1
|
Oh Y, Hong SJ, Park YJ, Baek IH. Association between phthalate exposure and risk of allergic rhinitis in children: A systematic review and meta-analysis. Pediatr Allergy Immunol 2024; 35:e14230. [PMID: 39229646 DOI: 10.1111/pai.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
Phthalates are ubiquitous in diverse environments and have been linked to a myriad of detrimental health outcomes. However, the association between phthalate exposure and allergic rhinitis (AR) remains unclear. To address this knowledge gap, we conducted a systematic review and meta-analysis to comprehensively evaluate the relationship between phthalate exposure and childhood AR risk. We searched the Cumulative Index to Nursing and Allied Health Literature, Excerpta Medica Database, and PubMed to collect relevant studies and estimated pooled odds ratios (OR) and 95% confidence intervals (CI) for risk estimation. Ultimately, 18 articles, including seven cross-sectional, seven case-control, and four prospective cohort studies, were selected for our systematic review and meta-analysis. Our pooled data revealed a significant association between di-2-ethylhexyl phthalate (DEHP) exposure in children's urine and AR risk (OR = 1.188; 95% CI = 1.016-1.389). Additionally, prenatal exposure to combined phthalates and their metabolites in maternal urine was significantly associated with the risk of childhood AR (OR = 1.041; 95% CI = 1.003-1.081), although specific types of phthalates and their metabolites were not significant. Furthermore, we examined environmental phthalate exposure in household dust and found no significant association with AR risk (OR = 1.021; 95% CI = 0.980-1.065). Our findings underscore the potential hazardous effects of phthalates on childhood AR and offer valuable insights into its pathogenesis and prevention.
Collapse
Affiliation(s)
- Yeonghun Oh
- College of Pharmacy, Kyungsung University, Busan, Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Respiratory and Allergy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Joo Park
- College of Pharmacy, Kyungsung University, Busan, Korea
| | - In-Hwan Baek
- College of Pharmacy, Kyungsung University, Busan, Korea
- Functional Food & Drug Convergence Research Center, Industry-Academic Cooperation Foundation, Kyungsung University, Busan, Korea
| |
Collapse
|
2
|
Sun Y, Ayoma Marasinghe S, Hou J, Wang P, Zhang Q, Sundell J. Household indoor air quality in northeast China: On-site inspection and measurement in 399 Tianjin area residences. ENVIRONMENT INTERNATIONAL 2024; 190:108825. [PMID: 38908271 DOI: 10.1016/j.envint.2024.108825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/19/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
There has been an increased concern on indoor air quality (IAQ) in residences since the majority of individuals' time is mainly spent indoors. We inspected and measured indoor environmental parameters in 399 homes in northeast China in order to study IAQ. We systematically measured multilevel environmental parameters (physical, chemical, and biological) in children's bedrooms during all seasons. The results indicated that the median values for indoor temperature, relative humidity, total volatile organic compounds (TVOC), and formaldehyde concentrations throughout the year were within the Chinese national standards. However, the median carbon dioxide concentrations exceeded 1000 ppm during spring, autumn, and winter. In the same seasons, the air change rate (ACR) was below the minimum required level of 0.5 h-1. Di-2-ethylhexyl phthalate (DEHP), di-n-butyl phthalate (DnBP), and di-isobutyl phthalate (DiBP) were predominantly detected in settled dust, displaying median concentrations of 126.9, 41.5, and 16.3 μg/g, respectively. Notably, phthalate concentrations were significantly higher in urban houses as compared to rural houses. Furthermore, median concentrations of Dermatophagoides farinae (Der f) and endotoxin were 689.4 ng/g and 3689.1 EU/g, respectively, trending higher in winter than summer. There was a negative correlation between ACR and chemical pollutants (TVOC, formaldehyde, and DiBP). In conclusion, northeast Chinese homes had poor indoor air quality with ubiquitous exposure to modern chemical compounds and insufficient ventilation.
Collapse
Affiliation(s)
- Yuexia Sun
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Samali Ayoma Marasinghe
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China; Department of Environmental Management, Rajarata University of Sri Lanka, Sri Lanka
| | - Jing Hou
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, China.
| | - Pan Wang
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Qingnan Zhang
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jan Sundell
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Yu Y, Wang JQ. Phthalate exposure and lung disease: the epidemiological evidences, plausible mechanism and advocacy of interventions. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:37-45. [PMID: 36151703 DOI: 10.1515/reveh-2022-0077] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Phthalates are a kind of synthetic plasticizers, which extensively used as plastic productions to improve their plasticity and flexibility. However, exposure to phthalates has been proved an increased risk of respiratory disease, because by they affect the development and functions of the lung and immune system. Here, we attempt to review respiratory health of phthalate exposure. Firstly, we describe the relationship between phthalates and lung function and airway inflammation. Then, the role of phthalates in asthma, lung cancer, rhinitis, and respiratory tract infections and the possible mechanisms of action are discussed. Finally, possible effective measures to reduce exposure to phthalates are proposed, and health care workers are called upon to provide educational resources and advocate for informed public health policies. Overall, the evidence for association between phthalate exposure and respiratory disease is weak and inconsistent. Therefore, thorough implementation in large populations is needed to produce more consistent and robust results and to enhance the overall understanding of the potential respiratory health risks of phthalate in long-term exposure.
Collapse
Affiliation(s)
- Yun Yu
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Jian Qing Wang
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Song X, Wang C, He H, Peng M, Hu Q, Wang B, Tang L, Yu F. Association of phthalate exposure with pulmonary function in adults: NHANES 2007-2012. ENVIRONMENTAL RESEARCH 2023; 237:116902. [PMID: 37625539 DOI: 10.1016/j.envres.2023.116902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/03/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Epidemiological evidence for the adverse effect of phthalate exposure on respiratory health is on the rise, but cross-sectional studies regarding its effects on lung function are limited and contradictory, especially in adults. OBJECTIVE To assess the associations between individual and a mixture of urinary phthalate metabolites and adult pulmonary function in the United States, and to identify which ones were primarily responsible for impaired respiratory function. METHODS We obtained a cross-sectional data on 3788 adults aged 20 years and older from the National Health and Nutrition Examination Survey (2007-2012). Respiratory function was evaluated using spirometry, and phthalate exposure was assessed by measuring the levels of ten urinary phthalate metabolites. The effects of individual and mixed phthalate metabolites exposure on lung function were assessed using multivariate linear regression models and the repeated holdout weighted quantile sum (WQS) regression models, respectively, after adjusting for potential confounders including age, gender, family poverty income ratio, body mass index, and serum cotinine. RESULTS When modeled as continuous variables or quantiles, urinary phthalate metabolites, including mono-ethyl phthalate (MEP), mono-n-butyl phthalate, mono-iso-butyl phthalate, mono-benzyl phthalate, mono-(2-ethyl-5-oxohexyl) phthalate, mono-(2-ethyl-5-hydroxyhexyl) phthalate, mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono-(3-carboxypropyl) phthalate, and mono-carboxyoctyl phthalate, were identified to be negatively associated with forced vital capacity in percent predicted values (ppFVC) and forced expiratory volume in the first second in percent predicted values (ppFEV1). In addition, per each decile increase in the WQS index, ppFVC (β = -2.87, 95% CI: -3.56, -2.08) and ppFEV1 (β = -2.53, 95% CI: -3.47, -1.54) declined significantly, primarily due to the contribution of MEP and MECPP. Furthermore, there were no significant interactions between co-exposure to urinary phthalate metabolites and each covariate. CONCLUSION Our findings reveal that urinary phthalate metabolites are significantly associated with adult respiratory decrements, with diethyl and di-(2-ethylhexyl) phthalate contributing the most to the impaired lung function.
Collapse
Affiliation(s)
- Xinli Song
- School of Public Health, Institute of Child and Adolescent Health, Peking University, Beijing, China; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Cheng Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hao He
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Muyun Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qikang Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bin Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lei Tang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
5
|
Overdahl KE, Kassotis CD, Hoffman K, Getzinger GJ, Phillips A, Hammel S, Stapleton HM, Ferguson PL. Characterizing azobenzene disperse dyes and related compounds in house dust and their correlations with other organic contaminant classes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122491. [PMID: 37709124 PMCID: PMC10655148 DOI: 10.1016/j.envpol.2023.122491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Azobenzene disperse dyes are the fastest-growing category of commercial dyestuffs and are implicated in the literature as potentially allergenic. In the indoor environment, these dyes may be shed from various textiles, including clothing and upholstery and accumulate in dust particles potentially leading to exposure in young children who have higher exposure to chemicals associated with dust due to their crawling and mouthing behaviors. Children may be more vulnerable to dye exposure due to their developing immune systems, and therefore, it is critical to characterize azobenzene disperse dyes in children's home environments. Here, we investigate azobenzene disperse dyes and related compounds in house dust samples (n = 124) that were previously analyzed for flame retardants, phthalates, pesticides and per- and polyfluoroalkyl substances (PFAS). High-resolution mass spectrometry was used to support both targeted and suspect screening of dyes in dust. Statistical analyses were conducted to determine if dye concentrations were related to demographic information. Detection frequencies for 12 target dyes ranged from 11% to 89%; of the dyes that were detected in at least 50% of the samples, geometric mean levels ranged from 32.4 to 360 ng/g. Suspect screening analysis identified eight additional high-abundance azobenzene compounds in dust. Some dyes were correlated to numerous flame retardants and several antimicrobials, and statistically higher levels of some dyes were observed in homes of non-Hispanic Black mothers than in homes of non-Hispanic white mothers. To our knowledge, this is the most comprehensive study of azobenzene disperse dyes in house dust to date. Future studies are needed to quantify additional dyes in dust and to examine exposure pathways of dyes in indoor environments where children are concerned.
Collapse
Affiliation(s)
- Kirsten E Overdahl
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States
| | - Christopher D Kassotis
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States; Institute of Environmental Health Sciences and Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202. United States
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States
| | - Gordon J Getzinger
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708. United States
| | - Allison Phillips
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States
| | - Stephanie Hammel
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States.
| | - P Lee Ferguson
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States; Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708. United States.
| |
Collapse
|
6
|
Täubel M, Jalanka J, Kirjavainen PV, Tuoresmäki P, Hyvärinen A, Skevaki C, Piippo-Savolainen E, Pekkanen J, Karvonen AM. Fungi in Early-Life House Dust Samples and the Development of Asthma: A Birth Cohort Study. Ann Am Thorac Soc 2023; 20:1456-1464. [PMID: 37535826 PMCID: PMC10559140 DOI: 10.1513/annalsats.202303-187oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023] Open
Abstract
Rationale: Fungal exposure has been associated with predisposing and protective effects on the development of childhood asthma. Objectives: To study whether early-life house dust mycobiota composition is associated with the development of asthma. Methods: Mycobiota were determined by amplicon sequencing from 382 dust samples collected from living room floors 2 months after birth in homes of the LUKAS cohort. Asthma status by 10.5 years of age was defined from questionnaires and assigned as ever asthma (n = 68) or current asthma (n = 27). Inhalant atopy was clinically determined at the same age. β-composition was analyzed using PERMANOVA-S, and asthma and atopy analyses were performed using discrete time hazard models and logistic regression, respectively. Results: The house dust mycobiota composition based on Bray-Curtis distance was different in the homes of children who later did or did not develop asthma. The first and the fourth axes scores of principal coordinates analysis based on Bray-Curtis were associated with ever asthma. Of the genera with the strongest correlation with these axes, the relative abundance of Boeremia, Cladosporium, Microdochium, Mycosphaerella, and Pyrenochaetopsis showed protective associations with asthma. None of these associations remained significant after mutual adjustment among the five genera or when mutually adjusted for other microbial cell wall markers and previously identified asthma-protective bacterial indices. Neither fungal α-diversity nor load was associated with asthma in the whole population, but higher fungal richness was a risk factor among children on farms. Higher fungal loads (measured via quantitative polymerase chain reaction) in house dust were associated with the risk of inhalant atopy. Conclusions: The results of our analyses from this well-characterized birth cohort suggest that the early-life house dust mycobiota in Finnish homes, characterized via DNA amplicon sequencing, do not have strong predisposing or protective effects on asthma development.
Collapse
Affiliation(s)
- Martin Täubel
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Jonna Jalanka
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Pirkka V. Kirjavainen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Pauli Tuoresmäki
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Anne Hyvärinen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
- Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Marburg, Germany
| | | | - Juha Pekkanen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Anne M. Karvonen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| |
Collapse
|
7
|
Pan Z, Dai Y, Akar-Ghibril N, Simpson J, Ren H, Zhang L, Hou Y, Wen X, Chang C, Tang R, Sun JL. Impact of Air Pollution on Atopic Dermatitis: A Comprehensive Review. Clin Rev Allergy Immunol 2023; 65:121-135. [PMID: 36853525 DOI: 10.1007/s12016-022-08957-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 03/01/2023]
Abstract
Air pollution is associated with multiple health problems worldwide, contributing to increased morbidity and mortality. Atopic dermatitis (AD) is a common allergic disease, and increasing evidence has revealed a role of air pollution in the development of atopic dermatitis. Air pollutants are derived from several sources, including harmful gases such as nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO), as well as particulate matter (PM) of various sizes, and bioaerosols. Possible mechanisms linking air pollution to atopic dermatitis include damage to the skin barrier through oxidative stress, increased water loss, physicochemical injury, and an effect on skin microflora. Furthermore, oxidative stress triggers immune dysregulation, leading to enhanced sensitization to allergens. There have been multiple studies focusing on the association between various types of air pollutants and atopic dermatitis. Since there are many confounders in the current research, such as climate, synergistic effects of mixed pollutants, and diversity of study population, it is not surprising that inconsistencies exist between different studies regarding AD and air pollution. Still, it is generally accepted that air pollution is a risk factor for AD. Future studies should focus on how air pollution leads to AD as well as effective intervention measures.
Collapse
Affiliation(s)
- Zhouxian Pan
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Allergy Department, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yimin Dai
- Eight-Year Clinical Medicine System, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Nicole Akar-Ghibril
- Division of Immunology, Allergy and Rheumatology, Joe DiMaggio Children's Hospital, Memorial Healthcare System, Hollywood, FL, 33021, USA
| | - Jessica Simpson
- Division of Immunology, Allergy and Rheumatology, Joe DiMaggio Children's Hospital, Memorial Healthcare System, Hollywood, FL, 33021, USA
| | - Huali Ren
- Department of Allergy, Beijing Electric Power Hospital of State Grid Company of China, Electric Power Teaching Hospital of Capital Medical University, Beijing, 100073, China
| | - Lishan Zhang
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Allergy Department, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yibo Hou
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Allergy Department, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xueyi Wen
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Allergy Department, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Christopher Chang
- Division of Immunology, Allergy and Rheumatology, Joe DiMaggio Children's Hospital, Memorial Healthcare System, Hollywood, FL, 33021, USA.
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, 95616, USA.
| | - Rui Tang
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Allergy Department, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jin-Lyu Sun
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Allergy Department, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
8
|
Anastasiadis X, Matsas A, Panoskaltsis T, Bakas P, Papadimitriou DT, Christopoulos P. Impact of Chemicals on the Age of Menarche: A Literature Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1234. [PMID: 37508731 PMCID: PMC10378553 DOI: 10.3390/children10071234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/01/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
A growing body of evidence suggests that chemicals interfere with the age of onset of menarche. We conducted a review in order to demonstrate the relationship between several categories of chemicals and menarche. We searched for English language papers using the Medline/PubMed database until April 2023. The chemical factors found to affect menarche were prenatal and antenatal smoke, phthalates, phenols, organochlorines, perfluoroalkyls and polyfluoroalkyls, metals, air pollutants and polybrominated diphenyl ethers. Low or high exposure to each chemical compound could affect the age of menarche, leading to early or delayed menarche. Furthermore, the results show that intrauterine exposure may have a different impact from antenatal exposure. There is evidence that endocrine-disrupting chemicals affect the age of menarche, but more research needs to be conducted.
Collapse
Affiliation(s)
- Xristos Anastasiadis
- Second Department of Obstetrics and Gynecology, "Aretaieion" Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Alkis Matsas
- Second Department of Obstetrics and Gynecology, "Aretaieion" Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Theodoros Panoskaltsis
- Second Department of Obstetrics and Gynecology, "Aretaieion" Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Panagiotis Bakas
- Second Department of Obstetrics and Gynecology, "Aretaieion" Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Dimitrios T Papadimitriou
- Second Department of Obstetrics and Gynecology, "Aretaieion" Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Panagiotis Christopoulos
- Second Department of Obstetrics and Gynecology, "Aretaieion" Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
9
|
Kim SH, Quoc QL, Park HS, Shin YS. The effect of apigenin, an aryl hydrocarbon receptor antagonist, in Phthalate-Exacerbated eosinophilic asthma model. J Cell Mol Med 2023. [PMID: 37315181 DOI: 10.1111/jcmm.17804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023] Open
Abstract
Endocrine disrupting chemicals have been known to contribute to the aggravation of inflammatory diseases including asthma. We aimed to investigate the effects of mono-n-butyl phthalate (MnBP) which is one of the representing phthalates, and its antagonist in an eosinophilic asthma mouse model. BALB/c mice were sensitized by intraperitoneal injection of ovalbumin (OVA) with alum and followed by three nebulized OVA challenges. MnBP was administered through drinking water administration throughout the study period, and its antagonist, apigenin, was orally treated for 14 days before OVA challenges. Mice were assessed for airway hyperresponsiveness (AHR), differential cell count and type 2 cytokines in bronchoalveolar lavage fluid were measured in vivo. The expression of the aryl hydrocarbon receptor was markedly increased when MnBP was administered. MnBP treatment increased AHR, airway inflammatory cells (including eosinophils), and type 2 cytokines following OVA challenge compared to vehicle-treated mice. However, apigenin treatment reduced all asthma features, such as AHR, airway inflammation, type 2 cytokines, and the expression of the aryl hydrocarbon receptor in MnBP-augmented eosinophilic asthma. Our study suggests that MnBP exposure may increase the risk of eosinophilic inflammation, and apigenin treatment may be a potential therapy for asthma exacerbated by endocrine-disrupting chemicals.
Collapse
Affiliation(s)
- Seo-Hee Kim
- Department of Biomedical Science, Graduate School of Ajou University, Suwon-si, South Korea
| | - Quang Luu Quoc
- Department of Biomedical Science, Graduate School of Ajou University, Suwon-si, South Korea
| | - Hae-Sim Park
- Department of Biomedical Science, Graduate School of Ajou University, Suwon-si, South Korea
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon-si, South Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon-si, South Korea
| |
Collapse
|
10
|
Quirós-Alcalá L, Belz DC, Woo H, Lorizio W, Putcha N, Koehler K, McCormack MC, Hansel NN. A cross sectional pilot study to assess the role of phthalates on respiratory morbidity among patients with chronic obstructive pulmonary disease. ENVIRONMENTAL RESEARCH 2023; 225:115622. [PMID: 36894111 PMCID: PMC10580394 DOI: 10.1016/j.envres.2023.115622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) affects ∼16 million U.S. adults. Phthalates, synthetic chemicals in consumer products, may adversely impact pulmonary function and airway inflammation; however, their role on COPD morbidity remains unknown. OBJECTIVE We examined associations between phthalate exposures and respiratory morbidity among 40 COPD patients who were former smokers. METHODS We quantified 11 phthalate biomarkers in urine samples collected at baseline in a 9-month prospective cohort study in Baltimore, Maryland. COPD baseline morbidity measures included: health status and quality of life measures (CAT: COPD Assessment Test, CCQ: Clinical COPD Questionnaire, SGRQ: St. George's Respiratory Questionnaire; mMRC: Modified Medical Research Council Dyspnea Scale), and lung function. Information on prospective exacerbation data was monitored monthly during the 9-month longitudinal follow-up period. To examine associations between morbidity measures and phthalate exposures, we used multivariable linear and Poisson regression models for continuous and count outcomes, respectively, adjusting for age, sex, race/ethnicity, education, and smoking pack-years. RESULTS Higher mono-n-butyl phthalate (MBP) concentrations were associated with increased CAT(β, 2.41; 95%CI, 0.31-4.51), mMRC (β, 0.33; 95%CI 0.11-0.55), and SGRQ (β, 7.43; 95%CI 2.70-12.2) scores at baseline. Monobenzyl phthalate (MBzP) was also positively associated with CCQ and SGRQ scores at baseline. Higher concentrations of the molar sum of Di (2-ethylhexyl) phthalate (DEHP) were associated with increased incidence of exacerbations during the follow-up period (incidence rate ratio, IRR = 1.73; 95%CI 1.11, 2.70 and IRR = 1.94; 95%CI 1.22, 3.07, for moderate and severe exacerbations, respectively). MEP concentrations were inversely associated with incidence of exacerbations during the follow-up period. CONCLUSIONS We found that exposure to select phthalates was associated with respiratory morbidity among COPD patients. Findings warrant further examination in larger studies given widespread phthalate exposures and potential implications for COPD patients should relationships observed be causal.
Collapse
Affiliation(s)
- Lesliam Quirós-Alcalá
- Department of Environmental Health & Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Daniel C Belz
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Han Woo
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wendy Lorizio
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nirupama Putcha
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kirsten Koehler
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meredith C McCormack
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Zhang H, Chen S, Chen X, Zhang Y, Han Y, Li J, Chen X. Exposure to phthalate increases the risk of eczema in children: Findings from a systematic review and meta-analysis. CHEMOSPHERE 2023; 321:138139. [PMID: 36791818 DOI: 10.1016/j.chemosphere.2023.138139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/25/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Emerging evidence indicated phthalate exposure might raise the risk of eczema in children. However, these findings were inconsistent. The relation between phthalate exposure and childhood eczema remained debated. Therefore, we performed this meta-analysis to assess their association. PubMed, Web of Science, and Embase were searched for eligible studies. Pooled odds ratio (OR) and 95% confidence interval (CI) were calculated for risk estimate. Thirty studies involving 12,615 participants were included in this meta-analysis. For prenatal phthalate exposure assessed with maternal samples, the pooled results showed gestational exposure to monobenzyl phthalate (MBzP) (OR: 1.17, 95% CI: 1.00-1.36), but not the other phthalates, was correlated with increased risk of eczema in children. For childhood exposure assessed using children's urine sample, our pooled results indicated that postnatal exposure to MBzP (OR: 1.10, 95% CI: 1.02-1.19), mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP) (OR: 1.32, 95% CI: 1.08-1.61), mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP) (OR: 1.24, 95% CI: 1.06-1.44), and molar summation of di-2-ethylhexyl phthalate (DEHP) (OR: 1.23, 95% CI: 1.06-1.42) were associated with higher risk of eczema. While for studies using household dust to estimate environmental phthalate exposure and eczema risk, the pooled results showed no significant association. Subgroup analyses indicated study country, diagnostic mode, and children's age contributed to the heterogeneity. The results of our meta-analysis demonstrated that phthalate exposure during both prenatal and postnatal periods was associated with elevated risk of eczema in children. However, such association was not strong as the pooled ORs were relatively small. Further studies are warranted to verify these findings and explore the underlying mechanism.
Collapse
Affiliation(s)
- Hong Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, China; College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350007, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou, 350007, China
| | - Siyu Chen
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, China; College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350007, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou, 350007, China
| | - Xinwang Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| | - Yong Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, China; College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350007, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou, 350007, China
| | - Yonghe Han
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, China; College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350007, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou, 350007, China
| | - Jiabing Li
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, China; College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350007, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou, 350007, China
| | - Xiangqi Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| |
Collapse
|
12
|
Lee SH, Du ZY, Tseng WC, Lin WY, Chen MH, Lin CC, Liang HJ, Wen HJ, Guo YL, Chen PC, Lin CY. Identification of serum metabolic signatures of environmental-leveled phthalate in the Taiwanese child population using NMR-based metabolomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120454. [PMID: 36306885 DOI: 10.1016/j.envpol.2022.120454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/22/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Phthalates have become important environmental pollutants due to their high exposure frequency in daily life; thus, phthalates are prevalent in humans. Although several epidemiologic surveys have linked phthalates with several adverse health effects in humans, the molecular events underlying phthalate exposure have not been fully elucidated. The purpose of this study was to reveal associations between phthalate exposure and the serum metabolome in Taiwanese children using a metabolomic approach. A total of 256 Taiwanese children (8-10 years old) from two cohorts were enrolled in this study. Twelve urinary phthalate metabolites were analyzed by high-performance liquid chromatography/tandem mass spectrometry, while a nuclear magnetic resonance-based metabolomic approach was used to record serum metabolic profiles. The associations between metabolic profiles and phthalate levels were assessed by partial least squares analysis coupled with multiple linear regression analysis. Our results revealed that unique phthalate exposures, such as mono-isobutyl phthalate, mono-n-butyl phthalate, and mono (2-ethyl-5-oxohexyl) phthalate, were associated with distinct serum metabolite profiles. These phthalate-mediated metabolite changes may be associated with perturbed energy mechanisms, increased oxidative stress, and lipid metabolism. In conclusion, this study suggests that metabolomics is a valid approach to examine the effects of environmental-level phthalate on the serum metabolome. This study also highlighted potentially important phthalates and their possible effects on children.
Collapse
Affiliation(s)
- Sheng-Han Lee
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Zhi-Yi Du
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wei-Chen Tseng
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wan-Yu Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Mei-Huei Chen
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Chun Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hao-Jan Liang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hui-Ju Wen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yue-Leon Guo
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Yu Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
13
|
Berman YE, Doherty DA, Mori TA, Beilin LJ, Ayonrinde OT, Adams LA, Huang RC, Olynyk JK, Keelan JA, Newnham JP, Hart RJ. Associations between Prenatal Exposure to Phthalates and Features of the Metabolic Syndrome in Males from Childhood into Adulthood. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15244. [PMID: 36429961 PMCID: PMC9690816 DOI: 10.3390/ijerph192215244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Phthalate metabolites are detectable within the majority of the population. Evidence suggests that a prenatal exposure to phthalates may be associated with the subsequent risks of obesity and elevated blood pressure. We hypothesised that a prenatal exposure to phthalates would lead to an increase in adverse cardiometabolic parameters through childhood and adulthood. The maternal serum phthalate measurements from the stored samples taken from Gen1 mothers at 18 and 34 weeks gestation were examined in relation to the cardiometabolic measures in 387 male offspring from the Raine Study. Data from the Gen2 follow-ups between 3 and 27 years were used. The primary outcomes were analysed longitudinally using linear mixed models for the repeated measures. Non-alcoholic fatty liver disease (NAFLD) was assessed at 17 years using logistic regression. A consistent positive relationship was observed between a prenatal exposure to mono-carboxy-iso-octyl phthalate (MCiOP) through adolescence into adulthood with systolic blood pressure. There were no other consistent cardiovascular associations. Mid-levels of prenatal exposures to Mono-n-butyl phthalate (MnBP) were associated with a greater incidence of NAFLD. Detectable Mono-3-carboxypropyl phthalate (MCPP) was associated with a lower serum HDL-C through late childhood into adulthood, while a higher prenatal exposure to mono-iso-butyl phthalate (MiBP), was associated with a higher LDL-C at 22 years of age. A mid-level prenatal exposure to mono-2-ethylhexyl phthalate (MEHP) metabolites was associated with higher insulin in adulthood, while a higher prenatal exposure to the sum of the Di-(2-ethyl-hexyl) phthalate (DEHP) and Di-iso-nonyl phthalate (DiNP) metabolites was associated with higher fasting serum glucose in adulthood. In conclusion, our study demonstrated that higher prenatal phthalate exposures to some phthalate metabolites was associated with some adverse metabolic profiles through adolescence into adulthood, although the consistent themes were limited to a few metabolites and the outcomes of systolic blood pressure, fasting insulin and glucose.
Collapse
Affiliation(s)
- Ye’elah E. Berman
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, WA 6008, Australia
| | - Dorota A. Doherty
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, WA 6008, Australia
| | - Trevor A. Mori
- Medical School, University of Western Australia, Crawley, WA 6009, Australia
| | - Lawrence J. Beilin
- Medical School, University of Western Australia, Crawley, WA 6009, Australia
| | - Oyekoya T. Ayonrinde
- Medical School, University of Western Australia, Crawley, WA 6009, Australia
- Department of Gastroenterology and Hepatology, Fiona Stanley Hospital, Murdoch, WA 6150, Australia
| | - Leon A. Adams
- Medical School, University of Western Australia, Crawley, WA 6009, Australia
- Department of Hepatology, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
| | - Rae-Chi Huang
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
- Telethon Kids Institute, University of Western Australia, Nedlands, WA 6009, Australia
| | - John K. Olynyk
- Department of Gastroenterology and Hepatology, Fiona Stanley Hospital, Murdoch, WA 6150, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Jeffrey A. Keelan
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, WA 6008, Australia
| | - John P. Newnham
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, WA 6008, Australia
| | - Roger J. Hart
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, WA 6008, Australia
| |
Collapse
|
14
|
Zhao Y, Sun Y, Zhu C, Zhang Y, Hou J, Zhang Q, Ataei Y. Phthalate Metabolites in Urine of Chinese Children and Their Association with Asthma and Allergic Symptoms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14083. [PMID: 36360961 PMCID: PMC9654528 DOI: 10.3390/ijerph192114083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Phthalates are ubiquitous 'modern' chemical compounds with potential negative impacts on children's health. A nested case-control study was designed to investigate associations of phthalate exposure with children's asthma and allergic symptoms. We collected 243 first morning urine samples from 4-8-year-old children in Tianjin, China. Eight metabolites (i.e., mono-ethyl phthalate (MEP), mono-isobutyl phthalate (MiBP), mono-n-butyl phthalate (MnBP), mono-benzyl phthalate (MBzP) and mono-2-ethylhexyl phthalate (MEHP), mono-(2-ethyl-5-carboxylpentyl) phthalate (MECPP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP)) of five phthalates were analyzed using HPLC-MS. MiBP, MnBP and MECPP were the dominant phthalate metabolites in urine of children in Tianjin with median concentrations of 31.6 μg/L, 26.24 μg/L and 46.12 μg/L, respectively. We found significantly positive associations of diagnosed asthma with MnBP (adjusted odds ratios (AOR): 1.96; 95% confidence intervals (CIs): 1.07-3.61), MEHHP (AOR: 2.00; 95% CI: 1.08-3.71) and MEOHP (AOR: 2.09; 95% CI: 1.06-4.10). Our study indicates that phthalate exposure in childhood, especially to di-n-butyl phthalate (DnBP) and di(2-ethylhexyl) phthalate (DEHP), may be a risk factor for children's asthma.
Collapse
Affiliation(s)
- Yuxuan Zhao
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuexia Sun
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Changqi Zhu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jing Hou
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qinghao Zhang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yeganeh Ataei
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
15
|
Fandiño-Del-Rio M, Matsui EC, Peng RD, Meeker JD, Quirós-Alcalá L. Phthalate biomarkers and associations with respiratory symptoms and healthcare utilization among low-income urban children with asthma. ENVIRONMENTAL RESEARCH 2022; 212:113239. [PMID: 35405131 DOI: 10.1016/j.envres.2022.113239] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Phthalates are synthetic chemicals present in building materials, personal care products and other consumer goods. Limited studies link phthalates to pediatric asthma incidence; however, their effects on respiratory-related outcomes among those with pre-existing asthma remains unclear. OBJECTIVE We examined associations between phthalates and asthma symptoms, healthcare use, lung function, and lung inflammation among children with asthma. METHODS We collected repeated measures of urinary biomarkers for select phthalates and phthalate replacements (MBzP, MCINP, MCIOP, MCPP, MECPTP, MEHHTP, molar sum of DEHP biomarkers [MECPP, MEHHP, MEHP, MEOHP], MEP, MiBP, MnBP) and asthma symptoms, healthcare utilization, lung function, and inflammation among 148 predominantly low-income Black children (5-17 years) with persistent asthma every 3 months for one year. We used generalized estimating equations to assess associations between biomarker concentrations and asthma-related measures adjusting for age, sex, race/ethnicity, caregiver's education level, presence of smokers in the home, and season. We also considered co-exposures to other contaminants previously associated with asthma morbidity. RESULTS We observed consistent positive associations with individual DEHP biomarkers, the molar sum of DEHP, and BBzP with increased odds of asthma symptoms and with healthcare utilization (adjusted Odds Ratio for general asthma symptoms: ΣDEHP:1.49,95% Confidence Interval, CI:1.08-2.07; BBzP:1.34, CI:1.04-1.73). We observed similar associations between the DEHP phthalate replacement biomarker MEHHTP and most asthma symptoms evaluated; and with select low molecular weight phthalates (DiBP, DBP) and healthcare utilization. Results were similar when controlling for other environmental exposures (e.g., PM2.5, BPA). No associations were observed with lung function or inflammation, and overall, we did not observe consistent evidence of sexually dimorphic effects. CONCLUSION In the present study, we found evidence to suggest that exposure to select phthalates may be associated with asthma symptoms and healthcare utilization. These findings warrant confirmation given the high asthma burden and widespread and disparate phthalate exposures reported among select populations of color.
Collapse
Affiliation(s)
- Magdalena Fandiño-Del-Rio
- Johns Hopkins University, Bloomberg School of Public Health, Department of Environmental Health and Engineering, Baltimore, MD, USA.
| | | | - Roger D Peng
- Johns Hopkins University, Bloomberg School of Public Health, Department of Biostatistics, Baltimore, MD, USA.
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - Lesliam Quirós-Alcalá
- Johns Hopkins University, Bloomberg School of Public Health, Department of Environmental Health and Engineering, Baltimore, MD, USA.
| |
Collapse
|
16
|
Zhu C, Sun Y, Zhao Y, Hou J, Zhang Q, Wang P. Associations between Children's asthma and allergic symptoms and phthalates in dust in metropolitan Tianjin, China. CHEMOSPHERE 2022; 302:134786. [PMID: 35508265 DOI: 10.1016/j.chemosphere.2022.134786] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/25/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Prevalences of allergies and asthma have increased through the past few decades around the world, especially in countries and regions that have adopted modern lifestyles. Epidemiological studies outside of China have found a relationship between phthalates concentrations in indoor dust and symptoms of respiratory, skin and nose allergies. The aim of our study is to investigate the association between children's asthma and allergic symptoms and concentrations of different phthalates in settled dust samples collected from children's homes in metropolitan Tianjin (Tianjin and Cangzhou), China. We selected 126 cases with current allergic symptoms and 254 controls without allergic symptoms from the cohort of 7865 children. We collected dust samples from children's bedroom and analyzed them for their content of diethyl phthalate (DEP), diisobutyl phthalate (DiBP), di-n-butyl phthalate (DnBP), butylbenzyl phthalate (BBzP), di-2-ethylhexyl phthalate (DEHP) and diisononyl phthalate (DiNP). We found a higher concentration of DEP in rhinitis children's homes (0.33 vs. 0.27 μg/g dust) and a higher concentration of DiBP in asthma children's homes (29.04 vs. 15.66 μg/g dust). The concentration of DiBP was significantly associated with diagnosed asthma (adjusted odds ratio (AOR): 1.30; 95% confidence interval (CI): 1.07, 1.57). A dose-response relationship was found between concentrations of DiBP in dust and asthma. This study shows that some phthalates are associated with allergic and asthma symptoms in children.
Collapse
Affiliation(s)
- Changqi Zhu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Yuexia Sun
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China.
| | - Yuxuan Zhao
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Jing Hou
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Qingnan Zhang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Pan Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| |
Collapse
|
17
|
Are Phthalate Exposure Related to Oxidative Stress in Children and Adolescents with Asthma? A Cumulative Risk Assessment Approach. Antioxidants (Basel) 2022; 11:antiox11071315. [PMID: 35883806 PMCID: PMC9312256 DOI: 10.3390/antiox11071315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023] Open
Abstract
Childhood asthma has become one of the most common chronic diseases in children and adolescents. However, few case–control studies investigating the relationship between phthalate exposure and asthma in children and adolescents have been conducted, especially in Asia. Therefore, we assessed the potential associations between phthalate exposure and asthma among children and adolescents in Taiwan. Because various demographic and environmental variables may influence the incidence and prognosis of asthma, we performed a case–control study with propensity score matching. Out of 615 Childhood Environment and Allergic Diseases Study participants, we conditionally matched 41 children with clinically diagnosed asthma with 111 controls. We then analyzed 11 phthalate metabolites by using liquid chromatography with tandem mass spectrometry. Compared with the control group, the median urinary phthalate levels for most phthalate metabolites in the case group were slightly increased, including monomethyl phthalate, mono-n-butyl phthalate, monobenzyl phthalate, monoethylhexyl phthalate, mono-(2-ethyl-5-hydroxyhexyl) phthalate, mono-(2-ethyl-5-oxohexyl) phthalate, mono-(2-ethyl-5-carboxypentyl) phthalate, and mono-(2-carboxymethylhexyl) phthalate. Hence, our results suggest that phthalate exposure may be associated with the development of asthma. In addition, prenatal environmental factors, such as active or passive smoking during pregnancy, may increase the risk of asthma.
Collapse
|
18
|
Chang JW, Chen HC, Hu HZ, Chang WT, Huang PC, Wang IJ. Phthalate Exposure and Oxidative/Nitrosative Stress in Childhood Asthma: A Nested Case-Control Study with Propensity Score Matching. Biomedicines 2022; 10:biomedicines10061438. [PMID: 35740459 PMCID: PMC9219890 DOI: 10.3390/biomedicines10061438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022] Open
Abstract
Whether low-dose phthalate exposure triggers asthma among children, and its underlying mechanisms, remain debatable. Here, we evaluated the individual and mixed effects of low-dose phthalate exposure on children with asthma and five (oxidative/nitrosative stress/lipid peroxidation) mechanistic biomarkers—8-hydroxy-2′-deoxyguanosine (8-OHdG), 8-nitroguanine (8-NO2Gua), 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), 8-isoprostaglandin F2α (8-isoPF2α), and malondialdehyde (MDA)—using a propensity score-matched case-control study (case vs. control = 41 vs. 111). The median monobenzyl phthalate (MBzP) concentrations in the case group were significantly higher than those in the control group (3.94 vs. 2.52 ng/mL, p = 0.02), indicating that dust could be an important source. After adjustment for confounders, the associations of high monomethyl phthalate (MMP) (75th percentile) with 8-NO2Gua (adjusted odds ratio (aOR): 2.66, 95% confidence interval (CI): 1.03–6.92) and 8-isoPF2α (aOR: 4.04, 95% CI: 1.51–10.8) and the associations of mono-iso-butyl phthalate (MiBP) with 8-isoPF2α (aOR: 2.96, 95% CI: 1.13–7.79) were observed. Weighted quantile sum regression revealed that MBzP contributed more than half of the association (56.8%), followed by MiBP (26.6%) and mono-iso-nonyl phthalate (MiNP) (8.77%). Our findings supported the adjuvant effect of phthalates in enhancing the immune system response.
Collapse
Affiliation(s)
- Jung-Wei Chang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (J.-W.C.); (H.-Z.H.)
| | - Hsin-Chang Chen
- Department of Chemistry, Tunghai University, Taichung 407224, Taiwan;
| | - Heng-Zhao Hu
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (J.-W.C.); (H.-Z.H.)
| | - Wan-Ting Chang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 35042, Taiwan;
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 35042, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 406040, Taiwan
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli 36003, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (I-J.W.); (P.-C.H.); Tel.: +886-222-765-566 (ext. 2532) (I-J.W.); +886-37-206166 (ext. 38507) (P.-C.H.)
| | - I-Jen Wang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (J.-W.C.); (H.-Z.H.)
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 35042, Taiwan;
- Department of Pediatrics, Taipei Hospital, Ministry of Health and Welfare, Taipei 10341, Taiwan
- College of Public Health, China Medical University, Taichung 406040, Taiwan
- Correspondence: (I-J.W.); (P.-C.H.); Tel.: +886-222-765-566 (ext. 2532) (I-J.W.); +886-37-206166 (ext. 38507) (P.-C.H.)
| |
Collapse
|
19
|
Li L, Zheng Y, Ma S. Indoor Air Purification and Residents' Self-Rated Health: Evidence from the China Health and Nutrition Survey. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6316. [PMID: 35627853 PMCID: PMC9141498 DOI: 10.3390/ijerph19106316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022]
Abstract
Indoor air pollution is injurious to human health, even worse than outdoor air pollution. However, there is a lack of empirical evidence using large samples in developing countries regarding whether indoor air purification can improve human health by reducing indoor air pollutants. Using the data from the China Health and Nutrition Survey in 2015, this study analyzes the relationship between indoor air purification and residents' self-rated health. We apply the generalized ordered logit model and find that indoor air purification has a significantly positive effect on residents' self-rated health. This positive effect is limited to improving the probability of residents' health level being rated "good", and there is no significant movement between the two levels of "bad" and "fair". The results also show that, as an important source of indoor air pollutants, solid fuels used in cooking significantly reduced residents' self-rated health level. Additional results show the heterogeneity of the relationship between indoor air purification and resident health among groups with different characteristics. This study provides empirical evidence for further optimizing the indoor air environment.
Collapse
Affiliation(s)
| | - Yilin Zheng
- College of Management and Economics, Tianjin University, Tianjin 300072, China; (L.L.); (S.M.)
| | | |
Collapse
|
20
|
Liu W, Sun Y, Liu N, Hou J, Huo X, Zhao Y, Zhang Y, Deng F, Kan H, Zhao Z, Huang C, Zhao B, Zeng X, Qian H, Zheng X, Liu W, Mo J, Sun C, Su C, Zou Z, Li H, Guo J, Bu Z. Indoor exposure to phthalates and its burden of disease in China. INDOOR AIR 2022; 32:e13030. [PMID: 35481931 DOI: 10.1111/ina.13030] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
China's profoundly rapid modernization in the past two decades has resulted in dramatic changes in indoor environmental exposures. Among these changes, exposure to phthalates has attracted increasing attention. We aimed to characterize indoor phthalate exposure and to estimate the disease burden attributable to indoor phthalate pollution from 2000 to 2017 in China. We integrated the national exposure level of indoor phthalates from literature through systematic review and Monte Carlo simulation. Dose-response relationships between phthalate exposure and health outcomes were obtained by systematic review and meta-analysis. Based on existing models for assessing probabilities of causation and a comprehensive review of available data, we calculated the disability-adjusted life years (DALYs) among the general Chinese population resulting from exposure to indoor phthalate pollution. We found that DnBP, DiBP, and DEHP were the most abundant phthalates in indoor environments of residences, offices, and schools with medians of national dust phase concentration from 74.5 µg/g to 96.3 µg/g, 39.6 µg/g to 162.5 µg/g, 634.2 µg/g to 1,394.7 µg/g, respectively. The national equivalent exposure for children to phthalates in settled dust was higher than that of adults except for DiBP and DnOP. Dose-response relationships associated with DEP, DiBP, DnBP, BBzP, and DEHP exposures were established. Between 2000 and 2017, indoor phthalate exposure in China has led to 3.32 million DALYs per year, accounting for 0.90% of total DALYs across China. The annual DALY associated with indoor phthalate pollution in China was over 2000 people per million, which is about 2~3 times of the DALY loss due to secondhand smoke (SHS) in six European countries or the sum of the DALY loss caused by indoor radon and formaldehyde in American homes. Our study indicates a considerable socioeconomic impact of indoor phthalate exposure for a modernizing human society. This suggest the need for relevant national standard and actions to reduce indoor phthalate exposure.
Collapse
Affiliation(s)
- Wei Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Yuexia Sun
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Ningrui Liu
- Department of Building Science, Tsinghua University, Beijing, China
| | - Jing Hou
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Xinyue Huo
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Yuxuan Zhao
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, China
| | - Furong Deng
- School of Public Health, Peking University, Beijing, China
| | - Haidong Kan
- School of Public Health, Fudan University, Shanghai, China
| | - Zhuohui Zhao
- School of Public Health, Fudan University, Shanghai, China
| | - Chen Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Bin Zhao
- Department of Building Science, Tsinghua University, Beijing, China
| | - Xiangang Zeng
- School of Environment and Natural Resources, Renmin University of China, Beijing, China
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Xiaohong Zheng
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Wei Liu
- Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing, China
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing, China
| | - Chanjuan Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Chunxiao Su
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhijun Zou
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Hao Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianguo Guo
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhongming Bu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
21
|
Zhang J, Sun C, Lu R, Zou Z, Liu W, Huang C. Association of childhood rhinitis with phthalate acid esters in household dust in Shanghai residences. Int Arch Occup Environ Health 2022; 95:629-643. [PMID: 35192054 DOI: 10.1007/s00420-021-01797-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/24/2021] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Phthalate acid esters (PAEs) have been identified to be associated with children's health. Present study was conducted to assess associations between PAEs in household dust and childhood rhinitis. METHODS Based on phase II of CCHH study (China, Children, Home, Health) conducted in Shanghai, China, 266 indoor dust samples were collected from participants' families. Concentrations of PAEs in dust samples were measured by chemical treatment and gas chromatograph-mass spectrometer. Information about individuals and residences was surveyed by questionnaires. Logistic regression models were applied to obtain the associations between PAEs and childhood rhinitis. RESULTS Higher concentrations of benzyl butyl phthalate (BBP) were found in those families with children who had diagnosed rhinitis. Significantly higher concentrations of bis(2-ethylhexyl) phthalate (DEHP) and PAEs with high molecular weight (HMW-PAEs) were found in the positive group of lifetime rhinitis. Using the multiple and ordinal logistic regression models adjusted by covariates, dibutyl phthalate (DBP), DEHP, and HMW-PAEs were found to be significantly associated with diagnosed rhinitis. Boys who exposure to higher concentrations of DBP, DEHP, HMW-PAEs, and total PAEs have significant associations with diagnosed rhinitis compared with girls who exposure to lower concentration of PAEs. CONCLUSIONS Present observational study indicated that exposure to high concentrations of DBP, DEHP, and HMW-PAEs in house settled dust was a risk factor for rhinitis for children, especially for boys.
Collapse
Affiliation(s)
- Jialing Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Chanjuan Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Rongchun Lu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Zhijun Zou
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Wei Liu
- Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing, People's Republic of China
| | - Chen Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, People's Republic of China.
| |
Collapse
|
22
|
Abdi S, Sobhanardakani S, Lorestani B, Cheraghi M, Panahi HA. Analysis and health risk assessment of phthalate esters (PAEs) in indoor dust of preschool and elementary school centers in city of Tehran, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61151-61162. [PMID: 34173141 DOI: 10.1007/s11356-021-14845-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Individuals spend a lot of time indoors; thus they are generally exposed to phthalates used in consumer products. Therefore, those exposed to phthalates as indoor contaminants are at high risks. The present study was conducted to evaluate the carcinogenic and non-carcinogenic hazard of phthalate esters (PAEs), like dimethyl phthalate, diethyl phthalate, di(nbutyl) phthalate, butyl benzyl phthalate, dioctyl phthalate, and di(2-ethylhexyl) phthalate in the dust obtained from 21 schools in Tehran, in 2019. A total of 63 indoor dust specimens were obtained by a vacuum cleaner. After transferring dust samples to the laboratory, 100 mg of each sample was centrifuged and mixed with 20 ml acetone and kept through a night and ultrasonicated within 30 min. Eventually, PAEs' contents were measured via gas chromatography-mass spectrometry. Based on the findings, median concentrations of DMP, DEP, DnBP, BBP, DEHP, and DnOP were 0.90, 0.10, 6.0, 0.20, 118.30, and 4.10 mg kg-1 respectively. Moreover, the overall average daily exposure doses (ADD) of phthalate esters via dust ingestion, skin contact, and inhalation were 1.56E-03, 1.70E-06, and 1.56E-07 mg kg-1 day-1, respectively, and the lifetime average daily exposure doses (LADD) were 1.83E-04, 2.34E-08, and 2.46E-08 mg kg-1 day-1, respectively; thus ingestion of dust particles was found to be the main pathway of exposure to phthalate for non-carcinogenic and carcinogenic risks. Although based on the results, the studied samples were below the US Environmental Protection Agency threshold of 1.00E-06, due to the disadvantages of phthalates in human safety, these kinds of investigations are helpful in understanding the main ways of exposure to PAEs and providing a science-based framework for the future attempts for mitigating the PAEs indoor emissions.
Collapse
Affiliation(s)
- Somayeh Abdi
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Soheil Sobhanardakani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
| | - Bahareh Lorestani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Mehrdad Cheraghi
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Homayon Ahmad Panahi
- Department of Chemistry, College of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
23
|
Lee JY, Lee J, Huh DA, Moon KW. Association between environmental exposure to phthalates and allergic disorders in Korean children: Korean National Environmental Health Survey (KoNEHS) 2015-2017. Int J Hyg Environ Health 2021; 238:113857. [PMID: 34644676 DOI: 10.1016/j.ijheh.2021.113857] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/12/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Phthalates are common industrial chemicals that are used as plasticizers in plastics, personal care products, and building materials. Although these chemicals have been suspected as risk factors for allergic outcomes among children, inconsistent associations between environmental exposure to phthalates and allergic disorders have been found across different populations. Therefore, this study aimed to assess whether environmental phthalate exposure was associated with parent-reported current allergic symptoms (atopic dermatitis, AD; asthma; and allergic rhinitis, AR) and the index of allergic response (levels of serum total immunoglobulin E, IgE) in a nationally representative sample of children. METHODS In this study, children aged 3-17 years (n = 2208) were recruited from the Korean National Environmental Health Survey (KoNEHS) 2015-2017 to conduct an analysis of their current allergic symptoms. Among this number of children, the total IgE analysis included 806 participants because total IgE levels were only measured in children aged 12-17 years. RESULTS After adjusting for all covariates, mono-benzyl phthalate (MBzP) [OR (95% CI) = 1.15 (1.01, 1.30)], mono-(carboxyoctyl) phthalate (MCOP) [OR (95% CI) = 1.35 (1.02, 1.78)], and the sum of di-(2-ethylhexyl) phthalate metabolites (∑DEHP) [OR (95% CI) = 1.39 (1.09, 1.79)] were associated with increased odds of current AD. MCOP [OR (95% CI) = 1.19 (1.01, 1.40)], mono-(carboxynonyl) phthalate (MCNP) [OR (95% CI) = 1.24 (1.05, 1.45)], and ∑DEHP [OR (95% CI) = 1.22 (1.02, 1.44)] were also associated with increased odds of current AR. Individual DEHP metabolites showed similar associations with current AD and AR. In addition, MCNP was positively related to IgE levels [β (95% CI) = 0.26 (0.12, 0.40)]. MBzP [OR (95% CI) = 1.17 (1.01, 1.35)], MCOP [OR (95% CI) = 1.62 (1.12, 2.32)], and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) [OR (95% CI) = 1.36 (1.06, 1.76)] showed positive relationships with allergic multimorbidity. Moreover, higher concentrations of MCNP were related to increased odds of experiencing both current AR and total IgE levels [OR (95% CI) = 1.98 (1.29, 3.04)], and children with elevated IgE levels (>100IU/mL) were more likely to have current AR associated with MCNP than those without elevated IgE levels (p = 0.007). Specifically, the relationship between MCNP and current AR was significantly mediated through alterations in IgE levels (14.7%), and MCNP also showed the positive association with current AR, independent of IgE (85.3%). CONCLUSION These results suggest that environmental exposure to phthalates may affect the immune system and increase the occurrence of allergic symptoms in children.
Collapse
Affiliation(s)
- Ju-Yeon Lee
- Department of Health and Safety Convergence Science, Korea University, Seoul, Republic of Korea; BK21 FOUR R&E Center for Learning Health System, Korea University, Seoul, Republic of Korea
| | - Jiyun Lee
- Department of Health and Safety Convergence Science, Korea University, Seoul, Republic of Korea; BK21 FOUR R&E Center for Learning Health System, Korea University, Seoul, Republic of Korea
| | - Da-An Huh
- Institute of Health Sciences, Korea University, Seoul, Republic of Korea
| | - Kyong Whan Moon
- BK21 FOUR R&E Center for Learning Health System, Korea University, Seoul, Republic of Korea; Department of Health and Environmental Science, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Lin WT, Chen CY, Lee CC, Chen CC, Lo SC. Air Phthalate Emitted from Flooring Building Material by the Micro-Chamber Method: Two-Stage Emission Evaluation and Comparison. TOXICS 2021; 9:toxics9090216. [PMID: 34564367 PMCID: PMC8473253 DOI: 10.3390/toxics9090216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022]
Abstract
The phthalate and semi-volatile organic compounds (SVOCs) are modern chemical substances and extensively existing in the indoor environment. The European Commission stipulated the "European Unified Test Criteria", since 2011, for the declared specifications of building products (CEN/TS 16516), based on the "lowest concentrations of interest (LCI)", the index pollutants, test method, and emission standard of "phthalate" and "SVOC" were specified in detail. The purpose of this study is to use six common indoor floor construction products in Taiwan (regenerated pseudoplastic rubber flooring, healthy pseudoplastic imitation wood floor, regenerated pseudoplastic rubber flooring, PVC floor tile/floor, plastic click floor, composite floor covered with carpet) to detect the changes in the concentration of phthalate emitted to the air. The ISO 16000-25 Indoor air-Part 25: Determination of the emission of semi-volatile organic compounds by building products-micro-chamber method is used to build a DS-BMEMC (glass micro-chamber: volume 630 mL), the SVOC, including phthalate, is collected in two stages, in the stable conditions of temperature 25 °C, relative humidity 50% and air change rate 2 times/h, the Stage 1 emission detection experiment (24 h) is performed, and then the Stage 2 heating-up desorption emission detection experiment (40 min air sampling) is performed, the temperature rises to 200-220 °C, the phthalate and SVOC adsorbed on the glass micro-chamber is desorbed at a high temperature to catch the air substances, the air is caught by Tenax®-TA and Florisil® adsorption tube, and then the GC/MS and LC/MSMS analysis methods are used for qualitative and emission concentration analyses of SVOC of two-stage emission, respectively. The findings show that the floor construction materials emit nine phthalate SVOCs: DEHP, DINP, DNOP, DIDP, BBP, DBP, DIBP, DEP, and DMP, the two-stage emission concentrations are different, Stage 1 (normal temperature) emission concentration of six floor construction materials is 0.01-1.2% of Stage 2 (high temperature) emission concentration, meaning the phthalate SVOC of floor construction materials is unlikely to be volatilized or emitted at normal temperature. An interesting finding is that only S3 was detected DINP 72.6 (μg/m3) in stage 1. Others were detected DINP in stage 2. This might be because S3 has carpet on the surface. This implies that floor material with carpet may have an emission of DINP at normal temperature. The result of this study refers to the limited value evaluation of EU structural material standard emission TSVOC ≤ 0.1 ug/m3, the floor building material emissions are much higher than the evaluation criteria, increasing the health risk of users. The detection method and baseline can be used as the standard for controlling the emission of phthalate SVOC of Taiwan's green building material labeling system in the future.
Collapse
Affiliation(s)
- Wu-Ting Lin
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, No. 1, University Rd., Tainan City 70101, Taiwan;
- Architecture and Building Research Institute, Ministry of the Interior, 13F., No. 200, Sec. 3, Beisin Rd., Sindian District, New Taipei City 23143, Taiwan;
| | - Chung-Yu Chen
- Department of Occupational Safety and Health, Chang Jung Christian University, No. 1, Changda Rd., Gueiren District, Tainan City 71101, Taiwan;
| | - Ching-Chang Lee
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, No. 1, University Rd., Tainan City 70101, Taiwan;
- Correspondence: (C.-C.L.); (C.-C.C.); Tel.: +886-2-2771-2171 (ext. 2951) (C.-C.C.)
| | - Cheng-Chen Chen
- Department of Architecture, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
- Correspondence: (C.-C.L.); (C.-C.C.); Tel.: +886-2-2771-2171 (ext. 2951) (C.-C.C.)
| | - Shih-Chi Lo
- Architecture and Building Research Institute, Ministry of the Interior, 13F., No. 200, Sec. 3, Beisin Rd., Sindian District, New Taipei City 23143, Taiwan;
| |
Collapse
|
25
|
Wang YL, Tsou MCM, Pan KH, Özkaynak H, Dang W, Hsi HC, Chien LC. Estimation of Soil and Dust Ingestion Rates from the Stochastic Human Exposure and Dose Simulation Soil and Dust Model for Children in Taiwan. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11805-11813. [PMID: 34388337 DOI: 10.1021/acs.est.1c00706] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study focuses on estimating the probabilistic soil and dust ingestion rates for children under 3 years old by the Stochastic Human Exposure and Dose Simulation Soil and Dust (SHEDS-S/D) model developed by the U.S. Environmental Protection Agency. The health risk of children's exposure to heavy metals through soil and dust ingestion and dermal absorption was then assessed in three exposure scenarios. In the exposure scenario of direct contact with soil, the average soil and dust ingestion rates for children aged 24 to 36 months were 90.7 and 29.8 mg day-1 in the sand and clay groups, respectively. Hand-to-mouth soil ingestion was identified as the main contributor to soil and dust ingestion rates, followed by hand-to-mouth dust ingestion and object-to-mouth dust ingestion. The soil-to-skin adherence factor was the most influential factor increasing the soil and dust ingestion rate based on a sensitivity analysis in the SHEDS-S/D model. Furthermore, the modeled soil and dust ingestion rates based on the SHEDS-S/D model were coincident with results calculated by the tracer element method. Our estimates highlight the soil ingestion rate as the key parameter increasing the risk for children, while a higher frequency of hand washing could potentially reduce the risk.
Collapse
Affiliation(s)
- Ying-Lin Wang
- Graduate Institute of Environmental Engineering, National Taiwan University, 1 Roosevelt Rd., Sec. 4, Da'an Dist., Taipei 10617, Taiwan
| | - Ming-Chien Mark Tsou
- Research Center for Environmental Changes, Academia Sinica, Building, No.128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Kuan-Hsuan Pan
- Graduate Institute of Environmental Engineering, National Taiwan University, 1 Roosevelt Rd., Sec. 4, Da'an Dist., Taipei 10617, Taiwan
| | - Halûk Özkaynak
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (D205-05), RTP, North Carolina 27711, United States
| | - Winston Dang
- School of Public Health, Taipei Medical University, 250 Wuxing St., Xinyi Dist., Taipei 11031, Taiwan
| | - Hsing-Cheng Hsi
- Graduate Institute of Environmental Engineering, National Taiwan University, 1 Roosevelt Rd., Sec. 4, Da'an Dist., Taipei 10617, Taiwan
| | - Ling-Chu Chien
- School of Public Health, Taipei Medical University, 250 Wuxing St., Xinyi Dist., Taipei 11031, Taiwan
- Neuroscience Research Center, Taipei Medical University, 250 Wuxing St., Xinyi Dist., Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, 252 Wuxing St., Xinyi Dist., Taipei 11031, Taiwan
| |
Collapse
|
26
|
Preece AS, Shu H, Knutz M, Krais AM, Bekö G, Bornehag CG. Indoor phthalate exposure and contributions to total intake among pregnant women in the SELMA study. INDOOR AIR 2021; 31:1495-1508. [PMID: 33751666 DOI: 10.1111/ina.12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/08/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Phthalates are widely used in consumer products. Exposure to phthalates can lead to adverse health effects in humans, with early-life exposure being of particular concern. Phthalate exposure occurs mainly through ingestion, inhalation, and dermal absorption. However, our understanding of the relative importance of different exposure routes is incomplete. This study estimated the intake of five phthalates from the residential indoor environment for 455 Swedish pregnant women in the SELMA study using phthalate mass fraction in indoor dust and compares these to total daily phthalate intakes back-calculated from phthalate metabolite concentrations in the women's urine. Steady-state models were used to estimate indoor air phthalate concentrations from dust measurements. Intakes from residential dust and air made meaningful contributions to total daily intakes of more volatile di-ethyl phthalate (DEP), di-n-butyl phthalate (DnBP), and di-iso-butyl phthalate (DiBP) (11% of total DEP intake and 28% of total DnBP and DiBP intake combined). Dermal absorption from air was the dominant pathway contributing to the indoor environmental exposure. Residential exposure to less volatile phthalates made minor contributions to total intake. These results suggest that reducing the presence of low molecular weight phthalates in the residential indoor environment can meaningfully reduce phthalate intake among pregnant women.
Collapse
Affiliation(s)
- Anna-Sofia Preece
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Huan Shu
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Malin Knutz
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Gabriel Bekö
- Department of Civil Engineering, International Centre for Indoor Environment and Energy, Technical University of Denmark, Kgs. Lyngby, Denmark
- Faculty of Civil Engineering and Architecture, Kaunas University of Technology, Kaunas, Lithuania
| | - Carl-Gustaf Bornehag
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| |
Collapse
|
27
|
Zhang J, Sun C, Lu R, Zou Z, Liu W, Huang C. Associations between phthalic acid esters in household dust and childhood asthma in Shanghai, China. ENVIRONMENTAL RESEARCH 2021; 200:111760. [PMID: 34324846 DOI: 10.1016/j.envres.2021.111760] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Phthalic acid esters (PAEs) have a negative impact on human health and are widely distributed in China. As part of the China, Children, Home, Health (CCHH) study, we investigated the associations between childhood asthmatic symptoms and PAEs in settled house dust in Shanghai, China. We found that di-2-ethylhexyl phthalate (DEHP), dibutyl phthalate (DBP), and diisobutyl phthalate (DiBP) were abundant in the indoor environment. A total of 27 % of children suffered from diagnosed asthma. The Mann-Whitney U test and multiple logistic regression were used to obtain the associations between PAEs and childhood asthmatic symptoms. Stratification analysis was performed to reveal the influence of gender on the associations between PAE exposure and target symptoms. Compared with low concentrations of PAEs, high concentrations of high molecular weight PAEs (HMW-PAEs) were significantly associated with childhood diagnosed asthma (adjusted odds ratios (AORs) > 1, P < 0.05). Moreover, significantly negative associations were found between high concentrations of DiBP and current cough (AORs<1, P < 0.05). All significantly positive associations were observed among girls, and most of the associations of dimethyl phthalate (DMP) and diethyl phthalate (DEP) exposure with the studied symptoms among girls were higher than those among boys. Exposure to PAEs may be a risk factor for asthmatic symptoms in children, especially in girls.
Collapse
Affiliation(s)
- Jialing Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Chanjuan Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Rongchun Lu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Zhijun Zou
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Wei Liu
- Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing, PR China
| | - Chen Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, PR China.
| |
Collapse
|
28
|
Huang C, Zhang YJ, Liu LY, Wang F, Guo Y. Exposure to phthalates and correlations with phthalates in dust and air in South China homes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146806. [PMID: 33836381 DOI: 10.1016/j.scitotenv.2021.146806] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
We spend more than half of our daily time in indoor environments, and the contributions of phthalates present in it to total exposure are important. Here, we determined phthalate concentrations in paired indoor settled dust/air and their metabolites in human urine from 100 general families in south China to explore such kind of effect. The total concentrations of phthalates/metabolites were 48.7-2850 μg/g, 279-5080 ng/m3 and 10.7-2840 ng/mL in the indoor dust, air and urine samples, respectively. Among all targets, di-n-butyl phthalate, di-isobutyl phthalate and di-(2-ethylhexyl) phthalate and their metabolites were the predominant compounds. The daily intakes (DIs) of phthalates via dust or air decreased with age, except for infant, and the values of dust ingestion, air inhalation and air dermal uptake were 2720 ± 2460, 1300 ± 973 and 3590 ± 2890 ng/kg/day for toddlers and 236 ± 194, 360 ± 179 and 1120 ± 586 ng/kg/day for adults, respectively. The ratios of DIs from air to dust were greater than 1.0 for people in all age groups, and the ratio was the highest for adults. Furthermore, the contributions of phthalates from indoor dust and air to total DIs from all sources (estimated from urinary phthalate metabolites) were 0.60%-5.23% and 2.65%-12.2% for different ages, respectively. Our results indicated that indoor air was a quite important source for human exposure to phthalates in indoor environment in south China.
Collapse
Affiliation(s)
- Cong Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, School of Environment, Guangzhou 510632, China
| | - Ying-Jie Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, School of Environment, Guangzhou 510632, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, School of Environment, Guangzhou 510632, China
| | - Fei Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, School of Environment, Guangzhou 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, School of Environment, Guangzhou 510632, China.
| |
Collapse
|
29
|
Qu M, Wang L, Liu F, Zhao Y, Shi X, Li S. Characteristics of dust-phase phthalates in dormitory, classroom, and home and non-dietary exposure in Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38159-38172. [PMID: 33725303 DOI: 10.1007/s11356-021-13347-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The phthalate concentrations in dust from undergraduate dormitories, classrooms, and homes in Beijing, China, were measured in April 2017. We analyzed the characteristics of phthalates in dust from three environments. In addition, we estimated the daily intake of phthalates via three pathways using Monte Carlo simulations. The detection frequency of eight phthalates in dust ranges from 74.5 to 100%. Di (2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DnBP), and di-isobutyl phthalate (DiBP) are the most abundant phthalates. The median proportion of DEHP in dust is the highest, ranging from 67.1 to 72.9%. The PMF results indicated that two, four, and three types of phthalate sources exist in home, dormitory, and classroom, respectively. The differences in the phthalate concentrations between sunny and shaded rooms and urban and suburban classrooms are insignificant, whereas that between male and female dormitories is significant. The total daily intake of DEHP, DnBP, and DiBP ranges from 97.3 to 336 ng/ (kg·day). The oral intake for DEHP in classrooms and the dermal intake of DnBP and DiBP in homes are the highest. The carcinogenic risk of DEHP to university students is the highest in classrooms and the total carcinogenic risk of the three environments is 4.70 × 10-6.
Collapse
Affiliation(s)
- Meinan Qu
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lixin Wang
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Fang Liu
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Yi Zhao
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xiangzhao Shi
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Sijia Li
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
30
|
Associations between Prenatal Exposure to Phthalates and Timing of Menarche and Growth and Adiposity into Adulthood: A Twenty-Years Birth Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094725. [PMID: 33946657 PMCID: PMC8125681 DOI: 10.3390/ijerph18094725] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022]
Abstract
Phthalates are ubiquitous environmental chemicals with endocrine disrupting properties and potentially obesogenic effects. We hypothesised that antenatal phthalate exposure may influence growth and adiposity patterns in girls through childhood into adolescence. Among 1342 Raine Study singleton females, 462 had maternal serum and at least one outcome available up to 20 years of age. Individuals’ maternal serum collected at 18 and 34 weeks gestation was pooled and analyzed for concentrations of 32 metabolites of 15 phthalate diesters. Cox regression and linear models were used to determine associations between maternal phthalate levels and age at menarche, change in height and weight z-scores between birth and two years, height from birth to 20 years, BMI from two to 20 years, deviation from mid-parental height at age 20 and DEXA scan measures at age 20. Weak negative associations were detected with some phthalate metabolites and change in height and weight z-score during infancy. Weak positive associations between some of the high molecular weight phthalate metabolites and height z-score were detected during childhood. While still within the normal range, age at menarche was slightly delayed in girls with higher prenatal exposure to the higher molecular weight phthalate metabolites. We derived some associations between prenatal phthalate exposure with early growth patterns and age at menarche.
Collapse
|
31
|
Endocrine-Disrupting Chemicals and Infectious Diseases: From Endocrine Disruption to Immunosuppression. Int J Mol Sci 2021; 22:ijms22083939. [PMID: 33920428 PMCID: PMC8069594 DOI: 10.3390/ijms22083939] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 01/08/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are hormonally active compounds in the environment that interfere with the body's endocrine system and consequently produce adverse health effects. Despite persistent public health concerns, EDCs remain important components of common consumer products, thus representing ubiquitous contaminants to humans. While scientific evidence confirmed their contribution to the severity of Influenza A virus (H1N1) in the animal model, their roles in susceptibility and clinical outcome of the coronavirus disease (COVID-19) cannot be underestimated. Since its emergence in late 2019, clinical reports on COVID-19 have confirmed that severe disease and death occur in persons aged ≥65 years and those with underlying comorbidities. Major comorbidities of COVID-19 include diabetes, obesity, cardiovascular disease, hypertension, cancer, and kidney and liver diseases. Meanwhile, long-term exposure to EDCs contributes significantly to the onset and progression of these comorbid diseases. Besides, EDCs play vital roles in the disruption of the body's immune system. Here, we review the recent literature on the roles of EDCs in comorbidities contributing to COVID-19 mortality, impacts of EDCs on the immune system, and recent articles linking EDCs to COVID-19 risks. We also recommend methodologies that could be adopted to comprehensively study the role of EDCs in COVID-19 risk.
Collapse
|
32
|
Wang WR, Chen NT, Hsu NY, Kuo IY, Chang HW, Wang JY, Su HJ. Associations among phthalate exposure, DNA methylation of TSLP, and childhood allergy. Clin Epigenetics 2021; 13:76. [PMID: 33836808 PMCID: PMC8035749 DOI: 10.1186/s13148-021-01061-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Dysregulation of thymic stromal lymphopoietin (TSLP) expressions is linked to asthma and allergic disease. Exposure to phthalate esters, a widely used plasticizer, is associated with respiratory and allergic morbidity. Dibutyl phthalate (DBP) causes TSLP upregulation in the skin. In addition, phthalate exposure is associated with changes in environmentally induced DNA methylation, which might cause phenotypic heterogeneity. This study examined the DNA methylation of the TSLP gene to determine the potential mechanism between phthalate exposure and allergic diseases. RESULTS Among all evaluated, only benzyl butyl phthalate (BBzP) in the settled dusts were negatively correlated with the methylation levels of TSLP and positively associated with children's respiratory symptoms. The results revealed that every unit increase in BBzP concentration in the settled dust was associated with a 1.75% decrease in the methylation level on upstream 775 bp from the transcription start site (TSS) of TSLP (β = - 1.75, p = 0.015) after adjustment for child's sex, age, BMI, parents' smoking status, allergic history, and education levels, PM2.5, formaldehyde, temperature; and relative humidity. Moreover, every percentage increase in the methylation level was associated with a 20% decrease in the risk of morning respiratory symptoms in the children (OR 0.80, 95% CI 0.65-0.99). CONCLUSIONS Exposure to BBzP in settled dust might increase children's respiratory symptoms in the morning through decreasing TSLP methylation. Therefore, the exposure to BBzP should be reduced especially for the children already having allergic diseases.
Collapse
Affiliation(s)
- Wan-Ru Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Cheng-Hsing Campus, No. 1, University Road, Tainan City, Taiwan
| | - Nai-Tzu Chen
- Research Center of Environmental Trace Toxic Substances, National Cheng Kung University, Tainan, Taiwan
| | - Nai-Yun Hsu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Cheng-Hsing Campus, No. 1, University Road, Tainan City, Taiwan
| | - I-Ying Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Wen Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Cheng-Hsing Campus, No. 1, University Road, Tainan City, Taiwan
| | - Jiu-Yao Wang
- Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huey-Jen Su
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Cheng-Hsing Campus, No. 1, University Road, Tainan City, Taiwan.
| |
Collapse
|
33
|
Berman YE, Doherty DA, Main KM, Frederiksen H, Keelan JA, Newnham JP, Hart RJ. The influence of prenatal exposure to phthalates on subsequent male growth and body composition in adolescence. ENVIRONMENTAL RESEARCH 2021; 195:110313. [PMID: 33069699 DOI: 10.1016/j.envres.2020.110313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 05/13/2023]
Abstract
Phthalates are ubiquitous environmental chemicals with predominantly anti-androgenic, and potentially obesogenic effects. We hypothesised that antenatal phthalate exposure may influence subsequent boy's growth and body composition through childhood and adolescence. Among 1399 singleton males from the Raine Study, 410 had maternal serum and at least one height, BMI or DEXA outcome available after birth and up to 20 years of age. Maternal serum collected at 18 and 34 weeks' gestation was pooled, and analyzed for concentrations of 32 metabolites of 15 phthalate diesters. Their serum concentrations were categorized into undetectable/detectable levels or tertiles. Linear mixed models were used to determine associations between maternal serum phthalate levels and longitudinal height and body mass index (BMI) z-scores in boys from birth to 20 years of age (n = 250 and n = 295 respectively). Linear regression was used to determine associations between maternal phthalate levels and deviation from mid-parental height (n = 177) and DEXA scan outcomes (n = 191) at the 20 year follow-up. Weak positive associations of participants height z-score increase were detected with exposure to some phthalate metabolites in particular to the lower molecular weight phthalate metabolites. Less consistent findings, by mixed model analyses, were detected for BMI and body composition, by dual energy X-ray absorptiometry (DEXA), with some positive associations of phthalate metabolites with BMI and some negative associations with DEXA fat tissue measures, although no consistent findings were evident. In conclusion, we derived some associations of childhood growth with prenatal phthalate exposure, particularly with respect to the lower molecular weight phthalate metabolites.
Collapse
Affiliation(s)
- Ye'elah E Berman
- Women and Infants Research Foundation, Carson House, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, Perth, Australia
| | - Dorota A Doherty
- Women and Infants Research Foundation, Carson House, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, Perth, Australia; Division of Obstetrics and Gynaecology, University of Western Australia, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, Perth, WA, Australia, 6008
| | - Katharina M Main
- Department of Growth and Reproduction and International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction and International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Jeffrey A Keelan
- Women and Infants Research Foundation, Carson House, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, Perth, Australia; Division of Obstetrics and Gynaecology, University of Western Australia, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, Perth, WA, Australia, 6008
| | - John P Newnham
- Women and Infants Research Foundation, Carson House, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, Perth, Australia; Division of Obstetrics and Gynaecology, University of Western Australia, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, Perth, WA, Australia, 6008
| | - Roger J Hart
- Women and Infants Research Foundation, Carson House, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, Perth, Australia.
| |
Collapse
|
34
|
Preece AS, Shu H, Knutz M, Krais AM, Wikström S, Bornehag CG. Phthalate levels in indoor dust and associations to croup in the SELMA study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:257-265. [PMID: 32952153 DOI: 10.1038/s41370-020-00264-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Phthalates are ubiquitous indoor pollutants which have been associated with child airway disease although results are inconclusive. This study examined associations between phthalate levels in residential indoor dust and croup during infancy. Settled indoor dust was collected in 482 homes of 6-month-old infants in the Swedish Environmental Longitudinal, Mother and child, Asthma and allergy (SELMA) study and analysed for seven phthalates and one phthalate replacement using gas chromatography tandem mass spectrometry. The incidence of parental reported croup at 12 months was 6.4% for girls and 13.4% for boys. Associations between phthalate dust levels and croup were analysed by logistic regression adjusted for potential confounders. We found significant associations between di-ethyl phthalate (DEP) and di-ethyl-hexyl phthalate (DEHP) in residential dust and parental reported croup (adjusted odds ratio (aOR) = 1.71; 95% CI: 1.08-2.73 and 2.07; 1.00-4.30, respectively). Stratified results for boys showed significant associations between DEP and butyl-benzyl phthalate (BBzP) in dust and infant croup (aOR = 1.86; 95% CI: 1.04-3.34 and 2.02; 1.04-3.90, respectively). Results for girls had questionable statistical power due to few cases. Our results suggest that exposure to phthalates in dust is a risk factor for airway inflammatory responses in infant children.
Collapse
Affiliation(s)
- Anna-Sofia Preece
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Huan Shu
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Malin Knutz
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sverre Wikström
- School of Medical Science, Örebro University, Örebro, Sweden
| | - Carl-Gustaf Bornehag
- Department of Health Sciences, Karlstad University, Karlstad, Sweden.
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.
| |
Collapse
|
35
|
Maestre-Batlle D, Huff RD, Schwartz C, Alexis NE, Tebbutt SJ, Turvey S, Bølling AK, Carlsten C. Dibutyl Phthalate Augments Allergen-induced Lung Function Decline and Alters Human Airway Immunology. A Randomized Crossover Study. Am J Respir Crit Care Med 2020; 202:672-680. [PMID: 32320637 DOI: 10.1164/rccm.201911-2153oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rationale: Phthalates are a group of chemicals used in common commercial products. Epidemiological studies suggest that phthalate exposure is associated with development or worsening of allergic diseases such as asthma. However, effects of dibutyl phthalate (DBP) or other phthalates found in high concentrations in indoor air have never been examined in allergic individuals in a controlled exposure setting.Objectives: To investigate the airway effects in humans caused by inhalation of a known concentration of a single phthalate, DBP.Methods: In a randomized crossover study, 16 allergen-sensitized participants were exposed to control air or DBP for 3 hours in an environmental chamber followed immediately by an allergen inhalation challenge. Bronchoalveolar wash and lavage were obtained 24 hours after exposure. Lung function, early allergic response, airway responsiveness, inflammation, immune mediators, and immune cell phenotypes were assessed after DBP exposure.Measurements and Main Results: DBP exposure increased the early allergic response (21.4% decline in FEV1 area under the curve, P = 0.03). Airway responsiveness was increased by 48.1% after DBP exposure in participants without baseline hyperresponsiveness (P = 0.01). DBP increased the recruitment of BAL total macrophages by 4.6% (P = 0.07), whereas the M2 macrophage phenotype increased by 46.9% (P = 0.04). Airway immune mediator levels were modestly affected by DBP.Conclusions: DBP exposure augmented allergen-induced lung function decline, particularly in those without baseline hyperresponsiveness, and exhibited immunomodulatory effects in the airways of allergic individuals. This is the first controlled human exposure study providing biological evidence for phthalate-induced effects in the airways.Clinical trial registered with www.clinicaltrials.gov (NCT02688478).
Collapse
Affiliation(s)
| | | | | | - Neil E Alexis
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | | | - Stuart Turvey
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anette K Bølling
- Department of Air Pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | | |
Collapse
|
36
|
Jung CC, Lin WY, Hsu NY, Wu CD, Chang HT, Su HJ. Development of Hourly Indoor PM 2.5 Concentration Prediction Model: The Role of Outdoor Air, Ventilation, Building Characteristic, and Human Activity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5906. [PMID: 32823930 PMCID: PMC7460507 DOI: 10.3390/ijerph17165906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 11/18/2022]
Abstract
Exposure to indoor particulate matter less than 2.5 µm in diameter (PM2.5) is a critical health risk factor. Therefore, measuring indoor PM2.5 concentrations is important for assessing their health risks and further investigating the sources and influential factors. However, installing monitoring instruments to collect indoor PM2.5 data is difficult and expensive. Therefore, several indoor PM2.5 concentration prediction models have been developed. However, these prediction models only assess the daily average PM2.5 concentrations in cold or temperate regions. The factors that influence PM2.5 concentration differ according to climatic conditions. In this study, we developed a prediction model for hourly indoor PM2.5 concentrations in Taiwan (tropical and subtropical region) by using a multiple linear regression model and investigated the impact factor. The sample comprised 93 study cases (1979 measurements) and 25 potential predictor variables. Cross-validation was performed to assess performance. The prediction model explained 74% of the variation, and outdoor PM2.5 concentrations, the difference between indoor and outdoor CO2 levels, building type, building floor level, bed sheet cleaning, bed sheet replacement, and mosquito coil burning were included in the prediction model. Cross-validation explained 75% of variation on average. The results also confirm that the prediction model can be used to estimate indoor PM2.5 concentrations across seasons and areas. In summary, we developed a prediction model of hourly indoor PM2.5 concentrations and suggested that outdoor PM2.5 concentrations, ventilation, building characteristics, and human activities should be considered. Moreover, it is important to consider outdoor air quality while occupants open or close windows or doors for regulating ventilation rate and human activities changing also can reduce indoor PM2.5 concentrations.
Collapse
Affiliation(s)
- Chien-Cheng Jung
- Department of Public Health, China Medical University, Taichung 40402, Taiwan;
| | - Wan-Yi Lin
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70403, Taiwan; (W.-Y.L.); (N.-Y.H.); (H.-T.C.)
| | - Nai-Yun Hsu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70403, Taiwan; (W.-Y.L.); (N.-Y.H.); (H.-T.C.)
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Tainan 70403, Taiwan;
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Hao-Ting Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70403, Taiwan; (W.-Y.L.); (N.-Y.H.); (H.-T.C.)
| | - Huey-Jen Su
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70403, Taiwan; (W.-Y.L.); (N.-Y.H.); (H.-T.C.)
| |
Collapse
|
37
|
Chen Z, Afshari A, Mo J. A method using porous media to deliver gas-phase phthalates rapidly and at a constant concentration: Effects of temperature and media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:113823. [PMID: 32443184 DOI: 10.1016/j.envpol.2019.113823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/04/2019] [Accepted: 12/15/2019] [Indexed: 06/11/2023]
Abstract
Phthalates are widely used as additives to consumer products. Many diseases have been shown to be related to the uptake of phthalates. To achieve equilibrium constant phthalate generation for mass transfer and exposure experiments, the present study developed a porous media based method using Teflon generators connected to the media with stainless steel connectors. Carbon sponges with the porosities of 20 ppi (pores per inch), 30 ppi, 40 ppi and honeycomb ceramics of 14 ppi were used as porous media fillers to evaluate the effect of temperature-controlled states, materials, and pore sizes on the generating performance of phthalates. The results showed that 30 ppi carbon sponge fillers at 25.0 ± 0.4 °C performed satisfactorily. DMP, DiBP and DEHP were used as examined phthalates and were generated at 12,800 ± 740 μg/m3, 330 ± 13 μg/m3 and 2.37 ± 0.15 μg/m3, respectively. The times to reach stable concentrations were 4.5 h, 18.5 h and 89.5 h, respectively. The reproducibility of DiBP and DEHP delivery deviated by less than 2.4%. Long-term generating experiments should be performed in the future. The porous media based method could stably deliver gaseous PAEs and tends to be widely used in the research of the adsorption of PAEs on surfaces (airborne particles, settled dust and indoor surfaces) and exposure experiments.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Building Science, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Alireza Afshari
- Danish Building Research Institute, Aalborg University, Copenhagen, Denmark
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China.
| |
Collapse
|
38
|
Bølling AK, Sripada K, Becher R, Bekö G. Phthalate exposure and allergic diseases: Review of epidemiological and experimental evidence. ENVIRONMENT INTERNATIONAL 2020; 139:105706. [PMID: 32371302 DOI: 10.1016/j.envint.2020.105706] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Phthalates are among the most ubiquitous environmental contaminants and endocrine-disrupting chemicals. Exposure to phthalates and related health effects have been extensively studied over the past four decades. An association between phthalate exposure and allergic diseases has been suggested, although the literature is far from conclusive. This article reviews and evaluates epidemiological (n = 43), animal (n = 49), and cell culture studies (n = 42), published until the end of 2019, on phthalates and allergic diseases, such as asthma, rhinoconjunctivitis, and eczema. In contrast to earlier reviews, emphasis is placed on experimental studies that use concentrations with relevance for human exposure. Epidemiological studies provide support for associations between phthalate exposures and airway, nasal, ocular, and dermal allergic disease outcomes, although the reported significant associations tend to be weak and demonstrate inconsistencies for any given phthalate. Rodent studies support that phthalates may act as adjuvants at levels likely to be relevant for environmental exposures, inducing respiratory and inflammatory effects in the presence of an allergen. Cell culture studies demonstrate that phthalates may alter the functionality of innate and adaptive immune cells. However, due to limitations of the applied exposure methods and models in experimental studies, including the diversity of phthalates, exposure routes, and allergic diseases considered, the support provided to the epidemiological findings is fragmented. Nevertheless, the current evidence points in the direction of concern. Further research is warranted to identify the most critical windows of exposure, the importance of exposure pathways, interactions with social factors, and the effects of co-exposure to phthalates and other environmental contaminants.
Collapse
Affiliation(s)
| | - Kam Sripada
- Centre for Global Health Inequalities Research, Department of Sociology and Political Science, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Rune Becher
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Gabriel Bekö
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark; Faculty of Civil Engineering and Architecture, Kaunas University of Technology, Kaunas, Lithuania
| |
Collapse
|
39
|
Zhang Q, Sun Y, Zhang Q, Hou J, Wang P, Kong X, Sundell J. Phthalate exposure in Chinese homes and its association with household consumer products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:136965. [PMID: 32120090 DOI: 10.1016/j.scitotenv.2020.136965] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/25/2020] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
Phthalates are SVOCs (Semi-volatile Organic Compounds) that are widely used in industrial and daily home products. This study aimed to investigate exposure levels to phthalates in Chinese homes and to relate these to building characteristics and lifestyles. Dust in 399 homes of 410 children in urban Tianjin and rural Cangzhou was analyzed for concentrations of six target phthalates. The median concentrations were 0.31μg/g for diethyl phthalate (DEP), 16.39μg/g for di-isobutyl phthalate (DiBP), 42.60μg/g for di-n-butyl phthalate (DnBP), 0.10μg/g for benzyl butyl phthalate (BBzP), 127.11μg/g for di (2-ethylhexyl) phthalate (DEHP) and 0.28μg/g for di-isononyl phthalate (DiNP). Strong associations were found between modern flooring materials (laminated wood/wood) and concentrations of DiBP, BBzP and DiNP; modern window frame (aluminum/plastic steel) and BBzP concentration; leather polish and DEHP concentration; perfume and DEP concentration. Concentrations of phthalates were significantly higher in Tianjin urban homes than Cangzhou rural homes. Concentrations of phthalates increased significantly with increasing household income. Our study indicates that exposure to phthalates in Chinese homes increases with attributes of modern life.
Collapse
Affiliation(s)
- Qinghao Zhang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
| | - Yuexia Sun
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China.
| | - Qingnan Zhang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
| | - Jing Hou
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
| | - Pan Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
| | - Xiangrui Kong
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
| | - Jan Sundell
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
| |
Collapse
|
40
|
Bailey-Hytholt CM, Puranik T, Tripathi A, Shukla A. Investigating interactions of phthalate environmental toxicants with lipid structures. Colloids Surf B Biointerfaces 2020; 190:110923. [DOI: 10.1016/j.colsurfb.2020.110923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/24/2020] [Accepted: 03/01/2020] [Indexed: 11/29/2022]
|
41
|
Wu W, Wu C, Ji C, Diao F, Peng J, Luo D, Mu X, Ruan X. Association between phthalate exposure and asthma risk: A meta-analysis of observational studies. Int J Hyg Environ Health 2020; 228:113539. [PMID: 32335495 DOI: 10.1016/j.ijheh.2020.113539] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/02/2020] [Accepted: 04/14/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Phthalates are ubiquitously found in numerous environments and have been related to a variety of adverse health effects. Previous studies have suggested that phthalate exposure is associated with asthma risk in humans; however, such findings are inconsistent. METHODS The aim of the present meta-analysis was to clarify the association between phthalate exposure and asthma risk. A literature search was conducted using PubMed, EMBASE and Web of Science for relevant studies published up to January 5, 2020. Fixed-effects or random-effects models were applied to combine the results, and several subgroup analyses were used to explore the sources of heterogeneity. RESULTS A total of 14 studies containing more than 14,000 participants were included in the present study. A positive, significant association between mono-benzyl phthalate (MBzP) levels and asthma risk was found, and the overall odds ratio (OR) was 1.17 (95% confidence interval [CI]: 1.06-1.28, P-value for overall effect [Pz] = 0.001), with a low heterogeneity (P-value for heterogeneity [Phet] = 0.193, I2 = 23.6%). The pooled ORs for mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP) concentrations were 1.13 (95% CI: 1.03-1.24, Pz = 0.011) and 1.20 (95% CI: 1.00-1.42, Pz = 0.045), respectively. Children with high levels of MBzP or mono-(carboxynonyl) phthalate (MCNP) were suggested to have increased odds of asthma compared to older populations. In the subgroup analysis by study location, an increased risk for asthma in relation to levels of the sum of di-2-ethylhexyl phthalate (ΣDEHP) was observed in European studies (OR = 1.16, 95% CI: 1.00-1.34, Pz = 0.048) compared to Asia and North America. CONCLUSIONS Urinary levels of MBzP, MEHHP, MECPP, MCNP, and DEHP were positively related to asthma risk. No significant association was observed for the other phthalate metabolites in relation to asthma risk. Further research is needed to verify these findings and shed light on the molecular mechanism by which phthalates are associated with asthma.
Collapse
Affiliation(s)
- Weixiang Wu
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511443, China
| | - Chuangyan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cunwei Ji
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511443, China
| | - Fuqiang Diao
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511443, China
| | - Jinglun Peng
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511443, China
| | - Dan Luo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Xiaoping Mu
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511443, China.
| | - Xiaolin Ruan
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511443, China.
| |
Collapse
|
42
|
Kwan WS, Nikezic D, Roy VAL, Yu KN. Multiple Stressor Effects of Radon and Phthalates in Children: Background Information and Future Research. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2898. [PMID: 32331399 PMCID: PMC7215282 DOI: 10.3390/ijerph17082898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
The present paper reviews available background information for studying multiple stressor effects of radon (222Rn) and phthalates in children and provides insights on future directions. In realistic situations, living organisms are collectively subjected to many environmental stressors, with the resultant effects being referred to as multiple stressor effects. Radon is a naturally occurring radioactive gas that can lead to lung cancers. On the other hand, phthalates are semi-volatile organic compounds widely applied as plasticizers to provide flexibility to plastic in consumer products. Links of phthalates to various health effects have been reported, including allergy and asthma. In the present review, the focus on indoor contaminants was due to their higher concentrations and to the higher indoor occupancy factor, while the focus on the pediatric population was due to their inherent sensitivity and their spending more time close to the floor. Two main future directions in studying multiple stressor effects of radon and phthalates in children were proposed. The first one was on computational modeling and micro-dosimetric studies, and the second one was on biological studies. In particular, dose-response relationship and effect-specific models for combined exposures to radon and phthalates would be necessary. The ideas and methodology behind such proposed research work are also applicable to studies on multiple stressor effects of collective exposures to other significant airborne contaminants, and to population groups other than children.
Collapse
Affiliation(s)
- W. S. Kwan
- Department of Physics, City University of Hong Kong, Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong, China;
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong, China
| | - D. Nikezic
- Department of Mathematical Sciences, State University of Novi Pazar, Vuka Karadžića 9, RS-36300 Novi Pazar, Serbia;
- Faculty of Science, University of Kragujevac, R. Domanovica 12, 34000 Kragujevac, Serbia
| | | | - K. N. Yu
- Department of Physics, City University of Hong Kong, Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong, China;
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong, China
| |
Collapse
|
43
|
Podlecka D, Gromadzińska J, Mikołajewska K, Fijałkowska B, Stelmach I, Jerzynska J. Longitudinal effect of phthalates exposure on allergic diseases in children. Ann Allergy Asthma Immunol 2020; 125:84-89. [PMID: 32244034 DOI: 10.1016/j.anai.2020.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/11/2020] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Environmental chemicals, such as phthalates, phenols, and parabens, may affect children's immune development and contribute to the risk of atopic diseases and asthma. OBJECTIVE To evaluate the associations between prenatal and childhood phthalate exposure and atopic diseases in children at the age of 9 years. METHODS This analysis is restricted to 145 mother-child pairs from the prospective Polish Mother and Child Cohort Study. Phthalate metabolite levels were assessed in the urine samples collected from mothers during the third trimester of pregnancy and from children at age of 2 and 9 years. For the appropriate recognition of children's health status, a questionnaire was administered to the mothers and completed with information from the medical record of each child. The clinical examination was performed by a pediatrician/allergist in the presence of the mother or a relative. RESULTS A higher urine concentration of mono-2-ethyl-5-oxohexyl phthalate increased the risk of food allergy in children at the age of 9 years (odds ratio [OR], 1.75; 95% CI, 1.19-2.57; P = .004) and decreased the risk of atopic dermatitis (OR, 0.49; 95% CI, 0.27-0.87; P = .02). For mono-2-ethyl-5-hydroxyhexyl phthalate, an increased risk of atopic dermatitis was observed (OR, 1.90; 95% CI, 1.18-3.05; P = .008). A higher urine concentration of mono-benzyl phthalate increased the risk of asthma in children (OR, 1.67; 95% CI, 1.08-2.58; P = .02), but the risk of asthma decreased when the concentration of mono-2-ethylhexyl phthalate was higher (OR, 0.64; 95% CI, 10.43-0.97; P = .04). CONCLUSION Our study has not provided clear evidence of the negative effect of phthalate exposure during pregnancy and within the 9 years after birth on allergic diseases in children.
Collapse
Affiliation(s)
- Daniela Podlecka
- Department of Pediatrics and Allergy, Medical University of Lodz, Copernicus Memorial Hospital, Lodz, Poland
| | - Jolanta Gromadzińska
- Department of Biological and Environmental Monitoring, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Karolina Mikołajewska
- Department of Biological and Environmental Monitoring, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Beata Fijałkowska
- Department of Pediatrics and Allergy, Medical University of Lodz, Copernicus Memorial Hospital, Lodz, Poland
| | - Iwona Stelmach
- Department of Pediatrics and Allergy, Medical University of Lodz, Copernicus Memorial Hospital, Lodz, Poland
| | - Joanna Jerzynska
- Department of Pediatrics and Allergy, Medical University of Lodz, Copernicus Memorial Hospital, Lodz, Poland.
| |
Collapse
|
44
|
Hassoun Y, James C, Bernstein DI. The Effects of Air Pollution on the Development of Atopic Disease. Clin Rev Allergy Immunol 2020; 57:403-414. [PMID: 30806950 DOI: 10.1007/s12016-019-08730-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Air pollution is defined as the presence of noxious substances in the air at levels that impose a health hazard. Thus, there has been long-standing interest in the possible role of indoor and outdoor air pollutants on the development of respiratory disease. In this regard, asthma has been of particular interest but many studies have also been conducted to explore the relationship between air pollution, allergic rhinitis, and atopic dermatitis. Traffic-related air pollutants or TRAP refers to a broad group of pollutants including elemental carbon, black soot, nitrogen dioxide (NO2), nitric oxide (NO), sulfur dioxide (SO2), particulate matter (PM2.5 and PM10), carbon monoxide (CO), and carbon dioxide (CO2). In this review, we aim to examine the current literature regarding the impact of early childhood exposure to TRAP on the development of asthma, allergic rhinitis, and atopic dermatitis. Although there is growing evidence suggesting significant associations, definitive conclusions cannot be made with regard to the effect of TRAP on these diseases. This conundrum may be due to a variety of factors, including different definitions used to define TRAP, case definitions under consideration, a limited number of studies, variation in study designs, and disparities between studies in consideration of confounding factors. Regardless, this review highlights the need for future studies to be conducted, particularly with birth cohorts that explore this relationship further. Such studies may assist in understanding more clearly the pathogenesis of these diseases, as well as other methods by which these diseases could be treated.
Collapse
Affiliation(s)
- Yasmin Hassoun
- Division of Immunology, Allergy, and Rheumatology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0563, USA
| | - Christine James
- Division of Immunology, Allergy, and Rheumatology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0563, USA
| | - David I Bernstein
- Division of Immunology, Allergy, and Rheumatology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0563, USA.
| |
Collapse
|
45
|
Başaran B, Soylu GN, Yılmaz Civan M. Concentration of phthalate esters in indoor and outdoor dust in Kocaeli, Turkey: implications for human exposure and risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1808-1824. [PMID: 31758479 DOI: 10.1007/s11356-019-06815-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
The interest in phthalate esters (PAEs) has increased in recent years because elevated phthalate levels have been detected in environmental matrices and they have certain adverse effects on human health. Indoor dust from 90 homes and outdoor (street) dust from outside these homes were collected in Kocaeli province between February and April 2016 and analyzed for eight PAEs. The total indoor dust concentrations of eight PAEs (Σ8PAEs) ranged from 21.33 μg g-1 to 1802 μg g-1 (median, 387.67 μg g-1), significantly higher than outdoor dust concentrations (0.16-36.85 μg g-1 with median 4.84 μg g-1). Di-2-ethylhexyl phthalate (DEHP) was the most dominant pollutant in both indoor and outdoor environments with a median value of 316.02 μg g-1 and 3.89 μg g-1, respectively, followed by di-n-butyl phthalate and butylbenzyl phthalate (BBP). DEHP was measured within the range of 198.54-816.92 μg g-1 and BBP within the range of 15.52-495.33 μg g-1 in homes with PVC coating, significantly higher than the levels in homes with parquet and tiled floor (p<0.05). Monte Carlo simulation was applied to probabilistically estimate exposure to PAEs and associated carcinogenic risk. The Σ5PAE median values of non-dietary ingestion and dermal absorption exposure were estimated as 1.57 μg kg day-1 and 0.007 μg kg day-1 for children and 0.09 μg kg day-1 and 0.04 μg kg day-1 for adults while inhalation route exposure to PAE in dust was at a negligible level for both groups. Children were more exposed to PAEs through ingestion route (92.74% to 99.54% of the total exposure) while adult exposure through ingestion routes (62-68.4%) and dermal absorption (29.74% and 31.87% of the total exposure) were comparable. The mean cancer risk level via non-dietary ingestion of DEHP for children was 2.33×10-6, about eight times higher than the levels for adults. The risk levels of about 16% of adults and 95% of children are greater than the threshold value of 10-6 when the population is exposed to DEHP in indoor dust. Looking from the viewpoint of child health, the most effective method to reduce exposure among the measured PAEs is to keep the release of DEHP under control, especially in indoor environment, and to take precautions to reduce exposure.
Collapse
Affiliation(s)
- Bilgehan Başaran
- Department of Environmental Engineering, Kocaeli University, Umuttepe Campus, 41380, Kocaeli, Turkey
| | - Gizem Nur Soylu
- Department of Environmental Engineering, Kocaeli University, Umuttepe Campus, 41380, Kocaeli, Turkey
| | - Mihriban Yılmaz Civan
- Department of Environmental Engineering, Kocaeli University, Umuttepe Campus, 41380, Kocaeli, Turkey.
| |
Collapse
|
46
|
Silano V, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mortensen A, Rivière G, Steffensen I, Tlustos C, Van Loveren H, Vernis L, Zorn H, Cravedi J, Fortes C, Tavares Poças MDF, Waalkens‐Berendsen I, Wölfle D, Arcella D, Cascio C, Castoldi AF, Volk K, Castle L. Update of the risk assessment of di-butylphthalate (DBP), butyl-benzyl-phthalate (BBP), bis(2-ethylhexyl)phthalate (DEHP), di-isononylphthalate (DINP) and di-isodecylphthalate (DIDP) for use in food contact materials. EFSA J 2019; 17:e05838. [PMID: 32626195 PMCID: PMC7008866 DOI: 10.2903/j.efsa.2019.5838] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP Panel) was asked by the European Commission to update its 2005 risk assessments of di-butylphthalate (DBP), butyl-benzyl-phthalate (BBP), bis(2-ethylhexyl)phthalate (DEHP), di-isononylphthalate (DINP) and di-isodecylphthalate (DIDP), which are authorised for use in plastic food contact material (FCM). Dietary exposure estimates (mean and high (P95)) were obtained by combining literature occurrence data with consumption data from the EFSA Comprehensive Database. The highest exposure was found for DINP, ranging from 0.2 to 4.3 and from 0.4 to 7.0 μg/kg body weight (bw) per day for mean and high consumers, respectively. There was not enough information to draw conclusions on how much migration from plastic FCM contributes to dietary exposure to phthalates. The review of the toxicological data focused mainly on reproductive effects. The CEP Panel derived the same critical effects and individual tolerable daily intakes (TDIs) (mg/kg bw per day) as in 2005 for all the phthalates, i.e. reproductive effects for DBP (0.01), BBP (0.5), DEHP (0.05), and liver effects for DINP and DIDP (0.15 each). Based on a plausible common mechanism (i.e. reduction in fetal testosterone) underlying the reproductive effects of DEHP, DBP and BBP, the Panel considered it appropriate to establish a group-TDI for these phthalates, taking DEHP as index compound as a basis for introducing relative potency factors. The Panel noted that DINP also affected fetal testosterone levels at doses around threefold higher than liver effects and therefore considered it conservative to include it within the group-TDI which was established to be 50 μg/kg bw per day, expressed as DEHP equivalents. The aggregated dietary exposure for DBP, BBP, DEHP and DINP was estimated to be 0.9-7.2 and 1.6-11.7 μg/kg bw per day for mean and high consumers, respectively, thus contributing up to 23% of the group-TDI in the worst-case scenario. For DIDP, not included in the group-TDI, dietary exposure was estimated to be always below 0.1 μg/kg bw per day and therefore far below the TDI of 150 μg/kg bw per day. This assessment covers European consumers of any age, including the most sensitive groups. Based on the limited scope of the mandate and the uncertainties identified, the Panel considered that the current assessment of the five phthalates, individually and collectively, should be on a temporary basis.
Collapse
|
47
|
Odebeatu CC, Taylor T, Fleming LE, J. Osborne N. Phthalates and asthma in children and adults: US NHANES 2007-2012. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28256-28269. [PMID: 31368075 PMCID: PMC6791917 DOI: 10.1007/s11356-019-06003-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/16/2019] [Indexed: 04/12/2023]
Abstract
Environmental exposure to phthalates may contribute to an increased risk of asthma in children and adults. We aimed to assess the direction and strength of the association between urinary phthalates metabolites and current asthma in children and adults that participated in the National Health and Nutrition Examination Survey (NHANES) 2007-2012. Data on ten urinary phthalate metabolites, self-reported questionnaires, spirometry measures, and covariates were obtained from 7765 participants (28.1% were children aged 6-17 years) taking part in the NHANES 2007-2012. Asthma was assessed using self-reported questionnaires for children and adults, and via spirometry measures for adults alone. We used crude and adjusted logistic regression models to estimate the odds ratios (ORs) and 95% confidence interval (CI) per one log10 unit change in the concentration of phthalate metabolites. We further modeled the effect modification by sex. Out of 10 metabolites, only mono-benzyl phthalate (MBzP) was positively associated with the prevalence of self-reported asthma in children, after adjusting for a range of potential confounders (odds ratio 1.54; 95% confidence interval 1.05-2.27). No significant relationship was observed for adults. The association of mono-ethyl phthalate (MEP) was modified by sex, with significantly increased odds of asthma among males [boys (2.00; 1.14-3.51); adult males (1.32; 1.04-1.69)]. While no other phthalates showed a positive relationship with current asthma in males, mono-(carboxynonyl) phthalate (MCNP) and mono-(3-carboxylpropyl) phthalate (MCPP) were inversely associated with spirometrically defined asthma in adult females. A sex-specific relationship in adults was evident when spirometry, but not self-reported measures were used to define asthma. We found no clear association between exposure to phthalates and current asthma, except for a significant relationship between MBzP metabolites and self-reported asthma in children. As a result, exposure to phthalates and asthma development and/or exacerbations remains controversial, suggesting a need for a well-designed longitudinal study.
Collapse
Affiliation(s)
- Chinonso Christian Odebeatu
- European Centre for Environment and Human Health, Knowledge Spa, Royal Cornwall Hospital, University of Exeter Medical School, Truro, Cornwall, TR1 3HD UK
| | - Timothy Taylor
- European Centre for Environment and Human Health, Knowledge Spa, Royal Cornwall Hospital, University of Exeter Medical School, Truro, Cornwall, TR1 3HD UK
| | - Lora E. Fleming
- European Centre for Environment and Human Health, Knowledge Spa, Royal Cornwall Hospital, University of Exeter Medical School, Truro, Cornwall, TR1 3HD UK
| | - Nicholas J. Osborne
- European Centre for Environment and Human Health, Knowledge Spa, Royal Cornwall Hospital, University of Exeter Medical School, Truro, Cornwall, TR1 3HD UK
- School of Public Health and Community Medicine, University of New South Wales, Kensington, Sydney, 2052 Australia
- School of Public Health, The University of Queensland, Herston, Queensland 4006 Australia
| |
Collapse
|
48
|
Li HL, Liu LY, Zhang ZF, Ma WL, Sverko E, Zhang Z, Song WW, Sun Y, Li YF. Semi-volatile organic compounds in infant homes: Levels, influence factors, partitioning, and implications for human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:609-618. [PMID: 31108294 DOI: 10.1016/j.envpol.2019.05.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
While infants are developing, they are easily affected by toxic chemicals existing in their environments, such as semi-volatile organic compounds (SVOCs): phthalates, polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), and organophosphate esters (OPEs). However, the specific living environment of infants, including increased plastic products and foam floor mats, may increase the presence of these chemicals. In this study, 68 air, dust, and window film samples were collected from homes, with 3- to 6-month-old infant occupants, to analyze phthalates, PAHs, PBDEs, and OPEs. High detection rates and concentrations suggest that these SVOCs are widespread in infant environments and are associated with cooking methods, smoking habits, the period of time after decoration, and room floors. The partitioning behavior of SVOCs indicates that the logarithms of the dust/gas-phase air partition coefficient (logKD) and the window film/gas-phase air partition coefficient (logKF) in homes are not at an equilibrium state when the logarithm of the octanol/air partition coefficient (logKOA) is less than 8 or greater than 11. Considering the 3 exposure routes, ingestion and dermal absorption have become the main routes of infant exposure to phthalates and OPEs, and ingestion and inhalation have become the dominant routes of exposure to PAHs and PBDEs. The total carcinogenic risk of SVOCs, which have carcinogenic toxicities, via ingestion and dermal absorption for infants in homes exceeds the acceptable value, suggesting that the current levels of these SVOCs in homes might pose a risk to infant health.
Collapse
Affiliation(s)
- Hai-Ling Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; University Corporation for Polar Research, Beijing, 100875, PR China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; University Corporation for Polar Research, Beijing, 100875, PR China.
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; University Corporation for Polar Research, Beijing, 100875, PR China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; University Corporation for Polar Research, Beijing, 100875, PR China
| | - Ed Sverko
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; University Corporation for Polar Research, Beijing, 100875, PR China; IJRC-PTS-NA & IJRC-AEE-NA, Toronto, Ontario, M2N 6X9, Canada
| | - Zhi Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Agricultural Resource and Environment, Heilongjiang University, Harbin 150080, PR China
| | - Wei-Wei Song
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; University Corporation for Polar Research, Beijing, 100875, PR China
| | - Yu Sun
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; University Corporation for Polar Research, Beijing, 100875, PR China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; University Corporation for Polar Research, Beijing, 100875, PR China; IJRC-PTS-NA & IJRC-AEE-NA, Toronto, Ontario, M2N 6X9, Canada
| |
Collapse
|
49
|
Promtes K, Kaewboonchoo O, Kawai T, Miyashita K, Panyapinyopol B, Kwonpongsagoon S, Takemura S. Human exposure to phthalates from house dust in Bangkok, Thailand. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:1269-1276. [PMID: 31296107 DOI: 10.1080/10934529.2019.1637207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/22/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
The study determined concentrations of and estimated human exposure to house dust-ingested phthalates from 99 homes in Bangkok, Thailand. Phthalates in dust collected using a handheld vacuum cleaner was analyzed by gas chromatography/mass spectrometry revealing a median content of 3,477 µg g-1, range 753-13,810 µg g-1, with di-2-ethylhexylphthalate (DEHP) having the highest level (median = 1,739 µg g-1, range 467-8,172 µg g-1) followed by di-iso-nonyl phthalate (DiNP) (median = 611 µg g-1, range 15.2-11,052 µg g-1). DEHP in house dust from multi-family apartments with polyvinyl (PVC) floor material (n = 34), multi-family apartments without PVC floor material (n = 55) and single family houses without PVC floor material (n = 10) was median and range 3,009 and 568-6,898; 1,479 and range 467-8,172 and 1,207 µg g-1 and 611-3518 µg g-1, respectively. At high-end house dust DEHP level, preschool children in all three types of homes were exposed above US Environment Protection Agency reference dose (20 µg g-1). The results suggest phthalate-containing house products constitute a likely major source of phthalates in indoor home environment and pose a potential health risk to residents, particularly preschool children, in Bangkok.
Collapse
Affiliation(s)
- Kamonwan Promtes
- Department of Sanitary Engineering, Faculty of Public Health, Mahidol University , Bangkok , Thailand
| | - Orawan Kaewboonchoo
- Department of Public Health Nursing, Faculty of Public Health, Mahidol University , Bangkok , Thailand
| | - Toshio Kawai
- Osaka Occupational Health Service Center, Japan Industrial Safety and Health Association , Osaka , Japan
| | - Kazuhisa Miyashita
- Department of Hygiene, School of Medicine, Wakayama Medical University , Wakayama , Japan
| | - Bunyarit Panyapinyopol
- Department of Sanitary Engineering, Faculty of Public Health, Mahidol University , Bangkok , Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT) , Bangkok , Thailand
| | - Suphaphat Kwonpongsagoon
- Department of Sanitary Engineering, Faculty of Public Health, Mahidol University , Bangkok , Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT) , Bangkok , Thailand
| | - Shigeki Takemura
- Department of Hygiene, School of Medicine, Wakayama Medical University , Wakayama , Japan
| |
Collapse
|
50
|
Li Y, Lu J, Yin X, Liu Z, Tong Y, Zhou L. Indoor phthalate concentrations in residences in Shihezi, China: implications for preschool children's exposure and risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19785-19794. [PMID: 31089994 DOI: 10.1007/s11356-019-05335-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Despite the risks associated with phthalate exposure, there are few studies emphasizing preschool children's exposure to phthalates in residences in Northwest China. In this study, seven phthalates from indoor dust samples were measured in 50 residences in Shihezi, China. Preschool children's exposure doses via non-dietary intake were calculated by Monte Carlo simulation. Risk assessment was conducted by comparing the simulated exposure dose with benchmarks for reproductive toxicity and cancer specified in Proposition 65 of California. The detection frequencies for all selected phthalates were more than 75%, with the exception of benzyl butyl phthalate (BBP) and di-n-octyl phthalate (DNOP). Bis(2-ethylhexyl) phthalate (DEHP) was the most principal compound in the dust samples (median = 455 μg/g and 462 μg/g in the bedroom and living room, respectively). The simulation displayed that the median DBP daily intake was 1.5-1.9 μg/day/kg for preschool children in Shihezi, which was considered a high level compared with similar studies around the world. The risk assessment indicated that almost all preschool children face potential reproductive risk due to dibutyl phthalate (DBP) exposure, with medians of hazard index (HI) from 9.6 to 12.4 for all age groups. Therefore, from a children's health perspective, attention should be paid to reducing indoor phthalate pollution and exposure in this area.
Collapse
Affiliation(s)
- Yahua Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Production and Construction Corps/School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Jianjiang Lu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Production and Construction Corps/School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| | - Xiaowen Yin
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832002, China.
| | - Zilong Liu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Production and Construction Corps/School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Yanbin Tong
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Production and Construction Corps/School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Li Zhou
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Production and Construction Corps/School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| |
Collapse
|