1
|
Singh R, Grover T, Ambekar A, Gupta R, Jain R, Vaswani M, Mishra A, Sharma A. Association of Dopamine pathway gene polymorphisms in patients with alcohol dependence. Asian J Psychiatr 2024; 100:104166. [PMID: 39096585 DOI: 10.1016/j.ajp.2024.104166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/11/2024] [Accepted: 07/19/2024] [Indexed: 08/05/2024]
Affiliation(s)
- Renu Singh
- Laboratory of Cyto-Molecular Genetics, Department of Anatomy, AIIMS, New Delhi 110029, India.
| | - Tripti Grover
- Laboratory of Cyto-Molecular Genetics, Department of Anatomy, AIIMS, New Delhi 110029, India.
| | - Atul Ambekar
- National Drug Dependence Treatment Centre, Department of Psychiatry, AIIMS, New Delhi 110029, India.
| | - Ranjan Gupta
- Laboratory of Cyto-Molecular Genetics, Department of Anatomy, AIIMS, New Delhi 110029, India.
| | - Raka Jain
- National Drug Dependence Treatment Centre, Department of Psychiatry, AIIMS, New Delhi 110029, India.
| | - Meera Vaswani
- Previously, Professor, National Drug Dependence Treatment Centre, Department of Psychiatry, AIIMS, New Delhi 110029, India.
| | - Ashwani Mishra
- National Drug Dependence Treatment Centre, Department of Psychiatry, AIIMS, New Delhi 110029, India.
| | - Arundhati Sharma
- Laboratory of Cyto-Molecular Genetics, Department of Anatomy, AIIMS, New Delhi 110029, India.
| |
Collapse
|
2
|
Merzah M, Natae S, Sándor J, Fiatal S. Single Nucleotide Variants (SNVs) of the Mesocorticolimbic System Associated with Cardiovascular Diseases and Type 2 Diabetes: A Systematic Review. Genes (Basel) 2024; 15:109. [PMID: 38254998 PMCID: PMC10815084 DOI: 10.3390/genes15010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The mesocorticolimbic (MCL) system is crucial in developing risky health behaviors which lead to cardiovascular diseases (CVDs) and type 2 diabetes (T2D). Although there is some knowledge of the MCL system genes linked to CVDs and T2D, a comprehensive list is lacking, underscoring the significance of this review. This systematic review followed PRISMA guidelines and the Cochrane Handbook for Systematic Reviews of Interventions. The PubMed and Web of Science databases were searched intensively for articles related to the MCL system, single nucleotide variants (SNVs, formerly single nucleotide polymorphisms, SNPs), CVDs, T2D, and associated risk factors. Included studies had to involve a genotype with at least one MCL system gene (with an identified SNV) for all participants and the analysis of its link to CVDs, T2D, or associated risk factors. The quality assessment of the included studies was performed using the Q-Genie tool. The VEP and DAVID tools were used to annotate and interpret genetic variants and identify enriched pathways and gene ontology terms associated with the gene list. The review identified 77 articles that met the inclusion criteria. These articles provided information on 174 SNVs related to the MCL system that were linked to CVDs, T2D, or associated risk factors. The COMT gene was found to be significantly related to hypertension, dyslipidemia, insulin resistance, obesity, and drug abuse, with rs4680 being the most commonly reported variant. This systematic review found a strong association between the MCL system and the risk of developing CVDs and T2D, suggesting that identifying genetic variations related to this system could help with disease prevention and treatment strategies.
Collapse
Affiliation(s)
- Mohammed Merzah
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.M.)
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Shewaye Natae
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.M.)
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - János Sándor
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.M.)
- ELKH-DE Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Szilvia Fiatal
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.M.)
| |
Collapse
|
3
|
Blum K, Ashford JW, Kateb B, Sipple D, Braverman E, Dennen CA, Baron D, Badgaiyan R, Elman I, Cadet JL, Thanos PK, Hanna C, Bowirrat A, Modestino EJ, Yamamoto V, Gupta A, McLaughlin T, Makale M, Gold MS. Dopaminergic dysfunction: Role for genetic & epigenetic testing in the new psychiatry. J Neurol Sci 2023; 453:120809. [PMID: 37774561 DOI: 10.1016/j.jns.2023.120809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/02/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
Reward Deficiency Syndrome (RDS), particularly linked to addictive disorders, costs billions of dollars globally and has resulted in over one million deaths in the United States (US). Illicit substance use has been steadily rising and in 2021 approximately 21.9% (61.2 million) of individuals living in the US aged 12 or older had used illicit drugs in the past year. However, only 1.5% (4.1 million) of these individuals had received any substance use treatment. This increase in use and failure to adequately treat or provide treatment to these individuals resulted in 106,699 overdose deaths in 2021 and increased in 2022. This article presents an alternative non-pharmaceutical treatment approach tied to gene-guided therapy, the subject of many decades of research. The cornerstone of this paradigm shift is the brain reward circuitry, brain stem physiology, and neurotransmitter deficits due to the effects of genetic and epigenetic insults on the interrelated cascade of neurotransmission and the net release of dopamine at the Ventral Tegmental Area -Nucleus Accumbens (VTA-NAc) reward site. The Genetic Addiction Risk Severity (GARS) test and pro-dopamine regulator nutraceutical KB220 were combined to induce "dopamine homeostasis" across the brain reward circuitry. This article aims to encourage four future actionable items: 1) the neurophysiologically accurate designation of, for example, "Hyperdopameism /Hyperdopameism" to replace the blaming nomenclature like alcoholism; 2) encouraging continued research into the nature of dysfunctional brainstem neurotransmitters across the brain reward circuitry; 3) early identification of people at risk for all RDS behaviors as a brain check (cognitive testing); 4) induction of dopamine homeostasis using "precision behavioral management" along with the coupling of GARS and precision Kb220 variants; 5) utilization of promising potential treatments include neuromodulating modalities such as Transmagnetic stimulation (TMS) and Deep Brain Stimulation(DBS), which target different areas of the neural circuitry involved in addiction and even neuroimmune agents like N-acetyl-cysteine.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Exercise, Sports and Mental Health, Western University Health Sciences, Pomona, CA, USA; The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX, USA; Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel.
| | - J Wesson Ashford
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA; War Related Illness & Injury Study Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Babak Kateb
- Brain Mapping Foundation, Los Angeles, CA, USA; National Center for Nanobioelectronic, Los Angeles, CA, USA; Brain Technology and Innovation Park, Los Angeles, CA, USA
| | | | - Eric Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX, USA
| | - Catherine A Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, USA
| | - David Baron
- Division of Addiction Research & Education, Center for Exercise, Sports and Mental Health, Western University Health Sciences, Pomona, CA, USA
| | - Rajendra Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, USA; Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| | - Igor Elman
- Center for Pain and the Brain (PAIN Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Waltham, MA, USA; Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH National Institute on Drug Abuse, Bethesda, MD, USA
| | - Panayotis K Thanos
- Department of Psychology & Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Colin Hanna
- Department of Psychology & Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | | | - Vicky Yamamoto
- Brain Mapping Foundation, Los Angeles, CA, USA; National Center for Nanobioelectronic, Los Angeles, CA, USA; Brain Technology and Innovation Park, Los Angeles, CA, USA; Society for Brain Mapping and Therapeutics, Los Angeles, CA, USA; USC-Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | - Thomas McLaughlin
- Division of Reward Deficiency Research, Reward Deficiency Syndrome Clinics of America, Austin, TX, USA
| | - Mlan Makale
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Mark S Gold
- Department of Psychiatry, Washington College of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Suresh N, Kantipudi SJ, Ramu D, Muniratnam SK, Venkatesan V. Association between opioid and dopamine receptor gene polymorphisms OPRM1 rs1799971, DAT VNTR 9-10 repeat allele, DRD1 rs4532 and DRD2 rs1799732 and alcohol dependence: an ethnicity oriented meta-analysis. Pharmacogenet Genomics 2023; 33:139-152. [PMID: 37466123 DOI: 10.1097/fpc.0000000000000502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
OBJECTIVE We carried out a meta-analysis of four opioid and dopamine candidate gene polymorphisms having conflicting results in prior literature, namely OPRM1 rs1799971, DAT VNTR 9-10 repeat, DRD1 rs4532 and DRD2 rs1799732, to clarify their association with alcohol dependence and further stratified results by ethnicity to analyze possible ethnicity-mediated effects. METHODS Inclusion criteria: case-control studies assessing the association between OPRM1 rs1799971, DAT VNTR 9/10 repeat allele, DRD1 rs4532 and DRD2 rs1799732 with alcohol dependence, with sufficient data available to calculate the odds ratio (OR) within a 95% confidence interval. Exclusion criteria: studies of quantitative measures of alcohol consumption, response to medications or analyses of other markers in the candidate genes, studies without controls, animal studies and lack of genotyping data. Information sources were PubMed, Google Scholar and ScienceDirect databases, all of which were searched for articles published till 2021. Heterogeneity between studies and publication bias, subgroup analyses and sensitivity analyses were carried out. RESULTS A total of 41 published studies were included in the current meta-analysis. For the OPRM1 gene, there was a statistically significant association in the Asian population with a pooled OR of 1.707 (95% CI, 1.32-2.20 P < 0.0001) and 1.618 (95% CI, 1.16-2.26 P = 0.005) in the additive and dominant genetic models. For DAT VNTR 9/10 repeat, a statistically significant association of the risk vs. common allele was observed in AD with a pooled OR of 1.104 (95% CI, 1.00-1.21 P = 0.046) in the allele model and the additive genetic model in the Caucasian population with pooled OR of 1.152 (95% CI, 1.01-1.31 P = 0.034). CONCLUSION Results indicate that some of the effects may be ethnicity-specific. OTHER The meta-analysis has been registered in the CRD PROSPERO (CRD42023411576).
Collapse
Affiliation(s)
| | | | - Deepika Ramu
- Department of Human Genetics SRIHER, Porur, Chennai
| | | | | |
Collapse
|
5
|
Veerappa A, Pendyala G, Guda C. A systems omics-based approach to decode substance use disorders and neuroadaptations. Neurosci Biobehav Rev 2021; 130:61-80. [PMID: 34411560 PMCID: PMC8511293 DOI: 10.1016/j.neubiorev.2021.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/23/2021] [Accepted: 08/14/2021] [Indexed: 11/15/2022]
Abstract
Substance use disorders (SUDs) are a group of neuropsychiatric conditions manifesting due to excessive dependence on potential drugs of abuse such as psychostimulants, opioids including prescription opioids, alcohol, inhalants, etc. Experimental studies have generated enormous data in the area of SUDs, but outcomes from such data have remained largely fragmented. In this review, we attempt to coalesce these data points providing an important first step towards our understanding of the etiology of SUDs. We propose and describe a 'core addictome' pathway that behaves central to all SUDs. Besides, we also have made some notable observations paving way for several hypotheses; MECP2 behaves as a master switch during substance use; five distinct gene clusters were identified based on respective substance addiction; a central cluster of genes serves as a hub of the addiction pathway connecting all other substance addiction clusters. In addition to describing these findings, we have emphasized the importance of some candidate genes that are of substantial interest for further investigation and serve as high-value targets for translational efforts.
Collapse
Affiliation(s)
- Avinash Veerappa
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gurudutt Pendyala
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
6
|
Moses TE, Burmeister M, Greenwald MK. Heroin delay discounting and impulsivity: Modulation by DRD1 genetic variation. Addict Biol 2020; 25:e12777. [PMID: 31192519 DOI: 10.1111/adb.12777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/11/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dopamine D1 receptors (encoded by DRD1) are implicated in drug addiction and high-risk behaviors. Delay discounting (DD) procedures measure decisional balance between choosing smaller/sooner rewards vs larger/later rewards. Individuals with higher DD (rapid discounting) are prone to maladaptive behaviors that provide immediate reinforcement (eg, substance use). DRD1 variants have been linked with increased DD (in healthy volunteers) and opioid abuse. This study determined whether four dopaminergic functional variants modulated heroin DD and impulsivity. METHODS Substance use, DD, and genotype data (DRD1 rs686 and rs5326, DRD3 rs6280, COMT rs4680) were obtained from 106 current heroin users. Subjects completed an array of DD choices during two imagined conditions: heroin satiation and withdrawal. Rewards were expressed as $10 heroin bag units, with maximum delayed amount of 30 bags. Delays progressively increased from 3 to 96 hours. RESULTS DRD1 rs686 (A/A, n = 25; G/A, n = 56; G/G, n = 25) was linearly related to the difference in heroin DD (area under the curve; AUC) between the heroin satiation and withdrawal conditions; specifically, G/G homozygotes had a significantly smaller (satiation minus withdrawal) AUC difference score had higher drug-use impulsivity questionnaire scores, relative to A/A homozygotes, with G/A intermediate. DRD3 and COMT variants were not associated with these DD and impulsivity outcomes. CONCLUSION DRD1 rs686 modulated the difference in heroin DD score between pharmacological states and was associated with drug-use impulsivity. These data support a role of DRD1 in opioid DD and impulsive behaviors.
Collapse
|
7
|
Blum K, Baron D, Lott L, Ponce JV, Siwicki D, Boyett B, Steinberg B, Modestino EJ, Fried L, Hauser M, Simpatico T, Downs BW, McLaughlin T, Hajela R, Badgaiyan RD. In Search of Reward Deficiency Syndrome (RDS)-free Controls: The "Holy Grail" in Genetic Addiction Risk Testing. CURRENT PSYCHOPHARMACOLOGY 2020; 9:7-21. [PMID: 32432025 PMCID: PMC7236426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND The search for an accurate, gene-based test to identify heritable risk factors for Reward Deficiency Syndrome (RDS) was conducted based on hundreds of published studies about the role of dopamine in addictive behaviors, including risk for drug dependence and compulsive/impulsive behavior disorders. The term RDS was first coined by Blum's group in 1995 to identify a group of behaviors with a common neurobiological mechanism associated with a polymorphic allelic propensity for hypodopaminergia. OBJECTIVES To outline the process used to select risk alleles of reward genes for the Genetic Addiction Risk Score (GARS) test. Consequently, to address the limitations caused by inconsistent results that occur in many case-control behavioral association studies. These limitations are perhaps due to the failure of investigators to adequately screen controls for drug and alcohol use disorder, and any of the many RDS behaviors, including nicotine dependence, obesity, pathological gambling, and internet gaming addiction. METHODS Review of the literature related to the function of risk alleles of reward genes associated with hypodopaminergia relevant case-control association studies for the selection of alleles to be measured by the Genetic Addiction Risk Score (GARS) test. RESULTS The prevalence of the DRD2 A1 allele in unscreened controls (33.3%), compared to "Super-Controls" [highly screened RDS controls (3.3%) in proband and family] is used to exemplify a possible solution. CONCLUSION Unlike one gene-one disease (OGOD), RDS is polygenetic, and very complex. In addition, any RDS-related behaviors must be eliminated from the control group in order to obtain the best possible statistical analysis instead of comparing the phenotype with disease-ridden controls.
Collapse
Affiliation(s)
- Kenneth Blum
- Graduate School of Biomedical Science, Western University Health Sciences, Pomona, CA, USA
- Eotvos Loránd University, Institute of Psychology, Budapest, Hungary
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, Dayton, OH, USA
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
- Division of Clinical Neurology, PATH Foundation, New York, NY, USA
- Dominion Diagnostics, North Kingston, RI, USA
- Division of Precision Addiction Management, Geneus Health, San Antonio, TX, USA
- Division of Neuroscience & Addiction Therapy Research, Pathway HealthCare, Birmingham, AL, USA
- Victory Nutrition International, Inc., Lederach, PA, USA
| | - David Baron
- Graduate School of Biomedical Science, Western University Health Sciences, Pomona, CA, USA
| | - Lisa Lott
- Division of Precision Addiction Management, Geneus Health, San Antonio, TX, USA
| | - Jessica V. Ponce
- Division of Precision Addiction Management, Geneus Health, San Antonio, TX, USA
| | - David Siwicki
- Division of Precision Addiction Management, Geneus Health, San Antonio, TX, USA
| | - Brent Boyett
- Division of Neuroscience & Addiction Therapy Research, Pathway HealthCare, Birmingham, AL, USA
| | | | | | - Lyle Fried
- Transformations Treatment Center, Delray Beach, FL, USA
| | - Mary Hauser
- Dominion Diagnostics, North Kingston, RI, USA
| | - Thomas Simpatico
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Bill W. Downs
- Victory Nutrition International, Inc., Lederach, PA, USA
| | | | - Raju Hajela
- Department of Family Medicine, Cummings School of Medicine, University of Calgary, Calgary, CN, Canada
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, and Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Sun Z, Ma Y, Xie L, Huang J, Duan S, Guo R, Xie Y, Lv J, Lin Z, Ma S. Behavioral Changes and Neuronal Damage in Rhesus Monkeys after 10 Weeks of Ketamine Administration Involve Prefrontal Cortex Dopamine D2 Receptor and Dopamine Transporter. Neuroscience 2019; 415:97-106. [PMID: 31330230 DOI: 10.1016/j.neuroscience.2019.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/01/2019] [Accepted: 07/11/2019] [Indexed: 02/05/2023]
Abstract
The dopamine D2 receptor (DRD2) and dopamine transporter (DAT) play a regulatory role in dopaminergic neurotransmission and thus play an important role in drug addiction. The prefrontal cortex (PFC), a critical part of the mesencephalic dopaminergic system, is thought to be involved in the development and maintenance of drug addiction. The addiction to ketamine is thought to induce behavioral effects primarily through actions on the central nervous system. However, the neural mechanism underlying the effects of ketamine addiction remains unclear. In this study, we investigate the involvement of PFC DRD2 and DAT in ketamine addiction effects after ketamine administration for 10 weeks in nonhuman primates. To this end, after administering ketamine to rhesus monkeys for 10 weeks, we assessed changes in body weight and behavior. Additionally, neuronal changes in the PFC were examined by hematoxylin and eosin (HE) staining; the DRD2 and DAT mRNA and protein expression levels in the PFC were determined by real-time PCR and Western blot analysis, respectively. After 10-week ketamine administration, the assessment of the manifestations of toxicity in rhesus monkeys revealed significant changes in body weight and behavior, decreased DRD2 and DAT mRNA and protein expression in the PFC, and histological abnormalities including neuronal eosinophilia, pyknosis and disorderly arrangement of neurons in the PFC. These results suggest that the reduced expression of DRD2 and DAT in PFC could be involved in the behavioral and the neurological changes induced by ketamine administration, which may play an important role in the molecular mechanisms of ketamine addiction.
Collapse
Affiliation(s)
- Zongbo Sun
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou 515041, Guangdong, China; Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong 515041, China; Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong 515041, China
| | - Ye Ma
- Department of Linguistics & Languages, Michigan State University, East Lansing, Michigan MI48824, USA
| | - Lei Xie
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou 515041, Guangdong, China; Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong 515041, China; Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong 515041, China
| | - Jinzhuang Huang
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou 515041, Guangdong, China; Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong 515041, China; Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong 515041, China
| | - Shouxing Duan
- Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong 515041, China; Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong 515041, China; Department of Pediatric Surgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong 515041, China
| | - Ruiwei Guo
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou 515041, Guangdong, China; Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong 515041, China; Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong 515041, China
| | - Yao Xie
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou 515041, Guangdong, China; Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong 515041, China; Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong 515041, China
| | - Junyao Lv
- Department of Forensic Medicine, Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong 515041, China
| | - Zhirong Lin
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou 515041, Guangdong, China; Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong 515041, China
| | - Shuhua Ma
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou 515041, Guangdong, China; Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong 515041, China; Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong 515041, China.
| |
Collapse
|
9
|
Baker TE, Castellanos-Ryan N, Schumann G, Cattrell A, Flor H, Nees F, Banaschewski T, Bokde A, Whelan R, Buechel C, Bromberg U, Papadopoulos Orfanos D, Gallinat J, Garavan H, Heinz A, Walter H, Brühl R, Gowland P, Paus T, Poustka L, Martinot JL, Lemaitre H, Artiges E, Paillère Martinot ML, Smolka MN, Conrod P. Modulation of orbitofrontal-striatal reward activity by dopaminergic functional polymorphisms contributes to a predisposition to alcohol misuse in early adolescence. Psychol Med 2019; 49:801-810. [PMID: 29909784 DOI: 10.1017/s0033291718001459] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Abnormalities in reward circuit function are considered a core feature of addiction. Yet, it is still largely unknown whether these abnormalities stem from chronic drug use, a genetic predisposition, or both. METHODS In the present study, we investigated this issue using a large sample of adolescent children by applying structural equation modeling to examine the effects of several dopaminergic polymorphisms of the D1 and D2 receptor type on the reward function of the ventral striatum (VS) and orbital frontal cortex (OFC), and whether this relationship predicted the propensity to engage in early alcohol misuse behaviors at 14 years of age and again at 16 years of age. RESULTS The results demonstrated a regional specificity with which the functional polymorphism rs686 of the D1 dopamine receptor (DRD1) gene and Taq1A of the ANKK1 gene influenced medial and lateral OFC activation during reward anticipation, respectively. Importantly, our path model revealed a significant indirect relationship between the rs686 of the DRD1 gene and early onset of alcohol misuse through a medial OFC × VS interaction. CONCLUSIONS These findings highlight the role of D1 and D2 in adjusting reward-related activations within the mesocorticolimbic circuitry, as well as in the susceptibility to early onset of alcohol misuse.
Collapse
Affiliation(s)
- Travis E Baker
- Department of Psychiatry,Universite de Montreal, CHU Ste Justine Hospital,Montreal,Canada
| | | | | | - Anna Cattrell
- Institute of Psychiatry, King's College London,London,UK
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience,Central Institute of Mental Health,Medical Faculty Mannheim,Heidelberg University,Square J5, Mannheim,Germany
| | - Frauke Nees
- Department of Cognitive and Clinical Neuroscience,Central Institute of Mental Health,Medical Faculty Mannheim,Heidelberg University,Square J5, Mannheim,Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry,Central Institute of Mental Health,Faculty of Clinical Medicine Mannheim,Medical Faculty Mannheim,Heidelberg University,Square J5, 68159 Mannheim,Germany
| | - Arun Bokde
- Discipline of Psychiatry,School of Medicine and Trinity College Institute of Neurosciences, Trinity College,Dublin,Ireland
| | - Rob Whelan
- Discipline of Psychiatry,School of Medicine and Trinity College Institute of Neurosciences, Trinity College,Dublin,Ireland
| | - Christian Buechel
- University Medical Centre Hamburg-Eppendorf,Haus S10, Martinistr. 52, Hamburg,Germany
| | - Uli Bromberg
- University Medical Centre Hamburg-Eppendorf,Haus S10, Martinistr. 52, Hamburg,Germany
| | | | - Juergen Gallinat
- Department of Psychiatry and Psychotherapy,Campus Charité Mitte, Charité,Universitätsmedizin Berlin,Charitéplatz 1, Berlin,Germany
| | - Hugh Garavan
- Departments of Psychiatry and Psychology,University of Vermont,05405 Burlington, Vermont,USA
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy,Campus Charité Mitte, Charité,Universitätsmedizin Berlin,Charitéplatz 1, Berlin,Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy,Campus Charité Mitte, Charité,Universitätsmedizin Berlin,Charitéplatz 1, Berlin,Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt,Abbestr. 2 - 12, Berlin,Germany
| | - Penny Gowland
- School of Psychology, University of Nottingham, University Park,Nottingham,UK
| | - Tomáš Paus
- Rotman Research Institute, University of Toronto,Toronto,Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry,Central Institute of Mental Health,Faculty of Clinical Medicine Mannheim,Medical Faculty Mannheim,Heidelberg University,Square J5, 68159 Mannheim,Germany
| | | | - Herve Lemaitre
- Institut National de la Sante et de la Recherche Medicale, INSERM CEAUnit1000, Imaging & Psychiatry, University Paris Sud,91400 Orsay,France
| | - Eric Artiges
- Department of Psychiatry,Universite de Montreal, CHU Ste Justine Hospital,Montreal,Canada
| | | | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center,Technische Universität Dresden,Dresden,Germany
| | - Patricia Conrod
- Department of Psychiatry,Universite de Montreal, CHU Ste Justine Hospital,Montreal,Canada
| |
Collapse
|
10
|
Beu ND, Burns NR, Baetu I. Polymorphisms in dopaminergic genes predict proactive processes of response inhibition. Eur J Neurosci 2019; 49:1127-1148. [DOI: 10.1111/ejn.14323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/28/2018] [Accepted: 12/12/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Nathan D. Beu
- The School of Psychology University of Adelaide Adelaide South Australia Australia
| | - Nicholas R. Burns
- The School of Psychology University of Adelaide Adelaide South Australia Australia
| | - Irina Baetu
- The School of Psychology University of Adelaide Adelaide South Australia Australia
| |
Collapse
|
11
|
Blum K, Gondré-Lewis MC, Baron D, Thanos PK, Braverman ER, Neary J, Elman I, Badgaiyan RD. Introducing Precision Addiction Management of Reward Deficiency Syndrome, the Construct That Underpins All Addictive Behaviors. Front Psychiatry 2018; 9:548. [PMID: 30542299 PMCID: PMC6277779 DOI: 10.3389/fpsyt.2018.00548] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Kenneth Blum
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
- Department of Psychiatry, Boonshoft School of Medicine, Dayton VA Medical Center, Wright State University, Dayton, OH, United States
- University of Vermont College of Medicine, Burlington, VM, United States
- Division of Addictive Services, Dominion Diagnostics, LLC, North Kingston, RI, United States
- Division of Precision Addiction Management, Geneus Health, LLC, San Antonio, TX, United States
- Institute of Psychology, University of Eötvös Loránd, Budapest, Hungary
- Department of Clinical Neurology, Path Foundation, New York, NY, United States
- Division of Neuroscience and Addiction Therapy, Summit Estate Recovery Center, Los Gatos, CA, United States
- Department of Neurogenetics Research and Addiction Therapy, The Florida House Experience, Deerfield Beach, FL, United States
- National Human Genome Center, Howard University, Washington, DC, United States
| | - Marjorie C. Gondré-Lewis
- Division of Precision Addiction Management, Geneus Health, LLC, San Antonio, TX, United States
- Department of Anatomy, Howard University College of Medicine, Washington, DC, United States
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical and Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - David Baron
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
- Division of Precision Addiction Management, Geneus Health, LLC, San Antonio, TX, United States
| | - Panayotis K. Thanos
- Division of Precision Addiction Management, Geneus Health, LLC, San Antonio, TX, United States
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical and Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- Department of Psychology, University at Buffalo, Buffalo, NY, United States
| | - Eric R. Braverman
- Department of Clinical Neurology, Path Foundation, New York, NY, United States
| | - Jennifer Neary
- Division of Precision Addiction Management, Geneus Health, LLC, San Antonio, TX, United States
| | - Igor Elman
- Division of Precision Addiction Management, Geneus Health, LLC, San Antonio, TX, United States
- Department of Psychiatry, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Rajendra D. Badgaiyan
- Division of Precision Addiction Management, Geneus Health, LLC, San Antonio, TX, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
12
|
Jiménez KM, Pereira-Morales AJ, Forero DA. A Functional Polymorphism in the DRD1 Gene, That Modulates Its Regulation by miR-504, Is Associated with Depressive Symptoms. Psychiatry Investig 2018; 15:402-406. [PMID: 29614853 PMCID: PMC5912498 DOI: 10.30773/pi.2017.10.16.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/28/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE The aim of this study was to examine a possible association between depressive symptoms and a functional polymorphism (rs686) that modulates the regulation of DRD1 gene by miR-504. METHODS A total of 239 young Colombian subjects were evaluated with the Patient Health Questionnaire-9 (PHQ-9) scale and genotyped for the rs686 polymorphism. A linear regression model, corrected by age and gender, was used. RESULTS A significant association between the rs686 polymorphism and PHQ-9 scores was found, under a dominant genetic model (p=0.0094). CONCLUSION These results provide novel evidence about the growing role of inherited variants in binding sites for brain-expressed miRNAs on depressive symptomatology.
Collapse
Affiliation(s)
- Karen M Jiménez
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Angela J Pereira-Morales
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Diego A Forero
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| |
Collapse
|
13
|
Elam KK, Chassin L, Lemery-Chalfant K, Pandika D, Wang FL, Bountress K, Dick D, Agrawal A. Affiliation with substance-using peers: Examining gene-environment correlations among parent monitoring, polygenic risk, and children's impulsivity. Dev Psychobiol 2017; 59:561-573. [PMID: 28561888 PMCID: PMC6035731 DOI: 10.1002/dev.21529] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 05/05/2017] [Indexed: 02/05/2023]
Abstract
Parental monitoring can buffer the effect of deviant peers on adolescents' substance use by reducing affiliation with substance-using peers. However, children's genetic predispositions may evoke poorer monitoring, contributing to negative child outcomes. We examined evocative genotype-environment correlations underlying children's genetic predisposition for behavioral undercontrol and parental monitoring in early adolescence via children's impulsivity in middle childhood, and the influence of parental monitoring on affiliation with substance-using peers a year and a half later (n = 359). Genetic predisposition for behavioral undercontrol was captured using a polygenic risk score, and a portion of passive rGE was controlled by including parents' polygenic risk scores. Children's polygenic risk predicted poorer parental monitoring via greater children's impulsivity, indicating evocative rGE, controlling for a portion of passive rGE. Poorer parental monitoring predicted greater children's affiliation with substance-using peers a year and a half later. Results are discussed with respect to gene-environment correlations within developmental cascades.
Collapse
Affiliation(s)
- Kit K. Elam
- T. Denny Sanford School of Social and Family Dynamics, Arizona State University, Tempe, Arizona
| | - Laurie Chassin
- Department of Psychology, Arizona State University, Tempe, Arizona
| | | | - Danielle Pandika
- Department of Psychology, Arizona State University, Tempe, Arizona
| | - Frances L. Wang
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kaitlin Bountress
- National Crime Victims Research & Treatment Center, Medical University of South Carolina, Charleston, South Carolina
| | - Danielle Dick
- Department of Psychology, Virginia Commonwealth University, Richmond, Virginia
| | - Arpana Agrawal
- Department of Psychological & Brain Sciences, Washington University in St. Louis, Saint Louis, Missouri
| |
Collapse
|
14
|
Polymorphisms of Dopamine Receptor Genes and Risk of L-Dopa-Induced Dyskinesia in Parkinson's Disease. Int J Mol Sci 2017; 18:ijms18020242. [PMID: 28125015 PMCID: PMC5343779 DOI: 10.3390/ijms18020242] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 12/27/2022] Open
Abstract
L-dopa–induced dyskinesia (LID) is a frequent motor complication of Parkinson’s disease (PD), associated with a negative prognosis. Previous studies showed an association between dopamine receptor (DR) gene (DR) variants and LID, the results of which have not been confirmed. The present study is aimed to determine whether genetic differences of DR are associated with LID in a small but well-characterized cohort of PD patients. To this end we enrolled 100 PD subjects, 50 with and 50 without LID, matched for age, gender, disease duration and dopaminergic medication in a case-control study. We conducted polymerase chain reaction for single nucleotide polymorphisms (SNP) in both D1-like (DRD1A48G; DRD1C62T and DRD5T798C) and D2-like DR (DRD2G2137A, DRD2C957T, DRD3G25A, DRD3G712C, DRD4C616G and DRD4nR VNTR 48bp) analyzed genomic DNA. Our results showed that PD patients carrying allele A at DRD3G3127A had an increased risk of LID (OR 4.9; 95% CI 1.7–13.9; p = 0.004). The present findings may provide valuable information for personalizing pharmacological therapy in PD patients.
Collapse
|
15
|
Ferrari M, Comi C, Marino F, Magistrelli L, De Marchi F, Cantello R, Riboldazzi G, Bono G, Cosentino M. Polymorphisms of dopamine receptor genes and risk of visual hallucinations in Parkinson's patients. Eur J Clin Pharmacol 2016; 72:1335-1341. [PMID: 27497990 DOI: 10.1007/s00228-016-2111-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/26/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Visual hallucinations (VHs) are frequent non-motor complication of Parkinson's disease (PD), associated to a negative prognosis. Previous studies showed an association between dopamine receptor (DR) gene (DR) variants and psychosis in Alzheimer's disease, addictions, schizophrenia, and bipolar disorder. However, there are only a few studies on DR variants and VHs in PD, which did not provide conclusive results. OBJECTIVES The present study aimed to determine whether genetic differences of DR are associated with visual hallucinations (VHs) in a cohort of Parkinson's disease (PD) patients. METHODS A case-control study of 84 PD subjects, 42 with and 42 without VHs,that were matched for age, gender, disease duration, and dopaminergic medication was conducted. Polymerase chain reaction for SNPs in both D1-like (DRD1A-48G [rs4532] and C62T [rs686], DRD5T798C [rs6283]) and D2-like DR (DRD2G2137A [rs1800497] and C957T [rs6277], DRD3G25A [rs6280] and G712C [rs1800828], DRD4C616G [rs747302] and nR VNTR 48bp) analyzed genomic DNA. RESULTS Patients carrying allele T at DRD1C62T had an increased risk of VHs, expressed as OR (95 % CI, p value), of 10.7 (2.9-40, p = 0.0001). Moreover, patients with DRD1-48 GG and 62TT genotype displayed shorter time to VHs, whereas a longer time to VHs was found in subjects carrying the DRD4 CG alleles. CONCLUSIONS PD patients with VHs display higher frequency of DR SNPs associated with increased D1-like activity and decreased D2-like activity. Our data are in line with associations reported in other neurodegenerative and psychiatric conditions. Results likely provide valuable information for personalizing pharmacological therapy in PD patients.
Collapse
Affiliation(s)
- M Ferrari
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, Italy.
| | - C Comi
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - F Marino
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, Italy
| | - L Magistrelli
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - F De Marchi
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - R Cantello
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - G Riboldazzi
- Departments of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - G Bono
- Departments of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - M Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, Italy
| |
Collapse
|
16
|
Elam KK, Wang FL, Bountress K, Chassin L, Pandika D, Lemery-Chalfant K. Predicting substance use in emerging adulthood: A genetically informed study of developmental transactions between impulsivity and family conflict. Dev Psychopathol 2016; 28:673-88. [PMID: 27427799 PMCID: PMC4955880 DOI: 10.1017/s0954579416000249] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Deviance proneness models propose a multilevel interplay in which transactions among genetic, individual, and family risk factors place children at increased risk for substance use. We examined bidirectional transactions between impulsivity and family conflict from middle childhood to adolescence and their contributions to substance use in adolescence and emerging adulthood (n = 380). Moreover, we examined children's, mothers', and fathers' polygenic risk scores for behavioral undercontrol, and mothers' and fathers' interparental conflict and substance disorder diagnoses as predictors of these transactions. The results support a developmental cascade model in which children's polygenic risk scores predicted greater impulsivity in middle childhood. Impulsivity in middle childhood predicted greater family conflict in late childhood, which in turn predicted greater impulsivity in late adolescence. Adolescent impulsivity subsequently predicted greater substance use in emerging adulthood. Results are discussed with respect to evocative genotype-environment correlations within developmental cascades and applications to prevention efforts.
Collapse
|
17
|
Beste C, Stock AK, Epplen JT, Arning L. Dissociable electrophysiological subprocesses during response inhibition are differentially modulated by dopamine D1 and D2 receptors. Eur Neuropsychopharmacol 2016; 26:1029-36. [PMID: 27021648 DOI: 10.1016/j.euroneuro.2016.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 01/17/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
Action control is achieved through a multitude of cognitive processes. One of them is the ability to inhibit responses, for which the dopaminergic systems is known to play an important role. Many lines of psychophysiological research substantiate that two distinct response inhibition subprocesses exist, but it has remained elusive whether they can be attributed to distinct neurobiological factors governing the dopaminergic system. We, therefore, investigated this question by examining the effects of DRD1 (rs4532) and DRD2 (rs6277) receptor polymorphisms on electrophysiological correlates of response inhibition subprocesses (i.e., Nogo-N2 and Nogo-P3) in 195 healthy human subjects with a standard Go/Nogo task. The results show that response inhibition performance at a behavioral level is affected by DRD1 and DRD2 receptor variation. However, from an electrophysiological point of view these effects emerge via different mechanisms selectively affected by DRD1 and DRD2 receptor variation. While the D1 receptor system is associated with pre-motor inhibition electrophysiological correlates of response inhibition processes (Nogo-N2), the D2 receptor system is associated with electrophysiological correlates of outcome evaluation processes. Dissociable cognitive-neurophysiological subprocesses of response inhibition are hence attributable to distinct dopamine receptor systems.
Collapse
Affiliation(s)
- Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany.
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| | - Jörg T Epplen
- Department of Human Genetics, Medical Faculty, Ruhr-Universität Bochum, Germany; Faculty of Health, University Witten/Herdecke, Witten, Germany
| | - Larissa Arning
- Department of Human Genetics, Medical Faculty, Ruhr-Universität Bochum, Germany
| |
Collapse
|
18
|
Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption. PLoS One 2016; 11:e0146257. [PMID: 26730594 PMCID: PMC4701666 DOI: 10.1371/journal.pone.0146257] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/15/2015] [Indexed: 01/17/2023] Open
Abstract
Long lasting abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to brain adaptations leading to ethanol toxicity and AUD. We employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has been shown to induce progressive ethanol consumption in rodents. Brain CIE-responsive expression networks were identified by microarray analysis across five regions of the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-hours to 7-days following CIE. Weighted Gene Correlated Network Analysis (WGCNA) was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis showed that long-lasting gene regulation occurred 7-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC) and hippocampus. Across all brain regions, however, ethanol-responsive expression changes occurred mainly within the first 8-hours after removal from ethanol. Bioinformatics analysis showed that neuroinflammatory responses were seen across multiple brain regions at early time-points, whereas co-expression modules related to neuroplasticity, chromatin remodeling, and neurodevelopment were seen at later time-points and in specific brain regions (PFC or HPC). In PFC a module containing Bdnf was identified as highly CIE responsive in a biphasic manner, with peak changes at 0 hours and 5 days following CIE, suggesting a possible role in mechanisms underlying long-term molecular and behavioral response to CIE. Bioinformatics analysis of this network and several other modules identified Let-7 family microRNAs as potential regulators of gene expression changes induced by CIE. Our results suggest a complex temporal and regional pattern of widespread gene network responses involving neuroinflammatory and neuroplasticity related genes as contributing to physiological and behavioral responses to chronic ethanol.
Collapse
|
19
|
Baetu I, Burns NR, Urry K, Barbante GG, Pitcher JB. Commonly-occurring polymorphisms in the COMT, DRD1 and DRD2 genes influence different aspects of motor sequence learning in humans. Neurobiol Learn Mem 2015; 125:176-88. [DOI: 10.1016/j.nlm.2015.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/15/2015] [Accepted: 09/18/2015] [Indexed: 02/06/2023]
|
20
|
Celorrio D, Muñoz X, Amiano P, Dorronsoro M, Bujanda L, Sánchez MJ, Molina-Montes E, Navarro C, Chirlaque MD, MaríaHuerta J, Ardanaz E, Barricarte A, Rodriguez L, Duell EJ, Hijona E, Herreros-Villanueva M, Sala N, Alfonso-Sánchez MA, de Pancorbo MM. Influence of Dopaminergic System Genetic Variation and Lifestyle Factors on Excessive Alcohol Consumption. Alcohol Alcohol 2015; 51:258-67. [PMID: 26447226 DOI: 10.1093/alcalc/agv114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 07/30/2015] [Indexed: 01/13/2023] Open
Abstract
AIMS To examine the role of genetic and environmental factors in the pathogenesis of alcohol dependence in a Spanish cohort of women and men. METHODS We analyzed the relationship between 56 genetic variants in 7 genes associated with the dopaminergic reward pathway and excessive alcohol consumption. The study sample (N = 1533, of which 746 were women) consisted of 653 heavy consumers and 880 very low consumers from the Spanish subcohort of the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Single nucleotide polymorphisms (SNPs) were genotyped using a customized array. Lifestyle variables were also examined to assess associations between genetic and environmental factors. RESULTS No statistically significant differences were found between cases and controls for the allele frequencies in five genes: TH, SLC18A2, DRD1, DRD3 and COMT. Conversely, some alleles of the 12 SNPs from the DRD2 locus and the 5 from the MAOA locus showed significant associations with excessive alcohol consumption. Namely, rs10891556 (DRD2) proved to be the only SNP positively correlated with excessive alcohol consumption in both sexes. DRD2 rs1800497 and rs877138 were significantly associated in men, whereas DRD2 rs17601612 and rs4936271 and MAOA rs5906898 were associated with excessive alcohol consumption in women. A correspondence analysis provided an overall lifestyle profile of excessive drinkers, who were predominantly men who smoked, had large intakes of meat, small intakes of fruit and vegetables, whose jobs did not require high education levels and who engaged in little physical activity. CONCLUSIONS It has shown the influence of dopaminergic pathway in the genetics of alcohol dependence with differences between men and women and providing a lifestyle profile of excessive drinkers.
Collapse
Affiliation(s)
- David Celorrio
- BIOMICs Research Group, 'Lucio Lascaray' Center for Research and Advanced Studies (CIEA), University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Xavier Muñoz
- Molecular Epidemiology Group, Translational Research Laboratory, Catalan Institute of Oncology (IDIBELL), Barcelona, Spain Unit of Nutrition, and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (IDIBELL), Barcelona, Spain
| | - Pilar Amiano
- Public Health Division of Gipuzkoa, Department of Health of the Regional Government of the Basque Country, Donostia, Spain BIODonostia Research Institute, San Sebastián, Spain CIBER Epidemiología y Salud Pública CIBERESP, Barcelona, Spain
| | - Miren Dorronsoro
- Public Health Division of Gipuzkoa, Department of Health of the Regional Government of the Basque Country, Donostia, Spain BIODonostia Research Institute, San Sebastián, Spain CIBER Epidemiología y Salud Pública CIBERESP, Barcelona, Spain
| | - Luis Bujanda
- Departmenet of Gastroenterology, Donostia Hospital-Instituto Biodonostia, University of the Basque Country (UPV/EHU), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), San Sebastian, Spain
| | - María-José Sánchez
- CIBER Epidemiología y Salud Pública CIBERESP, Barcelona, Spain Andalusian School of Public Health, Granada, Spain
| | - Esther Molina-Montes
- CIBER Epidemiología y Salud Pública CIBERESP, Barcelona, Spain Andalusian School of Public Health, Granada, Spain
| | - Carmen Navarro
- CIBER Epidemiología y Salud Pública CIBERESP, Barcelona, Spain Department of Epidemiology, Murcia Health Council, Murcia, Spain
| | - M Dolores Chirlaque
- CIBER Epidemiología y Salud Pública CIBERESP, Barcelona, Spain Department of Epidemiology, Murcia Health Council, Murcia, Spain
| | - José MaríaHuerta
- CIBER Epidemiología y Salud Pública CIBERESP, Barcelona, Spain Department of Epidemiology, Murcia Health Council, Murcia, Spain
| | - Eva Ardanaz
- CIBER Epidemiología y Salud Pública CIBERESP, Barcelona, Spain Public Health Institute of Navarra, Pamplona, Spain
| | - Aurelio Barricarte
- CIBER Epidemiología y Salud Pública CIBERESP, Barcelona, Spain Public Health Institute of Navarra, Pamplona, Spain
| | | | - Eric J Duell
- Unit of Nutrition, and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (IDIBELL), Barcelona, Spain
| | - Elizabeth Hijona
- Departmenet of Gastroenterology, Donostia Hospital-Instituto Biodonostia, University of the Basque Country (UPV/EHU), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), San Sebastian, Spain
| | - Marta Herreros-Villanueva
- Departmenet of Gastroenterology, Donostia Hospital-Instituto Biodonostia, University of the Basque Country (UPV/EHU), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), San Sebastian, Spain
| | - Núria Sala
- Molecular Epidemiology Group, Translational Research Laboratory, Catalan Institute of Oncology (IDIBELL), Barcelona, Spain Unit of Nutrition, and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (IDIBELL), Barcelona, Spain
| | - Miguel A Alfonso-Sánchez
- BIOMICs Research Group, 'Lucio Lascaray' Center for Research and Advanced Studies (CIEA), University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Marian M de Pancorbo
- BIOMICs Research Group, 'Lucio Lascaray' Center for Research and Advanced Studies (CIEA), University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| |
Collapse
|
21
|
Cosentino M, Ferrari M, Kustrimovic N, Rasini E, Marino F. Influence of dopamine receptor gene polymorphisms on circulating T lymphocytes: A pilot study in healthy subjects. Hum Immunol 2015; 76:747-52. [PMID: 26429319 DOI: 10.1016/j.humimm.2015.09.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 08/24/2015] [Accepted: 09/27/2015] [Indexed: 01/11/2023]
Abstract
Dopamine is a key transmitter in the neuroimmune network, acting through five dopaminergic receptors (DR): the D1-like D1 and D5 and the D2-like D2, D3 and D4. Several DR gene variants exist and may affect DR expression and activity. We assessed total lymphocytes, CD3+, CD4+ and CD8+ T lymphocytes in peripheral blood of healthy subjects and their association with selected DR gene variants (DRD1 rs4532 and rs686, DRD5 rs6283, DRD2 rs1800497 and rs6277, DRD3 rs6280 and rs1800828, DRD4 rs747302 and 7 48-base pair VNTR). DRD1 rs4532 and rs686 and DRD5 rs6283 were associated with total lymphocytes, and with CD3+ and CD4+ (but not CD8+) T lymphocytes, while none of the D2-like DR gene variants showed any association with lymphocyte counts. An arbitrary score based on the activity of D1-like vs D2-like DR correlated with total lymphocytes, CD3+ and CD4+ T cells (but not with CD8+ T cells). The association between D1-like DR gene variants and lymphocyte count, and in particular with CD4+ (but not CD8+) T lymphocytes, may imply a functional prevalence of D1-like over D2-like DR in CD4+ T cells. This is the first study showing an influence of DR gene polymorphisms on lymphocyte count, and in particular on CD4+ T cells. Future studies should address the possible association between DR gene variants and the immune function in health and disease. The relevance of these findings for the immune effects of dopaminergic agents should be also carefully examined.
Collapse
Affiliation(s)
- Marco Cosentino
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy.
| | - Marco Ferrari
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Natasa Kustrimovic
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Emanuela Rasini
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Franca Marino
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| |
Collapse
|
22
|
Grotewiel M, Bettinger JC. Drosophila and Caenorhabditis elegans as Discovery Platforms for Genes Involved in Human Alcohol Use Disorder. Alcohol Clin Exp Res 2015; 39:1292-311. [PMID: 26173477 PMCID: PMC4656040 DOI: 10.1111/acer.12785] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/18/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Despite the profound clinical significance and strong heritability of alcohol use disorder (AUD), we do not yet have a comprehensive understanding of the naturally occurring genetic variance within the human genome that drives its development. This lack of understanding is likely to be due in part to the large phenotypic and genetic heterogeneities that underlie human AUD. As a complement to genetic studies in humans, many laboratories are using the invertebrate model organisms (iMOs) Drosophila melanogaster (fruit fly) and Caenorhabditis elegans (nematode worm) to identify genetic mechanisms that influence the effects of alcohol (ethanol) on behavior. While these extremely powerful models have identified many genes that influence the behavioral responses to alcohol, in most cases it has remained unclear whether results from behavioral-genetic studies in iMOs are directly applicable to understanding the genetic basis of human AUD. METHODS In this review, we critically evaluate the utility of the fly and worm models for identifying genes that influence AUD in humans. RESULTS Based on results published through early 2015, studies in flies and worms have identified 91 and 50 genes, respectively, that influence 1 or more aspects of behavioral responses to alcohol. Collectively, these fly and worm genes correspond to 293 orthologous genes in humans. Intriguingly, 51 of these 293 human genes have been implicated in AUD by at least 1 study in human populations. CONCLUSIONS Our analyses strongly suggest that the Drosophila and C. elegans models have considerable utility for identifying orthologs of genes that influence human AUD.
Collapse
Affiliation(s)
- Mike Grotewiel
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- Virginia Commonwealth University Alcohol Research Center, Richmond, Virginia
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology , Virginia Commonwealth University, Richmond, Virginia
- Virginia Commonwealth University Alcohol Research Center, Richmond, Virginia
| |
Collapse
|
23
|
Gene network analysis shows immune-signaling and ERK1/2 as novel genetic markers for multiple addiction phenotypes: alcohol, smoking and opioid addiction. BMC SYSTEMS BIOLOGY 2015; 9:25. [PMID: 26044620 PMCID: PMC4456775 DOI: 10.1186/s12918-015-0167-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 05/12/2015] [Indexed: 01/09/2023]
Abstract
Background Addictions to alcohol and tobacco, known risk factors for cancer, are complex heritable disorders. Addictive behaviors have a bidirectional relationship with pain. We hypothesize that the associations between alcohol, smoking, and opioid addiction observed in cancer patients have a genetic basis. Therefore, using bioinformatics tools, we explored the underlying genetic basis and identified new candidate genes and common biological pathways for smoking, alcohol, and opioid addiction. Results Literature search showed 56 genes associated with alcohol, smoking and opioid addiction. Using Core Analysis function in Ingenuity Pathway Analysis software, we found that ERK1/2 was strongly interconnected across all three addiction networks. Genes involved in immune signaling pathways were shown across all three networks. Connect function from IPA My Pathway toolbox showed that DRD2 is the gene common to both the list of genetic variations associated with all three addiction phenotypes and the components of the brain neuronal signaling network involved in substance addiction. The top canonical pathways associated with the 56 genes were: 1) calcium signaling, 2) GPCR signaling, 3) cAMP-mediated signaling, 4) GABA receptor signaling, and 5) G-alpha i signaling. Conlusions Cancer patients are often prescribed opioids for cancer pain thus increasing their risk for opioid abuse and addiction. Our findings provide candidate genes and biological pathways underlying addiction phenotypes, which may be future targets for treatment of addiction. Further study of the variations of the candidate genes could allow physicians to make more informed decisions when treating cancer pain with opioid analgesics. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0167-x) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Levran O, Randesi M, da Rosa JC, Ott J, Rotrosen J, Adelson M, Kreek MJ. Overlapping dopaminergic pathway genetic susceptibility to heroin and cocaine addictions in African Americans. Ann Hum Genet 2015; 79:188-98. [PMID: 25875614 DOI: 10.1111/ahg.12104] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/30/2014] [Indexed: 02/02/2023]
Abstract
Drugs of abuse activate the mesolimbic dopaminergic pathway. Genetic variations in the dopaminergic system may contribute to drug addiction. Several processes are shared between cocaine and heroin addictions but some neurobiological mechanisms may be specific. This study examined the association of 98 single nucleotide polymorphisms in 13 dopamine-related genes with heroin addiction (OD) and/or cocaine addiction (CD) in a sample of 801 African Americans (315 subjects with OD ± CD, 279 subjects with CD, and 207 controls). Single-marker analyses provided nominally significant evidence for associations of 24 SNPs) in DRD1, ANKK1/DRD2, DRD3, DRD5, DBH, DDC, COMT and CSNK1E. A DRD2 7-SNPs haplotype that includes SNPs rs1075650 and rs2283265, which were shown to alter D2S/D2L splicing, was indicated in both addictions. The Met allele of the functional COMT Val158Met was associated with protection from OD. None of the signals remained significant after correction for multiple testing. The study results are in accordance with the results of previous studies, including our report of association of DRD1 SNP rs5326 with OD. The findings suggest the presence of an overlap in genetic susceptibility for OD and CD, as well as shared and distinct susceptibility for OD in subjects of African and European descent.
Collapse
Affiliation(s)
- Orna Levran
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
DRD1 and DRD2 genotypes modulate processing modes of goal activation processes during action cascading. J Neurosci 2014; 34:5335-41. [PMID: 24719111 DOI: 10.1523/jneurosci.5140-13.2014] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dopamine plays an important role in action selection, but little is known about the influence of different dopamine receptor systems on the subprocesses occurring during the cascading of actions. Because action selection and cascading can be accomplished in a serial manner or a parallel manner, we investigated the potential effects of DRD1 (rs4531) and DRD2 (rs6277) receptor polymorphisms on this dimension. We gathered behavioral and neurophysiological data from healthy human subjects (n = 162) and applied mathematical constraints to quantify their action selection strategy on a serial-parallel continuum. The behavioral results show a more serial and more effective action cascading strategy in homozygous DRD1 G allele carriers, who are assumed to have a higher D1 receptor efficiency than carriers of the A allele. In the group of homozygous DRD2 T-allele carriers, who have a higher striatal density of D2 receptors than C-allele carriers, we found a less effective and more parallel action cascading strategy. These findings suggest that, within the same sample, a higher D1 efficiency seems to shift the action cascading strategy toward a more serial processing mode, whereas the D2 receptors seem to promote a shift in the opposite direction by inducing a more parallel processing mode. Furthermore, the neurophysiological analysis shows that the observed differences are not based on attentional differences or basic inhibition. Instead, processes linking stimulus processing and response execution seem to differentiate between more serial and more parallel processing groups.
Collapse
|
26
|
Genetic Addiction Risk Score (GARS): molecular neurogenetic evidence for predisposition to Reward Deficiency Syndrome (RDS). Mol Neurobiol 2014; 50:765-96. [PMID: 24878765 PMCID: PMC4225054 DOI: 10.1007/s12035-014-8726-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/29/2014] [Indexed: 12/21/2022]
Abstract
We have published extensively on the neurogenetics of brain reward systems with reference to the genes related to dopaminergic function in particular. In 1996, we coined “Reward Deficiency Syndrome” (RDS), to portray behaviors found to have gene-based association with hypodopaminergic function. RDS as a useful concept has been embraced in many subsequent studies, to increase our understanding of Substance Use Disorder (SUD), addictions, and other obsessive, compulsive, and impulsive behaviors. Interestingly, albeit others, in one published study, we were able to describe lifetime RDS behaviors in a recovering addict (17 years sober) blindly by assessing resultant Genetic Addiction Risk Score (GARS™) data only. We hypothesize that genetic testing at an early age may be an effective preventive strategy to reduce or eliminate pathological substance and behavioral seeking activity. Here, we consider a select number of genes, their polymorphisms, and associated risks for RDS whereby, utilizing GWAS, there is evidence for convergence to reward candidate genes. The evidence presented serves as a plausible brain-print providing relevant genetic information that will reinforce targeted therapies, to improve recovery and prevent relapse on an individualized basis. The primary driver of RDS is a hypodopaminergic trait (genes) as well as epigenetic states (methylation and deacetylation on chromatin structure). We now have entered a new era in addiction medicine that embraces the neuroscience of addiction and RDS as a pathological condition in brain reward circuitry that calls for appropriate evidence-based therapy and early genetic diagnosis and that requires further intensive investigation.
Collapse
|
27
|
Polymorphisms in genes encoding dopamine signalling pathway and risk of alcohol dependence: a systematic review. Acta Neuropsychiatr 2014; 26:69-80. [PMID: 24983092 DOI: 10.1017/neu.2013.27] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Alcohol dependence (AD) is one of the major elements that significantly influence drinking pattern that provoke the alcohol-induced organ damage. The structural and neurophysiologic abnormalities in the frontal lobes of chronic alcoholics were revealed by magnetic resonance imaging scans. It is well known that candidate genes involved in dopaminergic pathway are of immense interest to the researchers engaged in a wide range of addictive disorders. Dopaminergic pathway gene polymorphisms are being extensively studied with respect to addictive and behavioral disorders. METHODS From the broad literature available, the current review summarizes the specific polymorphisms of dopaminergic genes that play a role in alcohol dependence. RESULTS No evidence indicating any strong association between AD and polymorphisms of dopamine pathway genes has emerged from the literature. DISCUSSION Further studies are warranted, considering a range of alcohol-related traits to determine the genes that influence alcohol dependence.
Collapse
|
28
|
Pan Y, Yao J, Wang B. Association of dopamine D1 receptor gene polymorphism with schizophrenia: a meta-analysis. Neuropsychiatr Dis Treat 2014; 10:1133-9. [PMID: 25018632 PMCID: PMC4074178 DOI: 10.2147/ndt.s63776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To date, the role of dopamine D1 receptor (DRD1) polymorphism in schizophrenia remains controversial. We carried out a meta-analysis to determine whether DRD1 polymorphism influences the risk of schizophrenia. We examined whether rs4532 and rs5326 genetic variants are related to the etiology of schizophrenia, using a meta-analysis. Relevant case-control studies were retrieved by database searching and selected according to established inclusion criteria. A total of ten studies were identified and included in our meta-analysis, nine for rs4532, with 1,941 cases and 2,480 controls, and four for rs5326, with 1,285 cases and 1,195 controls. No significant association was found between the rs4532 locus and schizophrenia. For the rs5326 locus, the guanine-adenine (GA) genotype was associated with schizophrenia as a risk factor (for GA vs guanine-guanine [GG], odds ratio [OR] =1.36, 95% confidence interval [CI]: 1.15-1.61, P<0.001). The GA genotype of rs5326 increased the risk of schizophrenia, but there was no association between rs4532 and schizophrenia. These data may provide references for case-control studies in schizophrenia in future.
Collapse
Affiliation(s)
- Yuqing Pan
- Institute of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Jun Yao
- Institute of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Baojie Wang
- Institute of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
29
|
Dopamine receptor D1 and postsynaptic density gene variants associate with opiate abuse and striatal expression levels. Mol Psychiatry 2013; 18:1205-10. [PMID: 23044706 PMCID: PMC3637428 DOI: 10.1038/mp.2012.140] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/06/2012] [Accepted: 08/20/2012] [Indexed: 12/31/2022]
Abstract
Opioid drugs are highly addictive and their abuse has a strong genetic load. Dopamine-glutamate interactions are hypothesized to be important for regulating neural systems central for addiction vulnerability. Balanced dopamine-glutamate interaction is mediated through several functional associations, including a physical link between discs, large homolog 4 (Drosophila) (DLG4, PSD-95) and dopamine receptor 1 (DRD1) within the postsynaptic density to regulate DRD1 trafficking. To address whether genetic associations with heroin abuse exist in relation to dopamine and glutamate and their potential interactions, we evaluated single-nucleotide polymorphisms of key genes within these systems in three populations of opiate abusers and controls, totaling 489 individuals from Europe and the United States. Despite significant differences in racial makeup of the separate samples, polymorphisms of DRD1 and DLG4 were found to be associated with opiate abuse. In addition, a strong gene-gene interaction between homer 1 homolog (Drosophila) (HOMER1) and DRD1 was predicted to occur in Caucasian subjects. This interaction was further analyzed by evaluating DRD1 genotype in relation to HOMER1b/c protein expression in postmortem tissue from a subset of Caucasian subjects. DRD1 rs265973 genotype correlated with HOMER1b/c levels in the striatum, but not cortex or amygdala; the correlation was inversed in opiate abusers as compared with controls. Cumulatively, these results support the hypothesis that there may be significant, genetically influenced interactions between glutamatergic and dopaminergic pathways in opiate abusers.
Collapse
|
30
|
Prasad P, Ambekar A, Vaswani M. Case-control association analysis of dopamine receptor polymorphisms in alcohol dependence: a pilot study in Indian males. BMC Res Notes 2013; 6:418. [PMID: 24135011 PMCID: PMC3853477 DOI: 10.1186/1756-0500-6-418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 10/11/2013] [Indexed: 11/19/2022] Open
Abstract
Background Brain imaging studies and knock-out animal models have derived substantial abetment for dopamine receptor (DR) subtypes as potential candidates in susceptibility to addictive disorders, including alcohol dependence (AD). Various association studies that compared the frequencies of alleles of the dopamine D1, D2, D3 and D4 receptor genes between alcohol dependent and control subjects have produced suggestive results, though some of them are discordant in nature. In the absence of genetic data from Indian population, we evaluated genetic association of three polymorphisms namely rs4532 in DRD1, rs6280 in DRD3 and 120 bp duplication in 1.2 kb upstream region of DRD4 with AD. Methods A total of 90 cases (alcohol dependent males) and 122 age and ethnicity matched healthy male controls were recruited in the study by following DSM-IV criteria. Three polymorphisms, namely rs4532 in DRD1, rs6280 in DRD3 and 120 bp duplication in 1.2 kb upstream region of DRD4 were selected (based on minor allele frequency and available literature) for genotyping by PCR-RFLP/LP method. Allele and genotype frequencies of these genetic markers were compared using Pearson’s χ2 test followed by risk assessment using odds ratio. Statistical analysis of clinical parameters such as AUDIT scores of case subjects was also performed. Results Statistically significant associations of polymorphisms in DRD1 and DRD4 with alcoholism were found. Conclusions Our results underscore that genetic variations in dopamine receptors D1 and D4 may influence genetic predisposition to alcoholism. Unavailability of comparative data from Indian population and small sample size necessitate replication of results in an independent cohort.
Collapse
Affiliation(s)
| | | | - Meera Vaswani
- National Drug Dependence Treatment Centre, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
31
|
Kim HN, Roh SJ, Sung YA, Chung HW, Lee JY, Cho J, Shin H, Kim HL. Genome-wide association study of the five-factor model of personality in young Korean women. J Hum Genet 2013; 58:667-74. [PMID: 23903073 DOI: 10.1038/jhg.2013.75] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 05/30/2013] [Accepted: 06/07/2013] [Indexed: 12/30/2022]
Abstract
Personality is a determinant of behavior and lifestyle associated with health and human diseases. Although personality is known to be a heritable trait, its polygenic nature has made the identification of genetic variants elusive. We performed a genome-wide association study on 1089 Korean women aged 18-40 years whose personality traits were measured with the Revised NEO Personality Inventory for the five-factor model of personality. To reduce environmental factors that may influence personality traits, this study was restricted to young adult women. In the discovery phase, we identified variants of PTPRD (protein tyrosine phosphatase, receptor type D) that associated this gene with the Openness domain. Other genes that were previously reported to be associated with neurological phenotypes were also associated with personality traits. In particular, DRD1 and OR1A2 were linked to Neuroticism, NKAIN2 with Extraversion, HTR5A with Openness and DRD3 with Agreeableness. Data from our replication study of 2090 subjects confirmed the association between OR1A2 and Neuroticism. We first identified and confirmed a novel region on OR1A2 associated with Neuroticism [corrected]. Candidate genes for psychiatric disorders were also enriched. These findings contribute to our understanding of the genetic architecture of personality traits and provide critical clues to the neurobiological mechanisms that influence them.
Collapse
Affiliation(s)
- Han-Na Kim
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Peng S, Du J, Jiang H, Fu Y, Chen H, Sun H, Wang D, Yu S, Zhao M. The dopamine receptor D1 gene is associated with the length of interval between first heroin use and onset of dependence in Chinese Han heroin addicts. J Neural Transm (Vienna) 2013; 120:1591-8. [PMID: 23661099 DOI: 10.1007/s00702-013-1029-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 04/17/2013] [Indexed: 11/24/2022]
Abstract
Previous researches showed that the dopamine receptor D1 (DRD1) may play a critical role in drug dependence. This research aimed to determine whether DRD1 played a role in development of heroin dependence in Chinese heroin-dependent patients. 465 Chinese Han heroin-dependent subjects and 379 healthy controls were recruited in the Shanghai region. Five single-nucleotide-polymorphisms (SNPs) of the DRD1 gene were genotyped in all subjects. The results found that the frequencies of DRD1 SNP genotypes or haplotypes were not different between heroin-dependent patients and controls. Among heroin-dependent patients, subjects with rs5326CC and/or rs6882300AA genotypes develop to heroin-dependent more rapidly than those without rs5326CC and/or rs6882300AA genotypes. The results indicated that DRD1 gene polymorphism may not play an important role in the susceptibility of heroin dependence in the Chinese Han population, but it may be associated with the rapidity of heroin dependence development from first drug use.
Collapse
Affiliation(s)
- Sufang Peng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Scarr E, Gibbons AS, Neo J, Udawela M, Dean B. Cholinergic connectivity: it's implications for psychiatric disorders. Front Cell Neurosci 2013; 7:55. [PMID: 23653591 PMCID: PMC3642390 DOI: 10.3389/fncel.2013.00055] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/12/2013] [Indexed: 01/01/2023] Open
Abstract
Acetylcholine has been implicated in both the pathophysiology and treatment of a number of psychiatric disorders, with most of the data related to its role and therapeutic potential focusing on schizophrenia. However, there is little thought given to the consequences of the documented changes in the cholinergic system and how they may affect the functioning of the brain. This review looks at the cholinergic system and its interactions with the intrinsic neurotransmitters glutamate and gamma-amino butyric acid as well as those with the projection neurotransmitters most implicated in the pathophysiologies of psychiatric disorders; dopamine and serotonin. In addition, with the recent focus on the role of factors normally associated with inflammation in the pathophysiologies of psychiatric disorders, links between the cholinergic system and these factors will also be examined. These interfaces are put into context, primarily for schizophrenia, by looking at the changes in each of these systems in the disorder and exploring, theoretically, whether the changes are interconnected with those seen in the cholinergic system. Thus, this review will provide a comprehensive overview of the connectivity between the cholinergic system and some of the major areas of research into the pathophysiologies of psychiatric disorders, resulting in a critical appraisal of the potential outcomes of a dysregulated central cholinergic system.
Collapse
Affiliation(s)
- Elizabeth Scarr
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Andrew S. Gibbons
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Jaclyn Neo
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Madhara Udawela
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
- Centre for Neuroscience, The University of MelbourneParkville, VIC, Australia
| | - Brian Dean
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| |
Collapse
|
34
|
Bell RL, Franklin KM, Hauser SR, Zhou FC. Introduction to the special issue "Pharmacotherapies for the treatment of alcohol abuse and dependence" and a summary of patents targeting other neurotransmitter systems. RECENT PATENTS ON CNS DRUG DISCOVERY 2012; 7:93-112. [PMID: 22574678 PMCID: PMC3868366 DOI: 10.2174/157488912800673155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/02/2012] [Accepted: 03/13/2012] [Indexed: 12/19/2022]
Abstract
This paper introduces the Special Section: Pharmacotherapies for the Treatment of Alcohol Abuse and Dependence and provides a summary of patents targeting neurotransmitter systems not covered in the other four chapters. The World Health Organization notes that alcoholic-type drinking results in 2.5 million deaths per year, and these deaths occur to a disproportionately greater extent among adolescents and young adults. Developing a pharmacological treatment targeting alcohol abuse and dependence is complicated by (a) the heterogeneous nature of the disease(s), (b) alcohol affecting multiple neurotransmitter and neuromodulator systems, and (c) alcohol affecting multiple organ systems which in turn influence the function of the central nervous system. Presently, the USA Federal Drug Administration has approved three pharmacotherapies for alcoholism: disulfiram, naltrexone, and acamprosate. This chapter provides a summary of the following systems, which are not covered in the accompanying chapters; alcohol and acetaldehyde metabolism, opioid, glycinergic, GABA-A, neurosteroid, dopaminergic, serotonergic, and endocannabinoid, as well as patents targeting these systems for the treatment of alcoholism. Finally, an overview is presented on the use of pharmacogenetics and pharmacogenomics in tailoring treatments for certain subpopulations of alcoholics, which is expected to continue in the future.
Collapse
Affiliation(s)
- Richard L. Bell
- Indiana University School of Medicine, Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, Indiana, 46202, USA
| | - Kelle M. Franklin
- Indiana University School of Medicine, Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, Indiana, 46202, USA
| | - Sheketha R. Hauser
- Indiana University School of Medicine, Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, Indiana, 46202, USA
| | - Feng C. Zhou
- Indiana University School of Medicine, Department of Anatomy and Cell Biology, 635 Barnhill Drive MS-508, Indian-apolis, Indiana, 46202, USA
| |
Collapse
|
35
|
Mileva-Seitz V, Fleming AS, Meaney MJ, Mastroianni A, Sinnwell JP, Steiner M, Atkinson L, Levitan RD, Matthews SG, Kennedy JL, Sokolowski MB. Dopamine receptors D1 and D2 are related to observed maternal behavior. GENES BRAIN AND BEHAVIOR 2012; 11:684-94. [PMID: 22574669 DOI: 10.1111/j.1601-183x.2012.00804.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The dopamine pathway and especially the dopamine receptors 1 and 2 (DRD1 and DRD2) are implicated in the regulation of mothering in rats. Evidence for this in humans is lacking. Here, we show that genetic variation in both DRD1 and DRD2 genes in a sample of 187 Caucasian mothers predicts variation in distinct maternal behaviors during a 30-min mother-infant interaction at 6 months postpartum. Two DRD1 single-nucleotide polymorphisms (SNPs rs265981 and rs686) significantly associated with maternal orienting away from the infant (P = 0.002 and P = 0.003, respectively), as did DRD1 haplotypes (P = 0.03). Two DRD2 SNPs (rs1799732 and rs6277) significantly associated with maternal infant-directed vocalizing (P = 0.001 and P = 0.04, respectively), as did DRD2 haplotypes (P = 0.01). We present evidence for heterosis in DRD1 where heterozygote mothers orient away from their infants significantly less than either homozygote group. Our findings provide important evidence that genetic variation in receptors critical for mothering in non-human species also affect human maternal behaviors. The findings also highlight the importance of exploring multiple dimensions of the complex human mothering phenotype.
Collapse
Affiliation(s)
- V Mileva-Seitz
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fowler CD, Kenny PJ. Utility of genetically modified mice for understanding the neurobiology of substance use disorders. Hum Genet 2012; 131:941-57. [PMID: 22190154 PMCID: PMC3977433 DOI: 10.1007/s00439-011-1129-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/11/2011] [Indexed: 01/09/2023]
Abstract
Advances in our ability to modify the mouse genome have enhanced our understanding of the genetic and neurobiological mechanisms contributing to addiction-related behaviors underlying substance use and abuse. These experimentally induced manipulations permit greater spatial and temporal specificity for modification of gene expression within specific cellular populations and during select developmental time periods. In this review, we consider the current mouse genetic model systems that have been employed to understand aspects of addiction and highlight significant conceptual advances achieved related to substance use and abuse. The mouse models reviewed herein include conventional knock-out and knock-in, conditional knockout, transgenic, inducible transgenic, mice suitable for optogenetic control of discrete neuronal populations, and phenotype-selected mice. By establishing a reciprocal investigatory relationship between genetic findings in humans and genomic manipulations in mice, a far better understanding of the discrete neuromechanisms underlying addiction can be achieved, which is likely to provide a strong foundation for developing and validating novel therapeutics for the treatment of substance abuse disorders.
Collapse
Affiliation(s)
- Christie D. Fowler
- Laboratory of Behavioral and Molecular Neuroscience, Department of Molecular Therapeutics, The Scripps Research Institute, Scripps, Florida, Jupiter, FL 33458, USA. Laboratory of Behavioral and Molecular Neuroscience, Department of Neuroscience, The Scripps Research Institute, Scripps, Florida, Jupiter, FL 33458, USA
| | - Paul J. Kenny
- Laboratory of Behavioral and Molecular Neuroscience, Department of Molecular Therapeutics, The Scripps Research Institute, Scripps, Florida, Jupiter, FL 33458, USA. Laboratory of Behavioral and Molecular Neuroscience, Department of Neuroscience, The Scripps Research Institute, Scripps, Florida, Jupiter, FL 33458, USA
| |
Collapse
|
37
|
Zuo L, Zhang F, Zhang H, Zhang XY, Wang F, Li CSR, Lu L, Hong J, Lu L, Krystal J, Deng HW, Luo X. Genome-wide search for replicable risk gene regions in alcohol and nicotine co-dependence. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:437-44. [PMID: 22488850 PMCID: PMC3405545 DOI: 10.1002/ajmg.b.32047] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 03/14/2012] [Indexed: 11/09/2022]
Abstract
The present study searched for replicable risk genomic regions for alcohol and nicotine co-dependence using a genome-wide association strategy. The data contained a total of 3,143 subjects including 818 European-American (EA) cases with alcohol and nicotine co-dependence, 1,396 EA controls, 449 African-American (AA) cases, and 480 AA controls. We performed separate genome-wide association analyses in EAs and AAs and a meta-analysis to derive combined P-values, and calculated the genome-wide false discovery rate (FDR) for each SNP. Regions with P < 5 × 10(-7) together with FDR < 0.05 in the meta-analysis were examined to detect all replicable risk SNPs across EAs, AAs, and meta-analysis. These SNPs were followed with a series of functional expression quantitative trait locus (eQTL) analyses. We found a unique genome-wide significant gene region--SH3BP5-NR2C2--that was enriched with 11 replicable risk SNPs for alcohol and nicotine co-dependence. The distributions of -log(P) values for all SNP-disease associations within this region were consistent across EAs, AAs, and meta-analysis (0.315 ≤ r ≤ 0.868; 8.1 × 10(-52) ≤ P ≤ 3.6 × 10(-5)). In the meta-analysis, this region was the only association peak throughout chromosome 3 at P < 0.0001. All replicable risk markers available for eQTL analysis had nominal cis- and trans-acting regulatory effects on gene expression. The transcript expression of the genes in this region was regulated partly by several nicotine dependence (ND)-related genes and significantly correlated with transcript expression of many alcohol dependence- and ND-related genes. We concluded that the SH3BP5-NR2C2 region on Chromosome 3 might harbor causal loci for alcohol and nicotine co-dependence.
Collapse
Affiliation(s)
- Lingjun Zuo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Fengyu Zhang
- Gene, Cognition and Psychosis Program, National Institute of Mental Health, National Institutes of Heath, Bethesda, MD, USA
| | - Heping Zhang
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT, USA
| | - Xiang-Yang Zhang
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Fei Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Lingeng Lu
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT, USA
| | - Jiang Hong
- Department of Internal Medicine, First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Lin Lu
- National Institute on Drug Dependence, Beijing, China
| | - John Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Hong-Wen Deng
- Department of Biostatistics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
38
|
Chen C, Chen C, Moyzis R, He Q, Li H, Li J, Zhu B, Lessard J, Stern H, Dong Q. Genetic variations in the dopaminergic system and alcohol use: a system-level analysis. Addict Biol 2012; 17:479-89. [PMID: 21812867 DOI: 10.1111/j.1369-1600.2011.00348.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Alcohol use is highly heritable and has been associated with many gene variants, including those related to dopamine (DA). However, single gene association studies have shown inconsistent and small effects. Using a system-level approach, the current study aimed to estimate the overall effect of genetic variations in the DA system on alcohol use among male drinkers. One hundred seventy-six male college students who reported to have ever drunk alcohol were enrolled. Alcohol use was measured using the Alcohol Use Disorders Identification Test. Ninety-eight representative polymorphisms in all major DA neurotransmitter genes were genotyped. Using analysis of variance, we identified six single-nucleotide polymorphisms (SNP)s that made statistically significant contributions to alcohol use. Next, main effects and interactions of these SNPs were assessed using multiple regression. The final model accounted for approximately 20% of the variance for alcohol use. Finally, permutation analyses ascertained the probability of obtaining these findings by chance to be low, p ranging from 0.024 to 0.048. These results confirmed that DA-related gene variants made strong contributions to reported alcohol use and suggest that multiple regression can be a promising way to explore the genetic basis for multi-gene-determined human behaviors.
Collapse
Affiliation(s)
- Chunhui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Genetics of dopamine receptors and drug addiction. Hum Genet 2012; 131:803-22. [PMID: 22350797 DOI: 10.1007/s00439-012-1145-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 02/04/2012] [Indexed: 01/18/2023]
Abstract
Dopamine plays a key role in reward behavior, yet the association of drug dependence as a chronic, relapsing disorder with the genes encoding the various dopaminergic receptor subtypes remains difficult to delineate. In the context of subsequent genome-wide association (GWAS) research and post-GWAS investigations, we summarize the novel data that link genes encoding molecules involved in the dopaminergic system (dopamine receptors, transporter and enzymes in charge of its metabolism) to drug addiction. Recent reports indicate that the heritability of drug addiction should be high enough to allow a significant role for a specific set of genes, and the available genetic studies, which might not be already conclusive because of the heterogeneity of designs, methods and recruited samples, should support the idea of a significant role of at least one gene related to dopaminergic system. Evolutionary changes in primates and non-primate animals of genes coding for molecules involved in dopaminergic system highlight why addictive disorders are mainly limited to humans. Restricting the analyses to more specific intermediate phenotypes (or endophenotypes) such as attention allocation, stress reactivity, novelty seeking, behavioral disinhibition and impulsivity, instead of the broad addictive disorder concept can be instrumental to identify novel genes associated with these traits in the context of genome-wide studies.
Collapse
|
40
|
Le Merrer J, Befort K, Gardon O, Filliol D, Darcq E, Dembele D, Becker JAJ, Kieffer BL. Protracted abstinence from distinct drugs of abuse shows regulation of a common gene network. Addict Biol 2012; 17:1-12. [PMID: 21955143 DOI: 10.1111/j.1369-1600.2011.00365.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Addiction is a chronic brain disorder. Prolonged abstinence from drugs of abuse involves dysphoria, high stress responsiveness and craving. The neurobiology of drug abstinence, however, is poorly understood. We previously identified a unique set of hundred mu-opioid receptor-dependent genes in the extended amygdala, a key site for hedonic and stress processing in the brain. Here we examined these candidate genes either immediately after chronic morphine, nicotine, Δ9-tetrahydrocannabinol or alcohol, or following 4 weeks of abstinence. Regulation patterns strongly differed among chronic groups. In contrast, gene regulations strikingly converged in the abstinent groups and revealed unforeseen common adaptations within a novel huntingtin-centered molecular network previously unreported in addiction research. This study demonstrates that, regardless the drug, a specific set of transcriptional regulations develops in the abstinent brain, which possibly contributes to the negative affect characterizing protracted abstinence. This transcriptional signature may represent a hallmark of drug abstinence and a unitary adaptive molecular mechanism in substance abuse disorders.
Collapse
Affiliation(s)
- Julie Le Merrer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM and CNRS, Illkirch-Graffenstaden, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Strat YL, Ramoz N, Schumann G, Gorwood P. Molecular genetics of alcohol dependence and related endophenotypes. Curr Genomics 2011; 9:444-51. [PMID: 19506733 PMCID: PMC2691669 DOI: 10.2174/138920208786241252] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 11/22/2022] Open
Abstract
Alcohol dependence is a worldwide public health problem, and involves both environmental and genetic vulnerability factors. The heritability of alcohol dependence is rather high, ranging between 50% and 60%, although alcohol dependence is a polygenic, complex disorder. Genome-wide scans on large cohorts of multiplex families, including the collaborative study on genetics of alcoholism (COGA), emphasized the role of many chromosome regions and some candidate genes. The genes encoding the alcohol-metabolizing enzymes, or those involved in brain reward pathways, have been involved. Since dopamine is the main neurotransmitter in the reward circuit, genes involved in the dopaminergic pathway represent candidates of interest. Furthermore, gamma-amino-butyric acid (GABA) neurotransmitter mediates the acute actions of alcohol and is involved in withdrawal symptomatology. Numerous studies showed an association between variants within GABA receptors genes and the risk of alcohol dependence. In accordance with the complexity of the “alcohol dependence” phenotype, another field of research, related to the concept of endophenotypes, received more recent attention. The role of vulnerability genes in alcohol dependence is therefore re-assessed focusing on different phenotypes and endophenotypes. The latter include brain oscillations, EEG alpha and beta variants and alpha power, and amplitude of P300 amplitude elicited from a visual oddball task. Recent enhancement on global characterizations of the genome by high-throughput approach for genotyping of polymorphisms and studies of transcriptomics and proteomics in alcohol dependence is also reviewed.
Collapse
Affiliation(s)
- Yann L Strat
- INSERM U675, IFR02, Université Paris 7, 16 Rue Henri Huchard, 75018 Paris, France
| | | | | | | |
Collapse
|
42
|
Psychopathological aspects of dopaminergic gene polymorphisms in adolescence and young adulthood. Neurosci Biobehav Rev 2011; 35:1665-86. [PMID: 21527290 DOI: 10.1016/j.neubiorev.2011.04.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 04/08/2011] [Accepted: 04/10/2011] [Indexed: 02/01/2023]
Abstract
Dopamine hypotheses of several psychiatric disorders are based upon the clinical benefits of drugs affecting dopamine transporter or receptors, and have prompted intensive candidate gene research within the dopaminergic system during the last two decades. The aim of this review is to survey the most important findings concerning dopaminergic gene polymorphisms in attention deficit hyperactivity disorder (ADHD), Tourette syndrome (TS), obsessive compulsive disorder, and substance abuse. Also, genetic findings of related phenotypes, such as inattention, impulsivity, aggressive behavior, and novelty seeking personality trait are presented, because recent studies have applied quantitative trait measures using questionnaires, symptom scales, or other objective endophenotypes. Unfortunately, genetic variants with minor effects are problematic to detect in these complex inheritance disorders, often leading to contradictory results. The most consistent association findings relate to ADHD and the dopamine transporter and the dopamine D4 receptor genes. Meta-analyses also support the association between substance abuse and the D2 receptor gene. The dopamine catabolizing enzyme genes, such as monoamine oxidase (MAO) A and catechol-O-methyltransferase (COMT) genes, have been linked to aggressive behaviors.
Collapse
|
43
|
Rodrigues AJ, Leão P, Carvalho M, Almeida OFX, Sousa N. Potential programming of dopaminergic circuits by early life stress. Psychopharmacology (Berl) 2011; 214:107-20. [PMID: 21088961 DOI: 10.1007/s00213-010-2085-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 10/30/2010] [Indexed: 12/29/2022]
Abstract
Stress and high levels of glucocorticoids during pre- and early postnatal life seem to alter developmental programs that assure dopaminergic transmission in the mesolimbic, mesocortical, and nigrostriatal systems. The induced changes are likely to be determined by the ontogenetic state of development of these brain regions at the time of stress exposure and their stability is associated with increased lifetime susceptibility to psychiatric disorders, including drug addiction. This article is intended to serve as a starting point for future studies aimed at the attenuation or reversal of the effects of adverse early life events on dopamine-regulated behaviors.
Collapse
Affiliation(s)
- Ana-João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057, Braga, Portugal
| | | | | | | | | |
Collapse
|
44
|
Shiroma PR, Geda YE, Mrazek DA. Pharmacogenomic implications of variants of monoaminergic-related genes in geriatric psychiatry. Pharmacogenomics 2011; 11:1305-30. [PMID: 20860469 DOI: 10.2217/pgs.10.118] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Response to psychiatric medications in later life is highly heterogeneous and complex. Monoaminergic-related polymorphisms may influence medication response and susceptibility to side effects in elderly individuals. Individuals with the lower function short (S) allele of the serotonin transporter gene (SLC6A4) insertion/deletion (indel) promoter polymorphism (5-HTTLPR) have both increased the likelihood of adverse drug events and increased the need for higher antidepressant concentrations to obtain maximum antidepressant response. By contrast, carriers of the higher expression homozygous long allele (L/L) genotype may respond at lower concentrations. The differential role of these polymorphisms appears at early stages of treatment rather than in the final antidepressant outcome. Research findings suggest that the rs25531 SNP may influence functional expression of the L allele. Similarly, a variable number of tandem repeats in the second intron of the serotonin transporter gene may influence the expression of SLC6A4 and the implications of these variants may be influenced by aging. Two polymorphisms, rs2242466 (-182T/C) and rs5569 (1287G/A), in the norepinephrine transporter gene (SLC6A2 or NET) have been associated with antidepressant response. Studies in dopamine-related polymorphisms have focused on associations with neuroleptic-induced movement disorders. The rs1800497 variant (Taq1A) of the dopamine receptor D2 (DRD2) gene located in a noncoding 3´ region may regulate expression of D2 receptors. The rs6280 variant (Ser9Gly) of the dopamine receptor 3 (DRD3) gene may influence the binding affinity of D3 receptors as a result of serine to glycine substitution of the receptor protein. A multicenter collaborative research effort would be an effective strategy to increase sample sizes to further investigate how gene variants impact the pharmacodynamics and pharmacokinetics of psychotropic drugs in elderly persons.
Collapse
Affiliation(s)
- Paulo R Shiroma
- Geriatric Psychiatry Clinic, Mental Health Service Line, Minneapolis VA Medical Center, University of Minnesota Medical School, Minneapolis, MN, USA.
| | | | | |
Collapse
|
45
|
Hack LM, Kalsi G, Aliev F, Kuo PH, Prescott CA, Patterson DG, Walsh D, Dick DM, Riley BP, Kendler KS. Limited associations of dopamine system genes with alcohol dependence and related traits in the Irish Affected Sib Pair Study of Alcohol Dependence (IASPSAD). Alcohol Clin Exp Res 2010; 35:376-85. [PMID: 21083670 DOI: 10.1111/j.1530-0277.2010.01353.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Over 50 years of evidence from research has established that the central dopaminergic reward pathway is likely involved in alcohol dependence (AD). Additional evidence supports a role for dopamine (DA) in other disinhibitory psychopathology, which is often comorbid with AD. Family and twin studies demonstrate that a common genetic component accounts for most of the genetic variance in these traits. Thus, DA-related genes represent putative candidates for the genetic risk that underlies not only AD but also behavioral disinhibition. Many linkage and association studies have examined these relationships with inconsistent results, possibly because of low power, poor marker coverage, and/or an inappropriate correction for multiple testing. METHODS We conducted an association study on the products encoded by 10 DA-related genes (DRD1-D5, SLC18A2, SLC6A3, DDC, TH, COMT) using a large, ethnically homogeneous sample with severe AD (n = 545) and screened controls (n = 509). We collected genotypes from linkage disequilibrium (LD)-tagging single nucleotide polymorphisms (SNPs) and employed a gene-based method of correction. We tested for association with AD diagnosis in cases and controls and with a variety of alcohol-related traits (including age-at-onset, initial sensitivity, tolerance, maximum daily drinks, and a withdrawal factor score), disinhibitory symptoms, and a disinhibitory factor score in cases only. A total of 135 SNPs were genotyped using the Illumina GoldenGate and Taqman Assays-on-Demand protocols. RESULTS Of the 101 SNPs entered into standard analysis, 6 independent SNPs from 5 DA genes were associated with AD or a quantitative alcohol-related trait. Two SNPs across 2 genes were associated with a disinhibitory symptom count, while 1 SNP in DRD5 was positive for association with the general disinhibitory factor score. CONCLUSIONS Our study provides evidence of modest associations between a small number of DA-related genes and AD as well as a range of alcohol-related traits and measures of behavioral disinhibition. While we did conduct gene-based correction for multiple testing, we did not correct for multiple traits because the traits are correlated. However, false-positive findings remain possible, so our results must be interpreted with caution.
Collapse
Affiliation(s)
- Laura M Hack
- Department of Human and Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hoenicka J, Garrido E, Ponce G, Rodríguez-Jiménez R, Martínez I, Rubio G, Jiménez-Arriero MA, Palomo T. Sexually dimorphic interaction between the DRD1 and COMT genes in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:948-54. [PMID: 20127886 DOI: 10.1002/ajmg.b.31065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dopaminergic dysfunction in the prefrontal cortex (PFC) is involved in the pathophysiology of schizophrenia. In the PFC, dopamine signalling largely depends on the D1 receptors, which are coded by the DRD1 gene, and on the regulation of dopamine levels by the enzyme catechol-O-methyltransferase (COMT). Here, we investigate the role of DRD1 and its interaction with the COMT gene in schizophrenic patients. In two gender-limited independent patient and control samples, we genotype five Tag single nucleotide polymorphisms (tagSNPs) of DRD1. The DRD1 SNP and haplotype associations, as well as interaction effects with the Val158Met COMT SNP were analyzed. In the male sample, we found the rs11746641 and rs11749676 DRD1 SNPs were associated with schizophrenia. Haplotype analyses identified the T-A-T-C-T variant related to a protective effect (P = 0.008) and the G-G-T-C-C variant that showed a tendency to be a risk factor for the disorder (P = 0.012). A logistic regression analysis revealed a significant pattern of interaction between DRD1 and COMT for both the rs11746641 (P = 0.002) and rs11749676 (P = 4.5 x 10(-5)) SNPs. DRD1-associated haplotypes were exclusively related to schizophrenia in the Val homozygous subgroup of patients (T-A-T-C-T: P = 0.003; G-G-T-C-C: P = 0.006). In females, none of the DRD1 SNPs were linked to the disorder. Our genetic data suggest that DRD1 and COMT are epistatically associated with protection against and the risk of developing schizophrenia in a gender-dependent fashion, and support the role of dopamine dysfunction at the PFC in the pathophysiology of this disorder.
Collapse
Affiliation(s)
- Janet Hoenicka
- Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhang C, Fang Y, Xie B, Cheng W, Du Y, Wang D, Yu S. No genetic association between dopamine D1 receptor gene and [early onset] schizophrenia. Psychiatry Res 2010; 177:350-3. [PMID: 20382433 DOI: 10.1016/j.psychres.2009.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 11/12/2009] [Accepted: 12/30/2009] [Indexed: 10/19/2022]
Abstract
Decreased dopaminergic activity in the prefrontal cortex (PFC) has been consistently reported in schizophrenia patients. The dopamine D1 receptor (DRD1) plays an important role in mediating dopaminergic transmission in the PFC. Controversy about this topic still exists despite ample evidence suggesting that the DRD1 gene is associated with performance on neuropsychological tests probing the function of the PFC in schizophrenia, as well as positive and negative symptoms and therapeutic response to antipsychotics. To determine whether this gene is involved in the etiology of schizophrenia, we undertook a case-control study to look for an association. We genotyped five single nucleotide polymorphisms (SNPs) rs4532, rs5326, rs2168631, rs6882300 and rs267418 within the DRD1 involving 373 schizophrenia patients with early age of onset and 379 healthy subjects. No significant differences of genotype, allele or haplotype distribution were identified between patients and controls. Our results do not preclude a possible role of DRD1 in the etiology of schizophrenia. As an important dopaminergic gene, DRD1 may contribute to schizophrenia by interacting with other genes. Further relevant studies are warranted.
Collapse
Affiliation(s)
- Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | | | | | | | | | | | | |
Collapse
|
48
|
Transcription factor AP2 beta involved in severe female alcoholism. Brain Res 2009; 1305 Suppl:S20-6. [PMID: 19778525 DOI: 10.1016/j.brainres.2009.09.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 09/04/2009] [Accepted: 09/15/2009] [Indexed: 12/22/2022]
Abstract
Susceptibility to alcoholism and antisocial behavior exhibits an evident link to monoaminergic neurotransmission. The serotonin system in particular, which is associated with regulation of mood and behavior, has an influence on personality characters that are firmly connected to risk of developing alcoholism and antisocial behavior, such as impulsiveness, and aggression. The transcription factor TFAP2b has repeatedly been shown to be involved in monoaminergic transmission, likely due to a regulatory effect on genes that are fundamental to this system, e.g. monoamine oxidase type A, and the serotonin transporter. Recent research has identified a functional polymorphism in the gene encoding TFAP2B that regulates its level of expression. In the present study we have compared a sample of female alcoholics (n=107), sentenced to institutional care for their severe addiction, contrasted against a control sample of adolescent females (n=875). The results showed that parental alcohol misuse was significantly more common among the alcoholic females, and also that parental alcohol misuse was associated with a reduction in age of alcohol debut. We also addressed the question of whether a functional TFAP2b polymorphism was associated with alcoholism. Results showed that the high-functioning allele was significantly more common among the female alcoholics, compared to the non-alcoholic controls. Furthermore, the results also indicated that psychosocial factors, in terms of parental alcohol misuse, depression or psychiatric disorder, had an influence on the association. It was observed that the genetic association was restricted to the subset of cases that had not experienced these negative psychosocial factors.
Collapse
|
49
|
Lobo DSS, Kennedy JL. Genetic aspects of pathological gambling: a complex disorder with shared genetic vulnerabilities. Addiction 2009; 104:1454-65. [PMID: 19686516 DOI: 10.1111/j.1360-0443.2009.02671.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIMS To summarize and discuss findings from genetic studies conducted on pathological gambling (PG). METHODS Searches were conducted on PubMed and PsychInfo databases using the keywords: 'gambling and genes', 'gambling and family' and 'gambling and genetics', yielding 18 original research articles investigating the genetics of PG. RESULTS Twin studies using the Vietnam Era Twin Registry have found that: (i) the heritability of PG is estimated to be 50-60%; (ii) PG and subclinical PG are a continuum of the same disorder; (iii) PG shares genetic vulnerability factors with antisocial behaviours, alcohol dependence and major depressive disorder; (iv) genetic factors underlie the association between exposure to traumatic life-events and PG. Molecular genetic investigations on PG are at an early stage and published studies have reported associations with genes involved in the brain's reward and impulse control systems. CONCLUSIONS Despite the paucity of studies in this area, published studies have provided considerable evidence of the influence of genetic factors on PG and its complex interaction with other psychiatric disorders and environmental factors. The next step would be to investigate the association and interaction of these variables in larger molecular genetic studies with subphenotypes that underlie PG. Results from family and genetic investigations corroborate further the importance of understanding the biological underpinnings of PG in the development of more specific treatment and prevention strategies.
Collapse
Affiliation(s)
- Daniela S S Lobo
- Centre for Addiction and Mental Health, Neurogenetics Laboratory, University of Toronto, 250 College Street, R 30, Toronto, ON M5T1R8, Canada.
| | | |
Collapse
|
50
|
Newman TK, Parker CC, Suomi SJ, Goldman D, Barr CS, Higley JD. DRD1 5'UTR variation, sex and early infant stress influence ethanol consumption in rhesus macaques. GENES BRAIN AND BEHAVIOR 2009; 8:626-30. [PMID: 19563515 DOI: 10.1111/j.1601-183x.2009.00507.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The mesolimbic dopamine system plays an important role in mediating a variety of behaviors and is involved in mediating the reinforcing effects of ethanol. Genes encoding dopamine receptor subtypes are thus good candidate loci for understanding the genetic etiologies of susceptibility to alcohol dependence and its antecedent behavioral phenotypes. We tested whether variation in DRD1 influences alcohol consumption in rhesus macaques and whether its influence is mediated by sex and early rearing experience. We genotyped a single nucleotide polymorphism (-111 G/T) in the 5'UTR of DRD1 in 96 subjects raised with their mothers until 6 months of age (n = 43) or in peer-only groups (n = 53). As young adults they underwent a 7-week voluntary ethanol consumption experiment. anova revealed a significant main effect of sex (F(1,95) = 6.3, P = 0.014) and an interaction between genotype, sex and rearing on ethanol consumption (F(7,95) = 4.63, P = 0.0002). Maternally deprived males heterozygous for the T allele consumed significantly more ethanol (P > t <or= 0.0001) than the other subgroups. Maternal deprivation can produce individuals that are anxious and impulsive, both of which are known risk factors for alcohol dependence. Our work demonstrates a potential role for the dopamine D1 receptor gene in modulating alcohol consumption, especially in the context of early environmental stress.
Collapse
Affiliation(s)
- T K Newman
- Laboratory of Clinical and Translational Studies, NIAAA, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|