1
|
Li X, Liang X, Ma S, Zhao S, Wang W, Li M, Feng D, Tang M. SERT and OCT mediate 5-HT 1B receptor regulation of immobility behavior and uptake of 5-HT and HIS. Biomed Pharmacother 2024; 177:117017. [PMID: 38917762 DOI: 10.1016/j.biopha.2024.117017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
5-HT clearance, commonly mediated by transporters in the uptake-1 and uptake-2 families, has been linked to 5-HT1B receptor's action on behaviors. Since no specific transporters identified yet, effects of serotonin transporter (SERT) and organic cation transporter (OCTs) on 5-HT1B-elicited immobility phenotype, and 5-HT and HIS uptake were then investigated. Intraperitoneal injections of SERT inhibitor fluoxetine (FLX) and/or OCTs inhibitor decynium (D22) were used prior to local perfusion of 5-HT1B agonist CP93129 into the ventral hippocampus to measure immobility times in the FST and TST, to measure 5-HT uptake efficiencies and HIS uptake efficiencies derived from linear regressions using the transient no-net-flux quantitative microdialysis in C57BL/6 mice. Exogenous 5-HT and HIS uptake were measured following incubation of FLX and/or D22 with CP93129 in the RBL-2H3 cells. Moreover, surface membrane levels of SERT and OCT were detected in response to CP93129. Local CP93129 prolonged immobility times, which were attenuated following pretreatment of either inhibitor. Local CP93129 lowered the slopes obtained from the lineal regressions for 5-HT and HIS (slope is reciprocal to uptake efficiency), which were then weakened following pretreatment of either inhibitor. Similar findings were obtained following CP93129 incubation, and co-incubation of CP93129 with either inhibitor in the RBL-2H3. Moreover, CP93129 dose-dependently moved SERT and OCT3 in the cytosol to the surface membrane. Both SERT and OCT are the target effectors mediating 5-HT1B regulation of immobility time and 5-HT uptake, OCT mediates 5-HT1B regulation of HIS uptake. Their underlying signal transductions need to be further explored.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xuankai Liang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shenglu Ma
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shulei Zhao
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Wenyao Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Mingxing Li
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Dan Feng
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Man Tang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Wu Y, Liu L, Zhao Y, Li X, Hu J, Li H, Zhao R. Xiaoyaosan promotes neurotransmitter transmission and alleviates CUMS-induced depression by regulating the expression of Oct1 and Oct3 in astrocytes of the prefrontal cortex. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117923. [PMID: 38367929 DOI: 10.1016/j.jep.2024.117923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoyaosan (XYS) is a traditional prescription for the treatment of liver depression and qi stagnation, and pharmacological studies have shown that XYS has great potential to reverse depression. However, anti-depression targets and the mechanism of XYS are still not entirely clear. AIM OF THE STUDY The present study aims to explore and verify the anti-depression mechanism of XYS. MATERIALS AND METHODS The antidepressant effect of XYS was assessed in rats with depression induced by chronic unpredictable mild stimulation (CUMS). The levels of 5-hydroxytryptamine (5-HT), dopamine (DA), and norepinephrine (NE) in different brain regions were measured using ELISA. The expression of organic cation transporters (Octs) were detected by western blot and immunohistochemical techniques. Then, Decynium-22 (D22), an Octs inhibitor, was injected into the prefrontal cortex (PFC) to verify the correlation between Octs and depression-like behavior. Then, the effects of XYS on the behavior, neurotransmitter concentration, and Octs expression in D22-induced rats were examined. Finally, primary astrocytes were used to verify the mechanism of XYS exerting anti-depressant activity by regulating Octs. RESULTS The result showed that XYS had a significant positive impact on the behavior of depression rats induced by CUMS. XYS also improved the secretion of 5-HT, DA, and NE in the PFC, as well as the promotion of Oct1, Oct2, and Oct3 expression in the PFC. These results suggest that XYS has the potential to alleviate depression by enhancing the secretion of neurotransmitters. This may be related to XYS regulation of Oct's expression. When the expression of Octs was inhibited in the PFC, rats exhibited behavior similar to depression, and XYS was able to reverse this behavior, indicating that Octs play a significant role in the development of depression and XYS may exert its antidepressant effects through the regulation of Octs. Furthermore, the study also found that dopamine uptake decreased after inhibiting the expression of Octs, and XYS-containing serum could reverse the downregulation of Oct1 and Oct3 and promote intracellular dopamine homeostasis in the astrocytes. Overall, XYS may exert antidepressant effects by promoting dopamine uptake to improve neurotransmitter transport by regulating the protein expression of Oct1 and Oct3 in astrocytes. CONCLUSIONS The antidepressant effect of XYS may be attributed to its ability to regulate the expression of Oct1 and Oct3 in astrocytes of the PFC, thereby promoting neurotransmitter transport.
Collapse
Affiliation(s)
- Yayun Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China; Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510120, PR China
| | - Lijuan Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China; Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, PR China
| | - Ya Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China; Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, PR China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Xiong Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China; Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, PR China
| | - Junhong Hu
- School Pharmaceutical Science, Guangzhou University Chinese Medicine, Guangzhou, 510120, Guangdong, PR China
| | - Hanlin Li
- School Pharmaceutical Science, Guangzhou University Chinese Medicine, Guangzhou, 510120, Guangdong, PR China
| | - Ruizhi Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China; Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510120, PR China.
| |
Collapse
|
3
|
Redeker KEM, Schröder S, Dücker C, Brockmöller J, Gebauer L. Targeted mutagenesis of negatively charged amino acids outlining the substrate translocation path within the human organic cation transporter 3. Biochem Pharmacol 2024; 223:116188. [PMID: 38580166 DOI: 10.1016/j.bcp.2024.116188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Recently published cryo-EM structures of human organic cation transporters of the SLC22 family revealed seven, sequentially arranged glutamic and aspartic acid residues, which may be relevant for interactions with positively charged substrates. We analyzed the functional consequences of removing those negative charges by creating D155N, E232Q, D382N, E390Q, E451Q, E459Q, and D478N mutants of OCT3. E232Q, E459Q, and D478N resulted in a lack of localization in the outer cell membrane and no relevant uptake activity. However, D155N and E451Q showed a substrate-specific loss of transport activity, whereas E390Q had no remaining activity despite correct membrane localization. In contrast, D382N showed almost wild-type-like uptake. D155 is located at the entrance to the substrate binding pocket and could, therefore be involved in guiding cationic substrates towards the inside of the binding pocket. For E390, we confirm its critical function for transporter function as it was recently shown for the corresponding position in OCT1. Interestingly, E451 seems to be located at the bottom of the binding pocket in the outward-open confirmation of the transporter. Substrate-specific loss of transport activity of the E451Q variant suggests an essential role in the transport cycle of specific substances as part of an opportunistic binding site. In general, our study highlights the impact of the cryo-EM structures in guiding mutagenesis studies to understand the molecular level of transporter-ligand interactions, and it also confirms the importance of testing multiple substrates in mutagenesis studies of polyspecific OCTs.
Collapse
Affiliation(s)
- Kyra-Elisa M Redeker
- Institute of Clinical Pharmacology, University Medical Center Göttingen, D-37075 Göttingen, Germany.
| | - Sophie Schröder
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), D-37075 Göttingen, Germany
| | - Christof Dücker
- Institute of Clinical Pharmacology, University Medical Center Göttingen, D-37075 Göttingen, Germany
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Center Göttingen, D-37075 Göttingen, Germany
| | - Lukas Gebauer
- Institute of Clinical Pharmacology, University Medical Center Göttingen, D-37075 Göttingen, Germany
| |
Collapse
|
4
|
Honan LE, Fraser-Spears R, Daws LC. Organic cation transporters in psychiatric and substance use disorders. Pharmacol Ther 2024; 253:108574. [PMID: 38072333 PMCID: PMC11052553 DOI: 10.1016/j.pharmthera.2023.108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/01/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Psychiatric and substance use disorders inflict major public health burdens worldwide. Their widespread burden is compounded by a dearth of effective treatments, underscoring a dire need to uncover novel therapeutic targets. In this review, we summarize the literature implicating organic cation transporters (OCTs), including three subtypes of OCTs (OCT1, OCT2, and OCT3) and the plasma membrane monoamine transporter (PMAT), in the neurobiology of psychiatric and substance use disorders with an emphasis on mood and anxiety disorders, alcohol use disorder, and psychostimulant use disorder. OCTs transport monoamines with a low affinity but high capacity, situating them to play a central role in regulating monoamine homeostasis. Preclinical evidence discussed here suggests that OCTs may serve as promising targets for treatment of psychiatric and substance use disorders and encourage future research into their therapeutic potential.
Collapse
Affiliation(s)
- Lauren E Honan
- The University of Texas Health Science Center at San Antonio, Department of Cellular & Integrative Physiology, USA
| | - Rheaclare Fraser-Spears
- University of the Incarnate Word, Feik School of Pharmacy, Department of Pharmaceutical Sciences, USA
| | - Lynette C Daws
- The University of Texas Health Science Center at San Antonio, Department of Cellular & Integrative Physiology, USA; The University of Texas Health Science Center at San Antonio, Department of Pharmacology, USA.
| |
Collapse
|
5
|
Gianni G, Pasqualetti M. Wiring and Volume Transmission: An Overview of the Dual Modality for Serotonin Neurotransmission. ACS Chem Neurosci 2023; 14:4093-4104. [PMID: 37966717 DOI: 10.1021/acschemneuro.3c00648] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Serotonin is a neurotransmitter involved in the modulation of a multitude of physiological and behavioral processes. In spite of the relatively reduced number of serotonin-producing neurons present in the mammalian CNS, a complex long-range projection system provides profuse innervation to the whole brain. Heterogeneity of serotonin receptors, grouped in seven families, and their spatiotemporal expression pattern account for its widespread impact. Although neuronal communication occurs primarily at tiny gaps called synapses, wiring transmission, another mechanism based on extrasynaptic diffusion of neuroactive molecules and referred to as volume transmission, has been described. While wiring transmission is a rapid and specific one-to-one modality of communication, volume transmission is a broader and slower mode in which a single element can simultaneously act on several different targets in a one-to-many mode. Some experimental evidence regarding ultrastructural features, extrasynaptic localization of receptors and transporters, and serotonin-glia interactions collected over the past four decades supports the existence of a serotonergic system of a dual modality of neurotransmission, in which wiring and volume transmission coexist. To date, in spite of the radical difference in the two modalities, limited information is available on the way they are coordinated to mediate the specific activities in which serotonin participates. Understanding how wiring and volume transmission modalities contribute to serotonergic neurotransmission is of utmost relevance for the comprehension of serotonin functions in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Giulia Gianni
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy
| | - Massimo Pasqualetti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy
- Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
- Centro per l'Integrazione della Strumentazione Scientifica dell'Università di Pisa (CISUP), 56126 Pisa, Italy
| |
Collapse
|
6
|
Weber BL, Nicodemus MM, Hite AK, Spalding IR, Beaver JN, Scrimshaw LR, Kassis SK, Reichert JM, Ford MT, Russell CN, Hallal EM, Gilman TL. Heterotypic Stressors Unmask Behavioral Influences of PMAT Deficiency in Mice. Int J Mol Sci 2023; 24:16494. [PMID: 38003684 PMCID: PMC10671398 DOI: 10.3390/ijms242216494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Certain life stressors having enduring physiological and behavioral consequences, in part by eliciting dramatic signaling shifts in monoamine neurotransmitters. High monoamine levels can overwhelm selective transporters like the serotonin transporter. This is when polyspecific transporters like plasma membrane monoamine transporter (PMAT, Slc29a4) are hypothesized to contribute most to monoaminergic signaling regulation. Here, we employed two distinct counterbalanced stressors-fear conditioning and swim stress-in mice to systematically determine how reductions in PMAT function affect heterotypic stressor responsivity. We hypothesized that male heterozygotes would exhibit augmented stressor responses relative to female heterozygotes. Decreased PMAT function enhanced context fear expression, an effect unexpectedly obscured by a sham stress condition. Impaired cued fear extinction retention and enhanced context fear expression in males were conversely unmasked by a sham swim condition. Abrogated corticosterone levels in male heterozygotes that underwent swim stress after context fear conditioning did not map onto any measured behaviors. In sum, male heterozygous mouse fear behaviors proved malleable in response to preceding stressor or sham stress exposure. Combined, these data indicate that reduced male PMAT function elicits a form of stress-responsive plasticity. Future studies should assess how PMAT is differentially affected across sexes and identify downstream consequences of the stress-shifted corticosterone dynamics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - T. Lee Gilman
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH 44240, USA
| |
Collapse
|
7
|
Weber BL, Nicodemus MM, Hite AK, Spalding IR, Beaver JN, Scrimshaw LR, Kassis SK, Reichert JM, Ford MT, Russell CN, Hallal EM, Gilman TL. Heterotypic stressors unmask behavioral influences of PMAT deficiency in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555632. [PMID: 37693400 PMCID: PMC10491137 DOI: 10.1101/2023.08.30.555632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Certain life stressors having enduring physiological and behavioral consequences, in part by eliciting dramatic signaling shifts in monoamine neurotransmitters. High monoamine levels can overwhelm selective transporters like the serotonin transporter. This is when polyspecific transporters like plasma membrane monoamine transporter (PMAT, Slc29a4) are hypothesized to contribute most to monoaminergic signaling regulation. Here, we employed two distinct counterbalanced stressors - fear conditioning, and swim stress - in mice to systematically determine how reductions in PMAT function affect heterotypic stressor responsivity. We hypothesized male heterozygotes would exhibit augmented stressor responses relative to female heterozygotes. Decreased PMAT function enhanced context fear expression, an effect unexpectedly obscured by a sham stress condition. Impaired cued fear extinction retention and enhanced context fear expression in males were conversely unmasked by a sham swim condition. Abrogated corticosterone levels in male heterozygotes that underwent swim stress after context fear conditioning did not map on to any measured behaviors. In sum, male heterozygous mouse fear behaviors proved malleable in response to preceding stressor or sham stress exposure. Combined, these data indicate reduced male PMAT function elicits a form of stress-responsive plasticity. Future studies should assess how PMAT is differentially affected across sexes and identify downstream consequences of the stress-shifted corticosterone dynamics.
Collapse
Affiliation(s)
- Brady L Weber
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Marissa M Nicodemus
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Allianna K Hite
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Isabella R Spalding
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Jasmin N Beaver
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Lauren R Scrimshaw
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Sarah K Kassis
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Julie M Reichert
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Matthew T Ford
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Cameron N Russell
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Elayna M Hallal
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - T Lee Gilman
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| |
Collapse
|
8
|
Sardar D, Cheng YT, Woo J, Choi DJ, Lee ZF, Kwon W, Chen HC, Lozzi B, Cervantes A, Rajendran K, Huang TW, Jain A, Arenkiel B, Maze I, Deneen B. Induction of astrocytic Slc22a3 regulates sensory processing through histone serotonylation. Science 2023; 380:eade0027. [PMID: 37319217 PMCID: PMC10874521 DOI: 10.1126/science.ade0027] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/28/2023] [Indexed: 06/17/2023]
Abstract
Neuronal activity drives alterations in gene expression within neurons, yet how it directs transcriptional and epigenomic changes in neighboring astrocytes in functioning circuits is unknown. We found that neuronal activity induces widespread transcriptional up-regulation and down-regulation in astrocytes, highlighted by the identification of Slc22a3 as an activity-inducible astrocyte gene that encodes neuromodulator transporter Slc22a3 and regulates sensory processing in the mouse olfactory bulb. Loss of astrocytic Slc22a3 reduced serotonin levels in astrocytes, leading to alterations in histone serotonylation. Inhibition of histone serotonylation in astrocytes reduced the expression of γ-aminobutyric acid (GABA) biosynthetic genes and GABA release, culminating in olfactory deficits. Our study reveals that neuronal activity orchestrates transcriptional and epigenomic responses in astrocytes while illustrating new mechanisms for how astrocytes process neuromodulatory input to gate neurotransmitter release for sensory processing.
Collapse
Affiliation(s)
- Debosmita Sardar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
| | - Yi-Ting Cheng
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Program in Developmental Biology, Baylor College of Medicine, Houston TX
| | - Junsung Woo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
| | - Dong-Joo Choi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
| | - Zhung-Fu Lee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
- Program in Development, Disease Models, and Therapeutics, Baylor College of Medicine, Houston TX
| | - Wookbong Kwon
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
| | - Hsiao-Chi Chen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
- The Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston TX
| | - Brittney Lozzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston TX
| | - Alexis Cervantes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
| | - Kavitha Rajendran
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
| | - Teng-Wei Huang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston TX
| | - Benjamin Arenkiel
- Program in Developmental Biology, Baylor College of Medicine, Houston TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX
- Neurological Research Institute, Texas Children’s Hospital, Houston TX
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York NY
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York NY
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York NY 10029
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
- Program in Developmental Biology, Baylor College of Medicine, Houston TX
- Program in Development, Disease Models, and Therapeutics, Baylor College of Medicine, Houston TX
- Department of Neurosurgery, Baylor College of Medicine, Houston TX 77030
| |
Collapse
|
9
|
Sardar D, Cheng YT, Woo J, Choi DJ, Lee ZF, Kwon W, Chen HC, Lozzi B, Cervantes A, Rajendran K, Huang TW, Jain A, Arenkiel B, Maze I, Deneen B. Activity-dependent induction of astrocytic Slc22a3 regulates sensory processing through histone serotonylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529904. [PMID: 36909526 PMCID: PMC10002681 DOI: 10.1101/2023.02.24.529904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Neuronal activity drives global alterations in gene expression within neurons, yet how it directs transcriptional and epigenomic changes in neighboring astrocytes in functioning circuits is unknown. Here we show that neuronal activity induces widespread transcriptional upregulation and downregulation in astrocytes, highlighted by the identification of a neuromodulator transporter Slc22a3 as an activity-inducible astrocyte gene regulating sensory processing in the olfactory bulb. Loss of astrocytic Slc22a3 reduces serotonin levels in astrocytes, leading to alterations in histone serotonylation. Inhibition of histone serotonylation in astrocytes reduces expression of GABA biosynthetic genes and GABA release, culminating in olfactory deficits. Our study reveals that neuronal activity orchestrates transcriptional and epigenomic responses in astrocytes, while illustrating new mechanisms for how astrocytes process neuromodulatory input to gate neurotransmitter release for sensory processing.
Collapse
|
10
|
Stereoselectivity in the Membrane Transport of Phenylethylamine Derivatives by Human Monoamine Transporters and Organic Cation Transporters 1, 2, and 3. Biomolecules 2022; 12:biom12101507. [PMID: 36291716 PMCID: PMC9599461 DOI: 10.3390/biom12101507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Stereoselectivity is well known and very pronounced in drug metabolism and receptor binding. However, much less is known about stereoselectivity in drug membrane transport. Here, we characterized the stereoselective cell uptake of chiral phenylethylamine derivatives by human monoamine transporters (NET, DAT, and SERT) and organic cation transporters (OCT1, OCT2, and OCT3). Stereoselectivity differed extensively between closely related transporters. High-affinity monoamine transporters (MATs) showed up to 2.4-fold stereoselective uptake of norepinephrine and epinephrine as well as of numerous analogs. While NET and DAT preferentially transported (S)-norepinephrine, SERT preferred the (R)-enantiomer. In contrast, NET and DAT showed higher transport for (R)-epinephrine and SERT for (S)-epinephrine. Generally, MAT stereoselectivity was lower than expected from their high affinity to several catecholamines and from the high stereoselectivity of some inhibitors used as antidepressants. Additionally, the OCTs differed strongly in their stereoselectivity. While OCT1 showed almost no stereoselective uptake, OCT2 was characterized by a roughly 2-fold preference for most (R)-enantiomers of the phenylethylamines. In contrast, OCT3 transported norphenylephrine and phenylephrine with 3.9-fold and 3.3-fold preference for their (R)-enantiomers, respectively, while the para-hydroxylated octopamine and synephrine showed no stereoselective OCT3 transport. Altogether, our data demonstrate that stereoselectivity is highly transporter-to-substrate specific and highly diverse even between homologous transporters.
Collapse
|
11
|
Gebauer L, Jensen O, Brockmöller J, Dücker C. Substrates and Inhibitors of the Organic Cation Transporter 3 and Comparison with OCT1 and OCT2. J Med Chem 2022; 65:12403-12416. [PMID: 36067397 DOI: 10.1021/acs.jmedchem.2c01075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Organic cation transporters (OCTs) 1, 2, and 3 facilitate cellular uptake of structurally diverse endogenous and exogenous substances. However, their substrate and inhibitor specificity are not fully understood. We performed a broad in vitro screening for OCT3 substrates and inhibitors, allowing us to compare the substrate spectra and to study the relationship between transport and inhibition of transport. Generally, substrates were smaller and more hydrophilic than OCT3 inhibitors. The best model-based predictor of transport was the positive charge, while the best predictor of inhibition was the aromatic ring count. OCT3 inhibition was well correlated between different model substrates. Substrates of OCT3 were mainly weak inhibitors, and the best inhibitors were not substrates. As tested with 264 substances, OCT3 transport had significantly more overlap with OCT2 than OCT1. Our data further substantiate that specificity of OCT transport varies with minor substitutions rather than with the general scaffolds of substrates.
Collapse
Affiliation(s)
- Lukas Gebauer
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, D-37075 Göttingen, Germany
| | - Ole Jensen
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, D-37075 Göttingen, Germany
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, D-37075 Göttingen, Germany
| | - Christof Dücker
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, D-37075 Göttingen, Germany
| |
Collapse
|
12
|
Actions of Metformin in the Brain: A New Perspective of Metformin Treatments in Related Neurological Disorders. Int J Mol Sci 2022; 23:ijms23158281. [PMID: 35955427 PMCID: PMC9368983 DOI: 10.3390/ijms23158281] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Metformin is a first-line drug for treating type 2 diabetes mellitus (T2DM) and one of the most commonly prescribed drugs in the world. Besides its hypoglycemic effects, metformin also can improve cognitive or mood functions in some T2DM patients; moreover, it has been reported that metformin exerts beneficial effects on many neurological disorders, including major depressive disorder (MDD), Alzheimer’s disease (AD) and Fragile X syndrome (FXS); however, the mechanism underlying metformin in the brain is not fully understood. Neurotransmission between neurons is fundamental for brain functions, and its defects have been implicated in many neurological disorders. Recent studies suggest that metformin appears not only to regulate synaptic transmission or plasticity in pathological conditions but also to regulate the balance of excitation and inhibition (E/I balance) in neural networks. In this review, we focused on and reviewed the roles of metformin in brain functions and related neurological disorders, which would give us a deeper understanding of the actions of metformin in the brain.
Collapse
|
13
|
Wang Y, Zhao M, Xu B, Bahriz SMF, Zhu C, Jovanovic A, Ni H, Jacobi A, Kaludercic N, Di Lisa F, Hell JW, Shih JC, Paolocci N, Xiang YK. Monoamine oxidase A and organic cation transporter 3 coordinate intracellular β 1AR signaling to calibrate cardiac contractile function. Basic Res Cardiol 2022; 117:37. [PMID: 35842861 PMCID: PMC9288959 DOI: 10.1007/s00395-022-00944-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/03/2023]
Abstract
We have recently identified a pool of intracellular β1 adrenergic receptors (β1ARs) at the sarcoplasmic reticulum (SR) crucial for cardiac function. Here, we aim to characterize the integrative control of intracellular catecholamine for subcellular β1AR signaling and cardiac function. Using anchored Förster resonance energy transfer (FRET) biosensors and transgenic mice, we determined the regulation of compartmentalized β1AR-PKA signaling at the SR and plasma membrane (PM) microdomains by organic cation transporter 3 (OCT3) and monoamine oxidase A (MAO-A), two critical modulators of catecholamine uptake and homeostasis. Additionally, we examined local PKA substrate phosphorylation and excitation-contraction coupling in cardiomyocyte. Cardiac-specific deletion of MAO-A (MAO-A-CKO) elevates catecholamines and cAMP levels in the myocardium, baseline cardiac function, and adrenergic responses. Both MAO-A deletion and inhibitor (MAOi) selectively enhance the local β1AR-PKA activity at the SR but not PM, and augment phosphorylation of phospholamban, Ca2+ cycling, and myocyte contractile response. Overexpression of MAO-A suppresses the SR-β1AR-PKA activity and PKA phosphorylation. However, deletion or inhibition of OCT3 by corticosterone prevents the effects induced by MAOi and MAO-A deletion in cardiomyocytes. Deletion or inhibition of OCT3 also negates the effects of MAOi and MAO-A deficiency in cardiac function and adrenergic responses in vivo. Our data show that MAO-A and OCT3 act in concert to fine-tune the intracellular SR-β1AR-PKA signaling and cardiac fight-or-flight response. We reveal a drug contraindication between anti-inflammatory corticosterone and anti-depressant MAOi in modulating adrenergic regulation in the heart, providing novel perspectives of these drugs with cardiac implications.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Meimi Zhao
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
- Department of Pharmaceutical Toxicology, China Medical University, Shenyang, 110122, China
| | - Bing Xu
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
- VA Northern California Health Care System, Mather, CA, USA
| | - Sherif M F Bahriz
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Chaoqun Zhu
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Aleksandra Jovanovic
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Haibo Ni
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Ariel Jacobi
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy, Padua, Italy
- Institute for Pediatric Research Città Della Speranza, Padua, Italy
| | - Fabio Di Lisa
- Neuroscience Institute, National Research Council of Italy, Padua, Italy
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Johannes W Hell
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Jean C Shih
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA.
- VA Northern California Health Care System, Mather, CA, USA.
| |
Collapse
|
14
|
Gould GG, Barba-Escobedo PA, Horton RE, Daws LC. High Affinity Decynium-22 Binding to Brain Membrane Homogenates and Reduced Dorsal Camouflaging after Acute Exposure to it in Zebrafish. Front Pharmacol 2022; 13:841423. [PMID: 35754508 PMCID: PMC9218599 DOI: 10.3389/fphar.2022.841423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Organic cation transporters (OCTs) are expressed in the mammalian brain, kidney, liver, placenta, and intestines, where they facilitate the transport of cations and other substrates between extracellular fluids and cells. Despite increasing reliance on ectothermic vertebrates as alternative toxicology models, properties of their OCT homologs transporting many drugs and toxins remain poorly characterized. Recently, in zebrafish (Danio rerio), two proteins with functional similarities to human OCTs were shown to be highly expressed in the liver, kidney, eye, and brain. This study is the first to characterize in vivo uptake to the brain and the high-affinity brain membrane binding of the mammalian OCT blocker 1-1'-diethyl-2,2'cyanine iodide (decynium-22 or D-22) in zebrafish. Membrane saturation binding of [3H] D-22 in pooled zebrafish whole brain versus mouse hippocampal homogenates revealed a high-affinity binding site with a KD of 5 ± 2.5 nM and Bmax of 1974 ± 410 fmol/mg protein in the zebrafish brain, and a KD of 3.3 ± 2.3 and Bmax of 704 ± 182 fmol/mg protein in mouse hippocampus. The binding of [3H] D-22 to brain membrane homogenates was partially blocked by the neurotoxic cation 1-methyl-4-phenylpyridinium (MPP+), a known OCT substrate. To determine if D-22 bath exposures reach the brain, zebrafish were exposed to 25 nM [3H] D-22 for 10 min, and 736 ± 68 ng/g wet weight [3H] D-22 was bound. Acute behavioral effects of D-22 in zebrafish were characterized in two anxiety-relevant tests. In the first cohort of zebrafish, 12.5, 25, or 50 mg/L D-22 had no effect on their height in the dive tank or entries and time spent in white arms of a light/dark plus maze. By contrast, 25 mg/L buspirone increased zebrafish dive tank top-dwelling (p < 0.05), an anticipated anxiolytic effect. However, a second cohort of zebrafish treated with 50 mg/L D-22 made more white arm entries, and females spent more time in white than controls. Based on these findings, it appears that D-22 bath treatments reach the zebrafish brain and have partial anxiolytic properties, reducing anti-predator dorsal camouflaging, without increasing vertical exploration. High-affinity binding of [3H] D-22 in zebrafish brain and mouse brain was similar, with nanomolar affinity, possibly at conserved OCT site(s).
Collapse
Affiliation(s)
- Georgianna G Gould
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Priscilla A Barba-Escobedo
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Rebecca E Horton
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Lynette C Daws
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
15
|
Rieck J, Skatchkov SN, Derst C, Eaton MJ, Veh RW. Unique Chemistry, Intake, and Metabolism of Polyamines in the Central Nervous System (CNS) and Its Body. Biomolecules 2022; 12:biom12040501. [PMID: 35454090 PMCID: PMC9025450 DOI: 10.3390/biom12040501] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
Polyamines (PAs) are small, versatile molecules with two or more nitrogen-containing positively charged groups and provide widespread biological functions. Most of these aspects are well known and covered by quite a number of excellent surveys. Here, the present review includes novel aspects and questions: (1) It summarizes the role of most natural and some important synthetic PAs. (2) It depicts PA uptake from nutrition and bacterial production in the intestinal system following loss of PAs via defecation. (3) It highlights the discrepancy between the high concentrations of PAs in the gut lumen and their low concentration in the blood plasma and cerebrospinal fluid, while concentrations in cellular cytoplasm are much higher. (4) The present review provides a novel and complete scheme for the biosynthesis of Pas, including glycine, glutamate, proline and others as PA precursors, and provides a hypothesis that the agmatine pathway may rescue putrescine production when ODC knockout seems to be lethal (solving the apparent contradiction in the literature). (5) It summarizes novel data on PA transport in brain glial cells explaining why these cells but not neurons preferentially accumulate PAs. (6) Finally, it provides a novel and complete scheme for PA interconversion, including hypusine, putreanine, and GABA (unique gliotransmitter) as end-products. Altogether, this review can serve as an updated contribution to understanding the PA mystery.
Collapse
Affiliation(s)
- Julian Rieck
- Institut für Zell- und Neurobiologie, Centrum 2, Charité—Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany;
| | - Serguei N. Skatchkov
- Department of Physiology, Universidad Central del Caribe, Bayamón, PR 00956, USA
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA;
- Correspondence: (S.N.S.); (R.W.V.)
| | - Christian Derst
- Institut für Integrative Neuroanatomie, Centrum 2, Charité—Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany;
| | - Misty J. Eaton
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA;
| | - Rüdiger W. Veh
- Institut für Zell- und Neurobiologie, Centrum 2, Charité—Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany;
- Correspondence: (S.N.S.); (R.W.V.)
| |
Collapse
|
16
|
Clauss NJ, Koek W, Daws LC. Role of Organic Cation Transporter 3 and Plasma Membrane Monoamine Transporter in the Rewarding Properties and Locomotor Sensitizing Effects of Amphetamine in Male andFemale Mice. Int J Mol Sci 2021; 22:ijms222413420. [PMID: 34948221 PMCID: PMC8708598 DOI: 10.3390/ijms222413420] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 01/03/2023] Open
Abstract
A lack of effective treatment and sex-based disparities in psychostimulant addiction and overdose warrant further investigation into mechanisms underlying the abuse-related effects of amphetamine-like stimulants. Uptake-2 transporters such as organic cation transporter 3 (OCT3) and plasma membrane monoamine transporter (PMAT), lesser studied potential targets for the actions of stimulant drugs, are known to play a role in monoaminergic neurotransmission. Our goal was to examine the roles of OCT3 and PMAT in mediating amphetamine (1 mg/kg)-induced conditioned place preference (CPP) and sensitization to its locomotor stimulant effects, in males and females, using pharmacological, decynium-22 (D22; 0.1 mg/kg, a blocker of OCT3 and PMAT) and genetic (constitutive OCT3 and PMAT knockout (−/−) mice) approaches. Our results show that OCT3 is necessary for the development of CPP to amphetamine in males, whereas in females, PMAT is necessary for the ability of D22 to prevent the development of CPP to amphetamine. Both OCT3 and PMAT appear to be important for development of sensitization to the locomotor stimulant effect of amphetamine in females, and PMAT in males. Taken together, these findings support an important, sex-dependent role of OCT3 and PMAT in the rewarding and locomotor stimulant effects of amphetamine.
Collapse
Affiliation(s)
- Nikki J. Clauss
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Correspondence: (N.J.C.); (L.C.D.)
| | - Wouter Koek
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lynette C. Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Correspondence: (N.J.C.); (L.C.D.)
| |
Collapse
|
17
|
Interaction Profiles of Central Nervous System Active Drugs at Human Organic Cation Transporters 1-3 and Human Plasma Membrane Monoamine Transporter. Int J Mol Sci 2021; 22:ijms222312995. [PMID: 34884800 PMCID: PMC8657792 DOI: 10.3390/ijms222312995] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/31/2022] Open
Abstract
Many psychoactive compounds have been shown to primarily interact with high-affinity and low-capacity solute carrier 6 (SLC6) monoamine transporters for norepinephrine (NET; norepinephrine transporter), dopamine (DAT; dopamine transporter) and serotonin (SERT; serotonin transporter). Previous studies indicate an overlap between the inhibitory capacities of substances at SLC6 and SLC22 human organic cation transporters (SLC22A1-3; hOCT1-3) and the human plasma membrane monoamine transporter (SLC29A4; hPMAT), which can be classified as high-capacity, low-affinity monoamine transporters. However, interactions between central nervous system active substances, the OCTs, and the functionally-related PMAT have largely been understudied. Herein, we report data from 17 psychoactive substances interacting with the SLC6 monoamine transporters, concerning their potential to interact with the human OCT isoforms and hPMAT by utilizing radiotracer-based in vitro uptake inhibition assays at stably expressing human embryonic kidney 293 cells (HEK293) cells. Many compounds inhibit substrate uptake by hOCT1 and hOCT2 in the low micromolar range, whereas only a few substances interact with hOCT3 and hPMAT. Interestingly, methylphenidate and ketamine selectively interact with hOCT1 or hOCT2, respectively. Additionally, 3,4-methylenedioxymethamphetamine (MDMA) is a potent inhibitor of hOCT1 and 2 and hPMAT. Enantiospecific differences of R- and S-α-pyrrolidinovalerophenone (R- and S-α-PVP) and R- and S-citalopram and the effects of aromatic substituents are explored. Our results highlight the significance of investigating drug interactions with hOCTs and hPMAT, due to their role in regulating monoamine concentrations and xenobiotic clearance.
Collapse
|
18
|
Overlap and Specificity in the Substrate Spectra of Human Monoamine Transporters and Organic Cation Transporters 1, 2, and 3. Int J Mol Sci 2021; 22:ijms222312816. [PMID: 34884618 PMCID: PMC8657982 DOI: 10.3390/ijms222312816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022] Open
Abstract
Human monoamine transporters (MATs) are cation transporters critically involved in neuronal signal transmission. While inhibitors of MATs have been intensively studied, their substrate spectra have received far less attention. Polyspecific organic cation transporters (OCTs), predominantly known for their role in hepatic and renal drug elimination, are also expressed in the central nervous system and might modulate monoaminergic signaling. Using HEK293 cells overexpressing MATs or OCTs, we compared uptake of 48 compounds, mainly phenethylamine and tryptamine derivatives including matched molecular pairs, across noradrenaline, dopamine and serotonin transporters and OCTs (1, 2, and 3). Generally, MATs showed surprisingly high transport activities for numerous analogs of neurotransmitters, but their substrate spectra were limited by molar mass. Human OCT2 showed the broadest substrate spectrum, and also the highest overlap with MATs substrates. Comparative kinetic analyses revealed that the radiotracer meta-iodobenzylguanidine had the most balanced uptake across all six transporters. Matched molecular pair analyses comparing MAT and OCT uptake using the same methodology could provide a better understanding of structural determinants for high cell uptake by MATs or OCTs. The data may result in a better understanding of pharmacokinetics and toxicokinetics of small molecular organic cations and, possibly, in the development of more specific radiotracers for MATs.
Collapse
|
19
|
Uptake of Biotinylated Spermine in Astrocytes: Effect of Cx43 siRNA, HIV-Tat Protein and Polyamine Transport Inhibitor on Polyamine Uptake. Biomolecules 2021; 11:biom11081187. [PMID: 34439853 PMCID: PMC8391674 DOI: 10.3390/biom11081187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 12/14/2022] Open
Abstract
Polyamines (PAs) are polycationic biomolecules containing multiple amino groups. Patients with HIV-associated neurocognitive disorder (HAND) have high concentrations of the polyamine N-acetylated spermine in their brain and cerebral spinal fluid (CSF) and have increased PA release from astrocytes. These effects are due to the exposure to HIV-Tat. In healthy adult brain, PAs are accumulated but not synthesized in astrocytes, suggesting that PAs must enter astrocytes to be N-acetylated and released. Therefore, we tested if Cx43 hemichannels (Cx43-HCs) are pathways for PA flux in control and HIV-Tat-treated astrocytes. We used biotinylated spermine (b-SPM) to examine polyamine uptake. We found that control astrocytes and those treated with siRNA-Cx43 took up b-SPM, similarly suggesting that PA uptake is via a transporter/channel other than Cx43-HCs. Surprisingly, astrocytes pretreated with both HIV-Tat and siRNA-Cx43 showed increased accumulation of b-SPM. Using a novel polyamine transport inhibitor (PTI), trimer 44NMe, we blocked b-SPM uptake, showing that PA uptake is via a PTI-sensitive transport mechanism such as organic cation transporter. Our data suggest that Cx43 HCs are not a major pathway for b-SPM uptake in the condition of normal extracellular calcium concentration but may be involved in the release of PAs to the extracellular space during viral infection.
Collapse
|
20
|
Maximino C. Decynium-22 affects behavior in the zebrafish light/dark test. NEUROANATOMY AND BEHAVIOUR 2021. [DOI: 10.35430/nab.2021.e21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Decynium-22 (D-22) is an inhibitor of the uptake2 system of monoamine clearance, resulting in increased levels of dopamine and norepinephrine (and in some cases serotonin) in the nervous system and elsewhere. Uptake2 is mediated by low-affinity, high-capacity transporters that are inhibited by glucocorticoids, suggesting a mechanism of fast glucocorticoid-monoamine interaction in the brain and a possible target for antidepressants. D-22 dose-dependently increased anxiety-like behavior in adult zebrafish exposed to the light/dark test, monotonically increasing scototaxis (dark preference), but affecting risk assessment with an inverted-U-shaped response. These results suggest that the uptake2 system has a role in defensive behavior in zebrafish, presenting a novel mechanism by which stress and glucocorticoids could produce fast neurobehavioral adjustments in vertebrates.
Collapse
|
21
|
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medications for psychiatric disorders, yet they leave the majority of patients without full symptom relief. Therefore, a major research challenge is to identify novel targets for the improved treatment of these disorders. SSRIs act by blocking the serotonin transporter (SERT), the high-affinity, low-capacity, uptake-1 transporter for serotonin. Other classes of antidepressant work by blocking the norepinephrine or dopamine transporters (NET and DAT), the high-affinity, low-capacity uptake-1 transporters for norepinephrine and dopamine, or by blocking combinations of SERT, NET, and DAT. It has been proposed that uptake-2 transporters, which include organic cation transporters (OCTs) and the plasma membrane monoamine transporter (PMAT), undermine the therapeutic utility of uptake-1 acting antidepressants. Uptake-2 transporters for monoamines have low affinity for these neurotransmitters, but a high capacity to transport them. Thus, activity of these transporters may limit the increase of extracellular monoamines thought to be essential for ultimate therapeutic benefit. Here preclinical evidence supporting a role for OCT2, OCT3, and PMAT in behaviors relevant to psychiatric disorders is presented. Importantly, preclinical evidence revealing these transporters as targets for the development of novel therapeutics for psychiatric disorders is discussed.
Collapse
|
22
|
Abstract
Catecholamines, including dopamine, norepinephrine, and epinephrine, are modulatory transmitters released from specialized neurons throughout the brain. Collectively, catecholamines exert powerful regulation of mood, motivation, arousal, and plasticity. Transporter-mediated uptake determines the peak concentration, duration, and physical spread of released catecholamines, thus playing key roles in determining the magnitude and duration of their modulatory effects. Most studies of catecholamine clearance have focused on the presynaptic high-affinity, low-capacity dopamine (DAT), and norepinephrine (NET) transporters, which are members of the uptake1 family of monoamine transporters. However, recent studies have demonstrated that members of the uptake2 family of monoamine transporters, including organic cation transporter 2 (OCT2), OCT3, and the plasma membrane monoamine transporter (PMAT) are expressed widely throughout the brain. In contrast to DAT and NET, these transporters have higher capacity and lower affinity for catecholamines and are multi-specific, each with the capacity to transport all catecholamines. The expression of these transporters in the brain suggests that they play significant roles in regulating catecholamine homeostasis. This review summarizes studies describing the anatomical distribution of OCT2, OCT3, and PMAT, their cellular and subcellular localization, and their contribution to the regulation of the clearance of catecholamines in the brain.
Collapse
|
23
|
Sweet DH. Organic Cation Transporter Expression and Function in the CNS. Handb Exp Pharmacol 2021; 266:41-80. [PMID: 33963461 DOI: 10.1007/164_2021_463] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) represent major control checkpoints protecting the CNS, by exerting selective control over the movement of organic cations and anions into and out of the CNS compartment. In addition, multiple CNS cell types, e.g., astrocytes, ependymal cells, microglia, contribute to processes that maintain the status quo of the CNS milieu. To fulfill their roles, these barriers and cell types express a multitude of transporter proteins from dozens of different transporter families. Fundamental advances over the past few decades in our knowledge of transporter substrates, expression profiles, and consequences of loss of function are beginning to change basic theories regarding the contribution of various cell types and clearance networks to coordinated neuronal signaling, complex organismal behaviors, and overall CNS homeostasis. In particular, transporters belonging to the Solute Carrier (SLC) superfamily are emerging as major contributors, including the SLC22 organic cation/anion/zwitterion family of transporters (includes OCT1-3 and OCTN1-3), the SLC29 facilitative nucleoside family of transporters (includes PMAT), and the SLC47 multidrug and toxin extrusion family of transporters (includes MATE1-2). These transporters are known to interact with neurotransmitters, antidepressant and anxiolytic agents, and drugs of abuse. Clarifying their contributions to the underlying mechanisms regulating CNS permeation and clearance, as well as the health status of astrocyte, microglial and neuronal cell populations, will drive new levels of understanding as to maintenance of the CNS milieu and approaches to new therapeutics and therapeutic strategies in the treatment of CNS disorders. This chapter highlights organic cation transporters belonging to the SLC superfamily known to be expressed in the CNS, providing an overview of their identification, mechanism of action, CNS expression profile, interaction with neurotransmitters and antidepressant/antipsychotic drugs, and results from behavioral studies conducted in loss of function models (knockout/knockdown).
Collapse
Affiliation(s)
- Douglas H Sweet
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
24
|
Jensen O, Rafehi M, Gebauer L, Brockmöller J. Cellular Uptake of Psychostimulants - Are High- and Low-Affinity Organic Cation Transporters Drug Traffickers? Front Pharmacol 2021; 11:609811. [PMID: 33551812 PMCID: PMC7854383 DOI: 10.3389/fphar.2020.609811] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022] Open
Abstract
Psychostimulants are used therapeutically and for illegal recreational purposes. Many of these are inhibitors of the presynaptic noradrenaline, dopamine, and serotonin transporters (NET, DAT, and SERT). According to their physicochemical properties, some might also be substrates of polyspecific organic cation transporters (OCTs) that mediate uptake in liver and kidneys for metabolism and excretion. OCT1 is genetically highly polymorphic, with strong effects on transporter activity and expression. To study potential interindividual differences in their pharmacokinetics, 18 psychostimulants and hallucinogens were assessed in vitro for transport by different OCTs as well as by the high-affinity monoamine transporters NET, DAT, and SERT. The hallucinogenic natural compound mescaline was found to be strongly transported by wild-type OCT1 with a Km of 24.3 µM and a vmax of 642 pmol × mg protein−1 × min−1. Transport was modestly reduced in variants *2 and *7, more strongly reduced in *3 and *4, and lowest in *5 and *6, while *8 showed a moderately increased transport capacity. The other phenylethylamine derivatives methamphetamine, para-methoxymethamphetamine, (-)-ephedrine, and cathine ((+)-norpseudoephedrine), as well as dimethyltryptamine, were substrates of OCT2 with Km values in the range of 7.9–46.0 µM and vmax values between 70.7 and 570 pmol × mg protein−1 × min−1. Affinities were similar or modestly reduced and the transport capacities were reduced down to half in the naturally occurring variant A270S. Cathine was found to be a substrate for NET and DAT, with the Km being 21-fold and the vmax 10-fold higher for DAT but still significantly lower compared to OCT2. This study has shown that several psychostimulants and hallucinogens are substrates for OCTs. Given the extensive cellular uptake of mescaline by the genetically highly polymorphic OCT1, strong interindividual variation in the pharmacokinetics of mescaline might be possible, which could be a reason for highly variable adverse reactions. The involvement of the polymorphic OCT2 in the renal excretion of several psychostimulants could be one reason for individual differences in toxicity.
Collapse
Affiliation(s)
- Ole Jensen
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Muhammad Rafehi
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Lukas Gebauer
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
25
|
Maier J, Niello M, Rudin D, Daws LC, Sitte HH. The Interaction of Organic Cation Transporters 1-3 and PMAT with Psychoactive Substances. Handb Exp Pharmacol 2021; 266:199-214. [PMID: 33993413 DOI: 10.1007/164_2021_469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Organic cation transporters 1-3 (OCT1-3, SLC22A1-3) and the plasma membrane monoamine transporter (PMAT, SLC29A4) play a major role in maintaining monoaminergic equilibrium in the central nervous system. With many psychoactive substances interacting with OCT1-3 and PMAT, a growing literature focuses on characterizing their properties via in vitro and in vivo studies. In vitro studies mainly aim at characterizing compounds as inhibitors or substrates of murine, rat, and human isoforms. The preponderance of studies has put emphasis on phenylalkylamine derivatives, but ketamine and opioids have also been investigated. Studies employing in vivo (knockout) models mostly concentrate on the interaction of psychoactive substances and OCT3, with an emphasis on stress and addiction, pharmacokinetics, and sensitization to psychoactive drugs. The results highlight the importance of OCT3 in the mechanism of action of psychoactive compounds. Concerning in vivo studies, a veritable research gap concerning OCT1, 2, and PMAT exists. This review provides an overview and summary of research conducted in this field of research.
Collapse
Affiliation(s)
- Julian Maier
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marco Niello
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Deborah Rudin
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Lynette C Daws
- Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health, San Antonio, TX, USA
| | - Harald H Sitte
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
26
|
Ishimoto T, Kato Y. Regulation of Neurogenesis by Organic Cation Transporters: Potential Therapeutic Implications. Handb Exp Pharmacol 2021; 266:281-300. [PMID: 33782772 DOI: 10.1007/164_2021_445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neurogenesis is the process by which new neurons are generated from neural stem cells (NSCs), which are cells that have the ability to proliferate and differentiate into neurons, astrocytes, and oligodendrocytes. The process is essential for homeostatic tissue regeneration and the coordination of neural plasticity throughout life, as neurons cannot regenerate once injured. Therefore, defects in neurogenesis are related to the onset and exacerbation of several neuropsychiatric disorders, and therefore, the regulation of neurogenesis is considered to be a novel strategy for treatment. Neurogenesis is regulated not only by NSCs themselves, but also by the functional microenvironment surrounding the NSCs, known as the "neurogenic niche." The neurogenic niche consists of several types of neural cells, including neurons, glial cells, and vascular cells. To allow communication with these cells, transporters may be involved in the secretion and uptake of substrates that are essential for signal transduction. This chapter will focus on the involvement of polyspecific solute carriers transporting organic cations in the possible regulation of neurogenesis by controlling the concentration of several organic cation substrates in NSCs and the neurogenic niche. The potential therapeutic implications of neurogenesis regulation by these transporters will also be discussed.
Collapse
Affiliation(s)
| | - Yukio Kato
- Faculty of Pharmacy, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
27
|
Kölz C, Schaeffeler E, Schwab M, Nies AT. Genetic and Epigenetic Regulation of Organic Cation Transporters. Handb Exp Pharmacol 2021; 266:81-100. [PMID: 33674913 DOI: 10.1007/164_2021_450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic cation transporters (OCTs) of the solute carrier family (SLC) 22 are the subject of intensive research because they mediate the transport of many clinically-relevant drugs such as the antidiabetic agent metformin, the opioid tramadol, and the antimigraine agent sumatriptan. OCT1 (SLC22A1) and OCT2 (SLC22A2) are highly expressed in human liver and kidney, respectively, while OCT3 (SLC22A3) shows a broader tissue distribution. As suggested from studies using knockout mice, particularly OCT2 and OCT3 appear to be of relevance for brain physiological function and drug response. The knowledge of genetic factors and epigenetic modifications affecting function and expression of OCTs is important for a better understanding of disease mechanisms and for personalized treatment of patients. This review briefly summarizes the impact of genetic variants and epigenetic regulation of OCTs in general. A comprehensive overview is given on the consequences of OCT2 and OCT3 knockout in mice and the implications of genetic OCT2 and OCT3 variants on central nervous system function in humans.
Collapse
Affiliation(s)
- Charlotte Kölz
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
- Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
- University of Tuebingen, Tuebingen, Germany.
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
28
|
Organic Cation Transporters in Human Physiology, Pharmacology, and Toxicology. Int J Mol Sci 2020; 21:ijms21217890. [PMID: 33114309 PMCID: PMC7660683 DOI: 10.3390/ijms21217890] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Individual cells and epithelia control the chemical exchange with the surrounding environment by the fine-tuned expression, localization, and function of an array of transmembrane proteins that dictate the selective permeability of the lipid bilayer to small molecules, as actual gatekeepers to the interface with the extracellular space. Among the variety of channels, transporters, and pumps that localize to cell membrane, organic cation transporters (OCTs) are considered to be extremely relevant in the transport across the plasma membrane of the majority of the endogenous substances and drugs that are positively charged near or at physiological pH. In humans, the following six organic cation transporters have been characterized in regards to their respective substrates, all belonging to the solute carrier 22 (SLC22) family: the organic cation transporters 1, 2, and 3 (OCT1–3); the organic cation/carnitine transporter novel 1 and 2 (OCTN1 and N2); and the organic cation transporter 6 (OCT6). OCTs are highly expressed on the plasma membrane of polarized epithelia, thus, playing a key role in intestinal absorption and renal reabsorption of nutrients (e.g., choline and carnitine), in the elimination of waste products (e.g., trimethylamine and trimethylamine N-oxide), and in the kinetic profile and therapeutic index of several drugs (e.g., metformin and platinum derivatives). As part of the Special Issue Physiology, Biochemistry, and Pharmacology of Transporters for Organic Cations, this article critically presents the physio-pathological, pharmacological, and toxicological roles of OCTs in the tissues in which they are primarily expressed.
Collapse
|
29
|
Abstract
The organic cation transporters (OCTs) OCT1, OCT2, OCT3, novel OCT (OCTN)1, OCTN2, multidrug and toxin exclusion (MATE)1, and MATE kidney-specific 2 are polyspecific transporters exhibiting broadly overlapping substrate selectivities. They transport organic cations, zwitterions, and some uncharged compounds and operate as facilitated diffusion systems and/or antiporters. OCTs are critically involved in intestinal absorption, hepatic uptake, and renal excretion of hydrophilic drugs. They modulate the distribution of endogenous compounds such as thiamine, L-carnitine, and neurotransmitters. Sites of expression and functions of OCTs have important impact on energy metabolism, pharmacokinetics, and toxicity of drugs, and on drug-drug interactions. In this work, an overview about the human OCTs is presented. Functional properties of human OCTs, including identified substrates and inhibitors of the individual transporters, are described. Sites of expression are compiled, and data on regulation of OCTs are presented. In addition, genetic variations of OCTs are listed, and data on their impact on transport, drug treatment, and diseases are reported. Moreover, recent data are summarized that indicate complex drug-drug interaction at OCTs, such as allosteric high-affinity inhibition of transport and substrate dependence of inhibitor efficacies. A hypothesis about the molecular mechanism of polyspecific substrate recognition by OCTs is presented that is based on functional studies and mutagenesis experiments in OCT1 and OCT2. This hypothesis provides a framework to imagine how observed complex drug-drug interactions at OCTs arise. Finally, preclinical in vitro tests that are performed by pharmaceutical companies to identify interaction of novel drugs with OCTs are discussed. Optimized experimental procedures are proposed that allow a gapless detection of inhibitory and transported drugs.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute of Anatomy and Cell Biology and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
30
|
Antidepressant efficacy of a selective organic cation transporter blocker in a mouse model of depression. Mol Psychiatry 2020; 25:1245-1259. [PMID: 31619760 DOI: 10.1038/s41380-019-0548-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022]
Abstract
Current antidepressants act principally by blocking monoamine reuptake by high-affinity transporters in the brain. However, these antidepressants show important shortcomings such as slow action onset and limited efficacy in nearly a third of patients with major depression disorder. Here, we report the development of a prodrug targeting organic cation transporters (OCT), atypical monoamine transporters recently implicated in the regulation of mood. Using molecular modeling, we designed a selective OCT2 blocker, which was modified to increase brain penetration. This compound, H2-cyanome, was tested in a rodent model of chronic depression induced by 7-week corticosterone exposure. In male mice, prolonged administration of H2-cyanome induced positive effects on several behaviors mimicking symptoms of depression, including anhedonia, anxiety, social withdrawal, and memory impairment. Importantly, in this validated model, H2-cyanome compared favorably with the classical antidepressant fluoxetine, with a faster action on anhedonia and better anxiolytic effects. Integrated Z-scoring across these depression-like variables revealed a lower depression score for mice treated with H2-cyanome than for mice treated with fluoxetine for 3 weeks. Repeated H2-cyanome administration increased ventral tegmental area dopaminergic neuron firing, which may underlie its rapid action on anhedonia. H2-cyanome, like fluoxetine, also modulated several intracellular signaling pathways previously involved in antidepressant response. Our findings provide proof-of-concept of antidepressant efficacy of an OCT blocker, and a mechanistic framework for the development of new classes of antidepressants and therapeutic alternatives for resistant depression and other psychiatric disturbances such as anxiety.
Collapse
|
31
|
Petrelli F, Dallérac G, Pucci L, Calì C, Zehnder T, Sultan S, Lecca S, Chicca A, Ivanov A, Asensio CS, Gundersen V, Toni N, Knott GW, Magara F, Gertsch J, Kirchhoff F, Déglon N, Giros B, Edwards RH, Mothet JP, Bezzi P. Dysfunction of homeostatic control of dopamine by astrocytes in the developing prefrontal cortex leads to cognitive impairments. Mol Psychiatry 2020; 25:732-749. [PMID: 30127471 PMCID: PMC7156348 DOI: 10.1038/s41380-018-0226-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 06/28/2018] [Accepted: 07/18/2018] [Indexed: 01/07/2023]
Abstract
Astrocytes orchestrate neural development by powerfully coordinating synapse formation and function and, as such, may be critically involved in the pathogenesis of neurodevelopmental abnormalities and cognitive deficits commonly observed in psychiatric disorders. Here, we report the identification of a subset of cortical astrocytes that are competent for regulating dopamine (DA) homeostasis during postnatal development of the prefrontal cortex (PFC), allowing for optimal DA-mediated maturation of excitatory circuits. Such control of DA homeostasis occurs through the coordinated activity of astroglial vesicular monoamine transporter 2 (VMAT2) together with organic cation transporter 3 and monoamine oxidase type B, two key proteins for DA uptake and metabolism. Conditional deletion of VMAT2 in astrocytes postnatally produces loss of PFC DA homeostasis, leading to defective synaptic transmission and plasticity as well as impaired executive functions. Our findings show a novel role for PFC astrocytes in the DA modulation of cognitive performances with relevance to psychiatric disorders.
Collapse
Affiliation(s)
- Francesco Petrelli
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Glenn Dallérac
- 0000 0001 2176 4817grid.5399.6Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Aix-Marseille Université UMR7286 CNRS, 13344 Marseille, Cedex 15 France
| | - Luca Pucci
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Corrado Calì
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland ,0000 0001 1926 5090grid.45672.32BESE division, King Abdullah University of Science and Technology, 23955-69000 Thuwal, Saudi Arabia
| | - Tamara Zehnder
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Sébastien Sultan
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Salvatore Lecca
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Andrea Chicca
- 0000 0001 0726 5157grid.5734.5Institute of Biochemistry and Molecular Medicine (IBMM), University of Bern, Buehlstrasse, 28 3012 Bern, Switzerland
| | - Andrei Ivanov
- “Biophotonics and Synapse Physiopathology” Team, UMR9188 CNRS – ENS Paris Saclay, 91405 Orsay, France
| | - Cédric S. Asensio
- 0000 0001 2297 6811grid.266102.1Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA 94158 USA
| | - Vidar Gundersen
- 0000 0004 1936 8921grid.5510.1CMBN, Rikshospitalet, University of Oslo, Oslo, Norway
| | - Nicolas Toni
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Graham William Knott
- 0000000121839049grid.5333.6BioEM Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Fulvio Magara
- 0000 0001 2165 4204grid.9851.5Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital Center, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Jürg Gertsch
- 0000 0001 0726 5157grid.5734.5Institute of Biochemistry and Molecular Medicine (IBMM), University of Bern, Buehlstrasse, 28 3012 Bern, Switzerland
| | - Frank Kirchhoff
- 0000 0001 2167 7588grid.11749.3aDepartment of Molecular Physiology, University of Saarland, D-66421 Homburg, Germany
| | - Nicole Déglon
- 0000 0001 0423 4662grid.8515.9Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland ,0000 0001 0423 4662grid.8515.9Neuroscience Research Center, Lausanne University Hospital, CH-1011 Lausanne, Switzerland
| | - Bruno Giros
- 0000 0004 1936 8649grid.14709.3bDepartment of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec H4H1R3 Canada ,0000 0001 2112 9282grid.4444.0INSERM, UMRS 1130; CNRS, UMR 8246; Sorbonne University UPMC, Neuroscience Paris-Seine, F-75005 Paris, France
| | - Robert H. Edwards
- 0000 0001 2297 6811grid.266102.1Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA 94158 USA
| | - Jean-Pierre Mothet
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Aix-Marseille Université UMR7286 CNRS, 13344, Marseille, Cedex 15, France. .,"Biophotonics and Synapse Physiopathology" Team, UMR9188 CNRS - ENS Paris Saclay, 91405, Orsay, France.
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, CH-1005, Lausanne, Switzerland.
| |
Collapse
|
32
|
Rezai Amin S, Gruszczynski C, Guiard BP, Callebert J, Launay JM, Louis F, Betancur C, Vialou V, Gautron S. Viral vector-mediated Cre recombinase expression in substantia nigra induces lesions of the nigrostriatal pathway associated with perturbations of dopamine-related behaviors and hallmarks of programmed cell death. J Neurochem 2019; 150:330-340. [PMID: 30748001 DOI: 10.1111/jnc.14684] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 02/03/2023]
Abstract
Cre/loxP recombination is a widely used approach to study gene function in vivo, using mice models expressing the Cre recombinase under the control of specific promoters or through viral delivery of Cre-expressing constructs. A profuse literature on transgenic mouse lines points out the deleterious effects of Cre expression in various cell types and tissues, presumably by acting on illegitimate loxP-like sites present in the genome. However, most studies reporting the consequences of Cre-lox gene invalidation often omit adequate controls to exclude the potential toxic effects of Cre, compromising the interpretation of data. In this study, we report the anatomical, neurochemical, and behavioral consequences in mice of adeno-associated virus (AAV)-mediated Cre expression in the dopaminergic nuclei substantia nigra, at commonly used viral titers (3 × 109 genome copies/0.3 μL or 2 × 109 genome copies/0.6 μL). We found that injecting AAV-eGFP-Cre into the SN engendered drastic and reproducible modifications of behavior, with increased basal locomotor activity as well as impaired locomotor response to cocaine compared to AAV-eGFP-injected controls. Cre expression in the SN induced a massive decrease in neuronal populations of both pars compacta and pars reticulata and dopamine depletion in the nigrostriatal pathway. This anatomical injury was associated with typical features of programmed cell death, including an increase in DNA break markers, evidence of apoptosis, and disrupted macroautophagy. These observations underscore the need for careful control of Cre toxicity in the brain and the reassessment of previous studies. In addition, our findings suggest that Cre-mediated ablation may constitute an efficient tool to explore the function of specific cell populations and areas in the brain, and the impact of neurodegeneration in these populations.
Collapse
Affiliation(s)
- Sara Rezai Amin
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, Paris, France
| | - Carole Gruszczynski
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, Paris, France
| | - Bruno P Guiard
- Université de Toulouse, CNRS, Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Toulouse, France
| | - Jacques Callebert
- INSERM U942, Hôpital Lariboisière, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Jean-Marie Launay
- INSERM U942, Hôpital Lariboisière, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Franck Louis
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, Paris, France
| | - Catalina Betancur
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, Paris, France
| | - Vincent Vialou
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, Paris, France
| | - Sophie Gautron
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
33
|
Bowman MA, Daws LC. Targeting Serotonin Transporters in the Treatment of Juvenile and Adolescent Depression. Front Neurosci 2019; 13:156. [PMID: 30872996 PMCID: PMC6401641 DOI: 10.3389/fnins.2019.00156] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/11/2019] [Indexed: 01/01/2023] Open
Abstract
Depression is a serious public health concern. Many patients are not effectively treated, but in children and adolescents this problem is compounded by limited pharmaceutical options. Currently, the Food and Drug Administration approves only two antidepressants for use in these young populations. Both are selective serotonin reuptake inhibitors (SSRIs). Compounding matters further, they are therapeutically less efficacious in children and adolescents than in adults. Here, we review clinical and preclinical literature describing the antidepressant efficacy of SSRIs in juveniles and adolescents. Since the high-affinity serotonin transporter (SERT) is the primary target of SSRIs, we then synthesize these reports with studies of SERT expression/function during juvenile and adolescent periods. Preclinical literature reveals some striking parallels with clinical studies, primary among them is that, like humans, juvenile and adolescent rodents show reduced antidepressant-like responses to SSRIs. These findings underscore the utility of preclinical assays designed to screen drugs for antidepressant efficacy across ages. There is general agreement that SERT expression/function is lower in juveniles and adolescents than in adults. It is well established that chronic SSRI treatment decreases SERT expression/function in adults, but strikingly, SERT expression/function in adolescents is increased following chronic treatment with SSRIs. Finally, we discuss a putative role for organic cation transporters and/or plasma membrane monoamine transporter in serotonergic homeostasis in juveniles and adolescents. Taken together, fundamental differences in SERT, and putatively in other transporters capable of serotonin clearance, may provide a mechanistic basis for the relative inefficiency of SSRIs to treat pediatric depression, relative to adults.
Collapse
Affiliation(s)
- Melodi A Bowman
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Lynette C Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
34
|
Prenatal metformin exposure or organic cation transporter 3 knock-out curbs social interaction preference in male mice. Pharmacol Res 2018; 140:21-32. [PMID: 30423430 DOI: 10.1016/j.phrs.2018.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 09/21/2018] [Accepted: 11/07/2018] [Indexed: 12/15/2022]
Abstract
Poorly managed gestational diabetes can lead to severe complications for mother and child including fetal overgrowth, neonatal hypoglycemia and increased autism risk. Use of metformin to control it is relatively new and promising. Yet safety concerns regarding gestational metformin use remain, as its long-term effects in offspring are unclear. In light of beneficial findings with metformin for adult mouse social behavior, we hypothesized gestational metformin treatment might also promote offspring sociability. To test this, metformin was administered to non-diabetic, lean C57BL/6 J female mice at mating, with treatment discontinued at birth or wean. Male offspring exposed to metformin through birth lost social interaction preference relative to controls by time in chambers, but not by sniffing measures. Further, prenatal metformin exposure appeared to enhance social novelty preference only in females. However due to unbalanced litters and lack of statistical power, firm establishment of any sex-dependency of metformin's effects on sociability was not possible. Since organic cation transporter 3 (OCT3) transports metformin and is dense in placenta, social preferences of OCT3 knock-out males were measured. Relative to wild-type, OCT3 knock-outs had reduced interaction preference. Our data indicate gestational metformin exposure under non-diabetic conditions, or lack of OCT3, can impair social behavior in male C57BL6/J mice. Since OCT3 transports serotonin and tryptophan, impaired placental OCT3 function is one common mechanism that could persistently impact central serotonin systems and social behavior. Yet no gross alterations in serotonergic function were evident by measure of serotonin transporter density in OCT3, or serotonin turnover in metformin-exposed offspring brains. Mechanisms underlying the behavioral outcomes, and if with gestational diabetes the same would occur, remain unclear. Metformin's impacts on placental transporters and serotonin metabolism or AMPK activity in fetal brain need further investigation to clarify benefits and risks to offspring sociability from use of metformin to treat gestational diabetes.
Collapse
|
35
|
Mayer FP, Schmid D, Owens WA, Gould GG, Apuschkin M, Kudlacek O, Salzer I, Boehm S, Chiba P, Williams PH, Wu HH, Gether U, Koek W, Daws LC, Sitte HH. An unsuspected role for organic cation transporter 3 in the actions of amphetamine. Neuropsychopharmacology 2018; 43:2408-2417. [PMID: 29773909 PMCID: PMC6180071 DOI: 10.1038/s41386-018-0053-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 01/11/2023]
Abstract
Amphetamine abuse is a major public health concern for which there is currently no effective treatment. To develop effective treatments, the mechanisms by which amphetamine produces its abuse-related effects need to be fully understood. It is well known that amphetamine exerts its actions by targeting high-affinity transporters for monoamines, in particular the cocaine-sensitive dopamine transporter. Organic cation transporter 3 (OCT3) has recently been found to play an important role in regulating monoamine signaling. However, whether OCT3 contributes to the actions of amphetamine is unclear. We found that OCT3 is expressed in dopamine neurons. Then, applying a combination of in vivo, ex vivo, and in vitro approaches, we revealed that a substantial component of amphetamine's actions is OCT3-dependent and cocaine insensitive. Our findings support OCT3 as a new player in the actions of amphetamine and encourage investigation of this transporter as a potential new target for the treatment of psychostimulant abuse.
Collapse
Affiliation(s)
- Felix P. Mayer
- 0000 0000 9259 8492grid.22937.3dCenter for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Diethart Schmid
- 0000 0000 9259 8492grid.22937.3dCenter for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - W. Anthony Owens
- 0000 0001 0629 5880grid.267309.9Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| | - Georgianna G. Gould
- 0000 0001 0629 5880grid.267309.9Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| | - Mia Apuschkin
- 0000 0001 0674 042Xgrid.5254.6Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute 18.6, 2200 Copenhagen N, Denmark
| | - Oliver Kudlacek
- 0000 0000 9259 8492grid.22937.3dCenter for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Isabella Salzer
- 0000 0000 9259 8492grid.22937.3dCenter for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Boehm
- 0000 0000 9259 8492grid.22937.3dCenter for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Chiba
- 0000 0000 9259 8492grid.22937.3dInstitute of Medical Chemistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Piper H. Williams
- 0000 0001 2156 6853grid.42505.36Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Keck School of Medicine of USC, 4661 Sunset Blvd. Rm 307, Los Angeles, CA 90027 USA
| | - Hsiao-Huei Wu
- 0000 0001 2156 6853grid.42505.36Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Keck School of Medicine of USC, 4661 Sunset Blvd. Rm 307, Los Angeles, CA 90027 USA
| | - Ulrik Gether
- 0000 0001 0674 042Xgrid.5254.6Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute 18.6, 2200 Copenhagen N, Denmark
| | - Wouter Koek
- 0000 0001 0629 5880grid.267309.9Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA ,0000 0001 0629 5880grid.267309.9Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| | - Lynette C. Daws
- 0000 0001 0629 5880grid.267309.9Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA ,0000 0001 0629 5880grid.267309.9Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| | - Harald H. Sitte
- 0000 0000 9259 8492grid.22937.3dCenter for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria ,0000 0000 9259 8492grid.22937.3dCenter for Addiction Research and Science, Medical University Vienna, Waehringerstrasse 13 A, 1090 Vienna, Austria
| |
Collapse
|
36
|
Gasser PJ. Roles for the uptake 2 transporter OCT3 in regulation of dopaminergic neurotransmission and behavior. Neurochem Int 2018; 123:46-49. [PMID: 30055194 DOI: 10.1016/j.neuint.2018.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/30/2022]
Abstract
Transporter-mediated uptake determines the peak concentration, duration, and physical spread of released monoamines. Most studies of monoamine clearance focus on the presynaptic uptake1 transporters SERT, NET and DAT. However, recent studies have demonstrated the expression of the uptake2 transporter OCT3 (organic cation transporter 3), throughout the rodent brain. In contrast to NET, DAT and SERT, OCT3 has higher capacity and lower affinity for substrates, is sodium-independent, and is multi-specific, with the capacity to transport norepinephrine, dopamine, serotonin and histamine. OCT3 is insensitive to inhibition by cocaine and antidepressant drugs but is inhibited directly by the glucocorticoid hormone corticosterone. Thus, OCT3 represents a novel, stress hormone-sensitive, monoamine transport mechanism. Incorporating this transporter into current models of monoaminergic neurotransmission requires information on: A) the cellular and subcellular localization of the transporter; B) the effects of OCT3 inhibitors on monoamine clearance; and C) the consequences of decreased OCT3-mediated transport on physiology and/or behavior. This review summarizes studies describing the anatomical distribution of OCT3, its cellular and subcellular localization, its contribution to the regulation of dopaminergic signaling, and its roles in the regulation of behavior. Together, these and other studies suggest that both Uptake1 and Uptake2 transporters play key roles in regulating monoaminergic neurotransmission and the effects of monoamines on behavior.
Collapse
Affiliation(s)
- Paul J Gasser
- Department of Biomedical Sciences, Marquette University, 561 N 15th Street, Milwaukee, WI, 53233, USA.
| |
Collapse
|
37
|
Gilman TL, George CM, Vitela M, Herrera-Rosales M, Basiouny MS, Koek W, Daws LC. Constitutive plasma membrane monoamine transporter (PMAT, Slc29a4) deficiency subtly affects anxiety-like and coping behaviours. Eur J Neurosci 2018; 48:10.1111/ejn.13968. [PMID: 29797618 PMCID: PMC6252160 DOI: 10.1111/ejn.13968] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/04/2018] [Accepted: 05/14/2018] [Indexed: 12/27/2022]
Abstract
Originally, uptake-mediated termination of monoamine (e.g., serotonin and dopamine) signalling was believed to only occur via high-affinity, low-capacity transporters ("uptake1 ") such as the serotonin or dopamine transporters, respectively. Now, the important contribution of a second low-affinity, high-capacity class of biogenic amine transporters has been recognised, particularly in circumstances when uptake1 transporter function is reduced (e.g., antidepressant treatment). Pharmacologic or genetic reductions in uptake1 function can change locomotor, anxiety-like or stress-coping behaviours. Comparable behavioural investigations into reduced low-affinity, high-capacity transporter function are lacking, in part, due to a current dearth of drugs that selectively target particular low-affinity, high-capacity transporters, such as the plasma membrane monoamine transporter. Therefore, the most direct approach involves constitutive genetic knockout of these transporters. Other groups have reported that knockout of the low-affinity, high-capacity organic cation transporters 2 or 3 alters anxiety-like and stress-coping behaviours, but none have assessed behaviours in plasma membrane monoamine transporter knockout mice. Here, we evaluated adult male and female plasma membrane monoamine transporter wild-type, heterozygous and knockout mice in locomotor, anxiety-like and stress-coping behavioural tests. A mild enhancement of anxiety-related behaviour was noted in heterozygous mice. Active-coping behaviour was modestly and selectively increased in female knockout mice. These subtle behavioural changes support a supplemental role of plasma membrane monoamine transporter in serotonin and dopamine uptake, and suggest sex differences in transporter function should be examined more closely in future investigations.
Collapse
Affiliation(s)
- T. Lee Gilman
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Addiction Research, Treatment & Training Center of Excellence, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Christina M. George
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Melissa Vitela
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Myrna Herrera-Rosales
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mohamed S. Basiouny
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Wouter Koek
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Lynette C. Daws
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Addiction Research, Treatment & Training Center of Excellence, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
38
|
Higuchi Y, Soga T, Parhar IS. Regulatory Pathways of Monoamine Oxidase A during Social Stress. Front Neurosci 2017; 11:604. [PMID: 29163009 PMCID: PMC5671571 DOI: 10.3389/fnins.2017.00604] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022] Open
Abstract
Social stress has a high impact on many biological systems in the brain, including serotonergic (5-HT) system-a major drug target in the current treatment for depression. Hyperactivity of hypothalamic-pituitary-adrenal (HPA) axis and monoamine oxidase A (MAO-A) are well-known stress responses, which are involved in the central 5-HT system. Although, many MAO-A inhibitors have been developed and used in the therapeutics of depression, effective management of depression by modulating the activity of MAO-A has not been achieved. Identifying the molecular pathways that regulate the activity of MAO-A in the brain is crucial for developing new drug targets for precise control of MAO-A activity. Over the last few decades, several regulatory pathways of MAO-A consisting of Kruppel like factor 11 (KLF11), Sirtuin1, Ring finger protein in neural stem cells (RINES), and Cell division cycle associated 7-like protein (R1) have been identified, and the influence of social stress on these regulatory factors evaluated. This review explores various aspects of these pathways to expand our understanding of the roles of the HPA axis and MAO-A regulatory pathways during social stress. The first part of this review introduces some components of the HPA axis, explains how stress affects them and how they interact with the 5-HT system in the brain. The second part summarizes the novel regulatory pathways of MAO-A, which have high potential as novel therapeutic targets for depression.
Collapse
Affiliation(s)
- Yuki Higuchi
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Tomoko Soga
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
39
|
Corticosterone Potentiation of Cocaine-Induced Reinstatement of Conditioned Place Preference in Mice is Mediated by Blockade of the Organic Cation Transporter 3. Neuropsychopharmacology 2017; 42:757-765. [PMID: 27604564 PMCID: PMC5240184 DOI: 10.1038/npp.2016.187] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/15/2016] [Accepted: 09/01/2016] [Indexed: 01/21/2023]
Abstract
The mechanisms by which stressful life events increase the risk of relapse in recovering cocaine addicts are not well understood. We previously reported that stress, via elevated corticosterone, potentiates cocaine-primed reinstatement of cocaine seeking following self-administration in rats and that this potentiation appears to involve corticosterone-induced blockade of dopamine clearance via the organic cation transporter 3 (OCT3). In the present study, we use a conditioned place preference/reinstatement paradigm in mice to directly test the hypothesis that corticosterone potentiates cocaine-primed reinstatement by blockade of OCT3. Consistent with our findings following self-administration in rats, pretreatment of male C57/BL6 mice with corticosterone (using a dose that reproduced stress-level plasma concentrations) potentiated cocaine-primed reinstatement of extinguished cocaine-induced conditioned place preference. Corticosterone failed to re-establish extinguished preference alone but produced a leftward shift in the dose-response curve for cocaine-primed reinstatement. A similar potentiating effect was observed upon pretreatment of mice with the non-glucocorticoid OCT3 blocker, normetanephrine. To determine the role of OCT3 blockade in these effects, we examined the abilities of corticosterone and normetanephrine to potentiate cocaine-primed reinstatement in OCT3-deficient and wild-type mice. Conditioned place preference, extinction and reinstatement of extinguished preference in response to low-dose cocaine administration did not differ between genotypes. However, corticosterone and normetanephrine failed to potentiate cocaine-primed reinstatement in OCT3-deficient mice. Together, these data provide the first direct evidence that the interaction of corticosterone with OCT3 mediates corticosterone effects on drug-seeking behavior and establish OCT3 function as an important determinant of susceptibility to cocaine use.
Collapse
|
40
|
Furihata T, Anzai N. Functional Expression of Organic Ion Transporters in Astrocytes and Their Potential as a Drug Target in the Treatment of Central Nervous System Diseases. Biol Pharm Bull 2017; 40:1153-1160. [DOI: 10.1248/bpb.b17-00076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tomomi Furihata
- Department of Pharmacology, Graduate School of Medicine, Chiba University
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Naohiko Anzai
- Department of Pharmacology, Graduate School of Medicine, Chiba University
| |
Collapse
|
41
|
Gasser PJ, Hurley MM, Chan J, Pickel VM. Organic cation transporter 3 (OCT3) is localized to intracellular and surface membranes in select glial and neuronal cells within the basolateral amygdaloid complex of both rats and mice. Brain Struct Funct 2016; 222:1913-1928. [PMID: 27659446 DOI: 10.1007/s00429-016-1315-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/16/2016] [Indexed: 10/21/2022]
Abstract
Organic cation transporter 3 (OCT3) is a high-capacity, low-affinity transporter that mediates corticosterone-sensitive uptake of monoamines including norepinephrine, epinephrine, dopamine, histamine and serotonin. OCT3 is expressed widely throughout the amygdaloid complex and other brain regions where monoamines are key regulators of emotional behaviors affected by stress. However, assessing the contribution of OCT3 to the regulation of monoaminergic neurotransmission and monoamine-dependent regulation of behavior requires fundamental information about the subcellular distribution of OCT3 expression. We used immunofluorescence and immuno-electron microscopy to examine the cellular and subcellular distribution of the transporter in the basolateral amygdaloid complex of the rat and mouse brain. OCT3-immunoreactivity was observed in both glial and neuronal perikarya in both rat and mouse amygdala. Electron microscopic immunolabeling revealed plasma membrane-associated OCT3 immunoreactivity on axonal, dendritic, and astrocytic processes adjacent to a variety of synapses, as well as on neuronal somata. In addition to plasma membrane sites, OCT3 immunolabeling was also observed associated with neuronal and glial endomembranes, including Golgi, mitochondrial and nuclear membranes. Particularly prominent labeling of the outer nuclear membrane was observed in neuronal, astrocytic, microglial and endothelial perikarya. The localization of OCT3 to neuronal and glial plasma membranes adjacent to synaptic sites is consistent with an important role for this transporter in regulating the amplitude, duration, and physical spread of released monoamines, while its localization to mitochondrial and outer nuclear membranes suggests previously undescribed roles for the transporter in the intracellular disposition of monoamines.
Collapse
Affiliation(s)
- Paul J Gasser
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53201-1881, USA.
| | - Matthew M Hurley
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53201-1881, USA
| | - June Chan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY, 10065, USA
| | - Virginia M Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY, 10065, USA
| |
Collapse
|
42
|
Gai Y, Liu Z, Cervantes-Sandoval I, Davis RL. Drosophila SLC22A Transporter Is a Memory Suppressor Gene that Influences Cholinergic Neurotransmission to the Mushroom Bodies. Neuron 2016; 90:581-95. [PMID: 27146270 DOI: 10.1016/j.neuron.2016.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/04/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
Abstract
The mechanisms that constrain memory formation are of special interest because they provide insights into the brain's memory management systems and potential avenues for correcting cognitive disorders. RNAi knockdown in the Drosophila mushroom body neurons (MBn) of a newly discovered memory suppressor gene, Solute Carrier DmSLC22A, a member of the organic cation transporter family, enhances olfactory memory expression, while overexpression inhibits it. The protein localizes to the dendrites of the MBn, surrounding the presynaptic terminals of cholinergic afferent fibers from projection neurons (Pn). Cell-based expression assays show that this plasma membrane protein transports cholinergic compounds with the highest affinity among several in vitro substrates. Feeding flies choline or inhibiting acetylcholinesterase in Pn enhances memory, an effect blocked by overexpression of the transporter in the MBn. The data argue that DmSLC22A is a memory suppressor protein that limits memory formation by helping to terminate cholinergic neurotransmission at the Pn:MBn synapse.
Collapse
Affiliation(s)
- Yunchao Gai
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Ze Liu
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | | | - Ronald L Davis
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
43
|
Wyler SC, Donovan LJ, Yeager M, Deneris E. Pet-1 Controls Tetrahydrobiopterin Pathway and Slc22a3 Transporter Genes in Serotonin Neurons. ACS Chem Neurosci 2015; 6:1198-205. [PMID: 25642596 PMCID: PMC4504805 DOI: 10.1021/cn500331z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coordinated serotonin (5-HT) synthesis and reuptake depends on coexpression of Tph2, Aadc (Ddc), and Sert (Slc6a4) in brain 5-HT neurons. However, other gene products play critical roles in brain 5-HT synthesis and transport. For example, 5-HT synthesis depends on coexpression of genes encoding the enzymatic machinery necessary for the production and regeneration of tetrahydrobiopterin (BH4). In addition, the organic cation transporter 3 (Oct3, Slc22a3) functions as a low affinity, high capacity 5-HT reuptake protein in 5-HT neurons. The regulatory strategies controlling BH4 and Oct3 gene expression in 5-HT neurons have not been investigated. Our previous studies showed that Pet-1 is a critical transcription factor in a regulatory program that controls coexpression of Tph2, Aadc, and Sert in 5-HT neurons. Here, we investigate whether a common regulatory program determines global 5-HT synthesis and reuptake through coordinate transcriptional control. We show with comparative microarray profiling of flow sorted YFP(+) Pet-1(-/-) and wild type 5-HT neurons that Pet-1 regulates BH4 pathway genes, Gch1, Gchfr, and Qdpr. Thus, Pet-1 coordinates expression of all rate-limiting enzymatic (Tph2, Gch1) and post-translational regulatory (Gchfr) steps that determine the level of mammalian brain 5-HT synthesis. Moreover, Pet-1 globally controls acquisition of 5-HT reuptake in dorsal raphe 5-HT neurons by coordinating expression of Slc6a4 and Slc22a3. In situ hybridizations revealed that virtually all 5-HT neurons in the dorsal raphe depend on Pet-1 for Slc22a3 expression; similar results were obtained for Htr1a. Therefore, few if any 5-HT neurons in the dorsal raphe are resistant to loss of Pet-1 for their full neuron-type identity.
Collapse
Affiliation(s)
| | | | - Mia Yeager
- Department of Neurosciences, Case Western Reserve University Cleveland, Ohio, 44106, United States
| | - Evan Deneris
- Department of Neurosciences, Case Western Reserve University Cleveland, Ohio, 44106, United States
| |
Collapse
|
44
|
Couroussé T, Bacq A, Belzung C, Guiard B, Balasse L, Louis F, Le Guisquet AM, Gardier AM, Schinkel AH, Giros B, Gautron S. Brain organic cation transporter 2 controls response and vulnerability to stress and GSK3β signaling. Mol Psychiatry 2015; 20:889-900. [PMID: 25092247 DOI: 10.1038/mp.2014.86] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 12/21/2022]
Abstract
Interactions between genetic and environmental factors, like exposure to stress, have an important role in the pathogenesis of mood-related psychiatric disorders, such as major depressive disorder. The polyspecific organic cation transporters (OCTs) were shown previously to be sensitive to the stress hormone corticosterone in vitro, suggesting that these transporters might have a physiologic role in the response to stress. Here, we report that OCT2 is expressed in several stress-related circuits in the brain and along the hypothalamic-pituitary-adrenocortical (HPA) axis. Genetic deletion of OCT2 in mice enhanced hormonal response to acute stress and impaired HPA function without altering adrenal sensitivity to adrenocorticotropic hormone (ACTH). As a consequence, OCT2(-/-) mice were potently more sensitive to the action of unpredictable chronic mild stress (UCMS) on depression-related behaviors involving self-care, spatial memory, social interaction and stress-sensitive spontaneous behavior. The functional state of the glycogen synthase kinase-3β (GSK3β) signaling pathway, highly responsive to acute stress, was altered in the hippocampus of OCT2(-/-) mice. In vivo pharmacology and western blot experiments argue for increased serotonin tonus as a main mechanism for impaired GSK3β signaling in OCT2(-/-) mice brain during acute response to stress. Our findings identify OCT2 as an important determinant of the response to stress in the brain, suggesting that in humans OCT2 mutations or blockade by certain therapeutic drugs could interfere with HPA axis function and enhance vulnerability to repeated adverse events leading to stress-related disorders.
Collapse
Affiliation(s)
- T Couroussé
- 1] INSERM U1130, Paris, France [2] CNRS UMR 8246, Paris, France [3] Sorbonne Universités, UPMC Univ Paris 06, Paris, France [4] Université Paris Descartes, Ecole Doctorale Médicament Toxicologie Chimie Environnement, Paris, France
| | - A Bacq
- 1] INSERM U1130, Paris, France [2] CNRS UMR 8246, Paris, France [3] Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | | | - B Guiard
- Laboratoire de Neuropharmacologie EA3544, Université Paris-Sud XI, Faculté de Pharmacie, Châtenay-Malabry, France
| | - L Balasse
- 1] INSERM U1130, Paris, France [2] CNRS UMR 8246, Paris, France [3] Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - F Louis
- 1] INSERM U1130, Paris, France [2] CNRS UMR 8246, Paris, France [3] Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | | | - A M Gardier
- Laboratoire de Neuropharmacologie EA3544, Université Paris-Sud XI, Faculté de Pharmacie, Châtenay-Malabry, France
| | - A H Schinkel
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - B Giros
- 1] INSERM U1130, Paris, France [2] CNRS UMR 8246, Paris, France [3] Sorbonne Universités, UPMC Univ Paris 06, Paris, France [4] Douglas Hospital, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - S Gautron
- 1] INSERM U1130, Paris, France [2] CNRS UMR 8246, Paris, France [3] Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| |
Collapse
|
45
|
Chen EC, Liang X, Yee SW, Geier EG, Stocker SL, Chen L, Giacomini KM. Targeted disruption of organic cation transporter 3 attenuates the pharmacologic response to metformin. Mol Pharmacol 2015; 88:75-83. [PMID: 25920679 DOI: 10.1124/mol.114.096776] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 04/28/2015] [Indexed: 01/07/2023] Open
Abstract
Metformin, the most widely prescribed antidiabetic drug, requires transporters to enter tissues involved in its pharmacologic action, including liver, kidney, and peripheral tissues. Organic cation transporter 3 (OCT3, SLC22A3), expressed ubiquitously, transports metformin, but its in vivo role in metformin response is not known. Using Oct3 knockout mice, the role of the transporter in metformin pharmacokinetics and pharmacodynamics was determined. After an intravenous dose of metformin, a 2-fold decrease in the apparent volume of distribution and clearance was observed in knockout compared with wild-type mice (P < 0.001), indicating an important role of OCT3 in tissue distribution and elimination of the drug. After oral doses, a significantly lower bioavailability was observed in knockout compared with wild-type mice (0.27 versus 0.58, P < 0.001). Importantly, metformin's effect on the plasma glucose concentration-time curve was reduced in knockout compared with wild-type mice (12 versus 30% reduction, respectively, P < 0.05) along with its accumulation in skeletal muscle and adipose tissue (P < 0.05). Furthermore, the effect of metformin on phosphorylation of AMP activated protein kinase, and expression of glucose transporter type 4 was absent in the adipose tissue of Oct3(-/-) mice. Additional analysis revealed that an OCT3 3' untranslated region variant was associated with reduced activity in luciferase assays and reduced response to metformin in 57 healthy volunteers. These findings suggest that OCT3 plays an important role in the absorption and elimination of metformin and that the transporter is a critical determinant of metformin bioavailability, clearance, and pharmacologic action.
Collapse
Affiliation(s)
- Eugene C Chen
- Department of Bioengineering and Therapeutic Sciences (E.C.C., X.L., S.W.Y., E.G.G, S.L.S., K.M.G.) and Institute for Human Genetics (K.M.G.),University of California, San Francisco, California; and Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China (L.C.)
| | - Xiaomin Liang
- Department of Bioengineering and Therapeutic Sciences (E.C.C., X.L., S.W.Y., E.G.G, S.L.S., K.M.G.) and Institute for Human Genetics (K.M.G.),University of California, San Francisco, California; and Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China (L.C.)
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences (E.C.C., X.L., S.W.Y., E.G.G, S.L.S., K.M.G.) and Institute for Human Genetics (K.M.G.),University of California, San Francisco, California; and Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China (L.C.)
| | - Ethan G Geier
- Department of Bioengineering and Therapeutic Sciences (E.C.C., X.L., S.W.Y., E.G.G, S.L.S., K.M.G.) and Institute for Human Genetics (K.M.G.),University of California, San Francisco, California; and Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China (L.C.)
| | - Sophie L Stocker
- Department of Bioengineering and Therapeutic Sciences (E.C.C., X.L., S.W.Y., E.G.G, S.L.S., K.M.G.) and Institute for Human Genetics (K.M.G.),University of California, San Francisco, California; and Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China (L.C.)
| | - Ligong Chen
- Department of Bioengineering and Therapeutic Sciences (E.C.C., X.L., S.W.Y., E.G.G, S.L.S., K.M.G.) and Institute for Human Genetics (K.M.G.),University of California, San Francisco, California; and Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China (L.C.)
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences (E.C.C., X.L., S.W.Y., E.G.G, S.L.S., K.M.G.) and Institute for Human Genetics (K.M.G.),University of California, San Francisco, California; and Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China (L.C.)
| |
Collapse
|
46
|
Nguyen HT, Guiard BP, Bacq A, David DJ, David I, Quesseveur G, Gautron S, Sanchez C, Gardier AM. Blockade of the high-affinity noradrenaline transporter (NET) by the selective 5-HT reuptake inhibitor escitalopram: an in vivo microdialysis study in mice. Br J Pharmacol 2014; 168:103-16. [PMID: 22233336 DOI: 10.1111/j.1476-5381.2012.01850.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Escitalopram, the S(+)-enantiomer of citalopram is the most selective 5-HT reuptake inhibitor approved. Although all 5-HT selective reuptake inhibitors (SSRIs) increase extracellular levels of 5-HT ([5-HT](ext)). some also enhance, to a lesser extent, extracellular levels of noradrenaline ([NA](ext)). However, the mechanisms by which SSRIs activate noradrenergic transmission in the brain remain to be determined. EXPERIMENTAL APPROACH This study examined the effects of escitalopram, on both [5-HT](ext) and [NA](ext) in the frontal cortex (FCx) of freely moving wild-type (WT) and mutant mice lacking the 5-HT transporter (SERT(-/-)) by using intracerebral microdialysis. We explored the possibilities that escitalopram enhances [NA](ext), either by a direct mechanism involving the inhibition of the low- or high-affinity noradrenaline transporters, or by an indirect mechanism promoted by [5-HT](ext) elevation. The forced swim test (FST) was used to investigate whether enhancing cortical [5-HT](ext) and/or [NA](ext) affected the antidepressant-like activity of escitalopram. KEY RESULTS In WT mice, a single systemic administration of escitalopram produced a significant increase in cortical [5-HT](ext) and [NA](ext). As expected, escitalopram failed to increase cortical [5-HT](ext) in SERT(-/-) mice, whereas its neurochemical effects on [NA](ext) persisted in these mutants. In WT mice subjected to the FST, escitalopram increased swimming parameters without affecting climbing behaviour. Finally, escitalopram, at relevant concentrations, failed to inhibit cortical noradrenaline and 5-HT uptake mediated by low-affinity monoamine transporters. CONCLUSIONS AND IMPLICATIONS These experiments suggest that escitalopram enhances, although moderately, cortical [NA](ext) in vivo by a direct mechanism involving the inhibition of the high-affinity noradrenaline transporter (NET).
Collapse
Affiliation(s)
- Hai T Nguyen
- Laboratoire de Neuropharmacologie, Faculté de Pharmacie, Université Paris-Sud XI, Châtenay-Malabry, France
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Decynium-22 enhances SSRI-induced antidepressant-like effects in mice: uncovering novel targets to treat depression. J Neurosci 2013; 33:10534-43. [PMID: 23785165 DOI: 10.1523/jneurosci.5687-11.2013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mood disorders cause much suffering and lost productivity worldwide, compounded by the fact that many patients are not effectively treated by currently available medications. The most commonly prescribed antidepressant drugs are the selective serotonin (5-HT) reuptake inhibitors (SSRIs), which act by blocking the high-affinity 5-HT transporter (SERT). The increase in extracellular 5-HT produced by SSRIs is thought to be critical to initiate downstream events needed for therapeutic effects. A potential explanation for their limited therapeutic efficacy is the recently characterized presence of low-affinity, high-capacity transporters for 5-HT in brain [i.e., organic cation transporters (OCTs) and plasma membrane monoamine transporter], which may limit the ability of SSRIs to increase extracellular 5-HT. Decynium-22 (D-22) is a blocker of these transporters, and using this compound we uncovered a significant role for OCTs in 5-HT uptake in mice genetically modified to have reduced or no SERT expression (Baganz et al., 2008). This raised the possibility that pharmacological inactivation of D-22-sensitive transporters might enhance the neurochemical and behavioral effects of SSRIs. Here we show that in wild-type mice D-22 enhances the effects of the SSRI fluvoxamine to inhibit 5-HT clearance and to produce antidepressant-like activity. This antidepressant-like activity of D-22 was attenuated in OCT3 KO mice, whereas the effect of D-22 to inhibit 5-HT clearance in the CA3 region of hippocampus persisted. Our findings point to OCT3, as well as other D-22-sensitive transporters, as novel targets for new antidepressant drugs with improved therapeutic potential.
Collapse
|
48
|
Neurobiological mechanisms that contribute to stress-related cocaine use. Neuropharmacology 2013; 76 Pt B:383-94. [PMID: 23916481 DOI: 10.1016/j.neuropharm.2013.07.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 12/16/2022]
Abstract
The ability of stressful life events to trigger drug use is particularly problematic for the management of cocaine addiction due to the unpredictable and often uncontrollable nature of stress. For this reason, understanding the neurobiological processes that contribute to stress-related drug use is important for the development of new and more effective treatment strategies aimed at minimizing the role of stress in the addiction cycle. In this review we discuss the neurocircuitry that has been implicated in stress-induced drug use with an emphasis on corticotropin releasing factor actions in the ventral tegmental area (VTA) and an important pathway from the bed nucleus of the stria terminalis to the VTA that is regulated by norepinephrine via actions at beta adrenergic receptors. In addition to the neurobiological mechanisms that underlie stress-induced cocaine seeking, we review findings suggesting that the ability of stressful stimuli to trigger cocaine use emerges and intensifies in an intake-dependent manner with repeated cocaine self-administration. Further, we discuss evidence that the drug-induced neuroadaptations that are necessary for heightened susceptibility to stress-induced drug use are reliant on elevated levels of glucocorticoid hormones at the time of cocaine use. Finally, the potential ability of stress to function as a "stage setter" for drug use - increasing sensitivity to cocaine and drug-associated cues - under conditions where it does not directly trigger cocaine seeking is discussed. As our understanding of the mechanisms through which stress promotes drug use advances, the hope is that so too will the available tools for effectively managing addiction, particularly in cocaine addicts whose drug use is stress-driven. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
|
49
|
Graf EN, Wheeler RA, Baker DA, Ebben AL, Hill JE, McReynolds JR, Robble MA, Vranjkovic O, Wheeler DS, Mantsch JR, Gasser PJ. Corticosterone acts in the nucleus accumbens to enhance dopamine signaling and potentiate reinstatement of cocaine seeking. J Neurosci 2013; 33:11800-10. [PMID: 23864669 PMCID: PMC3713722 DOI: 10.1523/jneurosci.1969-13.2013] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/08/2013] [Accepted: 06/12/2013] [Indexed: 01/06/2023] Open
Abstract
Stressful life events are important contributors to relapse in recovering cocaine addicts, but the mechanisms by which they influence motivational systems are poorly understood. Studies suggest that stress may "set the stage" for relapse by increasing the sensitivity of brain reward circuits to drug-associated stimuli. We examined the effects of stress and corticosterone on behavioral and neurochemical responses of rats to a cocaine prime after cocaine self-administration and extinction. Exposure of rats to acute electric footshock stress did not by itself reinstate drug-seeking behavior but potentiated reinstatement in response to a subthreshold dose of cocaine. This effect of stress was not observed in adrenalectomized animals, and was reproduced in nonstressed animals by administration of corticosterone at a dose that reproduced stress-induced plasma levels. Pretreatment with the glucocorticoid receptor antagonist RU38486 did not block the corticosterone effect. Corticosterone potentiated cocaine-induced increases in extracellular dopamine in the nucleus accumbens (NAc), and pharmacological blockade of NAc dopamine receptors blocked corticosterone-induced potentiation of reinstatement. Intra-accumbens administration of corticosterone reproduced the behavioral effects of stress and systemic corticosterone. Corticosterone treatment acutely decreased NAc dopamine clearance measured by fast-scan cyclic voltammetry, suggesting that inhibition of uptake₂-mediated dopamine clearance may underlie corticosterone effects. Consistent with this hypothesis, intra-accumbens administration of the uptake₂ inhibitor normetanephrine potentiated cocaine-induced reinstatement. Expression of organic cation transporter 3, a corticosterone-sensitive uptake₂ transporter, was detected on NAc neurons. These findings reveal a novel mechanism by which stress hormones can rapidly regulate dopamine signaling and contribute to the impact of stress on drug intake.
Collapse
Affiliation(s)
- Evan N. Graf
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881
| | - Robert A. Wheeler
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881
| | - David A. Baker
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881
| | - Amanda L. Ebben
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881
| | - Jonathan E. Hill
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881
| | - Jayme R. McReynolds
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881
| | - Mykel A. Robble
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881
| | - Oliver Vranjkovic
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881
| | - Daniel S. Wheeler
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881
| | - John R. Mantsch
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881
| | - Paul J. Gasser
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881
| |
Collapse
|
50
|
Daws LC, Koek W, Mitchell NC. Revisiting serotonin reuptake inhibitors and the therapeutic potential of "uptake-2" in psychiatric disorders. ACS Chem Neurosci 2013; 4:16-21. [PMID: 23336039 DOI: 10.1021/cn3001872] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 10/25/2012] [Indexed: 01/11/2023] Open
Abstract
Depression is among the most common psychiatric disorders, and in many patients a disorder for which available medications provide suboptimal or no symptom relief. The most commonly prescribed class of antidepressants, the selective serotonin reuptake inhibitors (SSRIs), are thought to act by increasing extracellular serotonin in brain by blocking its uptake via the high-affinity serotonin transporter (SERT). However, the relative lack of therapeutic efficacy of SSRIs has brought into question the utility of increasing extracellular serotonin for the treatment of depression. In this Viewpoint, we discuss why increasing extracellular serotonin should not be written off as a therapeutic strategy. We describe how "uptake-2" transporters may explain the relative lack of therapeutic efficacy of SSRIs, as well as why "uptake-2" transporters might be useful therapeutic targets.
Collapse
Affiliation(s)
- Lynette C. Daws
- Departments of †Physiology, ‡Psychiatry, and §Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229,
United States
| | - Wouter Koek
- Departments of †Physiology, ‡Psychiatry, and §Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229,
United States
| | - Nathan C. Mitchell
- Departments of †Physiology, ‡Psychiatry, and §Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229,
United States
| |
Collapse
|