1
|
Sharma Y, Hemmings AM, Deshmukh R, Pareek A. Metalloid transporters in plants: bridging the gap in molecular structure and physiological exaptation. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1370-1389. [PMID: 38847578 DOI: 10.1093/jxb/erae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/06/2024] [Indexed: 03/15/2025]
Abstract
The rhizosphere contains both essential nutrients and potentially harmful substances for plant growth. Plants, as sessile organisms, must efficiently absorb the necessary nutrients while actively avoiding the uptake of toxic compounds. Metalloids, elements that exhibit properties of both metals and non-metals, can have different effects on plant growth, from being essential and beneficial to being toxic. This toxicity arises due to either the dosage of exposure or the specific elemental type. To utilize or detoxify these elements, plants have developed various transporters regulating their uptake and distribution in plants. Genomic sequence analysis suggests that such transporter families exist throughout the plant kingdom, from chlorophytes to higher plants. These transporters form defined families with related transport preferences. The isoforms within these families have evolved with specialized functions regulated by defined selectivity. Hence, understanding the chemistry of transporters to atomic detail is important to achieve the desired genetic modifications for crop improvement. We outline various adaptations in plant transport systems to deal with metalloids, including their uptake, distribution, detoxification, and homeostasis in plant tissues. Structural parallels are drawn to other nutrient transporter systems to support emerging themes of functional diversity of active sites of transporters, elucidating plant adaptations to utilize and extrude metalloid concentrations. Considering the observed physiological importance of metalloids, this review highlights the shared and disparate features in metalloid transport systems and their corresponding nutrient transporters.
Collapse
Affiliation(s)
- Yogesh Sharma
- National Agri-Food Biotechnology Institute, Mohali 140306, India
| | - Andrew M Hemmings
- School of Biological Sciences, University of East Anglia, Norwich, Norwich NR4 7TJ, UK
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali 140306, India
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
2
|
Zhang H, Liang L, Du X, Shi G, Wang X, Tang Y, Lei Z, Wang Y, Yi C, Hu C, Zhao X. Metabolism Interaction Between Bacillus cereus SESY and Brassica napus Contributes to Enhance Host Selenium Absorption and Accumulation. PLANT, CELL & ENVIRONMENT 2025; 48:2200-2220. [PMID: 39559947 DOI: 10.1111/pce.15278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024]
Abstract
The use of beneficial bacteria to enhance selenium absorption in crops has been widely studied. However, it is unclear how the interaction between bacteria and plants affects selenium absorption in crops. Here, pot experiments and Murashige and Skoog medium (MS) experiments were performed. Transcriptomic analyses were used to reveal the interaction between Bacillus cereus SESY and Brassica napus. The results indicated that B. cereus SESY can significantly increase the biomass and selenium content of B. napus. The genes related to the colonization, IAA synthesis, and l-cysteine synthesis and metabolism of B. cereus SESY were significantly stimulated by B. napus through transcriptional regulation. Further verification results showed that l-cysteine increased selenium content in B. napus roots and shoots by 62.9% and 88.4%, respectively. B. cereus SESY and l-cysteine consistently regulated the relative expression level of genes involved in plant hormone, amino acid metabolism, selenium absorption, and Se enzymatic and nonenzymatic metabolic pathway of B. napus. These genes were significantly correlated with selenium content and biomass of B. napus (p < 0.05). Overall, IAA biosynthesis, and l-cysteine biosynthesis and metabolism in B. cereus SESY stimulated by interactions triggered molecular and metabolic responses of B. napus, underpinning host selenium absorption and accumulation.
Collapse
Affiliation(s)
- Huan Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
| | - Lianming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
| | - Xiaoping Du
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, Ankang, China
| | - Guangyu Shi
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xu Wang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yanni Tang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Zheng Lei
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yin Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Ceng Yi
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Somagattu P, Chinnannan K, Yammanuru H, Reddy UK, Nimmakayala P. Selenium dynamics in plants: Uptake, transport, toxicity, and sustainable management strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175033. [PMID: 39059668 DOI: 10.1016/j.scitotenv.2024.175033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Selenium (Se) plays crucial roles in human, animal, and plant physiology, but its varied plant functions remain complex and not fully understood. While Se deficiency affects over a billion people worldwide, excessive Se levels can be toxic, presenting substantial risks to ecosystem health and public safety. The delicate balance between Se's beneficial and harmful effects necessitates a deeper understanding of its speciation dynamics and how different organisms within ecosystems respond to Se. Since humans primarily consume Se through Se-rich foods, exploring Se's behavior, uptake, and transport within agroecosystems is critical to creating effective management strategies. Traditional physicochemical methods for Se remediation are often expensive and potentially harmful to the environment, pushing the need for more sustainable solutions. In recent years, phytotechnologies have gained traction as a promising approach to Se management by harnessing plants' natural abilities to absorb, accumulate, metabolize, and volatilize Se. These strategies range from boosting Se uptake and tolerance in plants to releasing Se as less toxic volatile compounds or utilizing it as a biofortified supplement, opening up diverse possibilities for managing Se, offering sustainable pathways to improve crop nutritional quality, and protecting human health in different environmental contexts. However, closing the gaps in our understanding of Se dynamics within agricultural systems calls for a united front of interdisciplinary collaboration from biology to environmental science, agriculture, and public health, which has a crucial role to play. Phytotechnologies offer a sustainable bridge between Se deficiency and toxicity, but further research is needed to optimize these methods and explore their potential in various agricultural and environmental settings. By shedding light on Se's multifaceted roles and refining management strategies, this review contributes to developing cost-effective and eco-friendly approaches for Se management in agroecosystems. It aims to lead the way toward a healthier and more sustainable future by balancing the need to address Se deficiency and mitigate the risks of Se toxicity.
Collapse
Affiliation(s)
- Prapooja Somagattu
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Karthik Chinnannan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Hyndavi Yammanuru
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Umesh K Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA.
| |
Collapse
|
4
|
Soudthedlath K, Nakamura T, Ushiwatari T, Fukazawa J, Osakabe K, Osakabe Y, Maruyama-Nakashita A. SULTR2;1 Adjusts the Bolting Timing by Transporting Sulfate from Rosette Leaves to the Primary Stem. PLANT & CELL PHYSIOLOGY 2024; 65:770-780. [PMID: 38424724 DOI: 10.1093/pcp/pcae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Sulfur (S) is an essential macronutrient for plant growth and metabolism. SULTR2;1 is a low-affinity sulfate transporter facilitating the long-distance transport of sulfate in Arabidopsis. The physiological function of SULTR2;1 in the plant life cycle still needs to be determined. Therefore, we analyzed the sulfate transport, S-containing metabolite accumulation and plant growth using Arabidopsis SULTR2;1 disruption lines, sultr2;1-1 and sultr2;1-2, from seedling to mature growth stages to clarify the metabolic and physiological roles of SULTR2;1. We observed that sulfate distribution to the stems was affected in sultr2;1 mutants, resulting in decreased levels of sulfate, cysteine, glutathione (GSH) and total S in the stems, flowers and siliques; however, the GSH levels increased in the rosette leaves. This suggested the essential role of SULTR2;1 in sulfate transport from rosette leaves to the primary stem. In addition, sultr2;1 mutants unexpectedly bolted earlier than the wild-type without affecting the plant biomass. Correlation between GSH levels in rosette leaves and the bolting timing suggested that the rosette leaf GSH levels or limited sulfate transport to the early stem can trigger bolting. Overall, this study demonstrated the critical roles of SULTR2;1 in maintaining the S metabolite levels in the aerial part and transitioning from the vegetative to the reproductive growth phase.
Collapse
Affiliation(s)
- Khamsalath Soudthedlath
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
- Ministry of Agriculture and Forestry, Biotechnology and Ecology Institute, Vientiane 01170, Laos
| | - Toshiki Nakamura
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Tsukasa Ushiwatari
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Jutarou Fukazawa
- Program of Basic Biology, Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, 739-8528 Japan
| | - Keishi Osakabe
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, 770-8506, Japan
| | - Yuriko Osakabe
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Tokyo, 226-8503, Japan
| | - Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| |
Collapse
|
5
|
Nagesh CR, Prashat G R, Goswami S, Bharadwaj C, Praveen S, Ramesh SV, Vinutha T. Sulfate transport and metabolism: strategies to improve the seed protein quality. Mol Biol Rep 2024; 51:242. [PMID: 38300326 DOI: 10.1007/s11033-023-09166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024]
Abstract
Sulfur-containing amino acids (SAA), namely methionine, and cysteine are crucial essential amino acids (EAA) considering the dietary requirements of humans and animals. However, a few crop plants, especially legumes, are characterized with suboptimal levels of these EAA thereby limiting their nutritive value. Hence, improved comprehension of the mechanistic perspective of sulfur transport and assimilation into storage reserve, seed storage protein (SSP), is imperative. Efforts to augment the level of SAA in seed storage protein form an integral component of strategies to balance nutritive quality and quantity. In this review, we highlight the emerging trends in the sulfur biofortification approaches namely transgenics, genetic and molecular breeding, and proteomic rebalancing with sulfur nutrition. The transgenic 'push and pull strategy' could enhance sulfur capture and storage by expressing genes that function as efficient transporters, sulfate assimilatory enzymes, sulfur-rich foreign protein sinks, or by suppressing catabolic enzymes. Modern molecular breeding approaches that adopt high throughput screening strategies and machine learning algorithms are invaluable in identifying candidate genes and alleles associated with SAA content and developing improved crop varieties. Sulfur is an essential plant nutrient and its optimal uptake is crucial for seed sulfur metabolism, thereby affecting seed quality and yields through proteomic rebalance between sulfur-rich and sulfur-poor seed storage proteins.
Collapse
Affiliation(s)
- C R Nagesh
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rama Prashat G
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Suneha Goswami
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - C Bharadwaj
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Shelly Praveen
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - S V Ramesh
- ICAR-Central Plantation Crops Research Institute, 671 124, Kasaragod, Kerala, India.
| | - T Vinutha
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
6
|
Fasani E, Zamboni A, Sorio D, Furini A, DalCorso G. Metal Interactions in the Ni Hyperaccumulating Population of Noccaea caerulescens Monte Prinzera. BIOLOGY 2023; 12:1537. [PMID: 38132363 PMCID: PMC10740792 DOI: 10.3390/biology12121537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Hyperaccumulation is a fascinating trait displayed by a few plant species able to accumulate large amounts of metal ions in above-ground tissues without symptoms of toxicity. Noccaea caerulescens is a recognized model system to study metal hyperaccumulation and hypertolerance. A N. caerulescens population naturally growing on a serpentine soil in the Italian Apennine Mountains, Monte Prinzera, was chosen for the study here reported. Plants were grown hydroponically and treated with different metals, in excess or limiting concentrations. Accumulated metals were quantified in shoots and roots by means of ICP-MS. By real-time PCR analysis, the expression of metal transporters and Fe deficiency-regulated genes was compared in the shoots and roots of treated plants. N. caerulescens Monte Prinzera confirmed its ability to hypertolerate and hyperaccumulate Ni but not Zn. Moreover, excess Ni does not induce Fe deficiency as in Ni-sensitive species and instead competes with Fe translocation rather than its uptake.
Collapse
Affiliation(s)
- Elisa Fasani
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (A.Z.)
| | - Anita Zamboni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (A.Z.)
| | - Daniela Sorio
- Centro Piattaforme Tecnologiche, University of Verona, 37134 Verona, Italy;
| | - Antonella Furini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (A.Z.)
| | - Giovanni DalCorso
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (A.Z.)
| |
Collapse
|
7
|
Nadi R, Juan-Vicente L, Mateo-Bonmatí E, Micol JL. The unequal functional redundancy of Arabidopsis INCURVATA11 and CUPULIFORMIS2 is not dependent on genetic background. FRONTIERS IN PLANT SCIENCE 2023; 14:1239093. [PMID: 38034561 PMCID: PMC10684699 DOI: 10.3389/fpls.2023.1239093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
The paralogous genes INCURVATA11 (ICU11) and CUPULIFORMIS2 (CP2) encode components of the epigenetic machinery in Arabidopsis and belong to the 2-oxoglutarate and Fe (II)-dependent dioxygenase superfamily. We previously inferred unequal functional redundancy between ICU11 and CP2 from a study of the synergistic phenotypes of the double mutant and sesquimutant combinations of icu11 and cp2 mutations, although they represented mixed genetic backgrounds. To avoid potential confounding effects arising from different genetic backgrounds, we generated the icu11-5 and icu11-6 mutants via CRISPR/Cas genome editing in the Col-0 background and crossed them to cp2 mutants in Col-0. The resulting mutants exhibited a postembryonic-lethal phenotype reminiscent of strong embryonic flower (emf) mutants. Double mutants involving icu11-5 and mutations affecting epigenetic machinery components displayed synergistic phenotypes, whereas cp2-3 did not besides icu11-5. Our results confirmed the unequal functional redundancy between ICU11 and CP2 and demonstrated that it is not allele or genetic background specific. An increase in sucrose content in the culture medium partially rescued the post-germinative lethality of icu11 cp2 double mutants and sesquimutants, facilitating the study of their morphological phenotypes throughout their life cycle, which include floral organ homeotic transformations. We thus established that the ICU11-CP2 module is required for proper flower organ identity.
Collapse
Affiliation(s)
| | | | | | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| |
Collapse
|
8
|
Zheng Q, Guo L, Huang J, Hao X, Li X, Li N, Wang Y, Zhang K, Wang X, Wang L, Zeng J. Comparative transcriptomics provides novel insights into the mechanisms of selenium accumulation and transportation in tea cultivars ( Camellia sinensis (L.) O. Kuntze). FRONTIERS IN PLANT SCIENCE 2023; 14:1268537. [PMID: 37849840 PMCID: PMC10577196 DOI: 10.3389/fpls.2023.1268537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/08/2023] [Indexed: 10/19/2023]
Abstract
Tea plants (Camellia sinensis) show discrepancies in selenium accumulation and transportation, the molecular mechanisms of which are not well understood. Hence, we aimed to conduct a systematic investigation of selenium accumulation and transportation mechanisms in different tea cultivars via transcriptome analysis. The Na2SeO3 and Na2SeO4 treatments improved selenium contents in the roots and leaves of three tea cultivars. The high selenium-enrichment ability (HSe) tea cultivars accumulated higher selenium contents in the leaves than did the low selenium-enrichment ability (LSe) tea cultivars. Transcriptome analysis revealed that differentially expressed genes (DEGs) under the Na2SeO3 and Na2SeO4 treatments were enriched in flavonoid biosynthesis in leaves. DEGs under the Na2SeO3 treatment were enriched in glutathione metabolism in the HSe tea cultivar roots compared to those of the LSe tea cultivar. More transporters and transcription factors involved in improving selenium accumulation and transportation were identified in the HSe tea cultivars under the Na2SeO3 treatment than in the Na2SeO4 treatment. In the HSe tea cultivar roots, the expression of sulfate transporter 1;2 (SULTR1;2) and SULTR3;4 increased in response to Na2SeO4 exposure. In contrast, ATP-binding cassette transporter genes (ABCs), glutathione S-transferase genes (GSTs), phosphate transporter 1;3 (PHT1;3), nitrate transporter 1 (NRT1), and 34 transcription factors were upregulated in the presence of Na2SeO3. In the HSe tea cultivar leaves, ATP-binding cassette subfamily B member 11 (ABCB11) and 14 transcription factors were upregulated under the Na2SeO3 treatment. Among them, WRKY75 was explored as a potential transcription factor that regulated the accumulation of Na2SeO3 in the roots of HSe tea cultivars. This study preliminary clarified the mechanism of selenium accumulation and transportation in tea cultivars, and the findings have important theoretical significance for the breeding and cultivation of selenium-enriched tea cultivars.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lu Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jianming Zeng
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
9
|
Qu L, Xu J, Dai Z, Elyamine AM, Huang W, Han D, Dang B, Xu Z, Jia W. Selenium in soil-plant system: Transport, detoxification and bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131272. [PMID: 37003006 DOI: 10.1016/j.jhazmat.2023.131272] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Selenium (Se) is an essential micronutrient for humans and a beneficial element for plants. However, high Se doses always exhibit hazardous effects. Recently, Se toxicity in plant-soil system has received increasing attention. This review will summarize (1) Se concentration in soils and its sources, (2) Se bioavailability in soils and influencing factors, (3) mechanisms on Se uptake and translocation in plants, (4) toxicity and detoxification of Se in plants and (5) strategies to remediate Se pollution. High Se concentration mainly results from wastewater discharge and industrial waste dumping. Selenate (Se [VI]) and selenite (Se [IV]) are the two primary forms absorbed by plants. Soil conditions such as pH, redox potential, organic matter and microorganisms will influence Se bioavailability. In plants, excessive Se will interfere with element uptake, depress photosynthetic pigment biosynthesis, generate oxidative damages and cause genotoxicity. Plants employ a series of strategies to detoxify Se, such as activating antioxidant defense systems and sequestrating excessive Se in the vacuole. In order to alleviate Se toxicity to plants, some strategies can be applied, including phytoremediation, OM remediation, microbial remediation, adsorption technique, chemical reduction technology and exogenous substances (such as Methyl jasmonate, Nitric oxide and Melatonin). This review is expected to expand the knowledge of Se toxicity/detoxicity in soil-plant system and offer valuable insights into soils Se pollution remediation strategies.
Collapse
Affiliation(s)
- Lili Qu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Jiayang Xu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhihua Dai
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ali Mohamed Elyamine
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou, Guangdong, China
| | - Wuxing Huang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Dan Han
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Bingjun Dang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Zicheng Xu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Wei Jia
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Khan Z, Thounaojam TC, Chowdhury D, Upadhyaya H. The role of selenium and nano selenium on physiological responses in plant: a review. PLANT GROWTH REGULATION 2023; 100:409-433. [PMID: 37197287 PMCID: PMC10036987 DOI: 10.1007/s10725-023-00988-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 02/24/2023] [Indexed: 05/15/2023]
Abstract
Selenium (Se), being an essential micronutrient, enhances plant growth and development in trace amounts. It also protects plants against different abiotic stresses by acting as an antioxidant or stimulator in a dose-dependent manner. Knowledge of Se uptake, translocation, and accumulation is crucial to achieving the inclusive benefits of Se in plants. Therefore, this review discusses the absorption, translocation, and signaling of Se in plants as well as proteomic and genomic investigations of Se shortage and toxicity. Furthermore, the physiological responses to Se in plants and its ability to mitigate abiotic stress have been included. In this golden age of nanotechnology, scientists are interested in nanostructured materials due to their advantages over bulk ones. Thus, the synthesis of nano-Se or Se nanoparticles (SeNP) and its impact on plants have been studied, highlighting the essential functions of Se NP in plant physiology. In this review, we survey the research literature from the perspective of the role of Se in plant metabolism. We also highlight the outstanding aspects of Se NP that enlighten the knowledge and importance of Se in the plant system. Graphical abstract
Collapse
Affiliation(s)
- Zesmin Khan
- Department of Botany, Cotton University, Guwahati, 781001 Assam India
| | | | - Devasish Chowdhury
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035 India
| | | |
Collapse
|
11
|
Sun C, Guo Q, Zeeshan M, Milham P, Qin S, Ma J, Yang Y, Lai H, Huang J. Dual RNA and 16S ribosomal DNA sequencing reveal arbuscular mycorrhizal fungi-mediated mitigation of selenate stress in Zea mays L. and reshaping of soil microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114217. [PMID: 36306613 DOI: 10.1016/j.ecoenv.2022.114217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Excessively high concentrations of selenium (Se) in soil are toxic to crop plants, and inoculation with arbuscular mycorrhizal fungi (AMF) can reverse Se stress in maize (Zea mays L.). To investigate the underlying mechanisms, maize seedlings were treated with sodium selenate (5 mg Se[VI] kg-1) and/or AMF (Funneliformis mosseae and Claroideoglomus etunicatum). Dual RNA sequencing in mycorrhiza and 16 S ribosomal DNA sequencing in soil were performed. The results showed that Se(VI) application alone decreased plant dry weight, but increased plant Se concentration, total Se content (mainly selenocysteine), and root superoxide content. Inoculation with either F. mosseae or C. etunicatum increased plant dry weight, decreased Se accumulation and selenocysteine proportion, enhanced root peroxidase activity, and alleviated oxidative stress in Se(VI)-treated plants. Inoculation also downregulated the expression of genes encoding Se transporters, assimilation enzymes, and cysteine-rich receptor-like kinases in Se(VI)-stressed plants, similar to plant-pathogen interaction and glutathione metabolism related genes. Conversely, genes encoding selenium-binding proteins and those related to phenylpropanoid biosynthesis were upregulated in inoculated plants under Se(VI) stress. Compared with Se(VI)-free plants, Se tolerance index, symbiotic feedback percentage on plant dry weight, and root colonization rate were all increased in inoculated plants under Se(VI) stress, corresponding to upregulated expression of 'key genes' in symbiosis. AMF inoculation increased bacterial diversity, decreased the relative abundances of selenobacteria related to plant Se absorption (e.g., Proteobacteria and Firmicutes), and improved bacterial network complexity in Se(VI)-stressed soils. We suggest that stress-mediated enhancement of mycorrhizal symbiosis contributed to plant Se(VI) tolerance, whereas AMF-mediated reshaping of soil bacterial community structure prevented excessive Se accumulation in maize.
Collapse
Affiliation(s)
- Chenyu Sun
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Qiao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Muhammad Zeeshan
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Paul Milham
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales 2751, Australia
| | - Shengfeng Qin
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Junqing Ma
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Yisen Yang
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Hangxian Lai
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jinghua Huang
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
12
|
Mushtaq NU, Alghamdi KM, Saleem S, Shajar F, Tahir I, Bahieldin A, Rehman RU, Hakeem KR. Selenate and selenite transporters in proso millet: Genome extensive detection and expression studies under salt stress and selenium. FRONTIERS IN PLANT SCIENCE 2022; 13:1060154. [PMID: 36531352 PMCID: PMC9748351 DOI: 10.3389/fpls.2022.1060154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Crops are susceptible to a variety of stresses and amongst them salinity of soil is a global agronomic challenge that has a detrimental influence on crop yields, thus posing a severe danger to our food security. Therefore, it becomes imperative to examine how plants respond to salt stress, develop a tolerance that allows them to live through higher salt concentrations and choose species that can endure salt stress. From the perspective of food, security millets can be substituted to avoid hardships because of their efficiency in dealing with salt stress. Besides, this problem can also be tackled by using beneficial exogenous elements. Selenium (Se) which exists as selenate or selenite is one such cardinal element that has been reported to alleviate salt stress. The present study aimed for identification of selenate and selenite transporters in proso millet (Panicum miliaceum L.), their expression under NaCl (salt stress) and Na2SeO3 (sodium selenite)treatments. This study identified eight transporters (RLM65282.1, RLN42222.1, RLN18407.1, RLM74477.1, RLN41904.1, RLN17428.1, RLN17268.1, RLM65753.1) that have a potential role in Se uptake in proso millet. We analyzed physicochemical properties, conserved structures, sub-cellular locations, chromosome location, molecular phylogenetic analysis, promoter regions prediction, protein-protein interactions, three-dimensional structure modeling and evaluation of these transporters. The analysis revealed the chromosome location and the number of amino acids present in these transporters as RLM65282.1 (16/646); RLN42222.1 (1/543); RLN18407.1 (2/483); RLM74477.1 (15/474); RLN41904.1 (1/521); RLN17428.1 (2/522); RLN17268.1(2/537);RLM65753.1 (16/539). The sub-cellular locations revealed that all the selenite transporters are located in plasma membrane whereas among selenate transporters RLM65282.1 and RLM74477.1 are located in mitochondria and RLN42222.1 and RLN18407.1 in chloroplast. The transcriptomic studies revealed that NaCl stress decreased the expression of both selenate and selenite transporters in proso millet and the applications of exogenous 1µM Se (Na2SeO3) increased the expression of these Se transporter genes. It was also revealed that selenate shows similar behavior as sulfate, while selenite transport resembles phosphate. Thus, it can be concluded that phosphate and sulphate transporters in millets are responsible for Se uptake.
Collapse
Affiliation(s)
- Naveed Ul Mushtaq
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Khalid M. Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Seerat Saleem
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Faamiya Shajar
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Inayatullah Tahir
- Department of Botany, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Ahmad Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Public Health, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
13
|
Sun C, Sun N, Ou Y, Gong B, Jin C, Shi Q, Lin X. Phytomelatonin and plant mineral nutrition. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5903-5917. [PMID: 35767844 DOI: 10.1093/jxb/erac289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/29/2022] [Indexed: 05/27/2023]
Abstract
Plant mineral nutrition is critical for agricultural productivity and for human nutrition; however, the availability of mineral elements is spatially and temporally heterogeneous in many ecosystems and agricultural landscapes. Nutrient imbalances trigger intricate signalling networks that modulate plant acclimation responses. One signalling agent of particular importance in such networks is phytomelatonin, a pleiotropic molecule with multiple functions. Evidence indicates that deficiencies or excesses of nutrients generally increase phytomelatonin levels in certain tissues, and it is increasingly thought to participate in the regulation of plant mineral nutrition. Alterations in endogenous phytomelatonin levels can protect plants from oxidative stress, influence root architecture, and influence nutrient uptake and efficiency of use through transcriptional and post-transcriptional regulation; such changes optimize mineral nutrient acquisition and ion homeostasis inside plant cells and thereby help to promote growth. This review summarizes current knowledge on the regulation of plant mineral nutrition by melatonin and highlights how endogenous phytomelatonin alters plant responses to specific mineral elements. In addition, we comprehensively discuss how melatonin influences uptake and transport under conditions of nutrient shortage.
Collapse
Affiliation(s)
- Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, PR China
| | - Nan Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, PR China
| | - Yiqun Ou
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, PR China
| | - Biao Gong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, PR China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, PR China
| | - Qinghua Shi
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, PR China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
14
|
Zhang H, Quintana J, Ütkür K, Adrian L, Hawer H, Mayer K, Gong X, Castanedo L, Schulten A, Janina N, Peters M, Wirtz M, Brinkmann U, Schaffrath R, Krämer U. Translational fidelity and growth of Arabidopsis require stress-sensitive diphthamide biosynthesis. Nat Commun 2022; 13:4009. [PMID: 35817801 PMCID: PMC9273596 DOI: 10.1038/s41467-022-31712-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Diphthamide, a post-translationally modified histidine residue of eukaryotic TRANSLATION ELONGATION FACTOR2 (eEF2), is the human host cell-sensitizing target of diphtheria toxin. Diphthamide biosynthesis depends on the 4Fe-4S-cluster protein Dph1 catalyzing the first committed step, as well as Dph2 to Dph7, in yeast and mammals. Here we show that diphthamide modification of eEF2 is conserved in Arabidopsis thaliana and requires AtDPH1. Ribosomal -1 frameshifting-error rates are increased in Arabidopsis dph1 mutants, similar to yeast and mice. Compared to the wild type, shorter roots and smaller rosettes of dph1 mutants result from fewer formed cells. TARGET OF RAPAMYCIN (TOR) kinase activity is attenuated, and autophagy is activated, in dph1 mutants. Under abiotic stress diphthamide-unmodified eEF2 accumulates in wild-type seedlings, most strongly upon heavy metal excess, which is conserved in human cells. In summary, our results suggest that diphthamide contributes to the functionality of the translational machinery monitored by plants to regulate growth.
Collapse
Affiliation(s)
- Hongliang Zhang
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitaetsstrasse 150, Box 44 ND3/30, 44801, Bochum, Germany
| | - Julia Quintana
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitaetsstrasse 150, Box 44 ND3/30, 44801, Bochum, Germany
| | - Koray Ütkür
- Microbiology, Institute for Biology, University of Kassel, 34132, Kassel, Germany
| | - Lorenz Adrian
- Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany.,Chair of Geobiotechnology, Technische Universität Berlin, 13355, Berlin, Germany
| | - Harmen Hawer
- Microbiology, Institute for Biology, University of Kassel, 34132, Kassel, Germany
| | - Klaus Mayer
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, 82377, Penzberg, Germany
| | - Xiaodi Gong
- Centre for Organismal Studies (COS), University of Heidelberg, 69120, Heidelberg, Germany
| | - Leonardo Castanedo
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitaetsstrasse 150, Box 44 ND3/30, 44801, Bochum, Germany
| | - Anna Schulten
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitaetsstrasse 150, Box 44 ND3/30, 44801, Bochum, Germany
| | - Nadežda Janina
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitaetsstrasse 150, Box 44 ND3/30, 44801, Bochum, Germany
| | - Marcus Peters
- Molecular Immunology, Medical Faculty, Ruhr University Bochum, 44801, Bochum, Germany
| | - Markus Wirtz
- Centre for Organismal Studies (COS), University of Heidelberg, 69120, Heidelberg, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, 82377, Penzberg, Germany
| | - Raffael Schaffrath
- Microbiology, Institute for Biology, University of Kassel, 34132, Kassel, Germany
| | - Ute Krämer
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitaetsstrasse 150, Box 44 ND3/30, 44801, Bochum, Germany.
| |
Collapse
|
15
|
Ceasar SA, Maharajan T, Hillary VE, Ajeesh Krishna TP. Insights to improve the plant nutrient transport by CRISPR/Cas system. Biotechnol Adv 2022; 59:107963. [PMID: 35452778 DOI: 10.1016/j.biotechadv.2022.107963] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023]
Abstract
We need to improve food production to feed the ever growing world population especially in a changing climate. Nutrient deficiency in soils is one of the primary bottlenecks affecting the crop production both in developed and developing countries. Farmers are forced to apply synthetic fertilizers to improve the crop production to meet the demand. Understanding the mechanism of nutrient transport is helpful to improve the nutrient-use efficiency of crops and promote the sustainable agriculture. Many transporters involved in the acquisition, export and redistribution of nutrients in plants are characterized. In these studies, heterologous systems like yeast and Xenopus were most frequently used to study the transport function of plant nutrient transporters. CRIPSR/Cas system introduced recently has taken central stage for efficient genome editing in diverse organisms including plants. In this review, we discuss the key nutrient transporters involved in the acquisition and redistribution of nutrients from soil. We draw insights on the possible application CRISPR/Cas system for improving the nutrient transport in plants by engineering key residues of nutrient transporters, transcriptional regulation of nutrient transport signals, engineering motifs in promoters and transcription factors. CRISPR-based engineering of plant nutrient transport not only helps to study the process in native plants with conserved regulatory system but also aid to develop non-transgenic crops with better nutrient use-efficiency. This will reduce the application of synthetic fertilizers and promote the sustainable agriculture strengthening the food and nutrient security.
Collapse
Affiliation(s)
| | | | - V Edwin Hillary
- Department of Biosciences, Rajagiri College of Social Sciences, Kochi 683104, Kerala, India
| | - T P Ajeesh Krishna
- Department of Biosciences, Rajagiri College of Social Sciences, Kochi 683104, Kerala, India
| |
Collapse
|
16
|
Wang Z, Huang W, Pang F. Selenium in Soil-Plant-Microbe: A Review. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:167-181. [PMID: 34617141 DOI: 10.1007/s00128-021-03386-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Selenium (Se) plays an important role in geochemistry and is an essential trace element for humans and animals. This review summarizes the transformation and accumulation of Se in the plant-soil-microbe system. As one of the important reservoirs of Se, soil is an important material basis of its entry into the food chain through plants. Soil with an appropriate amount of Se is beneficial for plant growth and plays a valuable role in a stress-resistant environment. Among the many migration and transformation pathways, the transformation of Se by microorganisms is particularly important and is the main form of Se transformation in the soil environment. In this review, the role and form transformation of Se in plants, soil, and microorganisms; the role of Se in plants; the form, input, and output of Se in soil; the absorption and transformation of Se by plants; and the role of microorganisms in Se transformation are presented. In addition to describing the migration and transformation laws of Se in the environment, this review expounds on the main directions and trends of Se research in the agricultural field as well as current gaps and difficulties in Se-related research. Overall, this reviews aims to provide necessary information and theoretical references for the development of Se-rich agriculture.
Collapse
Affiliation(s)
- Zhen Wang
- College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Wei Huang
- College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China.
| | - Fei Pang
- College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China.
| |
Collapse
|
17
|
Huang Y, Chen J, Sun Y, Wang H, Zhan J, Huang Y, Zou J, Wang L, Su N, Cui J. Mechanisms of calcium sulfate in alleviating cadmium toxicity and accumulation in pak choi seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150115. [PMID: 34818763 DOI: 10.1016/j.scitotenv.2021.150115] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/15/2021] [Accepted: 08/30/2021] [Indexed: 05/22/2023]
Abstract
Gypsum (calcium sulfate dihydrate, CaSO4 ·2H₂O) is commonly applied to improve soil quality and nutrient supply. Previous studies also suggested it is a cost-effective soil amendment in alleviating cadmium (Cd) toxicity and accumulation in plants. The aim of this study was to investigate how this is achieved. We used pak choi as our research material because it is a popular vegetable in Asia, and as a leafy vegetable, it accumulates higher Cd level than other types of vegetable. Under Cd stress, application of CaSO4 promoted pak choi seedling growth, decreased the oxidative stress in roots, reduced Cd accumulation, and enhanced the photosynthesis in shoots. We revealed the inhibition of Cd2+ absorption by CaSO4 is largely due to the competition between Ca2+ and Cd2+ for ion channels or transporter. Moreover, under Cd stress, CaSO4 facilitated the sulphate assimilation, increased the biosynthesis of phytochelatins, and activated the expression of transporters for vacuolar sequestration. Together, CaSO4 could benefit plant growth and enhance Cd tolerance by suppressing Cd root uptake and lowering the Cd content in cytoplasm.
Collapse
Affiliation(s)
- Yifan Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiahui Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yangming Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Haixia Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Junyi Zhan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yanni Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jianwen Zou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lu Wang
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
18
|
Zhang H, Hao X, Zhang J, Wang L, Wang Y, Li N, Guo L, Ren H, Zeng J. Genome-wide identification of SULTR genes in tea plant and analysis of their expression in response to sulfur and selenium. PROTOPLASMA 2022; 259:127-140. [PMID: 33884505 DOI: 10.1007/s00709-021-01643-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Sulfur (S) is an essential macronutrient required by plants. Plants absorb and transport S through sulfate transporters (SULTRs). In this study, we cloned 8 SULTR genes (CsSULTR1;1/1;2/2;1/3;1/3;2/3;3/3;5/4;1) from tea plant (Camellia sinensis), all of which contain a typical sulfate transporter and antisigma factor antagonist (STAS) conserved domain. Phylogenetic tree analysis further divided the CsSULTRs into four main groups. Many cis-acting elements related to hormones and environmental stresses were found within the promoter sequence of CsSULTRs. Subcellular localization results showed that CsSULTR4;1 localized in the vacuolar membrane and that other CsSULTRs localized to the cellular membrane. The tissue-specific expression of the 8 CsSULTR genes showed different expression patterns during the active growing period and dormancy period. In particular, the expression of CsSULTR1;1 was highest in the roots, but that of CsSULTR1;2 was lowest in the dormancy period. The expression of CsSULTR1;1/1;2/2;1/3;2 was stimulated under different concentrations of selenium (Se) and S; moreover, CsSULTR1;2/2;1/3;3/3;5 was upregulated in response to different valences of Se.
Collapse
Affiliation(s)
- Haojie Zhang
- National Center for Tea Improvement, Tea Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
- Huaiyin Institute of Agricultural Sciences of Xuhuai District in Jiangsu, Huai'an, 223001, China
| | - Xinyuan Hao
- National Center for Tea Improvement, Tea Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Jingjing Zhang
- National Center for Tea Improvement, Tea Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Lu Wang
- National Center for Tea Improvement, Tea Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Yuchun Wang
- National Center for Tea Improvement, Tea Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Nana Li
- National Center for Tea Improvement, Tea Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Lina Guo
- National Center for Tea Improvement, Tea Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Hengze Ren
- National Center for Tea Improvement, Tea Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Jianming Zeng
- National Center for Tea Improvement, Tea Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China.
| |
Collapse
|
19
|
Ren Z, Wang RY, Huang XY, Wang Y. Sulfur Compounds in Regulation of Stomatal Movement. FRONTIERS IN PLANT SCIENCE 2022; 13:846518. [PMID: 35360293 PMCID: PMC8963490 DOI: 10.3389/fpls.2022.846518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/09/2022] [Indexed: 05/06/2023]
Abstract
Sulfur, widely present in the soil and atmosphere, is one of the essential elements for plants. Sulfate is a dominant form of sulfur in soils taken up by plant roots. In addition to the assimilation into sulfur compounds essential for plant growth and development, it has been reported recently that sulfate as well as other sulfur containing compounds can also induce stomatal movement. Here, we first summarized the uptake and transport of sulfate and atmospheric sulfur, including H2O and SO2, and then, focused on the effects of inorganic and organic sulfur on stomatal movement. We concluded all the transporters for different sulfur compounds, and compared the expression level of those transporters in guard cells and mesophyll cells. The relationship between abscisic acid and sulfur compounds in regulation of stomatal movement were also discussed.
Collapse
Affiliation(s)
- Zirong Ren
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing, China
| | - Ru-Yuan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Xin-Yuan Huang,
| | - Yin Wang
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing, China
- Yin Wang,
| |
Collapse
|
20
|
Yang D, Hu C, Wang X, Shi G, Li Y, Fei Y, Song Y, Zhao X. Microbes: a potential tool for selenium biofortification. Metallomics 2021; 13:6363703. [PMID: 34477877 DOI: 10.1093/mtomcs/mfab054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/19/2021] [Indexed: 11/14/2022]
Abstract
Selenium (Se) is a component of many enzymes and indispensable for human health due to its characteristics of reducing oxidative stress and enhancing immunity. Human beings take Se mainly from Se-containing crops. Taking measures to biofortify crops with Se may lead to improved public health. Se accumulation in plants mainly depends on the content and bioavailability of Se in soil. Beneficial microbes may change the chemical form and bioavailability of Se. This review highlights the potential role of microbes in promoting Se uptake and accumulation in crops and the related mechanisms. The potential approaches of microbial enhancement of Se biofortification can be summarized in the following four aspects: (1) microbes alter soil properties and impact the redox chemistry of Se to improve the bioavailability of Se in soil; (2) beneficial microbes regulate root morphology and stimulate the development of plants through the release of certain secretions, facilitating Se uptake in plants; (3) microbes upregulate the expression of certain genes and proteins that are related to Se metabolism in plants; and (4) the inoculation of microbes give rise to the generation of certain metabolites in plants contributing to Se absorption. Considering the ecological safety and economic feasibility, microbial enhancement is a potential tool for Se biofortification. For further study, the recombination and establishment of synthesis microbes is of potential benefit in Se-enrichment agriculture.
Collapse
Affiliation(s)
- Dandan Yang
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial, Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial, Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-product of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guangyu Shi
- College of Environment Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yanfeng Li
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial, Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Yuchen Fei
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial, Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Yinran Song
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial, Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial, Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China.,Institute of Quality Standard and Monitoring Technology for Agro-product of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
21
|
Mehmood T, Gaurav GK, Cheng L, Klemeš JJ, Usman M, Bokhari A, Lu J. A review on plant-microbial interactions, functions, mechanisms and emerging trends in bioretention system to improve multi-contaminated stormwater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:113108. [PMID: 34218074 DOI: 10.1016/j.jenvman.2021.113108] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Management and treatment of multi-polluted stormwater in bioretention system have gained significant attraction recently. Besides nutrients, recent source appointment studies found elevated levels of Potentially toxic metal(loid)s (PTMs) and contaminants of emerging concern (CECs) in stormwater that highlighted many limitations in conventional media adsorption-based pollutant removal bioretention strategies. The substantial new studies include biological treatment approaches to strengthen pollutants degradation and adsorption capacity of bioretention. The knowledge on characteristics of plants and their corresponding mechanisms in various functions, e.g., rainwater interception, retention, infiltration, media clogging prevention, evapotranspiration and phytoremediation, is scattered. The microorganisms' role in facilitating vegetation and media, plant-microorganism interactions and relative performance over different functions in bioretention is still unreviewed. To uncover the underneath, it was summarised plant and microbial studies and their functionality in hydrogeochemical cycles in the bioretention system in this review, contributing to finding their interconnections and developing a more efficient bioretention system. Additionally, source characteristics of stormwater and fate of associated pollutants in the environment, the potential of genetical engineered plants, algae and fungi in bioretention system as well as performance assessment of plants and microorganisms in non-bioretention studies to propose the possible solution of un-addressed problems in bioretention system have been put forward in this review. The present review can be used as an imperative reference to enlighten the advantages of adopting multidisciplinary approaches for the environment sustainability and pollution control.
Collapse
Affiliation(s)
- Tariq Mehmood
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Civil Engineering, Hohai University, Nanjing, 210098, China
| | - Gajendra Kumar Gaurav
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Civil Engineering, Hohai University, Nanjing, 210098, China
| | - Liu Cheng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Civil Engineering, Hohai University, Nanjing, 210098, China.
| | - Jiří Jaromír Klemeš
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Awais Bokhari
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic; Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Punjab, 54000, Pakistan
| | - Jie Lu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Civil Engineering, Hohai University, Nanjing, 210098, China
| |
Collapse
|
22
|
Sytar O, Ghosh S, Malinska H, Zivcak M, Brestic M. Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants. PHYSIOLOGIA PLANTARUM 2021; 173:148-166. [PMID: 33219524 DOI: 10.1111/ppl.13285] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/19/2020] [Accepted: 11/17/2020] [Indexed: 05/19/2023]
Abstract
Most of the heavy metals (HMs), and metals/metalloids are released into the nature either by natural phenomenon or anthropogenic activities. Being sessile organisms, plants are constantly exposed to HMs in the environment. The metal non-hyperaccumulating plants are susceptible to excess metal concentrations. They tend to sequester metals in their root vacuoles by forming complexes with metal ligands, as a detoxification strategy. In contrast, the metal-hyperaccumulating plants have adaptive intrinsic regulatory mechanisms to hyperaccumulate or sequester excess amounts of HMs into their above-ground tissues rather than accumulating them in roots. They have unique abilities to successfully carry out normal physiological functions without showing any visible stress symptoms unlike metal non-hyperaccumulators. The unique abilities of accumulating excess metals in hyperaccumulators partly owes to constitutive overexpression of metal transporters and ability to quickly translocate HMs from root to shoot. Various metal ligands also play key roles in metal hyperaccumulating plants. These metal hyperaccumulating plants can be used in metal contaminated sites to clean-up soils. Exploiting the knowledge of natural populations of metal hyperaccumulators complemented with cutting-edge biotechnological tools can be useful in the future. The present review highlights the recent developments in physiological and molecular mechanisms of metal accumulation of hyperaccumulator plants in the lights of metal ligands and transporters. The contrasting mechanisms of metal accumulation between hyperaccumulators and non-hyperaccumulators are thoroughly compared. Moreover, uses of different metal hyperaccumulators for phytoremediation purposes are also discussed in detail.
Collapse
Affiliation(s)
- Oksana Sytar
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
- Department of Plant Biology, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Supriya Ghosh
- Department of Botany, University of Kalyani, Kalyani, Nadia-741235, India
| | - Hana Malinska
- Department of Biology, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
23
|
Kharwar S, Bhattacharjee S, Chakraborty S, Mishra AK. Regulation of sulfur metabolism, homeostasis and adaptive responses to sulfur limitation in cyanobacteria. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00819-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Root hairs: the villi of plants. Biochem Soc Trans 2021; 49:1133-1146. [PMID: 34013353 DOI: 10.1042/bst20200716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 01/04/2023]
Abstract
Strikingly, evolution shaped similar tubular structures at the µm to mm scale in roots of sessile plants and in small intestines of mobile mammals to ensure an efficient transfer of essential nutrients from 'dead matter' into biota. These structures, named root hairs (RHs) in plants and villi in mammals, numerously stretch into the environment, and extremely enlarge root and intestine surfaces. They are believed to forage for nutrients, and mediate their uptake. While the conceptional understanding of plant RH function in hydromineral nutrition seems clear, experimental evidence presented in textbooks is restricted to a very limited number of reference-nutrients. Here, we make an element-by-element journey through the periodic table and link individual nutrient availabilities to the development, structure/shape and function of RHs. Based on recent developments in molecular biology and the identification of mutants differing in number, length or other shape-related characteristics of RHs in various plant species, we present comprehensive advances in (i) the physiological role of RHs for the uptake of specific nutrients, (ii) the developmental and morphological responses of RHs to element availability and (iii) RH-localized nutrient transport proteins. Our update identifies crucial roles of RHs for hydromineral nutrition, mostly under nutrient and/or water limiting conditions, and highlights the influence of certain mineral availabilities on early stages of RH development, suggesting that nutritional stimuli, as deficiencies in P, Mn or B, can even dominate over intrinsic developmental programs underlying RH differentiation.
Collapse
|
25
|
Raina M, Sharma A, Nazir M, Kumari P, Rustagi A, Hami A, Bhau BS, Zargar SM, Kumar D. Exploring the new dimensions of selenium research to understand the underlying mechanism of its uptake, translocation, and accumulation. PHYSIOLOGIA PLANTARUM 2021; 171:882-895. [PMID: 33179766 DOI: 10.1111/ppl.13275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Selenium (Se) is a vital mineral for both plants and animals. It is widely distributed on the earth's crust and is taken up by the plants as selenite or selenate. Plants substantially vary in their physiological response to Se. The amount of Se in edible plants is genetically controlled. Its availability can be determined by measuring its phytoavailability in soil. The low concentration of Se in plants can help them in combating stress, whereas higher concentrations can be detrimental to plant health and in most cases it is toxic. Thus, solving the double-edged sword problem of nutritional Se deficiency and its elevated concentrations in environment requires a better understanding of Se uptake and metabolism in plants. The studies on Se uptake and metabolism can help in genetic biofortification of Se in plants and also assist in phytoremediation. Moreover, Se uptake and transport, especially biochemical pathways of assimilation and incorporation into proteins, offers striking mechanisms of toxicity and tolerance. These developments have led to a revival of Se research in higher plants with significant break throughs being made in the previous years. This review explores the new dimensions of Se research with major emphasis on key research events related to Se undertaken in last few years. Further, we also discussed future possibilities in Se research for crop improvement.
Collapse
Affiliation(s)
- Meenakshi Raina
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Akanksha Sharma
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Muslima Nazir
- Center of Research for Development (CORD), University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Punam Kumari
- Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, Odisha, India
| | - Anjana Rustagi
- Department of Botany, Gargi College, University of Delhi, New Delhi, India
| | - Ammarah Hami
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, India
| | - Brijmohan Singh Bhau
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
26
|
Rao S, Yu T, Cong X, Lai X, Xiang J, Cao J, Liao X, Gou Y, Chao W, Xue H, Cheng S, Xu F. Transcriptome, proteome, and metabolome reveal the mechanism of tolerance to selenate toxicity in Cardamine violifolia. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124283. [PMID: 33187796 DOI: 10.1016/j.jhazmat.2020.124283] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 05/28/2023]
Abstract
Cardamine violifolia was found here to accumulate selenium (Se) to over 9000 mg kg-1 dry weight. To investigate the mechanism of Se accumulation and tolerance in C. violifolia, metabolome, transcriptome, and proteome technologies were applied to C. violifolia seedlings treated with selenate. Several sulfate transporter (Sultr) genes (Sultr1;1, Sultr1;2, and Sultr2;1) and sulfur assimilatory enzyme genes showed high expression levels in response to selenate. Many calcium protein and cysteine-rich kinase genes of C. violifolia were downregulated, whereas selenium-binding protein 1 (SBP1) and protein sulfur deficiency-induced 2 (SDI2) of C. violifolia were upregulated by selenate. The expression of genes involved in the ribosome and posttranslational modifications and chaperones in C. violifolia were also detected in response to selenate. Based on the results of this study and previous findings, we suggest that the downregulated expression of calcium proteins and cysteine-rich kinases, and the upregulated expression of SBP1 and SDI2, were important contributors to the Se tolerance of C. violifolia. The downregulation of cysteine-rich kinases and calcium proteins would enhance Se tolerance of C. violifolia is a novel proposition that has not been reported on other Se hyperaccumulators. This study provides us novel insights to understand Se accumulation and tolerance in plants.
Collapse
Affiliation(s)
- Shen Rao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Tian Yu
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; Enshi Se-Run Health Tech Development Co., Ltd., Enshi 445000, China.
| | - Xin Cong
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; Enshi Se-Run Health Tech Development Co., Ltd., Enshi 445000, China.
| | - Xiaozhuo Lai
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Jiqian Xiang
- Enshi Autonomous Prefecture Academy of Agriculture Sciences, Enshi 445002, China.
| | - Jie Cao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Xiaoli Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Yuanyuan Gou
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Wei Chao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Hua Xue
- National Selenium Rich Product Quality Supervision and Inspection Center, Enshi 445000, Hubei, China.
| | - Shuiyuan Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; National Selenium Rich Product Quality Supervision and Inspection Center, Enshi 445000, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, Yangtze University, Jingzhou 434025, Hubei, China.
| |
Collapse
|
27
|
Trippe RC, Pilon-Smits EAH. Selenium transport and metabolism in plants: Phytoremediation and biofortification implications. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124178. [PMID: 33068997 PMCID: PMC7538129 DOI: 10.1016/j.jhazmat.2020.124178] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/06/2020] [Accepted: 10/02/2020] [Indexed: 05/07/2023]
Abstract
The aim of this review is to synthesize current knowledge of selenium (Se) transport and metabolism in plants, with a focus on implications for biofortification and phytoremediation. Selenium is a necessary human micronutrient, and around a billion people worldwide may be Se deficient. This can be ameliorated by Se biofortification of staple crops. Selenium is also a potential toxin at higher concentrations, and multiple environmental disasters over the past 50 years have been caused by Se pollution from agricultural and industrial sources. Phytoremediation by plants able to take up large amounts of Se is an important tool to combat pollution issues. Both biofortification and phytoremediation applications require a thorough understanding of how Se is taken up and metabolized by plants. Selenium uptake and translocation in plants are largely accomplished via sulfur (S) transport proteins. Current understanding of these transporters is reviewed here, and transporters that may be manipulated to improve Se uptake are discussed. Plant Se metabolism also largely follows the S metabolic pathway. This pathway is reviewed here, with special focus on genes that have been, or may be manipulated to reduce the accumulation of toxic metabolites or enhance the accumulation of nontoxic metabolites. Finally, unique aspects of Se transport and metabolism in Se hyperaccumulators are reviewed. Hyperaccumulators, which can accumulate Se at up to 1000 times higher concentrations than normal plants, present interesting specialized systems of Se transport and metabolism. Selenium hyperaccumulation mechanisms and potential applications of these mechanisms to biofortification and phytoremediation are presented.
Collapse
Affiliation(s)
- Richard C Trippe
- Colorado State University, Biology Department, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
28
|
Selenium Biofortification: Roles, Mechanisms, Responses and Prospects. Molecules 2021; 26:molecules26040881. [PMID: 33562416 PMCID: PMC7914768 DOI: 10.3390/molecules26040881] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
The trace element selenium (Se) is a crucial element for many living organisms, including soil microorganisms, plants and animals, including humans. Generally, in Nature Se is taken up in the living cells of microorganisms, plants, animals and humans in several inorganic forms such as selenate, selenite, elemental Se and selenide. These forms are converted to organic forms by biological process, mostly as the two selenoamino acids selenocysteine (SeCys) and selenomethionine (SeMet). The biological systems of plants, animals and humans can fix these amino acids into Se-containing proteins by a modest replacement of methionine with SeMet. While the form SeCys is usually present in the active site of enzymes, which is essential for catalytic activity. Within human cells, organic forms of Se are significant for the accurate functioning of the immune and reproductive systems, the thyroid and the brain, and to enzyme activity within cells. Humans ingest Se through plant and animal foods rich in the element. The concentration of Se in foodstuffs depends on the presence of available forms of Se in soils and its uptake and accumulation by plants and herbivorous animals. Therefore, improving the availability of Se to plants is, therefore, a potential pathway to overcoming human Se deficiencies. Among these prospective pathways, the Se-biofortification of plants has already been established as a pioneering approach for producing Se-enriched agricultural products. To achieve this desirable aim of Se-biofortification, molecular breeding and genetic engineering in combination with novel agronomic and edaphic management approaches should be combined. This current review summarizes the roles, responses, prospects and mechanisms of Se in human nutrition. It also elaborates how biofortification is a plausible approach to resolving Se-deficiency in humans and other animals.
Collapse
|
29
|
Xu ZR, Cai ML, Chen SH, Huang XY, Zhao FJ, Wang P. High-Affinity Sulfate Transporter Sultr1;2 Is a Major Transporter for Cr(VI) Uptake in Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1576-1584. [PMID: 33423475 DOI: 10.1021/acs.est.0c04384] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chromate (Cr[VI]) is a highly phytotoxic contaminant that is ubiquitous in soils. However, how Cr(VI) is taken up by plant roots remains largely unknown. Here, we show that the high-affinity sulfate transporter Sultr1;2 is responsible for Cr(VI) uptake by the roots of Arabidopsis thaliana. Sultr1;2 showed a much higher transport activity for Cr(VI) than Sultr1;1 when expressed in yeast cells. Knockdown of Sultr1;2 expression in Arabidopsis markedly reduced the Cr(VI) uptake rate, whereas knockout of Sultr1;1 had no or little effect. A double-knockout mutant (DKO) of the two genes lost the ability of Cr(VI) uptake almost completely. The Sultr1;2 knockdown mutant or DKO plants displayed higher resistance to Cr(VI) under normal sulfate conditions as a consequence of the lower tissue Cr accumulation. Overexpression of Sultr1;2 substantially increased Cr(VI) uptake with shoot Cr concentration being 1.6-2.0 times higher than that in the wild-type. These results indicate that Sultr1;2 is a major transporter responsible for Cr(VI) uptake in Arabidopsis, while Sultr1;1 plays a negligible role. Taken together, our study has identified a major transporter for Cr(VI) uptake in plants, providing potential strategies for engineering plants with low Cr accumulation and consequently enhanced Cr(VI) resistance and also plants with enhanced accumulation of Cr for the purpose of phytoremediation.
Collapse
Affiliation(s)
- Zhong-Rui Xu
- College of Resources and Environmental Sciences and Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Mei-Ling Cai
- College of Resources and Environmental Sciences and Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Si-Hong Chen
- College of Resources and Environmental Sciences and Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin-Yuan Huang
- College of Resources and Environmental Sciences and Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- College of Resources and Environmental Sciences and Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- College of Resources and Environmental Sciences and Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
30
|
Rao S, Yu T, Cong X, Xu F, Lai X, Zhang W, Liao Y, Cheng S. Integration analysis of PacBio SMRT- and Illumina RNA-seq reveals candidate genes and pathway involved in selenium metabolism in hyperaccumulator Cardamine violifolia. BMC PLANT BIOLOGY 2020; 20:492. [PMID: 33109081 PMCID: PMC7590678 DOI: 10.1186/s12870-020-02694-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/12/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Cardamine violifolia, native to China, is one of the selenium (Se) hyperaccumulators. The mechanism of Se metabolism and tolerance remains unclear, and only limited genetic information is currently available. Therefore, we combined a PacBio single-molecule real-time (SMRT) transcriptome library and the Illumina RNA-seq data of sodium selenate (Na2SeO4)-treated C. violifolia to further reveal the molecular mechanism of Se metabolism. RESULTS The concentrations of the total, inorganic, and organic Se in C. violifolia seedlings significantly increased as the Na2SeO4 treatment concentration increased. From SMRT full-length transcriptome of C. violifolia, we obtained 26,745 annotated nonredundant transcripts, 14,269 simple sequence repeats, 283 alternative splices, and 3407 transcription factors. Fifty-one genes from 134 transcripts were identified to be involved in Se metabolism, including transporter, assimilatory enzyme, and several specific genes. Analysis of Illumina RNA-Seq data showed that a total of 948 differentially expressed genes (DEGs) were filtered from the four groups with Na2SeO4 treatment, among which 11 DEGs were related to Se metabolism. The enrichment analysis of KEGG pathways of all the DEGs showed that they were significantly enriched in five pathways, such as hormone signal transduction and plant-pathogen interaction pathways. Four genes related to Se metabolism, adenosine triphosphate sulfurase 1, adenosine 5'-phosphosulfate reductase 3, cysteine (Cys) desulfurase 1, and serine acetyltransferase 2, were regulated by lncRNAs. Twenty potential hub genes (e.g., sulfate transporter 1;1, Cys synthase, methionine gamma-lyase, and Se-binding protein 1) were screened and identified to play important roles in Se accumulation and tolerance in C. violifolia as concluded by weighted gene correlation network analysis. Based on combinative analysis of expression profiling and annotation of genes as well as Se speciation and concentration in C. violifolia under the treatments with different Na2SeO4 concentrations, a putative Se metabolism and assimilation pathway in C. violifolia was proposed. CONCLUSION Our data provide abundant information on putative gene transcriptions and pathway involved in Se metabolism of C. violifolia. The findings present a genetic resource and provide novel insights into the mechanism of Se hyperaccumulation in C. violifolia.
Collapse
Affiliation(s)
- Shen Rao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025 China
| | - Tian Yu
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023 China
- Enshi Se-Run Health Tech Development Co., Ltd, Enshi, 445000 China
| | - Xin Cong
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023 China
- Enshi Se-Run Health Tech Development Co., Ltd, Enshi, 445000 China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025 China
| | - Xiaozhuo Lai
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025 China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025 China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025 China
| | - Shuiyuan Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023 China
- National Selenium Rich Product Quality Supervision and Inspection Center, Enshi, 445000 Hubei China
| |
Collapse
|
31
|
Silicon Regulates Source to Sink Metabolic Homeostasis and Promotes Growth of Rice Plants Under Sulfur Deficiency. Int J Mol Sci 2020; 21:ijms21103677. [PMID: 32456188 PMCID: PMC7279143 DOI: 10.3390/ijms21103677] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/01/2022] Open
Abstract
Being an essential macroelement, sulfur (S) is pivotal for plant growth and development, and acute deficiency in this element leads to yield penalty. Since the last decade, strong evidence has reported the regulatory function of silicon (Si) in mitigating plant nutrient deficiency due to its significant diverse benefits on plant growth. However, the role of Si application in alleviating the negative impact of S deficiency is still obscure. In the present study, an attempt was undertaken to decipher the role of Si application on the metabolism of rice plants under S deficiency. The results showed a distinct transcriptomic and metabolic regulation in rice plants treated with Si under both short and long-term S deficiencies. The expression of Si transporters OsLsi1 and OsLsi2 was reduced under long-term deficiency, and the decrease was more pronounced when Si was provided. The expression of OsLsi6, which is involved in xylem loading of Si to shoots, was decreased under short-term S stress and remained unchanged in response to long-term stress. Moreover, the expression of S transporters OsSULTR tended to decrease by Si supply under short-term S deficiency but not under prolonged S stress. Si supply also reduced the level of almost all the metabolites in shoots of S-deficient plants, while it increased their level in the roots. The levels of stress-responsive hormones ABA, SA, and JA-lle were also decreased in shoots by Si application. Overall, our finding reveals the regulatory role of Si in modulating the metabolic homeostasis under S-deficient condition.
Collapse
|
32
|
Chen J, Huang XY, Salt DE, Zhao FJ. Mutation in OsCADT1 enhances cadmium tolerance and enriches selenium in rice grain. THE NEW PHYTOLOGIST 2020; 226:838-850. [PMID: 31879959 DOI: 10.1111/nph.16404] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/18/2019] [Indexed: 05/27/2023]
Abstract
How cadmium (Cd) tolerance in rice is regulated remains poorly understood. We used a forward genetic approach to investigate Cd tolerance in rice. Using a root elongation assay, we isolated a rice mutant with enhanced Cd tolerance, cadt1, from an ethyl methanesulphonate (EMS)-mutagenized population of a widely grown Indica cultivar. The mutant accumulated more Cd in roots but not in shoots and grains. Using genomic resequencing and complementation, we identified OsCADT1 as the causal gene for the mutant phenotype, which encodes a putative serine hydroxymethyltransferase. OsCADT1 protein was localized to the nucleus and the OsCADT1 gene was expressed in both roots and shoots. OsCADT1 mutation resulted in higher sulphur and selenium accumulation in the shoots and grains. Selenate influx in cadt1 was 2.4 times that of the wild-type. The mutant showed higher expression of the sulphate/selenate transporter gene OsSULTR1;1 and the sulphur-deficiency-inducible gene OsSDI1. Thiol compounds including cysteine, glutathione and phytochelatins were significantly increased in the mutant, underlying its increased Cd tolerance. Growth and grain biomass were little affected. The results suggest that OsCADT1 acts as a negative regulator of sulphate/selenate uptake and assimilation. OsCADT1 mutation increases Cd tolerance and enriches selenium in rice grains, providing a novel solution for selenium biofortification.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - David E Salt
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
33
|
Reis HPG, de Queiroz Barcelos JP, Silva VM, Santos EF, Tavanti RFR, Putti FF, Young SD, Broadley MR, White PJ, Dos Reis AR. Agronomic biofortification with selenium impacts storage proteins in grains of upland rice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1990-1997. [PMID: 31849063 DOI: 10.1002/jsfa.10212] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/12/2019] [Accepted: 12/10/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Selenium (Se) is an essential element for humans and animals. Rice is one of the most commonly consumed cereals in the world, so the agronomic biofortification of cereals with Se may be a good strategy to increase the levels of daily intake of Se by the population. This study evaluated the agronomic biofortification of rice genotypes with Se and its effects on grain nutritional quality. Five rates of Se (0, 10, 25, 50, and 100 g ha -1 ) were applied as selenate via the soil to three rice genotypes under field conditions. RESULTS Selenium concentrations in the leaves and polished grains increased linearly in response to Se application rates. A highly significant correlation was observed between the Se rates and the Se concentration in the leaves and grains, indicating high translocation of Se. The application of Se also increased the concentration of albumin, globulin, prolamin, and glutelin in polished grains. CONCLUSION Biofortifying rice genotypes using 25 g Se ha -1 could increase the average daily Se intake from 4.64 to 66 μg day-1 . Considering that the recommended daily intake of Se by adults is 55 μg day-1 , this agronomic strategy could contribute to alleviating widespread Se malnutrition. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Scott D Young
- School of Biosciences, University of Nottingham, Leicestershire, UK
| | | | | | - André Rodrigues Dos Reis
- São Paulo State University (UNESP), Ilha Solteira, Brazil
- São Paulo State University (UNESP), Tupã, Brazil
| |
Collapse
|
34
|
Sacchi GA, Nocito FF. Plant Sulfate Transporters in the Low Phytic Acid Network: Some Educated Guesses. PLANTS (BASEL, SWITZERLAND) 2019; 8:E616. [PMID: 31861241 PMCID: PMC6963184 DOI: 10.3390/plants8120616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022]
Abstract
A few new papers report that mutations in some genes belonging to the group 3 of plant sulfate transporter family result in low phytic acid phenotypes, drawing novel strategies and approaches for engineering the low-phytate trait in cereal grains. Here, we shortly review the current knowledge on phosphorus/sulfur interplay and sulfate transport regulation in plants, to critically discuss some hypotheses that could help in unveiling the physiological links between sulfate transport and phosphorus accumulation in seeds.
Collapse
Affiliation(s)
| | - Fabio Francesco Nocito
- Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Università degli Studi di Milano, 20133 Milano, Italy;
| |
Collapse
|
35
|
Yu Y, Liu Z, Luo LY, Fu PN, Wang Q, Li HF. Selenium Uptake and Biotransformation in Brassica rapa Supplied with Selenite and Selenate: A Hydroponic Work with HPLC Speciation and RNA-Sequencing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12408-12418. [PMID: 31644287 DOI: 10.1021/acs.jafc.9b05359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Vegetables are an ideal source of human Se intake; it is important to understand selenium (Se) speciation in plants due to the distinct biological functions of selenocompounds. In this hydroponic study, the accumulation and assimilation of selenite and selenate in pak choi (Brassica rapa), a vastly consumed vegetable, were investigated at 1-168 h with HPLC speciation and RNA-sequencing. The results showed that the Se content in shoots and Se translocation factors with selenate addition were at least 10.81 and 11.62 times, respectively, higher than those with selenite addition. Selenite and selenate up-regulated the expression of SULT1;1 and PHT1;2 in roots by over 240% and 400%, respectively. Selenite addition always led to higher proportions of seleno-amino acids, while SeO42- was dominant under selenate addition (>49% of all Se species in shoots). However, in roots, SeO42- proportions declined substantially by 51% with a significant increase of selenomethionine proportions (63%) from 1 to 168 h. Moreover, with enhanced transcript of methionine gamma-lyase (60% of up-regulation compared to the control) plus high levels of methylselenium in shoots (approximately 70% of all Se species), almost 40% of Se was lost during the exposure under the selenite treatment. This work provides evidence that pak choi can rapidly transform selenite to methylselenium, and it is promising to use the plant for Se biofortification.
Collapse
Affiliation(s)
- Yao Yu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences , China Agricultural University , Beijing 100193 , The People's Republic of China
| | - Zhe Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences , China Agricultural University , Beijing 100193 , The People's Republic of China
| | - Li-Yun Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences , China Agricultural University , Beijing 100193 , The People's Republic of China
| | - Ping-Nan Fu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences , China Agricultural University , Beijing 100193 , The People's Republic of China
| | - Qi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences , China Agricultural University , Beijing 100193 , The People's Republic of China
| | - Hua-Fen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences , China Agricultural University , Beijing 100193 , The People's Republic of China
| |
Collapse
|
36
|
Hasan MK, Ahammed GJ, Sun S, Li M, Yin H, Zhou J. Melatonin Inhibits Cadmium Translocation and Enhances Plant Tolerance by Regulating Sulfur Uptake and Assimilation in Solanum lycopersicum L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10563-10576. [PMID: 31487171 DOI: 10.1021/acs.jafc.9b02404] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sulfur (S) metabolism plays a vital role in Cd detoxification, but the collaboration between melatonin biosynthesis and S metabolism under Cd stress remains unaddressed. Using exogenous melatonin, melatonin-deficient tomato plants with a silenced caffeic acid O-methyltransferase (COMT) gene, and COMT-overexpressing plants with cosuppression of sulfate transporter (SUT)1 and SUT2 genes, we found that melatonin deficiency decreased S accumulation and aggravated Cd phytotoxicity, whereas exogenous melatonin or overexpression of COMT increased S uptake and assimilation, resulting in an improved plant growth and Cd tolerance. Melatonin deficiency promoted Cd translocation from root to shoot, but COMT overexpression caused the opposite effect. COMT overexpression failed to compensate the functional hierarchy of S when its uptake was inhibited by cosilencing of transporter SUT1 and SUT2. Our study provides genetic evidence that melatonin-mediated tolerance to Cd is closely associated with the efficient regulation of S metabolism, redox homeostasis, and Cd translocation in tomato plants.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture , Zhejiang University , Yuhangtang Road 866 , Hangzhou 310058 , China
| | - Golam Jalal Ahammed
- College of Forestry , Henan University of Science and Technology , Luoyang 471023 , China
| | - Shuchang Sun
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture , Zhejiang University , Yuhangtang Road 866 , Hangzhou 310058 , China
| | - Mengqi Li
- Zhejiang Institute of Geological Survey , Xiaojin Road 508 , Hangzhou 311203 , China
| | - Hanqin Yin
- Zhejiang Institute of Geological Survey , Xiaojin Road 508 , Hangzhou 311203 , China
| | - Jie Zhou
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture , Zhejiang University , Yuhangtang Road 866 , Hangzhou 310058 , China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement , Agricultural Ministry of China , 866 Yuhangtang Road , Hangzhou 310058 , China
| |
Collapse
|
37
|
Takahashi H. Sulfate transport systems in plants: functional diversity and molecular mechanisms underlying regulatory coordination. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4075-4087. [PMID: 30907420 DOI: 10.1093/jxb/erz132] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Sulfate transporters are integral membrane proteins controlling the flux of sulfate (SO42-) entering the cells and subcellular compartments across the membrane lipid bilayers. Sulfate uptake is a dynamic biological process that occurs in multiple cell layers and organs in plants. In vascular plants, sulfate ions are taken up from the soil environment to the outermost cell layers of roots and horizontally transferred to the vascular tissues for further distribution to distant organs. The amount of sulfate ions being metabolized in the cytosol and chloroplast/plastid or temporarily stored in the vacuole depends on expression levels and functionalities of sulfate transporters bound specifically to the plasma membrane, chloroplast/plastid envelopes, and tonoplast membrane. The entire system for sulfate homeostasis, therefore, requires different types of sulfate transporters to be expressed and coordinately regulated in specific organs, cell types, and subcellular compartments. Transcriptional and post-transcriptional regulatory mechanisms control the expression levels and functions of sulfate transporters to optimize sulfate uptake and internal distribution in response to sulfate availability and demands for synthesis of organic sulfur metabolites. This review article provides an overview of sulfate transport systems and discusses their regulatory aspects investigated in the model plant species Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hideki Takahashi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
38
|
Schaufelberger M, Galbier F, Herger A, de Brito Francisco R, Roffler S, Clement G, Diet A, Hörtensteiner S, Wicker T, Ringli C. Mutations in the Arabidopsis ROL17/isopropylmalate synthase 1 locus alter amino acid content, modify the TOR network, and suppress the root hair cell development mutant lrx1. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2313-2323. [PMID: 30753668 PMCID: PMC6463047 DOI: 10.1093/jxb/ery463] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/19/2018] [Indexed: 05/22/2023]
Abstract
The growth and development of organisms must be tightly controlled and adjusted to nutrient availability and metabolic activities. The Target of Rapamycin (TOR) network is a major control mechanism in eukaryotes and influences processes such as translation, mitochondrial activity, production of reactive oxygen species, and the cytoskeleton. In Arabidopsis thaliana, inhibition of the TOR kinase causes changes in cell wall architecture and suppression of phenotypic defects of the cell wall formation mutant lrx1 (leucine-rich repeat extensin 1). The rol17 (repressor of lrx1 17) mutant was identified as a new suppressor of lrx1 that induces also a short root phenotype. The ROL17 locus encodes isopropylmalate synthase 1, a protein involved in leucine biosynthesis. Dependent on growth conditions, mutations in ROL17 do not necessarily alter the level of leucine, but always cause development of the rol17 mutant phenotypes, suggesting that the mutation does not only influence leucine biosynthesis. Changes in the metabolome of rol17 mutants are also found in plants with inhibited TOR kinase activity. Furthermore, rol17 mutants show reduced sensitivity to the TOR kinase inhibitor AZD-8055, indicating a modified TOR network. Together, these data suggest that suppression of lrx1 by rol17 is the result of an alteration of the TOR network.
Collapse
Affiliation(s)
- Myriam Schaufelberger
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Florian Galbier
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- Institute of Molecular Plant Biology, Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Aline Herger
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Rita de Brito Francisco
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Stefan Roffler
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Gilles Clement
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Anouck Diet
- Institute of Plant Sciences Paris-Saclay, CNRS, Université Paris Diderot, INRA, Université Paris Sud, Université d’Evry, Université Paris-Saclay, Rue de Noetzlin, Gif-sur-Yvette, France
| | - Stefan Hörtensteiner
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Thomas Wicker
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Christoph Ringli
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- Correspondence:
| |
Collapse
|
39
|
Wang M, Peng Q, Zhou F, Yang W, Dinh QT, Liang D. Uptake kinetics and interaction of selenium species in tomato (Solanum lycopersicum L.) seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9730-9738. [PMID: 30729443 DOI: 10.1007/s11356-019-04182-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/07/2019] [Indexed: 05/12/2023]
Abstract
Selenite and selenate are two main selenium (Se) forms absorbed by plants. The comparative effects of selenite and/or selenate on Se uptake and translocation in plants in spite of their coexistence in the environment are still unclear. Therefore, tomato (Solanum lycopersicum L.) seedlings were grown in a hydroponic solution with exogenous selenite, selenate, or selenite and selenate mixed, and Se concentrations in shoots, roots, and xylem sap were measured after harvest. Results showed that selenite (> 0.1 mg Se L-1) could cause phytotoxicity more easily than selenate (> 1 mg Se L-1) under hydroponic conditions. And the absorbability rate of tomato to selenate was higher than that to selenite when Se application level was 0.0175-0.2998 mg L-1, while the opposite result was observed in other Se concentrations. More Se accumulated in roots and Se(VI) in the xylem sap decreased when both Se forms supplied. This study demonstrated that the difference between selenite and selenate on Se uptake and translocation in tomatoes depended on exogenous Se concentration. And selenite could inhibit the absorption and translocation of selenate when supplied with both Se forms.
Collapse
Affiliation(s)
- Mengke Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qin Peng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenxiao Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Quang Toan Dinh
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
40
|
Stoeva MK, Coates JD. Specific inhibitors of respiratory sulfate reduction: towards a mechanistic understanding. MICROBIOLOGY-SGM 2018; 165:254-269. [PMID: 30556806 DOI: 10.1099/mic.0.000750] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microbial sulfate reduction (SR) by sulfate-reducing micro-organisms (SRM) is a primary environmental mechanism of anaerobic organic matter mineralization, and as such influences carbon and sulfur cycling in many natural and engineered environments. In industrial systems, SR results in the generation of hydrogen sulfide, a toxic, corrosive gas with adverse human health effects and significant economic and environmental consequences. Therefore, there has been considerable interest in developing strategies for mitigating hydrogen sulfide production, and several specific inhibitors of SRM have been identified and characterized. Specific inhibitors are compounds that disrupt the metabolism of one group of organisms, with little or no effect on the rest of the community. Putative specific inhibitors of SRM have been used to control sulfidogenesis in industrial and engineered systems. Despite the value of these inhibitors, mechanistic and quantitative studies into the molecular mechanisms of their inhibition have been sparse and unsystematic. The insight garnered by such studies is essential if we are to have a more complete understanding of SR, including the past and current selective pressures acting upon it. Furthermore, the ability to reliably control sulfidogenesis - and potentially assimilatory sulfate pathways - relies on a thorough molecular understanding of inhibition. The scope of this review is to summarize the current state of the field: how we measure and understand inhibition, the targets of specific SR inhibitors and how SRM acclimatize and/or adapt to these stressors.
Collapse
Affiliation(s)
- Magdalena K Stoeva
- 1Energy Biosciences Institute, University of California - Berkeley, Berkeley, CA, USA
- 2Department of Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA, USA
| | - John D Coates
- 2Department of Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA, USA
- 1Energy Biosciences Institute, University of California - Berkeley, Berkeley, CA, USA
| |
Collapse
|
41
|
Ma C, Chen Y, Ding S, Li Z, Shi WG, Zhang Y, Luo ZB. Sulfur nutrition stimulates lead accumulation and alleviates its toxicity in Populus deltoides. TREE PHYSIOLOGY 2018; 38:1724-1741. [PMID: 29939370 DOI: 10.1093/treephys/tpy069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/19/2018] [Indexed: 05/24/2023]
Abstract
Sulfur (S) can modulate plant responses to toxic heavy metals, but the underlying physiological and transcriptional regulation mechanisms remain largely unknown. To investigate the effects of S supply on lead (Pb)-induced toxicity in poplars, Populus deltoides monilifera (Aiton) Eckenw. saplings were exposed to 0 or 50 μM Pb together with one of the three S concentrations (0 (low S), 100 (moderate S) or 1500 (high S) μM Na2SO4). Populus deltoides roots absorbed Pb and it was partially translocated to the aerial organs, thereby decreasing the CO2 assimilation rate and leaf growth. Lead accumulation in poplars caused the overproduction of O2- and H2O2 to induce higher levels of total thiols (T-SH) and glutathione (GSH). Lead uptake by the roots and its accumulation in the aerial organs were repressed by low S application, but stimulated by high S supply. Lead-induced O2- and H2O2 production were exacerbated by S limitation, but alleviated by high S supply. Moreover, the concentrations of S-containing antioxidants including T-SH and GSH were reduced in S-deficient poplars, but increased in high S-treated plants, which corresponded well to the changes in the activities of enzymes involved in S assimilation and GSH biosynthesis. The transcript levels of both genes encoding sulfate transporters, i.e., SULTR1.1 and SULTR2.2, were elevated by low S application or high S supply in the roots, and the transcriptional upregulation of both genes was more pronounced under Pb exposure. Furthermore, the mRNA levels of several genes involved in S assimilation and the biosynthesis of GSH and phytochelatins, i.e., ATPS1, ATPS3, GSHS1, GSHS2 and PCS1, were upregulated in poplar roots with high S supply, particularly under Pb exposure. These results indicate that a high S supply can stimulate Pb accumulation and reduce its toxicity in poplars by improving S assimilation and stimulating the biosynthesis of S-containing compounds including T-SH and GSH.
Collapse
Affiliation(s)
- Chaofeng Ma
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Yinghao Chen
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Shen Ding
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Ziliang Li
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Wen-Guang Shi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yi Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhi-Bin Luo
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
42
|
White PJ. Selenium metabolism in plants. Biochim Biophys Acta Gen Subj 2018; 1862:2333-2342. [DOI: 10.1016/j.bbagen.2018.05.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 10/16/2022]
|
43
|
Hasan MK, Liu CX, Pan YT, Ahammed GJ, Qi ZY, Zhou J. Melatonin alleviates low-sulfur stress by promoting sulfur homeostasis in tomato plants. Sci Rep 2018; 8:10182. [PMID: 29976982 PMCID: PMC6033901 DOI: 10.1038/s41598-018-28561-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/12/2018] [Indexed: 11/09/2022] Open
Abstract
Despite involvement of melatonin (MT) in plant growth and stress tolerance, its role in sulfur (S) acquisition and assimilation remains unclear. Here we report that low-S conditions cause serious growth inhibition by reducing chlorophyll content, photosynthesis and biomass accumulation. S deficiency evoked oxidative stress leading to the cell structural alterations and DNA damage. In contrast, MT supplementation to the S-deprived plants resulted in a significant diminution in reactive oxygen species (ROS) accumulation, thereby mitigating S deficiency-induced damages to cellular macromolecules and ultrastructures. Moreover, MT promoted S uptake and assimilation by regulating the expression of genes encoding enzymes involved in S transport and metabolism. MT also protected cells from ROS-induced damage by regulating 2-cysteine peroxiredoxin and biosynthesis of S-compounds. These results provide strong evidence that MT can enhance plant tolerance to low-S-induced stress by improving S uptake, metabolism and redox homeostasis, and thus advocating beneficial effects of MT on increasing the sulfur utilization efficiency.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China.,Department of Agricultural Chemistry, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Chen-Xu Liu
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China
| | - Yan-Ting Pan
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China
| | - Golam Jalal Ahammed
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Zhen-Yu Qi
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China. .,Agricultural Experiment Station, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China.
| | - Jie Zhou
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China. .,Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, PR China.
| |
Collapse
|
44
|
Lima LW, Pilon-Smits EAH, Schiavon M. Mechanisms of selenium hyperaccumulation in plants: A survey of molecular, biochemical and ecological cues. Biochim Biophys Acta Gen Subj 2018; 1862:2343-2353. [PMID: 29626605 DOI: 10.1016/j.bbagen.2018.03.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/20/2018] [Accepted: 03/25/2018] [Indexed: 12/01/2022]
Abstract
BACKGROUND Selenium (Se) is a micronutrient required for many life forms, but toxic at higher concentration. Plants do not have a Se requirement, but can benefit from Se via enhanced antioxidant activity. Some plant species can accumulate Se to concentrations above 0.1% of dry weight and seem to possess mechanisms that distinguish Se from its analog sulfur (S). Research on these so-called Se hyperaccumulators aims to identify key genes for this remarkable trait and to understand ecological implications. SCOPE OF REVIEW This review gives a broad overview of the current knowledge about Se uptake and metabolism in plants, with a special emphasis on hypothesized mechanisms of Se hyperaccumulation. The role of Se in plant defense responses and the associated ecological implications are discussed. MAJOR CONCLUSIONS Hyperaccumulators have enhanced expression of S transport and assimilation genes, and may possess transporters with higher specificity for selenate over sulfate. Genes involved in antioxidant reactions and biotic stress resistance are also upregulated. Key regulators in these processes appear to be the growth regulators jasmonic acid, salicylic acid and ethylene. Hyperaccumulation may have evolved owing to associated ecological benefits, particularly protection against pathogens and herbivores, and as a form of elemental allelopathy. GENERAL SIGNIFICANCE Understanding plant Se uptake and metabolism in hyperaccumulators has broad relevance for the environment, agriculture and human and animal nutrition and may help generate crops with selenate-specific uptake and high capacity to convert selenate to less toxic, anticarcinogenic, organic Se compounds.
Collapse
Affiliation(s)
| | | | - Michela Schiavon
- DAFNAE, University of Padova, Agripolis, 35020 Legnaro, PD, Italy.
| |
Collapse
|
45
|
Alarcón-Poblete E, Inostroza-Blancheteau C, Alberdi M, Rengel Z, Reyes-Díaz M. Molecular regulation of aluminum resistance and sulfur nutrition during root growth. PLANTA 2018; 247:27-39. [PMID: 29119269 DOI: 10.1007/s00425-017-2805-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Aluminum toxicity and sulfate deprivation both regulate microRNA395 expression, repressing its low-affinity sulfate transporter ( SULTR2;1 ) target. Sulfate deprivation also induces the high-affinity sulfate transporter gene ( SULTR12 ), allowing enhanced sulfate uptake. Few studies about the relationships between sulfate, a plant nutrient, and aluminum, a toxic ion, are available; hence, the molecular and physiological processes underpinning this interaction are poorly understood. The Al-sulfate interaction occurs in acidic soils, whereby relatively high concentrations of trivalent toxic aluminum (Al3+) may hamper root growth, limiting uptake of nutrients, including sulfur (S). On the other side, Al3+ may be detoxified by complexation with sulfate in the acid soil solution as well as in the root-cell vacuoles. In this review, we focus on recent insights into the mechanisms governing plant responses to Al toxicity and its relationship with sulfur nutrition, emphasizing the role of phytohormones, microRNAs, and ion transporters in higher plants. It is known that Al3+ disturbs gene expression and enzymes involved in biosynthesis of S-containing cysteine in root cells. On the other hand, Al3+ may induce ethylene biosynthesis, enhance reactive oxygen species production, alter phytohormone transport, trigger root growth inhibition and promote sulfate uptake under S deficiency. MicroRNA395, regulated by both Al toxicity and sulfate deprivation, represses its low-affinity Sulfate Transporter 2;1 (SULTR2;1) target. In addition, sulfate deprivation induces High Affinity Sulfate Transporters (HAST; SULTR1;2), improving sulfate uptake from low-sulfate soil solutions. Identification of new microRNAs and cloning of their target genes are necessary for a better understanding of the role of molecular regulation of plant resistance to Al stress and sulfate deprivation.
Collapse
Affiliation(s)
- Edith Alarcón-Poblete
- Programa de Doctorado en Ciencias de Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Claudio Inostroza-Blancheteau
- Escuela de Agronomía, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile
- Núcleo de Investigación en Producción Alimentaría, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile
| | - Miren Alberdi
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| | - Zed Rengel
- Soil Science and Plant Nutrition, UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, 6009, Australia
| | - Marjorie Reyes-Díaz
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco, Chile.
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Casilla 54-D, Temuco, Chile.
| |
Collapse
|
46
|
Merlot S, Sanchez Garcia de la Torre V, Hanikenne M. Physiology and Molecular Biology of Trace Element Hyperaccumulation. AGROMINING: FARMING FOR METALS 2018. [DOI: 10.1007/978-3-319-61899-9_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
El Mehdawi AF, Jiang Y, Guignardi ZS, Esmat A, Pilon M, Pilon-Smits EAH, Schiavon M. Influence of sulfate supply on selenium uptake dynamics and expression of sulfate/selenate transporters in selenium hyperaccumulator and nonhyperaccumulator Brassicaceae. THE NEW PHYTOLOGIST 2018; 217:194-205. [PMID: 29034966 DOI: 10.1111/nph.14838] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/08/2017] [Indexed: 05/21/2023]
Abstract
Stanleya pinnata not only hyperaccumulates selenium (Se) to 0.5% of its dry weight, but also exhibits higher tissue Se-to-sulfur (S) ratios than other species and its surroundings. To investigate the mechanisms underlying this Se enrichment, we compared S. pinnata with the nonhyperaccumulators S. elata and Brassica juncea for selenate uptake in long- (9 d) and short-term (1 h) assays, using different concentrations of selenate and competitor sulfate. Different sulfate pre-treatments (0, 0.5, 5 mM, 3 d) were also tested for effects on selenate uptake and sulfate transporters' expression. Relative to nonhyperaccumulators, S. pinnata showed higher rates of root and shoot Se accumulation and less competitive inhibition by sulfate or by high-S pretreatment. The selenate uptake rate for S. pinnata (1 h) was three- to four-fold higher than for nonhyperaccumulators, and not significantly affected by 100-fold excess sulfate, which reduced selenate uptake by 100% in S. elata and 40% in B. juncea. Real-time reverse transcription PCR indicated constitutive upregulation in S. pinnata of sulfate transporters SULTR1;2 (root influx) and SULTR2;1 (translocation), but reduced SULTR1;1 expression (root influx). In S. pinnata, selenate uptake and translocation rates are constitutively elevated and relatively sulfate-independent. Underlying mechanisms likely include overexpression of SULTR1;2 and SULTR2;1, which may additionally have evolved enhanced specificity for selenate over sulfate.
Collapse
Affiliation(s)
- Ali F El Mehdawi
- Biology Department, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ying Jiang
- Biology Department, Colorado State University, Fort Collins, CO, 80523, USA
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zack S Guignardi
- Biology Department, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ahmad Esmat
- Biology Department, Colorado State University, Fort Collins, CO, 80523, USA
| | - Marinus Pilon
- Biology Department, Colorado State University, Fort Collins, CO, 80523, USA
| | | | - Michela Schiavon
- Biology Department, Colorado State University, Fort Collins, CO, 80523, USA
- DAFNAE, University of Padova, Agripolis, 35020, Legnaro, Padua, Italy
| |
Collapse
|
48
|
|
49
|
Bothe H, Słomka A. Divergent biology of facultative heavy metal plants. JOURNAL OF PLANT PHYSIOLOGY 2017; 219:45-61. [PMID: 29028613 DOI: 10.1016/j.jplph.2017.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 05/04/2023]
Abstract
Among heavy metal plants (the metallophytes), facultative species can live both in soils contaminated by an excess of heavy metals and in non-affected sites. In contrast, obligate metallophytes are restricted to polluted areas. Metallophytes offer a fascinating biology, due to the fact that species have developed different strategies to cope with the adverse conditions of heavy metal soils. The literature distinguishes between hyperaccumulating, accumulating, tolerant and excluding metallophytes, but the borderline between these categories is blurred. Due to the fact that heavy metal soils are dry, nutrient limited and are not uniform but have a patchy distribution in many instances, drought-tolerant or low nutrient demanding species are often regarded as metallophytes in the literature. In only a few cases, the concentrations of heavy metals in soils are so toxic that only a few specifically adapted plants, the genuine metallophytes, can cope with these adverse soil conditions. Current molecular biological studies focus on the genetically amenable and hyperaccumulating Arabidopsis halleri and Noccaea (Thlaspi) caerulescens of the Brassicaceae. Armeria maritima ssp. halleri utilizes glands for the excretion of heavy metals and is, therefore, a heavy metal excluder. The two endemic zinc violets of Western Europe, Viola lutea ssp. calaminaria of the Aachen-Liège area and Viola lutea ssp. westfalica of the Pb-Cu-ditch of Blankenrode, Eastern Westphalia, as well as Viola tricolor ecotypes of Eastern Europe, keep their cells free of excess heavy metals by arbuscular mycorrhizal fungi which bind heavy metals. The Caryophyllaceae, Silene vulgaris f. humilis and Minuartia verna, apparently discard leaves when overloaded with heavy metals. All Central European metallophytes have close relatives that grow in areas outside of heavy metal soils, mainly in the Alps, and have, therefore, been considered as relicts of the glacial epoch in the past. However, the current literature favours the idea that hyperaccumulation of heavy metals serves plants as deterrent against attack by feeding animals (termed elemental defense hypothesis). The capability to hyperaccumulate heavy metals in A. halleri and N. caerulescens is achieved by duplications and alterations of the cis-regulatory properties of genes coding for heavy metal transporting/excreting proteins. Several metallophytes have developed ecotypes with a varying content of such heavy metal transporters as an adaption to the specific toxicity of a heavy metal site.
Collapse
Affiliation(s)
- Hermann Bothe
- Botanical Institute, The University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany.
| | - Aneta Słomka
- Department of Plant Cytology and Embryology, Jagiellonian University, Gronostajowa 9 Str., 30-387 Cracow, Poland.
| |
Collapse
|
50
|
Mimmo T, Tiziani R, Valentinuzzi F, Lucini L, Nicoletto C, Sambo P, Scampicchio M, Pii Y, Cesco S. Selenium Biofortification in Fragaria × ananassa: Implications on Strawberry Fruits Quality, Content of Bioactive Health Beneficial Compounds and Metabolomic Profile. FRONTIERS IN PLANT SCIENCE 2017; 8:1887. [PMID: 29163609 PMCID: PMC5681748 DOI: 10.3389/fpls.2017.01887] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/18/2017] [Indexed: 05/18/2023]
Abstract
Selenium (Se) is an essential nutrient for humans, due to its antioxidant properties, whereas, to date, its essentiality to plants still remains to be demonstrated. Nevertheless, if added to the cultivation substrate, plants growth resulted enhanced. However, the concentration of Se in agricultural soils is very variable, ranging from 0.01 mg kg-1 up to 10 mg kg-1 in seleniferous areas. Therefore several studies have been performed aimed at bio-fortifying crops with Se and the approaches exploited were mainly based on the application of Se fertilizers. The aim of the present research was to assess the biofortification potential of Se in hydroponically grown strawberry fruits and its effects on qualitative parameters and nutraceutical compounds. The supplementation with Se did not negatively affect the growth and the yield of strawberries, and induced an accumulation of Se in fruits. Furthermore, the metabolomic analyses highlighted an increase in flavonoid and polyphenol compounds, which contributes to the organoleptic features and antioxidant capacity of fruits; in addition, an increase in the fruits sweetness also was detected in biofortified strawberries. In conclusion, based on our observations, strawberry plants seem a good target for Se biofortification, thus allowing the increase in the human intake of this essential micronutrient.
Collapse
Affiliation(s)
- Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Raphael Tiziani
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Fabio Valentinuzzi
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Luigi Lucini
- Institute of Environmental and Agricultural Chemistry, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Carlo Nicoletto
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of Padova, Padova, Italy
| | - Paolo Sambo
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of Padova, Padova, Italy
| | - Matteo Scampicchio
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|