1
|
Bown HE, Hunt JE, Barbour MM, Rogers GND, Whitehead D. Adaptation of stomatal conductance, photosynthesis and water-use efficiency at shoot and canopy scales in adjacent stands of Dacrycarpus dacrydioides and Podocarpus totara. TREE PHYSIOLOGY 2024; 44:tpae087. [PMID: 39030692 DOI: 10.1093/treephys/tpae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
We tested an approach to estimate daily canopy net photosynthesis, A, based on estimates of transpiration, E, using measurements of sap flow and water-use efficiency, ω, by measuring δ13C in CO2 respired from shoots in the canopies of two conifers (Podocarpaceae) native to New Zealand. The trees were planted in adjacent 20-year-old stands with the same soil and environmental conditions. Leaf area index was lower for Dacrycarpus dacrydioides D.Don in Lamb (1.34 m2 m-2) than for Podocarpus totara G.Benn. ex D.Don var. totara (2.01 m2 m-2), but mean (± standard error) stem diameters were the same at 152 ± 21 mm for D. dacrydioides and 154 ± 25 mm for P. totara. Over a 28-day period, daily A (per unit ground area) ranged almost five-fold but there were no significant differences between species (mean 2.73 ± 1.02 gC m-2 day-1). This was attributable to higher daily values of E (2.63 ± 0.83 mm day-1) and lower ω (1.35 ± 0.53 gC kg H2O-1) for D. dacrydioides compared with lower E (1.82 ± 0.72 mm day-1) and higher ω (1.90 ± 0.77 gC kg H2O-1) for P. totara. We attributed this to higher nitrogen availability and nitrogen concentration per unit foliage area, Na, and greater exposure to irradiance in the D. dacrydioides canopy compared with P. totara. Our findings support earlier observations that D. dacrydioides is more adapted to sites with poor drainage. In contrast, the high retention of leaf area and maintaining low rates of transpiration by P. totara, resulting in higher water-use efficiency, is an adaptive response to survival in dry conditions. Our findings show that physiological adjustments for two species adapted to different environments led to similar canopy photosynthesis rates when the trees were grown in the same conditions. We demonstrated consistency between whole-tree and more intensive shoot-scale measurements, confirming that integrated approaches are appropriate for comparative estimates of carbon uptake in stands with different species.
Collapse
Affiliation(s)
- Horacio E Bown
- Faculty of Forestry and Nature Conservation, University of Chile, PO Box 9206, Santiago, Chile
| | - John E Hunt
- Manaaki Whenua - Landcare Research, PO Box 69054, Lincoln 7640, New Zealand
| | - Margaret M Barbour
- Te Aka Mātuatua - School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Graeme N D Rogers
- Manaaki Whenua - Landcare Research, PO Box 69054, Lincoln 7640, New Zealand
| | - David Whitehead
- Manaaki Whenua - Landcare Research, PO Box 69054, Lincoln 7640, New Zealand
| |
Collapse
|
2
|
Solly EF, Jaeger ACH, Barthel M, Werner RA, Zürcher A, Hagedorn F, Six J, Hartmann M. Water limitation intensity shifts carbon allocation dynamics in Scots pine mesocosms. PLANT AND SOIL 2023; 490:499-519. [PMID: 37780069 PMCID: PMC10533586 DOI: 10.1007/s11104-023-06093-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/23/2023] [Indexed: 10/03/2023]
Abstract
Background and aims Tree species worldwide suffer from extended periods of water limitation. These conditions not only affect the growth and vitality of trees but also feed back on the cycling of carbon (C) at the plant-soil interface. However, the impact of progressing water loss from soils on the transfer of assimilated C belowground remains unresolved. Methods Using mesocosms, we assessed how increasing levels of water deficit affect the growth of Pinus sylvestris saplings and performed a 13C-CO2 pulse labelling experiment to trace the pathway of assimilated C into needles, fine roots, soil pore CO2, and phospholipid fatty acids of soil microbial groups. Results With increasing water limitation, trees partitioned more biomass belowground at the expense of aboveground growth. Moderate levels of water limitation barely affected the uptake of 13C label and the transit time of C from needles to the soil pore CO2. Comparatively, more severe water limitation increased the fraction of 13C label that trees allocated to fine roots and soil fungi while a lower fraction of 13CO2 was readily respired from the soil. Conclusions When soil water becomes largely unavailable, C cycling within trees becomes slower, and a fraction of C allocated belowground may accumulate in fine roots or be transferred to the soil and associated microorganisms without being metabolically used. Supplementary Information The online version contains supplementary material available at 10.1007/s11104-023-06093-5.
Collapse
Affiliation(s)
- Emily F. Solly
- Department of Environmental Systems Science, Sustainable Agroecosystems Group, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Astrid C. H. Jaeger
- Department of Environmental Systems Science, Sustainable Agroecosystems Group, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Matti Barthel
- Department of Environmental Systems Science, Sustainable Agroecosystems Group, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Roland A. Werner
- Department of Environmental Systems Science, Grassland Sciences Group, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Alois Zürcher
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Biogeochemistry Group, Zürcherstrasse 111, Birmensdorf, 8903 Switzerland
| | - Frank Hagedorn
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Biogeochemistry Group, Zürcherstrasse 111, Birmensdorf, 8903 Switzerland
| | - Johan Six
- Department of Environmental Systems Science, Sustainable Agroecosystems Group, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Martin Hartmann
- Department of Environmental Systems Science, Sustainable Agroecosystems Group, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland
| |
Collapse
|
3
|
Cong Y, Saurer M, Bai E, Siegwolf R, Gessler A, Liu K, Han H, Dang Y, Xu W, He HS, Li MH. In situ 13CO2 labeling reveals that alpine treeline trees allocate less photoassimilates to roots compared with low-elevation trees. TREE PHYSIOLOGY 2022; 42:1943-1956. [PMID: 35535565 DOI: 10.1093/treephys/tpac048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Carbon (C) allocation plays a crucial role for survival and growth of alpine treeline trees, however it is still poorly understood. Using in situ 13CO2 labeling, we investigated the leaf photosynthesis and the allocation of 13C labeled photoassimilates in various tissues (leaves, twigs and fine roots) in treeline trees and low-elevation trees. Non-structural carbohydrate concentrations were also determined. The alpine treeline trees (2000 m. a.s.l.), compared with low-elevation trees (1700 m a.s.l.), did not show any disadvantage in photosynthesis, but the former allocated proportionally less newly assimilated C belowground than the latter. Carbon residence time in leaves was longer in treeline trees (19 days) than that in low-elevation ones (10 days). We found an overall lower density of newly assimilated C in treeline trees. The alpine treeline trees may have a photosynthetic compensatory mechanism to counteract the negative effects of the harsh treeline environment (e.g., lower temperature and shorter growing season) on C gain. Lower temperature at treeline may limit the sink activity and C downward transport via phloem, and shorter treeline growing season may result in early cessation of root growth, decreases sink strength, which all together lead to lower density of new C in the sink tissues and finally limit the growth of the alpine treeline trees.
Collapse
Affiliation(s)
- Yu Cong
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, 5268 Renmin Street, Nanguan District, Changchun 130024, China
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, 4888 Shengbei Street, Kuancheng District, Changchun 130102, China
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse111, Birmensdorf CH-8903, Switzerland
| | - Edith Bai
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, 5268 Renmin Street, Nanguan District, Changchun 130024, China
| | - Rolf Siegwolf
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse111, Birmensdorf CH-8903, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse111, Birmensdorf CH-8903, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Universitaetsstrasse 16, Zurich 8092, Switzerland
| | - Kai Liu
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, 5268 Renmin Street, Nanguan District, Changchun 130024, China
| | - Hudong Han
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, 5268 Renmin Street, Nanguan District, Changchun 130024, China
| | - Yongcai Dang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, 5268 Renmin Street, Nanguan District, Changchun 130024, China
| | - Wenhua Xu
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, 1363 Shengtai Street, Nanguan District, Changchun 130033, China
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Hong S He
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Mai-He Li
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, 5268 Renmin Street, Nanguan District, Changchun 130024, China
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse111, Birmensdorf CH-8903, Switzerland
| |
Collapse
|
4
|
Tsuji C, Dannoura M, Desalme D, Angeli N, Takanashi S, Kominami Y, Epron D. Drought affects the fate of non-structural carbohydrates in hinoki cypress. TREE PHYSIOLOGY 2022; 42:784-796. [PMID: 34635913 DOI: 10.1093/treephys/tpab135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Tree species that close stomata early in response to drought are likely to suffer from an imbalance between limited carbohydrate supply due to reduced photosynthesis and metabolic demand. Our objective was to clarify the dynamic responses of non-structural carbohydrates to drought in a water-saving species, the hinoki cypress (Chamaecyparis obtusa Sieb. et Zucc.). To this end, we pulse-labeled young trees with 13CO2 10 days after the beginning of the drought treatment. Trees were harvested 7 days later, early during drought progression, and 86 days later when they had suffered from a long and severe drought. The labeled carbon (C) was traced in phloem extract, in the organic matter and starch of all the organs, and in the soluble sugars (sucrose, glucose and fructose) of the most metabolically active organs (foliage, green branches and fine roots). No drought-related changes in labeled C partitioning between belowground and aboveground organs were observed. The C allocation between non-structural carbohydrates was altered early during drought progression: starch concentration was lower by half in the photosynthetic organs, while the concentration of almost all soluble sugars tended to increase. The preferential allocation of labeled C to glucose and fructose reflected an increased demand for soluble sugars for osmotic adjustment. After 3 months of a lethal drought, the concentrations of soluble sugars and starch were admittedly lower in drought-stressed trees than in the controls, but the pool of non-structural carbohydrates was far from completely depleted. However, the allocation to storage had been impaired by drought; photosynthesis and the sugar translocation rate had also been reduced by drought. Failure to maintain cell turgor through osmoregulation and to refill embolized xylem due to the depletion in soluble sugars in the roots could have resulted in tree mortality in hinoki cypress, though the total pool of carbohydrate was not completely depleted.
Collapse
Affiliation(s)
- Chiaki Tsuji
- Graduate School of Environmental Studies, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masako Dannoura
- Graduate School of Environmental Studies, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Dorine Desalme
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 34 cours Léopold, Nancy F-54000, France
| | - Nicolas Angeli
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 34 cours Léopold, Nancy F-54000, France
| | - Satoru Takanashi
- Forestry and Forest Products Research Institute, Kansai Research Centre, 68 Nagaikyutaroh, Momoyama, Fushimi, Kyoto 612-0855, Japan
| | - Yuji Kominami
- Forestry and Forest Products Research Institute, 1 Matsunosato, Ibaraki, Tsukuba 305-8687, Japan
| | - Daniel Epron
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 34 cours Léopold, Nancy F-54000, France
| |
Collapse
|
5
|
Diao H, Wang A, Yuan F, Guan D, Wu J. Autotrophic respiration modulates the carbon isotope composition of soil respiration in a mixed forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150834. [PMID: 34627921 DOI: 10.1016/j.scitotenv.2021.150834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/24/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Carbon isotopic composition of soil respired CO2 (soil δ13CR) has been regarded as a good indicator of the linkages between aboveground processes and soil respiration. However, whether δ13CR of autotrophic or heterotrophic component of soil respiration dominates the temporal variability of total soil δ13CR was rarely examined by previous studies. In this study, carbon isotopic composition of atmospheric CO2 (δ13Cair) and soil δ13CR in control (with roots) and trenched (without roots) plots were measured in a temperated mixed forest. A 13C isotopic profile system and an automated soil respiration system were used for δ 13Cair and soil δ13CR measurements, respectively. We found that soil δ13CR in the control plots changed substantially in the growing season and it was more negative (by ~0.6‰) than that in the trenched plots, while soil δ13CR in the trenched plots showed a minor temporal variability. This suggests that δ13CR from the autotrophic respiration is the key decider of the seasonal variation pattern of the soil δ13CR. Moreover, the seasonal variation of soil δ13CR in the control plots showed a similar pattern with the seasonal variation of δ13Cair. A significant time-lag was found between δ13Cair and soil δ13CR, showing that soil δ13CR generally lagged behind δ13Cair 15 days. This result supports the hypothesis that soil respiration is closely related to carbon assimilation at the leaf-level and also stressed the importance of δ13Cair in shaping soil δ13CR. These findings are highly valuable to develop the process-based models of the carbon cycle of forest ecosystems.
Collapse
Affiliation(s)
- Haoyu Diao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anzhi Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Fenghui Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Dexin Guan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jiabing Wu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
6
|
Rehschuh R, Rehschuh S, Gast A, Jakab AL, Lehmann MM, Saurer M, Gessler A, Ruehr NK. Tree allocation dynamics beyond heat and hot drought stress reveal changes in carbon storage, belowground translocation and growth. THE NEW PHYTOLOGIST 2022; 233:687-704. [PMID: 34668198 DOI: 10.1111/nph.17815] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Heatwaves combined with drought affect tree functioning with as yet undetermined legacy effects on carbon (C) and nitrogen (N) allocation. We continuously monitored shoot and root gas exchange, δ13 CO2 of respiration and stem growth in well-watered and drought-treated Pinus sylvestris (Scots pine) seedlings exposed to increasing daytime temperatures (max. 42°C) and evaporative demand. Following stress release, we used 13 CO2 canopy pulse-labeling, supplemented by soil-applied 15 N, to determine allocation to plant compartments, respiration and soil microbial biomass (SMB) over 2.5 wk. Previously heat-treated seedlings rapidly translocated 13 C along the long-distance transport path, to root respiration (Rroot ; 7.1 h) and SMB (3 d). Furthermore, 13 C accumulated in branch cellulose, suggesting secondary growth enhancement. However, in recovering drought-heat seedlings, the mean residence time of 13 C in needles increased, whereas C translocation to Rroot was delayed (13.8 h) and 13 C incorporated into starch rather than cellulose. Concurrently, we observed stress-induced low N uptake and aboveground allocation. C and N allocation during early recovery were affected by stress type and impact. Although C uptake increased quickly in both treatments, drought-heat in combination reduced the above-belowground coupling and starch accumulated in leaves at the expense of growth. Accordingly, C allocation during recovery depends on phloem translocation capacity.
Collapse
Affiliation(s)
- Romy Rehschuh
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Stephanie Rehschuh
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Andreas Gast
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Andrea-Livia Jakab
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Marco M Lehmann
- Swiss Federal Research Institute WSL, Research Unit Forest Dynamics, Birmensdorf, 8903, Switzerland
| | - Matthias Saurer
- Swiss Federal Research Institute WSL, Research Unit Forest Dynamics, Birmensdorf, 8903, Switzerland
| | - Arthur Gessler
- Swiss Federal Research Institute WSL, Research Unit Forest Dynamics, Birmensdorf, 8903, Switzerland
- Department of Environmental System Sciences, ETH Zurich, Zurich, 8092, Switzerland
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| |
Collapse
|
7
|
Raiol-Junior LL, Cifuentes-Arenas JC, Cunniffe NJ, Turgeon R, Lopes SA. Modeling ' Candidatus Liberibacter asiaticus' Movement Within Citrus Plants. PHYTOPATHOLOGY 2021; 111:1711-1719. [PMID: 33724870 DOI: 10.1094/phyto-12-20-0559-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The phloem-limited 'Candidatus Liberibacter asiaticus' (Las) causes huanglongbing, a destructive citrus disease. Graft-inoculated potted plants were used to assess Las speed of movement in phloem in the greenhouse, and the impacts of temperature on plant colonization in growth-chamber experiments. For assessment of Las speed, plants were inoculated at the main stem and assessed over time by quantitative PCR (qPCR) or symptoms at various distances from the inoculum. For colonization, the plants were inoculated in one of two opposite top branches, maintained at from 8 to 20°C, from 18 to 30°C, or from 24 to 38°C daily range, and assessed by qPCR of samples taken from noninoculated shoots. For all experiments, frequencies of Las-positive sites were submitted to analysis of variance and binomial generalized linear model and logistic regression analyses. Probabilities of detecting Las in greenhouse plants were functions of time and distance from the inoculation site, which resulted in 2.9 and 3.8 cm day-1 average speed of movement. In growth chambers, the temperature impacted plant colonization by Las, new shoot emission, and symptom expression. After a 7-month exposure time, Las was absent in all new shoots in the cooler environment (average three per plant), and present in 70% at the milder environment (six shoots, severe symptoms) and 25% in the warmer environment (eight shoots, no visible symptoms). Temperature of 25.7°C was the optimum condition for plant colonization. This explains the higher impact and incidence of huanglongbing disease during the winter months or regions of milder climates in Brazil.
Collapse
Affiliation(s)
- Laudecir L Raiol-Junior
- Unversidade Estadual Paulista "Júlio de Mesquita Filho," 14884-900 Jaboticabal, São Paulo, Brazil
| | - Juan C Cifuentes-Arenas
- Unversidade Estadual Paulista "Júlio de Mesquita Filho," 14884-900 Jaboticabal, São Paulo, Brazil
- Fundo de Defesa da Citricultura, 14807-040 Araraquara, São Paulo, Brazil
| | - Nik J Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, U.K
| | - Robert Turgeon
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, U.S.A
| | - Silvio A Lopes
- Fundo de Defesa da Citricultura, 14807-040 Araraquara, São Paulo, Brazil
| |
Collapse
|
8
|
Epron D, Kamakura M, Azuma W, Dannoura M, Kosugi Y. Diurnal variations in the thickness of the inner bark of tree trunks in relation to xylem water potential and phloem turgor. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2021; 2:112-124. [PMID: 37283860 PMCID: PMC10168075 DOI: 10.1002/pei3.10045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 06/08/2023]
Abstract
The inner bark plays important roles in tree stems, including radial exchange of water with the xylem and translocation of carbohydrates. Both processes affect the water content and the thickness of the inner bark on a diurnal basis. For the first time, we simultaneously measured the diurnal variations in the inner bark thickness of hinoki cypress (Chamaecyparis obtusa) by using point dendrometers and those of local xylem potential by using stem psychrometers located next to the dendrometers to determine how these variations were related to each other, to phloem turgor and carbohydrate transport. We also estimated the axial hydrostatic pressure gradient by measuring the osmolality of the sap extracted from the inner bark. The inner bark shrunk during the day and swelled during the night with an amplitude related to day-to-day and seasonal variations in climate. The relationship between changes in xylem water potential and inner bark thickness exhibited a hysteresis loop during the day with a median lag of 2 h. A phloem turgor-related signal can be retrieved from the diurnal variations in the inner bark thickness, which was higher at the upper than at the lower position along the trunk. However, a downward hydrostatic pressure gradient was only observed at dawn, suggesting diurnal variations in the phloem sap flow velocity.
Collapse
Affiliation(s)
- Daniel Epron
- Graduate School of AgricultureKyoto UniversityKyotoJapan
- AgroParisTechINRAEUMR SILVAUniversité de LorraineNancyFrance
| | - Mai Kamakura
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Wakana Azuma
- Graduate School of Agricultural ScienceKobe UniversityKobeJapan
| | | | - Yoshiko Kosugi
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| |
Collapse
|
9
|
Gao D, Joseph J, Werner RA, Brunner I, Zürcher A, Hug C, Wang A, Zhao C, Bai E, Meusburger K, Gessler A, Hagedorn F. Drought alters the carbon footprint of trees in soils-tracking the spatio-temporal fate of 13 C-labelled assimilates in the soil of an old-growth pine forest. GLOBAL CHANGE BIOLOGY 2021; 27:2491-2506. [PMID: 33739617 PMCID: PMC8251913 DOI: 10.1111/gcb.15557] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 05/04/2023]
Abstract
Above and belowground compartments in ecosystems are closely coupled on daily to annual timescales. In mature forests, this interlinkage and how it is impacted by drought is still poorly understood. Here, we pulse-labelled 100-year-old trees with 13 CO2 within a 15-year-long irrigation experiment in a naturally dry pine forest to quantify how drought regime affects the transfer and use of assimilates from trees to the rhizosphere and associated microbial communities. It took 4 days until new 13 C-labelled assimilates were allocated to the rhizosphere. One year later, the 13 C signal of the 3-h long pulse labelling was still detectable in stem and soil respiration, which provides evidence that parts of the assimilates are stored in trees before they are used for metabolic processes in the rhizosphere. Irrigation removing the natural water stress reduced the mean C residence time from canopy uptake until soil respiration from 89 to 40 days. Moreover, irrigation increased the amount of assimilates transferred to and respired in the soil within the first 10 days by 370%. A small precipitation event rewetting surface soils altered this pattern rapidly and reduced the effect size to +35%. Microbial biomass incorporated 46 ± 5% and 31 ± 7% of the C used in the rhizosphere in the dry control and irrigation treatment respectively. Mapping the spatial distribution of soil-respired 13 CO2 around the 10 pulse-labelled trees showed that tree rhizospheres extended laterally 2.8 times beyond tree canopies, implying that there is a strong overlap of the rhizosphere among adjacent trees. Irrigation increased the rhizosphere area by 60%, which gives evidence of a long-term acclimation of trees and their rhizosphere to the drought regime. The moisture-sensitive transfer and use of C in the rhizosphere has consequences for C allocation within trees, soil microbial communities and soil carbon storage.
Collapse
Affiliation(s)
- Decai Gao
- Swiss Federal Research Institute WSLBirmensdorfSwitzerland
- Key Laboratory of Geographical Processes and Ecological Security of Changbai MountainsMinistry of EducationNortheast Normal UniversityChangchunChina
| | - Jobin Joseph
- Swiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Roland A Werner
- Department of Environmental Systems ScienceETH ZurichZurichSwitzerland
| | - Ivano Brunner
- Swiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Alois Zürcher
- Swiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Christian Hug
- Swiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Ao Wang
- Swiss Federal Research Institute WSLBirmensdorfSwitzerland
- Terrestrial EcosystemsETH ZurichZurichSwitzerland
| | - Chunhong Zhao
- Key Laboratory of Geographical Processes and Ecological Security of Changbai MountainsMinistry of EducationNortheast Normal UniversityChangchunChina
| | - Edith Bai
- Key Laboratory of Geographical Processes and Ecological Security of Changbai MountainsMinistry of EducationNortheast Normal UniversityChangchunChina
| | | | - Arthur Gessler
- Swiss Federal Research Institute WSLBirmensdorfSwitzerland
- Terrestrial EcosystemsETH ZurichZurichSwitzerland
| | - Frank Hagedorn
- Swiss Federal Research Institute WSLBirmensdorfSwitzerland
| |
Collapse
|
10
|
Zhang L, Chen Y, Hao G, Ma K, Bongers F, Sterck FJ. Conifer and broadleaved trees differ in branch allometry but maintain similar functional balances. TREE PHYSIOLOGY 2020; 40:511-519. [PMID: 31976531 DOI: 10.1093/treephys/tpz139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/28/2019] [Accepted: 12/18/2019] [Indexed: 05/29/2023]
Abstract
Conifers and broadleaved trees coexist in temperate forests and are expected to differ in partitioning strategies between leaf and stem. We compare functional balances between water loss and water supply, and between sugar production and sugar transport/storage, and associate these with xylem growth to better understand how they contribute to these life form strategies. We sampled canopy branches from 14 common species in a temperate forest in northeast China and measured xylem area, phloem area, ray area, ray percentage, dry wood density, xylem conductivity and mean xylem growth rate for branch stems, and the leaf area and specific leaf area for leaves, and calculated the leaf-specific conductivity. Conifers and broadleaved trees did not differ significantly in tissue areas, xylem growth rate and the relation between phloem area and leaf area. Conifers had higher xylem area but lower ray area relative to leaf area. For the same xylem conductivity, phloem area and ray parenchyma area did not differ between conifers and broadleaved trees. Xylem growth rate was similar relative to leaf area and phloem area. Our results indicate that conifers tend to develop more xylem area per leaf area and more tracheid area at the cost of ray parenchyma area, probably to compensate for the low water transport ability of tracheid-based xylem. The divergent strategies between conifers and broadleaved tree species in leaf area and xylem area partitioning probably lead to the convergence of partitioning between leaf area and phloem area. Consequently, conifers tend to consume rather than store carbon to achieve a similar xylem expansion per year as coexisting broadleaved trees.
Collapse
Affiliation(s)
- Lan Zhang
- Forest Ecology and Forest Management Group, Wageningen University and Research Centre, PO Box 47, Wageningen, 6700 AA, The Netherlands
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
| | - Yajun Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Pupiao Villiage Yuanjiang, Yunnan 666303, China
| | - Guangyou Hao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenhe District Shenyang, Liaoning 110016, China
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
| | - Frans Bongers
- Forest Ecology and Forest Management Group, Wageningen University and Research Centre, PO Box 47, Wageningen, 6700 AA, The Netherlands
| | - Frank J Sterck
- Forest Ecology and Forest Management Group, Wageningen University and Research Centre, PO Box 47, Wageningen, 6700 AA, The Netherlands
| |
Collapse
|
11
|
Duangngam O, Desalme D, Thaler P, Kasemsap P, Sathornkich J, Satakhun D, Chayawat C, Angeli N, Chantuma P, Epron D. In situ 13CO2 labelling of rubber trees reveals a seasonal shift in the contribution of the carbon sources involved in latex regeneration. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2028-2039. [PMID: 32211864 DOI: 10.1093/jxb/erz551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Rubber trees (Hevea brasiliensis) are the main source of natural rubber, extracted from latex, which exudes from the trunk after tapping. Tapped trees require large amounts of carbon (C) to regenerate the latex after its collection. Knowing the contribution of C sources involved in latex biosynthesis will help in understanding how rubber trees face this additional C demand. Whole crown 13CO2 pulse labelling was performed on 4-year-old rubber trees in June, when latex production was low, and in October, when it was high. 13C content was quantified in the foliage, phloem sap, wood, and latex. In both labelling periods, 13C was recovered in latex just after labelling, indicating that part of the carbohydrate was directly allocated to latex. However, significant amounts of 13C were still recovered in latex after 100 d and the peak was reached significantly later than in phloem sap, demonstrating the contribution of a reserve pool as a source of latex C. The contribution of new photosynthates to latex regeneration was faster and higher when latex metabolism was well established, in October, than in June. An improved understanding of C dynamics and the source-sink relationship in rubber tree is crucial to adapt tapping system practices and ensure sustainable latex production.
Collapse
Affiliation(s)
- Ornuma Duangngam
- Kasetsart University, Center of Thai-French Cooperation on Higher Education and Research, Bangkok, Thailand
- Kasetsart University, Department of Horticulture, Faculty of Agriculture, Bangkok, Thailand
| | - Dorine Desalme
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Nancy, France
| | - Philippe Thaler
- CIRAD, UMR Eco&Sols, Montpellier, France
- Université de Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, UMR Eco&Sols, Montpellier, France
| | - Poonpipope Kasemsap
- Kasetsart University, Department of Horticulture, Faculty of Agriculture, Bangkok, Thailand
| | - Jate Sathornkich
- Kasetsart University, Department of Horticulture, Faculty of Agriculture, Bangkok, Thailand
| | - Duangrat Satakhun
- Kasetsart University, Center of Thai-French Cooperation on Higher Education and Research, Bangkok, Thailand
| | - Chompunut Chayawat
- Kasetsart University, Center of Thai-French Cooperation on Higher Education and Research, Bangkok, Thailand
| | - Nicolas Angeli
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Nancy, France
| | - Pisamai Chantuma
- Chachoengsao Rubber Research Center, Rubber Authority of Thailand, Sanam Chaiket, Thailand
| | - Daniel Epron
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Nancy, France
- Kyoto University, Graduate School of Agriculture, Laboratory of Forest Hydrology, Kyoto, Japan
| |
Collapse
|
12
|
Terada Y, Horikawa Y, Nagata A, Kose K, Fukuda K. Dynamics of xylem and phloem sap flow in an outdoor zelkova tree visualized by magnetic resonance imaging. TREE PHYSIOLOGY 2020; 40:290-304. [PMID: 31860722 DOI: 10.1093/treephys/tpz120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/17/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Xylem and phloem sap flows in an intact, young Japanese zelkova tree (Zelkova serrata (Thunb.) Makino) growing outdoors were measured using magnetic resonance imaging (MRI). Two propagator-based sequences were developed for q-space imaging: pulse field gradient (PFG) with spin echo (PFG-SE) and stimulated echo (PFG-STE), which were used for xylem and phloem flow measurements, respectively. The data evaluation methods were improved to image fast xylem flow and slow phloem flow. Measurements were taken every 2-3 h for several consecutive days in August 2016, and diurnal changes in xylem and phloem sap flows in a cross-section of the trunk were quantified at a resolution of 1 mm2. During the day, apparent xylem flow volume exhibited a typical diurnal pattern following a vapor pressure deficit. The velocity mapping of xylem sap flow across the trunk cross section revealed that the greatest flow volume was found in current-year earlywood that had differentiated in April-May. The combined xylem flow in the 1- and 2-year-old annual rings also contributed to one-third of total sap flow. In the phloem, downward sap flow did not exhibit diurnal changes. This novel application of MRI in visualization of xylem and phloem sap flow by MRI is a promising tool for in vivo study of water transport in mature trees.
Collapse
Affiliation(s)
- Yasuhiko Terada
- Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yusuke Horikawa
- Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Akiyoshi Nagata
- Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Katsumi Kose
- Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kenji Fukuda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
13
|
Mannerheim N, Blessing CH, Oren I, Grünzweig JM, Bachofen C, Buchmann N. Carbon allocation to the root system of tropical tree Ceiba pentandra using 13C pulse labelling in an aeroponic facility. TREE PHYSIOLOGY 2020; 40:350-366. [PMID: 31976538 DOI: 10.1093/treephys/tpz142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 10/28/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Despite the important role of tropical forest ecosystems in the uptake and storage of atmospheric carbon dioxide (CO2), the carbon (C) dynamics of tropical tree species remains poorly understood, especially regarding belowground roots. This study assessed the allocation of newly assimilated C in the fast-growing pioneer tropical tree species Ceiba pentandra (L.), with a special focus on different root categories. During a 5-day pulse-labelling experiment, 9-month-old (~3.5-m-tall) saplings were labelled with 13CO2 in a large-scale aeroponic facility, which allowed tracing the label in bulk biomass and in non-structural carbohydrates (sugars and starch) as well as respiratory CO2 from the canopy to the root system, including both woody and non-woody roots. A combined logistic and exponential model was used to evaluate 13C mean transfer time and mean residence time (MRT) to the root systems. We found 13C in the root phloem as early as 2 h after the labelling, indicating a mean C transfer velocity of 2.4 ± 0.1 m h-1. Five days after pulse labelling, 27% of the tracers taken up by the trees were found in the leaves and 13% were recovered in the woody tissue of the trunk, 6% in the bark and 2% in the root systems, while 52% were lost, most likely by respiration and exudation. Larger amounts of 13C were found in root sugars than in starch, the former also demonstrating shorter MRT than starch. Of all investigated root categories, non-woody white roots (NRW) showed the largest 13C enrichment and peaked in the deepest NRW (2-3.5 m) as early as 24 ± 2 h after labelling. In contrast to coarse woody brown roots, the sink strength of NRW increased with root depth. The findings of this study improve the understanding of C allocation in young tropical trees and provide unique insights into the changing contributions of woody and non-woody roots to C sink strengths with depth.
Collapse
Affiliation(s)
- Neringa Mannerheim
- Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Carola H Blessing
- Landwirtschaftliches Technologiezentrum Augustenberg, Kutschenweg 20, 76287 Rheinstetten-Forchheim, Germany
| | - Israel Oren
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - José M Grünzweig
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Christoph Bachofen
- Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| |
Collapse
|
14
|
Oren I, Mannerheim N, Dumbur R, Fangmeier A, Buchmann N, Grünzweig JM. Patterns and dynamics of canopy-root coupling in tropical tree saplings vary with light intensity but not with root depth. THE NEW PHYTOLOGIST 2020; 225:727-739. [PMID: 31469437 DOI: 10.1111/nph.16153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Carbon (C) dynamics in canopy and roots influence whole-tree carbon fluxes, but little is known about canopy regulation of tree-root activity. Here, the patterns and dynamics of canopy-root C coupling are assessed in tropical trees. Large aeroponics facility was used to study the root systems of Ceiba pentandra and Khaya anthotheca saplings directly at different light intensities. In Ceiba, root respiration (Rr ) co-varied with photosynthesis (An ) in large saplings (3-to-7-m canopy-root axis) at high-light, but showed no consistent pattern at low-light. At medium-light and in small saplings (c. 1-m axis), Rr tended to decrease transiently towards midday. Proximal roots had higher Rr and nonstructural carbohydrate concentrations than distal roots, but canopy-root coupling was unaffected by root location. In medium-sized Khaya, no Rr pattern was observed, and in both species, Rr was unrelated to temperature. The early-afternoon increase in Rr suggests that canopy-root coupling is based on mass flow of newly fixed C in the phloem, whereas the early-morning rise in Rr with An indicates an additional coupling signal that travels faster than the phloem sap. In large saplings and potentially also in higher trees, light and possibly additional environmental factors control the diurnal patterns of canopy-root coupling, irrespective of root location.
Collapse
Affiliation(s)
- Israel Oren
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Neringa Mannerheim
- Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
| | - Rita Dumbur
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Andreas Fangmeier
- Institute of Landscape and Plant Ecology, University of Hohenheim, August-von-Hartmann-Str. 3, 70599, Stuttgart, Germany
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
| | - José M Grünzweig
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| |
Collapse
|
15
|
Furze ME, Drake JE, Wiesenbauer J, Richter A, Pendall E. Carbon isotopic tracing of sugars throughout whole-trees exposed to climate warming. PLANT, CELL & ENVIRONMENT 2019; 42:3253-3263. [PMID: 31335973 DOI: 10.1111/pce.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Trees allocate C from sources to sinks by way of a series of processes involving carbohydrate transport and utilization. Yet these dynamics are not well characterized in trees, and it is unclear how these dynamics will respond to a warmer world. Here, we conducted a warming and pulse-chase experiment on Eucalyptus parramattensis growing in a whole-tree chamber system to test whether warming impacts carbon allocation by increasing the speed of carbohydrate dynamics. We pulse-labelled large (6-m tall) trees with 13 C-CO2 to follow recently fixed C through different organs by using compound-specific isotope analysis of sugars. We then compared concentrations and mean residence times of individual sugars between ambient and warmed (+3°C) treatments. Trees dynamically allocated 13 C-labelled sugars throughout the aboveground-belowground continuum. We did not, however, find a significant treatment effect on C dynamics, as sugar concentrations and mean residence times were not altered by warming. From the canopy to the root system, 13 C enrichment of sugars decreased, and mean residence times increased, reflecting dilution and mixing of recent photoassimilates with older reserves along the transport pathway. Our results suggest that a locally endemic eucalypt was seemingly able to adjust its physiology to warming representative of future temperature predictions for Australia.
Collapse
Affiliation(s)
- Morgan E Furze
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - John E Drake
- Department of Forest and Natural Resources Management, College of Environmental Science and Forestry, State University of New York, Syracuse, New York, 13210
| | - Julia Wiesenbauer
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, 1010, Austria
| | - Andreas Richter
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, 1010, Austria
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| |
Collapse
|
16
|
Vincent-Barbaroux C, Berveiller D, Lelarge-Trouverie C, Maia R, Máguas C, Pereira J, Chaves MM, Damesin C. Carbon-use strategies in stem radial growth of two oak species, one Temperate deciduous and one Mediterranean evergreen: what can be inferred from seasonal variations in the δ13C of the current year ring? TREE PHYSIOLOGY 2019; 39:1329-1341. [PMID: 31100150 DOI: 10.1093/treephys/tpz043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Tree ring synthesis is a key process in wood production; however, little is known of the origin and fate of the carbon involved. We used natural 13C abundance to investigate the carbon-use process for the ring development in a temperate deciduous (Quercus petraea (Matt.) Liebl.) and a Mediterranean evergreen (Quercus ilex L.) oak. The sapwood carbon reserves, phloem sucrose contents, stem respired CO2 efflux and their respective carbon isotope compositions (δ13C) were recorded over 1 year, in the native area of each species. The seasonal δ13C variation of the current year ring was determined in the total ring throughout the seasons, as well as in slices from the fully mature ring after the growth season (intra-ring pattern). Although the budburst dates of the two oaks were similar, the growth of Quercus ilex began 50 days later. Both species exhibited growth cessation during the hot and dry summer but only Q. ilex resumed in the autumn. In the deciduous oak, xylem starch storage showed clear variations during the radial growth. The intra-ring δ13C variations of the two species exhibited similar ranges, but contrasting patterns, with an early increase for Q. petraea. Comparison between δ13C of starch and total ring suggested that Q. petraea (but not Q. ilex) builds its rings using reserves during the first month of growth. Shifts in ring and soluble sugars δ13C suggested an interspecific difference in either the phloem unloading or the use of fresh assimilate inside the ring. A decrease in ring δ13C for both oaks between the end of the radial growth and the winter is attributed to a lignification of ring cell walls after stem increment. This study highlighted the differences in carbon-use during ring growth for evergreen and deciduous oaks, as well as the benefits of exploring the process using natural 13C abundance.
Collapse
Affiliation(s)
- Cécile Vincent-Barbaroux
- Laboratoire Biologie des Ligneux et des Grandes Cultures, INRA, Université d'Orléans, USC, Orléans cedex 2, France
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Daniel Berveiller
- Laboratoire Ecologie Systématique et Evolution, UMR, Université Paris-Sud, CNRS, AgroparisTech, Orsay, France
| | - Caroline Lelarge-Trouverie
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Université Paris-Saclay, Bâtiment, Orsay, France
| | - Rodrigo Maia
- Centro de Ecologia, Evolução e Alterações Ambientais (cE3c), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Cristina Máguas
- Centro de Ecologia, Evolução e Alterações Ambientais (cE3c), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - João Pereira
- Centro de Estudos Florestais Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Manuela M Chaves
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Claire Damesin
- Laboratoire Ecologie Systématique et Evolution, UMR, Université Paris-Sud, CNRS, AgroparisTech, Orsay, France
| |
Collapse
|
17
|
Bögelein R, Lehmann MM, Thomas FM. Differences in carbon isotope leaf-to-phloem fractionation and mixing patterns along a vertical gradient in mature European beech and Douglas fir. THE NEW PHYTOLOGIST 2019; 222:1803-1815. [PMID: 30740705 DOI: 10.1111/nph.15735] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 02/03/2019] [Indexed: 05/13/2023]
Abstract
While photosynthetic isotope discrimination is well understood, the postphotosynthetic and transport-related fractionation mechanisms that influence phloem and subsequently tree ring δ13 C are less investigated and may vary among species. We studied the seasonal and diel courses of leaf-to-phloem δ13 C differences of water-soluble organic matter (WSOM) in vertical crown gradients and followed the assimilate transport via the branches to the trunk phloem at breast height in European beech (Fagus sylvatica) and Douglas fir (Pseudotsuga menziesii). δ13 C of individual sugars and cyclitols from a subsample was determined by compound-specific isotope analysis. In beech, leaf-to-phloem δ13 C differences in WSOM increased with height and were partly caused by biochemical isotope fractionation between leaf compounds. 13 C-Enrichment of phloem sugars relative to leaf sucrose implies an additional isotope fractionation mechanism related to leaf assimilate export. In Douglas fir, leaf-to-phloem δ13 C differences were much smaller and isotopically invariant pinitol strongly influenced leaf and phloem WSOM. Trunk phloem WSOM at breast height reflected canopy-integrated δ13 C in beech but not in Douglas fir. Our results demonstrate that leaf-to-phloem isotope fractionation and δ13 C mixing patterns along vertical gradients can differ between tree species. These effects have to be considered for functional interpretations of trunk phloem and tree ring δ13 C.
Collapse
Affiliation(s)
- Rebekka Bögelein
- Faculty of Regional and Environmental Sciences - Geobotany, University of Trier, Behringstraße 21, Trier, 54296, Germany
| | - Marco M Lehmann
- Forest Dynamics, Swiss Federal Institute WSL Birmensdorf, Zuercherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Frank M Thomas
- Faculty of Regional and Environmental Sciences - Geobotany, University of Trier, Behringstraße 21, Trier, 54296, Germany
| |
Collapse
|
18
|
Salomón RL, De Roo L, Bodé S, Boeckx P, Steppe K. Isotope ratio laser spectroscopy to disentangle xylem-transported from locally respired CO2 in stem CO2 efflux. TREE PHYSIOLOGY 2019; 39:819-830. [PMID: 30726992 DOI: 10.1093/treephys/tpy152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Respired CO2 in woody tissues radially diffuses to the atmosphere or it is transported upward with the transpiration stream, making the origin of CO2 in stem CO2 efflux (EA) uncertain, which may confound stem respiration (RS) estimates. An aqueous 13C-enriched solution was infused into stems of Populus tremula L. trees, and real-time measurements of 13C-CO2 and 12C-CO2 in EA were performed via Cavity Ring Down Laser Spectroscopy (CRDS). The contribution of locally respired CO2 (LCO2) and xylem-transported CO2 (TCO2) to EA was estimated from their different isotopic composition. Mean daily values of TCO2/EA ranged from 13% to 38%, evidencing the notable role that xylem CO2 transport plays in the assessment of stem respiration. Mean daily TCO2/EA did not differ between treatments of drought stress and light exclusion of woody tissues, but they showed different TCO2/EA dynamics on a sub-daily time scale. Sub-daily CO2 diffusion patterns were explained by a light-induced axial CO2 gradient ascribed to woody tissue photosynthesis, and the resistance to radial CO2 diffusion determined by bark water content. Here, we demonstrate the outstanding potential of CRDS paired with 13C-CO2 labelling to advance in the understanding of CO2 movement at the plant-atmosphere interface and the respiratory physiology in woody tissues.
Collapse
Affiliation(s)
- Roberto L Salomón
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Linus De Roo
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Samuel Bodé
- Isotope Bioscience Laboratory - ISOFYS, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Pascal Boeckx
- Isotope Bioscience Laboratory - ISOFYS, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
19
|
Epron D, Dannoura M, Ishida A, Kosugi Y. Estimation of phloem carbon translocation belowground at stand level in a hinoki cypress stand. TREE PHYSIOLOGY 2019; 39:320-331. [PMID: 29474703 DOI: 10.1093/treephys/tpy016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/15/2018] [Accepted: 01/27/2018] [Indexed: 06/08/2023]
Abstract
At stand level, carbon translocation in tree stems has to match canopy photosynthesis and carbohydrate requirements to sustain growth and the physiological activities of belowground sinks. This study applied the Hagen-Poiseuille equation to the pressure-flow hypothesis to estimate phloem carbon translocation and evaluate what percentage of canopy photosynthate can be transported belowground in a hinoki cypress (Chamaecyparis obtusa Sieb. et Zucc.) stand. An anatomical study revealed that, in contrast to sieve cell density, conductive phloem thickness and sieve cell hydraulic diameter at 1.3 m in height increased with increasing tree diameter, as did the concentration of soluble sugars in the phloem sap. At tree level, hydraulic conductivity increased by two orders of magnitude from the smallest to the largest trees in the stand, resulting in a stand-level hydraulic conductance of 1.7 × 10-15 m Pa-1 s-1. The osmotic potential of the sap extracted from the inner bark was -0.75 MPa. Assuming that phloem water potential equalled foliage water potential at predawn, the turgor pressure in the phloem at 1.3 m in height was estimated at 0.22 MPa, 0.59 MPa lower than values estimated in the foliage. With this maximal turgor pressure gradient, which would be lower during day-time when foliage water potential drops, the estimated stand-level rate of carbon translocation was 2.0 gC m-2 day-1 (30% of daily gross canopy photosynthesis), at a time of the year when aboveground growth and related respiration is thought to consume a large fraction of photosynthate, at the expense of belowground activity. Despite relying on some assumptions and approximations, this approach, when coupled with measurements of canopy photosynthesis, may further be used to provide qualitative insight into the seasonal dynamics of belowground carbon allocation.
Collapse
Affiliation(s)
- Daniel Epron
- Université de Lorraine, INRA, UMR SILVA, Faculté des Sciences et Technologies, Vandœuvre-lès-Nancy, France
- Kyoto University, Laboratory of Ecosystem Production and Dynamics, Graduate School of Global Environmental Studies, Kyoto, Japan
| | - Masako Dannoura
- Kyoto University, Laboratory of Ecosystem Production and Dynamics, Graduate School of Global Environmental Studies, Kyoto, Japan
- Kyoto University, Laboratory of Forest Utilization, Graduate School of Agriculture, Kyoto, Japan
| | - Atsushi Ishida
- Kyoto University, Center for Ecological Research, Otsu, Shiga, Japan
| | - Yoshiko Kosugi
- Kyoto University, Laboratory of Forest Hydrology, Graduate School of Agriculture, Kyoto, Japan
| |
Collapse
|
20
|
Hesse BD, Goisser M, Hartmann H, Grams TEE. Repeated summer drought delays sugar export from the leaf and impairs phloem transport in mature beech. TREE PHYSIOLOGY 2019; 39:192-200. [PMID: 30388272 DOI: 10.1093/treephys/tpy122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/07/2018] [Accepted: 10/05/2018] [Indexed: 05/24/2023]
Abstract
Phloem sustains maintenance and growth processes through transport of sugars from source to sink organs. Under low water availability, tree functioning is impaired, i.e., growth/photosynthesis decline and phloem transport may be hindered. In a 3-year throughfall exclusion (TE) experiment on mature European beech (Fagus sylvatica L.) we conducted 13CO2 branch labeling to investigate translocation of recently fixed photoassimilates under experimental drought over 2 years (2015 and 2016). We hypothesized (H1) that mean residence time of photoassimilates in leaves (MRT) increases, whereas (H2) phloem transport velocity (Vphloem) decreases under drought. Transport of carbohydrates in the phloem was assessed via δ13C of CO2 efflux measured at two branch positions following 13CO2 labeling. Pre-dawn water potential (ΨPD) and time-integrated soil water deficit (iSWD) were used to quantify drought stress. The MRT increased by 46% from 32.1 ± 5.4 h in control (CO) to 46.9 ± 12.3 h in TE trees, supporting H1, and positively correlated (P < 0.001) with iSWD. Confirming H2, Vphloem in 2016 decreased by 47% from 20.7 ± 5.8 cm h-1 in CO to 11.0 ± 2.9 cm h-1 in TE trees and positively correlated with ΨPD (P = 0.001). We suggest that the positive correlation between MRT and iSWD is a result of the accumulation of osmolytes maintaining cell turgor in the leaves under longer drought periods. Furthermore, we propose that the positive correlation between Vphloem and ΨPD is due to a lower water uptake of phloem conduits from surrounding tissues under increasing drought leading to a higher phloem sap viscosity and lower Vphloem. The two mechanisms increasing MRT and reducing Vphloem respond differently to low water availability and impair trees' carbon translocation under drought.
Collapse
Affiliation(s)
- Benjamin D Hesse
- Technical University of Munich, Department of Ecology and Ecosystem Management - Chair for Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, Freising, Germany
| | - Michael Goisser
- Technical University of Munich, Department of Ecology and Ecosystem Management - Chair for Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, Freising, Germany
| | - Henrik Hartmann
- Max-Planck Institute for Biogeochemistry, Department of Biogeochemical Processes, Hans Knöll Str. 10, Jena, Germany
| | - Thorsten E E Grams
- Technical University of Munich, Department of Ecology and Ecosystem Management - Chair for Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, Freising, Germany
| |
Collapse
|
21
|
Salmon Y, Dietrich L, Sevanto S, Hölttä T, Dannoura M, Epron D. Drought impacts on tree phloem: from cell-level responses to ecological significance. TREE PHYSIOLOGY 2019; 39:173-191. [PMID: 30726983 DOI: 10.1093/treephys/tpy153] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/03/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
On-going climate change is increasing the risk of drought stress across large areas worldwide. Such drought events decrease ecosystem productivity and have been increasingly linked to tree mortality. Understanding how trees respond to water shortage is key to predicting the future of ecosystem functions. Phloem is at the core of the tree functions, moving resources such as non-structural carbohydrates, nutrients, and defence and information molecules across the whole plant. Phloem function and ability to transport resources is tightly controlled by the balance of carbon and water fluxes within the tree. As such, drought is expected to impact phloem function by decreasing the amount of available water and new photoassimilates. Yet, the effect of drought on the phloem has received surprisingly little attention in the last decades. Here we review existing knowledge on drought impacts on phloem transport from loading and unloading processes at cellular level to possible effects on long-distance transport and consequences to ecosystems via ecophysiological feedbacks. We also point to new research frontiers that need to be explored to improve our understanding of phloem function under drought. In particular, we show how phloem transport is affected differently by increasing drought intensity, from no response to a slowdown, and explore how severe drought might actually disrupt the phloem transport enough to threaten tree survival. Because transport of resources affects other organisms interacting with the tree, we also review the ecological consequences of phloem response to drought and especially predatory, mutualistic and competitive relations. Finally, as phloem is the main path for carbon from sources to sink, we show how drought can affect biogeochemical cycles through changes in phloem transport. Overall, existing knowledge is consistent with the hypotheses that phloem response to drought matters for understanding tree and ecosystem function. However, future research on a large range of species and ecosystems is urgently needed to gain a comprehensive understanding of the question.
Collapse
Affiliation(s)
- Yann Salmon
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, Gustaf Hällströmin katu 2b, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, Latokartanonkaari 7, University of Helsinki, Helsinki, Finland
| | - Lars Dietrich
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, Basel, Switzerland
| | - Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, PO Box 1663 MA 495, Los Alamos, NM, USA
| | - Teemu Hölttä
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, Latokartanonkaari 7, University of Helsinki, Helsinki, Finland
| | - Masako Dannoura
- Kyoto University, Laboratory of Ecosystem Production and Dynamics, Graduate School of Global Environmental Studies, Kyoto, Japan
- Kyoto University, Laboratory of Forest Utilization, Graduate School of Agriculture, Kyoto, Japan
| | - Daniel Epron
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Faculté des Sciences et Technologies, Nancy, France
| |
Collapse
|
22
|
Dobbelstein E, Fink D, Öner-Sieben S, Czempik L, Lohaus G. Seasonal changes of sucrose transporter expression and sugar partitioning in common European tree species. TREE PHYSIOLOGY 2019; 39:284-299. [PMID: 30388274 DOI: 10.1093/treephys/tpy120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/17/2018] [Accepted: 10/04/2018] [Indexed: 05/13/2023]
Abstract
In temperate woody species, carbon transport from source to sink tissues is a striking physiological process, particularly considering seasonal changes. The functions of different tissues can also alternate across the seasons. In this regard, phloem loading and sugar distribution are important aspects of carbon partitioning, and sucrose uptake transporters (SUTs) play a key role in these processes. Therefore, the influence of seasons and different light-dark conditions on the expression of SUTs from 3-year-old Fagus sylvatica L., Quercus robur L. and Picea abies (L.) Karst. trees were analyzed. In addition, tissue-specific sugar and starch contents under these different environmental conditions were determined. Putative SUTs were identified in the gymnosperms (Picea abies, Ginkgo biloba L.), here for the first time, and also in the angiosperms (Q. robur, F. sylvatica). The identified SUT sequences of the different tree species cluster into three types, similar to other SUTs from herbaceous and tree species. Furthermore, the sequences from angiosperm and those from gymnosperm species form distinct clusters within the three types of SUTs. In F. sylvatica, Q. robur and P. abies, the expression levels of the different SUTs during seasons showed marked variations. Because of the high expression levels of type I SUTs in bark, wood and leaves during active growing phases in spring and summer, it can be assumed that they are involved in phloem loading, sucrose retrieval and possibly in further physiological processes. The expression patterns also indicate a flexible expression in all tissues depending on physiological requirements and environmental conditions. Compared with type I SUTs, the seasonal variations of type II SUT expression were less pronounced, whereas the seasonal variations of the type III SUT expression patterns were partly reverse. In addition to the seasonal regulation, the expressions of the different SUTs were also regulated by light in a diurnal manner.
Collapse
Affiliation(s)
- Elena Dobbelstein
- Molecular Plant Science/Plant Biochemistry, University of Wuppertal, Gaußstr. 20, Wuppertal, Germany
| | - Daniel Fink
- Molecular Plant Science/Plant Biochemistry, University of Wuppertal, Gaußstr. 20, Wuppertal, Germany
| | - Soner Öner-Sieben
- Clinic for General Pediatrics, Neonatology and Paediatric Cardiology, University Clinic Düsseldorf, Moorenstr. 5, Düsseldorf, Germany
| | - Laura Czempik
- Molecular Plant Science/Plant Biochemistry, University of Wuppertal, Gaußstr. 20, Wuppertal, Germany
| | - Gertrud Lohaus
- Molecular Plant Science/Plant Biochemistry, University of Wuppertal, Gaußstr. 20, Wuppertal, Germany
| |
Collapse
|
23
|
Dannoura M, Epron D, Desalme D, Massonnet C, Tsuji S, Plain C, Priault P, Gérant D. The impact of prolonged drought on phloem anatomy and phloem transport in young beech trees. TREE PHYSIOLOGY 2019; 39:201-210. [PMID: 29931112 DOI: 10.1093/treephys/tpy070] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/04/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Phloem failure has recently been recognized as one of the mechanisms causing tree mortality under drought, though direct evidence is still lacking. We combined 13C pulse-labelling of 8-year-old beech trees (Fagus sylvatica L.) growing outdoors in a nursery with an anatomical study of the phloem tissue in their stems to examine how drought alters carbon transport and phloem transport capacity. For the six trees under drought, predawn leaf water potential ranged from -0.7 to -2.4 MPa, compared with an average of -0.2 MPa in five control trees with no water stress. We also observed a longer residence time of excess 13C in the foliage and the phloem sap in trees under drought compared with controls. Compared with controls, excess 13C in trunk respiration peaked later in trees under moderate drought conditions and showed no decline even after 4 days under more severe drought conditions. We estimated higher phloem sap viscosity in trees under drought. We also observed much smaller sieve-tube radii in all drought-stressed trees, which led to lower sieve-tube conductivity and lower phloem conductance in the tree stem. We concluded that prolonged drought affected phloem transport capacity through a change in anatomy and that the slowdown of phloem transport under drought likely resulted from a reduced driving force due to lower hydrostatic pressure between the source and sink organs.
Collapse
Affiliation(s)
- Masako Dannoura
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Faculté des Sciences et Technologies, Nancy, France
- Laboratory of Ecosystem Production and Dynamics, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
- Laboratory of Forest Utilization, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Daniel Epron
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Faculté des Sciences et Technologies, Nancy, France
| | - Dorine Desalme
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Faculté des Sciences et Technologies, Nancy, France
| | - Catherine Massonnet
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Faculté des Sciences et Technologies, Nancy, France
| | - Shoko Tsuji
- Laboratory of Ecosystem Production and Dynamics, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Caroline Plain
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Faculté des Sciences et Technologies, Nancy, France
| | - Pierrick Priault
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Faculté des Sciences et Technologies, Nancy, France
| | - Dominique Gérant
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Faculté des Sciences et Technologies, Nancy, France
| |
Collapse
|
24
|
Epron D, Dannoura M, Hölttä T. Introduction to the invited issue on phloem function and dysfunction. TREE PHYSIOLOGY 2019; 39:167-172. [PMID: 30785633 DOI: 10.1093/treephys/tpz007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/08/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Daniel Epron
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Faculté des Sciences et Technologies, Nancy, France
| | - Masako Dannoura
- Kyoto University, Laboratory of Ecosystem Production and Dynamics, Graduate School of Global Environmental Studies, Kyoto, Japan
- Kyoto University, Laboratory of Forest Utilization, Graduate School of Agriculture, Kyoto, Japan
| | - Teemu Hölttä
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, Latokartanonkaari 7, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Shi H, Zhou Q, Liu X, Xie F, Li T, Zhang Q, Dang H. Variations in carbon source-sink relationships in subalpine fir across elevational gradients. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:64-70. [PMID: 30218502 DOI: 10.1111/plb.12912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Cold-adapted trees display acclimation in both carbon source and carbon sink capacity to low-temperature stress at their upper elevational range limits. Hence a balanced carbon source-sink capacity might be required for their persistence and survival at the elevational tree limits. The present study examined the spatial dynamics of carbon source-sink relationship in subalpine fir (Abies fargesii) trees along elevational gradients in the northern slope of the temperate region and in the southern slope of the subtropics in terms of climate in the Qinling Mountain range, north-central China. The results showed that non-structural carbohydrate (NSC) concentrations in both the source and sink tissues increased with the increase in elevation. The ratio of carbon source-sink displayed a consistent decreasing trend with the increase in elevation and during growing season, showing that it was lowest at a ratio of 2.93 in the northern slope and at a ratio of 2.61 in the southern slope at the upper distribution elevations in the late growing season. Such variations of carbon source-sink ratio might be attributable to the balance between carbon source and sink activities, which changed seasonally across the elevational distribution range. We concluded that a ratio of carbon source-sink of at least 2.6 might be essential for subalpine fir trees to persist at their upper range limits. Therefore, a sufficient source-sink ratio and a balanced source-sink relationship might be required for subalpine fir trees to survive and develop at their upper elevational distribution limits.
Collapse
Affiliation(s)
- H Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Q Zhou
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - X Liu
- Administration of Foping National Nature Reserve, Foping, China
| | - F Xie
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Tibet University, Lhasa, China
| | - T Li
- Administration of Foping National Nature Reserve, Foping, China
| | - Q Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, China
| | - H Dang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
26
|
Epron D, Dannoura M, Plain C. Using 13C to Quantify Phloem Transport on Tall Plants in the Field. Methods Mol Biol 2019; 2014:145-151. [PMID: 31197793 DOI: 10.1007/978-1-4939-9562-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The difference in time lags between a labeling pulse of 13CO2 of the foliage and the appearance of labeled C in the respiration at different locations along the stem of a tall plant is used to estimate at which velocities the isotope tracer, i.e., the labeled carbohydrates, are transported in the phloem sap. Here we describe a method for pulse-labeling tall plants in the field and subsequently tracing 13C in the respiratory efflux of CO2.
Collapse
Affiliation(s)
- Daniel Epron
- Université de Lorraine, AgroParisTech, Inra, UMR Silva, Nancy, France.
- Kyoto University, Graduate School of Agriculture, Kyoto, Japan.
| | - Masako Dannoura
- Kyoto University, Graduate School of Agriculture, Kyoto, Japan
- Kyoto University, Graduate School of Global Environmental Studies, Kyoto, Japan
| | - Caroline Plain
- UMR Silva, INRA-AgroParisTech, Université de Lorraine, Nancy, France
| |
Collapse
|
27
|
Liesche J, Schulz A. Phloem transport in gymnosperms: a question of pressure and resistance. CURRENT OPINION IN PLANT BIOLOGY 2018; 43:36-42. [PMID: 29304388 DOI: 10.1016/j.pbi.2017.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
Even in the highest trees, carbon is efficiently distributed from leaves to heterotrophic tissues like fruit, flowers and roots. This long-distance transport happens in the highly specialized sieve elements of the phloem. In gymnosperms, sieve element anatomy appears to be less suited for mass flow of phloem sap than that of angiosperms. This review covers available data on gymnosperm phloem to evaluate if it functions differently from that of angiosperms. Although current evidence suggests that, despite a higher pathway resistance, a single source-to-sink turgor pressure gradient can drive mass flow, several questions remain unanswered. These include how endoplasmic reticulum-complexes in sieve elements influence flow, as well as what the effect of symplasmic coupling along the whole phloem pathway could be.
Collapse
Affiliation(s)
- Johannes Liesche
- College of Life Science, Department of Biology, Northwest A&F University, 3 Taicheng Road, 712100 Yangling, Shaanxi, China
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| |
Collapse
|
28
|
|
29
|
Seasonal and diurnal patterns of soil respiration in an evergreen coniferous forest: Evidence from six years of observation with automatic chambers. PLoS One 2018; 13:e0192622. [PMID: 29432465 PMCID: PMC5809067 DOI: 10.1371/journal.pone.0192622] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 01/26/2018] [Indexed: 11/19/2022] Open
Abstract
Soil respiration (Rs) plays a key role in the carbon balance of forest ecosystems. There is growing evidence that Rs is strongly correlated with canopy photosynthesis; however, how Rs is linked to aboveground attributes at various phenological stages, on the seasonal and diurnal scale, remains unclear. Using an automated closed dynamic chamber system, we assessed the seasonal and diurnal patterns of Rs in a temperate evergreen coniferous forest from 2005 to 2010. High-frequency Rs rates followed seasonal soil temperature patterns but the relationship showed strong hysteresis. Predictions of Rs based on a temperature-response model underestimated the observed values from June to July and overestimated those from August to September and from January to April. The observed Rs was higher in early summer than in late summer and autumn despite similar soil temperatures. At a diurnal scale, the Rs pattern showed a hysteresis loop with the soil temperature trend during the seasons of high biological activity (June to October). In July and August, Rs declined after the morning peak from 0800 to 1400 h, although soil temperatures continued to increase. During that period, figure-eight-shaped diurnal Rs patterns were observed, suggesting that a midday decline in root physiological activity may have occurred in early summer. In September and October, Rs was higher in the morning than in the night despite consistently high soil temperatures. We have characterised the magnitude and pattern of seasonal and diurnal Rs in an evergreen forest. We conclude that the temporal variability of Rs at high resolution is more related to seasons across the temperature dependence.
Collapse
|
30
|
Dong X, Jochmann MA, Elsner M, Meyer AH, Bäcker LE, Rahmatullah M, Schunk D, Lens G, Meckenstock RU. Monitoring Microbial Mineralization Using Reverse Stable Isotope Labeling Analysis by Mid-Infrared Laser Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11876-11883. [PMID: 28903553 PMCID: PMC5647565 DOI: 10.1021/acs.est.7b02909] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Assessing the biodegradation of organic compounds is a frequent question in environmental science. Here, we present a sensitive, inexpensive, and simple approach to monitor microbial mineralization using reverse stable isotope labeling analysis (RIL) of dissolved inorganic carbon (DIC). The medium for the biodegradation assay contains regular organic compounds and 13C-labeled DIC with 13C atom fractions (x(13C)DIC) higher than natural abundance (typically 2-50%). The produced CO2 (x(13C) ≈ 1.11%) gradually dilutes the initial x(13C)DIC allowing to quantify microbial mineralization using mass-balance calculations. For 13C-enriched CO2 samples, a newly developed isotope ratio mid-infrared spectrometer was introduced with a precision of x(13C) < 0.006%. As an example for extremely difficult and slowly degradable compounds, CO2 production was close to the theoretical stoichiometry for anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Furthermore, we could measure the aerobic degradation of dissolved organic carbon (DOC) adsorbed to granular activated carbon in a drinking water production plant, which cannot be labeled with 13C. Thus, the RIL approach can be applied to sensitively monitor biodegradation of various organic compounds under anoxic or oxic conditions.
Collapse
Affiliation(s)
- Xiyang Dong
- Biofilm
Centre, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
| | - Maik A. Jochmann
- Instrumental
Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Martin Elsner
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
- Chair
of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistrasse 17, D-81377 Munich, Germany
| | - Armin H. Meyer
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
| | - Leonard E. Bäcker
- Biofilm
Centre, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Mona Rahmatullah
- Biofilm
Centre, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Daniel Schunk
- RWW Rheinisch-Westfälische
Wasserwerksgesellschaft mbH, Am Schloß
Broich 1-3, 45479 Mülheim an der Ruhr, Germany
| | - Guido Lens
- RWW Rheinisch-Westfälische
Wasserwerksgesellschaft mbH, Am Schloß
Broich 1-3, 45479 Mülheim an der Ruhr, Germany
| | - Rainer U. Meckenstock
- Biofilm
Centre, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
- Phone: +49 (201) 183-6601; fax: +49 (201) 183-6603; e-mail:
| |
Collapse
|
31
|
Paljakka T, Jyske T, Lintunen A, Aaltonen H, Nikinmaa E, Hölttä T. Gradients and dynamics of inner bark and needle osmotic potentials in Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies L. Karst). PLANT, CELL & ENVIRONMENT 2017; 40:2160-2173. [PMID: 28671720 DOI: 10.1111/pce.13017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 06/07/2023]
Abstract
Preconditions of phloem transport in conifers are relatively unknown. We studied the variation of needle and inner bark axial osmotic gradients and xylem water potential in Scots pine and Norway spruce by measuring needle and inner bark osmolality in saplings and mature trees over several periods within a growing season. The needle and inner bark osmolality was strongly related to xylem water potential in all studied trees. Sugar concentrations were measured in Scots pine, and they had similar dynamics to inner bark osmolality. The sucrose quantity remained fairly constant over time and position, whereas the other sugars exhibited a larger change with time and position. A small osmotic gradient existed from branch to stem base under pre-dawn conditions, and the osmotic gradient between upper stem and stem base was close to zero. The turgor in branches was significantly driven by xylem water potential, and the turgor loss point in branches was relatively close to daily minimum needle water potentials typically reported for Scots pine. Our results imply that xylem water potential considerably impacts the turgor pressure gradient driving phloem transport and that gravitation has a relatively large role in phloem transport in the stems of mature Scots pine trees.
Collapse
Affiliation(s)
- Teemu Paljakka
- Department of Forest Sciences, University of Helsinki, Helsinki, FI-00014, Finland
| | - Tuula Jyske
- Natural Resources Institute Finland (Luke), FI-02150, Espoo, Finland
| | - Anna Lintunen
- Department of Forest Sciences, University of Helsinki, Helsinki, FI-00014, Finland
| | - Heidi Aaltonen
- Department of Forest Sciences, University of Helsinki, Helsinki, FI-00014, Finland
| | - Eero Nikinmaa
- Department of Forest Sciences, University of Helsinki, Helsinki, FI-00014, Finland
| | - Teemu Hölttä
- Department of Forest Sciences, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
32
|
Desalme D, Priault P, Gérant D, Dannoura M, Maillard P, Plain C, Epron D. Seasonal variations drive short-term dynamics and partitioning of recently assimilated carbon in the foliage of adult beech and pine. THE NEW PHYTOLOGIST 2017; 213:140-153. [PMID: 27513732 DOI: 10.1111/nph.14124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/28/2016] [Indexed: 06/06/2023]
Abstract
13 CO2 pulse-labelling experiments were performed in situ on adult beeches (Fagus sylvatica) and pines (Pinus pinaster) at different phenological stages to study seasonal and interspecific short-term dynamics and partitioning of recently assimilated carbon (C) in leaves. Polar fraction (PF, including soluble sugars, amino acids and organic acids) and starch were purified from foliage sampled during a 10-d chase period. C contents, isotopic compositions and 13 C dynamics parameters were determined in bulk foliage, PF and starch. Decrease in 13 C amount in bulk foliage followed a two-pool exponential model highlighting 13 C partitioning between 'mobile' and 'stable' pools, the relative proportion of the latter being maximal in beech leaves in May. Early in the growing season, new foliage acted as a strong C sink in both species, but although young leaves and needles were already photosynthesizing, the latter were still supplied with previous-year needle photosynthates 2 months after budburst. Mean 13 C residence times (MRT) were minimal in summer, indicating fast photosynthate export to supply perennial organ growth in both species. In late summer, MRT differed between senescing beech leaves and overwintering pine needles. Seasonal variations of 13 C partitioning and dynamics in field-grown tree foliage are closely linked to phenological differences between deciduous and evergreen trees.
Collapse
Affiliation(s)
- Dorine Desalme
- Ecologie et Ecophysiologie Forestières, Université de Lorraine, INRA, UMR 1137, Vandoeuvre-lès-Nancy F-54500, France
| | - Pierrick Priault
- Ecologie et Ecophysiologie Forestières, Université de Lorraine, INRA, UMR 1137, Vandoeuvre-lès-Nancy F-54500, France
| | - Dominique Gérant
- Ecologie et Ecophysiologie Forestières, Université de Lorraine, INRA, UMR 1137, Vandoeuvre-lès-Nancy F-54500, France
| | - Masako Dannoura
- INRA, UMR 1263, F-33883 Villenave d'Ornon, France
- Laboratory of Forest Utilization, Kyoto University, Kyoto 606-8502, Japan
| | - Pascale Maillard
- Ecologie et Ecophysiologie Forestières, Université de Lorraine, INRA, UMR 1137, Vandoeuvre-lès-Nancy F-54500, France
| | - Caroline Plain
- Ecologie et Ecophysiologie Forestières, Université de Lorraine, INRA, UMR 1137, Vandoeuvre-lès-Nancy F-54500, France
| | - Daniel Epron
- Ecologie et Ecophysiologie Forestières, Université de Lorraine, INRA, UMR 1137, Vandoeuvre-lès-Nancy F-54500, France
| |
Collapse
|
33
|
Paya AM, Grams TEE, Bauerle TL. Seasonal dynamics of δ(13) C of C-rich fractions from Picea abies (Norway spruce) and Fagus sylvatica (European beech) fine roots. PLANT, CELL & ENVIRONMENT 2016; 39:2004-2013. [PMID: 27155532 DOI: 10.1111/pce.12765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
The (13/12) C ratio in plant roots is likely dynamic depending on root function (storage versus uptake), but to date, little is known about the effect of season and root order (an indicator of root function) on the isotopic composition of C-rich fractions in roots. To address this, we monitored the stable isotopic composition of one evergreen (Picea abies) and one deciduous (Fagus sylvatica), tree species' roots by measuring δ(13) C of bulk, respired and labile C, and starch from first/second and third/fourth order roots during spring and fall root production periods. In both species, root order differences in δ(13) C were observed in bulk organic matter, labile, and respired C fractions. Beech exhibited distinct seasonal trends in δ(13) C of respired C, while spruce did not. In fall, first/second order beech roots were significantly depleted in (13) C, whereas spruce roots were enriched compared to higher order roots. Species variation in δ (13) C of respired C may be partially explained by seasonal shifts from enriched to depleted C substrates in deciduous beech roots. Regardless of species identity, differences in stable C isotopic composition of at least two root order groupings (first/second, third/fourth) were apparent, and should hereafter be separated in belowground C-supply-chain inquiry.
Collapse
Affiliation(s)
- Alex M Paya
- Cornell University, Plant Science Building, Ithaca, NY, 14853, USA
| | - Thorsten E E Grams
- Technische Universität München, Von-Carlowitz-Platz 2, Freising, 85354, Germany
| | - Taryn L Bauerle
- Cornell University, Plant Science Building, Ithaca, NY, 14853, USA
| |
Collapse
|
34
|
Delpierre N, Berveiller D, Granda E, Dufrêne E. Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. THE NEW PHYTOLOGIST 2016; 210:459-470. [PMID: 26619197 DOI: 10.1111/nph.13771] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/21/2015] [Indexed: 06/05/2023]
Abstract
Although the analysis of flux data has increased our understanding of the interannual variability of carbon inputs into forest ecosystems, we still know little about the determinants of wood growth. Here, we aimed to identify which drivers control the interannual variability of wood growth in a mesic temperate deciduous forest. We analysed a 9-yr time series of carbon fluxes and aboveground wood growth (AWG), reconstructed at a weekly time-scale through the combination of dendrometer and wood density data. Carbon inputs and AWG anomalies appeared to be uncorrelated from the seasonal to interannual scales. More than 90% of the interannual variability of AWG was explained by a combination of the growth intensity during a first 'critical period' of the wood growing season, occurring close to the seasonal maximum, and the timing of the first summer growth halt. Both atmospheric and soil water stress exerted a strong control on the interannual variability of AWG at the study site, despite its mesic conditions, whilst not affecting carbon inputs. Carbon sink activity, not carbon inputs, determined the interannual variations in wood growth at the study site. Our results provide a functional understanding of the dependence of radial growth on precipitation observed in dendrological studies.
Collapse
Affiliation(s)
- Nicolas Delpierre
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Daniel Berveiller
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Elena Granda
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Eric Dufrêne
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| |
Collapse
|
35
|
Savage JA, Clearwater MJ, Haines DF, Klein T, Mencuccini M, Sevanto S, Turgeon R, Zhang C. Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology? PLANT, CELL & ENVIRONMENT 2016; 39:709-25. [PMID: 26147312 DOI: 10.1111/pce.12602] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/30/2015] [Accepted: 06/19/2015] [Indexed: 05/02/2023]
Abstract
Despite the crucial role of carbon transport in whole plant physiology and its impact on plant-environment interactions and ecosystem function, relatively little research has tried to examine how phloem physiology impacts plant ecology. In this review, we highlight several areas of active research where inquiry into phloem physiology has increased our understanding of whole plant function and ecological processes. We consider how xylem-phloem interactions impact plant drought tolerance and reproduction, how phloem transport influences carbon allocation in trees and carbon cycling in ecosystems and how phloem function mediates plant relations with insects, pests, microbes and symbiotes. We argue that in spite of challenges that exist in studying phloem physiology, it is critical that we consider the role of this dynamic vascular system when examining the relationship between plants and their biotic and abiotic environment.
Collapse
Affiliation(s)
- Jessica A Savage
- Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA, 02131, USA
| | | | - Dustin F Haines
- Department of Environmental Conservation, University of Massachusetts, 160 Holdsworth Way, Amherst, MA, 01003, USA
| | - Tamir Klein
- Institute of Botany, University of Basel, Schoenbeinstrasse 6, 4056, Basel, Switzerland
| | - Maurizio Mencuccini
- School of GeoSciences, University of Edinburgh, Crew Building, West Mains Road, EH9 3JN, Edinburgh, UK
- ICREA at CREAF, Campus de UAB, Cerdanyola del Valles, Barcelona, 08023, Spain
| | - Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Robert Turgeon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Cankui Zhang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
36
|
Epron D, Cabral OMR, Laclau JP, Dannoura M, Packer AP, Plain C, Battie-Laclau P, Moreira MZ, Trivelin PCO, Bouillet JP, Gérant D, Nouvellon Y. In situ 13CO2 pulse labelling of field-grown eucalypt trees revealed the effects of potassium nutrition and throughfall exclusion on phloem transport of photosynthetic carbon. TREE PHYSIOLOGY 2016; 36:6-21. [PMID: 26423335 DOI: 10.1093/treephys/tpv090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/10/2015] [Indexed: 05/15/2023]
Abstract
Potassium (K) is an important limiting factor of tree growth, but little is known of the effects of K supply on the long-distance transport of photosynthetic carbon (C) in the phloem and of the interaction between K fertilization and drought. We pulse-labelled 2-year-old Eucalyptus grandis L. trees grown in a field trial combining K fertilization (+K and -K) and throughfall exclusion (+W and -W), and we estimated the velocity of C transfer by comparing time lags between the uptake of (13)CO2 and its recovery in trunk CO2 efflux recorded at different heights. We also analysed the dynamics of the labelled photosynthates recovered in the foliage and in the phloem sap (inner bark extract). The mean residence time of labelled C in the foliage was short (21-31 h). The time series of (13)C in excess in the foliage was affected by the level of fertilization, whereas the effect of throughfall exclusion was not significant. The velocity of C transfer in the trunk (0.20-0.82 m h(-1)) was twice as high in +K trees than in -K trees, with no significant effect of throughfall exclusion except for one +K -W tree labelled in the middle of the drought season that was exposed to a more pronounced water stress (midday leaf water potential of -2.2 MPa). Our results suggest that besides reductions in photosynthetic C supply and in C demand by sink organs, the lower velocity under K deficiency is due to a lower cross-sectional area of the sieve tubes, whereas an increase in phloem sap viscosity is more likely limiting phloem transport under drought. In all treatments, 10 times less (13)C was recovered in inner bark extracts at the bottom of the trunk when compared with the base of the crown, suggesting that a large part of the labelled assimilates has been exported out of the phloem and replaced by unlabelled C. This supports the 'leakage-retrieval mechanism' that may play a role in maintaining the pressure gradient between source and sink organs required to sustain high velocity of phloem transport in tall trees.
Collapse
Affiliation(s)
- Daniel Epron
- UMR 1137, Ecologie et Ecophysiologie Forestières, Faculté des Sciences, Université de Lorraine, F-54500 Vandoeuvre-les-Nancy, France INRA, UMR 1137, Ecologie et Ecophysiologie Forestières, Centre de Nancy, F-54280 Champenoux, France CIRAD, UMR Eco&sols, Ecologie Fonctionnelle & Biogéochimie des Sols & Agro-écosystèmes, F-34060 Montpellier, France
| | | | - Jean-Paul Laclau
- CIRAD, UMR Eco&sols, Ecologie Fonctionnelle & Biogéochimie des Sols & Agro-écosystèmes, F-34060 Montpellier, France Universidade Estadual de São Paulo, Botucatu, CEP 18610-300 São Paulo, Brazil Departamento de Ciências Florestais, ESALQ, Universidade de São Paulo, ESALQ, CEP 13418-900 Piracicaba, São Paulo, Brazil
| | - Masako Dannoura
- Laboratory of Forest Utilization, Department of Forest and Biomaterial Science, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Ana Paula Packer
- Embrapa Meio Ambiente, CEP 13820-000, Jaguariúna, São Paulo, Brazil
| | - Caroline Plain
- UMR 1137, Ecologie et Ecophysiologie Forestières, Faculté des Sciences, Université de Lorraine, F-54500 Vandoeuvre-les-Nancy, France INRA, UMR 1137, Ecologie et Ecophysiologie Forestières, Centre de Nancy, F-54280 Champenoux, France
| | - Patricia Battie-Laclau
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, CEP 13400-970 Piracicaba, São Paulo, Brazil
| | - Marcelo Zacharias Moreira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, CEP 13400-970 Piracicaba, São Paulo, Brazil
| | - Paulo Cesar Ocheuze Trivelin
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, CEP 13400-970 Piracicaba, São Paulo, Brazil
| | - Jean-Pierre Bouillet
- CIRAD, UMR Eco&sols, Ecologie Fonctionnelle & Biogéochimie des Sols & Agro-écosystèmes, F-34060 Montpellier, France Departamento de Ciências Florestais, ESALQ, Universidade de São Paulo, ESALQ, CEP 13418-900 Piracicaba, São Paulo, Brazil
| | - Dominique Gérant
- UMR 1137, Ecologie et Ecophysiologie Forestières, Faculté des Sciences, Université de Lorraine, F-54500 Vandoeuvre-les-Nancy, France INRA, UMR 1137, Ecologie et Ecophysiologie Forestières, Centre de Nancy, F-54280 Champenoux, France
| | - Yann Nouvellon
- CIRAD, UMR Eco&sols, Ecologie Fonctionnelle & Biogéochimie des Sols & Agro-écosystèmes, F-34060 Montpellier, France Departamento de Ciências Atmosféricas, IAG, Universidade de São Paulo, ESALQ, CEP 05508-900 São Paulo, Brazil
| |
Collapse
|
37
|
Heinrich S, Dippold MA, Werner C, Wiesenberg GLB, Kuzyakov Y, Glaser B. Allocation of freshly assimilated carbon into primary and secondary metabolites after in situ ¹³C pulse labelling of Norway spruce (Picea abies). TREE PHYSIOLOGY 2015; 35:1176-91. [PMID: 26423131 DOI: 10.1093/treephys/tpv083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 08/05/2015] [Indexed: 05/09/2023]
Abstract
Plants allocate carbon (C) to sink tissues depending on phenological, physiological or environmental factors. We still have little knowledge on C partitioning into various cellular compounds and metabolic pathways at various ecophysiological stages. We used compound-specific stable isotope analysis to investigate C partitioning of freshly assimilated C into tree compartments (needles, branches and stem) as well as into needle water-soluble organic C (WSOC), non-hydrolysable structural organic C (stOC) and individual chemical compound classes (amino acids, hemicellulose sugars, fatty acids and alkanes) of Norway spruce (Picea abies) following in situ (13)C pulse labelling 15 days after bud break. The (13)C allocation within the above-ground tree biomass demonstrated needles as a major C sink, accounting for 86% of the freshly assimilated C 6 h after labelling. In needles, the highest allocation occurred not only into the WSOC pool (44.1% of recovered needle (13)C) but also into stOC (33.9%). Needle growth, however, also caused high (13)C allocation into pathways not involved in the formation of structural compounds: (i) pathways in secondary metabolism, (ii) C-1 metabolism and (iii) amino acid synthesis from photorespiration. These pathways could be identified by a high (13)C enrichment of their key amino acids. In addition, (13)C was strongly allocated into the n-alkyl lipid fraction (0.3% of recovered (13)C), whereby (13)C allocation into cellular and cuticular exceeded that of epicuticular fatty acids. (13)C allocation decreased along the lipid transformation and translocation pathways: the allocation was highest for precursor fatty acids, lower for elongated fatty acids and lowest for the decarbonylated n-alkanes. The combination of (13)C pulse labelling with compound-specific (13)C analysis of key metabolites enabled tracing relevant C allocation pathways under field conditions. Besides the primary metabolism synthesizing structural cell compounds, a complex network of pathways consumed the assimilated (13)C and kept most of the assimilated C in the growing needles.
Collapse
Affiliation(s)
- Steffen Heinrich
- Department of Agro-Ecosystem Research, BAYCEER, University of Bayreuth, Universitätsstraße 30, 95448 Bayreuth, Germany Soil Biogeochemistry, Martin-Luther University Halle-Wittenberg, von-Seckendorff-Platz 3, 06120 Halle, Germany
| | - Michaela A Dippold
- Department of Agricultural Soil Science, University of Göttingen, 37077 Göttingen, Germany
| | - Christiane Werner
- Department of Agro-Ecosystem Research, BAYCEER, University of Bayreuth, Universitätsstraße 30, 95448 Bayreuth, Germany
| | | | - Yakov Kuzyakov
- Department of Agricultural Soil Science, University of Göttingen, 37077 Göttingen, Germany
| | - Bruno Glaser
- Soil Biogeochemistry, Martin-Luther University Halle-Wittenberg, von-Seckendorff-Platz 3, 06120 Halle, Germany
| |
Collapse
|
38
|
Kanpanon N, Kasemsap P, Thaler P, Kositsup B, Gay F, Lacote R, Epron D. Carbon isotope composition of latex does not reflect temporal variations of photosynthetic carbon isotope discrimination in rubber trees (Hevea brasiliensis). TREE PHYSIOLOGY 2015; 35:1166-1175. [PMID: 26358051 DOI: 10.1093/treephys/tpv070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 07/03/2015] [Indexed: 06/05/2023]
Abstract
Latex, the cytoplasm of laticiferous cells localized in the inner bark of rubber trees (Hevea brasiliensis Müll. Arg.), is collected by tapping the bark. Following tapping, latex flows out of the trunk and is regenerated, whereas in untapped trees, there is no natural exudation. It is still unknown whether the carbohydrates used for latex regeneration in tapped trees is coming from recent photosynthates or from stored carbohydrates, and in the former case, it is expected that latex carbon isotope composition of tapped trees will vary seasonally, whereas latex isotope composition of untapped trees will be more stable. Temporal variations of carbon isotope composition of trunk latex (δ(13)C-L), leaf soluble compounds (δ(13)C-S) and bulk leaf material (δ(13)C-B) collected from tapped and untapped 20-year-old trees were compared. A marked difference in δ(13)C-L was observed between tapped and untapped trees whatever the season. Trunk latex from tapped trees was more depleted (1.6‰ on average) with more variable δ(13)C values than those of untapped trees. δ(13)C-L was higher and more stable across seasons than δ(13)C-S and δ(13)C-B, with a maximum seasonal difference of 0.7‰ for tapped trees and 0.3‰ for untapped trees. δ(13)C-B was lower in tapped than in untapped trees, increasing from August (middle of the rainy season) to April (end of the dry season). Differences in δ(13)C-L and δ(13)C-B between tapped and untapped trees indicated that tapping affects the metabolism of both laticiferous cells and leaves. The lack of correlation between δ(13)C-L and δ(13)C-S suggests that recent photosynthates are mixed in the large pool of stored carbohydrates that are involved in latex regeneration after tapping.
Collapse
Affiliation(s)
- Nicha Kanpanon
- Department of Horticulture, Faculty of Agriculture, Kasetsart University, 10900 Bangkok, Thailand Ecologie et Ecophysiologie Forestières, Faculté des Sciences, Université de Lorraine, UMR 1137, F-54506 Vandoeuvre-les-Nancy, France Ecologie et Ecophysiologie Forestières, Centre de Nancy - Lorraine, INRA, UMR 1137, F-54280 Champenoux, France
| | - Poonpipope Kasemsap
- Department of Horticulture, Faculty of Agriculture, Kasetsart University, 10900 Bangkok, Thailand
| | - Philippe Thaler
- CIRAD, UMR Eco&Sols, F-34060 Montpellier, France Hevea Research Platform in Partnership, Kasetsart University, Centre of Thai-French Cooperation on Higher Education and Research, 10900 Bangkok, Thailand
| | - Boonthida Kositsup
- Department of Botany, Faculty of Science, Chulalongkorn University, 10330 Bangkok, Thailand
| | - Frédéric Gay
- CIRAD, UMR Eco&Sols, F-34060 Montpellier, France Hevea Research Platform in Partnership, Kasetsart University, Centre of Thai-French Cooperation on Higher Education and Research, 10900 Bangkok, Thailand
| | - Régis Lacote
- Hevea Research Platform in Partnership, Kasetsart University, Centre of Thai-French Cooperation on Higher Education and Research, 10900 Bangkok, Thailand CIRAD, UPR Tree Crop-Based Systems, F-34000 Montpellier, France
| | - Daniel Epron
- Ecologie et Ecophysiologie Forestières, Faculté des Sciences, Université de Lorraine, UMR 1137, F-54506 Vandoeuvre-les-Nancy, France Ecologie et Ecophysiologie Forestières, Centre de Nancy - Lorraine, INRA, UMR 1137, F-54280 Champenoux, France CIRAD, UMR Eco&Sols, F-34060 Montpellier, France
| |
Collapse
|
39
|
Blessing CH, Werner RA, Siegwolf R, Buchmann N. Allocation dynamics of recently fixed carbon in beech saplings in response to increased temperatures and drought. TREE PHYSIOLOGY 2015; 35:585-98. [PMID: 25877767 DOI: 10.1093/treephys/tpv024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/08/2015] [Indexed: 05/05/2023]
Abstract
The response of carbon allocation to drought has often been studied in terms of short-term transport velocity of recently fixed carbon from leaves to roots and root respiration. However, its dynamic response to other environmental conditions, e.g., to changes in temperature, is less clear. Here, we investigated the effects of drought, increased temperatures and their combination on transport velocity as well as on distribution of recent photoassimilates for different compounds, such as sugars, starch, organic acids and amino acids. We used a (13)CO(2) pulse-labelling approach and studied the recovery of (13)C in different plant tissues and compounds of beech saplings (Fagus sylvatica L.) during a 9-day chase period. Neither total dry biomass nor dry weights of leaves or roots were affected by drought or increased temperatures. Generally, the fast transfer of recently fixed assimilates from leaves to roots took about 1 day, while (13)C enrichment in soil CO(2) efflux peaked only 2 days after labelling. Increased temperatures prolonged mean transfer times of recent photoassimilates from the leaves to the roots, probably caused by enhanced intermediate storage alongside basipetal transfer, clearly impacting short-term carbon allocation. This temperature effect was seen in the delayed peak in (13)C excess of root sugars, decoupling the roots from the leaves in the short term. On average, ∼40% of the (13)C label initially present in the plant was recovered in the roots (over all treatment combinations), providing strong evidence for preferred carbon allocation into the roots at the end of the growing season. Root starch was the principal compound for long-term storage of carbon, whereas leaf (transitory) starch was remobilized again after some days, exhibiting the longest mean residence times under dry and warm conditions. These observation clearly point to different functionalities of the same compound (i.e., starch) in different plant tissues and the crucial role of roots for long-term carbon storage.
Collapse
Affiliation(s)
- Carola H Blessing
- Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, 8048 Zurich, Switzerland
| | - Roland A Werner
- Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, 8048 Zurich, Switzerland
| | - Rolf Siegwolf
- Paul Scherrer Institute (PSI), Laboratory of Atmospheric Chemistry, CH-5232 Villigen PSI, Switzerland
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, 8048 Zurich, Switzerland
| |
Collapse
|
40
|
Liesche J, Windt C, Bohr T, Schulz A, Jensen KH. Slower phloem transport in gymnosperm trees can be attributed to higher sieve element resistance. TREE PHYSIOLOGY 2015; 35:376-86. [PMID: 25787331 DOI: 10.1093/treephys/tpv020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/10/2015] [Indexed: 05/09/2023]
Abstract
In trees, carbohydrates produced in photosynthesizing leaves are transported to roots and other sink organs over distances of up to 100 m inside a specialized transport tissue, the phloem. Angiosperm and gymnosperm trees have a fundamentally different phloem anatomy with respect to cell size, shape and connectivity. Whether these differences have an effect on the physiology of carbohydrate transport, however, is not clear. A meta-analysis of the experimental data on phloem transport speed in trees yielded average speeds of 56 cm h(-1) for angiosperm trees and 22 cm h(-1) for gymnosperm trees. Similar values resulted from theoretical modeling using a simple transport resistance model. Analysis of the model parameters clearly identified sieve element (SE) anatomy as the main factor for the significantly slower carbohydrate transport speed inside the phloem in gymnosperm compared with angiosperm trees. In order to investigate the influence of SE anatomy on the hydraulic resistance, anatomical data on SEs and sieve pores were collected by transmission electron microscopy analysis and from the literature for 18 tree species. Calculations showed that the hydraulic resistance is significantly higher in the gymnosperm than in angiosperm trees. The higher resistance is only partially offset by the considerably longer SEs of gymnosperms.
Collapse
Affiliation(s)
- Johannes Liesche
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Carel Windt
- Forschungszentrum Jülich, IBG-2: Plant Sciences, 52428 Jülich, Germany
| | - Tomas Bohr
- Department of Physics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Kaare H Jensen
- Department of Physics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
41
|
Blessing CH, Barthel M, Buchmann N. Bias in estimated online leaf carbon isotope discrimination due to woody tissues. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2015; 51:109-123. [PMID: 25664572 DOI: 10.1080/10256016.2015.1007050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Branch or shoot chamber measurements integrate over both foliar and woody tissue carbon dioxide (CO2) fluxes and their associated influences on the carbon isotopic composition of atmospheric/headspace CO2. Here, we quantified the bias introduced by woody tissue carbon isotope fluxes on apparent leaf (13)C discrimination (Δ(13)Capparent) estimates, using laser spectroscopy under controlled conditions. CO2 efflux from woody tissues of defoliated beech saplings in the dark was strongly related to temperature (R(2) = 0.78), which served as the basis to model light-dependent woody tissue photosynthesis (R(2) = 0.72). We then quantified the contributions of leaf and woody tissues to leaf Δ(13)Capparent of foliated beech saplings in the light. Unbiased foliar Δ(13)C was 1.1 to 4.9‰ lower than leaf Δ(13)Capparent, depending on photosynthetic rates of woody tissues. Therefore, we strongly recommend accounting for isotope-related bias due to woody tissues when estimating leaf Δ(13)Capparent based on branch or shoot chamber measurements.
Collapse
Affiliation(s)
- Carola H Blessing
- a Institute of Agricultural Sciences, ETH Zürich , Zürich , Switzerland
| | | | | |
Collapse
|
42
|
|
43
|
Mildner M, Bader MKF, Leuzinger S, Siegwolf RTW, Körner C. Long-term 13C labeling provides evidence for temporal and spatial carbon allocation patterns in mature Picea abies. Oecologia 2014; 175:747-62. [DOI: 10.1007/s00442-014-2935-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 03/15/2014] [Indexed: 10/25/2022]
|
44
|
Zang U, Goisser M, Grams TEE, Häberle KH, Matyssek R, Matzner E, Borken W. Fate of recently fixed carbon in European beech (Fagus sylvatica) saplings during drought and subsequent recovery. TREE PHYSIOLOGY 2014; 34:29-38. [PMID: 24420388 DOI: 10.1093/treephys/tpt110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Drought reduces the carbon (C) assimilation of trees and decouples aboveground from belowground carbon fluxes, but little is known about the response of drought-stressed trees to rewetting. This study aims to assess dynamics and patterns of C allocation in beech saplings under dry and rewetted soil conditions. In October 2010, 5-year-old beech saplings from a forest site were transplanted into 20 l pots. In 2011, the saplings were subjected to different levels of soil drought ranging from non-limiting water supply (control) to severe water limitation with soil water potentials of less than -1.5 MPa. As a physiologically relevant measure of drought, the cumulated soil water potential (i.e., drought stress dose (DSD)) was calculated for the growing season. In late August, the saplings were transferred into a climate chamber and pulse-labeled with (13)C-depleted CO2 (δ(13)C of -47‰). Isotopic signatures in leaf and soil respiration were repeatedly measured. Five days after soil rewetting, a second label was applied using 99 atom% (13)CO2. After another 12 days, the fate of assimilated C in each sapling was assessed by calculating the (13)C mass balance. Photosynthesis decreased by 60% in saplings under severe drought. The mean residence time (MRT) of recent assimilates in leaf respiration was more than three times longer than under non-limited conditions and was positively correlated to DSD. Also, the appearance of the label in soil respiration was delayed. Within 5 days after rewetting, photosynthesis, MRT of recent assimilates in leaf respiration and appearance of the label in soil respiration recovered fully. Despite the fast recovery, less label was recovered in the biomass of the previously drought-stressed plants, which also allocated less C to the root compartment (45 vs 64% in the control). We conclude that beech saplings quickly recover from extreme soil drought, although transitional after-effects prevail in C allocation, possibly due to repair-driven respiratory processes.
Collapse
Affiliation(s)
- Ulrich Zang
- Soil Ecology, University of Bayreuth, Dr-Hans-Frisch-Str. 1-3, D-95448 Bayreuth, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Michael G Ryan
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 89523, USA
| | | |
Collapse
|
46
|
Dietze MC, Sala A, Carbone MS, Czimczik CI, Mantooth JA, Richardson AD, Vargas R. Nonstructural carbon in woody plants. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:667-87. [PMID: 24274032 DOI: 10.1146/annurev-arplant-050213-040054] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nonstructural carbon (NSC) provides the carbon and energy for plant growth and survival. In woody plants, fundamental questions about NSC remain unresolved: Is NSC storage an active or passive process? Do older NSC reserves remain accessible to the plant? How is NSC depletion related to mortality risk? Herein we review conceptual and mathematical models of NSC dynamics, recent observations and experiments at the organismal scale, and advances in plant physiology that have provided a better understanding of the dynamics of woody plant NSC. Plants preferentially use new carbon but can access decade-old carbon when the plant is stressed or physically damaged. In addition to serving as a carbon and energy source, NSC plays important roles in phloem transport, osmoregulation, and cold tolerance, but how plants regulate these competing roles and NSC depletion remains elusive. Moving forward requires greater synthesis of models and data and integration across scales from -omics to ecology.
Collapse
Affiliation(s)
- Michael C Dietze
- Department of Earth and Environment, Boston University, Boston, Massachusetts 02215; ,
| | | | | | | | | | | | | |
Collapse
|
47
|
De Schepper V, De Swaef T, Bauweraerts I, Steppe K. Phloem transport: a review of mechanisms and controls. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4839-50. [PMID: 24106290 DOI: 10.1093/jxb/ert302] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
It is generally believed that an osmotically generated pressure gradient drives the phloem mass flow. So far, this widely accepted Münch theory has required remarkably few adaptations, but the debate on alternative and additional hypotheses is still ongoing. Recently, a possible shortcoming of the Münch theory has been pointed out, suggesting that the Münch pressure flow is more suitable for herbs than for trees. Estimation of the phloem resistance indicates that a point might be reached in long sieve tubes where the pressure required to drive the Münch flow cannot be generated. Therefore, the relay hypothesis regained belief as it implies that the sieve tubes are shorter then the plant's axial axis. In the source phloem, three different loading strategies exist which probably result from evolutionary advantages. Passive diffusion seems to be the most primitive one, whereas active loading strategies substantially increase the growth potential. Along the transport phloem, a leakage-retrieval mechanism is observed. Appreciable amounts of carbohydrates are lost from the sieve tubes to feed the lateral sinks, while a part of these lost carbohydrates is subsequently reloaded into the sieve tubes. This mechanism is probably involved to buffer short-term irregularities in phloem turgor and gradient. In the long term, the mechanism controls the replenishment and remobilization of lateral stem storage tissues. As phloem of higher plants has multiple functions in plant development, reproduction, signalling, and growth, the fundamental understanding of the mechanisms behind phloem transport should be elucidated to increase our ability to influence plant growth and development.
Collapse
Affiliation(s)
- Veerle De Schepper
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | | | | | | |
Collapse
|
48
|
Hopkins F, Gonzalez-Meler MA, Flower CE, Lynch DJ, Czimczik C, Tang J, Subke JA. Ecosystem-level controls on root-rhizosphere respiration. THE NEW PHYTOLOGIST 2013; 199:339-51. [PMID: 23943914 DOI: 10.1111/nph.12271] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Recent advances in the partitioning of autotrophic from heterotrophic respiration processes in soils in conjunction with new high temporal resolution soil respiration data sets offer insights into biotic and environmental controls of respiration. Besides temperature, many emerging controlling factors have not yet been incorporated into ecosystem-scale models. We synthesize recent research that has partitioned soil respiration into its process components to evaluate effects of nitrogen, temperature and photosynthesis on autotrophic flux from soils at the ecosystem level. Despite the widely used temperature dependence of root respiration, gross primary productivity (GPP) can explain most patterns of ecosystem root respiration (and to some extent heterotrophic respiration) at within-season time-scales. Specifically, heterotrophi crespiration is influenced by a seasonally variable supply of recent photosynthetic products in the rhizosphere. The contribution of stored root carbon (C) to root respiratory fluxes also varied seasonally, partially decoupling the proportion of photosynthetic C driving root respiration. In order to reflect recent insights, new hierarchical models, which incorporate root respiration as a primary function of GPP and which respond to environmental variables by modifying Callocation belowground, are needed for better prediction of future ecosystem C sequestration.
Collapse
Affiliation(s)
- Francesca Hopkins
- Department of Earth System Science, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Jensen KH, Zwieniecki MA. Physical limits to leaf size in tall trees. PHYSICAL REVIEW LETTERS 2013; 110:018104. [PMID: 23383844 DOI: 10.1103/physrevlett.110.018104] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Indexed: 05/08/2023]
Abstract
Leaf sizes in angiosperm trees vary by more than 3 orders of magnitude, from a few mm to over 1 m. This large morphological freedom is, however, only expressed in small trees, and the observed leaf size range declines with tree height, forming well-defined upper and lower boundaries. The vascular system of tall trees that distributes the products of photosynthesis connects distal parts of the plant and forms one of the largest known continuous microfluidic distribution networks. In biological systems, intrinsic properties of vascular systems are known to constrain the morphological freedom of the organism. We show that the limits to leaf size can be understood by physical constraints imposed by intrinsic properties of the carbohydrate transport network. The lower boundary is set by a minimum energy flux, and the upper boundary is set by a diminishing gain in transport efficiency.
Collapse
Affiliation(s)
- Kaare H Jensen
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
50
|
Churchland C, Weatherall A, Briones MJI, Grayston SJ. Stable-isotope labeling and probing of recent photosynthates into respired CO2, soil microbes and soil mesofauna using a xylem and phloem stem-injection technique on Sitka spruce (Picea sitchensis). RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:2493-2501. [PMID: 23008066 DOI: 10.1002/rcm.6368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RATIONALE Here we report on the successful application of a novel stem-injection stable-isotope-labeling and probing technique in mature trees to trace the spatial and temporal distribution of rhizosphere carbon belowground. METHODS Three 22-year-old Sitka spruce trees were injected with 6.66 g of (13)C-labeled aspartic acid. Over the succeeding 30 days, soil CO(2) efflux, phospholipid fatty-acid (PLFA) microbial biomarkers and soil invertebrates (mites, collembolans and enchytraeids) were analyzed along a 50 m transect from each tree to determine the temporal and spatial patterns in the translocation of recently fixed photosynthates belowground. RESULTS Soil δ(13)CO(2) values peaked 13-23 days after injection, up to 5 m from the base of the injected tree and was, on average, 3.5‰ enriched in (13)C relative to the baseline. Fungal PLFA biomarkers peaked 2-4 days after stem-injection, up to 20 m from the base of the injected tree and were (13)C-enriched by up to 50‰. Significant (13)C enrichment in mites and enchytraeids occurred 4-6 days after injection (by, on average, 1.5‰). CONCLUSIONS Stem injection of large trees with (13)C-enriched compounds is a successful tool to trace C-translocation belowground. In particular, the significant (13)C enrichment of CO(2) and enchytraeids near the base of the tree and the significant (13)C enrichment of PLFAs up to 20 m away indicate that mature Sitka spruce (Picea sitchensis) have the capacity to support soil communities over large distances.
Collapse
Affiliation(s)
- Carolyn Churchland
- Belowground Ecosystem Group, Department of Forest Sciences, University of British Columbia, Vancouver, B.C., Canada.
| | | | | | | |
Collapse
|