1
|
Granzotto A, McQuade A, Chadarevian JP, Davtyan H, Sensi SL, Parker I, Blurton-Jones M, Smith IF. ER and SOCE Ca 2+ signals are not required for directed cell migration in human iPSC-derived microglia. Cell Calcium 2024; 123:102923. [PMID: 38970922 DOI: 10.1016/j.ceca.2024.102923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 07/08/2024]
Abstract
The central nervous system (CNS) is constantly surveilled by microglia, highly motile and dynamic cells deputed to act as the first line of immune defense in the brain and spinal cord. Alterations in the homeostasis of the CNS are detected by microglia that respond by extending their processes or - following major injuries - by migrating toward the affected area. Understanding the mechanisms controlling directed cell migration of microglia is crucial to dissect their responses to neuroinflammation and injury. We used a combination of pharmacological and genetic approaches to explore the involvement of calcium (Ca2+) signaling in the directed migration of human induced pluripotent stem cell (iPSC)-derived microglia challenged with a purinergic stimulus. This approach mimics cues originating from injury of the CNS. Unexpectedly, simultaneous imaging of microglia migration and intracellular Ca2+ changes revealed that this phenomenon does not require Ca2+ signals generated from the endoplasmic reticulum (ER) and store-operated Ca2+ entry (SOCE) pathways. Instead, we find evidence that human microglial chemotaxis to purinergic signals is mediated by cyclic AMP in a Ca2+-independent manner. These results challenge prevailing notions, with important implications in neurological conditions characterized by perturbation in Ca2+ homeostasis.
Collapse
Affiliation(s)
- Alberto Granzotto
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States; Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, University G d'Annunzio of Chieti-Pescara, Chieti, Italy.
| | - Amanda McQuade
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, United States; Department of Neurobiology and Behavior, University of California, Irvine, CA, United States; Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, United States
| | - Jean Paul Chadarevian
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, United States; Department of Neurobiology and Behavior, University of California, Irvine, CA, United States
| | - Hayk Davtyan
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, United States
| | - Stefano L Sensi
- Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Ian Parker
- Department of Neurobiology and Behavior, University of California, Irvine, CA, United States; Department of Physiology and Biophysics, University of California, Irvine, CA, United States
| | - Mathew Blurton-Jones
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, United States; Department of Neurobiology and Behavior, University of California, Irvine, CA, United States; Institute for Immunology, University of California, Irvine, CA, United States
| | - Ian F Smith
- Department of Neurobiology and Behavior, University of California, Irvine, CA, United States
| |
Collapse
|
2
|
Sharma S, Ghimeray K, Rahman MM, Upadrasta A, Akundi RS. P2Y12 receptor-mediated cyclooxygenase 2 (COX-2) expression enhances tumor cell progression in a mouse model of lymphoma. Purinergic Signal 2024:10.1007/s11302-024-10057-4. [PMID: 39467946 DOI: 10.1007/s11302-024-10057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
The pro-inflammatory enzyme cyclooxygenase 2 (COX-2) has been known to impart metastatic property to cancer cells. However, blocking of COX-2 with nonsteroidal anti-inflammatory drugs or COX-2-specific inhibitors has failed in clinical trials due to adverse effects associated with their prolonged use. We have previously shown that extracellular ATP (eATP), a major component of the tumor microenvironment, enhances COX-2 expression several-fold, both in macrophages and in various cancer cells, by acting on purinergic (P2) receptors. In this study, we show that blocking of P2 receptors significantly reduced tumor growth in a mouse model of lymphoma. Tumors were induced in mice through subcutaneous injection of syngeneic EL4 lymphoma cells. Various P2 receptor antagonists were injected within the tumors after they were palpable. The broad-spectrum P2 receptor antagonist, suramin, P2X7 receptor-specific antagonist, oATP, P2Y6 receptor-specific antagonist, MRS 2578, and P2Y12 receptor-specific antagonist, AR-C 69931, all showed significant arrest in tumor growth. Both suramin and AR-C 69931-treated tumors showed strong reduction in COX-2 expression and modulation of various metastatic markers. Disaggregated cells from AR-C 69931-treated tumors, when injected intravenously in naïve mice, did not exhibit metastasis in various tissues which was observed in mice injected with cells from saline-treated tumors. Our results show that blocking of P2 receptors is a therapeutic alternative to inhibit COX-2 expression, and thereby, arrest tumor progression and metastasis.
Collapse
Affiliation(s)
- Shilpa Sharma
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, Rajpur Road, Maidan Garhi, New Delhi, 110068, India
| | - Khagendra Ghimeray
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, Rajpur Road, Maidan Garhi, New Delhi, 110068, India
| | - Md Mostafizur Rahman
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, Rajpur Road, Maidan Garhi, New Delhi, 110068, India
| | - Aparna Upadrasta
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, Rajpur Road, Maidan Garhi, New Delhi, 110068, India
| | - Ravi Shankar Akundi
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, Rajpur Road, Maidan Garhi, New Delhi, 110068, India.
| |
Collapse
|
3
|
Yang W, Wang L, Fan L, Li W, Zhao Y, Shang L, Jiang M. Photothermal Responsive Microcarriers Encapsulated With Cangrelor and 5-Fu for Colorectal Cancer Treatment. SMALL METHODS 2024; 8:e2301002. [PMID: 38127997 DOI: 10.1002/smtd.202301002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Localized chemotherapy is emerging as a potential strategy for cancer treatment due to its low systemic toxicity. However, the immune evasion of tumor cells and the lack of an intelligent design of the delivery system limit its clinical application. Herein, photothermal responsive microcarriers are designed by microfluidic electrospray for colorectal tumor treatment. The microcarriers loaded with Cangrelor, 5-FU and MXene (G-M@F/C+NIR) show sustained delivery of antiplatelet drug Cangrelor, thus inhibiting the activity of platelets, interactions of platelet-tumor cell, as well as the tumor cells invasion and epithelial-mesenchymal transition (EMT). In addition, the sustained delivery of chemotherapeutics 5-FU and the photothermal effect provided by MXene enable the microcarriers to inhibit tumor cells proliferation and migration. In vivo studies validate that the G-M@F/C+NIR microcarriers significantly inhibites tumor growth, decreased the expression of Ki-67 in tumor cells and vascular endothelial growth factor (VEGF) in the tumor microenvironment, while increased the expression of E-cadherin. It is believe that by means of the proposed photothermal responsive microcarriers, the synergistic strategy of platelet inhibition, chemotherapy, and photothermal therapy can find practical applications in cancer treatment.
Collapse
Affiliation(s)
- Wei Yang
- Clinical Laboratory Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Li Wang
- Clinical Laboratory Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Lu Fan
- Clinical Laboratory Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Wenzhao Li
- Clinical Laboratory Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yuanjin Zhao
- Clinical Laboratory Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Luoran Shang
- Zhongshan-Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics the International Co-laboratory of Medical Epigenetics and Metabolism Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Minghua Jiang
- Clinical Laboratory Center, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
4
|
Xi Y, Min Z, Liu M, Lin X, Yuan ZH. Role and recent progress of P2Y12 receptor in cancer development. Purinergic Signal 2024:10.1007/s11302-024-10027-w. [PMID: 38874752 DOI: 10.1007/s11302-024-10027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
P2Y12 receptor (P2Y12R) is an adenosine-activated G protein-coupled receptor (GPCR) that plays a central role in platelet function, hemostasis, and thrombosis. P2Y12R activation can promote platelet aggregation and adhesion to cancer cells, promote tumor angiogenesis, and affect the tumor immune microenvironment (TIME) and tumor drug resistance, which is conducive to the progression of cancers. Meanwhile, P2Y12R inhibitors can inhibit this effect, suggesting that P2Y12R may be a potential therapeutic target for cancer. P2Y12R is involved in cancer development and metastasis, while P2Y12R inhibitors are effective in inhibiting cancer. However, a new study suggests that long-term use of P2Y12R inhibitors may increase the risk of cancer and the mechanism remains to be explored. In this paper, we reviewed the structural and functional characteristics of P2Y12R and its role in cancer. We explored the role of P2Y12R inhibitors in different tumors and the latest advances by summarizing the basic and clinical studies on the effects of P2Y12R inhibitors on tumors.
Collapse
Affiliation(s)
- Yanni Xi
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332007, People's Republic of China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Zhenya Min
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Mianxue Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Xueqin Lin
- Department of Nursing, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
| | - Zhao-Hua Yuan
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332007, People's Republic of China.
| |
Collapse
|
5
|
Haq I, Ngo JC, Roy N, Pan RL, Nawsheen N, Chiu R, Zhang Y, Fujita M, Soni RK, Wu X, Bennett DA, Menon V, Olah M, Sher F. An integrated toolkit for human microglia functional genomics. Stem Cell Res Ther 2024; 15:104. [PMID: 38600587 PMCID: PMC11005142 DOI: 10.1186/s13287-024-03700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Microglia, the brain's resident immune cells, play vital roles in brain development, and disorders like Alzheimer's disease (AD). Human iPSC-derived microglia (iMG) provide a promising model to study these processes. However, existing iMG generation protocols face challenges, such as prolonged differentiation time, lack of detailed characterization, and limited gene function investigation via CRISPR-Cas9. METHODS Our integrated toolkit for in-vitro microglia functional genomics optimizes iPSC differentiation into iMG through a streamlined two-step, 20-day process, producing iMG with a normal karyotype. We confirmed the iMG's authenticity and quality through single-cell RNA sequencing, chromatin accessibility profiles (ATAC-Seq), proteomics and functional tests. The toolkit also incorporates a drug-dependent CRISPR-ON/OFF system for temporally controlled gene expression. Further, we facilitate the use of multi-omic data by providing online searchable platform that compares new iMG profiles to human primary microglia: https://sherlab.shinyapps.io/IPSC-derived-Microglia/ . RESULTS Our method generates iMG that closely align with human primary microglia in terms of transcriptomic, proteomic, and chromatin accessibility profiles. Functionally, these iMG exhibit Ca2 + transients, cytokine driven migration, immune responses to inflammatory signals, and active phagocytosis of CNS related substrates including synaptosomes, amyloid beta and myelin. Significantly, the toolkit facilitates repeated iMG harvesting, essential for large-scale experiments like CRISPR-Cas9 screens. The standalone ATAC-Seq profiles of our iMG closely resemble primary microglia, positioning them as ideal tools to study AD-associated single nucleotide variants (SNV) especially in the genome regulatory regions. CONCLUSIONS Our advanced two-step protocol rapidly and efficiently produces authentic iMG. With features like the CRISPR-ON/OFF system and a comprehensive multi-omic data platform, our toolkit equips researchers for robust microglial functional genomic studies. By facilitating detailed SNV investigation and offering a sustainable cell harvest mechanism, the toolkit heralds significant progress in neurodegenerative disease drug research and therapeutic advancement.
Collapse
Affiliation(s)
- Imdadul Haq
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Jason C Ngo
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Nainika Roy
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Richard L Pan
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA
| | - Nadiya Nawsheen
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Rebecca Chiu
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Neuroimmunology Core, Center for Translational & Computational Neuroimmunology, Division of Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Ya Zhang
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Neuroimmunology Core, Center for Translational & Computational Neuroimmunology, Division of Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Masashi Fujita
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Rajesh K Soni
- Proteomics Core, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Xuebing Wu
- Department of Medicine, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Marta Olah
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Falak Sher
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA.
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA.
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
6
|
Saito K, Shigetomi E, Shinozaki Y, Kobayashi K, Parajuli B, Kubota Y, Sakai K, Miyakawa M, Horiuchi H, Nabekura J, Koizumi S. Microglia sense astrocyte dysfunction and prevent disease progression in an Alexander disease model. Brain 2024; 147:698-716. [PMID: 37955589 PMCID: PMC10834242 DOI: 10.1093/brain/awad358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
Alexander disease (AxD) is an intractable neurodegenerative disorder caused by GFAP mutations. It is a primary astrocyte disease with a pathological hallmark of Rosenthal fibres within astrocytes. AxD astrocytes show several abnormal phenotypes. Our previous study showed that AxD astrocytes in model mice exhibit aberrant Ca2+ signals that induce AxD aetiology. Here, we show that microglia have unique phenotypes with morphological and functional alterations, which are related to the pathogenesis of AxD. Immunohistochemical studies of 60TM mice (AxD model) showed that AxD microglia exhibited highly ramified morphology. Functional changes in microglia were assessed by Ca2+ imaging using hippocampal brain slices from Iba1-GCaMP6-60TM mice and two-photon microscopy. We found that AxD microglia showed aberrant Ca2+ signals, with high frequency Ca2+ signals in both the processes and cell bodies. These microglial Ca2+ signals were inhibited by pharmacological blockade or genetic knockdown of P2Y12 receptors but not by tetrodotoxin, indicating that these signals are independent of neuronal activity but dependent on extracellular ATP from non-neuronal cells. Our single-cell RNA sequencing data showed that the expression level of Entpd2, an astrocyte-specific gene encoding the ATP-degrading enzyme NTPDase2, was lower in AxD astrocytes than in wild-type astrocytes. In situ ATP imaging using the adeno-associated virus vector GfaABC1D ATP1.0 showed that exogenously applied ATP was present longer in 60TM mice than in wild-type mice. Thus, the increased ATP level caused by the decrease in its metabolizing enzyme in astrocytes could be responsible for the enhancement of microglial Ca2+ signals. To determine whether these P2Y12 receptor-mediated Ca2+ signals in AxD microglia play a significant role in the pathological mechanism, a P2Y12 receptor antagonist, clopidogrel, was administered. Clopidogrel significantly exacerbated pathological markers in AxD model mice and attenuated the morphological features of microglia, suggesting that microglia play a protective role against AxD pathology via P2Y12 receptors. Taken together, we demonstrated that microglia sense AxD astrocyte dysfunction via P2Y12 receptors as an increase in extracellular ATP and alter their morphology and Ca2+ signalling, thereby protecting against AxD pathology. Although AxD is a primary astrocyte disease, our study may facilitate understanding of the role of microglia as a disease modifier, which may contribute to the clinical diversity of AxD.
Collapse
Affiliation(s)
- Kozo Saito
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kenji Kobayashi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Bijay Parajuli
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Yuto Kubota
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kent Sakai
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Miho Miyakawa
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Hiroshi Horiuchi
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| |
Collapse
|
7
|
Granzotto A, McQuade A, Chadarevian JP, Davtyan H, Sensi SL, Parker I, Blurton-Jones M, Smith I. ER and SOCE Ca 2+ signals are not required for directed cell migration in human microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576126. [PMID: 38293075 PMCID: PMC10827168 DOI: 10.1101/2024.01.18.576126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The central nervous system (CNS) is constantly surveilled by microglia, highly motile and dynamic cells deputed to act as the first line of immune defense in the brain and spinal cord. Alterations in the homeostasis of the CNS are detected by microglia that respond by migrating toward the affected area. Understanding the mechanisms controlling directed cell migration of microglia is crucial to dissect their responses to neuroinflammation and injury. We used a combination of pharmacological and genetic approaches to explore the involvement of calcium (Ca2+) signaling in the directed migration of induced pluripotent stem cell (iPSC)-derived microglia challenged with a purinergic stimulus. This approach mimics cues originating from injury of the CNS. Unexpectedly, simultaneous imaging of microglia migration and intracellular Ca2+ changes revealed that this phenomenon does not require Ca2+ signals generated from the endoplasmic reticulum (ER) and store-operated Ca2+ entry (SOCE) pathways. Instead, we find evidence that human microglial chemotaxis to purinergic signals is mediated by cyclic AMP in a Ca2+-independent manner. These results challenge prevailing notions, with important implications in neurological conditions characterized by perturbation in Ca2+ homeostasis.
Collapse
Affiliation(s)
- Alberto Granzotto
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States
- Center for Advanced Sciences and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University G d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Amanda McQuade
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, United States
| | - Jean Paul Chadarevian
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
| | - Hayk Davtyan
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, United States
| | - Stefano L. Sensi
- Center for Advanced Sciences and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University G d’Annunzio of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), “G. d’Annunzio” University, Chieti-Pescara, Italy
| | - Ian Parker
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, United States
| | - Mathew Blurton-Jones
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
- Institute for Immunology, University of California, Irvine, Irvine, United States
| | - Ian Smith
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
| |
Collapse
|
8
|
Pan ML, Ahmad Puzi NN, Ooi YY, Ramasamy R, Vidyadaran S. Response Profiles of BV2 Microglia to IFN-γ and LPS Co-Stimulation and Priming. Biomedicines 2023; 11:2648. [PMID: 37893022 PMCID: PMC10604055 DOI: 10.3390/biomedicines11102648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/13/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: The latest research illustrates that microglia phenotype is not the binary 'resting' and 'activated' profiles. Instead, there is wide diversity in microglia states. Similarly, when testing different stimulation protocols for BV2 microglia, we discovered differences in the response of the cells in terms of the production of intracellular ROS (iROS), nitric oxide (NO), CD40 expression, and migratory capacity. (2) Methods: BV2 microglia were treated with single interferon gamma (IFN-γ) stimulation, LPS/IFN-γ co-stimulation, and priming with IFN-γ followed by stimulation with LPS for 24 h. The responses of BV2 microglia were then assessed using the H2DCFDA test for iROS, the Griess assay for NO, immunophenotyping for CD40/CD11b/MHC II, and migration using a transwell apparatus. (3) Results: Single stimulation with IFN-γ induced NO but not ROS in BV2 microglia. Co-stimulation with LPS200IFN-γ2.5 induced a higher iROS production (a 9.2-fold increase) and CD40 expression (28031 ± 8810.2 MFI), compared to priming with primedIFN-γ50LPS100 (a 4.0-fold increase in ROS and 16764 ± 1210.8 MFI of CD40). Co-stimulation also induced cell migration. On the other hand, priming BV2 microglia (primedIFN-γ50LPS100) resulted in a higher NO production (64 ± 1.4 µM) compared to LPS200IFN-γ2.5 co-stimulation (44 ± 1.7 µM). Unexpectedly, priming inhibited BV2 migration. (4) Conclusions: Taken together, the findings from this project reveal the ability of co-stimulation and priming in stimulating microglia into an inflammatory phenotype, and the heterogeneity of microglia responses towards different stimulating approaches.
Collapse
Affiliation(s)
- Meng Liy Pan
- Neuroinflammation Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.L.P.); (N.N.A.P.)
| | - Nur Nabilah Ahmad Puzi
- Neuroinflammation Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.L.P.); (N.N.A.P.)
- Department of Craniofacial Diagnostics & Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Yin Yin Ooi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University Lakeside Campus, 1, Jalan Taylor’s, Subang Jaya 47500, Malaysia;
- Medical Advancement for Better Quality of Life Impact Lab, Taylor’s University Lakeside Campus, 1, Jalan Taylor’s, Subang Jaya 47500, Malaysia
| | - Rajesh Ramasamy
- Stem Cell and Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Sharmili Vidyadaran
- Neuroinflammation Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.L.P.); (N.N.A.P.)
| |
Collapse
|
9
|
Babiec L, Wilkaniec A, Matuszewska M, Pałasz E, Cieślik M, Adamczyk A. Alterations of Purinergic Receptors Levels and Their Involvement in the Glial Cell Morphology in a Pre-Clinical Model of Autism Spectrum Disorders. Brain Sci 2023; 13:1088. [PMID: 37509018 PMCID: PMC10377192 DOI: 10.3390/brainsci13071088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Recent data suggest that defects in purinergic signalling are a common denominator of autism spectrum disorders (ASDs), though nothing is known about whether the disorder-related imbalance occurs at the receptor level. In this study, we investigated whether prenatal exposure to valproic acid (VPA) induces changes in purinergic receptor expression in adolescence and whether it corresponds to glial cell activation. Pregnant dams were subjected to an intraperitoneal injection of VPA at embryonic day 12.5. In the hippocampi of adolescent male VPA offspring, we observed an increase in the level of P2X1, with concomitant decreases in P2X7 and P2Y1 receptors. In contrast, in the cortex, the level of P2X1 was significantly reduced. Also, significant increases in cortical P2Y1 and P2Y12 receptors were detected. Additionally, we observed profound alterations in microglial cell numbers and morphology in the cortex of VPA animals, leading to the elevation of pro-inflammatory cytokine expression. The changes in glial cells were partially reduced via a single administration of a non-selective P2 receptor antagonist. These studies show the involvement of purinergic signalling imbalance in the modulation of brain inflammatory response induced via prenatal VPA exposure and may indicate that purinergic receptors are a novel target for pharmacological intervention in ASDs.
Collapse
Affiliation(s)
- Lidia Babiec
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Marta Matuszewska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Ewelina Pałasz
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
10
|
Chen X, Wang Q, Yang J, Zhang L, Liu TT, Liu J, Deng BL, Liu J. Diagnostic and therapeutic value of P2Y12R in epilepsy. Front Pharmacol 2023; 14:1179028. [PMID: 37234715 PMCID: PMC10206044 DOI: 10.3389/fphar.2023.1179028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
There lacks biomarkers in current epilepsy diagnosis, and epilepsy is thus exposed to inadequate treatment, making it necessarily important to conduct search on new biomarkers and drug targets. The P2Y12 receptor is primarily expressed on microglia in the central nervous system, and acts as intrinsic immune cells in the central nervous system mediating neuroinflammation. In previous studies, P2Y12R in epilepsy has been found capable of controlling neuroinflammation and regulating neurogenesis as well as immature neuronal projections, and its expression is altered. P2Y12R is involved in microglia inhibition of neuronal activity and timely termination of seizures in acute seizures. In status epilepticus, the failure of P2Y12R in the process of "brake buffering" may not terminate the neuronal hyperexcitability timely. In chronic epilepsy, neuroinflammation causes seizures, which can in turn induce neuroinflammation, while on the other hand, neuroinflammation leads to neurogenesis, thereby causing abnormal neuronal discharges that give rise to seizures. In this case, targeting P2Y12R may be a novel strategy for the treatment of epilepsy. The detection of P2Y12R and its expression changes can contribute to the diagnosis of epilepsy. Meanwhile, the P2Y12R single-nucleotide polymorphism is associated with epilepsy susceptibility and endowed with the potential to individualize epilepsy diagnosis. To this end, functions of P2Y12R in the central nervous system were hereby reviewed, the effects of P2Y12R in epilepsy were explored, and the potential of P2Y12R in the diagnosis and treatment of epilepsy was further demonstrated.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Qi Wang
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Chengdu, China
| | - Jie Yang
- Zunyi Medical University, Zunyi, China
| | - Li Zhang
- Electrophysiology Unit, Department of Neurology, Chengdu Fourth People’s Hospital, Chengdu, China
| | - Ting-Ting Liu
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Liu
- Department of Geriatric Neurology, Qinglongchang Ward, Chengdu Sixth People’s Hospital, Chengdu, China
| | - Bin-Lu Deng
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Jie Liu
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Chengdu, China
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
11
|
Xiao MZ, Liu CX, Zhou LG, Yang Y, Wang Y. Postoperative delirium, neuroinflammation, and influencing factors of postoperative delirium: A review. Medicine (Baltimore) 2023; 102:e32991. [PMID: 36827061 PMCID: PMC11309669 DOI: 10.1097/md.0000000000032991] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/25/2023] Open
Abstract
Postoperative delirium (POD) is an acute cognitive dysfunction that is mainly characterized by memory impairment and disturbances in consciousness. POD can prolong the hospital stay and increase the 1-month mortality rate of patients. The overall incidence of POD is approximately 23%, and its prevalence can go up to 50% in high-risk surgeries. Neuroinflammation is an important pathogenic mechanism of POD that mediates microglial activation and leads to synaptic remodeling. Neuroinflammation, as an indispensable pathogenesis of POD, can occur due to a variety of factors, including aseptic inflammation caused by surgery, effects of anesthetic drugs, disruption of the blood-brain barrier, and epigenetics. Understanding these factors and avoiding the occurrence of risk factors may help prevent POD in time. This review provides a brief overview of POD and neuroinflammation and summarizes various factors affecting POD development mediated by neuroinflammation, which may serve as future targets for the prevention and treatment of POD.
Collapse
Affiliation(s)
- M. Z. Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - C. X. Liu
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - L. G. Zhou
- Department of Anatomy, Hengyang Medical College of University of South China, Hengyang, China
| | - Y. Yang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Y. Wang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
12
|
Alves VS, Santos SACS, Leite-Aguiar R, Paiva-Pereira E, dos Reis RR, Calazans ML, Fernandes GG, Antônio LS, de Lima EV, Kurtenbach E, Silva JL, Fontes-Dantas FL, Passos GF, Figueiredo CP, Coutinho-Silva R, Savio LEB. SARS-CoV-2 Spike protein alters microglial purinergic signaling. Front Immunol 2023; 14:1158460. [PMID: 37114062 PMCID: PMC10126242 DOI: 10.3389/fimmu.2023.1158460] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Despite long-term sequelae of COVID-19 are emerging as a substantial public health concern, the mechanism underlying these processes still unclear. Evidence demonstrates that SARS-CoV-2 Spike protein can reach different brain regions, irrespective of viral brain replication resulting in activation of pattern recognition receptors (PRRs) and neuroinflammation. Considering that microglia dysfunction, which is regulated by a whole array of purinergic receptors, may be a central event in COVID-19 neuropathology, we investigated the impact of SARS-CoV-2 Spike protein on microglial purinergic signaling. Here, we demonstrate that cultured microglial cells (BV2 line) exposed to Spike protein induce ATP secretion and upregulation of P2Y6, P2Y12, NTPDase2 and NTPDase3 transcripts. Also, immunocytochemistry analysis shows that spike protein increases the expression of P2X7, P2Y1, P2Y6, and P2Y12 in BV2 cells. Additional, hippocampal tissue of Spike infused animals (6,5ug/site, i.c.v.) presents increased mRNA levels of P2X7, P2Y1, P2Y6, P2Y12, NTPDase1, and NTPDase2. Immunohistochemistry experiments confirmed high expression of the P2X7 receptor in microglial cells in CA3/DG hippocampal regions after spike infusion. These findings suggest that SARS-CoV-2 Spike protein modulates microglial purinergic signaling and opens new avenues for investigating the potential of purinergic receptors to mitigate COVID-19 consequences.
Collapse
Affiliation(s)
- Vinícius Santos Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Raíssa Leite-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elaine Paiva-Pereira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata Rodrigues dos Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana L. Calazans
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Leticia Silva Antônio
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Emanuelle V. de Lima
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jerson Lima Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fabricia Lima Fontes-Dantas
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes Institute Biology (IBRAG), Universidade Estadual do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | | | | | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Luiz Eduardo Baggio Savio,
| |
Collapse
|
13
|
Alberto AVP, Ferreira NCDS, Bonavita AGC, Nihei OK, de Farias FP, Bisaggio RDC, de Albuquerque C, Savino W, Coutinho‐Silva R, Persechini PM, Alves LA. Physiologic roles of P2 receptors in leukocytes. J Leukoc Biol 2022; 112:983-1012. [PMID: 35837975 PMCID: PMC9796137 DOI: 10.1002/jlb.2ru0421-226rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
Since their discovery in the 1970s, purinergic receptors have been shown to play key roles in a wide variety of biologic systems and cell types. In the immune system, purinergic receptors participate in innate immunity and in the modulation of the adaptive immune response. In particular, P2 receptors, which respond to extracellular nucleotides, are widely expressed on leukocytes, causing the release of cytokines and chemokines and the formation of inflammatory mediators, and inducing phagocytosis, degranulation, and cell death. The activity of these receptors is regulated by ectonucleotidases-expressed in these same cell types-which regulate the availability of nucleotides in the extracellular environment. In this article, we review the characteristics of the main purinergic receptor subtypes present in the immune system, focusing on the P2 family. In addition, we describe the physiologic roles of the P2 receptors already identified in leukocytes and how they can positively or negatively modulate the development of infectious diseases, inflammation, and pain.
Collapse
Affiliation(s)
- Anael Viana Pinto Alberto
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| | | | | | - Oscar Kenji Nihei
- Center of Education and LetterState University of the West of ParanáFoz do IguaçuPRBrazil
| | | | - Rodrigo da Cunha Bisaggio
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Federal Institute of Education, Science, and Technology of Rio de JaneiroRio de JaneiroRJBrazil
| | | | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Brazilian National Institute of Science and Technology on NeuroimmunomodulationRio de Janeiro Research Network on NeuroinflammationRio de JaneiroRJBrazil
| | - Robson Coutinho‐Silva
- Laboratory of Immunophysiology, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Pedro Muanis Persechini
- Laboratory of Immunobiophysics, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| |
Collapse
|
14
|
Rahimian R, Belliveau C, Chen R, Mechawar N. Microglial Inflammatory-Metabolic Pathways and Their Potential Therapeutic Implication in Major Depressive Disorder. Front Psychiatry 2022; 13:871997. [PMID: 35782423 PMCID: PMC9245023 DOI: 10.3389/fpsyt.2022.871997] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence supports the notion that neuroinflammation plays a critical role in the etiology of major depressive disorder (MDD), at least in a subset of patients. By virtue of their capacity to transform into reactive states in response to inflammatory insults, microglia, the brain's resident immune cells, play a pivotal role in the induction of neuroinflammation. Experimental studies have demonstrated the ability of microglia to recognize pathogens or damaged cells, leading to the activation of a cytotoxic response that exacerbates damage to brain cells. However, microglia display a wide range of responses to injury and may also promote resolution stages of inflammation and tissue regeneration. MDD has been associated with chronic priming of microglia. Recent studies suggest that altered microglial morphology and function, caused either by intense inflammatory activation or by senescence, may contribute to depression and associated impairments in neuroplasticity. In this context, modifying microglia phenotype by tuning inflammatory pathways might have important translational relevance to harness neuroinflammation in MDD. Interestingly, it was recently shown that different microglial phenotypes are associated with distinct metabolic pathways and analysis of the underlying molecular mechanisms points to an instrumental role for energy metabolism in shaping microglial functions. Here, we review various canonical pro-inflammatory, anti-inflammatory and metabolic pathways in microglia that may provide new therapeutic opportunities to control neuroinflammation in brain disorders, with a strong focus on MDD.
Collapse
Affiliation(s)
- Reza Rahimian
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
| | - Claudia Belliveau
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Rebecca Chen
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
15
|
Opioid receptor activation suppresses the neuroinflammatory response by promoting microglial M2 polarization. Mol Cell Neurosci 2022; 121:103744. [PMID: 35660086 DOI: 10.1016/j.mcn.2022.103744] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/02/2022] [Accepted: 05/29/2022] [Indexed: 11/20/2022] Open
Abstract
Activation of microglia is considered the most important component of neuroinflammation. Microglia can adopt a pro-inflammatory (M1) or anti-inflammatory (M2) phenotype. Opioid receptors (ORs) have been shown to control neurotransmission of various peptidergic neurons, but their potential role in regulating microglial function is largely unknown. Here, we aimed to investigate the effect of the OR agonists DAMGO, DADLE and U-50488 on the polarization of C8-B4 microglial cells. We observed that opioids suppressed lipopolysaccharide (LPS)-triggered M1 polarization and promoted M2 polarization. This was reflected in lower phagocytic activity, lower production of NO, lower expression of TNF-α, IL-1β, IL-6, IL-86 and IL-12 beta p40 together with higher migration rate, and increased expression of IL-4, IL-10, arginase 1 and CD 206 in microglia, compared to cells affected by LPS. We demonstrated that the effect of opioids on microglial polarization is mediated by the TREM2/NF-κB signaling pathway. These results provide new insights into the anti-inflammatory and neuroprotective effects of opioids and highlight their potential in combating neurodegenerative diseases.
Collapse
|
16
|
Jairaman A, McQuade A, Granzotto A, Kang YJ, Chadarevian JP, Gandhi S, Parker I, Smith I, Cho H, Sensi SL, Othy S, Blurton-Jones M, Cahalan MD. TREM2 regulates purinergic receptor-mediated calcium signaling and motility in human iPSC-derived microglia. eLife 2022; 11:e73021. [PMID: 35191835 PMCID: PMC8906810 DOI: 10.7554/elife.73021] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/18/2022] [Indexed: 01/07/2023] Open
Abstract
The membrane protein TREM2 (Triggering Receptor Expressed on Myeloid cells 2) regulates key microglial functions including phagocytosis and chemotaxis. Loss-of-function variants of TREM2 are associated with increased risk of Alzheimer's disease (AD). Because abnormalities in Ca2+ signaling have been observed in several AD models, we investigated TREM2 regulation of Ca2+ signaling in human induced pluripotent stem cell-derived microglia (iPSC-microglia) with genetic deletion of TREM2. We found that iPSC-microglia lacking TREM2 (TREM2 KO) show exaggerated Ca2+ signals in response to purinergic agonists, such as ADP, that shape microglial injury responses. This ADP hypersensitivity, driven by increased expression of P2Y12 and P2Y13 receptors, results in greater release of Ca2+ from the endoplasmic reticulum stores, which triggers sustained Ca2+ influx through Orai channels and alters cell motility in TREM2 KO microglia. Using iPSC-microglia expressing the genetically encoded Ca2+ probe, Salsa6f, we found that cytosolic Ca2+ tunes motility to a greater extent in TREM2 KO microglia. Despite showing greater overall displacement, TREM2 KO microglia exhibit reduced directional chemotaxis along ADP gradients. Accordingly, the chemotactic defect in TREM2 KO microglia was rescued by reducing cytosolic Ca2+ using a P2Y12 receptor antagonist. Our results show that loss of TREM2 confers a defect in microglial Ca2+ response to purinergic signals, suggesting a window of Ca2+ signaling for optimal microglial motility.
Collapse
Affiliation(s)
- Amit Jairaman
- Department of Physiology and Biophysics, University of California, IrvineIrvineUnited States
| | - Amanda McQuade
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
- Sue and Bill Gross Stem Cell Research Center, University of California, IrvineIrvineUnited States
- UCI Institute for Memory Impairments and Neurological Disorders, University of CaliforniaIrvineUnited States
- Institute for Neurodegenerative Diseases, University of California, San FranciscoSan FranciscoUnited States
| | - Alberto Granzotto
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
- Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-PescaraChietiItaly
- Department of Neuroscience, Imaging and Clinical Sciences, University G d'Annunzio of Chieti-PescaraChietiItaly
| | - You Jung Kang
- Department of Mechanical Engineering and Engineering Science, University of North CarolinaCharlotteUnited States
| | - Jean Paul Chadarevian
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
| | - Sunil Gandhi
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
| | - Ian Parker
- Department of Physiology and Biophysics, University of California, IrvineIrvineUnited States
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
| | - Ian Smith
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
| | - Hansang Cho
- Institute of Quantum Biophysics, Department of Biophysics, Dept of Intelligent Precision Healthcare Convergence, Sungkyunkwan UniversityGyeonggi-doRepublic of Korea
| | - Stefano L Sensi
- Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-PescaraChietiItaly
- Department of Neuroscience, Imaging and Clinical Sciences, University G d'Annunzio of Chieti-PescaraChietiItaly
| | - Shivashankar Othy
- Department of Physiology and Biophysics, University of California, IrvineIrvineUnited States
- Institute for Immunology, University of California, IrvineIrvineUnited States
| | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
- Sue and Bill Gross Stem Cell Research Center, University of California, IrvineIrvineUnited States
- UCI Institute for Memory Impairments and Neurological Disorders, University of CaliforniaIrvineUnited States
- Institute for Immunology, University of California, IrvineIrvineUnited States
| | - Michael D Cahalan
- Department of Physiology and Biophysics, University of California, IrvineIrvineUnited States
- Institute for Immunology, University of California, IrvineIrvineUnited States
| |
Collapse
|
17
|
Gu C, Chen Y, Chen Y, Liu CF, Zhu Z, Wang M. Role of G Protein-Coupled Receptors in Microglial Activation: Implication in Parkinson's Disease. Front Aging Neurosci 2021; 13:768156. [PMID: 34867296 PMCID: PMC8635063 DOI: 10.3389/fnagi.2021.768156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/23/2021] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is one of the prevalent neurodegenerative diseases associated with preferential loss of dopaminergic (DA) neurons in the substantia nigra compacta (SNc) and accumulation of α-synuclein in DA neurons. Even though the precise pathogenesis of PD is not clear, a large number of studies have shown that microglia-mediated neuroinflammation plays a vital role in the process of PD development. G protein-coupled receptors (GPCRs) are widely expressed in microglia and several of them act as regulators of microglial activation upon corresponding ligands stimulations. Upon α-synuclein insults, microglia would become excessively activated through some innate immune receptors. Presently, as lack of ideal drugs for treating PD, certain GPCR which is highly expressed in microglia of PD brain and mediates neuroinflammation effectively could be a prospective source for PD therapeutic intervention. Here, six kinds of GPCRs and two types of innate immune receptors were introduced, containing adenosine receptors, purinergic receptors, metabotropic glutamate receptors, adrenergic receptors, cannabinoid receptors, and melatonin receptors and their roles in neuroinflammation; we highlighted the relationship between these six GPCRs and microglial activation in PD. Based on the existing findings, we tried to expound the implication of microglial GPCRs-regulated neuroinflammation to the pathophysiology of PD and their potential to become a new expectation for clinical therapeutics.
Collapse
Affiliation(s)
- Chao Gu
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Yajing Chen
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Yan Chen
- Department of Child and Adolescent Healthcare, Children’s Hospital of Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology, Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zengyan Zhu
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Mei Wang
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
18
|
Gao S, Zhou Q, Jin H, Shi N, Wang X, Zhang L, Yan M. Effect of pyrroloquinoline quinone on lipopolysaccharide-induced autophagy in HAPI microglia cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1377. [PMID: 34733929 PMCID: PMC8506552 DOI: 10.21037/atm-21-730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/04/2021] [Indexed: 12/01/2022]
Abstract
Background Pyrroloquinoline quinone (PQQ) is involved in various physiological and biochemical processes, including antioxidant, cell proliferation, and mitochondrial formation. It plays a vital role in protecting neurons. However, the effect of PQQ on microglia, an inflammatory cell of the central nervous system (CNS), is still unclear. This study aimed to investigate the biological role and neuroprotective mechanism of PQQ in HAPI microglial cells exposed to lipopolysaccharide (LPS). Methods Western blot (WB) was used to detect apoptosis and autophagy-related molecules Bax, Bcl2, active-caspase-3, caspase-3, LC3, lysosomal associated membrane protein 2 (LAMP2), AKT, tumor necrosis factor receptor (TNFR) 1, and TNFR2 expression. The phosphatidylinositol 3-kinase (PI3K)/Akt inhibitor LY294002 was used to block the Akt pathway. WB detected the effects of PI3K on autophagy and TNFR1 and TNFR2 expression. The localization of active-caspase-3, caspase-3, LC3, LAMP2, TNFR1, and TNFR2 in cells was observed by immunofluorescence staining. The effect of PQQ on the cell cycle was examined by flow cytometry. We used 5-Ethynyl-2’-deoxyuridine (EdU) assay to detect cell proliferation. The migration ability of cells under different conditions was detected by scratch test and Transwell assay. Results Our results showed that there were different effects on the apoptosis-related molecules Bcl2/Bax and active-caspase-3/caspase in HAPI microglial cells treated with PQQ at different times. PQQ had no significant effect on the LC3b/a ratio in the early stage, which was upregulated in the later stage. The expression of LAMP2 was significantly increased in both early and late stages after PQQ treatment. At the same time, we found that PQQ can reverse the translocation of LAMP2 from the cytoplasm to the nucleus in LPS-induced HAPI microglia. After PQQ treatment, TNFR1 was significantly decreased, but TNFR2 increased in LPS-induced HAPI microglia. It may be that PQQ works through the PI3K/Akt signaling pathway to up-regulate LC3, LAMP2, and TNFR1 and down-regulate TNFR2 in LPS-induced HAPI microglia. However, PQQ has little effect on LPS-induced proliferation, cell cycle, and migration of HAPI microglia. Conclusions In LPS-induced HAPI microglia, PQQ reduces the apoptosis level and increases that of autophagy. In addition, PQQ changes the distribution of LAMP2 in the cytoplasm and nucleus, which is regulated through the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Shumei Gao
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Qiao Zhou
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Hui Jin
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Naiqi Shi
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
| | - Xiaoyu Wang
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Li Zhang
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Meijuan Yan
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
19
|
Xia P, Logiacco F, Huang Y, Kettenmann H, Semtner M. Histamine triggers microglial responses indirectly via astrocytes and purinergic signaling. Glia 2021; 69:2291-2304. [PMID: 34080730 DOI: 10.1002/glia.24039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
Histamine is a monoaminergic neurotransmitter which is released within the entire brain from ascending axons originating in the tuberomammillary nucleus in a sleep state-dependent fashion. Besides the modulation of neuronal firing patterns, brain histamine levels are also thought to modulate functions of glial cells. Microglia are the innate immune cells and professional phagocytes of the central nervous system, and histamine was previously shown to have multiple effects on microglial functions in health and disease. Isolated microglia respond only to agonists of the Hrh2 subtype of histamine receptors (Hrh), and the expression of that isoform is confirmed by a metadata analysis of microglia transcriptomes. When we studied the effect of the histamine receptor isoforms in cortical and thalamic microglia by in situ live cell Ca2+ imaging using a novel, microglia-specific indicator mouse line, microglial cells respond to external histamine application mainly in a Hrh1-, and to a lower extent also in a Hrh2-dependent manner. The Hrh1 response was sensitive to blockers of purinergic P2ry12 receptors, and since Hrh1 expression was predominantly found in astrocytes, we suggest that the Hrh1 response in microglia is mediated by astrocyte ATP release and activation of P2ry12 receptors in microglia. Histamine also stimulates microglial phagocytic activity via Hrh1- and P2ry12-mediated signaling. Taken together, we provide evidence that histamine acts indirectly on microglial Ca2+ levels and phagocytic activity via astrocyte histamine receptor-controlled purinergic signaling.
Collapse
Affiliation(s)
- Pengfei Xia
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité-Universitätsmedizin, Berlin, Germany
| | - Francesca Logiacco
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Yimin Huang
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité-Universitätsmedizin, Berlin, Germany
| | - Helmut Kettenmann
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Marcus Semtner
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
20
|
Changes in mitochondrial morphology modulate LPS-induced loss of calcium homeostasis in BV-2 microglial cells. J Bioenerg Biomembr 2021; 53:109-118. [PMID: 33585958 DOI: 10.1007/s10863-021-09878-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/05/2021] [Indexed: 12/18/2022]
Abstract
Microglial activation involves both fragmentation of the mitochondrial network and changes in cellular Ca2+ homeostasis, but possible modifications in mitochondrial calcium uptake have never been described in this context. Here we report that activated microglial BV-2 cells have impaired mitochondrial calcium uptake, including lower calcium retention capacity and calcium uptake rates. These changes were not dependent on altered expression of the mitochondrial calcium uniporter. Respiratory capacity and the inner membrane potential, key determinants of mitochondrial calcium uptake, are both decreased in activated microglial BV-2 cells. Modified mitochondrial calcium uptake correlates with impaired cellular calcium signaling, including reduced ER calcium stores, and decreased replenishment by store operated calcium entry (SOCE). Induction of mitochondrial fragmentation through Mfn2 knockdown in control cells mimicked this effect, while inhibiting LPS-induced mitochondrial fragmentation by a dominant negative form of Drp1 prevented it. Overall, our results show that mitochondrial fragmentation induced by LPS promotes altered Ca2+ homeostasis in microglial cells, a new aspect of microglial activation that could be a key feature in the inflammatory role of these cells.
Collapse
|
21
|
Abstract
Chronic neuroinflammation is observed in HIV+ individuals on suppressive combination antiretroviral therapy (cART) and is thought to cause HIV-associated neurocognitive disorders. We have recently reported that expression of HIV intron-containing RNA (icRNA) in productively infected monocyte-derived macrophages induces pro-inflammatory responses. Microglia, yolk sac-derived brain-resident tissue macrophages, are the primary HIV-1 infected cell type in the central nervous system (CNS). In this study, we tested the hypothesis that persistent expression of HIV icRNA in primary human microglia induces innate immune activation. We established multiple orthogonal primary human microglia-like cell cultures including peripheral blood monocyte-derived microglia (MDMG) and induced pluripotent stem cell (iPSC)-derived microglia. Unlike MDMG, human iPSC-derived microglia (hiMG), which phenotypically mimic primary CNS microglia, were robustly infected with replication competent HIV-1, and establishment of productive HIV-1 infection and de novo viral gene expression led to pro-inflammatory cytokine production. Blocking of HIV-1 icRNA expression, but not multiply spliced viral RNA, either via infection with virus expressing a Rev-mutant deficient for HIV icRNA nuclear export or infection in the presence of small molecule inhibitor of CRM1-mediated viral icRNA nuclear export pathway, attenuated induction of innate immune responses. These studies suggest that Rev-CRM1-dependent nuclear export and cytosolic sensing of HIV-1 icRNA induces pro-inflammatory responses in productively infected microglia. Novel strategies targeting HIV icRNA expression specifically are needed to suppress HIV-induced neuroinflammation.
Collapse
|
22
|
Banerjee P, Paza E, Perkins EM, James OG, Kenkhuis B, Lloyd AF, Burr K, Story D, Yusuf D, He X, Backofen R, Dando O, Chandran S, Priller J. Generation of pure monocultures of human microglia-like cells from induced pluripotent stem cells. Stem Cell Res 2020; 49:102046. [PMID: 33096385 DOI: 10.1016/j.scr.2020.102046] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 01/28/2023] Open
Abstract
Microglia are resident tissue macrophages of the central nervous system (CNS) that arise from erythromyeloid progenitors during embryonic development. They play essential roles in CNS development, homeostasis and response to disease. Since microglia are difficult to procure from the human brain, several protocols have been developed to generate microglia-like cells from human induced pluripotent stem cells (hiPSCs). However, some concerns remain over the purity and quality of in vitro generated microglia. Here, we describe a new protocol that does not require co-culture with neural cells and yields cultures of 100% P2Y12+ 95% TMEM119+ ramified human microglia-like cells (hiPSC-MG). In the presence of neural precursor cell-conditioned media, hiPSC-MG expressed high levels of human microglia signature genes, including SALL1, CSF1R, P2RY12, TMEM119, TREM2, HEXB and SIGLEC11, as revealed by whole-transcriptome analysis. Stimulation of hiPSC-MG with lipopolysaccharide resulted in downregulation of P2Y12 expression, induction of IL1B mRNA expression and increase in cell capacitance. HiPSC-MG were phagocytically active and maintained their cell identity after transplantation into murine brain slices and human brain spheroids. Together, our new protocol for the generation of microglia-like cells from human iPSCs will facilitate the study of human microglial function in health and disease.
Collapse
Affiliation(s)
- Poulomi Banerjee
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
| | - Evdokia Paza
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
| | - Emma M Perkins
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
| | - Owen G James
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
| | - Boyd Kenkhuis
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK; Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Amy F Lloyd
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
| | - Karen Burr
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
| | - David Story
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
| | - Dilmurat Yusuf
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Xin He
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Owen Dando
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
| | - Josef Priller
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK; Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité, Universitätsmedizin Berlin, BIH and DZNE, Berlin, Germany.
| |
Collapse
|
23
|
Chen L, Zhu L, Lu D, Wu Z, Han Y, Xu P, Chang L, Wu Q. Interleukin 4 Affects Epilepsy by Regulating Glial Cells: Potential and Possible Mechanism. Front Mol Neurosci 2020; 13:554547. [PMID: 33013320 PMCID: PMC7500526 DOI: 10.3389/fnmol.2020.554547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is a chronic brain dysfunction induced by an abnormal neuronal discharge that is caused by complicated psychopathologies. Recently, accumulating studies have revealed a close relationship between inflammation and epilepsy. Specifically, microglia and astrocytes are important inflammatory cells in the central nervous system (CNS) that have been proven to be related to the pathogenesis and development of epilepsy. Additionally, interleukin 4 (IL-4) is an anti-inflammatory factor that can regulate microglia and astrocytes in many aspects. This review article focuses on the regulatory role of IL-4 in the pathological changes of glial cells related to epilepsy. We additionally propose that IL-4 may play a protective role in epileptogenesis and suggest that IL-4 may be a novel therapeutic target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Lu Chen
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Lin Zhu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Di Lu
- Biomedicine Engineering Research Centre, Kunming Medical University, Kunming, China
| | - Zhe Wu
- Department of Psychology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Yanbing Han
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Puying Xu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Lvhua Chang
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
24
|
Francistiová L, Bianchi C, Di Lauro C, Sebastián-Serrano Á, de Diego-García L, Kobolák J, Dinnyés A, Díaz-Hernández M. The Role of P2X7 Receptor in Alzheimer's Disease. Front Mol Neurosci 2020; 13:94. [PMID: 32581707 PMCID: PMC7283947 DOI: 10.3389/fnmol.2020.00094] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease characterized by a progressive cognitive decline associated with global brain damage. Initially, intracellular paired helical filaments composed by hyperphosphorylated tau and extracellular deposits of amyloid-β (Aβ) were postulated as the causing factors of the synaptic dysfunction, neuroinflammation, oxidative stress, and neuronal death, detected in AD patients. Therefore, the vast majority of clinical trials were focused on targeting Aβ and tau directly, but no effective treatment has been reported so far. Consequently, only palliative treatments are currently available for AD patients. Over recent years, several studies have suggested the involvement of the purinergic receptor P2X7 (P2X7R), a plasma membrane ionotropic ATP-gated receptor, in the AD brain pathology. In this line, altered expression levels and function of P2X7R were found both in AD patients and AD mouse models. Consequently, genetic depletion or pharmacological inhibition of P2X7R ameliorated the hallmarks and symptoms of different AD mouse models. In this review, we provide an overview of the current knowledge about the role of the P2X7R in AD.
Collapse
Affiliation(s)
- Linda Francistiová
- BioTalentum Ltd., Gödöllõ, Hungary
- Szent István University, Gödöllõ, Hungary
| | - Carolina Bianchi
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Caterina Di Lauro
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Álvaro Sebastián-Serrano
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Laura de Diego-García
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | | | - András Dinnyés
- BioTalentum Ltd., Gödöllõ, Hungary
- Szent István University, Gödöllõ, Hungary
- HCEMM-USZ StemCell Research Group, University of Szeged, Szeged, Hungary
| | - Miguel Díaz-Hernández
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
25
|
Abd El-Aleem SA, Abd-Elghany MI, Ali Saber E, Jude EB, Djouhri L. A possible role for inducible arginase isoform (AI) in the pathogenesis of chronic venous leg ulcer. J Cell Physiol 2020; 235:9974-9991. [PMID: 32458472 DOI: 10.1002/jcp.29812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/13/2020] [Indexed: 01/28/2023]
Abstract
Chronic venous ulcer (CVU) is a major cause of chronic wounds of lower extremities and presents a significant financial and resource burden to health care systems worldwide. Defects in the vasculature, matrix deposition, and re-epithelialization are the main histopathological changes believed to impede healing. Supplementation of the amino acid arginine that plays a crucial role in the interactions that occur during inflammation and wound healing was proven clinically to improve acute wound healing probably through enhancing activity of inducible arginase (AI) locally in the wounds. However, the possible mechanism of arginine action and the potential beneficial effects of AI/arginine in human chronic wounds remain unclear. In the present study, using biopsies, taken under local anesthesia, from adult patients (n = 12, mean age 55 years old) with CVUs in lower extremities, we investigated the correlation between AI distribution in CVUs and the histopathological changes, mainly proliferative and vascular changes. Our results show a distinct spatial distribution of AI along the ulcer in the epidermis and in the dermis with the highest level of expression being at the ulcer edge and the least expression towards the ulcer base. The AI cellular immunoreactivity, enzymatic activity, and protein levels were significantly increased towards the ulcer edge. Interestingly, a similar pattern of expression was encountered in the proliferative and the vascular changes with strong correlations between AI and the proliferative activity and vascular changes. Furthermore, AI cellular distribution was associated with increased proliferative activity, inflammation, and vascular changes. Our findings of differential expression of AI along the CVU base, edge, and nearby surrounding skin and its associations with increased proliferative activity and vascular changes provide further support to the AI implication in CVU pathogenesis. The presence of high levels of AI in the epidermis of chronic wounds may serve as a molecular marker of impaired healing and may provide future targets for therapeutic intervention.
Collapse
Affiliation(s)
- Seham A Abd El-Aleem
- Department of Cell Biology, University of Manchester, Manchester, UK.,Department of Histology and cell Biology, Minia University, Minia, Egypt
| | | | - Entesar Ali Saber
- Department of Histology and cell Biology, Minia University, Minia, Egypt.,Department of Histology, Deraya University, New Minia, Egypt
| | - Edward B Jude
- Department of Cell Biology, University of Manchester, Manchester, UK
| | - Laiche Djouhri
- Department of Physiology, College of Medicine (QU Health), Qatar University, Doha, Qatar
| |
Collapse
|
26
|
Microglial and Astrocytic Function in Physiological and Pathological Conditions: Estrogenic Modulation. Int J Mol Sci 2020; 21:ijms21093219. [PMID: 32370112 PMCID: PMC7247358 DOI: 10.3390/ijms21093219] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
There are sexual differences in the onset, prevalence, and outcome of numerous neurological diseases. Thus, in Alzheimer’s disease, multiple sclerosis, and major depression disorder, the incidence in women is higher than in men. In contrast, men are more likely to present other pathologies, such as amyotrophic lateral sclerosis, Parkinson’s disease, and autism spectrum. Although the neurological contribution to these diseases has classically always been studied, the truth is that neurons are not the only cells to be affected, and there are other cells, such as glial cells, that are also involved and could be key to understanding the development of these pathologies. Sexual differences exist not only in pathology but also in physiological processes, which shows how cells are differentially regulated in males and females. One of the reasons these sexual differences may occur could be due to the different action of sex hormones. Many studies have shown an increase in aromatase levels in the brain, which could indicate the main role of estrogens in modulating proinflammatory processes. This review will highlight data about sex differences in glial physiology and how estrogenic compounds, such as estradiol and tibolone, could be used as treatment in neurological diseases due to their anti-inflammatory effects and the ability to modulate glial cell functions.
Collapse
|
27
|
Illes P, Verkhratsky A, Tang Y. Pathological ATPergic Signaling in Major Depression and Bipolar Disorder. Front Mol Neurosci 2020; 12:331. [PMID: 32076399 PMCID: PMC7006450 DOI: 10.3389/fnmol.2019.00331] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/26/2019] [Indexed: 12/11/2022] Open
Abstract
The mood disorders, major depression (MD) and bipolar disorder (BD), have a high lifetime prevalence in the human population and accordingly generate huge costs for health care. Efficient, rapidly acting, and side-effect-free pharmaceuticals are hitherto not available, and therefore, the identification of new therapeutic targets is an imperative task for (pre)clinical research. Such a target may be the purinergic P2X7 receptor (P2X7R), which is localized in the central nervous system (CNS) at microglial and neuroglial cells mediating neuroinflammation. MD and BD are due to neuroinflammation caused in the first line by the release of the pro-inflammatory cytokine interleukin-1β (IL-1β) from the microglia. IL-1β in turn induces the secretion of corticotropin-releasing hormone (CRH) and in consequence the secretion of adrenocorticotropic hormone (ACTH) and cortisol, which together with a plethora of further cytokines/chemokines lead to mood disorders. A number of biochemical/molecular biological measurements including the use of P2X7R- or IL-1β-deficient mice confirmed this chain of events. More recent studies showed that a decrease in the astrocytic release of ATP in the prefrontal cortex and hippocampus is a major cause of mood disorders. It is an attractive hypothesis that compensatory increases in P2X7Rs in these areas of the brain are the immediate actuators of MD and BD. Hence, blood-brain barrier-permeable P2X7R antagonists may be promising therapeutic tools to improve depressive disorders in humans.
Collapse
Affiliation(s)
- Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany.,Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom.,Achucarro Centre for Neuroscience, Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
28
|
Alves M, Smith J, Engel T. Differential Expression of the Metabotropic P2Y Receptor Family in the Cortex Following Status Epilepticus and Neuroprotection via P2Y 1 Antagonism in Mice. Front Pharmacol 2020; 10:1558. [PMID: 32009961 PMCID: PMC6976538 DOI: 10.3389/fphar.2019.01558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
Purinergic signaling via P2 receptors is now widely accepted to play a critical role during increased states of hyperexcitability and seizure-induced pathology. In the setting of seizures and epilepsy, most attention has been paid to investigating the fast-acting ATP-gated P2X receptor family. More recent evidence has now also provided compelling evidence of an involvement of the slower-acting P2Y receptor family during seizures. This includes data demonstrating expression changes of P2Y receptors in the hippocampus following acute seizures and during epilepsy and anticonvulsive properties of P2Y-targeting drugs; in particular drugs targeting the P2Y1 subtype. Seizures, however, also involve damage to extra-hippocampal brain regions such as the cortex, which is thought to contribute to the epileptic phenotype. To analyze expressional changes of the P2Y receptor family in the cortex following status epilepticus and to determine the impact of drugs interfering with P2Y1 signaling on cortical damage, we used a unilateral mouse model of intraamygdala kainic acid-induced status epilepticus. Analysis of cortical tissue showed that status epilepticus leads to a global up-regulation of the P2Y receptor family in the cortex including P2Y1, P2Y2, P2Y4, and P2Y6, with the P2Y1 and P2Y4 receptor subtypes showing the strongest increase. Supporting a detrimental role of P2Y1 activation during status epilepticus, treatment with the P2Y1 agonist MRS2365 exacerbated high frequency high amplitude spiking, synonymous with injury-causing electrographic activity, and treatment with the P2Y1 antagonists MRS2500 protected against seizure-induced cortical damage. Suggesting P2Y1-mediated effects are predominantly due to increased microglia activation, treatment with the broad-spectrum anti-inflammatory drug minocycline abolished the observed neuroprotective effects of P2Y1 antagonism. In conclusion, our results further support a role for P2Y1-mediated signaling during seizure generation and seizure-induced neurodegeneration, suggesting P2Y1-targeting therapies as novel treatment for drug-refractory status epilepticus.
Collapse
Affiliation(s)
- Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jonathon Smith
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro SFI Research Centre, Dublin, Ireland
| |
Collapse
|
29
|
Fukumoto Y, Tanaka KF, Parajuli B, Shibata K, Yoshioka H, Kanemaru K, Gachet C, Ikenaka K, Koizumi S, Kinouchi H. Neuroprotective effects of microglial P2Y 1 receptors against ischemic neuronal injury. J Cereb Blood Flow Metab 2019; 39:2144-2156. [PMID: 30334687 PMCID: PMC6827120 DOI: 10.1177/0271678x18805317] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extracellular ATP, which is released from damaged cells after ischemia, activates P2 receptors. P2Y1 receptors (P2Y1R) have received considerable attention, especially in astrocytes, because their activation plays a central role in the regulation of neuron-to-glia communication. However, the functions or even existence of P2Y1R in microglia remain unknown, despite the fact that many microglial P2 receptors are involved in several brain diseases. Herein, we demonstrate the presence and functional capability of microglial P2Y1R to provide neuroprotective effects following ischemic stress. Cerebral ischemia resulted in increased microglial P2Y1R expression. The number of injured hippocampal neurons was significantly higher in P2Y1 R knockout (KO) mice than wildtype mice after forebrain ischemia. Propidium iodide (PI) uptake, a marker for dying cells, was significantly higher in P2Y1R KO hippocampal slices compared with wildtype hippocampal slices at 48 h after 40-min oxygen-glucose deprivation (OGD). Furthermore, increased PI uptake following OGD was rescued by ectopic overexpression of P2Y1R in microglia. In summary, these data suggest that microglial P2Y1R mediate neuroprotective effects against ischemic stress and OGD insult.
Collapse
Affiliation(s)
- Yuichiro Fukumoto
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.,Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Bijay Parajuli
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Keisuke Shibata
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hideyuki Yoshioka
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kazuya Kanemaru
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Christian Gachet
- Institut National de la Santé et de la Recherche Médicale (INSERM), Strasbourg, France
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Science, Aichi, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hiroyuki Kinouchi
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
30
|
Kloss L, Dollt C, Schledzewski K, Krewer A, Melchers S, Manta C, Sticht C, Torre CDL, Utikal J, Umansky V, Schmieder A. ADP secreted by dying melanoma cells mediates chemotaxis and chemokine secretion of macrophages via the purinergic receptor P2Y12. Cell Death Dis 2019; 10:760. [PMID: 31591378 PMCID: PMC6779894 DOI: 10.1038/s41419-019-2010-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/02/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022]
Abstract
Melanoma immunotherapy is still not satisfactory due to immunosuppressive cell populations within the tumor stroma. Targeting tumor-associated macrophages (TAM) can help to restore an anti-tumor immunity. Previously, we could show that classical TAM markers expressed in vivo need a 7 day M-CSF/dexamethasone/IL-4 (MDI) stimulation for their induction in peripheral blood monocytes (pBM) in vitro. To identify possible novel therapeutic targets on TAM, gene expression analysis of MDI-treated pBM was performed. This identified up-regulation of the purinergic G-protein coupled receptor P2Y12, the therapeutic target of the clinically approved anti-thrombotic drugs cangrelor, clopidogrel, ticagrelor, and prasugrel. We generated a peptide antibody and validated its specificity using transgenic P2Y12+ U937 cells. With the help of this antibody, P2Y12 expression was confirmed on CD68+ CD163+ TAM of melanoma in situ. Functional analysis revealed that treatment of transgenic P2Y12+ U937 cells with the receptor agonist 2-MeSADP induced ERK1/2 and Akt phosphorylation and increased the secretion of the chemokines CXCL2, CXCL7, and CXCL8. These effects could be abolished with the P2Y12 antagonist PSB0739 or with Akt and ERK inhibitors. In addition, P2Y12+ macrophages migrated towards the ADP-rich culture medium of puromycin-treated dying B16F1 melanoma cells. Cangrelor treatment blocked migration. Taken together, our results indicate that P2Y12 is an important chemotaxis receptor, which triggers migration of macrophages towards nucleotide-rich, necrotic tumor areas, and modulates the inflammatory environment upon ADP binding.
Collapse
Affiliation(s)
- Loreen Kloss
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Claudia Dollt
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Kai Schledzewski
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Andreas Krewer
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Susanne Melchers
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Calin Manta
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Carsten Sticht
- Center for Medical Research, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Carolina de la Torre
- Center for Medical Research, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Viktor Umansky
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Astrid Schmieder
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
31
|
Konttinen H, Cabral-da-Silva MEC, Ohtonen S, Wojciechowski S, Shakirzyanova A, Caligola S, Giugno R, Ishchenko Y, Hernández D, Fazaludeen MF, Eamen S, Budia MG, Fagerlund I, Scoyni F, Korhonen P, Huber N, Haapasalo A, Hewitt AW, Vickers J, Smith GC, Oksanen M, Graff C, Kanninen KM, Lehtonen S, Propson N, Schwartz MP, Pébay A, Koistinaho J, Ooi L, Malm T. PSEN1ΔE9, APPswe, and APOE4 Confer Disparate Phenotypes in Human iPSC-Derived Microglia. Stem Cell Reports 2019; 13:669-683. [PMID: 31522977 PMCID: PMC6829767 DOI: 10.1016/j.stemcr.2019.08.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022] Open
Abstract
Here we elucidate the effect of Alzheimer disease (AD)-predisposing genetic backgrounds, APOE4, PSEN1ΔE9, and APPswe, on functionality of human microglia-like cells (iMGLs). We present a physiologically relevant high-yield protocol for producing iMGLs from induced pluripotent stem cells. Differentiation is directed with small molecules through primitive erythromyeloid progenitors to re-create microglial ontogeny from yolk sac. The iMGLs express microglial signature genes and respond to ADP with intracellular Ca2+ release distinguishing them from macrophages. Using 16 iPSC lines from healthy donors, AD patients and isogenic controls, we reveal that the APOE4 genotype has a profound impact on several aspects of microglial functionality, whereas PSEN1ΔE9 and APPswe mutations trigger minor alterations. The APOE4 genotype impairs phagocytosis, migration, and metabolic activity of iMGLs but exacerbates their cytokine secretion. This indicates that APOE4 iMGLs are fundamentally unable to mount normal microglial functionality in AD. APOE4 genotype has a profound impact on several functions of microglia-like cells Inflammatory responses are aggravated in cells with APOE4 genotype Metabolism, phagocytosis, and migration are decreased in APOE4 microglia-like cells Familial mutations APPswe and PSEN1ΔE9 have only minor effects on functionality
Collapse
Affiliation(s)
- Henna Konttinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Mauricio E Castro Cabral-da-Silva
- School of Chemistry and Molecular Bioscience, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Sohvi Ohtonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Sara Wojciechowski
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Anastasia Shakirzyanova
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Simone Caligola
- Department of Computer Science, University of Verona, Verona 37134, Italy
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Verona 37134, Italy
| | - Yevheniia Ishchenko
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Damián Hernández
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia; Department of Surgery, the University of Melbourne, Melbourne, VIC 3002, Australia; Department of Anatomy and Neuroscience, the University of Melbourne, Melbourne, VIC 3002, Australia
| | | | - Shaila Eamen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Mireia Gómez Budia
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Ilkka Fagerlund
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Flavia Scoyni
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Paula Korhonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Nadine Huber
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Annakaisa Haapasalo
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Alex W Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia; Department of Surgery, the University of Melbourne, Melbourne, VIC 3002, Australia; School of Medicine, Menzies Institute for Medical Research, University of Tasmania, Hobart, VIC 7005, Australia
| | - James Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Grady C Smith
- School of Chemistry and Molecular Bioscience, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Minna Oksanen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Caroline Graff
- Department NVS, Division of Neurogeriatrics, Karolinka Institutet, Stockholm 17176, Sweden; Theme Aging, Genetics Unit, Karolinska University Hospital-Solna, Stockholm 17176, Sweden
| | - Katja M Kanninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Sarka Lehtonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Nicholas Propson
- Department of Molecular and Cell Biology and the Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael P Schwartz
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alice Pébay
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia; Department of Surgery, the University of Melbourne, Melbourne, VIC 3002, Australia; Department of Anatomy and Neuroscience, the University of Melbourne, Melbourne, VIC 3002, Australia
| | - Jari Koistinaho
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland; Neuroscience Center, University of Helsinki, Helsinki 00014, Finland
| | - Lezanne Ooi
- School of Chemistry and Molecular Bioscience, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Tarja Malm
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland.
| |
Collapse
|
32
|
Morin-Brureau M, Milior G, Royer J, Chali F, Le Duigou C, Savary E, Blugeon C, Jourdren L, Akbar D, Dupont S, Navarro V, Baulac M, Bielle F, Mathon B, Clemenceau S, Miles R. Microglial phenotypes in the human epileptic temporal lobe. Brain 2019; 141:3343-3360. [PMID: 30462183 DOI: 10.1093/brain/awy276] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
Microglia, the immune cells of the brain, are highly plastic and possess multiple functional phenotypes. Differences in phenotype in different regions and different states of epileptic human brain have been little studied. Here we use transcriptomics, anatomy, imaging of living cells and ELISA measurements of cytokine release to examine microglia from patients with temporal lobe epilepsies. Two distinct microglial phenotypes were explored. First we asked how microglial phenotype differs between regions of high and low neuronal loss in the same brain. Second, we asked how microglial phenotype is changed by a recent seizure. In sclerotic areas with few neurons, microglia have an amoeboid rather than ramified shape, express activation markers and respond faster to purinergic stimuli. The repairing interleukin, IL-10, regulates the basal phenotype of microglia in the CA1 and CA3 regions with neuronal loss and gliosis. To understand changes in phenotype induced by a seizure, we estimated the delay from the last seizure until tissue collection from changes in reads for immediate early gene transcripts. Pseudotime ordering of these data was validated by comparison with results from kainate-treated mice. It revealed a local and transient phenotype in which microglia secrete the human interleukin CXCL8, IL-1B and other cytokines. This secretory response is mediated in part via the NRLP3 inflammasome.
Collapse
Affiliation(s)
- Mélanie Morin-Brureau
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris 6 UMR S1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Giampaolo Milior
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris 6 UMR S1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Juliette Royer
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris 6 UMR S1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Farah Chali
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris 6 UMR S1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Caroline Le Duigou
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris 6 UMR S1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Etienne Savary
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris 6 UMR S1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Corinne Blugeon
- École normale supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'École normale supérieure (IBENS), Plateforme Génomique, Paris, France
| | - Laurent Jourdren
- École normale supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'École normale supérieure (IBENS), Plateforme Génomique, Paris, France
| | - David Akbar
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris 6 UMR S1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Sophie Dupont
- AP-HP, GH Pitie-Salpêtrière-Charles Foix, Epilepsy Unit (VN, MB, SD), Neuropathologie (FB), Neurochirurgie (BM, SC), Paris, France
| | - Vincent Navarro
- AP-HP, GH Pitie-Salpêtrière-Charles Foix, Epilepsy Unit (VN, MB, SD), Neuropathologie (FB), Neurochirurgie (BM, SC), Paris, France
| | - Michel Baulac
- AP-HP, GH Pitie-Salpêtrière-Charles Foix, Epilepsy Unit (VN, MB, SD), Neuropathologie (FB), Neurochirurgie (BM, SC), Paris, France
| | - Franck Bielle
- AP-HP, GH Pitie-Salpêtrière-Charles Foix, Epilepsy Unit (VN, MB, SD), Neuropathologie (FB), Neurochirurgie (BM, SC), Paris, France
| | - Bertrand Mathon
- AP-HP, GH Pitie-Salpêtrière-Charles Foix, Epilepsy Unit (VN, MB, SD), Neuropathologie (FB), Neurochirurgie (BM, SC), Paris, France
| | - Stéphane Clemenceau
- AP-HP, GH Pitie-Salpêtrière-Charles Foix, Epilepsy Unit (VN, MB, SD), Neuropathologie (FB), Neurochirurgie (BM, SC), Paris, France
| | - Richard Miles
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris 6 UMR S1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| |
Collapse
|
33
|
Franco-Bocanegra DK, McAuley C, Nicoll JAR, Boche D. Molecular Mechanisms of Microglial Motility: Changes in Ageing and Alzheimer's Disease. Cells 2019; 8:cells8060639. [PMID: 31242692 PMCID: PMC6627151 DOI: 10.3390/cells8060639] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/25/2022] Open
Abstract
Microglia are the tissue-resident immune cells of the central nervous system, where they constitute the first line of defense against any pathogens or injury. Microglia are highly motile cells and in order to carry out their function, they constantly undergo changes in their morphology to adapt to their environment. The microglial motility and morphological versatility are the result of a complex molecular machinery, mainly composed of mechanisms of organization of the actin cytoskeleton, coupled with a “sensory” system of membrane receptors that allow the cells to perceive changes in their microenvironment and modulate their responses. Evidence points to microglia as accountable for some of the changes observed in the brain during ageing, and microglia have a role in the development of neurodegenerative diseases, such as Alzheimer’s disease. The present review describes in detail the main mechanisms driving microglial motility in physiological conditions, namely, the cytoskeletal actin dynamics, with emphasis in proteins highly expressed in microglia, and the role of chemotactic membrane proteins, such as the fractalkine and purinergic receptors. The review further delves into the changes occurring to the involved proteins and pathways specifically during ageing and in Alzheimer’s disease, analyzing how these changes might participate in the development of this disease.
Collapse
Affiliation(s)
- Diana K Franco-Bocanegra
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - Ciaran McAuley
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
- Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK.
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| |
Collapse
|
34
|
Köles L, Szepesy J, Berekméri E, Zelles T. Purinergic Signaling and Cochlear Injury-Targeting the Immune System? Int J Mol Sci 2019; 20:ijms20122979. [PMID: 31216722 PMCID: PMC6627352 DOI: 10.3390/ijms20122979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023] Open
Abstract
Hearing impairment is the most common sensory deficit, affecting more than 400 million people worldwide. Sensorineural hearing losses currently lack any specific or efficient pharmacotherapy largely due to the insufficient knowledge of the pathomechanism. Purinergic signaling plays a substantial role in cochlear (patho)physiology. P2 (ionotropic P2X and the metabotropic P2Y) as well as adenosine receptors expressed on cochlear sensory and non-sensory cells are involved mostly in protective mechanisms of the cochlea. They are implicated in the sensitivity adjustment of the receptor cells by a K+ shunt and can attenuate the cochlear amplification by modifying cochlear micromechanics. Cochlear blood flow is also regulated by purines. Here, we propose to comprehend this field with the purine-immune interactions in the cochlea. The role of harmful immune mechanisms in sensorineural hearing losses has been emerging in the horizon of cochlear pathologies. In addition to decreasing hearing sensitivity and increasing cochlear blood supply, influencing the immune system can be the additional avenue for pharmacological targeting of purinergic signaling in the cochlea. Elucidating this complexity of purinergic effects on cochlear functions is necessary and it can result in development of new therapeutic approaches in hearing disabilities, especially in the noise-induced ones.
Collapse
Affiliation(s)
- László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
| | - Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
| | - Eszter Berekméri
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
- Department of Ecology, University of Veterinary Medicine, H-1078 Budapest, Hungary.
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary.
| |
Collapse
|
35
|
Shen W, Lee SR, Yam M, Zhu L, Zhang T, Pye V, Mathai AE, Shibagaki K, Zhang JZ, Matsugi T, Gillies MC. A Combination Therapy Targeting Endoglin and VEGF-A Prevents Subretinal Fibro-Neovascularization Caused by Induced Müller Cell Disruption. Invest Ophthalmol Vis Sci 2019; 59:6075-6088. [PMID: 30592496 DOI: 10.1167/iovs.18-25628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Subretinal fibroneovascularization is one of the most common causes of vision loss in neovascular AMD (nAMD). Anti-VEGF therapy effectively inhibits vascular leak and neovascularization but has little effect on fibrosis. This study aimed to identify a combination therapy to concurrently inhibit subretinal neovascularization and prevent fibrosis. Methods We generated transgenic mice in which induced disruption of Müller cells leads to subretinal neovascularization, which is reliably accompanied by subretinal fibrosis. We conducted Western blots and immunohistochemistry to study changes in transforming growth factor-β (TGFβ) signaling including endoglin, a coreceptor essential for TGFβ signaling, and then tested the effects of monthly intravitreal injection of anti-VEGF-A and anti-endoglin, either alone or in combination, on the development of subretinal fibroneovascularization in our transgenic mice. Results Müller cell disruption increased expression of TGFβ1, TGFβ type 1 receptor, and phosphorylated-Smad3. Endoglin was strongly expressed in subretinal fibroneovascular tissue. Fluorescein angiography and measurements of retinal vascular permeability indicated that intravitreal anti-VEGF-A in combination with anti-endoglin treatment more efficiently inhibited vascular leak compared with either monotherapy. Immunostaining of retinal wholemounts with antibodies against glial fibrillary acidic protein and ionized calcium binding adaptor molecule 1 indicated that the combination therapy also effectively prevented subretinal fibrosis and inhibited microglial activation. Luminex cytokine assays indicated that intravitreal anti-VEGF-A and anti-endoglin treatment, either alone or in combination, reduced the production of IL33 and macrophage inflammatory protein-3α. Conclusions Our findings offer a potentially novel combination approach to concurrently managing subretinal neovascularization and fibrosis in nAMD.
Collapse
Affiliation(s)
- Weiyong Shen
- The University of Sydney, Save Sight Institute Discipline of Ophthalmology, Sydney Medical School, Sydney, New South Wales, Australia
| | - So-Ra Lee
- The University of Sydney, Save Sight Institute Discipline of Ophthalmology, Sydney Medical School, Sydney, New South Wales, Australia
| | - Michelle Yam
- The University of Sydney, Save Sight Institute Discipline of Ophthalmology, Sydney Medical School, Sydney, New South Wales, Australia
| | - Ling Zhu
- The University of Sydney, Save Sight Institute Discipline of Ophthalmology, Sydney Medical School, Sydney, New South Wales, Australia
| | - Ting Zhang
- The University of Sydney, Save Sight Institute Discipline of Ophthalmology, Sydney Medical School, Sydney, New South Wales, Australia
| | - Victoria Pye
- The University of Sydney, Save Sight Institute Discipline of Ophthalmology, Sydney Medical School, Sydney, New South Wales, Australia
| | - Ashish Easow Mathai
- The University of Sydney, Save Sight Institute Discipline of Ophthalmology, Sydney Medical School, Sydney, New South Wales, Australia
| | - Keiichi Shibagaki
- Department of Non-Clinical Research, Global R&D, Santen Pharmaceutical Co. Ltd., Nara, Japan
| | - Jin-Zhong Zhang
- Department of Non-Clinical Research, Global R&D, Santen Pharmaceutical Co. Ltd., Nara, Japan
| | - Takeshi Matsugi
- Department of Non-Clinical Research, Global R&D, Santen Pharmaceutical Co. Ltd., Nara, Japan
| | - Mark C Gillies
- The University of Sydney, Save Sight Institute Discipline of Ophthalmology, Sydney Medical School, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Context-Specific Switch from Anti- to Pro-epileptogenic Function of the P2Y 1 Receptor in Experimental Epilepsy. J Neurosci 2019; 39:5377-5392. [PMID: 31048325 DOI: 10.1523/jneurosci.0089-19.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/21/2019] [Accepted: 03/23/2019] [Indexed: 12/15/2022] Open
Abstract
Extracellular ATP activates inflammatory responses to tissue injury. It is also implicated in establishing lasting network hyperexcitability in the brain by acting upon independent receptor systems. Whereas the fast-acting P2X channels have well-established roles driving neuroinflammation and increasing hyperexcitability, the slower-acting metabotropic P2Y receptors have received much less attention. Recent studies of P2Y1 receptor function in seizures and epilepsy have produced contradictory results, suggesting that the role of this receptor during seizure pathology may be highly sensitive to context. Here, by using male mice, we demonstrate that the metabotropic P2Y1 receptor mediates either proconvulsive or anticonvulsive responses, dependent on the time point of activation in relation to the induction of status epilepticus. P2Y1 deficiency or a P2Y1 antagonist (MRS2500) administered before a chemoconvulsant, exacerbates epileptiform activity, whereas a P2Y1 agonist (MRS2365) administered at this time point is anticonvulsant. When these drugs are administered after the onset of status epilepticus, however, their effect on seizure severity is reversed, with the antagonist now anticonvulsant and the agonist proconvulsant. This result was consistent across two different mouse models of status epilepticus (intra-amygdala kainic acid and intraperitoneal pilocarpine). Pharmacologic P2Y1 blockade during status epilepticus reduces also associated brain damage, delays the development of epilepsy and, when applied during epilepsy, suppresses spontaneous seizures, in mice. Our data show a context-specific role for P2Y1 during seizure pathology and demonstrate that blocking P2Y1 after status epilepticus and during epilepsy has potent anticonvulsive effects, suggesting that P2Y1 may be a novel candidate for the treatment of drug-refractory status epilepticus and epilepsy.SIGNIFICANCE STATEMENT This is the first study to fully characterize the contribution of a metabotropic purinergic P2Y receptor during acute seizures and epilepsy. The findings suggest that targeting P2Y1 may offer a potential novel treatment strategy for drug-refractory status epilepticus and epilepsy. Our data demonstrate a context-specific role of P2Y1 activation during seizures, switching from a proconvulsive to an anticonvulsive role depending on physiopathological context. Thus, our study provides a possible explanation for seemingly conflicting results obtained between studies of different brain diseases where P2Y1 targeting has been proposed as a potential treatment strategy and highlights that the timing of pharmacological interventions is of critical importance to the understanding of how receptors contribute to the generation of seizures and the development of epilepsy.
Collapse
|
37
|
McQuade A, Blurton-Jones M. Microglia in Alzheimer's Disease: Exploring How Genetics and Phenotype Influence Risk. J Mol Biol 2019; 431:1805-1817. [PMID: 30738892 PMCID: PMC6475606 DOI: 10.1016/j.jmb.2019.01.045] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 01/25/2023]
Abstract
Research into the function of microglia has dramatically accelerated during the last few years, largely due to recent genetic findings implicating microglia in virtually every neurodegenerative disorder. In Alzheimer's disease (AD), a majority of risk loci discovered through genome-wide association studies were found in or near genes expressed most highly in microglia leading to the hypothesis that microglia play a much larger role in disease progression than previously thought. From this body of work produced in the last several years, we find that almost every function of microglia has been proposed to influence the progression of AD from altered phagocytosis and synaptic pruning to cytokine secretion and changes in trophic support. By studying key Alzheimer's risk genes such as TREM2, CD33, ABCA7, and MS4A6A, we will be able to distinguish true disease-modulatory pathways from the full range of microglial-related functions. To successfully carry out these experiments, more advanced microglial models are needed. Microglia are quite sensitive to their local environment, suggesting the need to more fully recapitulate an in vivo environment to study this highly plastic cell type. Likely only by combining the above approaches will the field fully elucidate the molecular pathways that regulate microglia and influence neurodegeneration, in turn uncovering potential new targets for future therapeutic development.
Collapse
Affiliation(s)
- Amanda McQuade
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
38
|
Smolders SMT, Kessels S, Vangansewinkel T, Rigo JM, Legendre P, Brône B. Microglia: Brain cells on the move. Prog Neurobiol 2019; 178:101612. [PMID: 30954517 DOI: 10.1016/j.pneurobio.2019.04.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/13/2019] [Accepted: 04/01/2019] [Indexed: 02/08/2023]
Abstract
In the last decade, tremendous progress has been made in understanding the biology of microglia - i.e. the fascinating immigrated resident immune cell population of the central nervous system (CNS). Recent literature reviews have largely dealt with the plentiful functions of microglia in CNS homeostasis, development and pathology, and the influences of sex and the microbiome. In this review, the intriguing aspect of their physical plasticity during CNS development will get specific attention. Microglia move around (mobility) and reshape their processes (motility). Microglial migration into and inside the CNS is most prominent throughout development and consequently most of the data described in this review concern mobility and motility in the changing environment of the developing brain. Here, we first define microglia based on their highly specialized age- and region-dependent gene expression signature and associated functional heterogeneity. Next, we describe their origin, the migration route of immature microglial cells towards the CNS, the mechanisms underlying their invasion of the CNS, and their spatiotemporal localization and surveying behaviour inside the developing CNS. These processes are dependent on microglial mobility and motility which are determined by the microenvironment of the CNS. Therefore, we further zoom in on the changing environment during CNS development. We elaborate on the extracellular matrix and the respective integrin receptors on microglia and we discuss the purinergic and molecular signalling in microglial mobility. In the last section, we discuss the physiological and pathological functions of microglia in which mobility and motility are involved to stress the importance of microglial 'movement'.
Collapse
Affiliation(s)
- Sophie Marie-Thérèse Smolders
- UHasselt, BIOMED, Diepenbeek, Belgium; INSERM, UMR-S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France; Sorbonne Universités, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | | | | | | | - Pascal Legendre
- INSERM, UMR-S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France; Sorbonne Universités, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | | |
Collapse
|
39
|
Huang L, Otrokocsi L, Sperlágh B. Role of P2 receptors in normal brain development and in neurodevelopmental psychiatric disorders. Brain Res Bull 2019; 151:55-64. [PMID: 30721770 DOI: 10.1016/j.brainresbull.2019.01.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 12/19/2022]
Abstract
The purinergic signaling system, including P2 receptors, plays an important role in various central nervous system (CNS) disorders. Over the last few decades, a substantial amount of accumulated data suggest that most P2 receptor subtypes (P2X1, 2, 3, 4, 6, and 7, and P2Y1, 2, 6, 12, and 13) regulate neuronal/neuroglial developmental processes, such as proliferation, differentiation, migration of neuronal precursors, and neurite outgrowth. However, only a few of these subtypes (P2X2, P2X3, P2X4, P2X7, P2Y1, and P2Y2) have been investigated in the context of neurodevelopmental psychiatric disorders. The activation of these potential target receptors and their underlying mechanisms mainly influence the process of neuroinflammation. In particular, P2 receptor-mediated inflammatory cytokine release has been indicated to contribute to the complex mechanisms of a variety of CNS disorders. The released inflammatory cytokines could be utilized as biomarkers for neurodevelopmental and psychiatric disorders to improve the early diagnosis intervention, and prognosis. The population changes in gut microbiota after birth are closely linked to neurodevelopmental/neuropsychiatric disorders in later life; thus, the dynamic expression and function of P2 receptors on gut epithelial cells during disease processes indicate a novel avenue for the evaluation of disease progression and for the discovery of related therapeutic compounds.
Collapse
Affiliation(s)
- Lumei Huang
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - Lilla Otrokocsi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
40
|
Cohen EM, Mohammed S, Kavurma M, Nedoboy PE, Cartland S, Farnham MM, Pilowsky PM. Microglia in the RVLM of SHR have reduced P2Y12R and CX3CR1 expression, shorter processes, and lower cell density. Auton Neurosci 2019; 216:9-16. [DOI: 10.1016/j.autneu.2018.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/26/2018] [Accepted: 12/07/2018] [Indexed: 01/06/2023]
|
41
|
Calovi S, Mut-Arbona P, Sperlágh B. Microglia and the Purinergic Signaling System. Neuroscience 2018; 405:137-147. [PMID: 30582977 DOI: 10.1016/j.neuroscience.2018.12.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023]
Abstract
Microglia are the main resident immune-competent cell type of the central nervous system (CNS); these cells are highly sensitive to subtle changes in the chemical environment of the brain. Microglia are activated during diverse conditions, such as apoptosis, trauma, inflammation, and infection. The specific activities of microglia result from the confluence of environmental stimuli and the cellular state. It is likely that several signaling systems with different biological functions operate in competition and/or synergy, thus regulating similar microglial behaviors. The purinergic system is one of the fundamental signaling systems that establish microglial behavior in a wide spectrum of conditions. Adenosine tri-phosphate (ATP) belongs to the purinergic signaling system, which includes P2X, P2Y, and P1 receptors, as well as other proteins participating in ATP secretion and extracellular ATP degradation, and molecules that recognize purines as a ligand. In this review, we focus on the latest pre-clinical and basic purinergic system and microglial research, with particular attention to data collected in vivo and ex vivo. This chapter is divided into sections related to microglial ATP release, ATP degradation, and ATP-related actions mediated by P2X and P2Y receptor activation.
Collapse
Affiliation(s)
- Stefano Calovi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - Paula Mut-Arbona
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
42
|
Quintas C, Vale N, Gonçalves J, Queiroz G. Microglia P2Y 13 Receptors Prevent Astrocyte Proliferation Mediated by P2Y 1 Receptors. Front Pharmacol 2018; 9:418. [PMID: 29773988 PMCID: PMC5943495 DOI: 10.3389/fphar.2018.00418] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/10/2018] [Indexed: 11/20/2022] Open
Abstract
Cerebral inflammation is a common feature of several neurodegenerative diseases that requires a fine interplay between astrocytes and microglia to acquire appropriate phenotypes for an efficient response to neuronal damage. During brain inflammation, ATP is massively released into the extracellular medium and converted into ADP. Both nucleotides acting on P2 receptors, modulate astrogliosis through mechanisms involving microglia-astrocytes communication. In previous studies, primary cultures of astrocytes and co-cultures of astrocytes and microglia were used to investigate the influence of microglia on astroglial proliferation induced by ADPβS, a stable ADP analog. In astrocyte cultures, ADPβS increased cell proliferation through activation of P2Y1 and P2Y12 receptors, an effect abolished in co-cultures (of astrocytes with ∼12.5% microglia). The possibility that the loss of the ADPβS-mediated effect could have been caused by a microglia-induced degradation of ADPβS or by a preferential microglial localization of P2Y1 or P2Y12 receptors was excluded. Since ADPβS also activates P2Y13 receptors, the contribution of microglial P2Y13 receptors to prevent the proliferative effect of ADPβS in co-cultures was investigated. The results obtained indicate that P2Y13 receptors are low expressed in astrocytes and mainly expressed in microglia. Furthermore, in co-cultures, ADPβS induced astroglial proliferation in the presence of the selective P2Y13 antagonist MRS 2211 (3 μM) and of the selective P2Y12 antagonist AR-C66096 (0.1 μM), suggesting that activation of microglial P2Y12 and P2Y13 receptors may induce the release of messengers that inhibit astroglial proliferation mediated by P2Y1,12 receptors. In this microglia-astrocyte paracrine communication, P2Y12 receptors exert opposite effects in astroglial proliferation as a result of its cellular localization: cooperating in astrocytes with P2Y1 receptors to directly stimulate proliferation and in microglia with P2Y13 receptors to prevent proliferation. IL-1β also attenuated the proliferative effect of ADPβS in astrocyte cultures. However, in co-cultures, the anti-IL-1β antibody was unable to recover the ADPβS-proliferative effect, an effect that was achieved by the anti-IL-1α and anti-TNF-α antibodies. It is concluded that microglia control the P2Y1,12 receptor-mediated astroglial proliferation through a P2Y12,13 receptor-mediated mechanism alternative to the IL-1β suppressive pathway that may involve the contribution of the cytokines IL-1α and TNF-α.
Collapse
Affiliation(s)
- Clara Quintas
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,REQUIMTE/LAQV, University of Porto, Porto, Portugal
| | - Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,REQUIMTE/UCIBIO, University of Porto, Porto, Portugal
| | - Jorge Gonçalves
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,MedInUP, University of Porto, Porto, Portugal
| | - Glória Queiroz
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,MedInUP, University of Porto, Porto, Portugal
| |
Collapse
|
43
|
Jiang P, Xing F, Guo B, Yang J, Li Z, Wei W, Hu F, Lee I, Zhang X, Pan L, Xu J. Nucleotide transmitters ATP and ADP mediate intercellular calcium wave communication via P2Y12/13 receptors among BV-2 microglia. PLoS One 2017; 12:e0183114. [PMID: 28800362 PMCID: PMC5553643 DOI: 10.1371/journal.pone.0183114] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/28/2017] [Indexed: 12/24/2022] Open
Abstract
Nerve injury is accompanied by a liberation of diverse nucleotides, some of which act as ‘find/eat-me’ signals in mediating neuron-glial interplay. Intercellular Ca2+ wave (ICW) communication is the main approach by which glial cells interact and coordinate with each other to execute immune defense. However, the detailed mechanisms on how these nucleotides participate in ICW communication remain largely unclear. In the present work, we employed a mechanical stimulus to an individual BV-2 microglia to simulate localized injury. Remarkable ICW propagation was observed no matter whether calcium was in the environment or not. Apyrase (ATP/ADP-hydrolyzing enzyme), suramin (broad-spectrum P2 receptor antagonist), 2-APB (IP3 receptor blocker) and thapsigargin (endoplasmic reticulum calcium pump inhibitor) potently inhibited these ICWs, respectively, indicating the dependence of nucleotide signals and P2Y receptors. Then, we detected the involvement of five naturally occurring nucleotides (ATP, ADP, UTP, UDP and UDP-glucose) by desensitizing receptors. Results showed that desensitization with ATP and ADP could block ICW propagation in a dose-dependent manner, whereas other nucleotides had little effect. Meanwhile, the expression of P2Y receptors in BV-2 microglia was identified and their contributions were analyzed, from which we suggested P2Y12/13 receptors activation mostly contributed to ICWs. Besides, we estimated that extracellular ATP and ADP concentration sensed by BV-2 microglia was about 0.3 μM during ICWs by analyzing calcium dynamic characteristics. Taken together, these results demonstrated that the nucleotides ATP and ADP were predominant signal transmitters in mechanical stimulation-induced ICW communication through acting on P2Y12/13 receptors in BV-2 microglia.
Collapse
Affiliation(s)
- Pengchong Jiang
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| | - Fulin Xing
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| | - Bu Guo
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| | - Jianyu Yang
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| | - Zheming Li
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| | - Wei Wei
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| | - Fen Hu
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| | - Imshik Lee
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| | - Xinzheng Zhang
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China
| | - Leiting Pan
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
- The 2011 Project Collaborative Innovation Center for Biological Therapy, Nankai University, Tianjin, China
- * E-mail:
| | - Jingjun Xu
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
44
|
Abud EM, Ramirez RN, Martinez ES, Healy LM, Nguyen CHH, Newman SA, Yeromin AV, Scarfone VM, Marsh SE, Fimbres C, Caraway CA, Fote GM, Madany AM, Agrawal A, Kayed R, Gylys KH, Cahalan MD, Cummings BJ, Antel JP, Mortazavi A, Carson MJ, Poon WW, Blurton-Jones M. iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases. Neuron 2017; 94:278-293.e9. [PMID: 28426964 DOI: 10.1016/j.neuron.2017.03.042] [Citation(s) in RCA: 673] [Impact Index Per Article: 96.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/16/2017] [Accepted: 03/28/2017] [Indexed: 12/15/2022]
Abstract
Microglia play critical roles in brain development, homeostasis, and neurological disorders. Here, we report that human microglial-like cells (iMGLs) can be differentiated from iPSCs to study their function in neurological diseases, like Alzheimer's disease (AD). We find that iMGLs develop in vitro similarly to microglia in vivo, and whole-transcriptome analysis demonstrates that they are highly similar to cultured adult and fetal human microglia. Functional assessment of iMGLs reveals that they secrete cytokines in response to inflammatory stimuli, migrate and undergo calcium transients, and robustly phagocytose CNS substrates. iMGLs were used to examine the effects of Aβ fibrils and brain-derived tau oligomers on AD-related gene expression and to interrogate mechanisms involved in synaptic pruning. Furthermore, iMGLs transplanted into transgenic mice and human brain organoids resemble microglia in vivo. Together, these findings demonstrate that iMGLs can be used to study microglial function, providing important new insight into human neurological disease.
Collapse
Affiliation(s)
- Edsel M Abud
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Ricardo N Ramirez
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Eric S Martinez
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Luke M Healy
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Cecilia H H Nguyen
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Sean A Newman
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Andriy V Yeromin
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
| | - Vanessa M Scarfone
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Samuel E Marsh
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Cristhian Fimbres
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Chad A Caraway
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Gianna M Fote
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Abdullah M Madany
- Division of Biomedical Sciences, Center for Glia-Neuronal Interactions, University of California, Riverside, Riverside, CA 92521, USA
| | - Anshu Agrawal
- Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Rakez Kayed
- Department of Neurology, George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Karen H Gylys
- UCLA School of Nursing, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael D Cahalan
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
| | - Brian J Cummings
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA; Anatomy and Neurobiology, University of California Irvine, Irvine, CA 92697, USA
| | - Jack P Antel
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Monica J Carson
- Division of Biomedical Sciences, Center for Glia-Neuronal Interactions, University of California, Riverside, Riverside, CA 92521, USA
| | - Wayne W Poon
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA.
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
45
|
Martín-Estebané M, Navascués J, Sierra-Martín A, Martín-Guerrero SM, Cuadros MA, Carrasco MC, Marín-Teva JL. Onset of microglial entry into developing quail retina coincides with increased expression of active caspase-3 and is mediated by extracellular ATP and UDP. PLoS One 2017; 12:e0182450. [PMID: 28763502 PMCID: PMC5538646 DOI: 10.1371/journal.pone.0182450] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/18/2017] [Indexed: 12/31/2022] Open
Abstract
Microglial cell precursors located in the area of the base of the pecten and the optic nerve head (BP/ONH) start to enter the retina of quail embryos at the 7th day of incubation (E7), subsequently colonizing the entire retina by central-to-peripheral tangential migration, as previously shown by our group. The present study demonstrates a precise chronological coincidence of the onset of microglial cell entry into the retina with a striking increase in death of retinal cells, as revealed by their active caspase-3 expression and TUNEL staining, in regions dorsal to the BP/ONH area, suggesting that dying retinal cells would contribute to the microglial cell inflow into the retina. However, the molecular mechanisms involved in this inflow are currently unclear. Extracellular nucleotides, such as ATP and UDP, have previously been shown to favor migration of microglia towards brain injuries because they are released by apoptotic cells and stimulate both chemotaxis and chemokinesis in microglial cells via signaling through purinergic receptors. Hence, we tested here the hypothesis that ATP and UDP play a role in the entry and migration of microglial precursors into the developing retina. For this purpose, we used an experimental model system based on organotypic cultures of E6.5 quail embryo retina explants, which mimics the entry and migration of microglial precursors in the in situ developing retina. Inhibition of purinergic signaling by treating retina explants with either apyrase, a nucleotide-hydrolyzing enzyme, or suramin, a broad spectrum antagonist of purinergic receptors, significantly prevents the entry of microglial cells into the retina. In addition, treatment of retina explants with either exogenous ATP or UDP results in significantly increased numbers of microglial cells entering the retina. In light of these findings, we conclude that purinergic signaling by extracellular ATP and UDP is necessary for the entry and migration of microglial cells into the embryonic retina by inducing chemokinesis in these cells.
Collapse
Affiliation(s)
- María Martín-Estebané
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Julio Navascués
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Ana Sierra-Martín
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | - Miguel A. Cuadros
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - María-Carmen Carrasco
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - José L. Marín-Teva
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- * E-mail:
| |
Collapse
|
46
|
Wang Q, Diao Q, Dai P, Chu Y, Wu Y, Zhou T, Cai Q. Exploring poisonous mechanism of honeybee, Apis mellifera ligustica Spinola, caused by pyrethroids. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 135:1-8. [PMID: 28043325 DOI: 10.1016/j.pestbp.2016.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
As the important intracellular secondary messengers, calcium channel is the target of many neurotoxic pesticides as calcium homeostasis in the neuroplasm play important role in neuronal functions and behavior in insects. This study investigated the effect of deltamethrin (DM) on calcium channel in the brain nerve cells of adult workers of Apis mellifera ligustica Spinola that were cultured in vitro. The results showed that the intracellular calcium concentration was significantly elevated even with a very low concentration of the DM (3.125×10-2mg/L). Further testing revealed that T-type voltage-gated calcium channels (VGCCs), except for sodium channels, was one of the target of DM on toxicity of Apis mellifera, while DM has no significant effect on the L-type VGCCs, N-methyl-d-aspartate receptor-gated calcium channels and calcium store. These results suggesting that the DM may act on T-type VGCCs in brain cells of honeybees and result in behavioral abnormalities including swarming, feeding, learning, and acquisition.
Collapse
Affiliation(s)
- Qiang Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, PR China; Institute of Apicultural Research, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China.
| | - Qingyun Diao
- Institute of Apicultural Research, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China.
| | - Pingli Dai
- Institute of Apicultural Research, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China.
| | - Yanna Chu
- Institute of Apicultural Research, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China.
| | - Yanyan Wu
- Institute of Apicultural Research, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China.
| | - Ting Zhou
- Institute of Apicultural Research, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China.
| | - Qingnian Cai
- College of Plant Protection, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
47
|
Barańska J, Czajkowski R, Pomorski P. P2Y 1 Receptors - Properties and Functional Activities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 28639247 DOI: 10.1007/5584_2017_57] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this chapter we try to show a comprehensive image of current knowledge of structure, activity and physiological role of the P2Y1 purinergic receptor. The structure, distribution and changes in the expression of this receptor are summarized, as well as the mechanism of its signaling activity by the intracellular calcium mobilization. We try to show the connection between the components of its G protein activation and cellular or physiological effects, starting from changes in protein phosphorylation patterns and ending with such remote effects as receptor-mediated apoptosis. The special emphasis is put on the role of the P2Y1 receptor in cancer cells and neuronal plasticity. We concentrate on the P2Y1 receptor, it is though impossible to completely abstract from other aspects of nucleotide signaling and cross-talk with other nucleotide receptors is here discussed. Especially, the balance between P2Y1 and P2Y12 receptors, sharing the same ligand but signaling through different pathways, is presented.
Collapse
Affiliation(s)
- Jolanta Barańska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., PL 02-093, Warsaw, Poland
| | - Rafał Czajkowski
- Laboratory of Spatial Memory, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., PL 02-093, Warsaw, Poland
| | - Paweł Pomorski
- Laboratory of Molecular Basis of Cell Motility, Department of Cell Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., PL 02-093, Warsaw, Poland.
| |
Collapse
|
48
|
Gilbert DF, Stebbing MJ, Kuenzel K, Murphy RM, Zacharewicz E, Buttgereit A, Stokes L, Adams DJ, Friedrich O. Store-Operated Ca 2+ Entry (SOCE) and Purinergic Receptor-Mediated Ca 2+ Homeostasis in Murine bv2 Microglia Cells: Early Cellular Responses to ATP-Mediated Microglia Activation. Front Mol Neurosci 2016; 9:111. [PMID: 27840602 PMCID: PMC5083710 DOI: 10.3389/fnmol.2016.00111] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/14/2016] [Indexed: 12/31/2022] Open
Abstract
Microglia activation is a neuroinflammatory response to parenchymal damage with release of intracellular metabolites, e.g., purines, and signaling molecules from damaged cells. Extracellular purines can elicit Ca2+-mediated microglia activation involving P2X/P2Y receptors with metabotropic (P2Y) and ionotropic (P2X) cell signaling in target cells. Such microglia activation results in increased phagocytic activity, activation of their inflammasome and release of cytokines to sustain neuroinflammatory (so-called M1/M2 polarization). ATP-induced activation of ionotropic P2X4 and P2X7 receptors differentially induces receptor-operated Ca2+ entry (ROCE). Although store-operated Ca2+ entry (SOCE) was identified to modulate ROCE in primary microglia, its existence and role in one of the most common murine microglia cell line, BV2, is unknown. To dissect SOCE from ROCE in BV2 cells, we applied high-resolution multiphoton Ca2+ imaging. After depleting internal Ca2+ stores, SOCE was clearly detectable. High ATP concentrations (1 mM) elicited sustained increases in intracellular [Ca2+]i whereas lower concentrations (≤100 μM) also induced Ca2+ oscillations. These differential responses were assigned to P2X7 and P2X4 activation, respectively. Pharmacologically inhibiting P2Y and P2X responses did not affect SOCE, and in fact, P2Y-responses were barely detectable in BV2 cells. STIM1S content was significantly upregulated by 1 mM ATP. As P2X-mediated Ca2+ oscillations were rare events in single cells, we implemented a high-content screening approach that allows to record Ca2+ signal patterns from a large number of individual cells at lower optical resolution. Using automated classifier analysis, several drugs (minocycline, U73122, U73343, wortmannin, LY294002, AZ10606120) were tested on their profile to act on Ca2+ oscillations (P2X4) and sustained [Ca2+]i increases. We demonstrate specific drug effects on purinergic Ca2+ pathways and provide new pharmacological insights into Ca2+ oscillations in BV2 cells. For example, minocycline inhibits both P2X7- and P2X4-mediated Ca2+-responses, and this may explain its anti-inflammatory action in neuroinflammatory disease. As a technical result, our novel automated bio-screening approach provides a biomedical engineering platform to allow high-content drug library screens to study neuro-inflammation in vitro.
Collapse
Affiliation(s)
- Daniel F Gilbert
- Department of Chemical and Biological Engineering, Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany; Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany
| | - Martin J Stebbing
- Health Innovations Research Institute, Royal Melbourne Institute of Technology University, Melbourne VIC, Australia
| | - Katharina Kuenzel
- Department of Chemical and Biological Engineering, Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany; Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne VIC, Australia
| | - Evelyn Zacharewicz
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne VIC, Australia
| | - Andreas Buttgereit
- Department of Chemical and Biological Engineering, Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen, Germany
| | - Leanne Stokes
- Health Innovations Research Institute, Royal Melbourne Institute of Technology University, Melbourne VIC, Australia
| | - David J Adams
- Health Innovations Research Institute, Royal Melbourne Institute of Technology University, Melbourne VIC, Australia
| | - Oliver Friedrich
- Department of Chemical and Biological Engineering, Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany; Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany; Health Innovations Research Institute, Royal Melbourne Institute of Technology University, MelbourneVIC, Australia
| |
Collapse
|
49
|
Zhang Z, Bassam B, Thomas AG, Williams M, Liu J, Nance E, Rojas C, Slusher BS, Kannan S. Maternal inflammation leads to impaired glutamate homeostasis and up-regulation of glutamate carboxypeptidase II in activated microglia in the fetal/newborn rabbit brain. Neurobiol Dis 2016; 94:116-28. [PMID: 27326668 PMCID: PMC5394739 DOI: 10.1016/j.nbd.2016.06.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 06/05/2016] [Accepted: 06/16/2016] [Indexed: 12/12/2022] Open
Abstract
Astrocyte dysfunction and excessive activation of glutamatergic systems have been implicated in a number of neurologic disorders, including periventricular leukomalacia (PVL) and cerebral palsy (CP). However, the role of chorioamnionitis on glutamate homeostasis in the fetal and neonatal brains is not clearly understood. We have previously shown that intrauterine endotoxin administration results in intense microglial 'activation' and increased pro-inflammatory cytokines in the periventricular region (PVR) of the neonatal rabbit brain. In this study, we assessed the effect of maternal inflammation on key components of the glutamate pathway and its relationship to astrocyte and microglial activation in the fetal and neonatal New Zealand white rabbit brain. We found that intrauterine endotoxin exposure at gestational day 28 (G28) induced acute and prolonged glutamate elevation in the PVR of fetal (G29, 1day post-injury) and postnatal day 1 (PND1, 3days post-injury) brains along with prominent morphological changes in the astrocytes (soma hypertrophy and retracted processes) in the white matter tracts. There was a significant increase in glutaminase and N-Methyl-d-Aspartate receptor (NMDAR) NR2 subunit expression along with decreased glial L-glutamate transporter 1 (GLT-1) in the PVR at G29, that would promote acute dysregulation of glutamate homeostasis. This was accompanied with significantly decreased TGF-β1 at PND1 in CP kits indicating ongoing neuroinflammation. We also show for the first time that glutamate carboxypeptidase II (GCPII) was significantly increased in the activated microglia at the periventricular white matter area in both G29 and PND1 CP kits. This was confirmed by in vitro studies demonstrating that LPS activated primary microglia markedly upregulate GCPII enzymatic activity. These results suggest that maternal intrauterine endotoxin exposure results in early onset and long-lasting dysregulation of glutamate homeostasis, which may be mediated by impaired astrocyte function and GCPII upregulation in activated microglia.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Bassam Bassam
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Ajit G Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Monica Williams
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Jinhuan Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Elizabeth Nance
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Camilo Rojas
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Barbara S Slusher
- Neurology, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA; Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA.
| |
Collapse
|
50
|
Zhang F, Nance E, Alnasser Y, Kannan R, Kannan S. Microglial migration and interactions with dendrimer nanoparticles are altered in the presence of neuroinflammation. J Neuroinflammation 2016; 13:65. [PMID: 27004516 PMCID: PMC4802843 DOI: 10.1186/s12974-016-0529-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/13/2016] [Indexed: 12/11/2022] Open
Abstract
Background Microglial cells have been implicated in neuroinflammation-mediated injury in the brain, including neurodevelopmental disorders such as cerebral palsy (CP) and autism. Pro-inflammatory activation of microglial cells results in the impairment of their neuroprotective functions, leading to an exaggerated, ongoing immune dysregulation that can persist long after the initial insult. We have previously shown that dendrimer-mediated delivery of an anti-inflammatory agent can attenuate inflammation in a rabbit model of maternal inflammation-induced CP and significantly improve the motor phenotype, due to the ability of the dendrimer to selectively localize in activated microglia. Methods To elucidate the interactions between dendrimers and microglia, we created an organotypic whole-hemisphere brain slice culture model from newborn rabbits with and without exposure to inflammation in utero. We then used this model to analyze the dynamics of microglial migration and their interactions with dendrimers in the presence of neuroinflammation. Results Microglial cells in animals with CP had an amoeboid morphology and impaired cell migration, demonstrated by decreased migration distance and velocity when compared to cells in healthy, age-matched controls. However, this decreased migration was associated with a greater, more rapid dendrimer uptake compared to microglial cells from healthy controls. Conclusions This study demonstrates that maternal intrauterine inflammation is associated with impaired microglial function and movement in the newborn brain. This microglial impairment may play a role in the development of ongoing brain injury and CP in the offspring. Increased uptake of dendrimers by the “impaired” microglia can be exploited to deliver drugs specifically to these cells and modulate their functions. Host tissue and target cell characteristics are important aspects to be considered in the design and evaluation of targeted dendrimer-based nanotherapeutics for improved and sustained efficacy. This ex vivo model also provides a rapid screening tool for evaluation of the effects of various therapies on microglial function. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0529-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fan Zhang
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Elizabeth Nance
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Present address: Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Yossef Alnasser
- Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Rangaramanujam Kannan
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Hugo Moser Research Center, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Sujatha Kannan
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA. .,Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA. .,Hugo Moser Research Center, Kennedy Krieger Institute, Baltimore, MD, 21205, USA. .,Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|