1
|
Denver P, Cunningham C. Microglial activation and neuroinflammation in acute and chronic cognitive deficits in sepsis. Neuropharmacology 2024:110285. [PMID: 39746541 DOI: 10.1016/j.neuropharm.2024.110285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Sepsis is characterised by dysregulated immune responses to infection, leading to multi-organ dysfunction and high rates of mortality. With increasing survival rates in recent years long-term neurological and psychiatric consequences have become more apparent in survivors. Many patients develop sepsis associated encephalopathy (SAE) which encompasses the profound but usually transient neuropsychiatric syndrome delirium but also new brain injury that emerges in the months and years post-sepsis. It now clear that systemic inflammatory signals reach the brain during sepsis and that very significant neuroinflammation ensues. The major brain resident immune cell population, the microglia, has been implicated in acute and chronic cognitive dysfunction in animal models of sepsis based on a growing number of studies using bacterial endotoxin and in polymicrobial sepsis models such as cecal ligation and puncture. The current review explores the effects of sepsis on the brain, focussing on how systemic insults translate to microglial activation and neuroinflammation and how this disrupts neuronal function and integrity. We examine what has been demonstrated specifically with respect to microglial activation, revealing robust evidence for a role for neuroinflammation in sepsis-induced brain sequelae but less clear information on the extent of the specific microglial contribution to this, arising from findings using global knockout mice, non-selective drugs and treatments that equally target peripheral and central compartments. There is, nonetheless, clear evidence that microglia do become activated and do contribute to brain consequences of sepsis thus arguing for improved understanding of these neuroinflammatory processes toward the prevention and treatment of sepsis-induced brain dysfunction.
Collapse
Affiliation(s)
- Paul Denver
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2
| |
Collapse
|
2
|
Albekairi TH, Alanazi MM, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Al-Mazroua HA, Aldossari AA, Almanaa TN, Alwetaid MY, Alqinyah M, Alnefaie HO, Ahmad SF. Cadmium exposure exacerbates immunological abnormalities in a BTBR T + Itpr3 tf/J autistic mouse model by upregulating inflammatory mediators in CD45R-expressing cells. J Neuroimmunol 2024; 386:578253. [PMID: 38064869 DOI: 10.1016/j.jneuroim.2023.578253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental illness characterized by behavior, learning, communication, and social interaction abnormalities in various situations. Individuals with impairments usually exhibit restricted and repetitive actions. The actual cause of ASD is yet unknown. It is believed, however, that a mix of genetic and environmental factors may play a role in its development. Certain metals have been linked to the development of neurological diseases, and the prevalence of ASD has shown a positive association with industrialization. Cadmium chloride (Cd) is a neurotoxic chemical linked to cognitive impairment, tremors, and neurodegenerative diseases. The BTBR T+ Itpr3tf/J (BTBR) inbred mice are generally used as a model for ASD and display a range of autistic phenotypes. We looked at how Cd exposure affected the signaling of inflammatory mediators in CD45R-expressing cells in the BTBR mouse model of ASD. In this study, we looked at how Cd affected the expression of numerous markers in the spleen, including IFN-γ, IL-6, NF-κB p65, GM-CSF, iNOS, MCP-1, and Notch1. Furthermore, we investigated the effect of Cd exposure on the expression levels of numerous mRNA molecules in brain tissue, including IFN-γ, IL-6, NF-κB p65, GM-CSF, iNOS, MCP-1, and Notch1. The RT-PCR technique was used for this analysis. Cd exposure increased the number of CD45R+IFN-γ+, CD45R+IL-6+, CD45R+NF-κB p65+, CD45R+GM-CSF+, CD45R+GM-CSF+, CD45R+iNOS+, and CD45R+Notch1+ cells in the spleen of BTBR mice. Cd treatment also enhanced mRNA expression in brain tissue for IFN-γ, IL-6, NF-κB, GM-CSF, iNOS, MCP-1, and Notch1. In general, Cd increases the signaling of inflammatory mediators in BTBR mice. This study is the first to show that Cd exposure causes immune function dysregulation in the BTBR ASD mouse model. As a result, our study supports the role of Cd exposure in the development of ASD.
Collapse
Affiliation(s)
- Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah A Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hajar O Alnefaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
3
|
Sun ZW, Wang X, Zhao Y, Sun ZX, Wu YH, Hu H, Zhang L, Wang SD, Li F, Wei AJ, Feng H, Xie F, Qian LJ. Blood-brain barrier dysfunction mediated by the EZH2-Claudin-5 axis drives stress-induced TNF-α infiltration and depression-like behaviors. Brain Behav Immun 2024; 115:143-156. [PMID: 37848095 DOI: 10.1016/j.bbi.2023.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/19/2023] [Accepted: 10/14/2023] [Indexed: 10/19/2023] Open
Abstract
Growing evidence suggests that neurovascular dysfunction characterized by blood-brain barrier (BBB) breakdown underlies the development of psychiatric disorders, such as major depressive disorder (MDD). Tight junction (TJ) proteins are critical modulators of homeostasis and BBB integrity. TJ protein Claudin-5 is the most dominant BBB component and is downregulated in numerous depression models; however, the underlying mechanisms remain elusive. Here, we demonstrate a molecular basis of BBB breakdown that links stress and depression. We implemented an animal model of depression, chronic unpredictable mild stress (CUMS) in male C57BL/6 mice, and showed that hippocampal BBB breakdown was closely associated with stress vulnerability. Concomitantly, we found that dysregulated Cldn5 level coupled with repression of the histone methylation signature at its promoter contributed to stress-induced BBB dysfunction and depression. Moreover, histone methyltransferase enhancer of zeste homolog 2 (EZH2) knockdown improved Cldn5 expression and alleviated depression-like behaviors by suppressing the tri-methylation of lysine 27 on histone 3 (H3K27me3) in chronically stressed mice. Furthermore, the stress-induced excessive transfer of peripheral cytokine tumor necrosis factor-α (TNF-α) into the hippocampus was prevented by Claudin-5 overexpression and EZH2 knockdown. Interestingly, antidepressant treatment could inhibit H3K27me3 deposition at the Cldn5 promoter, reversing the loss of the encoded protein and BBB damage. Considered together, these findings reveal the importance of the hippocampal EZH2-Claudin-5 axis in regulating neurovascular function and MDD development, providing potential therapeutic targets for this psychiatric illness.
Collapse
Affiliation(s)
- Zhao-Wei Sun
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Xue Wang
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yun Zhao
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Zhao-Xin Sun
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin 301617, China
| | - Yu-Han Wu
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Hui Hu
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Ling Zhang
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Shi-Da Wang
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Feng Li
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Ai-Jun Wei
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Hong Feng
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin 301617, China
| | - Fang Xie
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Ling-Jia Qian
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China.
| |
Collapse
|
4
|
D’Alessio A. Unraveling the Cave: A Seventy-Year Journey into the Caveolar Network, Cellular Signaling, and Human Disease. Cells 2023; 12:2680. [PMID: 38067108 PMCID: PMC10705299 DOI: 10.3390/cells12232680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
In the mid-1950s, a groundbreaking discovery revealed the fascinating presence of caveolae, referred to as flask-shaped invaginations of the plasma membrane, sparking renewed excitement in the field of cell biology. Caveolae are small, flask-shaped invaginations in the cell membrane that play crucial roles in diverse cellular processes, including endocytosis, lipid homeostasis, and signal transduction. The structural stability and functionality of these specialized membrane microdomains are attributed to the coordinated activity of scaffolding proteins, including caveolins and cavins. While caveolae and caveolins have been long appreciated for their integral roles in cellular physiology, the accumulating scientific evidence throughout the years reaffirms their association with a broad spectrum of human disorders. This review article aims to offer a thorough account of the historical advancements in caveolae research, spanning from their initial discovery to the recognition of caveolin family proteins and their intricate contributions to cellular functions. Furthermore, it will examine the consequences of a dysfunctional caveolar network in the development of human diseases.
Collapse
Affiliation(s)
- Alessio D’Alessio
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
- Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy
| |
Collapse
|
5
|
Ye Q, Jo J, Wang CY, Oh H, Choy TJ, Kim K, D’Alessandro A, Reshetnyak YK, Jung SY, Chen Z, Marrelli SP, Lee HK. Astrocytic Slc4a4 regulates blood-brain barrier integrity in healthy and stroke brains via a NO-CCL2-CCR2 pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535167. [PMID: 37066295 PMCID: PMC10103986 DOI: 10.1101/2023.04.03.535167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Astrocytes play vital roles in blood-brain barrier (BBB) maintenance, yet how they support BBB integrity under normal or pathological conditions remains poorly defined. Recent evidence suggests pH homeostasis is a new cellular mechanism important for BBB integrity. In the current study, we investigated the function of an astrocyte-specific pH regulator, Slc4a4, in BBB maintenance and repair. We show that astrocytic Slc4a4 is required for normal astrocyte morphological complexity and BBB function. Multi-omics analyses identified increased astrocytic secretion of CCL2 coupled with dysregulated arginine-NO metabolism after Slc4a4 deletion. Using a model of ischemic stroke, we found that loss of Slc4a4 exacerbates BBB disruption and reactive gliosis, which were both rescued by pharmacological or genetic inhibition of the NO-CCL2 pathway in vivo. Together, our study identifies the astrocytic Slc4a4-NO-CCL2 axis as a pivotal mechanism controlling BBB integrity and repair, while providing insights for a novel therapeutic approach against BBB-related CNS disorders.
Collapse
Affiliation(s)
- Qi Ye
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Juyeon Jo
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Chih-Yen Wang
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Heavin Oh
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Tiffany J. Choy
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX, USA
| | - Kyoungin Kim
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Sung Yun Jung
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sean P. Marrelli
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hyun Kyoung Lee
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Runge K, Fiebich BL, Kuzior H, Rausch J, Maier SJ, Dersch R, Nickel K, Domschke K, Tebartz van Elst L, Endres D. Altered cytokine levels in the cerebrospinal fluid of adult patients with autism spectrum disorder. J Psychiatr Res 2023; 158:134-142. [PMID: 36584491 DOI: 10.1016/j.jpsychires.2022.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 11/08/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Despite intensive research, the etiological causes of autism spectrum disorder (ASD) remain elusive. Immunological mechanisms have recently been studied more frequently in the context of maternal autoantibodies and infections, as well as altered cytokine profiles. For the detection of immunological processes in the central nervous system, analyses of cerebrospinal fluid (CSF) are advantageous due to its proximity to the brain. However, cytokine studies in the CSF of ASD patients are sparse. METHODS CSF was collected from a patient sample of 24 adults (m = 16, f = 8, age: 30.3 ± 11.6 years) with ASD and compared to a previously published mentally healthy control sample of 39 neurological patients with idiopathic intracranial hypertension. A magnetic bead multiplexing immunoassay was used to measure multiple cytokines in CSF. RESULTS Significantly decreased interferon-γ-induced protein-10 (p = 0.001) and monocyte chemoattractant protein-1 (p = 0.041) levels as well as significantly higher interleukin-8 levels (p = 0.041) were detected in patients with ASD compared with the control group. CONCLUSION The main finding of this study is an altered cytokine profile in adult patients with ASD compared to the control group. This may indicate immune dysregulation in a subgroup of adult ASD patients. Further studies in larger cohorts that examine a broader spectrum of chemokines and cytokines in general are needed to detect possible specific immune signatures in ASD.
Collapse
Affiliation(s)
- Kimon Runge
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd L Fiebich
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hanna Kuzior
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jördis Rausch
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon J Maier
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rick Dersch
- Clinic of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Nickel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Goto A, Yamamoto S, Igari T, Matsumoto SI, Chisaki I, Iida K, Nakayama M, Oda A, Kakoi Y, Uchida A, Miyata K, Nishikawa M, Nagata T, Kusuhara H, Yokota T, Hirabayashi H. Quantitative Model Analysis and Simulation of Pharmacokinetics and Metastasis-Associated Lung Adenocarcinoma 1 RNA Knockdown Effect After Systemic Administration of Cholesterol-Conjugated DNA/RNA Heteroduplex Oligonucleotide Crossing Blood-Brain Barrier of Mice. J Pharmacol Exp Ther 2023; 384:197-204. [PMID: 36273821 DOI: 10.1124/jpet.122.001331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/07/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
The cholesterol-conjugated heteroduplex oligonucleotide (Chol-HDO) is a double-stranded complex; it comprises an antisense oligonucleotide (ASO) and its complementary strand with a cholesterol ligand. Chol-HDO is a powerful tool for achieving target RNA knockdown in the brains of mice after systemic injection. Here, a quantitative model analysis was conducted to characterize the relationship between the pharmacokinetics (PK) and pharmacodynamics (PD), non-coding RNA metastasis-associated lung adenocarcinoma 1 (Malat1) RNA, of Chol-HDO, in a time-dependent manner. The established PK model could describe regional differences in the observed brain concentration-time profiles. Incorporating the PD model enabled the unique knockdown profiles in the brain to be explained in terms of the time delay after single dosing and enhancement following repeated dosing. Moreover, sensitivity analysis of PK exposure/persistency, target RNA turnover, and knockdown potency identified key factors for the efficient and sustained target RNA knockdown in the brain. The simulation of an adequate dosing regimen quantitatively supported the benefit of Chol-HDO in terms of achieving a suitable dosing interval. This was achieved via sufficient and sustained brain exposure and subsequent strong and sustained target RNA knockdown in the brain, even after systemic injection. The present study provides new insights into drug discoveries and development strategies for HDO in patients with neurogenic disorders. SIGNIFICANCE STATEMENT: The quantitative model analysis presented here characterized the PK/PD relationship of Chol-HDO, enabled its simulation under various conditions or assumptions, and identified key factors for efficient and sustained RNA knockdown, such as PK exposure and persistency. Chol-HDO appears to be an efficient drug delivery system for the systemic administration of desired drugs to brain targets.
Collapse
Affiliation(s)
- Akihiko Goto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.G., S.Y., T.I., S.M., I.C., K.I., Mi.N., H.H.); Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.O., Y.K.); Asia New Chemical Entity Production Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.U., K.M.); Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan (Ma.N.); Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (H.K.); and Department of Neurology and Neurologic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. (T.N., T.Y.)
| | - Syunsuke Yamamoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.G., S.Y., T.I., S.M., I.C., K.I., Mi.N., H.H.); Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.O., Y.K.); Asia New Chemical Entity Production Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.U., K.M.); Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan (Ma.N.); Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (H.K.); and Department of Neurology and Neurologic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. (T.N., T.Y.)
| | - Tomoko Igari
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.G., S.Y., T.I., S.M., I.C., K.I., Mi.N., H.H.); Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.O., Y.K.); Asia New Chemical Entity Production Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.U., K.M.); Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan (Ma.N.); Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (H.K.); and Department of Neurology and Neurologic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. (T.N., T.Y.)
| | - Shin-Ichi Matsumoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.G., S.Y., T.I., S.M., I.C., K.I., Mi.N., H.H.); Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.O., Y.K.); Asia New Chemical Entity Production Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.U., K.M.); Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan (Ma.N.); Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (H.K.); and Department of Neurology and Neurologic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. (T.N., T.Y.)
| | - Ikumi Chisaki
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.G., S.Y., T.I., S.M., I.C., K.I., Mi.N., H.H.); Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.O., Y.K.); Asia New Chemical Entity Production Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.U., K.M.); Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan (Ma.N.); Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (H.K.); and Department of Neurology and Neurologic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. (T.N., T.Y.)
| | - Koichi Iida
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.G., S.Y., T.I., S.M., I.C., K.I., Mi.N., H.H.); Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.O., Y.K.); Asia New Chemical Entity Production Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.U., K.M.); Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan (Ma.N.); Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (H.K.); and Department of Neurology and Neurologic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. (T.N., T.Y.)
| | - Miyu Nakayama
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.G., S.Y., T.I., S.M., I.C., K.I., Mi.N., H.H.); Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.O., Y.K.); Asia New Chemical Entity Production Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.U., K.M.); Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan (Ma.N.); Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (H.K.); and Department of Neurology and Neurologic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. (T.N., T.Y.)
| | - Akira Oda
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.G., S.Y., T.I., S.M., I.C., K.I., Mi.N., H.H.); Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.O., Y.K.); Asia New Chemical Entity Production Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.U., K.M.); Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan (Ma.N.); Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (H.K.); and Department of Neurology and Neurologic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. (T.N., T.Y.)
| | - Yuuichi Kakoi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.G., S.Y., T.I., S.M., I.C., K.I., Mi.N., H.H.); Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.O., Y.K.); Asia New Chemical Entity Production Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.U., K.M.); Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan (Ma.N.); Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (H.K.); and Department of Neurology and Neurologic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. (T.N., T.Y.)
| | - Akio Uchida
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.G., S.Y., T.I., S.M., I.C., K.I., Mi.N., H.H.); Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.O., Y.K.); Asia New Chemical Entity Production Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.U., K.M.); Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan (Ma.N.); Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (H.K.); and Department of Neurology and Neurologic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. (T.N., T.Y.)
| | - Kenichi Miyata
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.G., S.Y., T.I., S.M., I.C., K.I., Mi.N., H.H.); Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.O., Y.K.); Asia New Chemical Entity Production Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.U., K.M.); Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan (Ma.N.); Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (H.K.); and Department of Neurology and Neurologic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. (T.N., T.Y.)
| | - Makiya Nishikawa
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.G., S.Y., T.I., S.M., I.C., K.I., Mi.N., H.H.); Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.O., Y.K.); Asia New Chemical Entity Production Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.U., K.M.); Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan (Ma.N.); Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (H.K.); and Department of Neurology and Neurologic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. (T.N., T.Y.)
| | - Tetsuya Nagata
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.G., S.Y., T.I., S.M., I.C., K.I., Mi.N., H.H.); Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.O., Y.K.); Asia New Chemical Entity Production Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.U., K.M.); Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan (Ma.N.); Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (H.K.); and Department of Neurology and Neurologic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. (T.N., T.Y.)
| | - Hiroyuki Kusuhara
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.G., S.Y., T.I., S.M., I.C., K.I., Mi.N., H.H.); Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.O., Y.K.); Asia New Chemical Entity Production Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.U., K.M.); Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan (Ma.N.); Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (H.K.); and Department of Neurology and Neurologic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. (T.N., T.Y.)
| | - Takanori Yokota
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.G., S.Y., T.I., S.M., I.C., K.I., Mi.N., H.H.); Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.O., Y.K.); Asia New Chemical Entity Production Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.U., K.M.); Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan (Ma.N.); Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (H.K.); and Department of Neurology and Neurologic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. (T.N., T.Y.)
| | - Hideki Hirabayashi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.G., S.Y., T.I., S.M., I.C., K.I., Mi.N., H.H.); Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.O., Y.K.); Asia New Chemical Entity Production Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (A.U., K.M.); Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan (Ma.N.); Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (H.K.); and Department of Neurology and Neurologic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. (T.N., T.Y.)
| |
Collapse
|
8
|
Quaranta DV, Weaver RR, Baumann KK, Fujimoto T, Williams LM, Kim HC, Logsdon AF, Omer M, Reed MJ, Banks WA, Erickson MA. Transport of the Proinflammatory Chemokines C-C Motif Chemokine Ligand 2 (MCP-1) and C-C Motif Chemokine Ligand 5 (RANTES) across the Intact Mouse Blood-Brain Barrier Is Inhibited by Heparin and Eprodisate and Increased with Systemic Inflammation. J Pharmacol Exp Ther 2023; 384:205-223. [PMID: 36310035 PMCID: PMC9827507 DOI: 10.1124/jpet.122.001380] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 01/12/2023] Open
Abstract
One important function of the vascular blood-brain barrier (BBB) is to facilitate neuroimmune communication. The BBB fulfills this function, in part, through its ability to transport cytokines and chemokines. C-C motif chemokine receptor 2 (CCL2) (MCP-1) and C-C motif chemokine receptor 5 (CCL5) (RANTES) are proinflammatory chemokines that mediate neuroimmune responses to acute insults and aspects of brain injury and neurodegenerative diseases; however, a blood-to-brain transport system has not been evaluated for either chemokine in vivo. Therefore, we determined whether CCL2 and CCL5 in blood can cross the intact BBB and enter the brain. Using CD-1 mice, we found that 125I-labeled CCL2 and CCL5 crossed the BBB and entered the brain parenchyma. We next aimed to identify the mechanisms of 125I-CCL2 and 125I-CCL5 transport in an in situ brain perfusion model. We found that both heparin and eprodisate inhibited brain uptake of 125I-CCL2 and 125I-CCL5 in situ, whereas antagonists of their receptors, CCR2 or CCR5, respectively, did not, suggesting that heparan sulfates at the endothelial surface mediate BBB transport. Finally, we showed that CCL2 and CCL5 transport across the BBB increased following a single injection of 0.3 mg/kg lipopolysaccharide. These data demonstrate that CCL2 and CCL5 in the brain can derive, in part, from the circulation, especially during systemic inflammation. Further, binding to the BBB-associated heparan sulfate is a mechanism by which both chemokines can cross the intact BBB, highlighting a novel therapeutic target for treating neuroinflammation. SIGNIFICANCE STATEMENT: Our work demonstrates that C-C motif chemokine ligand 2 (CCL2) and C-C motif chemokine ligand 5 (CCL5) can cross the intact blood-brain barrier and that transport is robustly increased during inflammation. These data suggest that circulating CCL2 and CCL5 can contribute to brain levels of each chemokine. We further show that the transport of both chemokines is inhibited by heparin and eprodisate, suggesting that CCL2/CCL5-heparan sulfate interactions could be therapeutically targeted to limit accumulation of these chemokines in the brain.
Collapse
Affiliation(s)
- Daniel V Quaranta
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, Washington (D.V.Q., R.R.W., K.K.B., T.F., L.M.W., H.C.K., A.F.L., M.O., M.J.R., W.A.B., M.A.E.); Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan (T.F.); and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington (H.C.K., A.F.L., M.J.R., W.A.B., M.A.E.)
| | - Riley R Weaver
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, Washington (D.V.Q., R.R.W., K.K.B., T.F., L.M.W., H.C.K., A.F.L., M.O., M.J.R., W.A.B., M.A.E.); Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan (T.F.); and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington (H.C.K., A.F.L., M.J.R., W.A.B., M.A.E.)
| | - Kristen K Baumann
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, Washington (D.V.Q., R.R.W., K.K.B., T.F., L.M.W., H.C.K., A.F.L., M.O., M.J.R., W.A.B., M.A.E.); Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan (T.F.); and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington (H.C.K., A.F.L., M.J.R., W.A.B., M.A.E.)
| | - Takashi Fujimoto
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, Washington (D.V.Q., R.R.W., K.K.B., T.F., L.M.W., H.C.K., A.F.L., M.O., M.J.R., W.A.B., M.A.E.); Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan (T.F.); and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington (H.C.K., A.F.L., M.J.R., W.A.B., M.A.E.)
| | - Lindsey M Williams
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, Washington (D.V.Q., R.R.W., K.K.B., T.F., L.M.W., H.C.K., A.F.L., M.O., M.J.R., W.A.B., M.A.E.); Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan (T.F.); and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington (H.C.K., A.F.L., M.J.R., W.A.B., M.A.E.)
| | - Hyung Chan Kim
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, Washington (D.V.Q., R.R.W., K.K.B., T.F., L.M.W., H.C.K., A.F.L., M.O., M.J.R., W.A.B., M.A.E.); Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan (T.F.); and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington (H.C.K., A.F.L., M.J.R., W.A.B., M.A.E.)
| | - Aric F Logsdon
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, Washington (D.V.Q., R.R.W., K.K.B., T.F., L.M.W., H.C.K., A.F.L., M.O., M.J.R., W.A.B., M.A.E.); Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan (T.F.); and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington (H.C.K., A.F.L., M.J.R., W.A.B., M.A.E.)
| | - Mohamed Omer
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, Washington (D.V.Q., R.R.W., K.K.B., T.F., L.M.W., H.C.K., A.F.L., M.O., M.J.R., W.A.B., M.A.E.); Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan (T.F.); and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington (H.C.K., A.F.L., M.J.R., W.A.B., M.A.E.)
| | - May J Reed
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, Washington (D.V.Q., R.R.W., K.K.B., T.F., L.M.W., H.C.K., A.F.L., M.O., M.J.R., W.A.B., M.A.E.); Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan (T.F.); and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington (H.C.K., A.F.L., M.J.R., W.A.B., M.A.E.)
| | - William A Banks
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, Washington (D.V.Q., R.R.W., K.K.B., T.F., L.M.W., H.C.K., A.F.L., M.O., M.J.R., W.A.B., M.A.E.); Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan (T.F.); and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington (H.C.K., A.F.L., M.J.R., W.A.B., M.A.E.)
| | - Michelle A Erickson
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, Washington (D.V.Q., R.R.W., K.K.B., T.F., L.M.W., H.C.K., A.F.L., M.O., M.J.R., W.A.B., M.A.E.); Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan (T.F.); and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington (H.C.K., A.F.L., M.J.R., W.A.B., M.A.E.)
| |
Collapse
|
9
|
Errede M, Annese T, Petrosino V, Longo G, Girolamo F, de Trizio I, d'Amati A, Uccelli A, Kerlero de Rosbo N, Virgintino D. Microglia-derived CCL2 has a prime role in neocortex neuroinflammation. Fluids Barriers CNS 2022; 19:68. [PMID: 36042496 PMCID: PMC9429625 DOI: 10.1186/s12987-022-00365-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022] Open
Abstract
Background In myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), several areas of demyelination are detectable in mouse cerebral cortex, where neuroinflammation events are associated with scarce inflammatory infiltrates and blood–brain barrier (BBB) impairment. In this condition, the administration of mesenchymal stem cells (MSCs) controls neuroinflammation, attenuating astrogliosis and promoting the acquisition of stem cell traits by astrocytes. To contribute to the understanding of the mechanisms involved in the pathogenesis of EAE in gray matter and in the reverting effects of MSC treatment, the neocortex of EAE-affected mice was investigated by analyzing the cellular source(s) of chemokine CCL2, a molecule involved in immune cell recruitment and BBB-microvessel leakage. Methods The study was carried out by immunohistochemistry (IHC) and dual RNAscope IHC/in situ hybridization methods, using astrocyte, NG2-glia, macrophage/microglia, and microglia elective markers combined with CCL2. Results The results showed that in EAE-affected mice, hypertrophic microglia are the primary source of CCL2, surround the cortex neurons and the damaged BBB microvessels. In EAE-affected mice treated with MSCs, microgliosis appeared diminished very soon (6 h) after treatment, an observation that was long-lasting (tested after 10 days). This was associated with a reduced CCL2 expression and with apparently preserved/restored BBB features. In conclusion, the hallmark of EAE in the mouse neocortex is a condition of microgliosis characterized by high levels of CCL2 expression. Conclusions This finding supports relevant pathogenetic and clinical aspects of the human disease, while the demonstrated early control of neuroinflammation and BBB permeability exerted by treatment with MSCs may have important therapeutic implications. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00365-5.
Collapse
Affiliation(s)
- Mariella Errede
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy.,Department of Medicine and Surgery, LUM University, Casamassima Bari, Italy
| | - Valentina Petrosino
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Giovanna Longo
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy
| | - Francesco Girolamo
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy
| | - Ignazio de Trizio
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy
| | - Antonio d'Amati
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy.,Department of Emergency and Organ Transplantation, Pathology Section, University of Bari School of Medicine, Bari, Italy
| | - Antonio Uccelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nicole Kerlero de Rosbo
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,TomaLab, Institute of Nanotechnology, Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy.
| |
Collapse
|
10
|
Marchetti L, Francisco D, Soldati S, Haghayegh Jahromi N, Barcos S, Gruber I, Pareja JR, Thiriot A, von Andrian U, Deutsch U, Lyck R, Bruggmann R, Engelhardt B. ACKR1 favors transcellular over paracellular T-cell diapedesis across the blood-brain barrier in neuroinflammation in vitro. Eur J Immunol 2022; 52:161-177. [PMID: 34524684 PMCID: PMC9293480 DOI: 10.1002/eji.202149238] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/11/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022]
Abstract
The migration of CD4+ effector/memory T cells across the blood-brain barrier (BBB) is a critical step in MS or its animal model, EAE. T-cell diapedesis across the BBB can occur paracellular, via the complex BBB tight junctions or transcellular via a pore through the brain endothelial cell body. Making use of primary mouse brain microvascular endothelial cells (pMBMECs) as in vitro model of the BBB, we here directly compared the transcriptome profile of pMBMECs favoring transcellular or paracellular T-cell diapedesis by RNA sequencing (RNA-seq). We identified the atypical chemokine receptor 1 (Ackr1) as one of the main candidate genes upregulated in pMBMECs favoring transcellular T-cell diapedesis. We confirmed upregulation of ACKR1 protein in pMBMECs promoting transcellular T-cell diapedesis and in venular endothelial cells in the CNS during EAE. Lack of endothelial ACKR1 reduced transcellular T-cell diapedesis across pMBMECs under physiological flow in vitro. Combining our previous observation that endothelial ACKR1 contributes to EAE pathogenesis by shuttling chemokines across the BBB, the present data support that ACKR1 mediated chemokine shuttling enhances transcellular T-cell diapedesis across the BBB during autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Luca Marchetti
- Theodor Kocher InstituteUniversity of BernBernSwitzerland
| | - David Francisco
- Interfaculty Bioinformatics Unit and Swiss Institute of BioinformaticsUniversity of BernBernSwitzerland
| | - Sasha Soldati
- Theodor Kocher InstituteUniversity of BernBernSwitzerland
| | | | - Sara Barcos
- Theodor Kocher InstituteUniversity of BernBernSwitzerland
| | - Isabelle Gruber
- Theodor Kocher InstituteUniversity of BernBernSwitzerland
- present address: Department of Oncology, Lausanne University HospitalUniversity of LausanneLausanneSwitzerland
| | | | - Aude Thiriot
- Department of Immunology and Center for Immune ImagingHarvard Medical SchoolBostonMassachusettsUSA
- The Ragon Institute of MGH, MIT and HarvardCambridgeMassachusettsUSA
| | - Ulrich von Andrian
- Department of Immunology and Center for Immune ImagingHarvard Medical SchoolBostonMassachusettsUSA
- The Ragon Institute of MGH, MIT and HarvardCambridgeMassachusettsUSA
| | - Urban Deutsch
- Theodor Kocher InstituteUniversity of BernBernSwitzerland
| | - Ruth Lyck
- Theodor Kocher InstituteUniversity of BernBernSwitzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of BioinformaticsUniversity of BernBernSwitzerland
| | | |
Collapse
|
11
|
Siwicka-Gieroba D, Dabrowski W. Credibility of the Neutrophil-to-Lymphocyte Count Ratio in Severe Traumatic Brain Injury. Life (Basel) 2021; 11:life11121352. [PMID: 34947883 PMCID: PMC8706648 DOI: 10.3390/life11121352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality worldwide. The consequences of a TBI generate the activation and accumulation of inflammatory cells. The peak number of neutrophils entering into an injured brain is observed after 24 h; however, cells infiltrate within 5 min of closed brain injury. Neutrophils release toxic molecules including free radicals, proinflammatory cytokines, and proteases that advance secondary damage. Regulatory T cells impair T cell infiltration into the central nervous system and elevate reactive astrogliosis and interferon-γ gene expression, probably inducing the process of healing. Therefore, the neutrophil-to-lymphocyte ratio (NLR) may be a low-cost, objective, and available predictor of inflammation as well as a marker of secondary injury associated with neutrophil activation. Recent studies have documented that an NLR value on admission might be effective for predicting outcome and mortality in severe brain injury patients.
Collapse
|
12
|
Hajal C, Shin Y, Li L, Serrano JC, Jacks T, Kamm RD. The CCL2-CCR2 astrocyte-cancer cell axis in tumor extravasation at the brain. SCIENCE ADVANCES 2021; 7:eabg8139. [PMID: 34162553 PMCID: PMC8221620 DOI: 10.1126/sciadv.abg8139] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/11/2021] [Indexed: 05/12/2023]
Abstract
Although brain metastases are common in cancer patients, little is known about the mechanisms of cancer extravasation across the blood-brain barrier (BBB), a key step in the metastatic cascade that regulates the entry of cancer cells into the brain parenchyma. Here, we show, in a three-dimensional in vitro BBB microvascular model, that astrocytes promote cancer cell transmigration via their secretion of C-C motif chemokine ligand 2 (CCL2). We found that this chemokine, produced primarily by astrocytes, promoted the chemotaxis and chemokinesis of cancer cells via their C-C chemokine receptor type 2 (CCR2), with no notable changes in vascular permeability. These findings were validated in vivo, where CCR2-deficient cancer cells exhibited significantly reduced rates of arrest and transmigration in mouse brain capillaries. Our results reveal that the CCL2-CCR2 astrocyte-cancer cell axis plays a fundamental role in extravasation and, consequently, metastasis to the brain.
Collapse
Affiliation(s)
- Cynthia Hajal
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yoojin Shin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leanne Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jean Carlos Serrano
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
13
|
Policastro G, Brunelli M, Tinazzi M, Chiamulera C, Emerich DF, Paolone G. Cytokine-, Neurotrophin-, and Motor Rehabilitation-Induced Plasticity in Parkinson's Disease. Neural Plast 2020; 2020:8814028. [PMID: 33293946 PMCID: PMC7714573 DOI: 10.1155/2020/8814028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation and cytokine-dependent neurotoxicity appear to be major contributors to the neuropathology in Parkinson's disease (PD). While pharmacological advancements have been a mainstay in the treatment of PD for decades, it is becoming increasingly clear that nonpharmacological approaches including traditional and nontraditional forms of exercise and physical rehabilitation can be critical adjunctive or even primary treatment avenues. Here, we provide an overview of preclinical and clinical research detailing the biological role of proinflammatory molecules in PD and how motor rehabilitation can be used to therapeutically modulate neuroinflammation, restore neural plasticity, and improve motor function in PD.
Collapse
Affiliation(s)
| | - Matteo Brunelli
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Michele Tinazzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | | | | | - Giovanna Paolone
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
14
|
Andjelkovic AV, Stamatovic SM, Phillips CM, Martinez-Revollar G, Keep RF. Modeling blood-brain barrier pathology in cerebrovascular disease in vitro: current and future paradigms. Fluids Barriers CNS 2020; 17:44. [PMID: 32677965 PMCID: PMC7367394 DOI: 10.1186/s12987-020-00202-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
The complexity of the blood-brain barrier (BBB) and neurovascular unit (NVU) was and still is a challenge to bridge. A highly selective, restrictive and dynamic barrier, formed at the interface of blood and brain, the BBB is a "gatekeeper" and guardian of brain homeostasis and it also acts as a "sensor" of pathological events in blood and brain. The majority of brain and cerebrovascular pathologies are associated with BBB dysfunction, where changes at the BBB can lead to or support disease development. Thus, an ultimate goal of BBB research is to develop competent and highly translational models to understand mechanisms of BBB/NVU pathology and enable discovery and development of therapeutic strategies to improve vascular health and for the efficient delivery of drugs. This review article focuses on the progress being made to model BBB injury in cerebrovascular diseases in vitro.
Collapse
Affiliation(s)
- Anuska V Andjelkovic
- Department of Pathology, University of Michigan Medical School, 7520 MSRB I, 1150 West Medical Center Dr, Ann Arbor, MI, 48109-5602, USA.
| | - Svetlana M Stamatovic
- Department of Pathology, University of Michigan Medical School, 7520 MSRB I, 1150 West Medical Center Dr, Ann Arbor, MI, 48109-5602, USA
| | - Chelsea M Phillips
- Graduate Program in Neuroscience, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriela Martinez-Revollar
- Department of Pathology, University of Michigan Medical School, 7520 MSRB I, 1150 West Medical Center Dr, Ann Arbor, MI, 48109-5602, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Gingele S, Pul R, Sardari M, Borbor M, Henkel F, Moellenkamp TM, Gudi V, Happle C, Grychtol R, Habener A, Hansen G, Hermann DM, Stangel M, Kleinschnitz C, Skuljec J. FoxP3 deficiency causes no inflammation or neurodegeneration in the murine brain. J Neuroimmunol 2020; 342:577216. [PMID: 32199198 DOI: 10.1016/j.jneuroim.2020.577216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/20/2022]
Abstract
Regulatory T cells (Treg) maintain immunological self-tolerance and their functional or numerical deficits are associated with progression of several neurological diseases. We examined the effects of Treg absence on the structure and integrity of the unchallenged murine brain. When compared to control, Treg-deficient FoxP3sf mutant mice showed no differences in brain size, myelin amount and oligodendrocyte numbers. FoxP3sf strain displayed no variations in quantity of neurons and astrocytes, whereas microglia numbers were slightly reduced. We demonstrate lack of neuroinflammation and parenchymal responses in the brains of Treg-deficient mice, suggesting a minor Treg role in absence of blood-brain barrier breakdown.
Collapse
Affiliation(s)
- Stefan Gingele
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Refik Pul
- Department of Neurology, University Medicine Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - Maryam Sardari
- Department of Neurology, University Medicine Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - Mina Borbor
- Department of Neurology, University Medicine Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - Florian Henkel
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Thiemo M Moellenkamp
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Viktoria Gudi
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Christine Happle
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Germany.
| | - Ruth Grychtol
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Germany.
| | - Anika Habener
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Germany.
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Germany.
| | - Dirk M Hermann
- Department of Neurology, University Medicine Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - Martin Stangel
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Christoph Kleinschnitz
- Department of Neurology, University Medicine Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - Jelena Skuljec
- Department of Neurology, University Medicine Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| |
Collapse
|
16
|
Murphy A, Barbaro J, Martínez-Aguado P, Chilunda V, Jaureguiberry-Bravo M, Berman JW. The Effects of Opioids on HIV Neuropathogenesis. Front Immunol 2019; 10:2445. [PMID: 31681322 PMCID: PMC6813247 DOI: 10.3389/fimmu.2019.02445] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
HIV associated neurocognitive disorders (HAND) are a group of neurological deficits that affect approximately half of people living with HIV (PLWH) despite effective antiretroviral therapy (ART). There are currently no reliable molecular biomarkers or treatments for HAND. Given the national opioid epidemic, as well as illegal and prescription use of opioid drugs among PLWH, it is critical to characterize the molecular interactions between HIV and opioids in cells of the CNS. It is also important to study the role of opioid substitution therapies in the context of HIV and CNS damage in vitro and in vivo. A major mechanism contributing to HIV neuropathogenesis is chronic, low-level inflammation in the CNS. HIV enters the brain within 4–8 days after peripheral infection and establishes CNS reservoirs, even in the context of ART, that are difficult to identify and eliminate. Infected cells, including monocytes, macrophages, and microglia, produce chemokines, cytokines, neurotoxic mediators, and viral proteins that contribute to chronic inflammation and ongoing neuronal damage. Opioids have been shown to impact these immune cells through a variety of molecular mechanisms, including opioid receptor binding and cross desensitization with chemokine receptors. The effects of opioid use on cognitive outcomes in individuals with HAND in clinical studies is variable, and thus multiple biological mechanisms are likely to contribute to the complex relationship between opioids and HIV in the CNS. In this review, we will examine what is known about both HIV and opioid mediated neuropathogenesis, and discuss key molecular processes that may be impacted by HIV and opioids in the context of neuroinflammation and CNS damage. We will also assess what is known about the effects of ART on these processes, and highlight areas of study that should be addressed in the context of ART.
Collapse
Affiliation(s)
- Aniella Murphy
- Laboratory of Dr. Joan W. Berman, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - John Barbaro
- Laboratory of Dr. Joan W. Berman, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Pablo Martínez-Aguado
- Laboratory of Dr. Joan W. Berman, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Vanessa Chilunda
- Laboratory of Dr. Joan W. Berman, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Matias Jaureguiberry-Bravo
- Laboratory of Dr. Joan W. Berman, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Joan W Berman
- Laboratory of Dr. Joan W. Berman, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States.,Laboratory of Dr. Joan W. Berman, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
17
|
Lehmann MH, Lehmann JM, Erfle V. Nef-induced CCL2 Expression Contributes to HIV/SIV Brain Invasion and Neuronal Dysfunction. Front Immunol 2019; 10:2447. [PMID: 31681324 PMCID: PMC6803470 DOI: 10.3389/fimmu.2019.02447] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022] Open
Abstract
C-C motif chemokine ligand 2 (CCL2) is a chemoattractant for leukocytes including monocytes, T cells, and natural killer cells and it plays an important role in maintaining the integrity and function of the brain. However, there is accumulating evidence that many neurological diseases are attributable to a dysregulation of CCL2 expression. Acquired immune deficiency syndrome (AIDS) encephalopathy is a severe and frequent complication in individuals infected with the human immunodeficiency virus (HIV) or the simian immunodeficiency virus (SIV). The HIV and SIV Nef protein, a progression factor in AIDS pathology, can be transferred by microvesicles including exosomes and tunneling nanotubes (TNT) within the host even to uninfected cells, and Nef can induce CCL2 expression. This review focuses on findings which collectively add new insights on how Nef-induced CCL2 expression contributes to neurotropism and neurovirulence of HIV and SIV and elucidates why adjuvant targeting of CCL2 could be a therapeutic option for HIV-infected persons.
Collapse
Affiliation(s)
- Michael H Lehmann
- Institute of Virology, Technische Universität München, Munich, Germany.,Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jonas M Lehmann
- Department of Informatics, Technische Universität München, Munich, Germany
| | - Volker Erfle
- Institute of Virology, Technische Universität München, Munich, Germany
| |
Collapse
|
18
|
Milenkovic VM, Stanton EH, Nothdurfter C, Rupprecht R, Wetzel CH. The Role of Chemokines in the Pathophysiology of Major Depressive Disorder. Int J Mol Sci 2019; 20:E2283. [PMID: 31075818 PMCID: PMC6539240 DOI: 10.3390/ijms20092283] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022] Open
Abstract
Major depressive disorder (MDD) is a debilitating condition, whose high prevalence and multisymptomatic nature set its standing as a leading contributor to global disability. To better understand this psychiatric disease, various pathophysiological mechanisms have been proposed, including changes in monoaminergic neurotransmission, imbalance of excitatory and inhibitory signaling in the brain, hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, and abnormalities in normal neurogenesis. While previous findings led to a deeper understanding of the disease, the pathogenesis of MDD has not yet been elucidated. Accumulating evidence has confirmed the association between chronic inflammation and MDD, which is manifested by increased levels of the C-reactive protein, as well as pro-inflammatory cytokines, such as Interleukin 1 beta, Interleukin 6, and the Tumor necrosis factor alpha. Furthermore, recent findings have implicated a related family of cytokines with chemotactic properties, known collectively as chemokines, in many neuroimmune processes relevant to psychiatric disorders. Chemokines are small (8-12 kDa) chemotactic cytokines, which are known to play roles in direct chemotaxis induction, leukocyte and macrophage migration, and inflammatory response propagation. The inflammatory chemokines possess the ability to induce migration of immune cells to the infection site, whereas their homeostatic chemokine counterparts are responsible for recruiting cells for their repair and maintenance. To further support the role of chemokines as central elements to healthy bodily function, recent studies suggest that these proteins demonstrate novel, brain-specific mechanisms including the modulation of neuroendocrine functions, chemotaxis, cell adhesion, and neuroinflammation. Elevated levels of chemokines in patient-derived serum have been detected in individuals diagnosed with major depressive disorder, bipolar disorder, and schizophrenia. Furthermore, despite the considerable heterogeneity of experimental samples and methodologies, existing biomarker studies have clearly demonstrated the important role of chemokines in the pathophysiology of psychiatric disorders. The purpose of this review is to summarize the data from contemporary experimental and clinical studies, and to evaluate available evidence for the role of chemokines in the central nervous system (CNS) under physiological and pathophysiological conditions. In light of recent results, chemokines could be considered as possible peripheral markers of psychiatric disorders, and/or targets for treating depressive disorders.
Collapse
Affiliation(s)
- Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, D-93053 Regensburg, Germany.
| | - Evan H Stanton
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, D-93053 Regensburg, Germany.
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, D-93053 Regensburg, Germany.
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, D-93053 Regensburg, Germany.
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, D-93053 Regensburg, Germany.
| |
Collapse
|
19
|
Jaureguiberry-Bravo M, Lopez L, Berman JW. Frontline Science: Buprenorphine decreases CCL2-mediated migration of CD14 + CD16 + monocytes. J Leukoc Biol 2018; 104:1049-1059. [PMID: 29791013 DOI: 10.1002/jlb.3hi0118-015r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/26/2018] [Accepted: 04/23/2018] [Indexed: 12/28/2022] Open
Abstract
HIV infection of the CNS causes neuroinflammation and damage that contributes to the development of HIV-associated neurocognitive disorders (HAND) in greater than 50% of HIV-infected individuals, despite antiretroviral therapy (ART). Opioid abuse is a major risk factor for HIV infection. It has been shown that opioids can contribute to increased HIV CNS pathogenesis, in part, by modulating the function of immune cells. HIV enters the CNS within two weeks after peripheral infection by transmigration of infected monocytes across the blood brain barrier (BBB). CD14+ CD16+ monocytes are a mature subpopulation that is increased in number in the peripheral blood of HIV-infected people. Mature monocytes can be productively infected with HIV, and they transmigrate preferentially across the BBB in response to CCL2, a chemokine elevated in the CNS and CSF of HIV-infected people even with ART. Buprenorphine, an opioid derivate, is an opioid replacement therapy for heroin addiction. It is a partial agonist of μ-opioid receptor and full antagonist of κ-opioid receptor. The effects of buprenorphine on CCL2-mediated CD14+ CD16+ monocytes transmigration across the BBB, a critical mechanism that promotes neuroinflammation and HAND, have not been characterized. We showed for the first time that buprenorphine decreases several steps of CCL2-mediated human mature monocyte transmigration. We propose that buprenorphine treatment in the context of HIV infection could serve a dual purpose, to treat opioid addiction and also to reduce neuroinflammation. Additionally, buprenorphine may be used as a treatment for HAND not only in the context of opioid abuse.
Collapse
Affiliation(s)
| | - Lillie Lopez
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
20
|
Erickson MA, Banks WA. Neuroimmune Axes of the Blood-Brain Barriers and Blood-Brain Interfaces: Bases for Physiological Regulation, Disease States, and Pharmacological Interventions. Pharmacol Rev 2018; 70:278-314. [PMID: 29496890 PMCID: PMC5833009 DOI: 10.1124/pr.117.014647] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Central nervous system (CNS) barriers predominantly mediate the immune-privileged status of the brain, and are also important regulators of neuroimmune communication. It is increasingly appreciated that communication between the brain and immune system contributes to physiologic processes, adaptive responses, and disease states. In this review, we discuss the highly specialized features of brain barriers that regulate neuroimmune communication in health and disease. In section I, we discuss the concept of immune privilege, provide working definitions of brain barriers, and outline the historical work that contributed to the understanding of CNS barrier functions. In section II, we discuss the unique anatomic, cellular, and molecular characteristics of the vascular blood-brain barrier (BBB), blood-cerebrospinal fluid barrier, and tanycytic barriers that confer their functions as neuroimmune interfaces. In section III, we consider BBB-mediated neuroimmune functions and interactions categorized as five neuroimmune axes: disruption, responses to immune stimuli, uptake and transport of immunoactive substances, immune cell trafficking, and secretions of immunoactive substances. In section IV, we discuss neuroimmune functions of CNS barriers in physiologic and disease states, as well as pharmacological interventions for CNS diseases. Throughout this review, we highlight many recent advances that have contributed to the modern understanding of CNS barriers and their interface functions.
Collapse
Affiliation(s)
- Michelle A Erickson
- Geriatric Research and Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington; and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - William A Banks
- Geriatric Research and Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington; and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
21
|
De Laere M, Derdelinckx J, Hassi M, Kerosalo M, Oravamäki H, Van den Bergh J, Berneman Z, Cools N. Shuttling Tolerogenic Dendritic Cells across the Blood-Brain Barrier In Vitro via the Introduction of De Novo C-C Chemokine Receptor 5 Expression Using Messenger RNA Electroporation. Front Immunol 2018; 8:1964. [PMID: 29403473 PMCID: PMC5778265 DOI: 10.3389/fimmu.2017.01964] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/19/2017] [Indexed: 01/06/2023] Open
Abstract
The use of tolerance-inducing dendritic cells (tolDCs) has been proven to be safe and well tolerated in the treatment of autoimmune diseases. Nevertheless, several challenges remain, including finding ways to facilitate the migration of cell therapeutic products to lymph nodes, and the site of inflammation. In the treatment of neuroinflammatory diseases, such as multiple sclerosis (MS), the blood-brain barrier (BBB) represents a major obstacle to the delivery of therapeutic agents to the inflamed central nervous system (CNS). As it was previously demonstrated that C-C chemokine receptor 5 (CCR5) may be involved in inflammatory migration of DCs, the aim of this study was to investigate CCR5-driven migration of tolDCs. Only a minority of in vitro generated vitamin D3 (vitD3)-treated tolDCs expressed the inflammatory chemokine receptor CCR5. Thus, messenger RNA (mRNA) encoding CCR5 was introduced by means of electroporation (EP). After mRNA EP, tolDCs transiently displayed increased levels of CCR5 protein expression. Accordingly, the capacity of mRNA electroporated tolDCs to transmigrate toward a chemokine gradient in an in vitro model of the BBB improved significantly. Neither the tolerogenic phenotype nor the T cell-stimulatory function of tolDCs was affected by mRNA EP. EP of tolDCs with mRNA encoding CCR5 enabled these cells to migrate to inflammatory sites. The approach used herein has important implications for the treatment of MS. Using this approach, tolDCs actively shuttle across the BBB, allowing in situ down-modulation of autoimmune responses in the CNS.
Collapse
Affiliation(s)
- Maxime De Laere
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Judith Derdelinckx
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium.,Department of Neurology, Antwerp University Hospital, Edegem, Belgium
| | - Mari Hassi
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Mari Kerosalo
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Heidi Oravamäki
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Johan Van den Bergh
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Zwi Berneman
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
22
|
Łukasiewicz S, Błasiak E, Szczepanowicz K, Guzik K, Bzowska M, Warszyński P, Dziedzicka-Wasylewska M. The interaction of clozapine loaded nanocapsules with the hCMEC/D3 cells - In vitro model of blood brain barrier. Colloids Surf B Biointerfaces 2017; 159:200-210. [PMID: 28797970 DOI: 10.1016/j.colsurfb.2017.07.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/17/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
Abstract
Despite progress in the development of novel pharmacological compounds, their efficacy in the treatment of neuropathologies is not satisfactory. One strategy to achieve safe and efficient brain targeting therapy is to design nanocarriers capable of transporting antipsychotic drugs through the BBB (without affecting the normal functions of the barrier) in a defined part of the brain. Here we investigate the interaction of clozapine-loaded polymeric Nano capsules (CLO-NCs) with hCMEC/D3 (human cerebral microvascular endothelial cells, D3 clone) cells that constitutes an in vitro model of the blood brain barrier (BBB). CLO-NCs (average size of 100nm) were constructed by the technique of sequential adsorption of polyelectrolytes (LbL), using biocompatible polyanion PGA (Poly-l-glutamic acid sodium salt) and polycation PLL (poly L-lysine) on clozapine-loaded nano-emulsion cores. Pegylated external layers were prepared using PGA-g(39)-PEG (PGA grafted by PEG poly(ethylene glycol)). The influence of the physicochemical properties of the CLO-NCs (charge, size, surface modification) on cell viability was determined. Advanced studies of CLO-NCs internalization (including endocytosis and transcytosis experiments) using confocal microscopy, flow cytometry and fluorescence spectroscopy are presented. Our results indicate that among the studied NCs, the pegylated clozapine-loaded NCs were the most protected from their uptake by macrophages, and they were the least toxic to hCMEC/D3 cells. They were also the most efficient in the transcytosis experiment, which serves as an indicator of their ability to cross a model BBB.
Collapse
Affiliation(s)
- Sylwia Łukasiewicz
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-348 Krakow, Poland.
| | - Ewa Błasiak
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-348 Krakow, Poland.
| | | | - Krzysztof Guzik
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-348 Krakow, Poland.
| | - Małgorzata Bzowska
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-348 Krakow, Poland.
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry PAS, 30-239 Krakow, Poland,.
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-348 Krakow, Poland.
| |
Collapse
|
23
|
Köhler CA, Freitas TH, Stubbs B, Maes M, Solmi M, Veronese N, de Andrade NQ, Morris G, Fernandes BS, Brunoni AR, Herrmann N, Raison CL, Miller BJ, Lanctôt KL, Carvalho AF. Peripheral Alterations in Cytokine and Chemokine Levels After Antidepressant Drug Treatment for Major Depressive Disorder: Systematic Review and Meta-Analysis. Mol Neurobiol 2017; 55:4195-4206. [PMID: 28612257 DOI: 10.1007/s12035-017-0632-1] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/22/2017] [Indexed: 12/24/2022]
Abstract
Mounting evidence suggests that aberrations in immune-inflammatory pathways contribute to the pathophysiology of major depressive disorder (MDD), and individuals with MDD may have elevated levels of predominantly pro-inflammatory cytokines and C-reactive protein. In addition, previous meta-analyses suggest that antidepressant drug treatment may decrease peripheral levels of interleukin-1 beta (IL-1β) and IL-6. Recently, several new studies examining the effect of antidepressants on these cytokines have been published, and so we performed an updated meta-analysis of studies that measured peripheral levels of cytokines and chemokines during antidepressant treatment in patients with MDD. The PubMed/MEDLINE, EMBASE, and PsycInfo databases were searched from inception through March 9, 2017. Forty-five studies met inclusion criteria (N = 1517). Peripheral levels of IL-6, tumor necrosis factor-alpha (TNF-α), IL-1β, IL-10, IL-2, IL-4, interferon-γ, IL-8, the C-C motif ligand 2 chemokine (CCL-2), CCL-3, IL-1 receptor antagonist, IL-13, IL-17, IL-5, IL-7, and the soluble IL-2 receptor were measured in at least three datasets and thus were meta-analyzed. Antidepressant treatment significantly decreased peripheral levels of IL-6 (Hedges g = -0.454, P <0.001), TNF-α (g = -0.202, P = 0.015), IL-10 (g = -0.566, P = 0.012), and CCL-2 (g = -1.502, P = 0.006). These findings indicate that antidepressants decrease several markers of peripheral inflammation. However, this meta-analysis did not provide evidence that reductions in peripheral inflammation are associated with antidepressant treatment response although few studies provided separate data for treatment responders and non-responders.
Collapse
Affiliation(s)
- Cristiano A Köhler
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Fortaleza, CE, Brazil
| | - Thiago H Freitas
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Fortaleza, CE, Brazil
| | - Brendon Stubbs
- Physiotherapy Department, South London and Maudsley, NHS Foundation Trust, London, UK.,Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia.,Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Department of Psychiatry, Faculty of Medicine, State University of Londrina, Londrina, PR, Brazil.,Department of Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria.,Revitalis, Waalre, The Netherlands
| | - Marco Solmi
- Department of Neurosciences, University of Padova, Padova, Italy.,Institute of Clinical Research and Education in Medicine (IREM), Padua, Italy
| | - Nicola Veronese
- Institute of Clinical Research and Education in Medicine (IREM), Padua, Italy.,National Research Council, Neuroscience Institute, Aging Branch, Via Giustiniani 2, 35128, Padova, Italy
| | - Nayanna Q de Andrade
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Fortaleza, CE, Brazil
| | - Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
| | - Brisa S Fernandes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia.,Laboratory of Calcium Binding Proteins in the Central Nervous System, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André R Brunoni
- Center for Clinical and Epidemiological Research & Interdisciplinary Center for Applied Neuromodulation (CINA), University Hospital, University of São Paulo, São Paulo, Brazil.,Service of Interdisciplinary Neuromodulation (SIN), Department and Institute of Psychiatry, Faculty of Medicine of University of São Paulo, São Paulo, Brazil.,Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Charles L Raison
- Department of Human Development and Family Studies, School of Human Ecology, University of Wisconsin-Madison, 1300 Linden Drive, Room 4174, Madison, WI, 53705, USA.,Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Brian J Miller
- Department of Psychiatry & Health Behavior, Georgia Regents University, Augusta, GA, USA
| | - Krista L Lanctôt
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - André F Carvalho
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Fortaleza, CE, Brazil. .,Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Rua Prof. Costa Mendes, 1608, 4° andar, Fortaleza, CE, 60430-040, Brazil.
| |
Collapse
|
24
|
Increased Transendothelial Transport of CCL3 Is Insufficient to Drive Immune Cell Transmigration through the Blood-Brain Barrier under Inflammatory Conditions In Vitro. Mediators Inflamm 2017. [PMID: 28626344 PMCID: PMC5463143 DOI: 10.1155/2017/6752756] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Many neuroinflammatory diseases are characterized by massive immune cell infiltration into the central nervous system. Identifying the underlying mechanisms could aid in the development of therapeutic strategies specifically interfering with inflammatory cell trafficking. To achieve this, we implemented and validated a blood–brain barrier (BBB) model to study chemokine secretion, chemokine transport, and leukocyte trafficking in vitro. In a coculture model consisting of a human cerebral microvascular endothelial cell line and human astrocytes, proinflammatory stimulation downregulated the expression of tight junction proteins, while the expression of adhesion molecules and chemokines was upregulated. Moreover, chemokine transport across BBB cocultures was upregulated, as evidenced by a significantly increased concentration of the inflammatory chemokine CCL3 at the luminal side following proinflammatory stimulation. CCL3 transport occurred independently of the chemokine receptors CCR1 and CCR5, albeit that migrated cells displayed increased expression of CCR1 and CCR5. However, overall leukocyte transmigration was reduced in inflammatory conditions, although higher numbers of leukocytes adhered to activated endothelial cells. Altogether, our findings demonstrate that prominent barrier activation following proinflammatory stimulation is insufficient to drive immune cell recruitment, suggesting that additional traffic cues are crucial to mediate the increased immune cell infiltration seen in vivo during neuroinflammation.
Collapse
|
25
|
Corrigan F, Mander KA, Leonard AV, Vink R. Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J Neuroinflammation 2016; 13:264. [PMID: 27724914 PMCID: PMC5057243 DOI: 10.1186/s12974-016-0738-9] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/28/2016] [Indexed: 01/05/2023] Open
Abstract
Background The neuroinflammatory response following traumatic brain injury (TBI) is known to be a key secondary injury factor that can drive ongoing neuronal injury. Despite this, treatments that have targeted aspects of the inflammatory pathway have not shown significant efficacy in clinical trials. Main body We suggest that this may be because classical inflammation only represents part of the story, with activation of neurogenic inflammation potentially one of the key initiating inflammatory events following TBI. Indeed, evidence suggests that the transient receptor potential cation channels (TRP channels), TRPV1 and TRPA1, are polymodal receptors that are activated by a variety of stimuli associated with TBI, including mechanical shear stress, leading to the release of neuropeptides such as substance P (SP). SP augments many aspects of the classical inflammatory response via activation of microglia and astrocytes, degranulation of mast cells, and promoting leukocyte migration. Furthermore, SP may initiate the earliest changes seen in blood-brain barrier (BBB) permeability, namely the increased transcellular transport of plasma proteins via activation of caveolae. This is in line with reports that alterations in transcellular transport are seen first following TBI, prior to decreases in expression of tight-junction proteins such as claudin-5 and occludin. Indeed, the receptor for SP, the tachykinin NK1 receptor, is found in caveolae and its activation following TBI may allow influx of albumin and other plasma proteins which directly augment the inflammatory response by activating astrocytes and microglia. Conclusions As such, the neurogenic inflammatory response can exacerbate classical inflammation via a positive feedback loop, with classical inflammatory mediators such as bradykinin and prostaglandins then further stimulating TRP receptors. Accordingly, complete inhibition of neuroinflammation following TBI may require the inhibition of both classical and neurogenic inflammatory pathways.
Collapse
Affiliation(s)
- Frances Corrigan
- Adelaide Centre for Neuroscience Research, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Kimberley A Mander
- Adelaide Centre for Neuroscience Research, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anna V Leonard
- Adelaide Centre for Neuroscience Research, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Robert Vink
- Sansom Institute for Health Research, The University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
26
|
Prophylactic Chronic Zinc Administration Increases Neuroinflammation in a Hypoxia-Ischemia Model. J Immunol Res 2016; 2016:4039837. [PMID: 27635404 PMCID: PMC5007350 DOI: 10.1155/2016/4039837] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/23/2016] [Accepted: 06/30/2016] [Indexed: 11/24/2022] Open
Abstract
Acute and subacute administration of zinc exert neuroprotective effects in hypoxia-ischemia animal models; yet the effect of chronic administration of zinc still remains unknown. We addressed this issue by injecting zinc at a tolerable dose (0.5 mg/kg weight, i.p.) for 14 days before common carotid artery occlusion (CCAO) in a rat. After CCAO, the level of zinc was measured by atomic absorption spectrophotometry, nitrites were determined by Griess method, lipoperoxidation was measured by Gerard-Monnier assay, and mRNA expression of 84 genes coding for cytokines, chemokines, and their receptors was measured by qRT-PCR, whereas nitrotyrosine, chemokines, and their receptors were assessed by ELISA and histopathological changes in the temporoparietal cortex-hippocampus at different time points. Long-term memory was evaluated using Morris water maze. Following CCAO, a significant increase in nitrosative stress, inflammatory chemokines/receptors, and cell death was observed after 8 h, and a 2.5-fold increase in zinc levels was detected after 7 days. Although CXCL12 and FGF2 protein levels were significantly increased, the long-term memory was impaired 12 days after reperfusion in the Zn+CCAO group. Our data suggest that the chronic administration of zinc at tolerable doses causes nitrosative stress, toxic zinc accumulation, and neuroinflammation, which might account for the neuronal death and cerebral dysfunction after CCAO.
Collapse
|
27
|
Akita H, Fujiwara T, Santiwarangkool S, Hossen N, Kajimoto K, El-Sayed A, Tabata Y, Harashima H. Transcytosis-Targeting Peptide: A Conductor of Liposomal Nanoparticles through the Endothelial Cell Barrier. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1212-1221. [PMID: 26426116 DOI: 10.1002/smll.201500909] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/19/2015] [Indexed: 06/05/2023]
Abstract
The ultimate goal in the area of drug-delivery systems is the development of a nanoparticle that can penetrate the endothelial cell monolayer for the targeting of tissue parenchyma. In the present study, we identify a transcytosis-targeting peptide (TTP) that permits polyethyleneglycol (PEG)-modified liposomes (PEG-LPs) to penetrate through monolayers of brain-derived endothelial cells. These endothelial cells were layered on a gelatin nanofiber sheet, a nanofiber meshwork that allows the evaluation of transcellular transport of nanosized particles (ca. 100 nm). Systematic modification of the sequences results in the identification of the consensus sequence of TTP as L(R/K)QZZZL, where Z denotes hydrophilic amino acids (R/K/S and partially D). The TTP-modified liposomes are bound on the heparin sulfate proteoglycan, and are then taken up via lipid raft-mediated endocytosis. Subsequent intracellular imaging of the particles reveals a unique intracellular sorting of TTP-modified PEG liposomes (TTP-PEG-LPs); namely the TTP-LPs are not localized with the lysosomes, whereas this co-localization is dominant in the unmodified PEG liposomes (PEG-LPs). The in vivo endothelial penetration of liposomes in adipose tissue is conferred by the dual modification of the particles with TTP and tissue-targeting ligands. This technology promises innovations in intravenously available delivery system to tissue parenchyma.
Collapse
Affiliation(s)
- Hidetaka Akita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita12 Nishi6, Kita-ku, Sapporo City, Hokkaido, 060-0812, Japan
| | - Takahiro Fujiwara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita12 Nishi6, Kita-ku, Sapporo City, Hokkaido, 060-0812, Japan
| | - Sarochin Santiwarangkool
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita12 Nishi6, Kita-ku, Sapporo City, Hokkaido, 060-0812, Japan
| | - Nazir Hossen
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita12 Nishi6, Kita-ku, Sapporo City, Hokkaido, 060-0812, Japan
| | - Kazuaki Kajimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita12 Nishi6, Kita-ku, Sapporo City, Hokkaido, 060-0812, Japan
| | - Ayman El-Sayed
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita12 Nishi6, Kita-ku, Sapporo City, Hokkaido, 060-0812, Japan
| | - Yasuhiko Tabata
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita12 Nishi6, Kita-ku, Sapporo City, Hokkaido, 060-0812, Japan
| |
Collapse
|
28
|
Abstract
In autoimmune neurologic disorders, the blood-brain barrier (BBB) plays a central role in immunopathogenesis, since this vascular interface is an entry path for cells and effector molecules of the peripheral immune system to reach the target organ, the central nervous system (CNS). The BBB's unique anatomic structure and the tightly regulated interplay of its cellular and acellular components allow for maintenance of brain homeostasis, regulation of influx and efflux, and protection from harm; these ensure an optimal environment for the neuronal network to function properly. In both health and disease, the BBB acts as mediator between the periphery and the CNS. For example, immune cell trafficking through the cerebral vasculature is essential to clear microbes or cell debris from neural tissues, while poorly regulated cellular transmigration can underlie or worsen CNS pathology. In this chapter, we focus on the specialized multicellular structure and function of the BBB/neurovascular unit and discuss how BBB breakdown can precede or be a consequence of neuroinflammation. We introduce the blood-cerebrospinal fluid barrier and include a brief aside about evolutionary aspects of barrier formation and refinements. Lastly, since restoration of barrier function is considered key to ameliorate neurologic disease, we speculate about new therapeutic avenues to repair a damaged BBB.
Collapse
Affiliation(s)
| | - Ajay Verma
- Biomarkers and Experimental Medicine, Biogen, Cambridge, MA, USA
| | | |
Collapse
|
29
|
Stuart MJ, Singhal G, Baune BT. Systematic Review of the Neurobiological Relevance of Chemokines to Psychiatric Disorders. Front Cell Neurosci 2015; 9:357. [PMID: 26441528 PMCID: PMC4564736 DOI: 10.3389/fncel.2015.00357] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/26/2015] [Indexed: 12/13/2022] Open
Abstract
Psychiatric disorders are highly prevalent and disabling conditions of increasing public health relevance. Much recent research has focused on the role of cytokines in the pathophysiology of psychiatric disorders; however, the related family of immune proteins designated chemokines has been relatively neglected. Chemokines were originally identified as having chemotactic function on immune cells; however, recent evidence has begun to elucidate novel, brain-specific functions of these proteins of relevance to the mechanisms of psychiatric disorders. A systematic review of both human and animal literature in the PubMed and Google Scholar databases was undertaken. After application of all inclusion and exclusion criteria, 157 references were remained for the review. Some early mechanistic evidence does associate select chemokines with the neurobiological processes, including neurogenesis, modulation of the neuroinflammatory response, regulation of the hypothalamus–pituitary–adrenal axis, and modulation of neurotransmitter systems. This early evidence however does not clearly demonstrate any specificity for a certain psychiatric disorder, but is primarily relevant to mechanisms which are shared across disorders. Notable exceptions include CCL11 that has recently been shown to impair hippocampal function in aging – of distinct relevance to Alzheimer’s disease and depression in the elderly, and pre-natal exposure to CXCL8 that may disrupt early neurodevelopmental periods predisposing to schizophrenia. Pro-inflammatory chemokines, such as CCL2, CCL7, CCL8, CCL12, and CCL13, have been shown to drive chemotaxis of pro-inflammatory cells to the inflamed or injured CNS. Likewise, CX3CL has been implicated in promoting glial cells activation, pro-inflammatory cytokines secretion, expression of ICAM-1, and recruitment of CD4+ T-cells into the CNS during neuroinflammatory processes. With further translational research, chemokines may present novel diagnostic and/or therapeutic targets in psychiatric disorders.
Collapse
Affiliation(s)
- Michael J Stuart
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, University of Adelaide , Adelaide, SA , Australia ; School of Medicine, University of Queensland , Brisbane, QLD , Australia
| | - Gaurav Singhal
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, University of Adelaide , Adelaide, SA , Australia
| | - Bernhard T Baune
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, University of Adelaide , Adelaide, SA , Australia
| |
Collapse
|
30
|
Ye D, Anguissola S, O'Neill T, Dawson KA. Immunogold labeling reveals subcellular localisation of silica nanoparticles in a human blood-brain barrier model. NANOSCALE 2015; 7:10050-8. [PMID: 25975182 DOI: 10.1039/c5nr01539a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Subcellular location of nanoparticles has been widely investigated with fluorescence microscopy, via fluorescently labeled antibodies to visualise target antigens in cells. However, fluorescence microscopy, such as confocal or live cell imaging, has generally limited 3D spatial resolution. Conventional electron microscopy can be useful in bridging resolution gap, but still not ideal in resolving subcellular organelle identities. Using the pre-embedding immunogold electron microscopic imaging, we performed accurate examination of the intracellular trafficking and gathered further evidence of transport mechanisms of silica nanoparticles across a human in vitro blood-brain barrier model. Our approach can effectively immunolocalise a variety of intracellular compartments and provide new insights into the uptake and subcellular transport of nanoparticles.
Collapse
Affiliation(s)
- Dong Ye
- Centre for Bio-Nano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | |
Collapse
|
31
|
Chemokine Transfer by Liver Sinusoidal Endothelial Cells Contributes to the Recruitment of CD4+ T Cells into the Murine Liver. PLoS One 2015; 10:e0123867. [PMID: 26052942 PMCID: PMC4460118 DOI: 10.1371/journal.pone.0123867] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/23/2015] [Indexed: 12/30/2022] Open
Abstract
Leukocyte adhesion and transmigration are central features governing immune surveillance and inflammatory reactions in body tissues. Within the liver sinusoids, chemokines initiate the first crucial step of T-cell migration into the hepatic tissue. We studied molecular mechanisms involved in endothelial chemokine supply during hepatic immune surveillance and liver inflammation and their impact on the recruitment of CD4+ T cells into the liver. In the murine model of Concanavalin A-induced T cell-mediated hepatitis, we showed that hepatic expression of the inflammatory CXC chemokine ligands (CXCL)9 and CXCL10 strongly increased whereas homeostatic CXCL12 significantly decreased. Consistently, CD4+ T cells expressing the CXC chemokine receptor (CXCR)3 accumulated within the inflamed liver tissue. In histology, CXCL9 was associated with liver sinusoidal endothelial cells (LSEC) which represent the first contact site for T-cell immigration into the liver. LSEC actively transferred basolaterally internalized CXCL12, CXCL9 and CXCL10 via clathrin-coated vesicles to CD4+ T cells leading to enhanced transmigration of CXCR4+ total CD4+ T cells and CXCR3+ effector/memory CD4+ T cells, respectively in vitro. LSEC-expressed CXCR4 mediated CXCL12 transport and blockage of endothelial CXCR4 inhibited CXCL12-dependent CD4+ T-cell transmigration. In contrast, CXCR3 was not involved in the endothelial transport of its ligands CXCL9 and CXCL10. The clathrin-specific inhibitor chlorpromazine blocked endothelial chemokine internalization and CD4+ T-cell transmigration in vitro as well as migration of CD4+ T cells into the inflamed liver in vivo. Moreover, hepatic accumulation of CXCR3+ CD4+ T cells during T cell-mediated hepatitis was strongly reduced after administration of chlorpromazine. These data demonstrate that LSEC actively provide perivascularly expressed homeostatic and inflammatory chemokines by CXCR4- and clathrin-dependent intracellular transport mechanisms thereby contributing to the hepatic recruitment of CD4+ T-cell populations during immune surveillance and liver inflammation.
Collapse
|
32
|
Banks WA. The blood-brain barrier in neuroimmunology: Tales of separation and assimilation. Brain Behav Immun 2015; 44:1-8. [PMID: 25172555 PMCID: PMC4275374 DOI: 10.1016/j.bbi.2014.08.007] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 01/25/2023] Open
Abstract
Neuroimmunology is concerned with the relations between the central nervous and immune systems and with the mechanisms that drive those relations. The blood-brain barrier (BBB) employs mechanisms that both separate and connect these two systems. In fact, the relative immune privilege of the central nervous system (CNS) is largely attributable to the BBB's ability to prevent the unregulated exchange of immune cells and their secretions between the CNS and blood. Having separated the two systems, the BBB then participates in mechanisms that allow them to influence, communicate, and interact with one another. Likewise, the BBB itself is influenced by immune events that are occurring in the periphery and in the CNS so that these three components (the BBB, the immune system, and the CNS) form neuroimmune axes that adapt to physiological and pathological conditions. To date, four major themes have emerged by which the BBB participates in these neuroimmune axes. The first of these four, the formation of the barrier, acts to separate the immune and central nervous systems. The other three themes provide mechanisms for re-establishing communication: response of the BBB to immunomodulatory molecules (e.g., prostaglandins, cytokines, chemokines, nitric oxide) secreted by immune and CNS cells; the controlled, regulated exchange of chemokines, cytokines, and immune cells between the CNS and the blood (i.e., transport across the BBB); the secretion of immunomodulatory molecules by the BBB, often in a polarized fashion. Taken together, these mechanisms reveal the BBB to be a dynamic, interactive, and adaptable interface between the immune system and the CNS, separating them on the one hand and fostering their interactions on the other hand, adjusting to physiological changes, while being a target for disease processes. This review examines specific examples by which the BBB plays an interactive, defining role in neuroimmunology.
Collapse
Affiliation(s)
- W A Banks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care Center, Seattle, WA, United States; Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA, United States.
| |
Collapse
|
33
|
Schilling JM, Roth DM, Patel HH. Caveolins in cardioprotection - translatability and mechanisms. Br J Pharmacol 2015; 172:2114-25. [PMID: 25377989 DOI: 10.1111/bph.13009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/27/2014] [Accepted: 11/03/2014] [Indexed: 12/24/2022] Open
Abstract
Translation of preclinical treatments for ischaemia-reperfusion injury into clinical therapies has been limited by a number of factors. This review will focus on a single mode of cardiac protection related to a membrane scaffolding protein, caveolin, which regulates protective signalling as well as myocyte ultrastructure in the setting of ischaemic stress. Factors that have limited the clinical translation of protection will be considered specifically in terms of signalling and structural defects. The potential of caveolin to overcome barriers to protection with the ultimate hope of clinical translation will be discussed.
Collapse
Affiliation(s)
- Jan M Schilling
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
34
|
da Fonseca ACC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, Lima FRS. The impact of microglial activation on blood-brain barrier in brain diseases. Front Cell Neurosci 2014; 8:362. [PMID: 25404894 PMCID: PMC4217497 DOI: 10.3389/fncel.2014.00362] [Citation(s) in RCA: 375] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/13/2014] [Indexed: 12/16/2022] Open
Abstract
The blood-brain barrier (BBB), constituted by an extensive network of endothelial cells (ECs) together with neurons and glial cells, including microglia, forms the neurovascular unit (NVU). The crosstalk between these cells guarantees a proper environment for brain function. In this context, changes in the endothelium-microglia interactions are associated with a variety of inflammation-related diseases in brain, where BBB permeability is compromised. Increasing evidences indicate that activated microglia modulate expression of tight junctions, which are essential for BBB integrity and function. On the other hand, the endothelium can regulate the state of microglial activation. Here, we review recent advances that provide insights into interactions between the microglia and the vascular system in brain diseases such as infectious/inflammatory diseases, epilepsy, ischemic stroke and neurodegenerative disorders.
Collapse
Affiliation(s)
- Anna Carolina Carvalho da Fonseca
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Bloco F, Universidade Federal do Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | - Diana Matias
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Bloco F, Universidade Federal do Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | - Celina Garcia
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Bloco F, Universidade Federal do Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | - Rackele Amaral
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Bloco F, Universidade Federal do Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | - Luiz Henrique Geraldo
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Bloco F, Universidade Federal do Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | - Catarina Freitas
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Bloco F, Universidade Federal do Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | - Flavia Regina Souza Lima
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Bloco F, Universidade Federal do Rio de Janeiro Rio de Janeiro, RJ, Brazil
| |
Collapse
|
35
|
Liu X, Zhou X, Yuan W. The angiopoietin1–Akt pathway regulates barrier function of the cultured spinal cord microvascular endothelial cells through Eps8. Exp Cell Res 2014; 328:118-131. [DOI: 10.1016/j.yexcr.2014.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/05/2014] [Accepted: 08/13/2014] [Indexed: 12/19/2022]
|
36
|
McMillin M, Frampton G, Thompson M, Galindo C, Standeford H, Whittington E, Alpini G, DeMorrow S. Neuronal CCL2 is upregulated during hepatic encephalopathy and contributes to microglia activation and neurological decline. J Neuroinflammation 2014; 11:121. [PMID: 25012628 PMCID: PMC4128607 DOI: 10.1186/1742-2094-11-121] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/30/2014] [Indexed: 12/31/2022] Open
Abstract
Background Acute liver failure leads to systemic complications with one of the most dangerous being a decline in neurological function, termed hepatic encephalopathy. Neurological dysfunction is exacerbated by an increase of toxic metabolites in the brain that lead to neuroinflammation. Following various liver diseases, hepatic and circulating chemokines, such as chemokine ligand 2 (CCL2), are elevated, though their effects on the brain following acute liver injury and subsequent hepatic encephalopathy are unknown. CCL2 is known to activate microglia in other neuropathies, leading to a proinflammatory response. However, the effects of CCL2 on microglia activation and the pathogenesis of hepatic encephalopathy following acute liver injury remain to be determined. Methods Hepatic encephalopathy was induced in mice via injection of azoxymethane (AOM) in the presence or absence of INCB 3284 dimesylate (INCB), a chemokine receptor 2 inhibitor, or C 021 dihydrochloride (C021), a chemokine receptor 4 inhibitor. Mice were monitored for neurological decline and time to coma (loss of all reflexes) was recorded. Tissue was collected at coma and used for real-time PCR, immunoblots, ELISA, or immunostaining analyses to assess the activation of microglia and consequences on pro-inflammatory cytokine expression. Results Following AOM administration, microglia activation was significantly increased in AOM-treated mice compared to controls. Concentrations of CCL2 in the liver, serum, and cortex were significantly elevated in AOM-treated mice compared to controls. Systemic administration of INCB or C021 reduced liver damage as assessed by serum liver enzyme biochemistry. Administration of INCB or C021 significantly improved the neurological outcomes of AOM-treated mice, reduced microglia activation, reduced phosphorylation of ERK1/2, and alleviated AOM-induced cytokine upregulation. Conclusions These findings suggest that CCL2 is elevated systemically following acute liver injury and that CCL2 is involved in both the microglia activation and neurological decline associated with hepatic encephalopathy. Methods used to modulate CCL2 levels and/or reduce CCR2/CCR4 activity may be potential therapeutic targets for the management of hepatic encephalopathy due to acute liver injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sharon DeMorrow
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, 1901 South 1st Street, Building 205, Temple, Texas, USA.
| |
Collapse
|
37
|
Minten C, Alt C, Gentner M, Frei E, Deutsch U, Lyck R, Schaeren-Wiemers N, Rot A, Engelhardt B. DARC shuttles inflammatory chemokines across the blood-brain barrier during autoimmune central nervous system inflammation. Brain 2014; 137:1454-69. [PMID: 24625696 PMCID: PMC3999718 DOI: 10.1093/brain/awu045] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/30/2013] [Accepted: 01/14/2014] [Indexed: 12/14/2022] Open
Abstract
The Duffy antigen/receptor for chemokines, DARC, belongs to the family of atypical heptahelical chemokine receptors that do not couple to G proteins and therefore fail to transmit conventional intracellular signals. Here we show that during experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, the expression of DARC is upregulated at the blood-brain barrier. These findings are corroborated by the presence of a significantly increased number of subcortical white matter microvessels staining positive for DARC in human multiple sclerosis brains as compared to control tissue. Using an in vitro blood-brain barrier model we demonstrated that endothelial DARC mediates the abluminal to luminal transport of inflammatory chemokines across the blood-brain barrier. An involvement of DARC in experimental autoimmune encephalomyelitis pathogenesis was confirmed by the observed ameliorated experimental autoimmune encephalomyelitis in Darc(-/-) C57BL/6 and SJL mice, as compared to wild-type control littermates. Experimental autoimmune encephalomyelitis studies in bone marrow chimeric Darc(-/-) and wild-type mice revealed that increased plasma levels of inflammatory chemokines in experimental autoimmune encephalomyelitis depended on the presence of erythrocyte DARC. However, fully developed experimental autoimmune encephalomyelitis required the expression of endothelial DARC. Taken together, our data show a role for erythrocyte DARC as a chemokine reservoir and that endothelial DARC contributes to the pathogenesis of experimental autoimmune encephalomyelitis by shuttling chemokines across the blood-brain barrier.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Female
- Humans
- Male
- Mice
- Middle Aged
- Antigens, CD/metabolism
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/physiopathology
- Capillary Permeability/genetics
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Cerebellum/metabolism
- Chemokines/genetics
- Chemokines/metabolism
- Disease Models, Animal
- Duffy Blood-Group System/metabolism
- Encephalomyelitis, Autoimmune, Experimental/blood
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- In Vitro Techniques
- Mice, Inbred C57BL
- Mice, Knockout
- Multiple Sclerosis/pathology
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/metabolism
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Carsten Minten
- 1 Theodor Kocher Institute, University of Bern, CH-3012 Bern, Switzerland
| | - Carsten Alt
- 1 Theodor Kocher Institute, University of Bern, CH-3012 Bern, Switzerland
| | - Melanie Gentner
- 2 Neurobiology, Department of Biomedicine, University Hospital Basel, University Basel, Switzerland
| | - Elisabeth Frei
- 1 Theodor Kocher Institute, University of Bern, CH-3012 Bern, Switzerland
| | - Urban Deutsch
- 1 Theodor Kocher Institute, University of Bern, CH-3012 Bern, Switzerland
| | - Ruth Lyck
- 1 Theodor Kocher Institute, University of Bern, CH-3012 Bern, Switzerland
| | - Nicole Schaeren-Wiemers
- 2 Neurobiology, Department of Biomedicine, University Hospital Basel, University Basel, Switzerland
| | - Antal Rot
- 3 MRC Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, UK
| | - Britta Engelhardt
- 1 Theodor Kocher Institute, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
38
|
Yao Y, Tsirka SE. Monocyte chemoattractant protein-1 and the blood-brain barrier. Cell Mol Life Sci 2014; 71:683-97. [PMID: 24051980 PMCID: PMC3946874 DOI: 10.1007/s00018-013-1459-1] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/20/2013] [Accepted: 08/19/2013] [Indexed: 12/17/2022]
Abstract
The blood-brain barrier (BBB) is a dynamic structure that maintains the homeostasis of the brain and thus proper neurological functions. BBB compromise has been found in many pathological conditions, including neuroinflammation. Monocyte chemoattractant protein-1 (MCP1), a chemokine that is transiently and significantly up-regulated during inflammation, is able to disrupt the integrity of BBB and modulate the progression of various diseases, including excitotoxic injury and hemorrhage. In this review, we first introduce the biochemistry and biology of MCP1, and then summarize the effects of MCP1 on BBB integrity as well as individual BBB components.
Collapse
Affiliation(s)
- Yao Yao
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, BST8-192, Stony Brook University, Stony Brook, NY 11794-8651 USA
- Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY 10065 USA
| | - Stella E. Tsirka
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, BST8-192, Stony Brook University, Stony Brook, NY 11794-8651 USA
| |
Collapse
|
39
|
Paul D, Ge S, Lemire Y, Jellison ER, Serwanski DR, Ruddle NH, Pachter JS. Cell-selective knockout and 3D confocal image analysis reveals separate roles for astrocyte-and endothelial-derived CCL2 in neuroinflammation. J Neuroinflammation 2014; 11:10. [PMID: 24444311 PMCID: PMC3906899 DOI: 10.1186/1742-2094-11-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/28/2013] [Indexed: 12/30/2022] Open
Abstract
Background Expression of chemokine CCL2 in the normal central nervous system (CNS) is nearly undetectable, but is significantly upregulated and drives neuroinflammation during experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis which is considered a contributing factor in the human disease. As astrocytes and brain microvascular endothelial cells (BMEC) forming the blood–brain barrier (BBB) are sources of CCL2 in EAE and other neuroinflammatory conditions, it is unclear if one or both CCL2 pools are critical to disease and by what mechanism(s). Methods Mice with selective CCL2 gene knockout (KO) in astrocytes (Astro KO) or endothelial cells (Endo KO) were used to evaluate the respective contributions of these sources to neuroinflammation, i.e., clinical disease progression, BBB damage, and parenchymal leukocyte invasion in a myelin oligodendrocyte glycoprotein peptide (MOG35-55)-induced EAE model. High-resolution 3-dimensional (3D) immunofluorescence confocal microscopy and colloidal gold immuno-electron microscopy were employed to confirm sites of CCL2 expression, and 3D immunofluorescence confocal microscopy utilized to assess inflammatory responses along the CNS microvasculature. Results Cell-selective loss of CCL2 immunoreactivity was demonstrated in the respective KO mice. Compared to wild-type (WT) mice, Astro KO mice showed reduced EAE severity but similar onset, while Endo KO mice displayed near normal severity but significantly delayed onset. Neither of the KO mice showed deficits in T cell proliferation, or IL-17 and IFN-γ production, following MOG35-55 exposure in vitro, or altered MOG-major histocompatibility complex class II tetramer binding. 3D confocal imaging further revealed distinct actions of the two CCL2 pools in the CNS. Astro KOs lacked the CNS leukocyte penetration and disrupted immunostaining of CLN-5 at the BBB seen during early EAE in WT mice, while Endo KOs uniquely displayed leukocytes stalled in the microvascular lumen. Conclusions These results point to astrocyte and endothelial pools of CCL2 each regulating different stages of neuroinflammation in EAE, and carry implications for drug delivery in neuroinflammatory disease.
Collapse
Affiliation(s)
| | - Shujun Ge
- Department of Cell Biology, Blood-brain Barrier Laboratory, 263 Farmington Ave,, Farmington CT 06030, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Chodobski A, Zink BJ, Szmydynger-Chodobska J. Blood-brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res 2013; 2:492-516. [PMID: 22299022 DOI: 10.1007/s12975-011-0125-x] [Citation(s) in RCA: 439] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The blood-brain barrier (BBB) is formed by tightly connected cerebrovascular endothelial cells, but its normal function also depends on paracrine interactions between the brain endothelium and closely located glia. There is a growing consensus that brain injury, whether it is ischemic, hemorrhagic, or traumatic, leads to dysfunction of the BBB. Changes in BBB function observed after injury are thought to contribute to the loss of neural tissue and to affect the response to neuroprotective drugs. New discoveries suggest that considering the entire gliovascular unit, rather than the BBB alone, will expand our understanding of the cellular and molecular responses to traumatic brain injury (TBI). This review will address the BBB breakdown in TBI, the role of blood-borne factors in affecting the function of the gliovascular unit, changes in BBB permeability and post-traumatic edema formation, and the major pathophysiological factors associated with TBI that may contribute to post-traumatic dysfunction of the BBB. The key role of neuroinflammation and the possible effect of injury on transport mechanisms at the BBB will also be described. Finally, the potential role of the BBB as a target for therapeutic intervention through restoration of normal BBB function after injury and/or by harnessing the cerebrovascular endothelium to produce neurotrophic growth factors will be discussed.
Collapse
Affiliation(s)
- Adam Chodobski
- Neurotrauma and Brain Barriers Research Laboratory, Department of Emergency Medicine, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | |
Collapse
|
41
|
Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:532-45. [PMID: 23899502 DOI: 10.1016/j.bbamem.2013.07.018] [Citation(s) in RCA: 386] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/14/2013] [Accepted: 07/16/2013] [Indexed: 12/14/2022]
Abstract
The plasma membrane in eukaryotic cells contains microdomains that are enriched in certain glycosphingolipids, gangliosides, and sterols (such as cholesterol) to form membrane/lipid rafts (MLR). These regions exist as caveolae, morphologically observable flask-like invaginations, or as a less easily detectable planar form. MLR are scaffolds for many molecular entities, including signaling receptors and ion channels that communicate extracellular stimuli to the intracellular milieu. Much evidence indicates that this organization and/or the clustering of MLR into more active signaling platforms depends upon interactions with and dynamic rearrangement of the cytoskeleton. Several cytoskeletal components and binding partners, as well as enzymes that regulate the cytoskeleton, localize to MLR and help regulate lateral diffusion of membrane proteins and lipids in response to extracellular events (e.g., receptor activation, shear stress, electrical conductance, and nutrient demand). MLR regulate cellular polarity, adherence to the extracellular matrix, signaling events (including ones that affect growth and migration), and are sites of cellular entry of certain pathogens, toxins and nanoparticles. The dynamic interaction between MLR and the underlying cytoskeleton thus regulates many facets of the function of eukaryotic cells and their adaptation to changing environments. Here, we review general features of MLR and caveolae and their role in several aspects of cellular function, including polarity of endothelial and epithelial cells, cell migration, mechanotransduction, lymphocyte activation, neuronal growth and signaling, and a variety of disease settings. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
|
42
|
Wantha S, Alard JE, Megens RTA, van der Does AM, Döring Y, Drechsler M, Pham CTN, Wang MW, Wang JM, Gallo RL, von Hundelshausen P, Lindbom L, Hackeng T, Weber C, Soehnlein O. Neutrophil-derived cathelicidin promotes adhesion of classical monocytes. Circ Res 2013; 112:792-801. [PMID: 23283724 DOI: 10.1161/circresaha.112.300666] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RATIONALE The leukocyte response in acute inflammation is characterized by an initial recruitment of neutrophils preceding a second wave of monocytes. Neutrophil-derived granule proteins were suggested to hold an important role in this cellular switch. The exact mechanisms by which neutrophils mediate these processes are only partially understood. OBJECTIVE To investigate the role of neutrophils and their granule contents in the adhesion of monocyte subpopulations in acute inflammation. METHODS AND RESULTS Here, we show that neutrophil-derived cathelicidins (human: LL37, mouse: CRAMP) induce adhesion of classical monocytes but not of nonclassical monocytes in the mouse cremaster muscle and in in vitro flow chamber assays. CRAMP is released from emigrated neutrophils and then transported across the endothelium, where it is presented to rolling leukocytes. Endothelial-bound cathelicidin activates formyl-peptide receptor 2 on classical monocytes, resulting in monocytic β1- and β2-integrin conformational change toward an extended, active conformation that allows for adhesion to their respective ligands, vascular cell adhesion molecule 1 and intercellular adhesion molecule 1. CONCLUSIONS These data elucidate a novel mechanism of neutrophil-mediated monocyte recruitment, which could be targeted in conditions where recruitment of classical monocytes plays an unfavorable role.
Collapse
Affiliation(s)
- Sarawuth Wantha
- Institute for Cardiovascular Prevention, LMU Munich, Pettenkoferstrasse 9, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Liu KKY, Dorovini-Zis K. Differential regulation of CD4+ T cell adhesion to cerebral microvascular endothelium by the β-chemokines CCL2 and CCL3. Int J Mol Sci 2012. [PMID: 23203188 PMCID: PMC3546682 DOI: 10.3390/ijms131216119] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In Multiple sclerosis (MS), circulating lymphocytes cross the blood–brain barrier (BBB) and accumulate at sites of antigenic challenge. This process depends on specific interactions between lymphocytes and cerebral microvascular endothelium that involve endothelial activation by cytokines and the presence of chemokines. Chemokines play a key role in the orchestration of immune responses, acting both as chemoattractants and activators of leukocyte subsets. In the present study, we investigated the effects of the β-chemokines, CCL2 and CCL3, on the adhesion of CD4+ T cell subsets to human brain microvessel endothelial cells (HBMEC). Chemokines added to the lower compartment of a two-chamber chemotaxis system under confluent resting or cytokine-activated HBMEC, diffused through the culture substrate and bound to the basal surface of HBMEC. The low rate of adhesion of naïve, resting and memory CD4+ T cells to resting HBMEC was significantly upregulated following treatment of HBMEC with TNF-α and IFN-γ. Recently activated CD4+ T cells readily adhered to resting monolayers. Concentration gradients of CCL2 upregulated the adhesion of activated CD4+ T cells to cytokine treated but not resting HBMEC. The presence of CCL3 in the lower chamber increased the adhesion of memory T cells to both unstimulated and cytokine-treated HBMEC. These findings emphasize the importance of brain endothelial cell activation and the role of CCL2 and CCL3 in regulating the adhesion of CD4+ T cell subsets to BBB endothelium, thus contributing to the specificity of immune responses in MS.
Collapse
Affiliation(s)
- Kenneth KY Liu
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC V5Z-1M9, Canada; E-Mail:
| | - Katerina Dorovini-Zis
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver General Hospital, 855 West 12th Avenue, Vancouver, BC V5Z 1M9, Canada
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-604-875-4127; Fax: +1-604-875-4477
| |
Collapse
|
44
|
Murugesan N, Paul D, Lemire Y, Shrestha B, Ge S, Pachter JS. Active induction of experimental autoimmune encephalomyelitis by MOG35-55 peptide immunization is associated with differential responses in separate compartments of the choroid plexus. Fluids Barriers CNS 2012; 9:15. [PMID: 22870943 PMCID: PMC3493354 DOI: 10.1186/2045-8118-9-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/30/2012] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED BACKGROUND There is increasing awareness that, aside from producing cerebrospinal fluid, the choroid plexus (CP) might be a key regulator of immune activity in the central nervous system (CNS) during neuroinflammation. Specifically, the CP has recently been posited to control entry of sentinel T cells into the uninflamed CNS during the early stages of neuroinflammatory diseases, like multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). As the CP is compartmentalized into a stromal core containing fenestrated capillaries devoid of typical blood-brain barrier properties, surrounded by a tight junction-expressing choroidal epithelium, each of these compartments might mount unique responses that instigate the neuroinflammatory process. METHODS To discern responses of the respective CP stromal capillary and choroidal epithelial tissues during evolving neuroinflammation, we investigated morphology and in situ expression of 93 immune-related genes during early stages of EAE induced by immunization with myelin oligodendrocyte glycoprotein peptide (MOG35-55). Specifically, 3-D immunofluorescent imaging was employed to gauge morphological changes, and laser capture microdissection was coupled to an Immune Panel TaqMan Low Density Array to detail alterations in gene expression patterns at these separate CP sites on days 9 and 15 post-immunization (p.i.). To resolve CP effects due to autoimmunity against MOG peptide, from those due to complete Freund's adjuvant (CFA) and pertussis toxin (PTX) included in the immunization, analysis was performed on MOG-CFA/PTX-treated, CFA/PTX-treated, and naïve cohorts. RESULTS The CP became swollen and displayed significant molecular changes in response to MOG-CFA/PTX immunization. Both stromal capillary and choroidal epithelial tissues mounted vigorous, yet different, changes in expression of numerous genes over the time course analyzed - including those encoding adhesion molecules, cytokines, chemokines, statins, interleukins, T cell activation markers, costimulatory molecules, cyclooxygenase, pro-inflammatory transcription factors and pro-apoptotic markers. Moreover, CFA/PTX-treatment, alone, resulted in extensive, though less robust, alterations in both CP compartments. CONCLUSIONS MOG-CFA/PTX immunization significantly affects CP morphology and stimulates distinct expression patterns of immune-related genes in CP stromal capillary and epithelial tissues during evolving EAE. CFA/PTX treatment, alone, causes widespread gene alterations that could prime the CP to unlock the CNS to T cell infiltration during neuroinflammatory disease.
Collapse
Affiliation(s)
- Nivetha Murugesan
- Blood-brain Barrier Laboratory, Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Alterations to blood-brain barrier (BBB) adhesion molecules and junctional integrity during neuroinflammation can promote central nervous system (CNS) pathology. The chemokine CCL2 is elevated during CNS inflammation and is associated with endothelial dysfunction. The effects of CCL2 on endothelial adherens junctions (AJs) have not been defined. We demonstrate that CCL2 transiently induces Src-dependent disruption of human brain microvascular endothelial AJ. β-Catenin is phosphorylated and traffics from the AJ to PECAM-1 (platelet endothelial cell adhesion molecule-1), where it is sequestered at the membrane. PECAM-1 is also tyrosine-phosphorylated, an event associated with recruitment of the phosphatase SHP-2 (Src homology 2 domain-containing protein phosphatase) to PECAM-1, β-catenin release from PECAM-1, and reassociation of β-catenin with the AJ. Surface localization of PECAM-1 is increased in response to CCL2. This may enable the endothelium to sustain CCL2-induced alterations in AJ and facilitate recruitment of leukocytes into the CNS. Our novel findings provide a mechanism for CCL2-mediated disruption of endothelial junctions that may contribute to BBB dysfunction and increased leukocyte recruitment in neuroinflammatory diseases.
Collapse
|
46
|
Chemokines and their receptors in intracerebral hemorrhage. Transl Stroke Res 2012; 3:70-9. [PMID: 24323863 DOI: 10.1007/s12975-012-0155-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 12/11/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating clinical event which results in a high rate of disability and death. At present, no effective treatment is available for ICH. Accumulating evidence suggests that inflammatory responses contribute significantly to the ICH-induced secondary brain outcomes. During ICH, inflammatory cells accumulate at the ICH site attracted by gradients of chemokines. This review summarizes recent progress in ICH studies and the chemoattractants that act during the injury and focuses on and introduces the basic biology of the chemokine monocyte chemoattractant protein-1 (MCP1) and its role in the progression of ICH. Better understanding of MCP1 signaling cascade and the compensation after its inhibition could shed light on the development of effective treatments for ICH.
Collapse
|
47
|
Sowa G. Caveolae, caveolins, cavins, and endothelial cell function: new insights. Front Physiol 2012; 2:120. [PMID: 22232608 PMCID: PMC3252561 DOI: 10.3389/fphys.2011.00120] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/19/2011] [Indexed: 12/29/2022] Open
Abstract
Caveolae are cholesterol and glycosphingolipid-rich flask-shaped invaginations of the plasma membrane which are particularly abundant in vascular endothelium and present in all other cell types of the cardiovascular system, including vascular smooth-muscle cells, macrophages, cardiac myocytes, and fibroblasts. Caveolins and the more recently discovered cavins are the major protein components of caveolae. When caveolae were discovered, their functional role was believed to be limited to transport across the endothelial cell barrier. Since then, however, a large body of evidence has accumulated, suggesting that these microdomains are very important in regulating many other important endothelial cell functions, mostly due to their ability to concentrate and compartmentalize various signaling molecules. Over the course of several years, multiple studies involving knockout mouse and small interfering RNA approaches have considerably enhanced our understanding of the role of caveolae and caveolin-1 in regulating many cardiovascular functions. New findings have been reported implicating other caveolar protein components in endothelial cell signaling and function, such as the understudied caveolin-2 and newly discovered cavin proteins. The aim of this review is to focus primarily on molecular and cellular aspects of the role of caveolae, caveolins, and cavins in endothelial cell signaling and function. In addition, where appropriate, the possible implications for the cardiovascular and pulmonary physiology and pathophysiology will be discussed.
Collapse
Affiliation(s)
- Grzegorz Sowa
- Department of Medical Pharmacology and Physiology, University of MissouriColumbia, MO, USA
| |
Collapse
|
48
|
Sowa G. Regulation of Cell Signaling and Function by Endothelial Caveolins: Implications in Disease. TRANSLATIONAL MEDICINE (SUNNYVALE, CALIF.) 2012; Suppl 8:001. [PMID: 26605130 PMCID: PMC4655115 DOI: 10.4172/2161-1025.s8-001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Caveolae are cholesterol- and glycosphingolipid-rich omega-shaped invaginations of the plasma membrane that are very abundant in vascular endothelial cells and present in most cell types. Caveolins are the major coat protein components of caveolae. Multiple studies using knockout mouse, small interfering RNA, and cell-permeable peptide delivery approaches have significantly enhanced our understanding of the role of endothelial caveolae and caveolin-1 in physiology and disease. Several postnatal pulmonary and cardiovascular pathologies have been reported in caveolin-1 knockout mice, many of which have been recently rescued by selective re-expression of caveolin-1 in endothelium of these mice. A large body of experimental evidence mostly using caveolin-1 knockout mice suggests that, depending on the disease model, endothelial caveolin-1 may play either a protective or a detrimental role. For instance, physiological or higher expression levels of caveolin-1 in endothelium might be beneficial in such diseases as pulmonary hypertension, cardiac hypertrophy, or ischemic injury. On the other hand, endothelial caveolin-1 might contribute to acute lung injury and inflammation, atherosclerosis or pathological angiogenesis associated with inflammatory bowel disease. Moreover, depending on the specific model, endothelial caveolin-1 may either promote or suppress tumor-induced angiogenesis. In addition to overwhelming evidence for the role of endothelial caveolin-1, more recent studies also suggest that endothelial caveolin-2 could possibly play a role in pulmonary disease. The purpose of this review is to focus on how caveolin-1 expressed in endothelial cells regulates endothelial cell signaling and function. The review places particular emphasis on relevance to disease, including but not limited to Pulmonary and cardiovascular disorders as well as cancer. In addition to caveolin-1, possible importance of the less-studied endothelial caveolin-2 in pulmonary diseases will be also discussed.
Collapse
Affiliation(s)
- Grzegorz Sowa
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212, USA
| |
Collapse
|
49
|
Peripheral nerve injury alters blood-spinal cord barrier functional and molecular integrity through a selective inflammatory pathway. J Neurosci 2011; 31:10819-28. [PMID: 21795534 DOI: 10.1523/jneurosci.1642-11.2011] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Peripheral nerve lesion triggers alterations in the spinal microenvironment that contribute to the pathogenesis of neuropathic pain. While neurons and glia have been implicated in these functional changes, it remains largely underexplored whether the blood-spinal cord barrier (BSCB) is also involved. The BSCB is an important component in the CNS homeostasis, and compromised BSCB has been associated with different pathologies affecting the spinal cord. Here, we demonstrated that a remote injury on the peripheral nerve in rats triggered a leakage of the BSCB, which was independent of spinal microglial activation. The increase of BSCB permeability to different size tracers, such as Evans Blue and sodium fluorescein, was restricted to the lumbar spinal cord and prominent for at least 4 weeks after injury. The spinal inflammatory reaction triggered by nerve injury was a key player in modulating BSCB permeability. We identified MCP-1 as an endogenous trigger for the BSCB leakage. BSCB permeability can also be impaired by circulating IL-1β. In contrast, antiinflammatory cytokines TGF-β1 and IL-10 were able to shut down the openings of the BSCB following nerve injury. Peripheral nerve injury caused a decrease in tight junction and caveolae-associated proteins. Interestingly, ZO-1 and occludin, but not caveolin-1, were rescued by TGF-β1. Furthermore, our data provide direct evidence that disrupted BSCB following nerve injury contributed to the influx of inflammatory mediators and the recruitment of spinal blood borne monocytes/macrophages, which played a major role in the development of neuropathic pain. These findings highlight the importance of inflammation in BSCB integrity and in spinal cord homeostasis.
Collapse
|
50
|
Lyck R, Martinelli R. Mechanisms of T-cell migration across the BBB. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Under physiological conditions, the highly specialized BBB strictly limits the entrance of immune cells into the CNS. By contrast, in the course of neuroinflammation such as that observed in multiple sclerosis, circulating T cells readily breach the BBB and initiate a cascade of events culminating in disease onset. Lymphocyte extravasation across the BBB occurs through a sequential multistep process, orchestrated by chemokines and cell adhesion molecules that precisely regulate the dynamic interaction of T cells with the endothelial cells forming the BBB. In this article, we will discuss the molecular players triggering the sophisticated process of T-cell migration across the BBB during pathological conditions.
Collapse
Affiliation(s)
- Ruth Lyck
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Roberta Martinelli
- Department of Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|