugey
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand63001, France
| | - Morgane Modoux
- Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, F-75012Paris, France
| | - Ivan Wawrzyniak
- LMGE, CNRS 6023, University of Clermont Auvergne, Clermont-Ferrand63001, France
| | - Frédéric Delbac
- LMGE, CNRS 6023, University of Clermont Auvergne, Clermont-Ferrand63001, France
| | - Romain Villéger
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, INRAE USC 2018, Clermont-Ferrand63001, France
| | - Mathieu Méleine
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand63001, France
| | - Esther Borras Nogues
- Université Paris-Saclay, Institut National de la Recherche Agronomique et Environnementale (INRAE), AgroParisTech UMR 1319 MICALIS, Jouy-en-Josas, France
| | - Catherine Godfraind
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, INRAE USC 2018, Clermont-Ferrand63001, France
- CHU Clermont-Ferrand, Neuropathology Unit, Clermont-Ferrand, France
| | - Nicolas Barnich
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, INRAE USC 2018, Clermont-Ferrand63001, France
| | - Denis Ardid
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand63001, France
| | - Philippe Poirier
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, INRAE USC 2018, Clermont-Ferrand63001, France
- CHU Clermont-Ferrand, Laboratoire de Parasitologie et de Mycologie, Clermont-Ferrand, France
| | - Harry Sokol
- Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, F-75012Paris, France
- Paris Centre for Microbiome Medicine FHU, Paris, France
- Université Paris-Saclay, Institut National de la Recherche Agronomique et Environnementale (INRAE), AgroParisTech UMR 1319 MICALIS, Jouy-en-Josas, France
| | - Jean-Marc Chatel
- Université Paris-Saclay, Institut National de la Recherche Agronomique et Environnementale (INRAE), AgroParisTech UMR 1319 MICALIS, Jouy-en-Josas, France
| | - Philippe Langella
- Université Paris-Saclay, Institut National de la Recherche Agronomique et Environnementale (INRAE), AgroParisTech UMR 1319 MICALIS, Jouy-en-Josas, France
| | - Valérie Livrelli
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, INRAE USC 2018, Clermont-Ferrand63001, France
- CHU Clermont-Ferrand, Laboratoire de Parasitologie et de Mycologie, Clermont-Ferrand, France
| | - Mathilde Bonnet
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, INRAE USC 2018, Clermont-Ferrand63001, France
| | | |
Collapse
|
13
|
Čužić S, Antolić M, Ognjenović A, Stupin-Polančec D, Petrinić Grba A, Hrvačić B, Dominis Kramarić M, Musladin S, Požgaj L, Zlatar I, Polančec D, Aralica G, Banić M, Urek M, Mijandrušić Sinčić B, Čubranić A, Glojnarić I, Bosnar M, Eraković Haber V. Claudins: Beyond Tight Junctions in Human IBD and Murine Models. Front Pharmacol 2021; 12:682614. [PMID: 34867313 PMCID: PMC8635807 DOI: 10.3389/fphar.2021.682614] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Claudins are transmembrane proteins constituting one of three tight junction protein families. In patients with inflammatory bowel disease (IBD), disease activity–dependent changes in expression of certain claudins have been noted, thus making certain claudin family members potential therapy targets. A study was undertaken with the aim of exploring expression of claudins in human disease and two different animal models of IBD: dextrane sulfate sodium–induced colitis and adoptive transfer model of colitis. The expression of sealing claudin-1, claudin-3, claudin-4, and claudin-8, and pore-forming claudin-2 in humans and rodents has been evaluated by immunohistochemistry and quantitative polymerase chain reaction. Claudins were expressed by epithelial and cells of mesodermal origin and were found to be situated at the membrane, within the cytoplasm, or within the nuclei. Claudin expression by human mononuclear cells isolated from lamina propria has been confirmed by Western blot and flow cytometry. The claudin expression pattern in uninflamed and inflamed colon varied between species and murine strains. In IBD and both animal models, diverse alterations in claudin expression by epithelial and inflammatory cells were recorded. Tissue mRNA levels for each studied claudin reflected changes within cell lineage and, at the same time, mirrored the ratio between various cell types. Based on the results of the study, it can be concluded that 1) claudins are not expressed exclusively by epithelial cells, but by certain types of cells of mesodermal origin as well; 2) changes in the claudin mRNA level should be interpreted in the context of overall tissue alterations; and 3) both IBD animal models that were analyzed can be used for investigating claudins as a therapy target, respecting their similarities and differences highlighted in this study.
Collapse
Affiliation(s)
- Snježana Čužić
- Fidelta, Zagreb, Croatia
- *Correspondence: Snježana Čužić, ; Vesna Eraković Haber,
| | | | | | | | | | | | | | | | | | | | | | - Gorana Aralica
- School of Medicine, University Zagreb, Zagreb, Croatia
- Department of Pathology Clinical Hospital Dubrava, Zagreb, Croatia
| | - Marko Banić
- School of Medicine, University Zagreb, Zagreb, Croatia
- Department of Internal Medicine Clinical Hospital Dubrava, Zagreb, Croatia
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marija Urek
- School of Medicine, University Zagreb, Zagreb, Croatia
- Department of Pathology Clinical Hospital Dubrava, Zagreb, Croatia
| | - Brankica Mijandrušić Sinčić
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Internal Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Aleksandar Čubranić
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Internal Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | | | | | - Vesna Eraković Haber
- Fidelta, Zagreb, Croatia
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- *Correspondence: Snježana Čužić, ; Vesna Eraković Haber,
| |
Collapse
|
14
|
Lactobacillus plantarum and Lactobacillus brevis Alleviate Intestinal Inflammation and Microbial Disorder Induced by ETEC in a Murine Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6867962. [PMID: 34594475 PMCID: PMC8478549 DOI: 10.1155/2021/6867962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022]
Abstract
The purpose of this research is to explore the positive effects of Lactobacillus plantarum and Lactobacillus brevis on the tissue damage and microbial community in mice challenged by Enterotoxigenic Escherichia coli (ETEC). Twenty-four mice were divided into four groups randomly: the CON group, ETEC group, LP-ETEC group and LB-ETEC group. Our results demonstrated that, compared with the ETEC group, the LP-ETEC and LB-ETEC groups experienced less weight loss and morphological damage of the jejunum. We measured proinflammatory factors of colonic tissue and found that L. plantarum and L. brevis inhibited the expression of proinflammatory factors such as IL-β, TNF-α, and IL-6 and promoted that of the tight junction protein such as claudin-1, occludin, and ZO-1. Additionally, L. plantarum and L. brevis altered the impact of ETEC on the intestinal microbial community of mice, significantly increased the abundance of probiotics such as Lactobacillus, and reduced that of pathogenic bacteria such as Proteobacteria, Clostridia, Epsilonproteobacteria, and Helicobacter. Therefore, we believe that L. plantarum and L. brevis can stabilize the intestinal microbiota and inhibit the growth of pathogenic bacteria, thus protecting mice from the gut inflammation induced by ETEC.
Collapse
|
15
|
Briceno Noriega D, Savelkoul HFJ. Vitamin D and Allergy Susceptibility during Gestation and Early Life. Nutrients 2021; 13:1015. [PMID: 33801051 PMCID: PMC8003945 DOI: 10.3390/nu13031015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Worldwide, the prevalence of allergies in young children, but also vitamin D deficiency during pregnancy and in newborns is rising. Vitamin D modulates the development and activity of the immune system and a low vitamin D status during pregnancy and in early life might be associated with an increased risk to develop an allergy during early childhood. This review studies the effects of vitamin D during gestation and early life, on allergy susceptibility in infants. The bioactive form of vitamin D, 1,25(OH)2D, inhibits maturation and results in immature dendritic cells that cause a decreased differentiation of naive T cells into effector T cells. Nevertheless, the development of regulatory T cells and the production of interleukin-10 was increased. Consequently, a more tolerogenic immune response developed against antigens. Secondly, binding of 1,25(OH)2D to epithelial cells induces the expression of tight junction proteins resulting in enhanced epithelial barrier function. Thirdly, 1,25(OH)2D increased the expression of anti-microbial peptides by epithelial cells that also promoted the defense mechanism against pathogens, by preventing an invasive penetration of pathogens. Immune intervention by vitamin D supplementation can mitigate the disease burden from asthma and allergy. In conclusion, our review indicates that a sufficient vitamin D status during gestation and early life can lower the susceptibility to develop an allergy in infants although there remains a need for more causal evidence.
Collapse
Affiliation(s)
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, 6708 WD Wageningen, The Netherlands;
| |
Collapse
|
16
|
Azad AK, Raihan T, Ahmed J, Hakim A, Emon TH, Chowdhury PA. Human Aquaporins: Functional Diversity and Potential Roles in Infectious and Non-infectious Diseases. Front Genet 2021; 12:654865. [PMID: 33796134 PMCID: PMC8007926 DOI: 10.3389/fgene.2021.654865] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) are integral membrane proteins and found in all living organisms from bacteria to human. AQPs mainly involved in the transmembrane diffusion of water as well as various small solutes in a bidirectional manner are widely distributed in various human tissues. Human contains 13 AQPs (AQP0-AQP12) which are divided into three sub-classes namely orthodox aquaporin (AQP0, 1, 2, 4, 5, 6, and 8), aquaglyceroporin (AQP3, 7, 9, and 10) and super or unorthodox aquaporin (AQP11 and 12) based on their pore selectivity. Human AQPs are functionally diverse, which are involved in wide variety of non-infectious diseases including cancer, renal dysfunction, neurological disorder, epilepsy, skin disease, metabolic syndrome, and even cardiac diseases. However, the association of AQPs with infectious diseases has not been fully evaluated. Several studies have unveiled that AQPs can be regulated by microbial and parasitic infections that suggest their involvement in microbial pathogenesis, inflammation-associated responses and AQP-mediated cell water homeostasis. This review mainly aims to shed light on the involvement of AQPs in infectious and non-infectious diseases and potential AQPs-target modulators. Furthermore, AQP structures, tissue-specific distributions and their physiological relevance, functional diversity and regulations have been discussed. Altogether, this review would be useful for further investigation of AQPs as a potential therapeutic target for treatment of infectious as well as non-infectious diseases.
Collapse
Affiliation(s)
- Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Topu Raihan
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Jahed Ahmed
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Al Hakim
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Tanvir Hossain Emon
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | |
Collapse
|
17
|
Ruano-Gallego D, Sanchez-Garrido J, Kozik Z, Núñez-Berrueco E, Cepeda-Molero M, Mullineaux-Sanders C, Naemi Baghshomali Y, Slater SL, Wagner N, Glegola-Madejska I, Roumeliotis TI, Pupko T, Fernández LÁ, Rodríguez-Patón A, Choudhary JS, Frankel G. Type III secretion system effectors form robust and flexible intracellular virulence networks. Science 2021; 371:eabc9531. [PMID: 33707240 DOI: 10.1126/science.abc9531] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/15/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Infections with many Gram-negative pathogens, including Escherichia coli, Salmonella, Shigella, and Yersinia, rely on type III secretion system (T3SS) effectors. We hypothesized that while hijacking processes within mammalian cells, the effectors operate as a robust network that can tolerate substantial contractions. This was tested in vivo using the mouse pathogen Citrobacter rodentium (encoding 31 effectors). Sequential gene deletions showed that effector essentiality for infection was context dependent and that the network could tolerate 60% contraction while maintaining pathogenicity. Despite inducing very different colonic cytokine profiles (e.g., interleukin-22, interleukin-17, interferon-γ, or granulocyte-macrophage colony-stimulating factor), different networks induced protective immunity. Using data from >100 distinct mutant combinations, we built and trained a machine learning model able to predict colonization outcomes, which were confirmed experimentally. Furthermore, reproducing the human-restricted enteropathogenic E. coli effector repertoire in C. rodentium was not sufficient for efficient colonization, which implicates effector networks in host adaptation. These results unveil the extreme robustness of both T3SS effector networks and host responses.
Collapse
Affiliation(s)
- David Ruano-Gallego
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Julia Sanchez-Garrido
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Zuzanna Kozik
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Elena Núñez-Berrueco
- Laboratorio de Inteligencia Artificial, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, Madrid, Spain
| | - Massiel Cepeda-Molero
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | | | - Yasaman Naemi Baghshomali
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Sabrina L Slater
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Naama Wagner
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Izabela Glegola-Madejska
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Theodoros I Roumeliotis
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Luis Ángel Fernández
- Centro Nacional de Biotecnología (CNB-CSIC), Department of Microbial Biotechnology, Madrid, Spain
| | - Alfonso Rodríguez-Patón
- Laboratorio de Inteligencia Artificial, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, Madrid, Spain
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK.
| | - Gad Frankel
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK.
| |
Collapse
|
18
|
The Multiomics Analyses of Fecal Matrix and Its Significance to Coeliac Disease Gut Profiling. Int J Mol Sci 2021; 22:ijms22041965. [PMID: 33671197 PMCID: PMC7922330 DOI: 10.3390/ijms22041965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
Gastrointestinal (GIT) diseases have risen globally in recent years, and early detection of the host’s gut microbiota, typically through fecal material, has become a crucial component for rapid diagnosis of such diseases. Human fecal material is a complex substance composed of undigested macromolecules and particles, and the processing of such matter is a challenge due to the unstable nature of its products and the complexity of the matrix. The identification of these products can be used as an indication for present and future diseases; however, many researchers focus on one variable or marker looking for specific biomarkers of disease. Therefore, the combination of genomics, transcriptomics, proteomics and metabonomics can give a detailed and complete insight into the gut environment. The proper sample collection, sample preparation and accurate analytical methods play a crucial role in generating precise microbial data and hypotheses in gut microbiome research, as well as multivariate data analysis in determining the gut microbiome functionality in regard to diseases. This review summarizes fecal sample protocols involved in profiling coeliac disease.
Collapse
|
19
|
Micro-encapsulated essential oils and organic acids combination improves intestinal barrier function, inflammatory responses and microbiota of weaned piglets challenged with enterotoxigenic Escherichia coli F4 (K88 +). ACTA ACUST UNITED AC 2020; 6:269-277. [PMID: 33005760 PMCID: PMC7503083 DOI: 10.1016/j.aninu.2020.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/01/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022]
Abstract
This study evaluated the effects of micro-encapsulated (protected) organic acids (OA) and essential oils (EO) combination, P(OA + EO), and effects of a regular blend of free acids (FA) on the growth, immune responses, intestinal barrier and microbiota of weaned piglets challenged with enterotoxigenic Escherichia coli (ETEC) F4 (K88+). A total of 30 crossbred (Duroc × Landrace × Large White) weaned barrows (7.41 ± 0.06 kg, 28 d old) were assigned randomly to 5 treatments: 1) non-challenged positive control (PC), 2) ETEC F4 (K88+)-challenged negative control (NC), 3) NC + kitasamycin at 50 mg/kg + olaquindox at 100 mg/kg + free acidifier (FA) at 5 g/kg, 4) NC + kitasamycin at 50 mg/kg + olaquindox at 100 mg/kg + P(OA + EO) at 1 g/kg (P1), 5) NC + kitasamycin at 50 mg/kg + olaquindox at 100 mg/kg + P(OA + EO) at 2 g/kg (P2). Each dietary treatment had 6 replicates of one piglet each and the study lasted for 3 wk. On d 7, pigs in NC, FA, P1 and P2 were orally dosed with 10 mL of ETEC F4 (K88+) culture (1 × 109 CFU/mL). From d 7 to 14 after the ETEC F4 (K88+) challenge, P1 increased gain-to-feed ratio (G:F) significantly (P < 0.05) compared with NC and FA groups. From d 14 to 21, P2 increased the average daily gain of pigs (P < 0.05) compared with NC and FA groups. Compared with NC, P2 reduced tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-10 concentrations (P < 0.05) in sera collected at 4 h later after ETEC F4 (K88+) challenge. On d 21, P1 increased occludin and zonula occludens-1 protein expression in ileum compared with NC (P < 0.05). After this 3-wk experiment, alpha diversity of gut microbiota was decreased by P2 compared with PC, and P1 increased the relative abundance of Lactobacillus in ileum, cecum and colon (P < 0.05). In conclusion, dietary P(OA + EO) additive at 2 g/kg combined with antibiotics could improve piglet performance and attenuate inflammation, and P(OA + EO) additive at 1 g/kg combined with antibiotics improved intestinal barrier and increased beneficial microbiota composition after an F4 (K88+) challenge.
Collapse
|
20
|
Puccetti M, Xiroudaki S, Ricci M, Giovagnoli S. Postbiotic-Enabled Targeting of the Host-Microbiota-Pathogen Interface: Hints of Antibiotic Decline? Pharmaceutics 2020; 12:E624. [PMID: 32635461 PMCID: PMC7408102 DOI: 10.3390/pharmaceutics12070624] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Mismanagement of bacterial infection therapies has undermined the reliability and efficacy of antibiotic treatments, producing a profound crisis of the antibiotic drug market. It is by now clear that tackling deadly infections demands novel strategies not only based on the mere toxicity of anti-infective compounds. Host-directed therapies have been the first example as novel treatments with alternate success. Nevertheless, recent advances in the human microbiome research have provided evidence that compounds produced by the microbial metabolism, namely postbiotics, can have significant impact on human health. Such compounds target the host-microbe-pathogen interface rescuing biotic and immune unbalances as well as inflammation, thus providing novel therapeutic opportunities. This work discusses critically, through literature review and personal contributions, these novel nonantibiotic treatment strategies for infectious disease management and resistance prevention, which could represent a paradigm change rocking the foundation of current antibiotic therapy tenets.
Collapse
Affiliation(s)
| | | | | | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, via del Liceo 1, University of Perugia, 06123 Perugia, Italy; (M.P.); (S.X.); (M.R.)
| |
Collapse
|
21
|
Enteropathogenic Escherichia coli (EPEC) Recruitment of PAR Polarity Protein Atypical PKCζ to Pedestals and Cell-Cell Contacts Precedes Disruption of Tight Junctions in Intestinal Epithelial Cells. Int J Mol Sci 2020; 21:ijms21020527. [PMID: 31947656 PMCID: PMC7014222 DOI: 10.3390/ijms21020527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/26/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) uses a type three secretion system to inject effector proteins into host intestinal epithelial cells, causing diarrhea. EPEC induces the formation of pedestals underlying attached bacteria, disrupts tight junction (TJ) structure and function, and alters apico-basal polarity by redistributing the polarity proteins Crb3 and Pals1, although the mechanisms are unknown. Here we investigate the temporal relationship of PAR polarity complex and TJ disruption following EPEC infection. EPEC recruits active aPKCζ, a PAR polarity protein, to actin within pedestals and at the plasma membrane prior to disrupting TJ. The EPEC effector EspF binds the endocytic protein sorting nexin 9 (SNX9). This interaction impacts actin pedestal organization, recruitment of active aPKCζ to actin at cell–cell borders, endocytosis of JAM-A S285 and occludin, and TJ barrier function. Collectively, data presented herein support the hypothesis that EPEC-induced perturbation of TJ is a downstream effect of disruption of the PAR complex and that EspF binding to SNX9 contributes to this phenotype. aPKCζ phosphorylates polarity and TJ proteins and participates in actin dynamics. Therefore, the early recruitment of aPKCζ to EPEC pedestals and increased interaction with actin at the membrane may destabilize polarity complexes ultimately resulting in perturbation of TJ.
Collapse
|
22
|
Malaguarnera L. Vitamin D and microbiota: Two sides of the same coin in the immunomodulatory aspects. Int Immunopharmacol 2019; 79:106112. [PMID: 31877495 DOI: 10.1016/j.intimp.2019.106112] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
The gut microbiota is crucial for host immune response, vitamin synthesis, short chain fatty acids (SCFAs) production, intestinal permeability, nutrient digestion energy metabolism and protection from pathogens. Therefore, gut microbiota guarantees the host's predisposition to gastrointestinal diseases. Intestinal microbiota may be damaged by environmental components with negative health conditions. Dysbiosis consisting in alteration in the gut microbiota has been involved in several disorders including inflammation, allergic reactions, autoimmune diseases, heart diseases, obesity, and metabolic syndrome and even in the state of malignant carcinogenesis existing in humans. Several epidemiological studies have shown that inadequate solar exposure results in vitamin D insufficiency/deficiency which has a strong impact on different immune responses and the occurrence of a wide range of pathological conditions. Additionally, new evidence indicates that the vitamin D pathway plays a key role in gut homeostasis. Due to the strong connection between vitamin D and microbiota, herein we focus on the new findings about intestinal bacteria-immune crosstalk and the impact of vitamin D in gut microbiota regulation, in order to offer new clarifications on their interaction. Understanding the mechanism by which vitamin D can affect the gut microbiota composition and its dynamic activities, as well as the innate and adaptive state of the immune system, is not only a fundamental research but also an opportunity to improve health status.
Collapse
Affiliation(s)
- Lucia Malaguarnera
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia, 97, Catania, Italy.
| |
Collapse
|
23
|
Yin A, Luo Y, Chen W, He M, Deng JH, Zhao N, Cao L, Wang L. FAM96A Protects Mice From Dextran Sulfate Sodium (DSS)-Induced Colitis by Preventing Microbial Dysbiosis. Front Cell Infect Microbiol 2019; 9:381. [PMID: 31803631 PMCID: PMC6876263 DOI: 10.3389/fcimb.2019.00381] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
Family with sequence similarity 96 member A (FAM96A) is an evolutionarily conserved intracellular protein that is involved in the maturation of the Fe/S protein, iron regulatory protein 1 (IRP1), and the mitochondria-related apoptosis of gastrointestinal stromal tumor cells. In this study, we used a mouse model of chemically induced colitis to investigate the physiological role of FAM96A in intestinal homeostasis and inflammation. At baseline, colons from Fam96a−/− mice exhibited microbial dysbiosis, dysregulated epithelial cell turnover, an increased number of goblet cells, and disordered tight junctions with functional deficits affecting intestinal permeability. After cohousing, the differences between wild-type and Fam96a−/− colons were abrogated, suggesting that FAM96A affects colonic epithelial cells in a microbiota-dependent manner. Fam96a deficiency in mice resulted in increased susceptibility to dextran sulfate sodium (DSS)-induced colitis. Importantly, the colitogenic activity of Fam96a−/− intestinal microbiota was transferable to wild-type littermate mice via fecal microbial transplantation (FMT), leading to exacerbation of DSS-induced colitis. Taken together, our data indicate that FAM96A helps to maintain colonic homeostasis and protect against DSS-induced colitis by preventing gut microbial dysbiosis. This study used gene knockout animals to help to understand the in vivo effects of the Fam96a gene for the first time and provides new evidence regarding host–microbiota interactions.
Collapse
Affiliation(s)
- Ang Yin
- Department of Immunology, Center for Human Disease Genomics, Health Science Center, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Medical Immunology, School of Basic Medical Science, Peking University, Ministry of Health, Beijing, China
| | - Yang Luo
- Department of Immunology, Center for Human Disease Genomics, Health Science Center, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Medical Immunology, School of Basic Medical Science, Peking University, Ministry of Health, Beijing, China
| | - Wei Chen
- Department of Immunology, Center for Human Disease Genomics, Health Science Center, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Medical Immunology, School of Basic Medical Science, Peking University, Ministry of Health, Beijing, China
| | - Minwei He
- Department of Immunology, Center for Human Disease Genomics, Health Science Center, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Medical Immunology, School of Basic Medical Science, Peking University, Ministry of Health, Beijing, China
| | - Jin Hai Deng
- Department of Immunology, Center for Human Disease Genomics, Health Science Center, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Medical Immunology, School of Basic Medical Science, Peking University, Ministry of Health, Beijing, China
| | - Ning Zhao
- Department of Immunology, Center for Human Disease Genomics, Health Science Center, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Medical Immunology, School of Basic Medical Science, Peking University, Ministry of Health, Beijing, China
| | - Lulu Cao
- Department of Immunology, Center for Human Disease Genomics, Health Science Center, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Medical Immunology, School of Basic Medical Science, Peking University, Ministry of Health, Beijing, China
| | - Lu Wang
- Department of Immunology, Center for Human Disease Genomics, Health Science Center, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Medical Immunology, School of Basic Medical Science, Peking University, Ministry of Health, Beijing, China
| |
Collapse
|
24
|
Proanthocyanidins and probiotics combination supplementation ameliorated intestinal injury in Enterotoxigenic Escherichia coli infected diarrhea mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103521] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
25
|
Ugalde-Silva P, Navarro-Garcia F. Coordinated transient interaction of ZO-1 and afadin is required for pedestal maturation induced by EspF from enteropathogenic Escherichia coli. Microbiologyopen 2019; 8:e931. [PMID: 31568664 PMCID: PMC6925160 DOI: 10.1002/mbo3.931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/09/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) infection causes a histopathological lesion including recruitment of F‐actin beneath the attached bacteria and formation of actin‐rich pedestal‐like structures. Another important target of EPEC is the tight junction (TJ), and EspF induces displacement of TJ proteins and increased intestinal permeability. Previously, we determined that an EPEC strain lacking EspF did not cause TJ disruption; meanwhile, pedestals were located on the TJ and smaller than those induced by the wild‐type strain. Therefore, EspF could be playing an important role in both phenotypes. Here, using different cell models, we found that EspF was essential for pedestal maturation through ZO‐1 disassembly from TJ, leading to (a) ZO‐1 recruitment to the pedestal structure; no other main TJ proteins were required. Recruited ZO‐1 allowed the afadin recruitment. (b) Afadin recruitment caused an afadin–ZO‐1 transient interaction, like during TJ formation. (c) Afadin and ZO‐1 were segregated to the tip and the stem of pedestal, respectively, causing pedestal maturation. Initiation of these three discrete phases for pedestal maturation functionally and physically required EspF expression. Pedestal maturation process could help coordinate the epithelial actomyosin function by maintaining the actin‐rich column composing the pedestal structure and could be important in the dynamics of the pedestal movement on epithelial cells.
Collapse
Affiliation(s)
- Paul Ugalde-Silva
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), México City, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), México City, Mexico
| |
Collapse
|
26
|
Song L, Qiao X, Zhao D, Xie W, Bukhari SM, Meng Q, Wang L, Cui W, Jiang Y, Zhou H, Li Y, Xu Y, Tang L. Effects of Lactococcus lactis MG1363 producing fusion proteins of bovine lactoferricin-lactoferrampin on growth, intestinal morphology and immune function in weaned piglet. J Appl Microbiol 2019; 127:856-866. [PMID: 31161702 DOI: 10.1111/jam.14339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022]
Abstract
AIMS We developed a strategy for localized delivery of the LFCA (lactoferricinlactoferrampin), which is actively synthesized in situ by Lactococcus lactis (pAMJ399-LFCA/LLMG1363), and explored the possibility of using pAMJ399-LFCA/LLMG1363 as an alternative additive diet to antibiotics. METHODS AND RESULTS The antimicrobial activities of the LFCA derived from pAMJ399-LFCA/LLMG1363 were tested in vitro. The results showed that LFCA had an inhibitory effect on Staphylococcus aureus, Escherichia coli and Salmonella enteritidis. Then, the pAMJ399-LFCA/LLMG1363 was used as an additive diet for piglets. Our data demonstrated that oral administration of pAMJ399-LFCA/LLMG1363 significantly improved the average daily gain, feed-to-gain ratio, intestinal mucosal integrity and decreased the serum endotoxin and d-lactic acid levels. The mRNA expression levels of intestinal tight junction proteins (including occludin, Claudin-1 and ZO-1) were significantly upregulated by pAMJ399-LFCA/LLMG1363 administration. The serum immunoglobulin G (IgG) levels, intestinal secretory immunoglobulin A (sIgA) levels, IL-2, IL-10 and TGF-β levels were significantly increased by pAMJ399-LFCA/LLMG1363. Furthermore, our data revealed that oral administration of pAMJ399-LFCA/LLMG1363 significantly increased the number of general Lactobacillus, and decreased the total viable E. coli counts in the ileum and cecum contents. CONCLUSIONS We developed a novel pAMJ399-LFCA/LLMG1363 secreting LFCA, which had probiotic effects on the growth performance, intestinal morphology, intestinal barrier function and immunological indices of weaned piglets. SIGNIFICANCE AND IMPACT OF THE STUDY pAMJ399-LFCA/LLMG1363, with probiotic effects on the health of weaned piglets, may be a promising feed additive for weaned piglets.
Collapse
Affiliation(s)
- L Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - X Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - D Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - W Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - S M Bukhari
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Q Meng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - L Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - W Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Y Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - H Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Y Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Y Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - L Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| |
Collapse
|
27
|
Xia X, Liu Y, Hodgson A, Xu D, Guo W, Yu H, She W, Zhou C, Lan L, Fu K, Vallance BA, Wan F. EspF is crucial for Citrobacter rodentium-induced tight junction disruption and lethality in immunocompromised animals. PLoS Pathog 2019; 15:e1007898. [PMID: 31251784 PMCID: PMC6623547 DOI: 10.1371/journal.ppat.1007898] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/11/2019] [Accepted: 06/05/2019] [Indexed: 12/17/2022] Open
Abstract
Attaching/Effacing (A/E) bacteria include human pathogens enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC), and their murine equivalent Citrobacter rodentium (CR), of which EPEC and EHEC are important causative agents of foodborne diseases worldwide. While A/E pathogen infections cause mild symptoms in the immunocompetent hosts, an increasing number of studies show that they produce more severe morbidity and mortality in immunocompromised and/or immunodeficient hosts. However, the pathogenic mechanisms and crucial host-pathogen interactions during A/E pathogen infections under immunocompromised conditions remain elusive. We performed a functional screening by infecting interleukin-22 (IL-22) knockout (Il22-/-) mice with a library of randomly mutated CR strains. Our screen reveals that interruption of the espF gene, which encodes the Type III Secretion System effector EspF (E. coli secreted protein F) conserved among A/E pathogens, completely abolishes the high mortality rates in CR-infected Il22-/- mice. Chromosomal deletion of espF in CR recapitulates the avirulent phenotype without impacting colonization and proliferation of CR, and EspF complement in ΔespF strain fully restores the virulence in mice. Moreover, the expression levels of the espF gene are elevated during CR infection and CR induces disruption of the tight junction (TJ) strands in colonic epithelium in an EspF-dependent manner. Distinct from EspF, chromosomal deletion of other known TJ-damaging effector genes espG and map failed to impede CR virulence in Il22-/- mice. Hence our findings unveil a critical pathophysiological function for EspF during CR infection in the immunocompromised host and provide new insights into the complex pathogenic mechanisms of A/E pathogens.
Collapse
Affiliation(s)
- Xue Xia
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Yue Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Andrea Hodgson
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Dongqing Xu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Wenxuan Guo
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Hongbing Yu
- Division of Gastroenterology, Department of Pediatrics, BC's Children's Hospital and Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Weifeng She
- Eudowood Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Chenxing Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Lei Lan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Kai Fu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Bruce A. Vallance
- Division of Gastroenterology, Department of Pediatrics, BC's Children's Hospital and Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
28
|
Wang S, Xie T, Sun S, Wang K, Liu B, Wu X, Ding W. DNase-1 Treatment Exerts Protective Effects in a Rat Model of Intestinal Ischemia-Reperfusion Injury. Sci Rep 2018; 8:17788. [PMID: 30542063 PMCID: PMC6290768 DOI: 10.1038/s41598-018-36198-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 11/01/2018] [Indexed: 12/12/2022] Open
Abstract
A growing number of studies have recently revealed a potential role for neutrophil extracellular traps (NETs) in the development of inflammation, coagulation and cell death. Deleterious consequences of NETs have been identified in ischemia-reperfusion (I/R)-induced organ damage, thrombosis and sepsis. And exogenous DNase-I has been suggested as a therapeutic strategy to attenuate ischemia-reperfusion (I/R) injuries in the kidney, brain and myocardium. Herein, we designed a study to investigate whether NETs contribute to the pathogenesis of intestinal I/R injury and evaluated the therapeutic value of DNase-1 in a rat model of intestinal I/R injury. In this rat model of intestinal I/R injury, we found that extracellular DNA was readily detectable in rat serum after 1 h of ischemia and 2 h of reperfusion. Treatment with DNase-1 significantly reduced the inflammatory response, restored intestinal barrier integrity and increased the expression of tight junction proteins. Our results indicate the existence of NETs in I/R-challenged intestinal tissues and firstly provide more evidence that DNase-1 may be an effective treatment for attenuating intestinal I/R injury.
Collapse
Affiliation(s)
- Shikai Wang
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu Province, P.R. China
| | - Tian Xie
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu Province, P.R. China
| | - Shilong Sun
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu Province, P.R. China
| | - Kai Wang
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu Province, P.R. China
| | - Baochen Liu
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu Province, P.R. China
| | - Xingjiang Wu
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu Province, P.R. China
| | - Weiwei Ding
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu Province, P.R. China.
| |
Collapse
|
29
|
Ravisankar S, Tatum R, Garg PM, Herco M, Shekhawat PS, Chen YH. Necrotizing enterocolitis leads to disruption of tight junctions and increase in gut permeability in a mouse model. BMC Pediatr 2018; 18:372. [PMID: 30482190 PMCID: PMC6260703 DOI: 10.1186/s12887-018-1346-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 11/14/2018] [Indexed: 01/06/2023] Open
Abstract
Background Necrotizing enterocolitis (NEC) is a leading cause of death in preterm infants. Neonates weighing <1500 grams are at the highest risk for acquiring NEC, with a prevalence of nearly 7-10%, mortality up to 30%, and several long-term complications among survivors. Despite advancements in neonatal medicine, this disease remains a challenge to treat. The aim of this study is to investigate the effect of NEC on gut epithelial tight junctions and its barrier function using a NEC mouse model. Methods Three-day old C57BL/6 mouse pups were fed with Esbilac formula every 3 hours and then subjected to hypoxia twice daily followed by cold stress. Dam fed pups from the same litters served as controls. Pups were observed and sacrificed 96 hours after the treatments and intestines were removed for experiments. The successful induction of NEC was confirmed by histopathology. Changes in tight junction proteins in NEC intestines were studied by western blotting and immunofluorescent microscopy using specific protein markers. The gut leakage in NEC was visualized using biotin tracer molecules. Results Our study results demonstrate that we induced NEC in >50% of experimental pups, pups lost nearly 40% of weight and their intestines showed gross changes and microscopic changes associated with NEC. There were inflammatory changes with loss of tight junction barrier function and disruption of tight junction claudin proteins in the intestines of NEC mouse model. We have demonstrated for the first time that NEC intestines develop increased leakiness as visualized by biotin tracer leakage. Conclusions NEC leads to breakdown of epithelial barrier due to changes in tight junction proteins with increased leakiness which may explain the transmigration of microbes and microbial products from the gut lumen into the blood stream leading to sepsis like signs clinically witnessed.
Collapse
Affiliation(s)
- Srikanth Ravisankar
- Department of Pediatrics, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.,Present Address: Clinical Neonatologist, Mercy Medical Center, Cedar Rapids, IA, 52403, USA
| | - Rodney Tatum
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Parvesh M Garg
- Department of Pediatrics, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.,Present Address: Department of Pediatrics, Division Neonatology, University of Mississippi Medical Center, Jackson, Mississippi, 39216, USA
| | - Maja Herco
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Prem S Shekhawat
- Department of Pediatrics, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, 44109, USA.
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
30
|
Flemming S, Luissint AC, Nusrat A, Parkos CA. Analysis of leukocyte transepithelial migration using an in vivo murine colonic loop model. JCI Insight 2018; 3:99722. [PMID: 30333307 DOI: 10.1172/jci.insight.99722] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 09/11/2018] [Indexed: 12/30/2022] Open
Abstract
Molecular mechanisms that control leukocyte migration across the vascular endothelium (transendothelial migration; TEndoM) have been extensively characterized in vivo, but details of leukocyte transepithelial migration (TEpM) and its dysregulation (a pathologic feature of many mucosal diseases) are missing due to the lack of suitable animal models. Here, we describe a murine model that utilizes a vascularized proximal colonic segment (pcLoop) and enables quantitative studies of leukocyte trafficking across colonic epithelium. Consistent with previous in vitro studies, intraluminal injection of antibodies against integrin CD11b/CD18 reduced recruitment of polymorphonuclear neutrophils (PMN) into the lumen of pcLoops, and it increased subepithelial accumulation of PMN. We extended studies using the pcLoop to determine contributions of Junctional Adhesion Molecule-A (JAM-A, or F11R) in PMN TEpM and confirmed that mice with total loss of JAM-A or mice with intestinal epithelial selective loss of JAM-A had increased colonic permeability. Furthermore, there was reduced PMN migration into the colonic lumen that paralleled subepithelial accumulation of PMN in global-KO mice, as well as in intestinal epithelial-targeted JAM-A-deficient mice. These findings highlight a potentially novel role for JAM-A in regulating PMN TEpM in vivo and demonstrate utility of this model for identifying receptors that may be targeted in vivo to reduce pathologic intestinal inflammation.
Collapse
|
31
|
Login FH, Jensen HH, Pedersen GA, Amieva MR, Nejsum LN. The soluble extracellular domain of E-cadherin interferes with EPEC adherence via interaction with the Tir:intimin complex. FASEB J 2018; 32:fj201800651. [PMID: 29920220 DOI: 10.1096/fj.201800651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC) causes watery diarrhea when colonizing the surface of enterocytes. The translocated intimin receptor (Tir):intimin receptor complex facilitates tight adherence to epithelial cells and formation of actin pedestals beneath EPEC. We found that the host cell adherens junction protein E-cadherin (Ecad) was recruited to EPEC microcolonies. Live-cell and confocal imaging revealed that Ecad recruitment depends on, and occurs after, formation of the Tir:intimin complex. Combinatorial binding experiments using wild-type EPEC, isogenic mutants lacking Tir or intimin, and E. coli expressing intimin showed that the extracellular domain of Ecad binds the bacterial surface in a Tir:intimin-dependent manner. Finally, addition of the soluble extracellular domain of Ecad to the infection medium or depletion of Ecad extracellular domain from the cell surface reduced EPEC adhesion to host cells. Thus, the soluble extracellular domain of Ecad may be used in the design of intervention strategies targeting EPEC adherence to host cells.-Login, F. H., Jensen, H. H., Pedersen, G. A., Amieva, M. R., Nejsum, L. N. The soluble extracellular domain of E-cadherin interferes with EPEC adherence via interaction with the Tir:intimin complex.
Collapse
Affiliation(s)
- Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Helene H Jensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Gitte A Pedersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Manuel R Amieva
- Department of Pediatrics, Stanford University, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
32
|
Martens EC, Neumann M, Desai MS. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat Rev Microbiol 2018; 16:457-470. [DOI: 10.1038/s41579-018-0036-x] [Citation(s) in RCA: 476] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Abstract
The passive and regulated movement of ions, solutes, and water via spaces between cells of the epithelial monolayer plays a critical role in the normal intestinal functioning. This paracellular pathway displays a high level of structural and functional specialization, with the membrane-spanning complexes of the tight junctions, adherens junctions, and desmosomes ensuring its integrity. Tight junction proteins, like occludin, tricellulin, and the claudin family isoforms, play prominent roles as barriers to unrestricted paracellular transport. The past decade has witnessed major advances in our understanding of the architecture and function of epithelial tight junctions. While it has been long appreciated that microbes, notably bacterial and viral pathogens, target and disrupt junctional complexes and alter paracellular permeability, the precise mechanisms remain to be defined. Notably, renewed efforts will be required to interpret the available data on pathogen-mediated barrier disruption in the context of the most recent findings on tight junction structure and function. While much of the focus has been on pathogen-induced dysregulation of junctional complexes, commensal microbiota and their products may influence paracellular permeability and contribute to the normal physiology of the gut. Finally, microbes and their products have become important tools in exploring host systems, including the junctional properties of epithelial cells. © 2018 American Physiological Society. Compr Physiol 8:823-842, 2018.
Collapse
Affiliation(s)
- Jennifer Lising Roxas
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - V.K. Viswanathan
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
34
|
Singh AP, Sharma S, Pagarware K, Siraji RA, Ansari I, Mandal A, Walling P, Aijaz S. Enteropathogenic E. coli effectors EspF and Map independently disrupt tight junctions through distinct mechanisms involving transcriptional and post-transcriptional regulation. Sci Rep 2018; 8:3719. [PMID: 29487356 PMCID: PMC5829253 DOI: 10.1038/s41598-018-22017-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/14/2018] [Indexed: 01/05/2023] Open
Abstract
Enteropathogenic E. coli infection is characterized by rapid onset of diarrhea but the underlying mechanisms are not well defined. EPEC targets the tight junctions which selectively regulate the permeability of charged and uncharged molecules. Cooperative actions of the EPEC effectors EspF and Map have been reported to mediate tight junction disruption. To analyze the individual contributions of EspF and Map, we generated in vitro models where EspF and Map, derived from the EPEC strain E2348/69, were constitutively expressed in epithelial cells. Here we report that tight junction disruption by EspF and Map is caused by the inhibition of the junctional recruitment of proteins during tight junction assembly. Constitutive expression of EspF and Map depleted the levels of tight junction proteins. EspF down-regulated the transcript levels of claudin-1, occludin and ZO-1, while Map down-regulated only claudin-1 transcripts. Both effectors also caused lysosomal degradation of existing tight junction proteins. We also identified a novel interaction of Map with non-muscle myosin II. Consistent with earlier studies, EspF was found to interact with ZO-1 while actin was the common interacting partner for both effectors. Our data provides evidence for the distinct roles of Map and EspF in tight junction disruption through non-synergistic functions.
Collapse
Affiliation(s)
- Anand Prakash Singh
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Swati Sharma
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kirti Pagarware
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rafay Anwar Siraji
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Imran Ansari
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anupam Mandal
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pangertoshi Walling
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Saima Aijaz
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
35
|
Pan L, Zhao PF, Ma XK, Shang QH, Xu YT, Long SF, Wu Y, Yuan FM, Piao XS. Probiotic supplementation protects weaned pigs against enterotoxigenic Escherichia coli K88 challenge and improves performance similar to antibiotics. J Anim Sci 2017; 95:2627-2639. [PMID: 28727032 DOI: 10.2527/jas.2016.1243] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
These studies evaluated the effects of probiotics (PB) as a potential substitute for antibiotics (AB) on diarrhea in relation to immune responses and intestinal health in weaned pigs challenged with enterotoxigenic (ETEC) K88 (Exp. 1) and the effects of PB on performance and nutrient digestibility in weaned pigs (Exp. 2). In Exp. 1, 24 weaned barrows (4.9 ± 0.4 kg initial BW) were randomly assigned to 1 of 4 treatments. The treatments consisted of pigs fed an unsupplemented corn-soybean meal basal diet and not challenged (NON-C) or challenged with ETEC K88 (CHA-C) on d 9 and pigs fed the same basal diet supplemented with AB (100 mg/kg zinc bacitracin, 50 mg/kg colistin sulfate, and 100 mg/kg olaquindox; CHA-AB) or 500 mg/kg PB ( and ; CHA-PB) and challenged with ETEC K88 on d 9. In Exp. 2, 108 weaned pigs (7.5 ± 0.9 kg initial BW) not challenged with ETEC K88 were randomly assigned to 1 of 3 treatments, including an AB-free basal diet (CON) and the basal diet with AB (ABD) or 500 mg/kg PB supplementation (PBD). In Exp. 1, after challenge, CHA-C decreased ( < 0.05) ADG and ADFI, whereas CHA-AB and CHA-PB revealed no significant change compared with NON-C. Compared with CHA-C, CHA-AB and CHA-PB improved ( < 0.05) ADG and ADFI and decreased ( < 0.05) the diarrhea incidence in pigs. Mucosal secretory Ig A contents in the jejunum and ileum were greater in CHA-C than in NON-C ( < 0.05) and lower than in CHA-PB ( < 0.05). The diet containing PB alleviated the increase in the endotoxin and diamine oxidase concentration and cecal count ( < 0.05) and the decrease in intestinal villus height, cecal count, and jejunal mucosal occludin protein abundance ( < 0.05). In Exp. 2, dietary supplementation with AB and PB had positive effects on ADG and feed efficiency ( < 0.05). Compared with CON, apparent digestibility of nutrients in PBD was improved ( < 0.05). Collectively, PB supplementation protected the pigs against ETEC K88 infection by enhancing immune responses and attenuating intestinal damage and improved the performance and nutrient digestibility of weaned pigs. Therefore, PB could be a potential effective alternative to AB for ameliorating diarrhea and improving performance in weaned pigs.
Collapse
|
36
|
Garber JJ, Mallick EM, Scanlon KM, Turner JR, Donnenberg MS, Leong JM, Snapper SB. Attaching-and-Effacing Pathogens Exploit Junction Regulatory Activities of N-WASP and SNX9 to Disrupt the Intestinal Barrier. Cell Mol Gastroenterol Hepatol 2017; 5:273-288. [PMID: 29675452 PMCID: PMC5904039 DOI: 10.1016/j.jcmgh.2017.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 11/28/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS Neural Wiskott-Aldrich Syndrome protein (N-WASP) is a key regulator of the actin cytoskeleton in epithelial tissues and is poised to mediate cytoskeletal-dependent aspects of apical junction complex (AJC) homeostasis. Attaching-and-effacing (AE) pathogens disrupt this homeostasis through translocation of the effector molecule early secreted antigenic target-6 (ESX)-1 secretion-associated protein F (EspF). Although the mechanisms underlying AJC disruption by EspF are unknown, EspF contains putative binding sites for N-WASP and the endocytic regulator sorting nexin 9 (SNX9). We hypothesized that N-WASP regulates AJC integrity and AE pathogens use EspF to induce junction disassembly through an N-WASP- and SNX9-dependent pathway. METHODS We analyzed mice with intestine-specific N-WASP deletion and generated cell lines with N-WASP and SNX9 depletion for dynamic functional assays. We generated EPEC and Citrobacter rodentium strains complemented with EspF bearing point mutations abolishing N-WASP and SNX9 binding to investigate the requirement for these interactions. RESULTS Mice lacking N-WASP in the intestinal epithelium showed spontaneously increased permeability, abnormal AJC morphology, and mislocalization of occludin. N-WASP depletion in epithelial cell lines led to impaired assembly and disassembly of tight junctions in response to changes in extracellular calcium. Cells lacking N-WASP or SNX9 supported actin pedestals and type III secretion, but were resistant to EPEC-induced AJC disassembly and loss of transepithelial resistance. We found that during in vivo infection with AE pathogens, EspF must bind both N-WASP and SNX9 to disrupt AJCs and induce intestinal barrier dysfunction. CONCLUSIONS Overall, these studies show that N-WASP critically regulates AJC homeostasis, and the AE pathogen effector EspF specifically exploits both N-WASP and SNX9 to disrupt intestinal barrier integrity during infection.
Collapse
Key Words
- ADF, actin depolymerization factor
- AE, attaching-and-effacing
- AJ, adherens junction
- AJC, apical junction complex
- Arp, actin-related protein
- CR, Citrobacter rodentium
- Crb, Crumbs
- Cytoskeleton
- DBS100, David B. Schauer 100
- EHEC, enterohemorrhagic Escherichia coli
- EM, electron microscopy
- EPEC, enteropathogenic Escherichia coli
- EcoRI, E. coli RY13 I
- EspF
- EspF, early secreted antigenic target-6 (ESX)-1 secretion-associated protein F
- FITC, fluorescein isothiocyanate
- Junction Regulation
- KO, knockout
- N-WASP
- N-WASP, Neural Wiskott-Aldrich Syndrome protein
- NWKD, Neural Wiskott-Aldrich Syndrome protein knockdown
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- SNX9, sorting nexin 9
- SNX9KD, sorting nexin 9 knockdown
- TER, transepithelial electrical resistance
- TJ, tight junction
- Tir, translocated intimin receptor
- ZO-1, zonula occludens-1
- iNWKO, intestine Neural Wiskott-Aldrich Syndrome protein knockout
- shRNA, short hairpin RNA
Collapse
Affiliation(s)
- John J. Garber
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts,Division of Gastroenterology/Nutrition and Center for Inflammatory Bowel Disease Treatment and Research, Boston Children's Hospital, Boston, Massachusetts,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Emily M. Mallick
- Department of Medicine Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Karen M. Scanlon
- Department of Medicine and Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Jerrold R. Turner
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Michael S. Donnenberg
- Department of Medicine and Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Scott B. Snapper
- Division of Gastroenterology/Nutrition and Center for Inflammatory Bowel Disease Treatment and Research, Boston Children's Hospital, Boston, Massachusetts,Division of Gastroenterology and Hepatology, Brigham and Women's Hospital, Boston, Massachusetts,Department of Medicine, Harvard Medical School, Boston, Massachusetts,Correspondence Address correspondence to: Scott B. Snapper, MD, PhD, Division of Gastroenterology/Nutrition, Boston Children’s Hospital, Enders 676, 300 Longwood Avenue, Boston, Massachusetts 02115. fax: (617) 730-0498.
| |
Collapse
|
37
|
Hua Y, Ju J, Wang X, Zhang B, Zhao W, Zhang Q, Feng Y, Ma W, Wan C. Screening for host proteins interacting with Escherichia coli O157:H7 EspF using bimolecular fluorescence complementation. Future Microbiol 2017; 13:37-58. [PMID: 29227212 DOI: 10.2217/fmb-2017-0087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIM To screen host proteins that interact with enterohemorrhagic Escherichia coli O157:H7 EspF. MATERIALS & METHODS Flow cytometry and high-throughput sequencing were used to screen interacting proteins. Molecular function, biological processes and Kyoto Encyclopedia of Genes and Genomes pathways were studied using the DAVID online tool. Glutathione S-transferase pull down and dot blotting were used to verify the interactions. RESULTS 293 host proteins were identified to associate with EspF. They were mainly enriched in RNA splicing (p = 0.005), ribosome structure (p = 0.012), and involved in 109 types of signaling pathways. SNX9 and ANXA6 were confirmed to interact with EspF. CONCLUSION EspF interacts with ANXA6; they may form a complex to manipulate the process of phagocytosis; EspF plays a highlighted pathogenic role in enterohemorrhagic E. coli infection process.
Collapse
Affiliation(s)
- Ying Hua
- Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou 510515, China.,Key Laboratory of Tropical Disease Research of Guangdong Provincial, Guangzhou 510515, China
| | - Jingwei Ju
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiangyu Wang
- Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou 510515, China.,Key Laboratory of Tropical Disease Research of Guangdong Provincial, Guangzhou 510515, China
| | - Bao Zhang
- Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou 510515, China.,Key Laboratory of Tropical Disease Research of Guangdong Provincial, Guangzhou 510515, China
| | - Wei Zhao
- Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou 510515, China.,Key Laboratory of Tropical Disease Research of Guangdong Provincial, Guangzhou 510515, China
| | - Qiwei Zhang
- Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou 510515, China.,Key Laboratory of Tropical Disease Research of Guangdong Provincial, Guangzhou 510515, China
| | - Yingzhu Feng
- Guangzhou Institutes of Biomedicine & Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Wenbin Ma
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, Guangzhou 510006, China
| | - Chengsong Wan
- Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou 510515, China.,Key Laboratory of Tropical Disease Research of Guangdong Provincial, Guangzhou 510515, China
| |
Collapse
|
38
|
E. coli O124 K72 alters the intestinal barrier and the tight junctions proteins of guinea pig intestine. Biomed Pharmacother 2017; 94:468-473. [PMID: 28779708 DOI: 10.1016/j.biopha.2017.07.123] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/30/2022] Open
Abstract
Our research group previously isolated and identified a strain of pathogenic Escherichia coli from clinical samples called E. coli O124 K72. The present study was aimed at determining the potential effects of E. coli O124 K72 on intestinal barrier functions and structural proteins integrity in guinea pig. Guinea pigs were grouped into three groups; control (CG); E. coli O124 K72 (E. coli); and probiotics Lactobacillus rhamnosus (LGG). Initially, we create intestinal dysbiosis by giving all animals Levofloxacin for 10days, but the control group (CG) received the same volume of saline. Then, the animals received either E. coli O124 K72 (E. coli) or Lactobacillus rhamnosus (LGG) according to their assigned group. E. coli O124 K72 treatment significantly affected colon morphology and distorted intestinal barrier function by up-regulating Claudin2 and down-regulating Occludin. In addition, E. coli upregulated the mRNA expression of MUC1, MUC2, MUC13 and MUC15. Furthermore, suspected tumor was found in the E. coli treated animals. Our results suggested that E. coli O124 K72 strain has adverse effects on intestinal barrier functions and is capable of altering integrity of structural proteins in guinea pig model while at same time it may have a role in colon carcinogenesis.
Collapse
|
39
|
Tapia R, Kralicek SE, Hecht GA. EPEC effector EspF promotes Crumbs3 endocytosis and disrupts epithelial cell polarity. Cell Microbiol 2017; 19. [PMID: 28618099 DOI: 10.1111/cmi.12757] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/19/2017] [Accepted: 06/09/2017] [Indexed: 12/12/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) uses a type III secretion system to inject effector proteins into host intestinal epithelial cells causing diarrhoea. EPEC infection redistributes basolateral proteins β1-integrin and Na+ /K+ ATPase to the apical membrane of host cells. The Crumbs (Crb) polarity complex (Crb3/Pals1/Patj) is essential for epithelial cell polarisation and tight junction (TJ) assembly. Here, we demonstrate that EPEC displaces Crb3 and Pals1 from the apical membrane to the cytoplasm of cultured intestinal epithelial cells and colonocytes of infected mice. In vitro studies show that EspF, but not Map, alters Crb3, whereas both effectors modulate Pals1. EspF perturbs polarity formation in cyst morphogenesis assays and induces endocytosis and apical redistribution of Na+ /K+ ATPase. EspF binds to sorting nexin 9 (SNX9) causing membrane remodelling in host cells. Infection with ΔespF/pespFD3, a mutant strain that ablates EspF binding to SNX9, or inhibition of dynamin, attenuates Crb3 endocytosis caused by EPEC. In addition, infection with ΔespF/pespFD3 has no impact on Na+ /K+ ATPase endocytosis. These data support the hypothesis that EPEC perturbs apical-basal polarity in an EspF-dependent manner, which would contribute to EPEC-associated diarrhoea by disruption of TJ and altering the crucial positioning of membrane transporters involved in the absorption of ions and solutes.
Collapse
Affiliation(s)
- Rocio Tapia
- Department of Medicine and Division of Gastroenterology and Nutrition, Loyola University Chicago, Chicago, IL, USA
| | - Sarah E Kralicek
- Department of Medicine and Division of Gastroenterology and Nutrition, Loyola University Chicago, Chicago, IL, USA
| | - Gail A Hecht
- Department of Medicine and Division of Gastroenterology and Nutrition, Loyola University Chicago, Chicago, IL, USA.,Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA.,Edward Hines Jr. VA Hospital, Hines, IL, USA
| |
Collapse
|
40
|
Tapia R, Kralicek SE, Hecht GA. Modulation of epithelial cell polarity by bacterial pathogens. Ann N Y Acad Sci 2017. [PMID: 28628193 DOI: 10.1111/nyas.13388] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial cells constitute a physical barrier that aids in protecting the host from microbial pathogens. Polarized epithelial cells contain distinct apical and basolateral membrane domains separated by intercellular junctions, including tight junctions (TJs), which contribute to the maintenance of apical-basal polarity. Polarity complexes also contribute to the establishment of TJ formation. Several pathogens perturb epithelial TJ barrier function and structure in addition to causing a loss of apical-basal polarity. Here, we review the impact of pathogenic bacteria on the disruption of cell-cell junctions and epithelial polarity.
Collapse
Affiliation(s)
- Rocio Tapia
- Division of Gastroenterology and Nutrition, Department of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Sarah E Kralicek
- Division of Gastroenterology and Nutrition, Department of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Gail A Hecht
- Division of Gastroenterology and Nutrition, Department of Medicine, Loyola University Chicago, Maywood, Illinois.,Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois.,Edward Hines Jr. VA Hospital, Hines, Illinois
| |
Collapse
|
41
|
Tsai PY, Zhang B, He WQ, Zha JM, Odenwald MA, Singh G, Tamura A, Shen L, Sailer A, Yeruva S, Kuo WT, Fu YX, Tsukita S, Turner JR. IL-22 Upregulates Epithelial Claudin-2 to Drive Diarrhea and Enteric Pathogen Clearance. Cell Host Microbe 2017; 21:671-681.e4. [PMID: 28618266 PMCID: PMC5541253 DOI: 10.1016/j.chom.2017.05.009] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/08/2017] [Accepted: 05/25/2017] [Indexed: 12/11/2022]
Abstract
Diarrhea is a host response to enteric pathogens, but its impact on pathogenesis remains poorly defined. By infecting mice with the attaching and effacing bacteria Citrobacter rodentium, we defined the mechanisms and contributions of diarrhea and intestinal barrier loss to host defense. Increased permeability occurred within 2 days of infection and coincided with IL-22-dependent upregulation of the epithelial tight junction protein claudin-2. Permeability increases were limited to small molecules, as expected for the paracellular water and Na+ channel formed by claudin-2. Relative to wild-type, claudin-2-deficient mice experienced severe disease, including increased mucosal colonization by C. rodentium, prolonged pathogen shedding, exaggerated cytokine responses, and greater tissue injury. Conversely, transgenic claudin-2 overexpression reduced disease severity. Chemically induced osmotic diarrhea reduced colitis severity and C. rodentium burden in claudin-2-deficient, but not transgenic, mice, demonstrating that claudin-2-mediated protection is the result of enhanced water efflux. Thus, IL-22-induced claudin-2 upregulation drives diarrhea and pathogen clearance.
Collapse
Affiliation(s)
- Pei-Yun Tsai
- Department of Pathology, The University of Chicago, 5841 South Maryland, Chicago, IL 60637, USA
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China; Department of Pathology, The University of Chicago, 5841 South Maryland, Chicago, IL 60637, USA
| | - Wei-Qi He
- Department of Pathology, The University of Chicago, 5841 South Maryland, Chicago, IL 60637, USA; Cambridge-Suda (CAM-SU) Genome Resource Center, Soochow University, Suzhou 215123, China
| | - Juan-Min Zha
- Department of Pathology, The University of Chicago, 5841 South Maryland, Chicago, IL 60637, USA; Cambridge-Suda (CAM-SU) Genome Resource Center, Soochow University, Suzhou 215123, China; Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Matthew A Odenwald
- Department of Pathology, The University of Chicago, 5841 South Maryland, Chicago, IL 60637, USA
| | - Gurminder Singh
- Department of Pathology, The University of Chicago, 5841 South Maryland, Chicago, IL 60637, USA; Departments of Pathology and Medicine (Gastroenterology), Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Atsushi Tamura
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Le Shen
- Department of Pathology, The University of Chicago, 5841 South Maryland, Chicago, IL 60637, USA
| | - Anne Sailer
- Department of Pathology, The University of Chicago, 5841 South Maryland, Chicago, IL 60637, USA
| | - Sunil Yeruva
- Department of Pathology, The University of Chicago, 5841 South Maryland, Chicago, IL 60637, USA; Departments of Pathology and Medicine (Gastroenterology), Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Wei-Ting Kuo
- Departments of Pathology and Medicine (Gastroenterology), Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yang-Xin Fu
- Department of Pathology, The University of Chicago, 5841 South Maryland, Chicago, IL 60637, USA; Department of Pathology, University of Texas Southwestern, Dallas, TX 75235, USA
| | - Sachiko Tsukita
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Jerrold R Turner
- Department of Pathology, The University of Chicago, 5841 South Maryland, Chicago, IL 60637, USA; Departments of Pathology and Medicine (Gastroenterology), Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Li Z, Jin H, Oh SY, Ji GE. Anti-obese effects of two Lactobacilli and two Bifidobacteria on ICR mice fed on a high fat diet. Biochem Biophys Res Commun 2016; 480:222-227. [DOI: 10.1016/j.bbrc.2016.10.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 10/13/2016] [Indexed: 02/07/2023]
|
43
|
Singh K, Al-Greene NT, Verriere TG, Coburn LA, Asim M, Barry DP, Allaman MM, Hardbower DM, Delgado AG, Piazuelo MB, Vallance BA, Gobert AP, Wilson KT. The L-Arginine Transporter Solute Carrier Family 7 Member 2 Mediates the Immunopathogenesis of Attaching and Effacing Bacteria. PLoS Pathog 2016; 12:e1005984. [PMID: 27783672 PMCID: PMC5081186 DOI: 10.1371/journal.ppat.1005984] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/06/2016] [Indexed: 12/17/2022] Open
Abstract
Solute carrier family 7 member 2 (SLC7A2) is an inducible transporter of the semi-essential amino acid L-arginine (L-Arg), which has been implicated in immune responses to pathogens. We assessed the role of SLC7A2 in murine infection with Citrobacter rodentium, an attaching and effacing enteric pathogen that causes colitis. Induction of SLC7A2 was upregulated in colitis tissues, and localized predominantly to colonic epithelial cells. Compared to wild-type mice, Slc7a2–/–mice infected with C. rodentium had improved survival and decreased weight loss, colon weight, and histologic injury; this was associated with decreased colonic macrophages, dendritic cells, granulocytes, and Th1 and Th17 cells. In infected Slc7a2–/–mice, there were decreased levels of the proinflammatory cytokines G-CSF, TNF-α, IL-1α, IL-1β, and the chemokines CXCL1, CCL2, CCL3, CCL4, CXCL2, and CCL5. In bone marrow chimeras, the recipient genotype drove the colitis phenotype, indicative of the importance of epithelial, rather than myeloid SLC7A2. Mice lacking Slc7a2 exhibited reduced adherence of C. rodentium to the colonic epithelium and decreased expression of Talin-1, a focal adhesion protein involved in the attachment of the bacterium. The importance of SLC7A2 and Talin-1 in the intimate attachment of C. rodentium and induction of inflammatory response was confirmed in vitro, using conditionally-immortalized young adult mouse colon (YAMC) cells with shRNA knockdown of Slc7a2 or Tln1. Inhibition of L-Arg uptake with the competitive inhibitor, L-lysine (L-Lys), also prevented attachment of C. rodentium and chemokine expression. L-Lys and siRNA knockdown confirmed the role of L-Arg and SLC7A2 in human Caco-2 cells co-cultured with enteropathogenic Escherichia coli. Overexpression of SLC7A2 in human embryonic kidney cells increased bacterial adherence and chemokine expression. Taken together, our data indicate that C. rodentium enhances its own pathogenicity by inducing the expression of SLC7A2 to favor its attachment to the epithelium and thus create its ecological niche. Intestinal infections by attaching and effacing (A/E) bacteria widely impact human health, with major social and economic repercussions. Mucosal immunity plays a critical role in determining the outcome of these infections. The amino acid L-arginine regulates inflammatory responses to bacterial pathogens. We studied the role of the L-arginine transporter solute carrier family 7 member 2 (SLC7A2) during infection with the A/E pathogen Citrobacter rodentium. SLC7A2 is induced in colonic epithelial cells during the infection and facilitates the intimate attachment of the bacteria, thus initiating the inflammatory response of the infected mucosa. These data were confirmed in vitro using C. rodentium-infected mouse cells and human colonic epithelial cells infected with enteropathogenic Escherichia coli. Our work describes a mechanism by which A/E bacteria manipulate host response to favor their colonization, thereby positioning SLC7A2 as an unrecognized therapeutic target to limit infection with enterobacteria.
Collapse
Affiliation(s)
- Kshipra Singh
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Nicole T. Al-Greene
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Thomas G. Verriere
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Lori A. Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Daniel P. Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Margaret M. Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Dana M. Hardbower
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Alberto G. Delgado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - M. Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Bruce A. Vallance
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alain P. Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
44
|
Castro JJ, Gomez A, White BA, Mangian HJ, Loften JR, Drackley JK. Changes in the intestinal bacterial community, short-chain fatty acid profile, and intestinal development of preweaned Holstein calves. 1. Effects of prebiotic supplementation depend on site and age. J Dairy Sci 2016; 99:9682-9702. [PMID: 27720150 DOI: 10.3168/jds.2016-11006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 08/13/2016] [Indexed: 01/28/2023]
Abstract
Digestive disorders are common during the first few weeks of life of newborn calves. Prebiotics are nondigestible but fermentable oligosaccharides that modulate growth and activity of beneficial microbial populations, which can result in enhanced gut health and function. Galactooligosaccharides (GOS) have demonstrated such prebiotic potential. In this study, the effect of GOS supplementation on intestinal bacterial community composition and fermentation profiles; intestinal health, development, and function; and growth was evaluated in dairy calves fed for high rates of growth. Eighty male Holstein calves were assigned either to a control treatment consisting of commercial milk replacer or to a GOS-rich (i.e., 3.4% of dry matter) milk replacer treatment. After 2 and 4wk, 8 calves per treatment were slaughtered at each age. Samples of intestinal digesta and tissue were collected for assessment of bacterial communities, short-chain fatty acid concentrations, in vitro measurement of nutrient transport and permeability, histomorphology, and gastrointestinal organ size. The remaining 48 calves continued to wk 8 to measure body growth, nutrient intake, and fecal and respiratory scores. Calves fed GOS displayed greater Lactobacillus and Bifidobacterium relative abundance and more developed intestinal epithelial structures, but also had greater fecal scores presumably related to greater colonic water secretion. Control calves showed slightly better growth and milk dry matter intake. Size of intestinal organs, intestinal nutrient transport, and epithelium paracellular resistance were not affected by treatment. Excessive GOS supplementation had both prebiotic and laxative effects, which led to slightly lower growth performance while promoting commensal bacteria population and greater intestinal epithelium growth.
Collapse
Affiliation(s)
- J J Castro
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - A Gomez
- Institute for Genomic Biology, University of Illinois, Urbana 61801
| | - B A White
- Department of Animal Sciences, University of Illinois, Urbana 61801; Institute for Genomic Biology, University of Illinois, Urbana 61801
| | - H J Mangian
- Department of Food Science and Human Nutrition, University of Illinois, Urbana 61801
| | - J R Loften
- Milk Specialties Global Animal Nutrition, Eden Prairie, MN 55344
| | - J K Drackley
- Department of Animal Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
45
|
Chlorogenic acid enhances intestinal barrier by decreasing MLCK expression and promoting dynamic distribution of tight junction proteins in colitic rats. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.08.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
46
|
Ugalde-Silva P, Gonzalez-Lugo O, Navarro-Garcia F. Tight Junction Disruption Induced by Type 3 Secretion System Effectors Injected by Enteropathogenic and Enterohemorrhagic Escherichia coli. Front Cell Infect Microbiol 2016; 6:87. [PMID: 27606286 PMCID: PMC4995211 DOI: 10.3389/fcimb.2016.00087] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/10/2016] [Indexed: 12/18/2022] Open
Abstract
The intestinal epithelium consists of a single cell layer, which is a critical selectively permeable barrier to both absorb nutrients and avoid the entry of potentially harmful entities, including microorganisms. Epithelial cells are held together by the apical junctional complexes, consisting of adherens junctions, and tight junctions (TJs), and by underlying desmosomes. TJs lay in the apical domain of epithelial cells and are mainly composed by transmembrane proteins such as occludin, claudins, JAMs, and tricellulin, that are associated with the cytoplasmic plaque formed by proteins from the MAGUK family, such as ZO-1/2/3, connecting TJ to the actin cytoskeleton, and cingulin and paracingulin connecting TJ to the microtubule network. Extracellular bacteria such as EPEC and EHEC living in the intestinal lumen inject effectors proteins directly from the bacterial cytoplasm to the host cell cytoplasm, where they play a relevant role in the manipulation of the eukaryotic cell functions by modifying or blocking cell signaling pathways. TJ integrity depends on various cell functions such as actin cytoskeleton, microtubule network for vesicular trafficking, membrane integrity, inflammation, and cell survival. EPEC and EHEC effectors target most of these functions. Effectors encoded inside or outside of locus of enterocyte effacement (LEE) disrupt the TJ strands. EPEC and EHEC exploit the TJ dynamics to open this structure, for causing diarrhea. EPEC and EHEC secrete effectors that mimic host proteins to manipulate the signaling pathways, including those related to TJ dynamics. In this review, we focus on the known mechanisms exploited by EPEC and EHEC effectors for causing TJ disruption.
Collapse
Affiliation(s)
- Paul Ugalde-Silva
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| | - Octavio Gonzalez-Lugo
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| |
Collapse
|
47
|
Haines RJ, Beard RS, Chen L, Eitnier RA, Wu MH. Interleukin-1β Mediates β-Catenin-Driven Downregulation of Claudin-3 and Barrier Dysfunction in Caco2 Cells. Dig Dis Sci 2016; 61:2252-2261. [PMID: 27074920 PMCID: PMC5517031 DOI: 10.1007/s10620-016-4145-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/22/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND IL-1β is a cytokine involved in mediating epithelial barrier dysfunction in the gut. It is known that IL-1β mediates activation of non-muscle myosin light chain kinase in epithelial cells, but the precise mechanism by which epithelial barrier dysfunction is induced by IL-1β is not understood. METHODS AND RESULTS Using a Caco2 cell model, we show that the expression of the tight junction protein, claudin-3, is transcriptionally downregulated by IL-1β treatment. In addition, after assessing protein and mRNA expression, and protein localization, we show that inhibition of nmMLCK rescues IL-1β-mediated decrease in claudin-3 expression as well as junction protein redistribution. Using chromatin immunoprecipitation assays, we also show that β-catenin targeting of the claudin-3 promoter occurs as a consequence of IL-1β-mediated epithelial barrier dysfunction, and inhibition of nmMLCK interferes with this interaction. CONCLUSIONS Taken together, these data represent the first line of evidence demonstrating nmMLCK regulation of claudin-3 expression in response to IL-1β-treated epithelial cells.
Collapse
Affiliation(s)
- R J Haines
- Department of Surgery, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., MDC 8, Office MDC 2012, Tampa, FL, 33612, USA
- James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - R S Beard
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - L Chen
- Department of Surgery, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., MDC 8, Office MDC 2012, Tampa, FL, 33612, USA
| | - R A Eitnier
- Department of Surgery, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., MDC 8, Office MDC 2012, Tampa, FL, 33612, USA
| | - M H Wu
- Department of Surgery, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., MDC 8, Office MDC 2012, Tampa, FL, 33612, USA.
- James A. Haley Veterans' Hospital, Tampa, FL, USA.
| |
Collapse
|
48
|
Chen X, Yang Y, Shi Z, Gao MQ, Zhang Y. Effects of Genetically Modified Milk Containing Human Beta-Defensin-3 on Gastrointestinal Health of Mice. PLoS One 2016; 11:e0159700. [PMID: 27438026 PMCID: PMC4954683 DOI: 10.1371/journal.pone.0159700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/07/2016] [Indexed: 12/20/2022] Open
Abstract
This study was performed to investigate the effects of genetically modified (GM) milk containing human beta-defensin-3 (HBD3) on mice by a 90-day feeding study. The examined parameters included the digestibility of GM milk, general physical examination, gastric emptying function, intestinal permeability, intestinal microflora composition of mice, and the possibility of horizontal gene transfer (HGT). The emphasis was placed on the effects on gastrointestinal (GI) tract due to the fact that GI tract was the first site contacting with food and played crucial roles in metabolic reactions, nutrition absorption and immunity regulation in the host. However, the traditional methods for analyzing the potential toxicological risk of GM product pay little attention on GI health. In this study, the results showed GM milk was easy to be digested in simulated gastric fluid, and it did not have adverse effects on general and GI health compared to conventional milk. And there is little possibility of HGT. This study may enrich the safety assessment of GM product on GI health.
Collapse
Affiliation(s)
- Xin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yange Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhaopeng Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ming-Qing Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
- * E-mail: (M-QG); (YZ)
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
- * E-mail: (M-QG); (YZ)
| |
Collapse
|
49
|
In vivo antioxidative effects of l-theanine in the presence or absence of Escherichia coli-induced oxidative stress. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.04.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
50
|
Impact of gut microbiota on diabetes mellitus. DIABETES & METABOLISM 2016; 42:303-315. [PMID: 27179626 DOI: 10.1016/j.diabet.2016.04.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 02/07/2023]
Abstract
Various functions of the gut are regulated by sophisticated interactions among its functional elements, including the gut microbiota. These microorganisms play a crucial role in gastrointestinal mucosa permeability. They control the fermentation and absorption of dietary polysaccharides to produce short-chain fatty acids, which may explain their importance in the regulation of fat accumulation and the subsequent development of obesity-related diseases, suggesting that they are a crucial mediator of obesity and its consequences. In addition, gut bacteria play a crucial role in the host immune system, modulation of inflammatory processes, extraction of energy from the host diet and alterations of human gene expression. Dietary modulation of the human colonic microbiota has been shown to confer a number of health benefits to the host. Simple therapeutic strategies targeted at attenuating the progression of chronic low-grade inflammation and insulin resistance are urgently required to prevent or slow the development of diabetes in susceptible individuals. The main objective of this review is to address the pathogenic association between gut microbiota and diabetes, and to explore any novel related therapeutic targets. New insights into the role of the gut microbiota in diabetes could lead to the development of integrated strategies using probiotics to prevent and treat these metabolic disorders.
Collapse
|