1
|
Lin K, Stiles J, Tambo W, Ajmal E, Piao Q, Powell K, Li C. Bimodal functions of calcitonin gene-related peptide in the brain. Life Sci 2024; 359:123177. [PMID: 39486618 DOI: 10.1016/j.lfs.2024.123177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
AIMS Calcitonin gene-related peptide (CGRP) is a pluripotent neuropeptide crucial for maintaining vascular homeostasis, yet its full therapeutic potential remains incompletely exploited. Within the brain, CGRP demonstrates a distinct bimodal effect, contributing to neuroprotection in ischemic conditions while inducing neuronal sensitization and inflammation in non-ischemic settings. Despite extensive research on CGRP, the absence of a definitive determinant for this observed dichotomy has limited its potential for therapeutic applications in the brain. This review examines the effects of CGRP in both physiological and pathological conditions, aiming to identify a unifying factor that could enhance its therapeutic applicability. MATERIALS AND METHODS This comprehensive literature review analyzes the molecular pathways associated with CGRP and the specific cellular responses observed in these contexts. Additionally, the review investigates the psychological implications of CGRP in relation to cerebral perfusion levels, aiming to elucidate its underlying factors. KEY FINDINGS Reviewing the literature reveals that, elevated levels of CGRP in non-ischemic conditions exert detrimental effects on brain function, while they confer protective effects in the context of ischemia. These encompass anti-oxidative, anti-inflammatory, anti-apoptotic, and angiogenic properties, along with behavioral normalization. Current findings indicate promising therapeutic avenues for CGRP beyond the acute phases of cerebral injury, extending to neurodegenerative and psychological disorders associated with cerebral hypoperfusion, as well as chronic recovery following acute cerebral injuries. SIGNIFICANCE Improved understanding of CGRP's bimodal properties, alongside advancements in CGRP delivery methodologies and brain ischemia detection technologies, paves the way for realizing its untapped potential and broad therapeutic benefits in diverse pathological conditions.
Collapse
Affiliation(s)
- Kanheng Lin
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Emory University, Atlanta, GA, USA
| | - Jacob Stiles
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; The College of William & Mary, Williamsburg, VA, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Erum Ajmal
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Division of Neurosurgery, SUNY Downstate College of Medicine, Brooklyn, NY, USA
| | - Quanyu Piao
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA; Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
2
|
Zhang J, Simoes R, Guo T, Cao YQ. Neuroimmune interactions in the development and chronification of migraine headache. Trends Neurosci 2024; 47:819-833. [PMID: 39271369 DOI: 10.1016/j.tins.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Migraine is highly prevalent and debilitating. The persistent headaches in this condition are thought to arise from the activation and sensitization of the trigeminovascular pathway. Both clinical and animal model studies have suggested that neuroimmune interactions contribute to the pathophysiology of migraine headache. In this review, we first summarize the findings from human studies implicating the dysregulation of the immune system in migraine, including genetic analyses, measurement of circulatory factors, and neuroimaging data. We next discuss recent advances from rodent studies aimed at elucidating the neuroimmune interactions that manifest at various levels of the trigeminovascular pathway and lead to the recruitment of innate and adaptive immune cells as well as immunocompetent glial cells. These cells reciprocally modulate neuronal activity via multiple pro- and anti-inflammatory mediators, thereby regulating peripheral and central sensitization. Throughout the discussions, we highlight the potential clinical and translational implications of the findings.
Collapse
Affiliation(s)
- Jintao Zhang
- Department of Anesthesiology and Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Roli Simoes
- Department of Anesthesiology and Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Tingting Guo
- Department of Anesthesiology and Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Yu-Qing Cao
- Department of Anesthesiology and Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
3
|
Goto T, Kuramoto E, Iwai H, Yamanaka A. Cytoarchitecture and intercellular interactions in the trigeminal ganglion: Associations with neuropathic pain in the orofacial region. J Oral Biosci 2024; 66:485-490. [PMID: 39032827 DOI: 10.1016/j.job.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Disorders of the trigeminal nerve, a sensory nerve of the orofacial region, often lead to complications in dental practice, including neuropathic pain, allodynia, and ectopic pain. Management of these complications requires an understanding of the cytoarchitecture of the trigeminal ganglion, where the cell bodies of the trigeminal nerve are located, and the mechanisms of cell-cell interactions. HIGHLIGHTS In the trigeminal ganglion, ganglion, satellite, Schwann, and immune cells coexist and interact. Cell-cell interactions are complex and occur through direct contact via gap junctions or through mediators such as adenosine triphosphate, nitric oxide, peptides, and cytokines. Interactions between the nervous and immune systems within the trigeminal ganglion may have neuroprotective effects during nerve injury or may exacerbate inflammation and produce chronic pain. Under pathological conditions of the trigeminal nerve, cell-cell interactions can cause allodynia and ectopic pain. Although cell-cell interactions that occur via mediators can act at some distance, they are more effective when the cells are close together. Therefore, information on the three-dimensional topography of trigeminal ganglion cells is essential for understanding the pathophysiology of ectopic pain. CONCLUSIONS A three-dimensional map of the somatotopic localization of trigeminal ganglion neurons revealed that ganglion cells innervating distant orofacial regions are often apposed to each other, interacting with and potentially contributing to ectopic pain. Elucidation of the complex network of mediators and their receptors responsible for intercellular communication within the trigeminal ganglion is essential for understanding ectopic pain.
Collapse
Affiliation(s)
- Tetsuya Goto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Eriko Kuramoto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Atsushi Yamanaka
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
4
|
Gunter C, Jiang CL, Zeimantz SO, Hegarty DM, Morgans CW, Largent-Milnes TM, Aicher SA. Activating transcription factor 3 (ATF3) and calcitonin gene-related peptide (CGRP) increase in trigeminal ganglion neurons in female rats after photorefractive keratectomy (PRK)-like corneal abrasion. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100165. [PMID: 39315304 PMCID: PMC11419808 DOI: 10.1016/j.ynpai.2024.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Photorefractive keratectomy (PRK) is a type of eye surgery that involves removal of the corneal epithelium and its associated nerves, which causes intense acute pain in most people. We used a rat model of corneal epithelium removal (corneal abrasion) to examine underlying cellular and molecular mechanisms. In this study, we used immunohistochemistry of trigeminal ganglion (TG) to assess neuronal content of CGRP and ATF3, as well as orbital tightening (OT) to assess spontaneous pain behaviors. CGRP is an important neuropeptide in pain modulation and ATF3 is often used as a nerve injury marker. We found dynamic changes in CGRP and ATF3 in TG; both increased significantly at 24 h following corneal abrasion and females had a more pronounced increase at 24 h compared to males. Interestingly, there was no sex difference in OT behaviors. Additionally, the number of cells containing either CGRP or ATF3 in each animal correlate significantly with their OT behavior at the assessed timepoint. Since CGRP increased most in females, we tested the effectiveness of Olcegepant, a CGRP antagonist, at reducing OT behaviors following corneal abrasion in female rats. Olcegepant (1 mg/kg) was given prior to and again at 24 h after abrasion but did not change OT behaviors at any time over a 1-week period. Examination of CGRP and ATF3 together in TG showed that they rarely colocalized, indicating that the cells with upregulated CGRP are distinct from those responding to epithelial nerve injury. The studies also show that underlying molecular responses may be sex specific.
Collapse
Affiliation(s)
- Clem Gunter
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Cody L. Jiang
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Shae O. Zeimantz
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Deborah M. Hegarty
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Catherine W. Morgans
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | | | - Sue A. Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
5
|
Zheng Y, Jin J, Wei C, Huang C. Association of dietary vitamin C consumption with severe headache or migraine among adults: a cross-sectional study of NHANES 1999-2004. Front Nutr 2024; 11:1412031. [PMID: 38962437 PMCID: PMC11221565 DOI: 10.3389/fnut.2024.1412031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Background An antioxidant-rich diet has been shown to protect against migraines in previous research. However, little has been discovered regarding the association between migraines and vitamin C (an essential dietary antioxidant). This study assessed the dietary vitamin C intake among adult migraineurs in the United States to determine if there is a correlation between migraine incidence and vitamin C consumption in adults. Methods This cross-sectional research encompassed adults who participated in the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2004, providing detailed information on their dietary vitamin C intake as well as their history of severe headaches or migraines. The study used weighted multivariable and logistic regression analyses to find an independent connection between vitamin C consumption and severe headache or migraine. Tests of interactions and subgroup analysis were conducted. Results Among the 13,445 individuals in the sample, 20.42% had a severe headache or migraine. In fully adjusted models, dietary vitamin C consumption was substantially linked negatively with severe headache or migraine (odds ratio [OR] = 0.94, 95% confidence interval [CI] = 0.91-0.98, p = 0.0007). Compared to quartile 1, quartile 4 had 22% fewer odds of having a severe headache or migraine (OR = 0.78, 95% CI = 0.69-0.89, p = 0.0002). Subgroup analyses showed a significant difference between vitamin C intake and severe headaches or migraines by gender (p for interaction < 0.01). Conclusion Reduced risk of severe headaches or migraines may be associated with increased consumption of vitamin C.
Collapse
Affiliation(s)
| | | | | | - Chunyuan Huang
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Reducha PV, Bömers JP, Edvinsson L, Haanes KA. The impact of the migraine treatment onabotulinumtoxinA on inflammatory and pain responses: Insights from an animal model. Headache 2024; 64:652-662. [PMID: 38700141 DOI: 10.1111/head.14726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVE Migraine, a prevalent and debilitating disease, involves complex pathophysiology possibly including inflammation and heightened pain sensitivity. The current study utilized the complete Freund's adjuvant (CFA) model of inflammation, with onabotulinumtoxinA (BoNT/A) as a treatment of interest due to its use in clinical migraine management. Using an animal model, the study sought to investigate the role of BoNT/A in modulating CFA-induced inflammation, alterations in pain sensitivity, and the regulation of calcitonin gene-related peptide (CGRP) release. Further, we aimed to assess the changes in SNAP-25 through western blot analysis to gain insights into the mechanistic action of BoNT/A. METHODS BoNT/A or control was administered subcutaneously at the periorbital region of rats 3 days before the induction of inflammation using CFA. Periorbital mechanical sensitivity was assessed post-inflammation, and alterations in CGRP release were evaluated. Changes in SNAP-25 levels were determined using western blot analysis. RESULTS Upon CFA-induced inflammation, there was a marked increase in periorbital mechanical sensitivity, with the inflammation side showing increased sensitivity compared to other periorbital areas. BoNT/A did decrease the withdrawal thresholds in the electronic von Frey test. Despite not being able to observe differences in pain thresholds or CGRP release, BoNT/A reduced baseline release under CFA inflamed conditions. Analysis of SNAP-25 levels in the trigeminal ganglion revealed both intact and cleaved forms that were notably elevated in BoNT/A-treated animals. These findings, derived from western blot analysis, suggest an effect on neurotransmitter release. CONCLUSION Our investigation highlights the role of BoNT/A in reducing baseline CGRP in the context of inflammation and its involvement in SNAP-25 cleavage. In contrast, BoNT/A did not appear to alter facial pain sensitivity induced by inflammation, suggesting that mechanisms other than baseline CGRP could be implicated in the elevated thresholds in the CFA model.
Collapse
Affiliation(s)
- Philip Victor Reducha
- Sensory Biology Unit, Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Section of Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Peter Bömers
- Sensory Biology Unit, Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Clinical Experimental Research Unit, Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Neurosurgery, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Lars Edvinsson
- Clinical Experimental Research Unit, Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Neurosurgery, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Kristian Agmund Haanes
- Sensory Biology Unit, Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Section of Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Katagiri A, Kishimoto S, Okamoto Y, Yamada M, Niwa H, Bereiter DA, Kato T. Effect of chronic intermittent hypoxia on ocular and intraoral mechanical allodynia mediated via the calcitonin gene-related peptide in a rat. Sleep 2024; 47:zsad332. [PMID: 38166171 PMCID: PMC10925949 DOI: 10.1093/sleep/zsad332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/15/2023] [Indexed: 01/04/2024] Open
Abstract
STUDY OBJECTIVES Obstructive sleep apnea, a significant hypoxic condition, may exacerbate several orofacial pain conditions. The study aims to define the involvement of calcitonin gene-related peptide (CGRP) in peripheral and central sensitization and in evoking orofacial mechanical allodynia under chronic intermittent hypoxia (CIH). METHODS Male rats were exposed to CIH. Orofacial mechanical allodynia was assessed using the eyeblink test and the two-bottle preference drinking test. The CGRP-immunoreactive neurons in the trigeminal ganglion (TG), CGRP-positive primary afferents projecting to laminae I-II of the trigeminal spinal subnucleus caudalis (Vc), and neural responses in the second-order neurons of the Vc were determined by immunohistochemistry. CGRP receptor antagonist was administrated in the TG. RESULTS CIH-induced ocular and intraoral mechanical allodynia. CGRP-immunoreactive neurons and activated satellite glial cells (SGCs) were significantly increased in the TG and the number of cFos-immunoreactive cells in laminae I-II of the Vc were significantly higher in CIH rats compared to normoxic rats. Local administration of the CGRP receptor antagonist in the TG of CIH rats attenuated orofacial mechanical allodynia; the number of CGRP-immunoreactive neurons and activated SGCs in the TG, and the density of CGRP-positive primary afferent terminals and the number of cFos-immunoreactive cells in laminae I-II of the Vc were significantly lower compared to vehicle-administrated CIH rats. CONCLUSIONS An increase in CGRP in the TG induced by CIH, as well as orofacial mechanical allodynia and central sensitization of second-order neurons in the Vc, supported the notion that CGRP plays a critical role in CIH-induced orofacial mechanical allodynia.
Collapse
Affiliation(s)
- Ayano Katagiri
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Saki Kishimoto
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yoshie Okamoto
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masaharu Yamada
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hitoshi Niwa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - David A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, MN, USA
| | - Takafumi Kato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
8
|
Antonopoulos SR, Scharnhorst M, Nalley N, Durham PL. Method for cryopreservation of trigeminal ganglion for establishing primary cultures of neurons and glia. J Neurosci Methods 2024; 402:110034. [PMID: 38072069 DOI: 10.1016/j.jneumeth.2023.110034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Primary neuronal cultures are used to elucidate cellular and molecular mechanisms involved in disease pathology and modulation by pharmaceuticals and nutraceuticals, and to identify novel therapeutic targets. However, preparation of primary neuronal cultures from rodent embryos is labor-intensive, and it can be difficult to produce high-quality consistent cultures. To overcome these issues, cryopreservation can be used to obtain standardized, high-quality stocks of neuronal cultures. NEW METHOD In this study, we present a simplified cryopreservation method for rodent primary trigeminal ganglion neurons and glia from Sprague-Dawley neonates, using a 90:10 (v/v) fetal bovine serum/dimethyl sulfoxide cell freezing medium. RESULTS Cryopreserved trigeminal ganglion cells stored for up to one year in liquid nitrogen exhibited similar neuronal and glial cell morphology to fresh cultures and retained high cell viability. Proteins implicated in inflammation and pain signaling were expressed in agreement with the reported subcellular localization. Additionally, both neurons and glial cells exhibited an increase in intracellular calcium levels in response to a depolarizing stimulus. Cryopreserved cells were also transiently transfected with reporter genes. COMPARISON WITH EXISTING METHODS Our method is simple, does not require special reagents or equipment, will save time and money, increase flexibility in study design, and produce consistent cultures. CONCLUSIONS This method for the preparation and cryopreservation of trigeminal ganglia results in primary cultures of neurons and glia similar in viability and morphology to fresh preparations that could be utilized for biochemical, cellular, and molecular studies, increase reproducibility, and save laboratory resources.
Collapse
Affiliation(s)
- Sophia R Antonopoulos
- Missouri State University, Jordan Valley Innovation Center/Department of Biology, Springfield, MO 65806, USA
| | - Mikayla Scharnhorst
- Missouri State University, Jordan Valley Innovation Center/Department of Biology, Springfield, MO 65806, USA
| | - Nicole Nalley
- Missouri State University, Jordan Valley Innovation Center/Department of Biology, Springfield, MO 65806, USA
| | - Paul L Durham
- Missouri State University, Jordan Valley Innovation Center/Department of Biology, Springfield, MO 65806, USA.
| |
Collapse
|
9
|
Kuramoto E, Fukushima M, Sendo R, Ohno S, Iwai H, Yamanaka A, Sugimura M, Goto T. Three-dimensional topography of rat trigeminal ganglion neurons using a combination of retrograde labeling and tissue-clearing techniques. J Comp Neurol 2024; 532:e25584. [PMID: 38341648 DOI: 10.1002/cne.25584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
The trigeminal nerve is the sensory afferent of the orofacial regions and divided into three major branches. Cell bodies of the trigeminal nerve lie in the trigeminal ganglion and are surrounded by satellite cells. There is a close interaction between ganglion cells via satellite cells, but the function is not fully understood. In the present study, we clarified the ganglion cells' three-dimensional (3D) localization, which is essential to understand the functions of cell-cell interactions in the trigeminal ganglion. Fast blue was injected into 12 sites of the rat orofacial regions, and ganglion cells were retrogradely labeled. The labeled trigeminal ganglia were cleared by modified 3DISCO, imaged with confocal laser-scanning microscopy, and reconstructed in 3D. Histograms of the major axes of the fast blue-positive somata revealed that the peak major axes of the cells innervating the skin/mucosa were smaller than those of cells innervating the deep structures. Ganglion cells innervating the ophthalmic, maxillary, and mandibular divisions were distributed in the anterodorsal, central, and posterolateral portions of the trigeminal ganglion, respectively, with considerable overlap in the border region. The intermingling in the distribution of ganglion cells within each division was also high, in particular, within the mandibular division. Specifically, intermingling was observed in combinations of tongue and masseter/temporal muscles, maxillary/mandibular molars and masseter/temporal muscles, and tongue and mandibular molars. Double retrograde labeling confirmed that some ganglion cells innervating these combinations were closely apposed. Our data provide essential information for understanding the function of ganglion cell-cell interactions via satellite cells.
Collapse
Grants
- JP23H03119 Grants-in-Aid from The Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP23K09316 Grants-in-Aid from The Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP19K10058 Grants-in-Aid from The Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP19K10336 Grants-in-Aid from The Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP19KK0419 Grants-in-Aid from The Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP22H05162 Grants-in-Aid from The Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP22K09916 Grants-in-Aid from The Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Eriko Kuramoto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Makoto Fukushima
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ryozo Sendo
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Sachi Ohno
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Atsushi Yamanaka
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Mitsutaka Sugimura
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tetsuya Goto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
10
|
Sudershan A, Sudershan S, Sharma I, Kumar H, Panjaliya RK, Kumar P. Role of TNF -α in the Pathogenesis of Migraine. Pain Res Manag 2024; 2024:1377143. [PMID: 38213956 PMCID: PMC10781531 DOI: 10.1155/2024/1377143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/12/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024]
Abstract
Background Neurogenic neuroinflammation has a wide role in migraine pathogenesis including the transition from episodic migraine to chronic one. The seed molecule of neurogenic neuroinflammation, i.e., the TNF-α proinflammatory molecule, has gathered a lot of attention. This pleiotropic cytokine is a classical component of inflammatory soup, secreted by the microglial cell, and promotes a wide range of inflammatory reactions. Aim In this review, we aimed to provide a culminating and comprehending glimpse into the TNF-α in association with the migraine. Method A systematic literature survey method with a mixture of keywords was utilized to grasp the different elements that represent the association between TNF-α and migraine. Discussion. Highlighted the probable involvement of the TNF-α with migraine, the complexity of the matter such as activation of NF-KB signaling cascade, autoactivation, sensitization, and increased likelihood of transition cannot be neglected. Being TNF-α as a core node, it becomes the factor for linking diseases such as chronic inflammatory disorders, including COVID-19, and also interaction with other genes to develop severe conditions. Conclusion To this end, TNF-α plays a critical role in chronification, and inhibiting its signaling would likely be a crucial strategy for migraine therapy.
Collapse
Affiliation(s)
- Amrit Sudershan
- Department of Human Genetics, Sri Pratap College Srinagar, Cluster University Srinagar, Srinagar 190001, Jammu and Kashmir, India
- Institute of Human Genetics, University of Jammu, Jammu 180006, Jammu & Kashmir, India
| | - Srishty Sudershan
- Department of Zoology, University of Jammu, Jammu 180006, Jammu & Kashmir, India
| | - Isha Sharma
- Institute of Human Genetics, University of Jammu, Jammu 180006, Jammu & Kashmir, India
- Department of Zoology, University of Jammu, Jammu 180006, Jammu & Kashmir, India
| | - Hardeep Kumar
- Department of Neurology, Super Specialty Hospital, Jammu 180006, Jammu and Kashmir, India
| | - Rakesh K. Panjaliya
- Department of Zoology, University of Jammu, Jammu 180006, Jammu & Kashmir, India
| | - Parvinder Kumar
- Institute of Human Genetics, University of Jammu, Jammu 180006, Jammu & Kashmir, India
- Department of Zoology, University of Jammu, Jammu 180006, Jammu & Kashmir, India
| |
Collapse
|
11
|
Vila-Pueyo M, Gliga O, Gallardo VJ, Pozo-Rosich P. The Role of Glial Cells in Different Phases of Migraine: Lessons from Preclinical Studies. Int J Mol Sci 2023; 24:12553. [PMID: 37628733 PMCID: PMC10454125 DOI: 10.3390/ijms241612553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Migraine is a complex and debilitating neurological disease that affects 15% of the population worldwide. It is defined by the presence of recurrent severe attacks of disabling headache accompanied by other debilitating neurological symptoms. Important advancements have linked the trigeminovascular system and the neuropeptide calcitonin gene-related peptide to migraine pathophysiology, but the mechanisms underlying its pathogenesis and chronification remain unknown. Glial cells are essential for the correct development and functioning of the nervous system and, due to its implication in neurological diseases, have been hypothesised to have a role in migraine. Here we provide a narrative review of the role of glia in different phases of migraine through the analysis of preclinical studies. Current evidence shows that astrocytes and microglia are involved in the initiation and propagation of cortical spreading depolarization, the neurophysiological correlate of migraine aura. Furthermore, satellite glial cells within the trigeminal ganglia are implicated in the initiation and maintenance of orofacial pain, suggesting a role in the headache phase of migraine. Moreover, microglia in the trigeminocervical complex are involved in central sensitization, suggesting a role in chronic migraine. Taken altogether, glial cells have emerged as key players in migraine pathogenesis and chronification and future therapeutic strategies could be focused on targeting them to reduce the burden of migraine.
Collapse
Affiliation(s)
- Marta Vila-Pueyo
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
| | - Otilia Gliga
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
| | - Víctor José Gallardo
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
| | - Patricia Pozo-Rosich
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
- Headache Unit, Neurology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| |
Collapse
|
12
|
Sangalli L, Eli B, Mehrotra S, Sabagh S, Fricton J. Calcitonin Gene-Related Peptide-Mediated Trigeminal Ganglionitis: The Biomolecular Link between Temporomandibular Disorders and Chronic Headaches. Int J Mol Sci 2023; 24:12200. [PMID: 37569575 PMCID: PMC10418780 DOI: 10.3390/ijms241512200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
A bidirectional causal relationship has been established between temporomandibular disorders (TMDs) and chronic headaches. Recent advances in the neurobiology of chronic pain offer a framework for understanding the comorbidity between these two conditions that might reside in the shared biomolecular mechanisms of peripheral and central sensitization. The initiation of these processes is inflammatory in nature and is most likely mediated by key molecules, including calcitonin gene-related peptide (CGRP). This scoping review proposes that CGRP-mediated neuroinflammation in the trigeminal ganglion may partly explain the biomolecular bidirectional link between TMDs and chronic headaches. Finally, clinical implications of this neuropathologic process are briefly discussed.
Collapse
Affiliation(s)
- Linda Sangalli
- College of Dental Medicine—Illinois, Midwestern University, Downers Grove, IL 60515, USA
| | - Bradley Eli
- Facial Pain Specialists, San Diego, CA 92121,USA; (B.E.); (S.M.); (S.S.)
| | - Sachi Mehrotra
- Facial Pain Specialists, San Diego, CA 92121,USA; (B.E.); (S.M.); (S.S.)
| | - Suzan Sabagh
- Facial Pain Specialists, San Diego, CA 92121,USA; (B.E.); (S.M.); (S.S.)
| | - James Fricton
- Division of TMD and Orofacial Pain, University of Minnesota Schoof of Dentistry, Minneapolis, MN 55455, USA
- Minnesota Head and Neck Pain Clinic, Plymouth, MN 55447, USA
| |
Collapse
|
13
|
Karsan N, Gosalia H, Goadsby PJ. Molecular Mechanisms of Migraine: Nitric Oxide Synthase and Neuropeptides. Int J Mol Sci 2023; 24:11993. [PMID: 37569369 PMCID: PMC10418996 DOI: 10.3390/ijms241511993] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Migraine is a common condition with disabling attacks that burdens people in the prime of their working lives. Despite years of research into migraine pathophysiology and therapeutics, much remains to be learned about the mechanisms at play in this complex neurovascular condition. Additionally, there remains a relative paucity of specific and targeted therapies available. Many sufferers remain underserved by currently available broad action preventive strategies, which are also complicated by poor tolerance and adverse effects. The development of preclinical migraine models in the laboratory, and the advances in human experimental migraine provocation, have led to the identification of key molecules likely involved in the molecular circuity of migraine, and have provided novel therapeutic targets. Importantly, the identification that vasoconstriction is neither necessary nor required for headache abortion has changed the landscape of migraine treatment and has broadened the therapy targets for patients with vascular risk factors or vascular disease. These targets include nitric oxide synthase (NOS) and several neuropeptides that are involved in migraine. The ability of NO donors and infusion of some of these peptides into humans to trigger typical migraine-like attacks has supported the development of targeted therapies against these molecules. Some of these, such as those targeting calcitonin gene-related peptide (CGRP), have already reached clinical practice and are displaying a positive outcome in migraineurs for the better by offering targeted efficacy without significant adverse effects. Others, such as those targeting pituitary adenylate cyclase activating polypeptide (PACAP), are showing promise and are likely to enter phase 3 clinical trials in the near future. Understanding these nitrergic and peptidergic mechanisms in migraine and their interactions is likely to lead to further therapeutic strategies for migraine in the future.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
| | - Helin Gosalia
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
| | - Peter J. Goadsby
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
14
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 83] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Amani H, Soltani Khaboushan A, Terwindt GM, Tafakhori A. Glia Signaling and Brain Microenvironment in Migraine. Mol Neurobiol 2023; 60:3911-3934. [PMID: 36995514 DOI: 10.1007/s12035-023-03300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/27/2023] [Indexed: 03/31/2023]
Abstract
Migraine is a complicated neurological disorder affecting 6% of men and 18% of women worldwide. Various mechanisms, including neuroinflammation, oxidative stress, altered mitochondrial function, neurotransmitter disturbances, cortical hyperexcitability, genetic factors, and endocrine system problems, are responsible for migraine. However, these mechanisms have not completely delineated the pathophysiology behind migraine, and they should be further studied. The brain microenvironment comprises neurons, glial cells, and vascular structures with complex interactions. Disruption of the brain microenvironment is the main culprit behind various neurological disorders. Neuron-glia crosstalk contributes to hyperalgesia in migraine. In the brain, microenvironment and related peripheral regulatory circuits, microglia, astrocytes, and satellite cells are necessary for proper function. These are the most important cells that could induce migraine headaches by disturbing the balance of the neurotransmitters in the nervous system. Neuroinflammation and oxidative stress are the prominent reactions glial cells drive during migraine. Understanding the role of cellular and molecular components of the brain microenvironment on the major neurotransmitters engaged in migraine pathophysiology facilitates the development of new therapeutic approaches with higher effectiveness for migraine headaches. Investigating the role of the brain microenvironment and neuroinflammation in migraine may help decipher its pathophysiology and provide an opportunity to develop novel therapeutic approaches for its management. This review aims to discuss the neuron-glia interactions in the brain microenvironment during migraine and their potential role as a therapeutic target for the treatment of migraine.
Collapse
Affiliation(s)
- Hanieh Amani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Soltani Khaboushan
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Neurology, Imam Khomeini Hospital, Keshavarz Blvd., Tehran, Iran.
| |
Collapse
|
16
|
Biscetti L, Cresta E, Cupini LM, Calabresi P, Sarchielli P. The putative role of neuroinflammation in the complex pathophysiology of migraine: From bench to bedside. Neurobiol Dis 2023; 180:106072. [PMID: 36907522 DOI: 10.1016/j.nbd.2023.106072] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/18/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
The implications of neurogenic inflammation and neuroinflammation in the pathophysiology of migraine have been clearly demonstrated in preclinical migraine models involving several sites relevant in the trigemino-vascular system, including dural vessels and trigeminal endings, the trigeminal ganglion, the trigeminal nucleus caudalis as well as central trigeminal pain processing structures. In this context, a relevant role has been attributed over the years to some sensory and parasympathetic neuropeptides, in particular calcitonin gene neuropeptide, vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Several preclinical and clinical lines of evidence also support the implication of the potent vasodilator and messenger molecule nitric oxide in migraine pathophysiology. All these molecules are involved in vasodilation of the intracranial vasculature, as well as in the peripheral and central sensitization of the trigeminal system. At meningeal level, the engagement of some immune cells of innate immunity, including mast-cells and dendritic cells, and their mediators, has been observed in preclinical migraine models of neurogenic inflammation in response to sensory neuropeptides release due to trigemino-vascular system activation. In the context of neuroinflammatory events implicated in migraine pathogenesis, also activated glial cells in the peripheral and central structures processing trigeminal nociceptive signals seem to play a relevant role. Finally, cortical spreading depression, the pathophysiological substrate of migraine aura, has been reported to be associated with inflammatory mechanisms such as pro-inflammatory cytokine upregulation and intracellular signalling. Reactive astrocytosis consequent to cortical spreading depression is linked to an upregulation of these inflammatory markers. The present review summarizes current findings on the roles of immune cells and inflammatory responses in the pathophysiology of migraine and their possible exploitation in the view of innovative disease-modifying strategies.
Collapse
Affiliation(s)
- Leonardo Biscetti
- Istituto Nazionale di Ricovero e Cura dell'Anziano a carattere scientifico, IRCCS-INRCA, Ancona, Italy.
| | - Elena Cresta
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Paolo Calabresi
- Department of Neuroscience, Università Cattolica Sacro Cuore, Rome, Italy; Neurologia, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Paola Sarchielli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
17
|
Wang S, Song X, Rajewski A, Santiskulvong C, Ghiasi H. Stacking the odds: Multiple sites for HSV-1 latency. SCIENCE ADVANCES 2023; 9:eadf4904. [PMID: 36696497 PMCID: PMC9876545 DOI: 10.1126/sciadv.adf4904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
A hallmark of herpes simplex virus (HSV) infection is the establishment of latent virus in peripheral sensory ganglia of the latently infected host. We and others originally reported that the latency-associated transcript (LAT) is the only abundantly expressed viral gene in neurons within trigeminal ganglia (TG) of a latently infected host. Here, we investigated the possible contribution of various cells [i.e., B cells, dendritic cells (DCs), fibroblasts, glial cells, innate lymphoid cells (ILCs), macrophages, microglia, monocytes, natural killer cells, neurons, neutrophils, and T cells] isolated from TG of latently infected mice. Our results demonstrated that all of these cell types contain LAT, with DCs, neurons, and ILCs having the most LAT+ cells. These results suggest that HSV-1 can establish a quiescent/latent infection in a subset of nonneuronal cells, which enhances the chances that the virus will survive in its host.
Collapse
Affiliation(s)
- Shaohui Wang
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xueying Song
- Applied Genomics, Computation, and Translational Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alex Rajewski
- Applied Genomics, Computation, and Translational Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chintda Santiskulvong
- Applied Genomics, Computation, and Translational Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
18
|
Aditya S, Rattan A. Advances in CGRP Monoclonal Antibodies as Migraine Therapy: A Narrative Review. SAUDI JOURNAL OF MEDICINE & MEDICAL SCIENCES 2023; 11:11-18. [PMID: 36909005 PMCID: PMC9997852 DOI: 10.4103/sjmms.sjmms_95_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 12/01/2022] [Accepted: 12/21/2022] [Indexed: 03/14/2023]
Abstract
Migraine is a potentially disabling disorder, yet it remains underdiagnosed and undertreated. The release of the neuropeptide calcitonin gene-related peptide (CGRP) in the trigemino-cerebrovascular system plays a vital role in the evolution of migraine. It enhances peripheral sensitization by mediating neurogenic inflammation and also influences central sensitization. The majority of the drug classes available for migraine prophylaxis are nonspecific and associated with numerous side effects and drug interactions. Anti-CGRP monoclonal antibodies (mAb) are an innovative therapeutic class that fulfills the need for more efficacious and tolerable preventive therapy. While erenumab is a mAb to the CGRP receptor, eptinezumab, fremanezumab, and galcanezumab bind to the CGRP molecule. They decrease the number of headache days and improve disability. Upper respiratory tract infection, nausea, constipation, pain at the site of injection, and fatigue are the associated side effects. CGRP mAbs are an excellent advancement in translational research and are a promising addition in migraine therapy. This article discusses the recent advances in the development of the CGRP mAbs.
Collapse
Affiliation(s)
- Suruchi Aditya
- Department of Pharmacology, Dr. Harvansh Singh Judge Institute of Dental Sciences, Panjab University, Chandigarh, India
| | - Aditya Rattan
- Cardiology Clinic, Heart Line, Panchkula, Haryana, India
| |
Collapse
|
19
|
Chou TM, Lee ZF, Wang SJ, Lien CC, Chen SP. CGRP-dependent sensitization of PKC-δ positive neurons in central amygdala mediates chronic migraine. J Headache Pain 2022; 23:157. [PMID: 36510143 PMCID: PMC9746101 DOI: 10.1186/s10194-022-01531-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To investigate specific brain regions and neural circuits that are responsible for migraine chronification. METHODS We established a mouse model of chronic migraine with intermittent injections of clinically-relevant dose of nitroglycerin (0.1 mg/kg for 9 days) and validated the model with cephalic and extracephalic mechanical sensitivity, calcitonin gene-related peptide (CGRP) expression in trigeminal ganglion, and responsiveness to sumatriptan or central CGRP blockade. We explored the neurons that were sensitized along with migraine chronification and investigated their roles on migraine phenotypes with chemogenetics. RESULTS After repetitive nitroglycerin injections, mice displayed sustained supraorbital and hind paw mechanical hyperalgesia, which lasted beyond discontinuation of nitroglycerin infusion and could be transiently reversed by sumatriptan. The CGRP expression in trigeminal ganglion was also upregulated. We found the pERK positive cells were significantly increased in the central nucleus of the amygdala (CeA), and these sensitized cells in the CeA were predominantly protein kinase C-delta (PKC-δ) positive neurons co-expressing CGRP receptors. Remarkably, blockade of the parabrachial nucleus (PBN)-CeA CGRP neurotransmission by CGRP8-37 microinjection to the CeA attenuated the sustained cephalic and extracephalic mechanical hyperalgesia. Furthermore, chemogenetic silencing of the sensitized CeA PKC-δ positive neurons reversed the mechanical hyperalgesia and CGRP expression in the trigeminal ganglion. In contrast, repetitive chemogenetic activation of the CeA PKC-δ positive neurons recapitulated chronic migraine-like phenotypes in naïve mice. CONCLUSIONS Our data suggest that CeA PKC-δ positive neurons innervated by PBN CGRP positive neurons might contribute to the chronification of migraine, which may serve as future therapeutic targets for chronic migraine.
Collapse
Affiliation(s)
- Tse-Ming Chou
- grid.260539.b0000 0001 2059 7017Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.28665.3f0000 0001 2287 1366Interdisciplinary Neuroscience Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115 Taiwan
| | - Zhung-Fu Lee
- grid.260539.b0000 0001 2059 7017Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.39382.330000 0001 2160 926XDevelopment, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030 USA
| | - Shuu-Jiun Wang
- grid.260539.b0000 0001 2059 7017Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.260539.b0000 0001 2059 7017Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.260539.b0000 0001 2059 7017College of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.278247.c0000 0004 0604 5314Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112 Taiwan
| | - Cheng-Chang Lien
- grid.260539.b0000 0001 2059 7017Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.28665.3f0000 0001 2287 1366Interdisciplinary Neuroscience Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115 Taiwan ,grid.260539.b0000 0001 2059 7017Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan
| | - Shih-Pin Chen
- grid.28665.3f0000 0001 2287 1366Interdisciplinary Neuroscience Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115 Taiwan ,grid.260539.b0000 0001 2059 7017Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.260539.b0000 0001 2059 7017College of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.278247.c0000 0004 0604 5314Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112 Taiwan ,grid.260539.b0000 0001 2059 7017Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan ,grid.278247.c0000 0004 0604 5314Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112 Taiwan
| |
Collapse
|
20
|
Modulation of Glia Activation by TRPA1 Antagonism in Preclinical Models of Migraine. Int J Mol Sci 2022; 23:ijms232214085. [PMID: 36430567 PMCID: PMC9697613 DOI: 10.3390/ijms232214085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022] Open
Abstract
Preclinical data point to the contribution of transient receptor potential ankyrin 1 (TRPA1) channels to the complex mechanisms underlying migraine pain. TRPA1 channels are expressed in primary sensory neurons, as well as in glial cells, and they can be activated/sensitized by inflammatory mediators. The aim of this study was to investigate the relationship between TRPA1 channels and glial activation in the modulation of trigeminal hyperalgesia in preclinical models of migraine based on acute and chronic nitroglycerin challenges. Rats were treated with ADM_12 (TRPA1 antagonist) and then underwent an orofacial formalin test to assess trigeminal hyperalgesia. mRNA levels of pro- and anti-inflammatory cytokines, calcitonin gene-related peptide (CGRP) and glia cell activation were evaluated in the Medulla oblongata and in the trigeminal ganglia. In the nitroglycerin-treated rats, ADM_12 showed an antihyperalgesic effect in both acute and chronic models, and it counteracted the changes in CGRP and cytokine gene expression. In the acute nitroglycerin model, ADM_12 reduced nitroglycerin-induced increase in microglial and astroglial activation in trigeminal nucleus caudalis area. In the chronic model, we detected a nitroglycerin-induced activation of satellite glial cells in the trigeminal ganglia that was inhibited by ADM_12. These findings show that TRPA1 antagonism reverts experimentally induced hyperalgesia in acute and chronic models of migraine and prevents multiple changes in inflammatory pathways by modulating glial activation.
Collapse
|
21
|
Nie L, Sun K, Gong Z, Li H, Quinn JP, Wang M. Src Family Kinases Facilitate the Crosstalk between CGRP and Cytokines in Sensitizing Trigeminal Ganglion via Transmitting CGRP Receptor/PKA Pathway. Cells 2022; 11:cells11213498. [PMID: 36359895 PMCID: PMC9655983 DOI: 10.3390/cells11213498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
The communication between calcitonin gene-related peptide (CGRP) and cytokines plays a prominent role in maintaining trigeminal ganglion (TG) and trigeminovascular sensitization. However, the underlying regulatory mechanism is elusive. In this study, we explored the hypothesis that Src family kinases (SFKs) activity facilitates the crosstalk between CGRP and cytokines in sensitizing TG. Mouse TG tissue culture was performed to study CGRP release by enzyme-linked immunosorbent assay, cytokine release by multiplex assay, cytokine gene expression by quantitative polymerase chain reaction, and phosphorylated SFKs level by western blot. The results demonstrated that a SFKs activator, pYEEI (YGRKKRRQRRREPQY(PO3H2)EEIPIYL) alone, did not alter CGRP release or the inflammatory cytokine interleukin-1β (IL-1β) gene expression in the mouse TG. In contrast, a SFKs inhibitor, saracatinib, restored CGRP release, the inflammatory cytokines IL-1β, C-X-C motif ligand 1, C-C motif ligand 2 (CCL2) release, and IL-1β, CCL2 gene expression when the mouse TG was pre-sensitized with hydrogen peroxide and CGRP respectively. Consistently with this, the phosphorylated SFKs level was increased by both hydrogen peroxide and CGRP in the mouse TG, which was reduced by a CGRP receptor inhibitor BIBN4096 and a protein kinase A (PKA) inhibitor PKI (14–22) Amide. The present study demonstrates that SFKs activity plays a pivotal role in facilitating the crosstalk between CGRP and cytokines by transmitting CGRP receptor/PKA signaling to potentiate TG sensitization and ultimately trigeminovascular sensitization.
Collapse
Affiliation(s)
- Lingdi Nie
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK
| | - Kai Sun
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
| | - Ziyang Gong
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
| | - Haoyang Li
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK
| | - Minyan Wang
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK
- Correspondence:
| |
Collapse
|
22
|
Krivoshein G, Bakreen A, van den Maagdenberg AMJM, Malm T, Giniatullin R, Jolkkonen J. Activation of Meningeal Afferents Relevant to Trigeminal Headache Pain after Photothrombotic Stroke Lesion: A Pilot Study in Mice. Int J Mol Sci 2022; 23:ijms232012590. [PMID: 36293444 PMCID: PMC9604291 DOI: 10.3390/ijms232012590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Abstract
Stroke can be followed by immediate severe headaches. As headaches are initiated by the activation of trigeminal meningeal afferents, we assessed changes in the activity of meningeal afferents in mice subjected to cortical photothrombosis. Cortical photothrombosis induced ipsilateral lesions of variable sizes that were associated with contralateral sensorimotor impairment. Nociceptive firing of mechanosensitive Piezo1 channels, activated by the agonist Yoda1, was increased in meningeal afferents in the ischemic hemispheres. These meningeal afferents also had a higher maximal spike frequency at baseline and during activation of the mechanosensitive Piezo1 channel by Yoda1. Moreover, in these meningeal afferents, nociceptive firing was active during the entire induction of transient receptor potential vanilloid 1 (TRPV1) channels by capsaicin. No such activation was observed on the contralateral hemi-skulls of the same group of mice or in control mice. Our data suggest the involvement of mechanosensitive Piezo1 channels capable of maintaining high-frequency spiking activity and of nociceptive TRPV1 channels in trigeminal headache pain responses after experimental ischemic stroke in mice.
Collapse
Affiliation(s)
- Georgii Krivoshein
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Abdulhameed Bakreen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Arn M. J. M. van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Department of Neurology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jukka Jolkkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Correspondence:
| |
Collapse
|
23
|
Frere JJ, Serafini RA, Pryce KD, Zazhytska M, Oishi K, Golynker I, Panis M, Zimering J, Horiuchi S, Hoagland DA, Møller R, Ruiz A, Kodra A, Overdevest JB, Canoll PD, Borczuk AC, Chandar V, Bram Y, Schwartz R, Lomvardas S, Zachariou V, tenOever BR. SARS-CoV-2 infection in hamsters and humans results in lasting and unique systemic perturbations after recovery. Sci Transl Med 2022; 14:eabq3059. [PMID: 35857629 PMCID: PMC9210449 DOI: 10.1126/scitranslmed.abq3059] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
Abstract
The host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in prolonged pathologies collectively referred to as post-acute sequalae of COVID-19 (PASC) or long COVID. To better understand the mechanism underlying long COVID biology, we compared the short- and long-term systemic responses in the golden hamster after either SARS-CoV-2 or influenza A virus (IAV) infection. Results demonstrated that SARS-CoV-2 exceeded IAV in its capacity to cause permanent injury to the lung and kidney and uniquely affected the olfactory bulb (OB) and olfactory epithelium (OE). Despite a lack of detectable infectious virus, the OB and OE demonstrated myeloid and T cell activation, proinflammatory cytokine production, and an interferon response that correlated with behavioral changes extending a month after viral clearance. These sustained transcriptional changes could also be corroborated from tissue isolated from individuals who recovered from COVID-19. These data highlight a molecular mechanism for persistent COVID-19 symptomology and provide a small animal model to explore future therapeutics.
Collapse
Affiliation(s)
- Justin J. Frere
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Microbiology, New York University, Grossman School of Medicine, New York, NY 10016
| | - Randal A. Serafini
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Kerri D. Pryce
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Marianna Zazhytska
- Mortimer B. Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY 10027
| | - Kohei Oishi
- Department of Microbiology, New York University, Grossman School of Medicine, New York, NY 10016
| | - Ilona Golynker
- Department of Microbiology, New York University, Grossman School of Medicine, New York, NY 10016
| | - Maryline Panis
- Department of Microbiology, New York University, Grossman School of Medicine, New York, NY 10016
| | - Jeffrey Zimering
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Shu Horiuchi
- Department of Microbiology, New York University, Grossman School of Medicine, New York, NY 10016
| | | | - Rasmus Møller
- Department of Microbiology, New York University, Grossman School of Medicine, New York, NY 10016
| | - Anne Ruiz
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Albana Kodra
- Mortimer B. Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY 10027
| | - Jonathan B. Overdevest
- Department of Otolaryngology- Head and Neck Surgery, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Peter D. Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Alain C. Borczuk
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021
| | - Vasuretha Chandar
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY 10021
| | - Yaron Bram
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY 10021
| | - Robert Schwartz
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY 10021
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021
| | - Stavros Lomvardas
- Mortimer B. Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY 10027
| | - Venetia Zachariou
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Benjamin R. tenOever
- Department of Microbiology, New York University, Grossman School of Medicine, New York, NY 10016
| |
Collapse
|
24
|
Salahi M, Parsa S, Nourmohammadi D, Razmkhah Z, Salimi O, Rahmani M, Zivary S, Askarzadeh M, Tapak MA, Vaezi A, Sadeghsalehi H, Yaghoobpoor S, Mottahedi M, Garousi S, Deravi N. Immunologic aspects of migraine: A review of literature. Front Neurol 2022; 13:944791. [PMID: 36247795 PMCID: PMC9554313 DOI: 10.3389/fneur.2022.944791] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Migraine headaches are highly prevalent, affecting 15% of the population. However, despite many studies to determine this disease's mechanism and efficient management, its pathophysiology has not been fully elucidated. There are suggested hypotheses about the possible mediating role of mast cells, immunoglobulin E, histamine, and cytokines in this disease. A higher incidence of this disease in allergic and asthma patients, reported by several studies, indicates the possible role of brain mast cells located around the brain vessels in this disease. The mast cells are more specifically within the dura and can affect the trigeminal nerve and cervical or sphenopalatine ganglion, triggering the secretion of substances that cause migraine. Neuropeptides such as calcitonin gene-related peptide (CGRP), neurokinin-A, neurotensin (NT), pituitary adenylate-cyclase-activating peptide (PACAP), and substance P (SP) trigger mast cells, and in response, they secrete pro-inflammatory and vasodilatory molecules such as interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) as a selective result of corticotropin-releasing hormone (CRH) secretion. This stress hormone contributes to migraine or intensifies it. Blocking these pathways using immunologic agents such as CGRP antibody, anti-CGRP receptor antibody, and interleukin-1 beta (IL-1β)/interleukin 1 receptor type 1 (IL-1R1) axis-related agents may be promising as potential prophylactic migraine treatments. This review is going to summarize the immunological aspects of migraine.
Collapse
Affiliation(s)
- Mehrnaz Salahi
- Student Research Committee, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Parsa
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Delaram Nourmohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razmkhah
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Salimi
- Student Research Committee, Faculty of Medicine, Islamic Azad University of Najafabad, Isfahan, Iran
| | | | - Saeid Zivary
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Monireh Askarzadeh
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Tapak
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ali Vaezi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Sadeghsalehi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Chu C, Zhong R, Cai M, Li N, Lin W. Elevated Blood S100B Levels in Patients With Migraine: A Systematic Review and Meta-Analysis. Front Neurol 2022; 13:914051. [PMID: 35911929 PMCID: PMC9329586 DOI: 10.3389/fneur.2022.914051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background: In recent years, a growing number of researches indicate that S100B may act in migraine, but the relationship between S100B and migraine remains controversial. Therefore, the current study aimed to perform a meta-analysis to quantitatively summarize S100B levels in migraine patients. Methods We used Stata 12.0 software to summarize eligible studies from PubMed, EMBASE, Web of Science, Cochrane Library, China National Knowledge Infrastructure (CNKI), and Wanfang databases. We applied standardized mean differences (SMDs) with 95% confidence intervals (95%CIs) to appraise the association between S100B and migraine. Results The combined results of nine case-control studies indicated that compared with healthy controls, overall migraine patients had significantly increased S100B levels in peripheral blood (SMD = 0.688, 95%CI: 0.341–1.036, P < 0.001). The S100B levels in migraineurs during ictal periods (SMD =1.123, 95%CI: 0.409–1.836, P = 0.002) and interictal periods (SMD = 0.487, 95%CI: 0313–0.661, P < 0.001), aura (SMD = 0.999, 95%CI: 0.598–1.400, P < 0.001) and without aura (SMD = 0.534, 95%CI: 0.286–0.783, P < 0.001) were significantly higher than those in the controls. The subgroup analyses by age, country, migraine assessment, and assay method of S100B also illustrated a statistically obvious association between S100B levels and migraine, indicating that age may be the most important source of heterogeneity. Sensitivity analysis showed that no individual study has a significant influence on the overall association between S100B and migraine. Conclusion This meta-analysis demonstrates that the level of S100B in peripheral blood of patients with migraine was significantly increased. Migraine may be associated with pathological reactions involving S100B, which is instrumental for the clinical diagnosis of migraine and therapy that considers S100B as a potential target.
Collapse
|
26
|
Fang K, Chen S, Wang Y, Chen F, Cui M, Dong Q. Asymmetric Dimethylarginine Protects Neurons from Oxygen Glucose Deprivation Insult by Modulating Connexin-36 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5339361. [PMID: 35847590 PMCID: PMC9279069 DOI: 10.1155/2022/5339361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022]
Abstract
Background Asymmetric dimethylarginine (ADMA) is a nonselective nitric oxide synthase inhibitor. ADMA is thought to inhibit the production of nitric oxide (NO) by neurons after oxygen-glucose deprivation (OGD). The gap junction protein Connexin-36 (cx-36) is involved in the pathophysiology of stroke. We investigated whether ADMA could protect neurons from OGD insults by regulating the expression of cx-36. Methods Cultured rat cortical neuronal cells were used. Neurons were treated with OGD with or without ADMA pretreatment. The lactate dehydrogenase (LDH) release rate was used to assess neuronal injury. Intracellular NO levels were determined using 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. Western blotting was performed to detect cx-36 expression. Results The LDH release rate increased in the supernatant of neurons after the OGD insult, whereas ADMA treatment reduced the LDH release rate. Intracellular NO levels increased following OGD treatment, and this increase was not inhibited by ADMA treatment. Expression of cx-36 was upregulated in neurons under OGD conditions, and treatment with ADMA downregulated the expression of cx-36. Conclusions ADMA protects neurons from OGD insult, and cx-36 downregulation may be a possible pathway involved in ADMA-mediated neuronal protection.
Collapse
Affiliation(s)
- Kun Fang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shufen Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yi Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Fangzhe Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
27
|
Wang Q, Ma T, Lu Z, Liu M, Wang L, Zhao S, Zhao Y. Xiongzhi Dilong decoction interferes with calcitonin gene-related peptide (CGRP)-induced migraine in rats through the CGRP/iNOS pathway. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
28
|
From spreading depolarization to epilepsy with neuroinflammation: The role of CGRP in cortex. Exp Neurol 2022; 356:114152. [PMID: 35760098 DOI: 10.1016/j.expneurol.2022.114152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/03/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022]
Abstract
CGRP release plays a major role in migraine pain by activating the trigeminal pain pathways. Here we explored putative additional effects of CGRP on cortical circuits and investigated whether CGRP affects cortical excitability, cortical spreading depolarization (CSD), a phenomenon associated with migraine aura, blood-brain-barrier (BBB) and microglial morphology. We used immunohistochemistry to localize CGRP and the CGRP receptor (CGRP-R) in native cortex and evaluated morphology of microglia and integrity of the BBB after exposure to CGRP. In anesthetized rats we applied CGRP and the CGRP-R antagonist BIBN4096BS locally to the exposed cortex and monitored the spontaneous electrocorticogram and CSDs evoked by remote KCl pressure microinjection. In mouse brain slices CGRP effects on neuronal activity were explored by multielectrode array. CGRP immunoreactivity was detectable in intracortical vessels, and all cortical neurons showed CGRP-R immunoreactivity. In rat cortex in vivo, topical CGRP induced periods of epileptiform discharges, however, also dose-dependently reduced CSD amplitudes and propagation velocity. BIBN4096BS prevented these effects. CGRP evoked synchronized bursting activity in mouse cortical but not in cerebellar slices. Topical application of CGRP to rat cortex induced plasma extravasation and this was associated with reduced ramification of microglial cells. From these findings we conclude that CGRP induces a pathophysiological state in the cortex, consisting in neuronal hyperexcitability and neuroinflammation Thus, CGRP may have a pronounced impact on brain functions during migraine episodes supporting the benefit of CGRP antagonists for clinical use. However, increased cortical CGRP may end the CSD-induced aura phase of migraine.
Collapse
|
29
|
Réaux-Le-Goazigo A, Beliard B, Delay L, Rahal L, Claron J, Renaudin N, Rivals I, Thibaut M, Nouhoum M, Deffieux T, Tanter M, Pezet S. Ultrasound localization microscopy and functional ultrasound imaging reveal atypical features of the trigeminal ganglion vasculature. Commun Biol 2022; 5:330. [PMID: 35393515 PMCID: PMC8989975 DOI: 10.1038/s42003-022-03273-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 03/15/2022] [Indexed: 12/26/2022] Open
Abstract
The functional imaging within the trigeminal ganglion (TG) is highly challenging due to its small size and deep localization. This study combined a methodological framework able to dive into the rat trigeminal nociceptive system by jointly providing 1) imaging of the TG blood vasculature at microscopic resolution, and 2) the measurement of hemodynamic responses evoked by orofacial stimulations in anesthetized rats. Despite the small number of sensory neurons within the TG, functional ultrasound imaging was able to image and quantify a strong and highly localized hemodynamic response in the ipsilateral TG, evoked not only by mechanical or chemical stimulations of corneal nociceptive fibers, but also by cutaneous mechanical stimulations of the ophthalmic and maxillary orofacial regions using a von Frey hair. The in vivo quantitative imaging of the TG’s vasculature using ultrasound localization microscopy combined with in toto labelling reveals particular features of the vascularization of the area containing the sensory neurons, that are likely the origin of this strong vaso-trigeminal response. This innovative imaging approach opens the path for future studies on the mechanisms underlying changes in trigeminal local blood flow and evoked hemodynamic responses, key mechanisms for the understanding and treatment of debilitating trigeminal pain conditions. Visualisation of rat trigeminal ganglia activation during ophthalmic or maxillary nociceptive stimulations shows atypical tortuous vascularisation and a somatotopic hemodynamic response.
Collapse
Affiliation(s)
| | - Benoit Beliard
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Lauriane Delay
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Line Rahal
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Julien Claron
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Noémi Renaudin
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Isabelle Rivals
- Equipe de Statistique Appliquée, ESPCI Paris, PSL Research University, UMRS 1158, 10 rue Vauquelin, 75005, Paris, France
| | - Miguel Thibaut
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Mohamed Nouhoum
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France.,Iconeus, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Thomas Deffieux
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Mickael Tanter
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Sophie Pezet
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France.
| |
Collapse
|
30
|
Abo El-Enin HA, Mostafa RE, Ahmed MF, Naguib IA, A. Abdelgawad M, Ghoneim MM, Abdou EM. Assessment of Nasal-Brain-Targeting Efficiency of New Developed Mucoadhesive Emulsomes Encapsulating an Anti-Migraine Drug for Effective Treatment of One of the Major Psychiatric Disorders Symptoms. Pharmaceutics 2022; 14:pharmaceutics14020410. [PMID: 35214142 PMCID: PMC8874718 DOI: 10.3390/pharmaceutics14020410] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022] Open
Abstract
Migraine is one of the major symptoms of many psychiatric and mental disorders like depression and anxiety. Eletriptan Hydrobromide (EH) is a well-tolerated drug in migraine treatment, but suffers from low oral bioavailability and low brain targeting after oral delivery. New nasal mucoadhesive EH-emulsomes development could be a new means to direct the drug from the nose-to-brain to achieve rapid onset of action and high drug concentration in the brain for acute migraine treatment. Eletriptan mucoadhesive emulsomes formulations were prepared using thin-film hydration method and 23 full factorial design was adopted to study different formulation factors’ effect on the emulsomes characters. The emulsomes were characterized for entrapment efficiency (EE%), zeta potential (ZP), particle size (PS), morphology, and ex-vivo permeation through the nasal mucosa. The selected formula was evaluated in mice for its in-vivo bio-distribution in comparison with EH intranasal and intravenous solutions. Drug targeting efficacy (DTE%) and nose-to-brain direct transport percentage (DTP%) were calculated. The optimization formulation showed a nanoparticle size of 177.01 nm, EE 79.44%, and ZP = 32.12 ± 3.28 mV. In addition, in-vitro permeability studies revealed enhanced drug permeability with suitable mean residence time up to 120 ± 13 min. EH-emulsomes were stable under different storage conditions for three months. In vivo examination and pharmacokinetic drug targeting parameters revealed EH transport to the CNS after EH nanoparticle nasal administration. Histopathology study showed no ciliotoxic effect on the nasal mucosa. From the results, it can be confirmed that the emulsomes formulation of EH proved safe direct nose-to-brain transport of EH after nasal administration of EH emulsomes.
Collapse
Affiliation(s)
- Hadel A. Abo El-Enin
- Department of Pharmaceutics, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Rasha E. Mostafa
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza 12622, Egypt;
| | - Marwa F. Ahmed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
- Correspondence: (M.F.A.); (M.A.A.)
| | - Ibrahim A. Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
- Correspondence: (M.F.A.); (M.A.A.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Ebtsam M. Abdou
- Department of Pharmaceutics, National Organization of Drug Control and Research (NODCAR), Giza 12622, Egypt;
| |
Collapse
|
31
|
How Is Peripheral Injury Signaled to Satellite Glial Cells in Sensory Ganglia? Cells 2022; 11:cells11030512. [PMID: 35159321 PMCID: PMC8833977 DOI: 10.3390/cells11030512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
Injury or inflammation in the peripheral branches of neurons of sensory ganglia causes changes in neuronal properties, including excessive firing, which may underlie chronic pain. The main types of glial cell in these ganglia are satellite glial cells (SGCs), which completely surround neuronal somata. SGCs undergo activation following peripheral lesions, which can enhance neuronal firing. How neuronal injury induces SGC activation has been an open question. Moreover, the mechanisms by which the injury is signaled from the periphery to the ganglia are obscure and may include electrical conduction, axonal and humoral transport, and transmission at the spinal level. We found that peripheral inflammation induced SGC activation and that the messenger between injured neurons and SGCs was nitric oxide (NO), acting by elevating cyclic guanosine monophosphate (cGMP) in SGCs. These results, together with work from other laboratories, indicate that a plausible (but not exclusive) mechanism for neuron-SGCs interactions can be formulated as follows: Firing due to peripheral injury induces NO formation in neuronal somata, which diffuses to SGCs. This stimulates cGMP synthesis in SGCs, leading to their activation and to other changes, which contribute to neuronal hyperexcitability and pain. Other mediators such as proinflammatory cytokines probably also contribute to neuron-SGC communications.
Collapse
|
32
|
Wang S, Jaggi U, Tormanen K, Hirose S, Ghiasi H. Absence of signal peptide peptidase in peripheral sensory neurons affects latency-reactivation in HSV-1 ocularly infected mice. PLoS Pathog 2022; 18:e1010281. [PMID: 35100323 PMCID: PMC8830783 DOI: 10.1371/journal.ppat.1010281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/10/2022] [Accepted: 01/17/2022] [Indexed: 12/05/2022] Open
Abstract
We previously reported that HSV-1 infectivity in vitro and in vivo requires HSV glycoprotein K (gK) binding to the ER signal peptide peptidase (SPP). Anterograde-retrograde transport via peripheral nerves between the site of infection (i.e., eye) and the site of latency (neurons) is a critical process to establish latency and subsequent viral reactivation. Given the essential role of neurons in HSV-1 latency-reactivation, we generated mice lacking SPP specifically in peripheral sensory neurons by crossing Advillin-Cre mice with SPPfl/fl mice. Expression of SPP mRNA and protein were significantly lower in neurons of Avil-SPP-/- mice than in control mice despite similar levels of HSV-1 replication in the eyes of Avil-SPP-/- mice and control mice. Viral transcript levels in isolated neurons of infected mice on days 2 and 5 post infection were lower than in control mice. Significantly less LAT, gB, and PD-1 expression was seen during latency in isolated neurons and total trigeminal ganglia (TG) of Avil-SPP-/- mice than in control mice. Finally, reduced latency and reduced T cell exhaustion in infected Avil-SPP-/- mice correlated with slower and no reactivation. Overall, our results suggest that blocking SPP expression in peripheral sensory neurons does not affect primary virus replication or eye disease but does reduce latency-reactivation. Thus, blocking of gK binding to SPP may be a useful tool to reduce latency-reactivation. HSV-1 gK and the ER protein SPP are both essential and highly conserved proteins. Their interaction is important for virus infectivity in vitro and in vivo. To evaluate the importance of gK binding to SPP in the peripheral nervous system, we generated SPP conditional knockout mice in peripheral nervous system using Advillin-Cre mice. The absence of SPP in peripheral nervous system significantly reduced latency-reactivation as well as T cell exhaustion.
Collapse
Affiliation(s)
- Shaohui Wang
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Ujjaldeep Jaggi
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Kati Tormanen
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Satoshi Hirose
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Homayon Ghiasi
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Hamann T, Rimmele F, Jürgens TP. [CGRP antibodies in migraine prophylaxis : The new standard in migraine treatment?]. Schmerz 2022; 36:59-72. [PMID: 35041064 DOI: 10.1007/s00482-021-00613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2021] [Indexed: 11/25/2022]
Abstract
Migraine is associated with a high individual level of suffering. Therefore, an effective preventive treatment is highly important. The spectrum of classical prophylactic drugs has now been expanded to include monoclonal antibodies against calcitonin gene-related peptide (CGRP) and its receptor. These antibodies have shown reliable efficacy compared to placebo and a rapid onset of action with a low rate of side effects and negligible interactions in pivotal studies. Recently, the efficacy of the antibody was shown in many studies even on drug-refractory migraine and migraine associated with medication overuse. Comprehensive head to head comparisons with previously established drugs and among the antibodies are not yet available; however, initial studies suggest better tolerability and efficacy compared to conventional drugs and other antibodies. The role of antibodies in established treatment cascades still needs to be clarified.
Collapse
Affiliation(s)
- Till Hamann
- Klinik und Poliklinik für Neurologie, Kopfschmerzzentrum Nord-Ost, Universitätsmedizin Rostock, Gehlsheimer Straße 20, 18147, Rostock, Deutschland.
| | - Florian Rimmele
- Klinik und Poliklinik für Neurologie, Kopfschmerzzentrum Nord-Ost, Universitätsmedizin Rostock, Gehlsheimer Straße 20, 18147, Rostock, Deutschland
| | - Tim Patrick Jürgens
- Klinik und Poliklinik für Neurologie, Kopfschmerzzentrum Nord-Ost, Universitätsmedizin Rostock, Gehlsheimer Straße 20, 18147, Rostock, Deutschland.,Neurologisches Zentrum, Klinik für Neurologie, KMG Klinikum Güstrow, Güstrow, Deutschland
| |
Collapse
|
34
|
Enhanced Ocular Surface and Intraoral Nociception via a Transient Receptor Potential Vanilloid 1 Mechanism in a Rat Model of Obstructive Sleep Apnea. Neuroscience 2021; 483:66-81. [PMID: 34883200 DOI: 10.1016/j.neuroscience.2021.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/28/2022]
Abstract
Obstructive sleep apnea (OSA), characterized by low arterial oxygen saturation during sleep, is associated with an increased risk of orofacial pain. In this study, we simulated chronic intermittent hypoxia (CIH) during the sleep/rest phase (light phase) to determine the role of transient receptor potential vanilloid 1 (TRPV1) in mediating enhanced orofacial nocifensive behavior and trigeminal spinal subnucleus caudalis (Vc) neuronal responses to capsaicin (a TRPV1 agonist) stimulation in a rat model of OSA. Rats were subjected to CIH (nadir O2, 5%) during the light phase for 8 or 16 consecutive days. CIH yielded enhanced behavioral responses to capsaicin after application to the ocular surface and intraoral mucosa, which was reversed under normoxic conditions. The percentage of TRPV1-immunoreactive trigeminal ganglion neurons was greater in CIH rats than in normoxic rats and recovered under normoxic conditions after CIH. The ratio of large-sized TRPV1-immunoreactive trigeminal ganglion neurons increased in CIH rats. The density of TRPV1 positive primary afferent terminals in the superficial laminae of Vc was higher in CIH rats. Phosphorylated extracellular signal-regulated kinase (pERK)-immunoreactive cells intermingled with the central terminal of TRPV1-positive afferents in the Vc. The number of pERK-immunoreactive cells following low-dose capsaicin (0.33 µM) application to the tongue was significantly greater in the middle portion of the Vc of CIH rats than of normoxic rats and recovered under normoxic conditions after CIH. These data suggest that CIH during the sleep (light) phase is sufficient to transiently enhance pain on the ocular surface and intraoral mucosa via TRPV1-dependent mechanisms.
Collapse
|
35
|
Blumenfeld A, Durham PL, Feoktistov A, Hay DL, Russo AF, Turner I. Hypervigilance, Allostatic Load, and Migraine Prevention: Antibodies to CGRP or Receptor. Neurol Ther 2021; 10:469-497. [PMID: 34076848 PMCID: PMC8571459 DOI: 10.1007/s40120-021-00250-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/09/2021] [Indexed: 01/03/2023] Open
Abstract
Migraine involves brain hypersensitivity with episodic dysfunction triggered by behavioral or physiological stressors. During an acute migraine attack the trigeminal nerve is activated (peripheral sensitization). This leads to central sensitization with activation of the central pathways including the trigeminal nucleus caudalis, the trigemino-thalamic tract, and the thalamus. In episodic migraine the sensitization process ends with the individual act, but with chronic migraine central sensitization may continue interictally. Increased allostatic load, the consequence of chronic, repeated exposure to stressors, leads to central sensitization, lowering the threshold for future neuronal activation (hypervigilance). Ostensibly innocuous stressors are then sufficient to trigger an attack. Medications that reduce sensitization may help patients who are hypervigilant and help to balance allostatic load. Acute treatments and drugs for migraine prevention have traditionally been used to reduce attack duration and frequency. However, since many patients do not fully respond, an unmet treatment need remains. Calcitonin gene-related peptide (CGRP) is a vasoactive neuropeptide involved in nociception and in the sensitization of peripheral and central neurons of the trigeminovascular system, which is implicated in migraine pathophysiology. Elevated CGRP levels are associated with dysregulated signaling in the trigeminovascular system, leading to maladaptive responses to behavioral or physiological stressors. CGRP may, therefore, play a key role in the underlying pathophysiology of migraine. Increased understanding of the role of CGRP in migraine led to the development of small-molecule antagonists (gepants) and monoclonal antibodies (mAbs) that target either CGRP or the receptor (CGRP-R) to restore homeostasis, reducing the frequency, duration, and severity of attacks. In clinical trials, US Food and Drug Administration-approved anti-CGRP-R/CGRP mAbs were well tolerated and effective as preventive migraine treatments. Here, we explore the role of CGRP in migraine pathophysiology and the use of gepants or mAbs to suppress CGRP-R signaling via inhibition of the CGRP ligand or receptor.
Collapse
Affiliation(s)
- Andrew Blumenfeld
- The Headache Center of Southern California, The Neurology Center, Carlsbad, CA, USA.
| | - Paul L Durham
- Department of Biology, Center for Biomedical and Life Sciences, Missouri State University, Springfield, MO, USA
| | | | - Debbie L Hay
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Andrew F Russo
- Departments of Molecular Physiology and Biophysics, Neurology, University of Iowa, Iowa City, IA, USA
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA
| | - Ira Turner
- Island Neurological Associates, Plainview, NY, USA
| |
Collapse
|
36
|
Nie L, Jiang L, Quinn JP, Grubb BD, Wang M. TRPA1-Mediated Src Family Kinases Activity Facilitates Cortical Spreading Depression Susceptibility and Trigeminovascular System Sensitization. Int J Mol Sci 2021; 22:12273. [PMID: 34830154 PMCID: PMC8620265 DOI: 10.3390/ijms222212273] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/06/2021] [Accepted: 11/06/2021] [Indexed: 01/09/2023] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) plays a role in migraine and is proposed as a promising target for migraine therapy. However, TRPA1-induced signaling in migraine pathogenesis is poorly understood. In this study, we explored the hypothesis that Src family kinases (SFKs) transmit TRPA1 signaling in regulating cortical spreading depression (CSD), calcitonin gene-related peptide (CGRP) release and neuroinflammation. CSD was monitored in mouse brain slices via intrinsic optical imaging, and in rats using electrophysiology. CGRP level and IL-1β gene expression in mouse trigeminal ganglia (TG) was detected using Enzyme-linked Immunosorbent Assay and Quantitative Polymerase Chain Reaction respectively. The results showed a SFKs activator, pYEEI (EPQY(PO3H2)EEEIPIYL), reversed the reduced cortical susceptibility to CSD by an anti-TRPA1 antibody in mouse brain slices. Additionally, the increased cytosolic phosphorylated SFKs at Y416 induced by CSD in rat ipsilateral cerebral cortices was attenuated by pretreatment of the anti-TRPA1 antibody perfused into contralateral ventricles. In mouse TG, a SFKs inhibitor, saracatinib, restored the CGRP release and IL-1β mRNA level increased by a TRPA1 activator, umbellulone. Moreover, umbellulone promoted SFKs phosphorylation, which was reduced by a PKA inhibitor, PKI (14-22) Amide. These data reveal a novel mechanism of migraine pathogenesis by which TRPA1 transmits signaling to SFKs via PKA facilitating CSD susceptibility and trigeminovascular system sensitization.
Collapse
Affiliation(s)
- Lingdi Nie
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China; (L.N.); (L.J.)
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| | - Liwen Jiang
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China; (L.N.); (L.J.)
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| | - Blair D. Grubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| | - Minyan Wang
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China; (L.N.); (L.J.)
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| |
Collapse
|
37
|
Chuinsiri N, Edwards D, Telezhkin V, Nile CJ, Van der Cruyssen F, Durham J. Exploring the roles of neuropeptides in trigeminal neuropathic pain: A systematic review and narrative synthesis of animal studies. Arch Oral Biol 2021; 130:105247. [PMID: 34454375 DOI: 10.1016/j.archoralbio.2021.105247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/02/2021] [Accepted: 08/22/2021] [Indexed: 12/09/2022]
Abstract
OBJECTIVE This systematic review aims to explore the changes in expression of neuropeptides and/or their receptors following experimental trigeminal neuropathic pain in animals. DESIGN MEDLINE, Embase, and Scopus were searched for publications up to 31st March 2021. Study selection and data extraction were completed by two independent reviewers based on the eligibility criteria. The quality of articles was judged based on the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) risk-of-bias tool. RESULTS A total of 19 studies satisfied the eligibility criteria and were included for narrative synthesis. Methods of trigeminal neuropathic pain induction were nerve ligation, nerve compression/crush, nerve transection and dental pulp injury. Animal behaviours used for pain verification were evoked responses to mechanical and thermal stimuli. Non-evoked behaviours, including vertical exploration, grooming and food consumption, were also employed in some studies. Calcitonin gene-related peptide (CGRP) and substance P were the most frequently reported neuropeptides. Overall, unclear to high risk of bias was identified in the included studies. CONCLUSIONS Limited evidence has suggested the pro-nociceptive role of CGRP in trigeminal neuropathic pain. In order to further translational pain research, animal models of trigeminal neuropathic pain and pain validation methods need to be optimised. Complete reporting of future studies based on available guidelines to improve confidence in research is encouraged.
Collapse
Affiliation(s)
- Nontawat Chuinsiri
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - David Edwards
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Vsevolod Telezhkin
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher J Nile
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Fréderic Van der Cruyssen
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium; OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University Leuven, Leuven, Belgium
| | - Justin Durham
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
38
|
Gutierrez S, Eisenach JC, Boada MD. Seeding of breast cancer cell line (MDA-MB-231 LUC+) to the mandible induces overexpression of substance P and CGRP throughout the trigeminal ganglion and widespread peripheral sensory neuropathy throughout all three of its divisions. Mol Pain 2021; 17:17448069211024082. [PMID: 34229504 PMCID: PMC8267036 DOI: 10.1177/17448069211024082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Some types of cancer are commonly associated with intense pain even at the early stages of the disease. The mandible is particularly vulnerable to metastasis from breast cancer, and this process has been studied using a bioluminescent human breast cancer cell line (MDA-MB-231LUC+). Using this cell line and anatomic and neurophysiologic methods in the trigeminal ganglion (TG), we examined the impact of cancer seeding in the mandible on behavioral evidence of hypersensitivity and on trigeminal sensory neurons. Growth of cancer cells seeded to the mandible after arterial injection of the breast cancer cell line in Foxn1 animals (allogeneic model) induced behavioral hypersensitivity to mechanical stimulation of the whisker pad and desensitization of tactile and sensitization of nociceptive mechanically sensitive afferents. These changes were not restricted to the site of metastasis but extended to sensory afferents in all three divisions of the TG, accompanied by widespread overexpression of substance P and CGRP in neurons through the ganglion. Subcutaneous injection of supernatant from the MDA-MB-231LUC+ cell culture in normal animals mimicked some of the changes in mechanically responsive afferents observed with mandibular metastasis. We conclude that released products from these cancer cells in the mandible are critical for the development of cancer-induced pain and that the overall response of the system greatly surpasses these local effects, consistent with the widespread distribution of pain in patients. The mechanisms of neuronal plasticity likely occur in the TG itself and are not restricted to afferents exposed to the metastatic cancer microenvironment.
Collapse
Affiliation(s)
| | | | - M Danilo Boada
- Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| |
Collapse
|
39
|
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center and Faculty of Medicine, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Robert W Banks
- Department of Biosciences, and Biophysical Sciences Institute, Durham University, Durham, UK
| |
Collapse
|
40
|
Thammanichanon P, Kaewpitak A, Binlateh T, Pavasant P, Leethanakul C. Varied temporal expression patterns of trigeminal TRPA1 and TRPV1 and the neuropeptide CGRP during orthodontic force-induced pain. Arch Oral Biol 2021; 128:105170. [PMID: 34082374 DOI: 10.1016/j.archoralbio.2021.105170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The aim of this study was to quantify the temporal changes in inflammation and TRPA1, TRPV1 and CGRP expression in the trigeminal ganglion during force-induced orthodontic pain. DESIGN Orthodontic force was applied to both maxillary first molars in 8-week-old Wistar rats for 12 h, 24 h, 3 d or 7 d. The rat grimace scale (RGS) score and duration of face grooming were used to measure orthodontic pain. Western blotting was performed to assess TRPA1, TRPV1 and CGRP expression in trigeminal ganglia. NF-кB levels and colocalization of TRPA1, TRPV1 and CGRP were evaluated by immunofluorescent staining. RESULTS Application of continuous force significantly increased pain behaviours at 1 and 3 d. NF-кB significantly increased in periodontal ligament at 12 h until 3 d. TRPV1 was significantly elevated within 1 d; TRPA1 significantly increased from 1-3 d; CGRP expression significantly increased from 12 h to 3 d. The TRPV1/TRPA1 expression ratio was highest at 12 h; the TRPA1/TRPV1 ratio peaked at 3 d. The percentages of trigeminal neurons co-expressing TRPA1/TRPV1, TRPA1/CGRP, and TRPV1/CGRP significantly increased by 12 h and peaked at 24 h. CGRP expression had a stronger positive correlation with TRPV1 than TRPA1. CONCLUSIONS Inflammation induced by application of orthodontic force sensitizes trigeminal TRPV1 and TRPA1; TRPV1 is primarily activated as an early response, whereas TRPA1 is activated as a late response. Activation of both nociceptors results in CGRP release. Thus, blocking both TRPV1 and TRPA1 may represent a primary therapeutic target for relief of orthodontic pain.
Collapse
Affiliation(s)
- Peungchaleoy Thammanichanon
- Section of Orthodontics, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Aunwaya Kaewpitak
- Section of Pediatric Dentistry, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thunwa Binlateh
- Institute of Research and Development, Suranaree University of Technology, Nakhonratchasima, Thailand
| | - Prasit Pavasant
- Excellence Center in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chidchanok Leethanakul
- Section of Orthodontics, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| |
Collapse
|
41
|
Glia and Orofacial Pain: Progress and Future Directions. Int J Mol Sci 2021; 22:ijms22105345. [PMID: 34069553 PMCID: PMC8160907 DOI: 10.3390/ijms22105345] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Orofacial pain is a universal predicament, afflicting millions of individuals worldwide. Research on the molecular mechanisms of orofacial pain has predominately focused on the role of neurons underlying nociception. However, aside from neural mechanisms, non-neuronal cells, such as Schwann cells and satellite ganglion cells in the peripheral nervous system, and microglia and astrocytes in the central nervous system, are important players in both peripheral and central processing of pain in the orofacial region. This review highlights recent molecular and cellular findings of the glia involvement and glia–neuron interactions in four common orofacial pain conditions such as headache, dental pulp injury, temporomandibular joint dysfunction/inflammation, and head and neck cancer. We will discuss the remaining questions and future directions on glial involvement in these four orofacial pain conditions.
Collapse
|
42
|
Yan X, Han H, Zhang S, Lu Y, Ren L, Tang Y, Li X, Jian F, Wang Y, Long H, Lai W. N/OFQ modulates orofacial pain induced by tooth movement through CGRP-dependent pathways. BMC Neurosci 2021; 22:25. [PMID: 33836649 PMCID: PMC8034138 DOI: 10.1186/s12868-021-00632-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 03/26/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Nociceptin/orphanin FQ (N/OFQ) has been revealed to play bidirectional roles in orofacial pain modulation. Calcitonin gene-related peptide (CGRP) is a well-known pro-nociceptive molecule that participates in the modulation of orofacial pain. We aimed to determine the effects of N/OFQ on the modulation of orofacial pain and on the release of CGRP. METHODS Orofacial pain model was established by ligating springs between incisors and molars in rats for the simulation of tooth movement. The expression level of N/OFQ was determined and pain level was scored in response to orofacial pain. Both agonist and antagonist of N/OFQ receptor were administered to examine their effects on pain and the expression of CGRP in trigeminal ganglia (TG). Moreover, gene therapy based on the overexpression of N/OFQ was delivered to validate the modulatory role of N/OFQ on pain and CGRP expression. RESULTS Tooth movement elicited orofacial pain and an elevation in N/OFQ expression. N/OFQ exacerbated orofacial pain and upregulated CGRP expression in TG, while UFP-101 alleviated pain and downregulated CGRP expression. N/OFQ-based gene therapy was successful in overexpressing N/OFQ in TG, which resulted in pain exacerbation and elevation of CGRP expression in TG. CONCLUSIONS N/OFQ exacerbated orofacial pain possibly through upregulating CGRP.
Collapse
Affiliation(s)
- Xinyu Yan
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Han Han
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Shizhen Zhang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Yanzhu Lu
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Linghuan Ren
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Yufei Tang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Xiaolong Li
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Fan Jian
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Yan Wang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Hu Long
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China.
| | - Wenli Lai
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China.
| |
Collapse
|
43
|
Liu W, Luque M, Li H, Schrott-Fischer A, Glueckert R, Tylstedt S, Rajan G, Ladak H, Agrawal S, Rask-Andersen H. Spike Generators and Cell Signaling in the Human Auditory Nerve: An Ultrastructural, Super-Resolution, and Gene Hybridization Study. Front Cell Neurosci 2021; 15:642211. [PMID: 33796009 PMCID: PMC8008129 DOI: 10.3389/fncel.2021.642211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/22/2021] [Indexed: 11/23/2022] Open
Abstract
Background: The human auditory nerve contains 30,000 nerve fibers (NFs) that relay complex speech information to the brain with spectacular acuity. How speech is coded and influenced by various conditions is not known. It is also uncertain whether human nerve signaling involves exclusive proteins and gene manifestations compared with that of other species. Such information is difficult to determine due to the vulnerable, "esoteric," and encapsulated human ear surrounded by the hardest bone in the body. We collected human inner ear material for nanoscale visualization combining transmission electron microscopy (TEM), super-resolution structured illumination microscopy (SR-SIM), and RNA-scope analysis for the first time. Our aim was to gain information about the molecular instruments in human auditory nerve processing and deviations, and ways to perform electric modeling of prosthetic devices. Material and Methods: Human tissue was collected during trans-cochlear procedures to remove petro-clival meningioma after ethical permission. Cochlear neurons were processed for electron microscopy, confocal microscopy (CM), SR-SIM, and high-sensitive in situ hybridization for labeling single mRNA transcripts to detect ion channel and transporter proteins associated with nerve signal initiation and conductance. Results: Transport proteins and RNA transcripts were localized at the subcellular level. Hemi-nodal proteins were identified beneath the inner hair cells (IHCs). Voltage-gated ion channels (VGICs) were expressed in the spiral ganglion (SG) and axonal initial segments (AISs). Nodes of Ranvier (NR) expressed Nav1.6 proteins, and encoding genes critical for inter-cellular coupling were disclosed. Discussion: Our results suggest that initial spike generators are located beneath the IHCs in humans. The first NRs appear at different places. Additional spike generators and transcellular communication may boost, sharpen, and synchronize afferent signals by cell clusters at different frequency bands. These instruments may be essential for the filtering of complex sounds and may be challenged by various pathological conditions.
Collapse
Affiliation(s)
- Wei Liu
- Section of Otolaryngology, Department of Surgical Sciences, Head and Neck Surgery, Uppsala University Hospital, Uppsala, Sweden
| | - Maria Luque
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hao Li
- Section of Otolaryngology, Department of Surgical Sciences, Head and Neck Surgery, Uppsala University Hospital, Uppsala, Sweden
| | | | - Rudolf Glueckert
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sven Tylstedt
- Department of Olaryngology, Västerviks Hospital, Västervik, Sweden
| | - Gunesh Rajan
- Department of Otolaryngology, Head & Neck Surgery, Luzerner Kantonsspital, Luzern, Switzerland
- Department of Otolaryngology, Head & Neck Surgery, Division of Surgery, Medical School, University of Western Australia, Perth, WA, Australia
| | - Hanif Ladak
- Department of Otolaryngology-Head and Neck Surgery, Department of Medical Biophysics and Department of Electrical and Computer Engineering, Western University, London, ON, Canada
| | - Sumit Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
| | - Helge Rask-Andersen
- Section of Otolaryngology, Department of Surgical Sciences, Head and Neck Surgery, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
44
|
Kowalska M, Prendecki M, Piekut T, Kozubski W, Dorszewska J. Migraine: Calcium Channels and Glia. Int J Mol Sci 2021; 22:2688. [PMID: 33799975 PMCID: PMC7962070 DOI: 10.3390/ijms22052688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 01/03/2023] Open
Abstract
Migraine is a common neurological disease that affects about 11% of the adult population. The disease is divided into two main clinical subtypes: migraine with aura and migraine without aura. According to the neurovascular theory of migraine, the activation of the trigeminovascular system (TGVS) and the release of numerous neuropeptides, including calcitonin gene-related peptide (CGRP) are involved in headache pathogenesis. TGVS can be activated by cortical spreading depression (CSD), a phenomenon responsible for the aura. The mechanism of CSD, stemming in part from aberrant interactions between neurons and glia have been studied in models of familial hemiplegic migraine (FHM), a rare monogenic form of migraine with aura. The present review focuses on those interactions, especially as seen in FHM type 1, a variant of the disease caused by a mutation in CACNA1A, which encodes the α1A subunit of the P/Q-type voltage-gated calcium channel.
Collapse
Affiliation(s)
- Marta Kowalska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland; (M.K.); (M.P.); (T.P.)
| | - Michał Prendecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland; (M.K.); (M.P.); (T.P.)
| | - Thomas Piekut
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland; (M.K.); (M.P.); (T.P.)
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland;
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland; (M.K.); (M.P.); (T.P.)
| |
Collapse
|
45
|
Bond JD, Xu Z, Zhang H, Zhang M. Meckel's Cave and Somatotopy of the Trigeminal Ganglion. World Neurosurg 2021; 148:178-187. [PMID: 33516868 DOI: 10.1016/j.wneu.2021.01.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The anatomy and spatial relationships of the dural sac comprising the Meckel cave (MC) and its ensheathed trigeminal ganglion (TG) are exceedingly intricate and complex. There are conflicting accounts in the literature regarding the dural configuration of the MC around the ganglion and the dual embryology of the MC and TG is still unclear. METHODS A combined systematic and narrative literature review was conducted to collate articles addressing MC and TG anatomy, in addition to their embryology, role in tumor spread, somatotopy, and association with trigeminal neuralgia. RESULTS Three key anatomic models by Paturet (1964), Lazorthes (1973), and Lang and Ferner (1983) have been put forward to show the arrangement of the MC around the TG. The TG is formed from both neural crest and placodal cells and drags the enveloping dura caudally to form the MC prolongation during development. Both a mediolateral and dorsoventral somatotopic arrangement of neurons exists in the TG, which corresponds to the 3 nerve divisions, of which V2 and V3 are prone to perineural tumor spread along their course. CONCLUSIONS Sound knowledge concerning the dural arrangement of the MC and the trigeminal divisions will be invaluable in optimally treating cancers in this region, and understanding TG somatotopy will immensely improve treatment of trigeminal neuralgia in terms of specificity, efficacy, and positive patient outcomes.
Collapse
Affiliation(s)
- Jacob D Bond
- Department of Anatomy, University of Otago, Dunedin, New Zealand; Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Zhaoyang Xu
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Han Zhang
- Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ming Zhang
- Department of Anatomy, University of Otago, Dunedin, New Zealand; Department of Anatomy, Anhui Medical University, Hefei, China.
| |
Collapse
|
46
|
Edvinsson L, Haanes KA. Identifying New Antimigraine Targets: Lessons from Molecular Biology. Trends Pharmacol Sci 2021; 42:217-225. [PMID: 33495027 DOI: 10.1016/j.tips.2021.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Primary headaches are one of the most common conditions; migraine being most prevalent. Recent work on the pathophysiology of migraine suggests a mismatch in the communication or tuning of the trigeminovascular system, leading to sensitization and the release of calcitonin gene-related peptide (CGRP). In the current Opinion, we use the up-to-date molecular understanding of mechanisms behind migraine pain, to provide novel aspects on how to modify the system and for the development of future treatments; acute as well as prophylactic. We explore the distribution and the expression of neuropeptides themselves, as well as certain ion channels, and most importantly how they may act in concert as modulators of excitability of both the trigeminal C neurons and the Aδ neurons.
Collapse
Affiliation(s)
- Lars Edvinsson
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark; Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.
| | - Kristian Agmund Haanes
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark
| |
Collapse
|
47
|
Abstract
The gut-brain axis is a coordinated communication system that not only maintains homeostasis, but significantly influences higher cognitive functions and emotions, as well as neurological and behavioral disorders. Among the large populations of sensory and motor neurons that innervate the gut, insights into the function of primary afferent nociceptors, whose cell bodies reside in the dorsal root ganglia and nodose ganglia, have revealed their multiple crosstalk with several cell types within the gut wall, including epithelial, vascular, and immune cells. These bidirectional communications have immunoregulatory functions, control host response to pathogens, and modulate sensations associated with gastrointestinal disorders, through activation of immune cells and glia in the peripheral and central nervous system, respectively. Here, we will review the cellular and neurochemical basis of these interactions at the periphery, in dorsal root ganglia, and in the spinal cord. We will discuss the research gaps that should be addressed to get a better understanding of the multifunctional role of sensory neurons in maintaining gut homeostasis and regulating visceral sensitivity.
Collapse
Affiliation(s)
- Nasser Abdullah
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Manon Defaye
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
48
|
Liu F, Yajima T, Wang M, Shen JF, Ichikawa H, Sato T. Effects of trigeminal nerve injury on the expression of galanin and its receptors in the rat trigeminal ganglion. Neuropeptides 2020; 84:102098. [PMID: 33069139 DOI: 10.1016/j.npep.2020.102098] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 11/24/2022]
Abstract
In the spinal nervous system, the expression of galanin (GAL) and galanin receptors (GALRs) that play important roles in the transmission and modulation of nociceptive information can be affected by nerve injury. However, in the trigeminal nervous system, the effects of trigeminal nerve injury on the expression of GAL are controversy in the previous studies. Besides, little is known about the effects of trigeminal nerve injury on the expression of GALRs. In the present study, the effects of trigeminal nerve injury on the expression of GAL and GALRs in the rat trigeminal ganglion (TG) were investigated by using quantitative real-time reverse transcription-polymerase chain reaction and immunohistochemistry. To identify the nerve-injured and nerve-uninjured TG neurons, activating transcription factor 3 (ATF3, the nerve-injured neuron marker) was stained by immunofluorescence. The levels of GAL mRNA in the rostral half and caudal half of the TG dramatically increased after transection of infraorbital nerve (ION) and inferior alveolar nerve (IAN), respectively. Immunohistochemical labeling of GAL and ATF3 revealed that GAL level was elevated in both injured and adjacent uninjured small and medium-sized TG neurons after ION/IAN transection. In addition, the levels of GAL2R-like immunoreactivity were reduced in both injured and adjacent uninjured TG neurons after ION/IAN transection, while levels of GAL1R and GAL3R-like immunoreactivity remained unchanged. Furthermore, the number of small to medium-sized TG neurons co-expressing GAL- and GAL1R/GAL2R/GAL3R-like immunoreactivity was significantly increased after ION/IAN transection. In line with previous studies in other spinal neuron systems, these results suggest that GAL and GALRs play functional roles in orofacial neuropathic pain and trigeminal nerve regeneration after trigeminal nerve injury.
Collapse
Affiliation(s)
- Fei Liu
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo machi, Sendai 980-8575, Japan; State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department II of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province 610041, China.
| | - Takehiro Yajima
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo machi, Sendai 980-8575, Japan
| | - Min Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department II of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department II of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Hiroyuki Ichikawa
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo machi, Sendai 980-8575, Japan
| | - Tadasu Sato
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo machi, Sendai 980-8575, Japan
| |
Collapse
|
49
|
da Silva Fiorin F, do Espírito Santo CC, do Nascimento RS, Cassol G, Plácido E, Santos ARS, Marques JLB, Brocardo PS, Fighera MR, Royes LFF. Capsaicin-sensitive fibers mediate periorbital allodynia and activation of inflammatory cells after traumatic brain injury in rats: Involvement of TRPV1 channels in post-traumatic headache. Neuropharmacology 2020; 176:108215. [PMID: 32574651 DOI: 10.1016/j.neuropharm.2020.108215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/30/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022]
Abstract
Post-traumatic headache (PTH) is a condition that frequently affects individuals after traumatic brain injury (TBI). Inflammation is one of the major causes of this disability. However, little is known about the trigger for, and endurance of, this painful process. Thus, the involvement of fibers containing the transient receptor potential vanilloid 1 (TRPV1) channels on the PTH and inflammation after TBI through neonatal treatment with capsaicin are investigated. Fluid percussion injury (FPI) in adult male Wistar rats caused periorbital allodynia in one, three and seven days after injury, and the neonatal treatment reversed the painful sensation in seven days. The lack of TRPV1 channels reduced the activation of macrophages and glial cells induced by TBI in the trigeminal system, which were characterized by glial fibrillary acidic protein (GFAP) and ionized calcium binding adapter molecule-1 (IBA-1) immune content in the ipsilateral trigeminal ganglion, brainstem, and perilesional cortex. Immunofluorescence analyses of the ipsilateral Sp5C nucleus demonstrated a hypertrophic astrocytes profile after TBI which was reduced with treatment. Moreover, effects of succinate sumatriptan (SUMA - 1 mg/kg), TRPV1 selective antagonist capsazepine (CPZ - 2 mg/kg), and TRP non-selective antagonist ruthenium red (RR - 3 mg/kg) were evaluated. Although all mentioned drugs reduced the painful sensation, SUMA and CPZ demonstrated a stronger effect compared to the RR treatment, reinforcing the involvement of TRPV1 channels in periorbital allodynia after TBI. Hence, this report suggests that TRPV1-containing fibers and TRPV1 channels are able to induce inflammation of the trigeminal system and maintain the painful sensation after TBI.
Collapse
Affiliation(s)
- Fernando da Silva Fiorin
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Caroline Cunha do Espírito Santo
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Raphael Santos do Nascimento
- Instituto de Engenharia Biomédica, Departamento de Engenharia Elétrica e Eletrônica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Gustavo Cassol
- Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Evelini Plácido
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Neuroplasticidade, Departamento de Ciências Morfológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Adair Roberto Soares Santos
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Jefferson Luiz Brum Marques
- Instituto de Engenharia Biomédica, Departamento de Engenharia Elétrica e Eletrônica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Patricia S Brocardo
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Neuroplasticidade, Departamento de Ciências Morfológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Michele Rechia Fighera
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Luiz Fernando Freire Royes
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
50
|
Nose to brain delivery of eletriptan hydrobromide nanoparticles: Preparation, in vitro/in vivo evaluation and effect on trigeminal activation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|