1
|
Mayer S, Rolletschek H, Radchuk V, Wagner S, Ortleb S, Gündel A, Dehmer KJ, Gutjahr FT, Jakob PM, Borisjuk L. Metabolic imaging in living plants: A promising field for chemical exchange saturation transfer (CEST) MRI. SCIENCE ADVANCES 2024; 10:eadq4424. [PMID: 39292788 PMCID: PMC11409970 DOI: 10.1126/sciadv.adq4424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/15/2024] [Indexed: 09/20/2024]
Abstract
Magnetic resonance imaging (MRI) is a versatile technique in the biomedical field, but its application to the study of plant metabolism in vivo remains challenging because of magnetic susceptibility problems. In this study, we report the establishment of chemical exchange saturation transfer (CEST) for plant MRI. This method enables noninvasive access to the metabolism of sugars and amino acids in complex sink organs (seeds, fruits, taproots, and tubers) of major crops (maize, barley, pea, potato, sugar beet, and sugarcane). Because of its high signal detection sensitivity and low susceptibility to magnetic field inhomogeneities, CEST analyzes heterogeneous botanical samples inaccessible to conventional magnetic resonance spectroscopy. The approach provides unprecedented insight into the dynamics and distribution of sugars and amino acids in intact, living plant tissue. The method is validated by chemical shift imaging, infrared microscopy, chromatography, and mass spectrometry. CEST is a versatile and promising tool for studying plant metabolism in vivo, with many applications in plant science and crop improvement.
Collapse
Affiliation(s)
- Simon Mayer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Volodymyr Radchuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Steffen Wagner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Stefan Ortleb
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Andre Gündel
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Klaus J. Dehmer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Fabian T. Gutjahr
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Peter M. Jakob
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ljudmilla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| |
Collapse
|
2
|
Liu F, Yang R, Chen R, Lamine Guindo M, He Y, Zhou J, Lu X, Chen M, Yang Y, Kong W. Digital techniques and trends for seed phenotyping using optical sensors. J Adv Res 2024; 63:1-16. [PMID: 37956859 PMCID: PMC11380022 DOI: 10.1016/j.jare.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 10/19/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND The breeding of high-quality, high-yield, and disease-resistant varieties is closely related to food security. The investigation of breeding results relies on the evaluation of seed phenotype, which is a key step in the process of breeding. In the global digitalization trend, digital technology based on optical sensors can perform the digitization of seed phenotype in a non-contact, high throughput way, thus significantly improving breeding efficiency. AIM OF REVIEW This paper provides a comprehensive overview of the principles, characteristics, data processing methods, and bottlenecks associated with three digital technique types based on optical sensors: spectroscopy, digital imaging, and three-dimensional (3D) reconstruction techniques. In addition, the applicability and adaptability of digital techniques based on the optical sensors of maize seed phenotype traits, namely external visible phenotype (EVP) and internal invisible phenotype (IIP), are investigated. Furthermore, trends in future equipment, platform, phenotype data, and processing algorithms are discussed. This review offers conceptual and practical support for seed phenotype digitization based on optical sensors, which will provide reference and guidance for future research. KEY SCIENTIFIC CONCEPTS OF REVIEW The digital techniques based on optical sensors can perform non-contact and high-throughput seed phenotype evaluation. Due to the distinct characteristics of optical sensors, matching suitable digital techniques according to seed phenotype traits can greatly reduce resource loss, and promote the efficiency of seed evaluation as well as breeding decision-making. Future research in phenotype equipment and platform, phenotype data, and processing algorithms will make digital techniques better meet the demands of seed phenotype evaluation, and promote automatic, integrated, and intelligent evaluation of seed phenotype, further helping to lessen the gap between digital techniques and seed phenotyping.
Collapse
Affiliation(s)
- Fei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Rui Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Rongqin Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Mahamed Lamine Guindo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jun Zhou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; College of Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xiangyu Lu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Mengyuan Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yinhui Yang
- College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Wenwen Kong
- College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
3
|
Rutten T, Thirulogachandar V, Huang Y, Shanmugaraj N, Koppolu R, Ortleb S, Hensel G, Kumlehn J, Melzer M, Schnurbusch T. Anatomical insights into the vascular layout of the barley rachis: implications for transport and spikelet connection. ANNALS OF BOTANY 2024; 133:983-996. [PMID: 38407464 PMCID: PMC11089264 DOI: 10.1093/aob/mcae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND AND AIMS Vascular patterning is intimately related to plant form and function. Here, using barley (Hordeum vulgare) as a model, we studied the vascular anatomy of the spike-type inflorescence. The main aim of the present work was to clarify the relationship between rachis (spike axis) vasculature and spike size, to define vascular dynamics and to discuss the implications for transport capacity and its interaction with the spikelets. METHODS We used serial transverse internode sections to determine the internode area, vascular area and number of veins along the rachis of several barley lines. KEY RESULTS Internode area and total vascular area show a clear positive correlation with spike size, whereas the number of veins is only weakly correlated. The lateral periphery of the rachis contains large mature veins of constant size, whereas the central part is occupied by small immature veins. Spikelet-derived veins entering the rachis often merge with the immature rachis veins but never merge with the mature veins. An increase in floret fertility through the conversion of a two-rowed barley into an isogenic six-rowed line, in addition to a decrease in floret fertility owing to enhanced pre-anthesis tip degeneration caused by the mutation tip sterile 2.b (tst2.b), significantly affected vein size but had limited to no effects on the number of veins or internode area. CONCLUSIONS The rachis vasculature is the result of a two-step process involving an initial layout followed by size adjustment according to floret fertility/spike size. The restriction of large mature vessels to the periphery and that of small immature vessels to the centre of the rachis suggests that long-distance transport and local supply to spikelets are spatially separated processes. The identification of spikelet-derived veins entering the rachis without fusing with its vasculature indicates that a vascular continuity between rachis and spikelets might be non-essential.
Collapse
Affiliation(s)
- Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | | | - Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | | | - Ravi Koppolu
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Stefan Ortleb
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
- Center for Plant Genome Engineering, Institute of Plant Biochemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
- Institute of Agricultural and Nutritional Sciences, Halle-Wittenberg Faculty of Natural Sciences III, Martin Luther University, 06120 Halle, Germany
| |
Collapse
|
4
|
Borisjuk L, Horn P, Chapman K, Jakob PM, Gündel A, Rolletschek H. Seeing plants as never before. THE NEW PHYTOLOGIST 2023; 238:1775-1794. [PMID: 36895109 DOI: 10.1111/nph.18871] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 05/04/2023]
Abstract
Imaging has long supported our ability to understand the inner life of plants, their development, and response to a dynamic environment. While optical microscopy remains the core tool for imaging, a suite of novel technologies is now beginning to make a significant contribution to visualize plant metabolism. The purpose of this review was to provide the scientific community with an overview of current imaging methods, which rely variously on either nuclear magnetic resonance (NMR), mass spectrometry (MS) or infrared (IR) spectroscopy, and to present some examples of their application in order to illustrate their utility. In addition to providing a description of the basic principles underlying these technologies, the review discusses their various advantages and limitations, reveals the current state of the art, and suggests their potential application to experimental practice. Finally, a view is presented as to how the technologies will likely develop, how these developments may encourage the formulation of novel experimental strategies, and how the enormous potential of these technologies can contribute to progress in plant science.
Collapse
Affiliation(s)
- Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| | - Patrick Horn
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Kent Chapman
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Peter M Jakob
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Andre Gündel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| | - Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| |
Collapse
|
5
|
Radchuk V, Belew ZM, Gündel A, Mayer S, Hilo A, Hensel G, Sharma R, Neumann K, Ortleb S, Wagner S, Muszynska A, Crocoll C, Xu D, Hoffie I, Kumlehn J, Fuchs J, Peleke FF, Szymanski JJ, Rolletschek H, Nour-Eldin HH, Borisjuk L. SWEET11b transports both sugar and cytokinin in developing barley grains. THE PLANT CELL 2023; 35:2186-2207. [PMID: 36857316 DOI: 10.1093/plcell/koad055] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 02/17/2023] [Indexed: 05/30/2023]
Abstract
Even though Sugars Will Eventually be Exported Transporters (SWEETs) have been found in every sequenced plant genome, a comprehensive understanding of their functionality is lacking. In this study, we focused on the SWEET family of barley (Hordeum vulgare). A radiotracer assay revealed that expressing HvSWEET11b in African clawed frog (Xenopus laevis) oocytes facilitated the bidirectional transfer of not only just sucrose and glucose, but also cytokinin. Barley plants harboring a loss-of-function mutation of HvSWEET11b could not set viable grains, while the distribution of sucrose and cytokinin was altered in developing grains of plants in which the gene was knocked down. Sucrose allocation within transgenic grains was disrupted, which is consistent with the changes to the cytokinin gradient across grains, as visualized by magnetic resonance imaging and Fourier transform infrared spectroscopy microimaging. Decreasing HvSWEET11b expression in developing grains reduced overall grain size, sink strength, the number of endopolyploid endosperm cells, and the contents of starch and protein. The control exerted by HvSWEET11b over sugars and cytokinins likely predetermines their synergy, resulting in adjustments to the grain's biochemistry and transcriptome.
Collapse
Affiliation(s)
- Volodymyr Radchuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Zeinu M Belew
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Andre Gündel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Simon Mayer
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexander Hilo
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Goetz Hensel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371 Olomouc, Czech Republic
| | - Rajiv Sharma
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JGUK
| | - Kerstin Neumann
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Stefan Ortleb
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Steffen Wagner
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Aleksandra Muszynska
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Christoph Crocoll
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Deyang Xu
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Iris Hoffie
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Joerg Fuchs
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Fritz F Peleke
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Jedrzej J Szymanski
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
- IBG-4 Bioinformatics, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Hussam H Nour-Eldin
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| |
Collapse
|
6
|
Huang Y, Kamal R, Shanmugaraj N, Rutten T, Thirulogachandar V, Zhao S, Hoffie I, Hensel G, Rajaraman J, Moya YAT, Hajirezaei MR, Himmelbach A, Poursarebani N, Lundqvist U, Kumlehn J, Stein N, von Wirén N, Mascher M, Melzer M, Schnurbusch T. A molecular framework for grain number determination in barley. SCIENCE ADVANCES 2023; 9:eadd0324. [PMID: 36867700 PMCID: PMC9984178 DOI: 10.1126/sciadv.add0324] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Flowering plants with indeterminate inflorescences often produce more floral structures than they require. We found that floral primordia initiations in barley (Hordeum vulgare L.) are molecularly decoupled from their maturation into grains. While initiation is dominated by flowering-time genes, floral growth is specified by light signaling, chloroplast, and vascular developmental programs orchestrated by barley CCT MOTIF FAMILY 4 (HvCMF4), which is expressed in the inflorescence vasculature. Consequently, mutations in HvCMF4 increase primordia death and pollination failure, mainly through reducing rachis greening and limiting plastidial energy supply to developing heterotrophic floral tissues. We propose that HvCMF4 is a sensory factor for light that acts in connection with the vascular-localized circadian clock to coordinate floral initiation and survival. Notably, stacking beneficial alleles for both primordia number and survival provides positive implications on grain production. Our findings provide insights into the molecular underpinnings of grain number determination in cereal crops.
Collapse
Affiliation(s)
- Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Roop Kamal
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Nandhakumar Shanmugaraj
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Venkatasubbu Thirulogachandar
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Shuangshuang Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Iris Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Goetz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Jeyaraman Rajaraman
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Yudelsy Antonia Tandron Moya
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Mohammad-Reza Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Naser Poursarebani
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | | | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
- Center for Integrated Breeding Research (CiBreed), Georg-August-University, Göttingen, Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
- Martin Luther University Halle-Wittenberg, Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, 06120 Halle, Germany
| |
Collapse
|
7
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Mayer S, Munz E, Hammer S, Wagner S, Guendel A, Rolletschek H, Jakob PM, Borisjuk L, Neuberger T. Quantitative monitoring of paramagnetic contrast agents and their allocation in plant tissues via DCE-MRI. PLANT METHODS 2022; 18:47. [PMID: 35410361 PMCID: PMC8996644 DOI: 10.1186/s13007-022-00877-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/18/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Studying dynamic processes in living organisms with MRI is one of the most promising research areas. The use of paramagnetic compounds as contrast agents (CA), has proven key to such studies, but so far, the lack of appropriate techniques limits the application of CA-technologies in experimental plant biology. The presented proof-of-principle aims to support method and knowledge transfer from medical research to plant science. RESULTS In this study, we designed and tested a new approach for plant Dynamic Contrast Enhanced Magnetic Resonance Imaging (pDCE-MRI). The new approach has been applied in situ to a cereal crop (Hordeum vulgare). The pDCE-MRI allows non-invasive investigation of CA allocation within plant tissues. In our experiments, gadolinium-DTPA, the most commonly used contrast agent in medical MRI, was employed. By acquiring dynamic T1-maps, a new approach visualizes an alteration of a tissue-specific MRI parameter T1 (longitudinal relaxation time) in response to the CA. Both, the measurement of local CA concentration and the monitoring of translocation in low velocity ranges (cm/h) was possible using this CA-enhanced method. CONCLUSIONS A novel pDCE-MRI method is presented for non-invasive investigation of paramagnetic CA allocation in living plants. The temporal resolution of the T1-mapping has been significantly improved to enable the dynamic in vivo analysis of transport processes at low-velocity ranges, which are common in plants. The newly developed procedure allows to identify vascular regions and to estimate their involvement in CA allocation. Therefore, the presented technique opens a perspective for further development of CA-aided MRI experiments in plant biology.
Collapse
Affiliation(s)
- Simon Mayer
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Eberhard Munz
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Sebastian Hammer
- Institute of Experimental Physics 6, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Steffen Wagner
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| | - Andre Guendel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| | - Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| | - Peter M Jakob
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Thomas Neuberger
- Huck Institutes of the Life Sciences, The Pennsylvania State University, 113 Chandlee Lab, University Park, PA, 16802, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, 113 Chandlee Lab, University Park, PA, 16802, USA.
| |
Collapse
|
9
|
Wang Q, Wang M, Chen J, Qi W, Lai J, Ma Z, Song R. ENB1 encodes a cellulose synthase 5 that directs synthesis of cell wall ingrowths in maize basal endosperm transfer cells. THE PLANT CELL 2022; 34:1054-1074. [PMID: 34935984 PMCID: PMC8894971 DOI: 10.1093/plcell/koab312] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/27/2021] [Indexed: 05/12/2023]
Abstract
Development of the endosperm is strikingly different in monocots and dicots: it often manifests as a persistent tissue in the former and transient tissue in the latter. Little is known about the controlling mechanisms responsible for these different outcomes. Here we characterized a maize (Zea mays) mutant, endosperm breakdown1 (enb1), in which the typically persistent endosperm (PE) was drastically degraded during kernel development. ENB1 encodes a cellulose synthase 5 that is predominantly expressed in the basal endosperm transfer layer (BETL) of endosperm cells. Loss of ENB1 function caused a drastic reduction in formation of flange cell wall ingrowths (ingrowths) in BETL cells. Defective ingrowths impair nutrient uptake, leading to premature utilization of endosperm starch to nourish the embryo. Similarly, developing wild-type kernels cultured in vitro with a low level of sucrose manifested early endosperm breakdown. ENB1 expression is induced by sucrose via the BETL-specific Myb-Related Protein1 transcription factor. Overexpression of ENB1 enhanced development of flange ingrowths, facilitating sucrose transport into BETL cells and increasing kernel weight. The results demonstrated that ENB1 enhances sucrose supply to the endosperm and contributes to a PE in the kernel.
Collapse
Affiliation(s)
- Qun Wang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Mingmin Wang
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jian Chen
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
10
|
Rolletschek H, Mayer S, Boughton B, Wagner S, Ortleb S, Kiel C, Roessner U, Borisjuk L. The metabolic environment of the developing embryo: A multidisciplinary approach on oilseed rapeseed. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153505. [PMID: 34481359 DOI: 10.1016/j.jplph.2021.153505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Brassicaceae seeds consist of three genetically distinct structures: the embryo, endosperm and seed coat, all of which are involved in assimilate allocation during seed development. The complexity of their metabolic interrelations remains unresolved to date. In the present study, we apply state-of-the-art imaging and analytical approaches to assess the metabolic environment of the Brassica napus embryo. Nuclear magnetic resonance imaging (MRI) provided volumetric data on the living embryo and endosperm, revealing how the endosperm envelops the embryo, determining endosperm's priority in assimilate uptake from the seed coat during early development. MRI analysis showed higher levels of sugars in the peripheral endosperm facing the seed coat, but a lower sugar content within the central vacuole and the region surrounding the embryo. Feeding intact siliques with 13C-labeled sucrose allowed tracing of the post-phloem route of sucrose transfer within the seed at the heart stage of embryogenesis, by means of mass spectrometry imaging. Quantification of over 70 organic and inorganic compounds in the endosperm revealed shifts in their abundance over different stages of development, while sugars and potassium were the main determinants of osmolality throughout these stages. Our multidisciplinary approach allows access to the hidden aspects of endosperm metabolism, a task which remains unattainable for the small-seeded model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hardy Rolletschek
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Simon Mayer
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Berin Boughton
- Australian National Phenome Centre, Murdoch University, Western Australia, 6150, Australia.
| | - Steffen Wagner
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Stefan Ortleb
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Christina Kiel
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Victoria, 3010, Australia.
| | - Ljudmilla Borisjuk
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| |
Collapse
|
11
|
Fei H, Yang Z, Lu Q, Wen X, Zhang Y, Zhang A, Lu C. OsSWEET14 cooperates with OsSWEET11 to contribute to grain filling in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110851. [PMID: 33775358 DOI: 10.1016/j.plantsci.2021.110851] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
The grain-filling process is crucial for cereal crop yields, but how the caryopsis of such plants is supplied with sugars, which are produced by photosynthesis in leaves and then transported long distance, is largely unknown. In rice (Oryza sativa), various SWEET family sucrose transporters are thought to have important roles in grain filling. Here, we report that OsSWEET14 plays a crucial part in this process in rice. ossweet14 knockout mutants did not show any detectable phenotypic differences from the wild type, whereas ossweet14;ossweet11 double-knockout mutants had much more severe phenotypes than ossweet11 single-knockout mutants, including strongly reduced grain weight and yield, reduced grain-filling rate, and increased starch accumulation in the pericarp. Both OsSWEET14 and OsSWEET11 exhibited distinct spatiotemporal expression patterns between the early stage of caryopsis development and the rapid grain-filling stage. During the rapid grain-filling stage, OsSWEET14 and OsSWEET11 localized to four key sites: vascular parenchyma cells, the nucellar projection, the nucellar epidermis, and cross cells. These results demonstrate that OsSWEET14 plays an important role in grain filling, and they suggest that four major apoplasmic pathways supply sucrose to the endosperm during the rapid grain-filling stage via the sucrose effluxers SWEET14 and SWEET11.
Collapse
Affiliation(s)
- Honghong Fei
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhipan Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qingtao Lu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Xiaogang Wen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Yi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Aihong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
12
|
Radchuk V, Tran V, Hilo A, Muszynska A, Gündel A, Wagner S, Fuchs J, Hensel G, Ortleb S, Munz E, Rolletschek H, Borisjuk L. Grain filling in barley relies on developmentally controlled programmed cell death. Commun Biol 2021; 4:428. [PMID: 33785858 PMCID: PMC8009944 DOI: 10.1038/s42003-021-01953-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/02/2021] [Indexed: 11/25/2022] Open
Abstract
Cereal grains contribute substantially to the human diet. The maternal plant provides the carbohydrate and nitrogen sources deposited in the endosperm, but the basis for their spatial allocation during the grain filling process is obscure. Here, vacuolar processing enzymes have been shown to both mediate programmed cell death (PCD) in the maternal tissues of a barley grain and influence the delivery of assimilate to the endosperm. The proposed centrality of PCD has implications for cereal crop improvement. Radchuk et al. report on the role of vacuolar processing enzymes (VPEs) in mediating programmed cell death (PCD) in the maternal tissues of a barley grain and influencing the delivery of assimilate to the endosperm. This study presents a means of increasing the efficiency of the grain filling process in the major cereal crop species by manipulating the timing of PCD.
Collapse
Affiliation(s)
- Volodymyr Radchuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
| | - Van Tran
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Alexander Hilo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Aleksandra Muszynska
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Andre Gündel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Steffen Wagner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Joerg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Goetz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Stefan Ortleb
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Eberhard Munz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Ljudmilla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
| |
Collapse
|
13
|
Beuchat G, Xue X, Chen LQ. Review: The Next Steps in Crop Improvement: Adoption of Emerging Strategies to Identify Bottlenecks in Sugar Flux. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110675. [PMID: 33218639 DOI: 10.1016/j.plantsci.2020.110675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 05/24/2023]
Abstract
Sugar allocation in plants is the fundamental process that transports sugar from source to sink tissues and has a dramatic impact on crop yields. Controlling sugar allocation is required to increase crop yields, as well as biomass for biofuel production. Successful examples have demonstrated that genetic engineering of sugar partitioning offers a promising strategy to achieve this goal. However, improvement has thus far been limited by gaps in understanding of the underlying mechanisms controlling the allocation of sugars. The dynamics of sugar partitioning are minimally predictable under different conditions, between species, or in response to abiotic stresses. Here, we discuss four methodologies that have not been sufficiently exploited for the identification of bottlenecks in sugar flux. Furthermore, we suggest how these strategies can be used and combined to provide the insight needed to maximize crop yields or biomass, especially under conditions of environmental stress.
Collapse
Affiliation(s)
- Gabriel Beuchat
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xueyi Xue
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
14
|
Detterbeck A, Pongrac P, Persson DP, Vogel-Mikuš K, Kelemen M, Vavpetič P, Pelicon P, Arčon I, Husted S, Kofod Schjoerring J, Clemens S. Temporal and Spatial Patterns of Zinc and Iron Accumulation during Barley ( Hordeum vulgare L.) Grain Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12229-12240. [PMID: 33070613 DOI: 10.1021/acs.jafc.0c04833] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Breeding and engineering of biofortified crops will benefit from a better understanding of bottlenecks controlling micronutrient loading within the seeds. However, few studies have addressed the changes in micronutrient concentrations, localization, and speciation occurring over time. Therefore, we studied spatial patterns of zinc and iron accumulation during grain development in two barley lines with contrasting grain zinc concentrations. Microparticle-induced-X-ray emission and laser ablation-inductively coupled plasma mass spectrometry were used to determine tissue-specific accumulation of zinc, iron, phosphorus, and sulfur. Differences in zinc accumulation between the lines were most evident in the endosperm and aleurone. A gradual decrease in zinc concentrations from the aleurone to the underlying endosperm was observed, while iron and phosphorus concentrations decreased sharply. Iron co-localized with phosphorus in the aleurone, whereas zinc co-localized with sulfur in the sub-aleurone. We hypothesize that differences in grain zinc are largely explained by the endosperm storage capacity. Engineering attempts should be targeted accordingly.
Collapse
Affiliation(s)
- Amelie Detterbeck
- Department of Plant Physiology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, 95447 Bayreuth, Germany
| | - Paula Pongrac
- Department of Plant Physiology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, 95447 Bayreuth, Germany
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Daniel P Persson
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Katarina Vogel-Mikuš
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Mitja Kelemen
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Primož Vavpetič
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Primož Pelicon
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Iztok Arčon
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
- University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Søren Husted
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Jan Kofod Schjoerring
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Stephan Clemens
- Department of Plant Physiology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, 95447 Bayreuth, Germany
| |
Collapse
|
15
|
Lim WL, Collins HM, Byrt CS, Lahnstein J, Shirley NJ, Aubert MK, Tucker MR, Peukert M, Matros A, Burton RA. Overexpression of HvCslF6 in barley grain alters carbohydrate partitioning plus transfer tissue and endosperm development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:138-153. [PMID: 31536111 PMCID: PMC6913740 DOI: 10.1093/jxb/erz407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/06/2019] [Indexed: 05/05/2023]
Abstract
In cereal grain, sucrose is converted into storage carbohydrates: mainly starch, fructan, and mixed-linkage (1,3;1,4)-β-glucan (MLG). Previously, endosperm-specific overexpression of the HvCslF6 gene in hull-less barley was shown to result in high MLG and low starch content in mature grains. Morphological changes included inwardly elongated aleurone cells, irregular cell shapes of peripheral endosperm, and smaller starch granules of starchy endosperm. Here we explored the physiological basis for these defects by investigating how changes in carbohydrate composition of developing grain impact mature grain morphology. Augmented MLG coincided with increased levels of soluble carbohydrates in the cavity and endosperm at the storage phase. Transcript levels of genes relating to cell wall, starch, sucrose, and fructan metabolism were perturbed in all tissues. The cell walls of endosperm transfer cells (ETCs) in transgenic grain were thinner and showed reduced mannan labelling relative to the wild type. At the early storage phase, ruptures of the non-uniformly developed ETCs and disorganization of adjacent endosperm cells were observed. Soluble sugars accumulated in the developing grain cavity, suggesting a disturbance of carbohydrate flow from the cavity towards the endosperm, resulting in a shrunken mature grain phenotype. Our findings demonstrate the importance of regulating carbohydrate partitioning in maintenance of grain cellularization and filling processes.
Collapse
Affiliation(s)
- Wai Li Lim
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Helen M Collins
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Caitlin S Byrt
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- Present address: Australian Research Council Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Jelle Lahnstein
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Neil J Shirley
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Matthew K Aubert
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Matthew R Tucker
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Manuela Peukert
- Applied Biochemistry Group, Leibniz Institute of Plant Genetics and Crop Plant Research Stadt Seeland, Gatersleben, Germany
- Present address: Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Meat, Kulmbach, Bavaria, Germany
| | - Andrea Matros
- Applied Biochemistry Group, Leibniz Institute of Plant Genetics and Crop Plant Research Stadt Seeland, Gatersleben, Germany
- Present address: Australian Research Council Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Rachel A Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- Correspondence:
| |
Collapse
|
16
|
Domergue JB, Abadie C, Limami A, Way D, Tcherkez G. Seed quality and carbon primary metabolism. PLANT, CELL & ENVIRONMENT 2019; 42:2776-2788. [PMID: 31323691 DOI: 10.1111/pce.13618] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/05/2019] [Accepted: 07/13/2019] [Indexed: 05/28/2023]
Abstract
Improving seed quality is amongst the most important challenges of contemporary agriculture. In fact, using plant varieties with better germination rates that are more tolerant to stress during seedling establishment may improve crop yield considerably. Therefore, intense efforts are currently being devoted to improve seed quality in many species, mostly using genomics tools. However, despite its considerable importance during seed imbibition and germination processes, primary carbon metabolism in seeds is less studied. Our knowledge of the physiology of seed respiration and energy generation and the impact of these processes on seed performance have made limited progress over the past three decades. In particular, (isotope-assisted) metabolomics of seeds has only been assessed occasionally, and there is limited information on possible quantitative relationships between metabolic fluxes and seed quality. Here, we review the recent literature and provide an overview of potential links between metabolic efficiency, metabolic biomarkers, and seed quality and discuss implications for future research, including a climate change context.
Collapse
Affiliation(s)
- Jean-Baptiste Domergue
- IRHS Institut de Recherche en Horticultures et Séances, UMR 1345, INRA, Agrocampus-Ouest, Université d'Angers SFR 4207 QuaSaV, Beaucouzé, 49070, France
| | - Cyril Abadie
- IRHS Institut de Recherche en Horticultures et Séances, UMR 1345, INRA, Agrocampus-Ouest, Université d'Angers SFR 4207 QuaSaV, Beaucouzé, 49070, France
| | - Anis Limami
- IRHS Institut de Recherche en Horticultures et Séances, UMR 1345, INRA, Agrocampus-Ouest, Université d'Angers SFR 4207 QuaSaV, Beaucouzé, 49070, France
| | - Danielle Way
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
- Research School of Biology, ANU Joint College of Sciences, Australian National University, Canberra, ACT, 2601, Australia
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Guillaume Tcherkez
- IRHS Institut de Recherche en Horticultures et Séances, UMR 1345, INRA, Agrocampus-Ouest, Université d'Angers SFR 4207 QuaSaV, Beaucouzé, 49070, France
- Research School of Biology, ANU Joint College of Sciences, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
17
|
Radchuk V, Sharma R, Potokina E, Radchuk R, Weier D, Munz E, Schreiber M, Mascher M, Stein N, Wicker T, Kilian B, Borisjuk L. The highly divergent Jekyll genes, required for sexual reproduction, are lineage specific for the related grass tribes Triticeae and Bromeae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:961-974. [PMID: 31021020 PMCID: PMC6851964 DOI: 10.1111/tpj.14363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 05/26/2023]
Abstract
Phylogenetically related groups of species contain lineage-specific genes that exhibit no sequence similarity to any genes outside the lineage. We describe here that the Jekyll gene, required for sexual reproduction, exists in two much diverged allelic variants, Jek1 and Jek3. Despite low similarity, the Jek1 and Jek3 proteins share identical signal peptides, conserved cysteine positions and direct repeats. The Jek1/Jek3 sequences are located at the same chromosomal locus and inherited in a monogenic Mendelian fashion. Jek3 has a similar expression as Jek1 and complements the Jek1 function in Jek1-deficient plants. Jek1 and Jek3 allelic variants were almost equally distributed in a collection of 485 wild and domesticated barley accessions. All domesticated barleys harboring the Jek1 allele belong to single haplotype J1-H1 indicating a genetic bottleneck during domestication. Domesticated barleys harboring the Jek3 allele consisted of three haplotypes. Jekyll-like sequences were found only in species of the closely related tribes Bromeae and Triticeae but not in other Poaceae. Non-invasive magnetic resonance imaging revealed intrinsic grain structure in Triticeae and Bromeae, associated with the Jekyll function. The emergence of Jekyll suggests its role in the separation of the Bromeae and Triticeae lineages within the Poaceae and identifies the Jekyll genes as lineage-specific.
Collapse
Affiliation(s)
- Volodymyr Radchuk
- Leibniz‐Institute of Plant Genetics and Crop Plant Research (IPK)06466GaterslebenGermany
| | - Rajiv Sharma
- Leibniz‐Institute of Plant Genetics and Crop Plant Research (IPK)06466GaterslebenGermany
- Present address:
Division of Plant SciencesSchool of Life SciencesUniversity of DundeeThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Elena Potokina
- Leibniz‐Institute of Plant Genetics and Crop Plant Research (IPK)06466GaterslebenGermany
- Vavilov Institute of Plant Genetic Resources (VIR)St. Petersburg190000Russian Federation
| | - Ruslana Radchuk
- Leibniz‐Institute of Plant Genetics and Crop Plant Research (IPK)06466GaterslebenGermany
| | - Diana Weier
- Leibniz‐Institute of Plant Genetics and Crop Plant Research (IPK)06466GaterslebenGermany
| | - Eberhard Munz
- Leibniz‐Institute of Plant Genetics and Crop Plant Research (IPK)06466GaterslebenGermany
- Department of Experimental Physics 5University of WürzburgWürzburgGermany
| | | | - Martin Mascher
- Leibniz‐Institute of Plant Genetics and Crop Plant Research (IPK)06466GaterslebenGermany
| | - Nils Stein
- Leibniz‐Institute of Plant Genetics and Crop Plant Research (IPK)06466GaterslebenGermany
| | - Thomas Wicker
- Department of Plant and Microbial BiologyUniversity of ZürichZürichSwitzerland
| | - Benjamin Kilian
- Leibniz‐Institute of Plant Genetics and Crop Plant Research (IPK)06466GaterslebenGermany
- Present address:
Global Crop Diversity Trust53113BonnGermany
| | - Ljudmilla Borisjuk
- Leibniz‐Institute of Plant Genetics and Crop Plant Research (IPK)06466GaterslebenGermany
| |
Collapse
|
18
|
Maron L. Stranger than fiction: the highly divergent alleles of Jekyll. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:959-960. [PMID: 31184416 DOI: 10.1111/tpj.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|
19
|
Biofilm systems as tools in biotechnological production. Appl Microbiol Biotechnol 2019; 103:5095-5103. [PMID: 31079168 DOI: 10.1007/s00253-019-09869-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023]
Abstract
The literature provides more and more examples of research projects that develop novel production processes based on microorganisms organized in the form of biofilms. Biofilms are aggregates of microorganisms that are attached to interfaces. These viscoelastic aggregates of cells are held together and are embedded in a matrix consisting of multiple carbohydrate polymers as well as proteins. Biofilms are characterized by a very high cell density and by a natural retentostat behavior. Both factors can contribute to high productivities and a facilitated separation of the desired end-product from the catalytic biomass. Within the biofilm matrix, stable gradients of substrates and products form, which can lead to a differentiation and adaptation of the microorganisms' physiology to the specific process conditions. Moreover, growth in a biofilm state is often accompanied by a higher resistance and resilience towards toxic or growth inhibiting substances and factors. In this short review, we summarize how biofilms can be studied and what most promising niches for their application can be. Moreover, we highlight future research directions that will accelerate the advent of productive biofilms in biology-based production processes.
Collapse
|
20
|
Ishibashi Y, Yuasa T, Iwaya-Inoue M. Mechanisms of Maturation and Germination in Crop Seeds Exposed to Environmental Stresses with a Focus on Nutrients, Water Status, and Reactive Oxygen Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:233-257. [DOI: 10.1007/978-981-13-1244-1_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Aguirre M, Kiegle E, Leo G, Ezquer I. Carbohydrate reserves and seed development: an overview. PLANT REPRODUCTION 2018; 31:263-290. [PMID: 29728792 DOI: 10.1007/s00497-018-0336-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Seeds are one of the most important food sources, providing humans and animals with essential nutrients. These nutrients include carbohydrates, lipids, proteins, vitamins and minerals. Carbohydrates are one of the main energy sources for both plant and animal cells and play a fundamental role in seed development, human nutrition and the food industry. Many studies have focused on the molecular pathways that control carbohydrate flow during seed development in monocot and dicot species. For this reason, an overview of seed biodiversity focused on the multiple metabolic and physiological mechanisms that govern seed carbohydrate storage function in the plant kingdom is required. A large number of mutants affecting carbohydrate metabolism, which display defective seed development, are currently available for many plant species. The physiological, biochemical and biomolecular study of such mutants has led researchers to understand better how metabolism of carbohydrates works in plants and the critical role that these carbohydrates, and especially starch, play during seed development. In this review, we summarize and analyze the newest findings related to carbohydrate metabolism's effects on seed development, pointing out key regulatory genes and enzymes that influence seed sugar import and metabolism. Our review also aims to provide guidelines for future research in the field and in this way to assist seed quality optimization by targeted genetic engineering and classical breeding programs.
Collapse
Affiliation(s)
- Manuel Aguirre
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
- FNWI, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Edward Kiegle
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Giulia Leo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Ignacio Ezquer
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy.
| |
Collapse
|
22
|
Lu J, Magnani E. Seed tissue and nutrient partitioning, a case for the nucellus. PLANT REPRODUCTION 2018; 31:309-317. [PMID: 29869727 PMCID: PMC6105262 DOI: 10.1007/s00497-018-0338-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/25/2018] [Indexed: 05/18/2023]
Abstract
Flowering plants display a large spectrum of seed architectures. The volume ratio of maternal versus zygotic seed tissues changes considerably among species and underlies different nutrient-storing strategies. Such diversity arose through the evolution of cell elimination programs that regulate the relative growth of one tissue over another to become the major storage compartment. The elimination of the nucellus maternal tissue is regulated by developmental programs that marked the origin of angiosperms and outlined the most ancient seed architectures. This review focuses on such a defining mechanism for seed evolution and discusses the role of nucellus development in seed tissues and nutrient partitioning at the light of novel discoveries on its molecular regulation.
Collapse
Affiliation(s)
- Jing Lu
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026, Versailles Cedex, France
- Ecole Doctorale 567 Sciences du Végétal, University Paris-Sud, University of Paris-Saclay, Bat 360, 91405, Orsay Cedex, France
| | - Enrico Magnani
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026, Versailles Cedex, France.
| |
Collapse
|
23
|
Sensing Technologies for Precision Phenotyping in Vegetable Crops: Current Status and Future Challenges. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8040057] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Yang J, Luo D, Yang B, Frommer WB, Eom JS. SWEET11 and 15 as key players in seed filling in rice. THE NEW PHYTOLOGIST 2018; 218:604-615. [PMID: 29393510 DOI: 10.1111/nph.15004] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/15/2017] [Indexed: 05/04/2023]
Abstract
Despite the relevance of seed-filling mechanisms for crop yield, we still have only a rudimentary understanding of the transport processes that supply the caryopsis with sugars. We hypothesized that SWEET sucrose transporters may play important roles in nutrient import pathways in the rice caryopsis. We used a combination of mRNA quantification, histochemical analyses, translational promoter-reporter fusions and analysis of knockout mutants created by genomic editing to evaluate the contribution of SWEET transporters to seed filling. In rice caryopses, SWEET11 and 15 had the highest mRNA levels and proteins localized to four key sites: all regions of the nucellus at early stages; the nucellar projection close to the dorsal vein; the nucellar epidermis that surrounds the endosperm; and the aleurone. ossweet11;15 double knockout lines accumulated starch in the pericarp, whereas caryopses did not contain a functional endosperm. Jointly, SWEET11 and 15 show all the hallmarks of being necessary for seed filling with sucrose efflux functions at the nucellar projection and a role in transfer across the nucellar epidermis/aleurone interface, delineating two major steps for apoplasmic seed filling, observations that are discussed in relation to observations made in rice and barley regarding the relative prevalence of these two potential import routes.
Collapse
Affiliation(s)
- Jungil Yang
- Institute for Molecular Physiology, Heinrich-Heine University Duesseldorf, 40225, Duesseldorf, Germany
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Dangping Luo
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Bing Yang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Wolf B Frommer
- Institute for Molecular Physiology, Heinrich-Heine University Duesseldorf, 40225, Duesseldorf, Germany
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Joon-Seob Eom
- Institute for Molecular Physiology, Heinrich-Heine University Duesseldorf, 40225, Duesseldorf, Germany
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| |
Collapse
|
25
|
Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang XQ, Zhang Q, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Šimková H, Staňková H, Vrána J, Chan S, Muñoz-Amatriaín M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, McCooke JK, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI, Borisjuk L, Houben A, Doležel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer GJ, Clark MD, Caccamo M, Schulman AH, Mayer KFX, Platzer M, Close TJ, Scholz U, Hansson M, Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein N. A chromosome conformation capture ordered sequence of the barley genome. Nature 2017; 544:427-433. [DOI: 10.1038/nature22043] [Citation(s) in RCA: 966] [Impact Index Per Article: 120.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 03/03/2017] [Indexed: 02/06/2023]
|
26
|
Wu X, Liu J, Li D, Liu CM. Rice caryopsis development I: Dynamic changes in different cell layers. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:772-85. [PMID: 26472484 PMCID: PMC5064628 DOI: 10.1111/jipb.12440] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/09/2015] [Indexed: 05/18/2023]
Abstract
Rice caryopsis as one of the most important food sources for humans has a complex structure that is composed of maternal tissues including the pericarp and testa and filial tissues including the endosperm and embryo. Although rice caryopsis studies have been conducted previously, a systematic characterization throughout the entire developmental process is still lacking. In this study, detailed morphological examinations of caryopses were made during the entire 30-day developmental process. We observed some rapid changes in cell differentiation events and cataloged how cellular degeneration processes occurred in maternal tissues. The differentiations of tube cells and cross cells were achieved by 9 days after pollination (DAP). In the testa, the outer integument was degenerated by 3 DAP, while the outer layer of the inner integument degenerated by 7 DAP. In the nucellus, all tissues with the exception of the nucellar projection and the nucellar epidermis degenerated in the first 5 DAP. By 21 DAP, all maternal tissues, including vascular bundles, the nucellar projection and the nucellar epidermal cells were degenerated. In summary, this study provides a complete atlas of the dynamic changes in cell differentiation and degeneration for individual maternal cell layers of rice caryopsis.
Collapse
Affiliation(s)
- Xiaoba Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinxin Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Dongqi Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
27
|
Label-free proteome profiling reveals developmental-dependent patterns in young barley grains. J Proteomics 2016; 143:106-121. [DOI: 10.1016/j.jprot.2016.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/16/2016] [Accepted: 04/11/2016] [Indexed: 12/17/2022]
|
28
|
Peukert M, Thiel J, Mock HP, Marko D, Weschke W, Matros A. Spatiotemporal Dynamics of Oligofructan Metabolism and Suggested Functions in Developing Cereal Grains. FRONTIERS IN PLANT SCIENCE 2016; 6:1245. [PMID: 26834760 PMCID: PMC4717867 DOI: 10.3389/fpls.2015.01245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 12/21/2015] [Indexed: 05/21/2023]
Abstract
Oligofructans represent one of the most important groups of sucrose-derived water-soluble carbohydrates in the plant kingdom. In cereals, oligofructans accumulate in above ground parts of the plants (stems, leaves, seeds) and their biosynthesis leads to the formation of both types of glycosidic linkages [β(2,1); β(2,6)-fructans] or mixed patterns. In recent studies, tissue- and development- specific distribution patterns of the various oligofructan types in cereal grains have been shown, which are possibly related to the different phases of grain development, such as cellular differentiation of grain tissues and storage product accumulation. Here, we summarize the current knowledge about oligofructan biosynthesis and accumulation kinetics in cereal grains. We focus on the spatiotemporal dynamics and regulation of oligofructan biosynthesis and accumulation in developing barley grains (deduced from a combination of metabolite, transcript and proteome analyses). Finally, putative physiological functions of oligofructans in developing grains are discussed.
Collapse
Affiliation(s)
- Manuela Peukert
- Applied Biochemistry Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK-Gatersleben)Gatersleben, Germany
- University of CologneCologne, Germany
| | - Johannes Thiel
- Plant Architecture Group, IPK-GaterslebenGatersleben, Germany
| | - Hans-Peter Mock
- Applied Biochemistry Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK-Gatersleben)Gatersleben, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, University of ViennaVienna, Austria
| | | | - Andrea Matros
- Applied Biochemistry Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK-Gatersleben)Gatersleben, Germany
| |
Collapse
|
29
|
Shi H, Schwender J. Mathematical models of plant metabolism. Curr Opin Biotechnol 2015; 37:143-152. [PMID: 26723012 DOI: 10.1016/j.copbio.2015.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/16/2015] [Accepted: 10/26/2015] [Indexed: 11/24/2022]
Abstract
Among various modeling approaches in plant metabolic research, applications of Constraint-Based modeling are fast increasing in recent years, apparently driven by current advances in genomics and genome sequencing. Constraint-Based modeling, the functional analysis of metabolic networks at the whole cell or genome scale, is more difficult to apply to plants than to microbes. Here we discuss recent developments in Constraint-Based modeling in plants with focus on issues of model reconstruction and flux prediction. Another topic is the emerging application of integration of Constraint-Based modeling with omics data to increase predictive power. Furthermore, advances in experimental measurements of cellular fluxes by (13)C-Metabolic Flux Analysis are highlighted, including instationary (13)C-MFA used to probe autotrophic metabolism in photosynthetic tissue in the light.
Collapse
Affiliation(s)
- Hai Shi
- Biological, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, United States
| | - Jörg Schwender
- Biological, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, United States.
| |
Collapse
|
30
|
Sumner LW, Lei Z, Nikolau BJ, Saito K. Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects. Nat Prod Rep 2015; 32:212-29. [PMID: 25342293 DOI: 10.1039/c4np00072b] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This review covers the approximate period of 2000 to 2014, and highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR for metabolite identifications, and X-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.
Collapse
Affiliation(s)
- Lloyd W Sumner
- The Samuel Roberts Noble Foundation, Plant Biology Division, 2510 Sam Noble Parkway, Ardmore, OK, USA.
| | | | | | | |
Collapse
|
31
|
Fluxes through plant metabolic networks: measurements, predictions, insights and challenges. Biochem J 2015; 465:27-38. [PMID: 25631681 DOI: 10.1042/bj20140984] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although the flows of material through metabolic networks are central to cell function, they are not easy to measure other than at the level of inputs and outputs. This is particularly true in plant cells, where the network spans multiple subcellular compartments and where the network may function either heterotrophically or photoautotrophically. For many years, kinetic modelling of pathways provided the only method for describing the operation of fragments of the network. However, more recently, it has become possible to map the fluxes in central carbon metabolism using the stable isotope labelling techniques of metabolic flux analysis (MFA), and to predict intracellular fluxes using constraints-based modelling procedures such as flux balance analysis (FBA). These approaches were originally developed for the analysis of microbial metabolism, but over the last decade, they have been adapted for the more demanding analysis of plant metabolic networks. Here, the principal features of MFA and FBA as applied to plants are outlined, followed by a discussion of the insights that have been gained into plant metabolic networks through the application of these time-consuming and non-trivial methods. The discussion focuses on how a system-wide view of plant metabolism has increased our understanding of network structure, metabolic perturbations and the provision of reducing power and energy for cell function. Current methodological challenges that limit the scope of plant MFA are discussed and particular emphasis is placed on the importance of developing methods for cell-specific MFA.
Collapse
|
32
|
Fuchs J, Melkus G, Borisjuk L, Jakob P. Tracking metabolite dynamics in plants via indirect 13C chemical shift imaging with an interleaved variable density acquisition weighted sampling pattern. MAGMA (NEW YORK, N.Y.) 2015; 28:127-134. [PMID: 24952645 DOI: 10.1007/s10334-014-0453-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/16/2014] [Accepted: 06/03/2014] [Indexed: 06/03/2023]
Abstract
OBJECTIVE Developing and evaluating an improved sampling pattern to track the dynamics of labeled substances in plants using indirect (13)C chemical shift imaging. MATERIALS AND METHODS An algorithm to split an acquisition weighted sampling pattern into several undersampled sub-images is presented. The sampling patterns are used in CSI moving phantom experiments as well as in in vivo POCE-CSI experiments on barley stem and grain. Reconstruction is performed traditionally or by compressed sensing. RESULTS The moving phantom experiments show that the sampling pattern can reduce motion artifacts at the cost of an increased overall noise. The in vivo experiments demonstrate the feasibility of extracting a time series from a single imaging experiment. CONCLUSION The sampling pattern is suitable for tracking the uptake of label substances into plant material. The use of compressed sensing allows an increased spatial and temporal resolution.
Collapse
Affiliation(s)
- Johannes Fuchs
- Department of Experimental Physics 5 (Biophysics), University of Würzburg, Würzburg, Germany,
| | | | | | | |
Collapse
|
33
|
Metabolic engineering of higher plants and algae for isoprenoid production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:161-99. [PMID: 25636485 DOI: 10.1007/10_2014_290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Isoprenoids are a class of compounds derived from the five carbon precursors, dimethylallyl diphosphate, and isopentenyl diphosphate. These molecules present incredible natural chemical diversity, which can be valuable for humans in many aspects such as cosmetics, agriculture, and medicine. However, many terpenoids are only produced in small quantities by their natural hosts and can be difficult to generate synthetically. Therefore, much interest and effort has been directed toward capturing the genetic blueprint for their biochemistry and engineering it into alternative hosts such as plants and algae. These autotrophic organisms are attractive when compared to traditional microbial platforms because of their ability to utilize atmospheric CO2 as a carbon substrate instead of supplied carbon sources like glucose. This chapter will summarize important techniques and strategies for engineering the accumulation of isoprenoid metabolites into higher plants and algae by choosing the correct host, avoiding endogenous regulatory mechanisms, and optimizing potential flux into the target compound. Future endeavors will build on these efforts by fine-tuning product accumulation levels via the vast amount of available "-omic" data and devising metabolic engineering schemes that integrate this into a whole-organism approach. With the development of high-throughput transformation protocols and synthetic biology molecular tools, we have only begun to harness the power and utility of plant and algae metabolic engineering.
Collapse
|
34
|
Multi-Spectroscopic Analysis of Seed Quality and 13C-Stable-Iotopologue Monitoring in Initial Growth Metabolism of Jatropha curcas L. Metabolites 2014; 4:1018-33. [PMID: 25401292 PMCID: PMC4279157 DOI: 10.3390/metabo4041018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/10/2014] [Accepted: 11/05/2014] [Indexed: 12/20/2022] Open
Abstract
In the present study, we applied nuclear magnetic resonance (NMR), as well as near-infrared (NIR) spectroscopy, to Jatropha curcas to fulfill two objectives: (1) to qualitatively examine the seeds stored at different conditions, and (2) to monitor the metabolism of J. curcas during its initial growth stage under stable-isotope-labeling condition (until 15 days after seeding). NIR spectra could non-invasively distinguish differences in storage conditions. NMR metabolic analysis of water-soluble metabolites identified sucrose and raffinose family oligosaccharides as positive markers and gluconic acid as a negative marker of seed germination. Isotopic labeling patteren of metabolites in germinated seedlings cultured in agar-plate containg 13C-glucose and 15N-nitrate was analyzed by zero-quantum-filtered-total correlation spectroscopy (ZQF-TOCSY) and 13C-detected 1H-13C heteronuclear correlation spectroscopy (HETCOR). 13C-detected HETOCR with 13C-optimized cryogenic probe provided high-resolution 13C-NMR spectra of each metabolite in molecular crowd. The 13C-13C/12C bondmer estimated from 1H-13C HETCOR spectra indicated that glutamine and arginine were the major organic compounds for nitrogen and carbon transfer from roots to leaves.
Collapse
|
35
|
A review of imaging techniques for plant phenotyping. SENSORS 2014; 14:20078-111. [PMID: 25347588 PMCID: PMC4279472 DOI: 10.3390/s141120078] [Citation(s) in RCA: 363] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 11/29/2022]
Abstract
Given the rapid development of plant genomic technologies, a lack of access to plant phenotyping capabilities limits our ability to dissect the genetics of quantitative traits. Effective, high-throughput phenotyping platforms have recently been developed to solve this problem. In high-throughput phenotyping platforms, a variety of imaging methodologies are being used to collect data for quantitative studies of complex traits related to the growth, yield and adaptation to biotic or abiotic stress (disease, insects, drought and salinity). These imaging techniques include visible imaging (machine vision), imaging spectroscopy (multispectral and hyperspectral remote sensing), thermal infrared imaging, fluorescence imaging, 3D imaging and tomographic imaging (MRT, PET and CT). This paper presents a brief review on these imaging techniques and their applications in plant phenotyping. The features used to apply these imaging techniques to plant phenotyping are described and discussed in this review.
Collapse
|
36
|
Radchuk V, Borisjuk L. Physical, metabolic and developmental functions of the seed coat. FRONTIERS IN PLANT SCIENCE 2014; 5:510. [PMID: 25346737 PMCID: PMC4193196 DOI: 10.3389/fpls.2014.00510] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/11/2014] [Indexed: 05/04/2023]
Abstract
The conventional understanding of the role of the seed coat is that it provides a protective layer for the developing zygote. Recent data show that the picture is more nuanced. The seed coat certainly represents a first line of defense against adverse external factors, but it also acts as channel for transmitting environmental cues to the interior of the seed. The latter function primes the seed to adjust its metabolism in response to changes in its external environment. The purpose of this review is to provide the reader with a comprehensive view of the structure and functionality of the seed coat, and to expose its hidden interaction with both the endosperm and embryo. Any breeding and/or biotechnology intervention seeking to increase seed size or modify seed features will have to consider the implications on this tripartite interaction.
Collapse
Affiliation(s)
| | - Ljudmilla Borisjuk
- Heterosis, Molecular Genetics, Leibniz-Institut für Pflanzengenetik und KulturpflanzenforschungGatersleben, Germany
| |
Collapse
|
37
|
Weier D, Thiel J, Kohl S, Tarkowská D, Strnad M, Schaarschmidt S, Weschke W, Weber H, Hause B. Gibberellin-to-abscisic acid balances govern development and differentiation of the nucellar projection of barley grains. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5291-304. [PMID: 25024168 PMCID: PMC4157710 DOI: 10.1093/jxb/eru289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/09/2014] [Accepted: 06/09/2014] [Indexed: 05/20/2023]
Abstract
In cereal grains, the maternal nucellar projection (NP) constitutes the link to the filial organs, forming a transfer path for assimilates and signals towards the endosperm. At transition to the storage phase, the NP of barley (Hordeum vulgare) undergoes dynamic and regulated differentiation forming a characteristic pattern of proliferating, elongating, and disintegrating cells. Immunolocalization revealed that abscisic acid (ABA) is abundant in early non-elongated but not in differentiated NP cells. In the maternally affected shrunken-endosperm mutant seg8, NP cells did not elongate and ABA remained abundant. The amounts of the bioactive forms of gibberellins (GAs) as well as their biosynthetic precursors were strongly and transiently increased in wild-type caryopses during the transition and early storage phases. In seg8, this increase was delayed and less pronounced together with deregulated gene expression of specific ABA and GA biosynthetic genes. We concluded that differentiation of the barley NP is driven by a distinct and specific shift from lower to higher GA:ABA ratios and that the spatial-temporal change of GA:ABA balances is required to form the differentiation gradient, which is a prerequisite for ordered transfer processes through the NP. Deregulated ABA:GA balances in seg8 impair the differentiation of the NP and potentially compromise transfer of signals and assimilates, resulting in aberrant endosperm growth. These results highlight the impact of hormonal balances on the proper release of assimilates from maternal to filial organs and provide new insights into maternal effects on endosperm differentiation and growth of barley grains.
Collapse
Affiliation(s)
- Diana Weier
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany Leibniz-Institut für Pflanzenbiochemie, D-06120 Halle (Saale), Germany
| | - Johannes Thiel
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Stefan Kohl
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Palacky University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Slechtitelu 11, CZ-78371, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacky University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Slechtitelu 11, CZ-78371, Olomouc, Czech Republic
| | - Sara Schaarschmidt
- Leibniz-Institut für Pflanzenbiochemie, D-06120 Halle (Saale), Germany * Present address: Humboldt-Universität zu Berlin, Faculty of Agriculture and Horticulture, D-14195 Berlin, Germany
| | - Winfriede Weschke
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Hans Weber
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Bettina Hause
- Leibniz-Institut für Pflanzenbiochemie, D-06120 Halle (Saale), Germany
| |
Collapse
|
38
|
Peukert M, Thiel J, Peshev D, Weschke W, Van den Ende W, Mock HP, Matros A. Spatio-temporal dynamics of fructan metabolism in developing barley grains. THE PLANT CELL 2014; 26:3728-44. [PMID: 25271242 PMCID: PMC4213166 DOI: 10.1105/tpc.114.130211] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/26/2014] [Accepted: 09/08/2014] [Indexed: 05/19/2023]
Abstract
Barley (Hordeum vulgare) grain development follows a series of defined morphological and physiological stages and depends on the supply of assimilates (mainly sucrose) from the mother plant. Here, spatio-temporal patterns of sugar distributions were investigated by mass spectrometric imaging, targeted metabolite analyses, and transcript profiling of microdissected grain tissues. Distinct spatio-temporal sugar balances were observed, which may relate to differentiation and grain filling processes. Notably, various types of oligofructans showed specific distribution patterns. Levan- and graminan-type oligofructans were synthesized in the cellularized endosperm prior to the commencement of starch biosynthesis, while during the storage phase, inulin-type oligofructans accumulated to a high concentration in and around the nascent endosperm cavity. In the shrunken endosperm mutant seg8, with a decreased sucrose flux toward the endosperm, fructan accumulation was impaired. The tight partitioning of oligofructan biosynthesis hints at distinct functions of the various fructan types in the young endosperm prior to starch accumulation and in the endosperm transfer cells that accomplish the assimilate supply toward the endosperm at the storage phase.
Collapse
Affiliation(s)
- Manuela Peukert
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Stadt Seeland, OT Gatersleben, Germany
| | - Johannes Thiel
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Stadt Seeland, OT Gatersleben, Germany
| | - Darin Peshev
- Lab of Molecular Plant Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee (2434), Belgium
| | - Winfriede Weschke
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Stadt Seeland, OT Gatersleben, Germany
| | - Wim Van den Ende
- Lab of Molecular Plant Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee (2434), Belgium
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Stadt Seeland, OT Gatersleben, Germany
| | - Andrea Matros
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Stadt Seeland, OT Gatersleben, Germany
| |
Collapse
|
39
|
Liu Z, Qian J, Liu B, Wang Q, Ni X, Dong Y, Zhong K, Wu Y. Effects of the magnetic resonance imaging contrast agent Gd-DTPA on plant growth and root imaging in rice. PLoS One 2014; 9:e100246. [PMID: 24945975 PMCID: PMC4063760 DOI: 10.1371/journal.pone.0100246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/22/2014] [Indexed: 02/03/2023] Open
Abstract
Although paramagnetic contrast agents have a wide range of applications in medical studies involving magnetic resonance imaging (MRI), these agents are seldom used to enhance MRI images of plant root systems. To extend the application of MRI contrast agents to plant research and to develop related techniques to study root systems, we examined the applicability of the MRI contrast agent Gd-DTPA to the imaging of rice roots. Specifically, we examined the biological effects of various concentrations of Gd-DTPA on rice growth and MRI images. Analysis of electrical conductivity and plant height demonstrated that 5 mmol Gd-DTPA had little impact on rice in the short-term. The results of signal intensity and spin-lattice relaxation time (T1) analysis suggested that 5 mmol Gd-DTPA was the appropriate concentration for enhancing MRI signals. In addition, examination of the long-term effects of Gd-DTPA on plant height showed that levels of this compound up to 5 mmol had little impact on rice growth and (to some extent) increased the biomass of rice.
Collapse
Affiliation(s)
- Zan Liu
- Key laboratory of ion beam bioengineering, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China
| | - Junchao Qian
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China
| | - Binmei Liu
- Key laboratory of ion beam bioengineering, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China
| | - Qi Wang
- Key laboratory of ion beam bioengineering, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China
| | - Xiaoyu Ni
- Key laboratory of ion beam bioengineering, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China
| | - Yaling Dong
- Key laboratory of ion beam bioengineering, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China
| | - Kai Zhong
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China
| | - Yuejin Wu
- Key laboratory of ion beam bioengineering, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China
| |
Collapse
|
40
|
Ali A, Ali Z, Quraishi UM, Kazi AG, Malik RN, Sher H, Mujeeb-Kazi A. Integrating Physiological and Genetic Approaches for Improving Drought Tolerance in Crops. EMERGING TECHNOLOGIES AND MANAGEMENT OF CROP STRESS TOLERANCE 2014. [PMID: 0 DOI: 10.1016/b978-0-12-800875-1.00014-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
|
41
|
Borisjuk L, Rolletschek H, Neuberger T. Nuclear magnetic resonance imaging of lipid in living plants. Prog Lipid Res 2013; 52:465-87. [DOI: 10.1016/j.plipres.2013.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 05/15/2013] [Accepted: 05/28/2013] [Indexed: 01/13/2023]
|
42
|
Borisjuk L, Neuberger T, Schwender J, Heinzel N, Sunderhaus S, Fuchs J, Hay JO, Tschiersch H, Braun HP, Denolf P, Lambert B, Jakob PM, Rolletschek H. Seed architecture shapes embryo metabolism in oilseed rape. THE PLANT CELL 2013; 25:1625-40. [PMID: 23709628 PMCID: PMC3694696 DOI: 10.1105/tpc.113.111740] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/27/2013] [Accepted: 05/03/2013] [Indexed: 05/03/2023]
Abstract
Constrained to develop within the seed, the plant embryo must adapt its shape and size to fit the space available. Here, we demonstrate how this adjustment shapes metabolism of photosynthetic embryo. Noninvasive NMR-based imaging of the developing oilseed rape (Brassica napus) seed illustrates that, following embryo bending, gradients in lipid concentration became established. These were correlated with the local photosynthetic electron transport rate and the accumulation of storage products. Experimentally induced changes in embryo morphology and/or light supply altered these gradients and were accompanied by alterations in both proteome and metabolome. Tissue-specific metabolic models predicted that the outer cotyledon and hypocotyl/radicle generate the bulk of plastidic reductant/ATP via photosynthesis, while the inner cotyledon, being enclosed by the outer cotyledon, is forced to grow essentially heterotrophically. Under field-relevant high-light conditions, major contribution of the ribulose-1,5-bisphosphate carboxylase/oxygenase-bypass to seed storage metabolism is predicted for the outer cotyledon and the hypocotyl/radicle only. Differences between in vitro- versus in planta-grown embryos suggest that metabolic heterogeneity of embryo is not observable by in vitro approaches. We conclude that in vivo metabolic fluxes are locally regulated and connected to seed architecture, driving the embryo toward an efficient use of available light and space.
Collapse
Affiliation(s)
- Ljudmilla Borisjuk
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | - Thomas Neuberger
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Bioengineering, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jörg Schwender
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Nicolas Heinzel
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | | | - Johannes Fuchs
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
- University of Würzburg, Institute of Experimental Physics 5, 97074 Wuerzburg, Germany
| | - Jordan O. Hay
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Henning Tschiersch
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Universität Hannover, 30419 Hannover, Germany
| | | | | | - Peter M. Jakob
- University of Würzburg, Institute of Experimental Physics 5, 97074 Wuerzburg, Germany
- Research Center Magnetic Resonance Bavaria, 97074 Wuerzburg, Germany
| | - Hardy Rolletschek
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| |
Collapse
|
43
|
Van As H, van Duynhoven J. MRI of plants and foods. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 229:25-34. [PMID: 23369439 DOI: 10.1016/j.jmr.2012.12.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/24/2012] [Accepted: 12/28/2012] [Indexed: 05/13/2023]
Abstract
The importance and prospects for MRI as applied to intact plants and to foods are presented in view of one of humanity's most pressing concerns, the sustainable and healthy feeding of a worldwide increasing population. Intact plants and foods have in common that their functionality is determined by complex multiple length scale architectures. Intact plants have an additional level of complexity since they are living systems which critically depend on transport and signalling processes between and within tissues and organs. The combination of recent cutting-edge technical advances and integration of MRI accessible parameters has the perspective to contribute to breakthroughs in understanding complex regulatory plant performance mechanisms. In food science and technology MRI allows for quantitative multi-length scale structural assessment of food systems, non-invasive monitoring of heat and mass transport during shelf-life and processing, and for a unique view on food properties under shear. These MRI applications are powerful enablers of rationally (re)designed food formulations and processes. Limitations and bottlenecks of the present plant and food MRI methods are mainly related to short T2 values and susceptibility artefacts originating from small air spaces in tissues/materials. We envisage cross-fertilisation of solutions to overcome these hurdles in MRI applications in plants and foods. For both application areas we witness a development where MRI is moving from highly specialised equipment to mobile and downscaled versions to be used by a broad user base in the field, greenhouse, food laboratory or factory.
Collapse
Affiliation(s)
- Henk Van As
- Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, Netherlands.
| | | |
Collapse
|
44
|
Sreenivasulu N, Wobus U. Seed-development programs: a systems biology-based comparison between dicots and monocots. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:189-217. [PMID: 23451786 DOI: 10.1146/annurev-arplant-050312-120215] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Seeds develop differently in dicots and monocots, especially with respect to the major storage organs. High-resolution transcriptome data have provided the first insights into the molecular networks and pathway interactions that function during the development of individual seed compartments. Here, we review mainly recent data obtained by systems biology-based approaches, which have allowed researchers to construct and model complex metabolic networks and fluxes and identify key limiting steps in seed development. Comparative coexpression network analyses define evolutionarily conservative (FUS3/ABI3/LEC1) and divergent (LEC2) networks in dicots and monocots. Finally, we discuss the determination of seed size--an important yield-related characteristic--as mediated by a number of processes (maternal and epigenetic factors, fine-tuned regulation of cell death in distinct seed compartments, and endosperm growth) and underlying genes defined through mutant analyses. Altogether, systems approaches can make important contributions toward a more complete and holistic knowledge of seed biology and thus support strategies for knowledge-based molecular breeding.
Collapse
Affiliation(s)
- Nese Sreenivasulu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany.
| | | |
Collapse
|
45
|
Kanno S, Yamawaki M, Ishibashi H, Kobayashi NI, Hirose A, Tanoi K, Nussaume L, Nakanishi TM. Development of real-time radioisotope imaging systems for plant nutrient uptake studies. Philos Trans R Soc Lond B Biol Sci 2012; 367:1501-8. [PMID: 22527392 DOI: 10.1098/rstb.2011.0229] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ionic nutrition is essential for plant development. Many techniques have been developed to image and (or) measure ionic movement in plants. Nevertheless, most of them are destructive and limit the analysis. Here, we present the development of radioisotope imaging techniques that overcome such restrictions and allow for real-time imaging of ionic movement. The first system, called macroimaging, was developed to visualize and measure ion uptake and translocation between organs at a whole-plant scale. Such a device is fully compatible with illumination of the sample. We also modified fluorescent microscopes to set up various solutions for ion uptake analysis at the microscopic level. Both systems allow numerical analysis of images and possess a wide dynamic range of detection because they are based on radioactivity.
Collapse
Affiliation(s)
- Satomi Kanno
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:625-45. [PMID: 22696006 PMCID: PMC3405239 DOI: 10.1007/s00122-012-1904-9] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/18/2012] [Indexed: 05/19/2023]
Abstract
Drought is one of the most serious production constraint for world agriculture and is projected to worsen with anticipated climate change. Inter-disciplinary scientists have been trying to understand and dissect the mechanisms of plant tolerance to drought stress using a variety of approaches; however, success has been limited. Modern genomics and genetic approaches coupled with advances in precise phenotyping and breeding methodologies are expected to more effectively unravel the genes and metabolic pathways that confer drought tolerance in crops. This article discusses the most recent advances in plant physiology for precision phenotyping of drought response, a vital step before implementing the genetic and molecular-physiological strategies to unravel the complex multilayered drought tolerance mechanism and further exploration using molecular breeding approaches for crop improvement. Emphasis has been given to molecular dissection of drought tolerance by QTL or gene discovery through linkage and association mapping, QTL cloning, candidate gene identification, transcriptomics and functional genomics. Molecular breeding approaches such as marker-assisted backcrossing, marker-assisted recurrent selection and genome-wide selection have been suggested to be integrated in crop improvement strategies to develop drought-tolerant cultivars that will enhance food security in the context of a changing and more variable climate.
Collapse
Affiliation(s)
- Reyazul Rouf Mir
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324 India
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-J), Chatha, Jammu, 180 009 India
| | - Mainassara Zaman-Allah
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324 India
- Department of Biology, Faculty of Sciences, University of Maradi, BP 465, Maradi, Niger
| | - Nese Sreenivasulu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Richard Trethowan
- Plant Breeding Institute, University of Sydney, PMB11, Camden, NSW 2570 Australia
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324 India
- CGIAR-Generation Challenge Programme (GCP), c/o CIMMYT, Int APDO Postal 6-641, 06600 Mexico, DF Mexico
- School of Plant Biology (M084), Faculty of Natural and Agricultural Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| |
Collapse
|
47
|
Borisjuk L, Rolletschek H, Neuberger T. Surveying the plant's world by magnetic resonance imaging. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:129-46. [PMID: 22449048 DOI: 10.1111/j.1365-313x.2012.04927.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Understanding the way in which plants develop, grow and interact with their environment requires tools capable of a high degree of both spatial and temporal resolution. Magnetic resonance imaging (MRI), a technique which is able to visualize internal structures and metabolites, has the great virtue that it is non-invasive and therefore has the potential to monitor physiological processes occurring in vivo. The major aim of this review is to attract plant biologists to MRI by explaining its advantages and wide range of possible applications for solving outstanding issues in plant science. We discuss the challenges and opportunities of MRI in the study of plant physiology and development, plant-environment interactions, biodiversity, gene functions and metabolism. Overall, it is our view that the potential benefit of harnessing MRI for plant research purposes is hard to overrate.
Collapse
Affiliation(s)
- Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, Germany.
| | | | | |
Collapse
|
48
|
Radchuk V, Kumlehn J, Rutten T, Sreenivasulu N, Radchuk R, Rolletschek H, Herrfurth C, Feussner I, Borisjuk L. Fertility in barley flowers depends on Jekyll functions in male and female sporophytes. THE NEW PHYTOLOGIST 2012; 194:142-157. [PMID: 22269089 DOI: 10.1111/j.1469-8137.2011.04032.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
• Owing to its evolutional plasticity and adaptability, barley (Hordeum vulgare) is one of the most widespread crops in the world. Despite this evolutionary success, sexual reproduction of small grain cereals is poorly investigated, making discovery of novel genes and functions a challenging priority. Barley gene Jekyll appears to be a key player in grain development; however, its role in flowers has remained unknown. • Here, we studied RNAi lines of barley, where Jekyll expression was repressed to different extents. The impact of Jekyll on flower development was evaluated based on differential gene expression analysis applied to anthers and gynoecia of wildtype and transgenic plants, as well as using isotope labeling experiments, hormone analysis, immunogold- and TUNEL-assays and in situ hybridization. • Jekyll is expressed in nurse tissues mediating gametophyte-sporophyte interaction in anthers and gynoecia, where JEKYLL was found within the intracellular membranes. The repression of Jekyll impaired pollen maturation, anther dehiscence and induced a significant loss of fertility. The presence of JEKYLL on the pollen surface also hints at possible involvement in the fertilization process. • We conclude that the role of Jekyll in cereal sexual reproduction is clearly much broader than has been hitherto realized.
Collapse
Affiliation(s)
- Volodymyr Radchuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Nese Sreenivasulu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Ruslana Radchuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Cornelia Herrfurth
- Georg August University, Albrecht von Haller Institute, Department of Plant Biochemistry, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Ivo Feussner
- Georg August University, Albrecht von Haller Institute, Department of Plant Biochemistry, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Ljudmilla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| |
Collapse
|
49
|
Fiorani F, Rascher U, Jahnke S, Schurr U. Imaging plants dynamics in heterogenic environments. Curr Opin Biotechnol 2012; 23:227-35. [PMID: 22257752 DOI: 10.1016/j.copbio.2011.12.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/19/2011] [Accepted: 12/14/2011] [Indexed: 11/18/2022]
Abstract
Noninvasive imaging sensors and computer vision approaches are key technologies to quantify plant structure, physiological status, and performance. Today, imaging sensors exploit a wide range of the electromagnetic spectrum, and they can be deployed to measure a growing number of traits, also in heterogenic environments. Recent advances include the possibility to acquire high-resolution spectra by imaging spectroscopy and classify signatures that might be informative of plant development, nutrition, health, and disease. Three-dimensional (3D) reconstruction of surfaces and volume is of particular interest, enabling functional and mechanistic analyses. While taking pictures is relatively easy, quantitative interpretation often remains challenging and requires integrating knowledge of sensor physics, image analysis, and complex traits characterizing plant phenotypes.
Collapse
Affiliation(s)
- Fabio Fiorani
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo-Brandt-Straße, 52425 Jülich, Germany
| | | | | | | |
Collapse
|
50
|
Borisjuk L, Rolletschek H, Fuchs J, Melkus G, Neuberger T. Low and High Field Magnetic Resonance for in Vivo Analysis of Seeds. MATERIALS (BASEL, SWITZERLAND) 2011; 4:1426-1439. [PMID: 28824152 PMCID: PMC5448675 DOI: 10.3390/ma4081426] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/04/2011] [Accepted: 08/04/2011] [Indexed: 01/25/2023]
Abstract
Low field NMR has been successfully used for the evaluation of seed composition and quality, but largely only in crop species. We show here that 1.5T NMR provides a reliable means for analysing the seed lipid fraction present in a wide range of species, where both the seed size and lipid concentration differed by >10 fold. Little use of high field NMR has been made in seed research to date, even though it potentially offers many opportunities for studying seed development, metabolism and storage. Here we demonstrate how 17.5T and 20T NMR can be applied to image seed structure, and analyse lipid and metabolite distribution. We suggest that further technical developments in NMR/MRI will facilitate significant advances in our understanding of seed biology.
Collapse
Affiliation(s)
- Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben 06466, Germany.
| | - Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben 06466, Germany.
| | - Johannes Fuchs
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben 06466, Germany.
- Department of Experimental Physics 5 (Biophysics), University of Würzburg, Am Hubland, Würzburg D-97074, Germany.
| | - Gerd Melkus
- Department of Experimental Physics 5 (Biophysics), University of Würzburg, Am Hubland, Würzburg D-97074, Germany.
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry Street, San Francisco, CA 94107, USA.
| | - Thomas Neuberger
- Department of Bioengineering, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|