1
|
Heller D, Nery GB, Bachi ALL, Al-Hashimi I. Positive Role of Saliva in the Oral Microbiome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1472:103-118. [PMID: 40111688 DOI: 10.1007/978-3-031-79146-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Saliva plays a pivotal role in shaping the oral microbiome and maintaining oral homeostasis and health. This chapter explores the importance of saliva in promoting eubiosis of the oral microbiome and its implications for oral and systemic health. Saliva is a dynamic fluid rich in antimicrobial components and buffering agents that contribute to the microbial balance and homeostasis within the oral cavity. It provides a cleansing mechanism that facilitates the removal of bacteria and debris and limits the growth and colonization of microorganisms. The salivary antimicrobial proteins and peptides, in combination with antibodies, predominantly secretory immunoglobulin A (sIgA), are crucial for combating microbial pathogens and preventing oral infections. Saliva also possesses a buffering mechanism that regulates the pH levels within the oral cavity, which creates an environment that is inimical for the growth of acid-producing pathogens and promotes remineralization of the teeth. Furthermore, salivary proteins and glycoproteins form an inter-face (tissue coat) over the oral mucosa and teeth to protect the oral tissue from external environmental insults, maintain tissue integrity, and promote wound healing. Understanding the positive role of saliva in the oral microbiome provides an insight into potential novel strategies for promoting oral health and combating microbial dysbiosis. Recognizing the multifaceted roles of saliva as a guardian (gatekeeper) of oral microbial balance, we can unlock the therapeutic potential of saliva in enhancing the well-being of the body and averting oral and systemic diseases.
Collapse
Affiliation(s)
- Débora Heller
- Universidade Cruzeiro do Sul, São Paulo, Brazil
- UT Health San Antonio, San Antonio, TX, USA
| | | | | | | |
Collapse
|
2
|
Markvart M, Sørensen CE, Ekstrand KR, Schlafer S, Belstrøm D. Historical concepts and contemporary perspectives of dental caries-a tribute to Henrik Dam (1895-1976). APMIS 2025; 133:e13501. [PMID: 39563103 DOI: 10.1111/apm.13501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
Dental caries is a multifactorial disease, which is the result of a complex interplay between the diet, the host, the saliva, and dental biofilms. Although the prevalence of dental caries has decreased dramatically since 1950 in many countries, it continues to be one of the most common health conditions globally. The aim of the present review is to summarize the investigations on dental caries performed by the late Noble prize winner Henrik Dam and his colleagues in the middle of the 20th century, and to relate the knowledge and state of the art at the time to current concepts on dental caries. Henrik Dam is mostly known for his discovery of Vitamin K, but he also conducted experimental studies on dental caries that focused on the role of Vitamin K, the diet, and saliva in the development of dental caries. The discoveries of Henrik Dam contributed to our understanding of the role of saliva and different dietary components, such as fat and proteins, in caries development and prevention.
Collapse
Affiliation(s)
- Merete Markvart
- Department of Odontology, Section for Clinical Oral Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Christiane E Sørensen
- Department of Odontology, Section for Clinical Oral Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Kim R Ekstrand
- Department of Odontology, Section for Clinical Oral Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian Schlafer
- Department of Dentistry and Oral Health, Section for Oral Ecology, Cariology, Aarhus University, Aarhus, Denmark
| | - Daniel Belstrøm
- Department of Odontology, Section for Clinical Oral Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Azevedo MJ, Kaan AM, Costa CFFA, Sampaio-Maia B, Zaura E. Acquisition of the Oral Microbiome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1472:13-29. [PMID: 40111683 DOI: 10.1007/978-3-031-79146-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The oral cavity hosts a diverse range of microorganisms that are essential for maintaining oral and general health. These communities include bacteria, fungi, archaea, viruses, and protozoa, and they inhabit distinct niches within the oral cavity. While most research has been dedicated to the study of bacteria, knowledge regarding the acquisition and maintenance of other members of the oral microbiota is still scarce. This chapter aims to explore the process of oral microbiota acquisition from the prenatal to the postnatal stages, emphasizing the intricate interplay between host and environmental factors that shape these microbial communities. However, it is important to acknowledge that significant gaps in knowledge persist, particularly regarding the understanding of these processes beyond bacteria.
Collapse
Affiliation(s)
- Maria J Azevedo
- Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- INEB-Instituto Nacional de Engenharia Biomédica, Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | - Amke Marije Kaan
- Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Carolina F F A Costa
- INEB-Instituto Nacional de Engenharia Biomédica, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Benedita Sampaio-Maia
- INEB-Instituto Nacional de Engenharia Biomédica, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Faculdade de Medicina Dentária, Universidade do Porto, Porto, Portugal
| | - Egija Zaura
- Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Russell MW, Kilian M, Mestecky J. Role of IgA1 protease-producing bacteria in SARS-CoV-2 infection and transmission: a hypothesis. mBio 2024; 15:e0083324. [PMID: 39207101 PMCID: PMC11492985 DOI: 10.1128/mbio.00833-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Secretory (S) IgA antibodies against severe acute respiratory syndrome (SARS)-CoV-2 are induced in saliva and upper respiratory tract (URT) secretions by natural infection and may be critical in determining the outcome of initial infection. Secretory IgA1 (SIgA1) is the predominant isotype of antibodies in these secretions. Neutralization of SARS-CoV-2 is most effectively accomplished by polymeric antibodies such as SIgA. We hypothesize that cleavage of SIgA1 antibodies against SARS-CoV-2 by unique bacterial IgA1 proteases to univalent Fabα antibody fragments with diminished virus neutralizing activity would facilitate the descent of the virus into the lungs to cause serious disease and also enhance its airborne transmission to others. Recent studies of the nasopharyngeal microbiota of patients with SARS-CoV-2 infection have revealed significant increases in the proportions of IgA1 protease-producing bacteria in comparison with healthy subjects. Similar considerations might apply also to other respiratory viral infections including influenza, possibly explaining the original attribution of influenza to Haemophilus influenzae, which produces IgA1 protease.
Collapse
Affiliation(s)
- Michael W. Russell
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, University at Buffalo,
Buffalo, New York, USA
| | - Mogens Kilian
- Department of
Biomedicine, Aarhus University,
Aarhus, Denmark
| | - Jiri Mestecky
- Department of
Microbiology, Heersink School of Medicine, University of Alabama at
Birmingham, Birmingham,
Alabama, USA
- />Institute of
Microbiology, laboratory of Cellular and Molecular Immunology, Czech
Academy of Sciences,
Prague, Czechia
| |
Collapse
|
5
|
Lu Q, Hitch TCA, Zhou JY, Dwidar M, Sangwan N, Lawrence D, Nolan LS, Espenschied ST, Newhall KP, Han Y, Karell PE, Salazar V, Baldridge MT, Clavel T, Stappenbeck TS. A host-adapted auxotrophic gut symbiont induces mucosal immunodeficiency. Science 2024; 385:eadk2536. [PMID: 39325906 DOI: 10.1126/science.adk2536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 05/12/2024] [Accepted: 07/26/2024] [Indexed: 09/28/2024]
Abstract
Harnessing the microbiome to benefit human health requires an initial step in determining the identity and function of causative microorganisms that affect specific host physiological functions. We show a functional screen of the bacterial microbiota from mice with low intestinal immunoglobulin A (IgA) levels; we identified a Gram-negative bacterium, proposed as Tomasiella immunophila, that induces and degrades IgA in the mouse intestine. Mice harboring T. immunophila are susceptible to infections and show poor mucosal repair. T. immunophila is auxotrophic for the bacterial cell wall amino sugar N-acetylmuramic acid. It delivers immunoglobulin-degrading proteases into outer membrane vesicles that preferentially degrade rodent antibodies with kappa but not lambda light chains. This work indicates a role for symbionts in immunodeficiency, which might be applicable to human disease.
Collapse
Affiliation(s)
- Qiuhe Lu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Thomas C A Hitch
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Julie Y Zhou
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mohammed Dwidar
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Naseer Sangwan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dylan Lawrence
- Department of Medicine, Washington University, Saint Louis, MO 63110, USA
| | - Lila S Nolan
- Department of Medicine, Washington University, Saint Louis, MO 63110, USA
| | - Scott T Espenschied
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kevin P Newhall
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yi Han
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Paul E Karell
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Vanessa Salazar
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Megan T Baldridge
- Department of Medicine, Washington University, Saint Louis, MO 63110, USA
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Thaddeus S Stappenbeck
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
6
|
Kim YC, Sohn KH, Kang HR. Gut microbiota dysbiosis and its impact on asthma and other lung diseases: potential therapeutic approaches. Korean J Intern Med 2024; 39:746-758. [PMID: 39252487 PMCID: PMC11384250 DOI: 10.3904/kjim.2023.451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/08/2024] [Accepted: 04/07/2024] [Indexed: 09/11/2024] Open
Abstract
The emerging field of gut-lung axis research has revealed a complex interplay between the gut microbiota and respiratory health, particularly in asthma. This review comprehensively explored the intricate relationship between these two systems, focusing on their influence on immune responses, inflammation, and the pathogenesis of respiratory diseases. Recent studies have demonstrated that gut microbiota dysbiosis can contribute to asthma onset and exacerbation, prompting investigations into therapeutic strategies to correct this imbalance. Probiotics and prebiotics, known for their ability to modulate gut microbial compositions, were discussed as potential interventions to restore immune homeostasis. The impact of antibiotics and metabolites, including short-chain fatty acids produced by the gut microbiota, on immune regulation was examined. Fecal microbiota transplantation has shown promise in various diseases, but its role in respiratory disorders is not established. Innovative approaches, including mucus transplants, inhaled probiotics, and microencapsulation strategies, have been proposed as novel therapeutic avenues. Despite challenges, including the sophisticated adaptability of microbial communities and the need for mechanistic clarity, the potential for microbiota-based interventions is considerable. Collaboration between researchers, clinicians, and other experts is essential to unravel the complexities of the gut-lung axis, paving a way for innovative strategies that could transform the management of respiratory diseases.
Collapse
Affiliation(s)
- Young-Chan Kim
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Kyoung-Hee Sohn
- Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Kyung Hee University Hospital, Seoul, Korea
| | - Hye-Ryun Kang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Gu Q, He P, Bai Q, Zhong X, Zhang Y, Ma J, Yao H, Pan Z. Insight into the role of Streptococcus suis zinc metalloprotease C from the new serotype causing meningitis in piglets. BMC Vet Res 2024; 20:337. [PMID: 39080654 PMCID: PMC11290213 DOI: 10.1186/s12917-024-03893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/19/2024] [Indexed: 08/02/2024] Open
Abstract
Streptococcus suis (S. suis) is an important gram-positive pathogen and an emerging zoonotic pathogen that causes meningitis in swine and humans. Although several virulence factors have been characterized in S. suis, the underlying mechanisms of pathogenesis are not fully understood. In this study, we identified Zinc metalloproteinase C (ZmpC) probably as a critical virulence factor widely distributed in S. suis strains. ZmpC was identified as a critical facilitator in the development of bacterial meningitis, as evidenced by the detection of increased expression of TNF-α, IL-8, and matrix metalloprotease 9 (MMP-9). Subcellular localization analysis further revealed that ZmpC was localized to the cell wall surface and gelatin zymography analysis showed that ZmpC could cleave human MMP-9. Mice challenge demonstrated that ZmpC provided protection against S. suis CZ130302 (serotype Chz) and ZY05719 (serotype 2) infection. In conclusion, these results reveal that ZmpC plays an important role in promoting CZ130302 to cause mouse meningitis and may be a potential candidate for a S. suis CZ130302 vaccine.
Collapse
Affiliation(s)
- Qibing Gu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Peijuan He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
- Master Shanxi Animal Health and Slaughtering Management Station, Xian, Shanxi Province, 710016, China
| | - Qiankun Bai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Xiaojun Zhong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Yue Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| |
Collapse
|
8
|
Sinha D, Yaugel-Novoa M, Waeckel L, Paul S, Longet S. Unmasking the potential of secretory IgA and its pivotal role in protection from respiratory viruses. Antiviral Res 2024; 223:105823. [PMID: 38331200 DOI: 10.1016/j.antiviral.2024.105823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Mucosal immunity has regained its spotlight amidst the ongoing Coronavirus disease 19 (COVID-19) pandemic, with numerous studies highlighting the crucial role of mucosal secretory IgA (SIgA) in protection against Severe acute respiratory syndrome coronavirus-2 or SARS-CoV-2 infections. The observed limitations in the efficacy of currently authorized COVID-19 vaccines in inducing effective mucosal immune responses remind us of the limitations of systemic vaccination in promoting protective mucosal immunity. This resurgence of interest has motivated the development of vaccine platforms capable of enhancing mucosal responses, specifically the SIgA response, and the development of IgA-based therapeutics. Recognizing viral respiratory infections as a global threat, we would like to comprehensively review the existing knowledge on mucosal immunity, with a particular emphasis on SIgA, in the context of SARS-CoV-2, influenza, and Respiratory Syncytial Virus (RSV) infections. This review aims to describe the structural and functional specificities of SIgA, along with its nuanced role in combating influenza, RSV, and SARS-CoV-2 infections. Subsequent sections further elaborate promising vaccine strategies, including mucosal vaccines against Influenza, RSV, and SARS-CoV-2 respiratory viruses, currently undergoing preclinical and clinical development. Additionally, we address the challenges associated with mucosal vaccine development, concluding with a discussion on IgA-based therapeutics as a promising platform for the treatment of viral respiratory infections. This comprehensive review not only synthesizes current insights into mucosal immunity but also identifies critical knowledge gaps, strengthening the way for further advancements in our current understanding and approaches to combat respiratory viral threats.
Collapse
Affiliation(s)
- Divya Sinha
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Melyssa Yaugel-Novoa
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Louis Waeckel
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France; Immunology Department, University Hospital of Saint-Etienne, F42055, Saint-Etienne, France
| | - Stéphane Paul
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France; Immunology Department, University Hospital of Saint-Etienne, F42055, Saint-Etienne, France; CIC 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, F42055, Saint-Etienne, France.
| | - Stéphanie Longet
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France.
| |
Collapse
|
9
|
Pracht K, Wittner J, Kagerer F, Jäck HM, Schuh W. The intestine: A highly dynamic microenvironment for IgA plasma cells. Front Immunol 2023; 14:1114348. [PMID: 36875083 PMCID: PMC9977823 DOI: 10.3389/fimmu.2023.1114348] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
To achieve longevity, IgA plasma cells require a sophisticated anatomical microenvironment that provides cytokines, cell-cell contacts, and nutrients as well as metabolites. The intestinal epithelium harbors cells with distinct functions and represents an important defense line. Anti-microbial peptide-producing paneth cells, mucus-secreting goblet cells and antigen-transporting microfold (M) cells cooperate to build a protective barrier against pathogens. In addition, intestinal epithelial cells are instrumental in the transcytosis of IgA to the gut lumen, and support plasma cell survival by producing the cytokines APRIL and BAFF. Moreover, nutrients are sensed through specialized receptors such as the aryl hydrocarbon receptor (AhR) by both, intestinal epithelial cells and immune cells. However, the intestinal epithelium is highly dynamic with a high cellular turn-over rate and exposure to changing microbiota and nutritional factors. In this review, we discuss the spatial interplay of the intestinal epithelium with plasma cells and its potential contribution to IgA plasma cell generation, homing, and longevity. Moreover, we describe the impact of nutritional AhR ligands on intestinal epithelial cell-IgA plasma cell interaction. Finally, we introduce spatial transcriptomics as a new technology to address open questions in intestinal IgA plasma cell biology.
Collapse
Affiliation(s)
- Katharina Pracht
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jens Wittner
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fritz Kagerer
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
10
|
Okahashi N, Nakata M, Kuwata H, Kawabata S. Oral mitis group streptococci: A silent majority in our oral cavity. Microbiol Immunol 2022; 66:539-551. [PMID: 36114681 DOI: 10.1111/1348-0421.13028] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022]
Abstract
Members of the oral mitis group streptococci including Streptococcus oralis, Streptococcus sanguinis, and Streptococcus gordonii are the most abundant inhabitants of human oral cavity and dental plaque, and have been implicated in infectious complications such as bacteremia and infective endocarditis. Oral mitis group streptococci are genetically close to Streptococcus pneumoniae; however, they do not produce cytolysin (pneumolysin), which is a key virulence factor of S. pneumoniae. Similar to S. pneumoniae, oral mitis group streptococci possess several cell surface proteins that bind to the cell surface components of host mammalian cells. S. sanguinis expresses long filamentous pili that bind to the matrix proteins of host cells. The cell wall-anchored nuclease of S. sanguinis contributes to the evasion of the neutrophil extracellular trap by digesting its web-like extracellular DNA. Oral mitis group streptococci produce glucosyltransferases, which synthesize glucan (glucose polymer) from sucrose of dietary origin. Neuraminidase (NA) is a virulent factor in oral mitis group streptococci. Influenza type A virus (IAV) relies on viral NA activity to release progeny viruses from infected cells and spread the infection, and NA-producing oral streptococci elevate the risk of IAV infection. Moreover, oral mitis group streptococci produce hydrogen peroxide (H2 O2 ) as a by-product of sugar metabolism. Although the concentrations of streptococcal H2 O2 are low (1-2 mM), they play important roles in bacterial competition in the oral cavity and evasion of phagocytosis by host macrophages and neutrophils. In this review, we intended to describe the diverse pathogenicity of oral mitis group streptococci.
Collapse
Affiliation(s)
- Nobuo Okahashi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan.,Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masanobu Nakata
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hirotaka Kuwata
- Department of Oral Microbiology and Immunology, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
11
|
Domínguez Conde C, Xu C, Jarvis LB, Rainbow DB, Wells SB, Gomes T, Howlett SK, Suchanek O, Polanski K, King HW, Mamanova L, Huang N, Szabo PA, Richardson L, Bolt L, Fasouli ES, Mahbubani KT, Prete M, Tuck L, Richoz N, Tuong ZK, Campos L, Mousa HS, Needham EJ, Pritchard S, Li T, Elmentaite R, Park J, Rahmani E, Chen D, Menon DK, Bayraktar OA, James LK, Meyer KB, Yosef N, Clatworthy MR, Sims PA, Farber DL, Saeb-Parsy K, Jones JL, Teichmann SA. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 2022; 376:eabl5197. [PMID: 35549406 PMCID: PMC7612735 DOI: 10.1126/science.abl5197] [Citation(s) in RCA: 447] [Impact Index Per Article: 149.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Despite their crucial role in health and disease, our knowledge of immune cells within human tissues remains limited. We surveyed the immune compartment of 16 tissues from 12 adult donors by single-cell RNA sequencing and VDJ sequencing generating a dataset of ~360,000 cells. To systematically resolve immune cell heterogeneity across tissues, we developed CellTypist, a machine learning tool for rapid and precise cell type annotation. Using this approach, combined with detailed curation, we determined the tissue distribution of finely phenotyped immune cell types, revealing hitherto unappreciated tissue-specific features and clonal architecture of T and B cells. Our multitissue approach lays the foundation for identifying highly resolved immune cell types by leveraging a common reference dataset, tissue-integrated expression analysis, and antigen receptor sequencing.
Collapse
Affiliation(s)
- C Domínguez Conde
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - C Xu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - LB Jarvis
- Department of Clinical Neurosciences, University of Cambridge
| | - DB Rainbow
- Department of Clinical Neurosciences, University of Cambridge
| | - SB Wells
- Department of Systems Biology, Columbia University Irving Medical Center
| | - T Gomes
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - SK Howlett
- Department of Clinical Neurosciences, University of Cambridge
| | - O Suchanek
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - K Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - HW King
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - L Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - N Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - PA Szabo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center
| | - L Richardson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - L Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - ES Fasouli
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - KT Mahbubani
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - M Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - L Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - N Richoz
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - ZK Tuong
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - L Campos
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- West Suffolk Hospital NHS Trust, Bury Saint Edmunds, UK
| | - HS Mousa
- Department of Clinical Neurosciences, University of Cambridge
| | - EJ Needham
- Department of Clinical Neurosciences, University of Cambridge
| | - S Pritchard
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - T Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - R Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - J Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - E Rahmani
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - D Chen
- Department of Systems Biology, Columbia University Irving Medical Center
| | - DK Menon
- Department of Anaesthesia, University of Cambridge, Cambridge, UK
| | - OA Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - LK James
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - KB Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - N Yosef
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - MR Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - PA Sims
- Department of Systems Biology, Columbia University Irving Medical Center
| | - DL Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center
| | - K Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - JL Jones
- Department of Clinical Neurosciences, University of Cambridge
| | - SA Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Theory of Condensed Matter, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, UK
| |
Collapse
|
12
|
Gender dimorphism in IgA subclasses in T2-high asthma. Clin Exp Med 2022:10.1007/s10238-022-00828-x. [PMID: 35467314 DOI: 10.1007/s10238-022-00828-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Immunoglobulin A (Chan in J Allergy Clin Immunol 134:1394-14014e4, 2014), the second most abundant immunoglobulin in serum, plays an important role in mucosal homeostasis. In human serum, there are two subclasses of IgA, IgA1 (≅ 90%) and IgA2 (≅ 10%), transcribed from two distinct heavy chain constant regions. This study evaluated the serum concentrations of total IgA, IgA1, and IgA2, and total IgG, IgG1, IgG2, IgG3, and IgG4 in T2-high asthmatics compared to healthy controls and the presence of gender-related variations of immunoglobulins. Total IgA levels were increased in asthmatics compared to controls. Even more marked was the increase in total IgA in male asthmatics compared to healthy male donors. IgA1 were increased only in male, but not in female asthmatics, compared to controls. Concentrations of IgG2, but not IgG1, IgG3, and IgG4, were reduced in asthmatics compared to controls. IgG4 levels were reduced in female compared to male asthmatics. In female asthmatics, IgA and IgA1 levels were increased in postmenopause compared to premenopause. IgA concentrations were augmented in mild, but not severe asthmatics. A positive correlation was found between IgA levels and the age of patients and an inverse correlation between serum concentrations of IgA2 and IgE in asthmatics. A positive correlation between total IgA or IgA2 and IgG2 was found in asthmatics. These results highlight a gender dimorphism in IgA subclasses in male and female T2-high asthmatics. More adequate consideration of immunological gender disparity in asthma may open new opportunities in personalized medicine by optimizing diagnosis and targeted therapy.
Collapse
|
13
|
Ling WL, Su CTT, Lua WH, Yeo JY, Poh JJ, Ng YL, Wipat A, Gan SKE. Variable-heavy (VH) families influencing IgA1&2 engagement to the antigen, FcαRI and superantigen proteins G, A, and L. Sci Rep 2022; 12:6510. [PMID: 35444201 PMCID: PMC9020155 DOI: 10.1038/s41598-022-10388-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/07/2022] [Indexed: 12/18/2022] Open
Abstract
Interest in IgA as an alternative antibody format has increased over the years with much remaining to be investigated in relation to interactions with immune cells. Considering the recent whole antibody investigations showing significant distal effects between the variable (V) and constant (C)- regions that can be mitigated by the hinge regions of both human IgA subtypes A1 and A2, we performed an in-depth mechanistic investigation using a panel of 28 IgA1s and A2s of both Trastuzumab and Pertuzumab models. FcαRI binding were found to be mitigated by the differing glycosylation patterns in IgA1 and 2 with contributions from the CDRs. On their interactions with antigen-Her2 and superantigens PpL, SpG and SpA, PpL was found to sterically hinder Her2 antigen binding with unexpected findings of IgAs binding SpG at the CH2-3 region alongside SpA interacting with IgAs at the CH1. Although the VH3 framework (FWR) is commonly used in CDR grafting, we found the VH1 framework (FWR) to be a possible alternative when grafting IgA1 and 2 owing to its stronger binding to antigen Her2 and weaker interactions to superantigen Protein L and A. These findings lay the foundation to understanding the interactions between IgAs and microbial superantigens, and also guide the engineering of IgAs for future antibody applications and targeting of superantigen-producing microbes.
Collapse
Affiliation(s)
- Wei-Li Ling
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Newcastle University Singapore, Singapore, Singapore
| | - Chinh Tran-To Su
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wai-Heng Lua
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Joshua Yi Yeo
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jun-Jie Poh
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yuen-Ling Ng
- Newcastle University Singapore, Singapore, Singapore
| | - Anil Wipat
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. .,James Cook University, Singapore, Singapore. .,Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China. .,Wenzhou Municipal Key Lab of Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
14
|
Induction of Susceptibility to Disseminated Infection with IgA1 Protease-Producing Encapsulated Pathogens Streptococcus pneumoniae, Haemophilus influenzae Type b, and Neisseria meningitidis. mBio 2022; 13:e0055022. [PMID: 35420467 PMCID: PMC9239265 DOI: 10.1128/mbio.00550-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae are the principal causes of bacterial meningitis. It is unexplained why only occasional individuals develop invasive infection, while the vast majority remain healthy and develop immunity when encountering these pathogens. A capsular polysaccharide and an IgA1 protease are common to these pathogens. We tested the hypothesis that patients are primed to susceptibility to invasive infection by other bacteria that express the same capsular polysaccharide but no IgA1 protease. Thereby, the subsequently colonizing pathogen may protect its surface with IgA1 protease-generated Fab fragments of IgA1 devoid of Fc-mediated effector functions. Military recruits who remained healthy when acquiring meningococci showed a significant response of inhibitory antibodies against the IgA1 protease of the colonizing clone concurrent with serum antibodies against its capsular polysaccharide. At hospitalization, 70.8% of meningitis patients carried fecal bacteria cross-reactive with the capsule of the actual pathogen, in contrast to 6% of controls (P < 0.0001). These were Escherichia coli K100, K1, and K92 in patients with infection caused by H. influenzae type b and N. meningitidis groups B and C, respectively. This concurred with a significant IgA1 response to the capsule but not to the IgA1 protease of the pathogen. The demonstrated multitude of relationships between capsular types and distinct IgA1 proteases in pneumococci suggests an alternative route of immunological priming associated with recombining bacteria. The findings support the model and offer an explanation for the rare occurrence of invasive diseases in spite of the comprehensive occurrence of the pathogens.
Collapse
|
15
|
Topaz N, Tsang R, Deghmane AE, Claus H, Lâm TT, Litt D, Bajanca-Lavado MP, Pérez-Vázquez M, Vestrheim D, Giufrè M, Van Der Ende A, Gaillot O, Kuch A, McElligott M, Taha MK, Wang X. Phylogenetic Structure and Comparative Genomics of Multi-National Invasive Haemophilus influenzae Serotype a Isolates. Front Microbiol 2022; 13:856884. [PMID: 35401483 PMCID: PMC8988223 DOI: 10.3389/fmicb.2022.856884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Recent reports have indicated a rise of invasive disease caused by Haemophilus influenzae serotype a (Hia) in North America and some European countries. The whole-genome sequences for a total of 410 invasive Hia isolates were obtained from 12 countries spanning the years of 1998 to 2019 and underwent phylogenetic and comparative genomic analysis in order to characterize the major strains causing disease and the genetic variation present among factors contributing to virulence and antimicrobial resistance. Among 410 isolate sequences received, 408 passed our quality control and underwent genomic analysis. Phylogenetic analysis revealed that the Hia isolates formed four genetically distinct clades: clade 1 (n = 336), clade 2 (n = 13), clade 3 (n = 3) and clade 4 (n = 56). A low diversity subclade 1.1 was found in clade 1 and contained almost exclusively North American isolates. The predominant sequence types in the Hia collection were ST-56 (n = 125), ST-23 (n = 98) and ST-576 (n = 51), which belonged to clade 1, and ST-62 (n = 54), which belonged to clade 4. Clades 1 and 4 contained predominantly North American isolates, and clades 2 and 3 predominantly contained European isolates. Evidence of the presence of capsule duplication was detected in clade 1 and 2 isolates. Seven of the virulence genes involved in endotoxin biosynthesis were absent from all Hia isolates. In general, the presence of known factors contributing to β-lactam antibiotic resistance was low among Hia isolates. Further tests for virulence and antibiotic susceptibility would be required to determine the impact of these variations among the isolates.
Collapse
Affiliation(s)
- Nadav Topaz
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Raymond Tsang
- Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Ala-Eddine Deghmane
- Centre National de Référence des Méningocoques, Institut Pasteur, Paris, France
| | - Heike Claus
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Thiên-Trí Lâm
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - David Litt
- Respiratory and Vaccine Preventable Bacterial Reference Unit, Public Health England, London, United Kingdom
| | - Maria Paula Bajanca-Lavado
- Haemophilus Influenzae Reference Laboratory, Department of Infectious Disease, National Institute of Health, Lisbon, Portugal
| | - María Pérez-Vázquez
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Didrik Vestrheim
- Norwegian Institute of Public Health, Division of Infection Control and Environmental Health, Oslo, Norway
| | - Maria Giufrè
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Arie Van Der Ende
- Department of Medical Microbiology and Infection Prevention and the Netherlands Reference Laboratory for Bacterial Meningitis, University of Amsterdam, Amsterdam, Netherlands
| | - Olivier Gaillot
- Service de Bactériologie-Hygiène, CHU Lille, Lille, France
- CNRS, INSERM, U1019-UMR 8204, Center for Infection and Immunity, CHU Lille, Lille, France
| | - Alicja Kuch
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Martha McElligott
- Irish Meningitis and Sepsis Reference Laboratory, Children’s Health Ireland at Temple Street, Dublin, Ireland
| | - Muhamed-Kheir Taha
- Centre National de Référence des Méningocoques, Institut Pasteur, Paris, France
| | - Xin Wang
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
16
|
Abstract
Mycoplasmas are small, genome-reduced bacteria. They are obligate parasites that can be found in a wide range of host species, including the majority of livestock animals and humans. Colonization of the host can result in a wide spectrum of outcomes. In many cases, these successful parasites are considered commensal, as they are found in the microbiota of asymptomatic carriers. Conversely, mycoplasmas can also be pathogenic, as they are associated with a range of both acute and chronic inflammatory diseases which are problematic in veterinary and human medicine. The chronicity of mycoplasma infections and the ability of these bacteria to infect even recently vaccinated individuals clearly indicate that they are able to successfully evade their host’s humoral immune response. Over the years, multiple strategies of immune evasion have been identified in mycoplasmas, with a number of them aimed at generating important antigenic diversity. More recently, mycoplasma-specific anti-immunoglobulin strategies have also been characterized. Through the expression of the immunoglobulin-binding proteins protein M or mycoplasma immunoglobulin binding (MIB), mycoplasmas have the ability to target the host’s antibodies and to prevent them from interacting with their cognate antigens. In this review, we discuss how these discoveries shed new light on the relationship between mycoplasmas and their host’s immune system. We also propose that these strategies should be taken into consideration for future studies, as they are key to our understanding of mycoplasma diseases' chronic and inflammatory nature and are probably a contributing factor to reduce vaccine efficacy.
Collapse
|
17
|
Abdelhafiz Y, Fernandes JMO, Stefani E, Albanese D, Donati C, Kiron V. Power Play of Commensal Bacteria in the Buccal Cavity of Female Nile Tilapia. Front Microbiol 2021; 12:773351. [PMID: 34867911 PMCID: PMC8636895 DOI: 10.3389/fmicb.2021.773351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/14/2021] [Indexed: 01/29/2023] Open
Abstract
Fish are widely exposed to higher microbial loads compared to land and air animals. It is known that the microbiome plays an essential role in the health and development of the host. The oral microbiome is vital in females of different organisms, including the maternal mouthbrooding species such as Nile tilapia (Oreochromis niloticus). The present study reports for the first time the microbial composition in the buccal cavity of female and male Nile tilapia reared in a recirculating aquaculture system. Mucus samples were collected from the buccal cavity of 58 adult fish (∼1 kg), and 16S rRNA gene amplicon sequencing was used to profile the microbial communities in females and males. The analysis revealed that opportunistic pathogens such as Streptococcus sp. were less abundant in the female buccal cavity. The power play of certain bacteria such as Acinetobacter, Acidobacteria (GP4 and GP6), and Saccharibacteria that have known metabolic advantages was evident in females compared to males. Association networks inferred from relative abundances showed few microbe–microbe interactions of opportunistic pathogens in female fish. The findings of opportunistic bacteria and their interactions with other microbes will be valuable for improving Nile tilapia rearing practices. The presence of bacteria with specific functions in the buccal cavity of female fish points to their ability to create a protective microbial ecosystem for the offspring.
Collapse
Affiliation(s)
- Yousri Abdelhafiz
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Erika Stefani
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Davide Albanese
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Claudio Donati
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
18
|
Spoerry C, Karlsson J, Aschtgen MS, Loh E. Neisseria meningitidis IgA1-specific serine protease exhibits novel cleavage activity against IgG3. Virulence 2021; 12:389-403. [PMID: 33459578 PMCID: PMC7834093 DOI: 10.1080/21505594.2021.1871822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022] Open
Abstract
Neisseria meningitidis (meningococcus) is a common bacterial colonizer of the human nasopharynx but can occasionally cause very severe systemic infections with rapid onset. Meningococci are able to degrade IgA encountered during colonization of mucosal membranes using their IgA1-specific serine protease. During systemic infection, specific IgG can induce complement-mediated lysis of the bacterium. However, meningococcal immune evasion mechanisms in thwarting IgG remain undescribed. In this study, we report for the first time that the meningococcal IgA1-specific serine protease is able to degrade IgG3 in addition to IgA. The IgG3 heavy chain is specifically cleaved in the lower hinge region thereby separating the antigen binding part from its effector binding part. Through molecular characterization, we demonstrate that meningococcal IgA1-specific serine protease of cleavage type 1 degrades both IgG3 and IgA, whereas cleavage type 2 only degrades IgA. Epidemiological analysis of 7581 clinical meningococcal isolates shows a significant higher proportion of cleavage type 1 among isolates from invasive cases compared to carrier cases, regardless of serogroup. Notably, serogroup W cc11 which is an increasing cause of invasive meningococcal disease globally harbors almost exclusively cleavage type 1 protease. Our study also shows an increasing prevalence of meningococcal isolates encoding IgA1P cleavage type 1 compared to cleavage type 2 during the observed decade (2010-2019). Altogether, our work describes a novel mechanism of IgG3 degradation by meningococci and its association to invasive meningococcal disease.
Collapse
Affiliation(s)
- Christian Spoerry
- Department of Microbiology, Tumor, and Cell Biology, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
| | - Jens Karlsson
- Department of Microbiology, Tumor, and Cell Biology, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
| | - Marie-Stephanie Aschtgen
- Department of Microbiology, Tumor, and Cell Biology, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
| | - Edmund Loh
- Department of Microbiology, Tumor, and Cell Biology, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
19
|
Sato H, Yano A, Shimoyama Y, Sato T, Sugiyama Y, Kishi M. Associations of streptococci and fungi amounts in the oral cavity with nutritional and oral health status in institutionalized elders: a cross sectional study. BMC Oral Health 2021; 21:590. [PMID: 34798863 PMCID: PMC8603531 DOI: 10.1186/s12903-021-01926-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Disruption of the indigenous microbiota is likely related to frailty caused by undernutrition. However, the relationship between undernutrition and the oral microbiota, especially normal bacteria, is not obvious. The aim of this study was to elucidate the associations of nutritional and oral health conditions with prevalence of bacteria and fungi in the oral cavity of older individuals. METHODS Forty-one institutionalized older individuals with an average age ± standard deviation of 84.6 ± 8.3 years were enrolled as participants. Body mass index (BMI) and oral health assessment tool (OHAT) scores were used to represent nutritional and oral health status. Amounts of total bacteria, streptococci, and fungi in oral specimens collected from the tongue dorsum were determined by quantitative polymerase chain reaction (PCR) assay results. This study followed the STROBE statement for reports of observational studies. RESULTS There was a significant correlation between BMI and streptococcal amount (ρ = 0.526, p < 0.001). The undernutrition group (BMI < 20) showed a significantly lower average number of oral streptococci (p = 0.003). In logistic regression models, streptococcal amount was a significant variable accounting for "not undernutrition" [odds ratio 5.68, 95% confidential interval (CI) 1.64-19.7 (p = 0.06)]. On the other hand, participants with a poor oral health condition (OHAT ≥ 5) harbored significantly higher levels of fungi (p = 0.028). CONCLUSION Oral streptococci were found to be associated with systemic nutritional condition and oral fungi with oral health condition. Thus, in order to understand the relationship of frailty with the oral microbiota in older individuals, it is necessary to examine oral indigenous bacteria as well as etiological microorganisms.
Collapse
Affiliation(s)
- Hanako Sato
- Division of Preventive Dentistry, Department of Oral Medicine, Iwate Medical University School of Dentistry, 1-3-27 Chuo-dori, Morioka, Iwate 020-8505 Japan
| | - Akira Yano
- Iwate Biotechnology Research Center, 174-4 Narita 22 Jiwari, Kitakami, Iwate 024-0003 Japan
| | - Yu Shimoyama
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1 Idai Dori 1 chome, Yahaba, Iwate 028-3694 Japan
| | - Toshiro Sato
- Division of Preventive Dentistry, Department of Oral Medicine, Iwate Medical University School of Dentistry, 1-3-27 Chuo-dori, Morioka, Iwate 020-8505 Japan
| | - Yukiko Sugiyama
- Division of Preventive Dentistry, Department of Oral Medicine, Iwate Medical University School of Dentistry, 1-3-27 Chuo-dori, Morioka, Iwate 020-8505 Japan
| | - Mitsuo Kishi
- Division of Preventive Dentistry, Department of Oral Medicine, Iwate Medical University School of Dentistry, 1-3-27 Chuo-dori, Morioka, Iwate 020-8505 Japan
| |
Collapse
|
20
|
Hammers D, Carothers K, Lee S. The Role of Bacterial Proteases in Microbe and Host-microbe Interactions. Curr Drug Targets 2021; 23:222-239. [PMID: 34370632 DOI: 10.2174/1389450122666210809094100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Secreted proteases are an important class of factors used by bacterial to modulate their extracellular environment through the cleavage of peptides and proteins. These proteases can range from broad, general proteolytic activity to high degrees of substrate specificity. They are often involved in interactions between bacteria and other species, even across kingdoms, allowing bacteria to survive and compete within their niche. As a result, many bacterial proteases are of clinical importance. The immune system is a common target for these enzymes, and bacteria have evolved ways to use these proteases to alter immune responses for their benefit. In addition to the wide variety of human proteins that can be targeted by bacterial proteases, bacteria also use these secreted factors to disrupt competing microbes, ranging from outright antimicrobial activity to disrupting processes like biofilm formation. OBJECTIVE In this review, we address how bacterial proteases modulate host mechanisms of protection from infection and injury, including immune factors and cell barriers. We also discuss the contributions of bacterial proteases to microbe-microbe interactions, including antimicrobial and anti-biofilm dynamics. CONCLUSION Bacterial secreted proteases represent an incredibly diverse group of factors that bacteria use to shape and thrive in their microenvironment. Due to the range of activities and targets of these proteases, some have been noted for having potential as therapeutics. The vast array of bacterial proteases and their targets remains an expanding field of research, and this field has many important implications for human health.
Collapse
Affiliation(s)
- Daniel Hammers
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| | - Katelyn Carothers
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| | - Shaun Lee
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| |
Collapse
|
21
|
Bemark M, Angeletti D. Know your enemy or find your friend?-Induction of IgA at mucosal surfaces. Immunol Rev 2021; 303:83-102. [PMID: 34331314 PMCID: PMC7612940 DOI: 10.1111/imr.13014] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
Most antibodies produced in the body are of the IgA class. The dominant cell population producing them are plasma cells within the lamina propria of the gastrointestinal tract, but many IgA-producing cells are also found in the airways, within mammary tissues, the urogenital tract and inside the bone marrow. Most IgA antibodies are transported into the lumen by epithelial cells as part of the mucosal secretions, but they are also present in serum and other body fluids. A large part of the commensal microbiota in the gut is covered with IgA antibodies, and it has been demonstrated that this plays a role in maintaining a healthy balance between the host and the bacteria. However, IgA antibodies also play important roles in neutralizing pathogens in the gastrointestinal tract and the upper airways. The distinction between the two roles of IgA - protective and balance-maintaining - not only has implications on function but also on how the production is regulated. Here, we discuss these issues with a special focus on gut and airways.
Collapse
Affiliation(s)
- Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Proteome-wide prediction of bacterial carbohydrate-binding proteins as a tool for understanding commensal and pathogen colonisation of the vaginal microbiome. NPJ Biofilms Microbiomes 2021; 7:49. [PMID: 34131152 PMCID: PMC8206207 DOI: 10.1038/s41522-021-00220-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
Bacteria use carbohydrate-binding proteins (CBPs), such as lectins and carbohydrate-binding modules (CBMs), to anchor to specific sugars on host surfaces. CBPs in the gut microbiome are well studied, but their roles in the vagina microbiome and involvement in sexually transmitted infections, cervical cancer and preterm birth are largely unknown. We established a classification system for lectins and designed Hidden Markov Model (HMM) profiles for data mining of bacterial genomes, resulting in identification of >100,000 predicted bacterial lectins available at unilectin.eu/bacteria. Genome screening of 90 isolates from 21 vaginal bacterial species shows that those associated with infection and inflammation produce a larger CBPs repertoire, thus enabling them to potentially bind a wider array of glycans in the vagina. Both the number of predicted bacterial CBPs and their specificities correlated with pathogenicity. This study provides new insights into potential mechanisms of colonisation by commensals and potential pathogens of the reproductive tract that underpin health and disease states.
Collapse
|
23
|
Classification, structural biology, and applications of mucin domain-targeting proteases. Biochem J 2021; 478:1585-1603. [DOI: 10.1042/bcj20200607] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022]
Abstract
Epithelial surfaces throughout the body are coated by mucins, a class of proteins carrying domains characterized by a high density of O-glycosylated serine and threonine residues. The resulting mucosal layers form crucial host-microbe interfaces that prevent the translocation of microbes while also selecting for distinct bacteria via the presented glycan repertoire. The intricate interplay between mucus production and breakdown thus determines the composition of the microbiota maintained within these mucosal environments, which can have a large influence on the host during both homeostasis and disease. Most research to date on mucus breakdown has focused on glycosidases that trim glycan structures to release monosaccharides as a source of nutrients. More recent work has uncovered the existence of mucin-type O-glycosylation-dependent proteases that are secreted by pathogens, commensals, and mutualists to facilitate mucosal colonization and penetration. Additionally, immunoglobulin A (IgA) proteases promote bacterial colonization in the presence of neutralizing secretory IgA through selective cleavage of the heavily O-glycosylated hinge region. In this review, we summarize families of O-glycoproteases and IgA proteases, discuss known structural features, and review applications of these enzymes to glycobiology.
Collapse
|
24
|
Antibody-Dependent Enhancement of Bacterial Disease: Prevalence, Mechanisms, and Treatment. Infect Immun 2021; 89:IAI.00054-21. [PMID: 33558319 DOI: 10.1128/iai.00054-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antibody-dependent enhancement (ADE) of viral disease has been demonstrated for infections caused by flaviviruses and influenza viruses; however, antibodies that enhance bacterial disease are relatively unknown. In recent years, a few studies have directly linked antibodies with exacerbation of bacterial disease. This ADE of bacterial disease has been observed in mouse models and human patients with bacterial infections. This antibody-mediated enhancement of bacterial infection is driven by various mechanisms that are disparate from those found in viral ADE. This review aims to highlight and discuss historic evidence, potential molecular mechanisms, and current therapies for ADE of bacterial infection. Based on specific case studies, we report how plasmapheresis has been successfully used in patients to ameliorate infection-related symptomatology associated with bacterial ADE. A greater understanding and appreciation of bacterial ADE of infection and disease could lead to better management of infections and inform current vaccine development efforts.
Collapse
|
25
|
Abstract
Acquisition and establishment of the oral microbiota occur in a dynamic process over various stages and involve close and continuous interactions with the host and its environment. In the present review, we discuss the stages of this process in chronological order. We start with the prenatal period and address the following questions: ‘Is the fetus exposed to maternal microbiota during pregnancy?’ and ‘If so, what is the potential role of this exposure?’ We comment on recent reports of finding bacterial DNA in placenta during pregnancies, and provide current views on the potential functions of prenatal microbial encounters. Next, we discuss the physiological adaptations that take place in the newborn during the birth process and the effect of this phase of life on the acquisition of the oral microbiota. Is it really just exposure to maternal vaginal microbes that results in the difference between vaginally and Cesarian section‐born infants? Then, we review the postnatal phase, in which we focus on transmission of microbes, the intraoral niche specificity, the effects of the host behavior and environment, as well as the role of genetic background of the host on shaping the oral microbial ecosystem. We discuss the changes in oral microbiota during the transition from deciduous to permanent dentition and during puberty. We also address the finite knowledge on colonization of the oral cavity by microbes other than the bacterial component. Finally, we identify the main outstanding questions that limit our understanding of the acquisition and establishment of a healthy microbiome at an individual level.
Collapse
Affiliation(s)
- A M Marije Kaan
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| | - Dono Kahharova
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Tikhomirova A, Trappetti C, Paton JC, Watson-Haigh N, Wabnitz D, Jervis-Bardy J, Jardeleza C, Kidd SP. A single nucleotide polymorphism in an IgA1 protease gene determines Streptococcus pneumoniae adaptation to the middle ear during otitis media. Pathog Dis 2021; 79:ftaa077. [PMID: 33301554 DOI: 10.1093/femspd/ftaa077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/08/2020] [Indexed: 01/13/2023] Open
Abstract
Factors facilitating the chronicity of otitis media (OM) in children are, to date, not fully understood. An understanding of molecular factors aiding bacterial persistence within the middle ear during OM could reveal pathways required for disease. This study performed a detailed analysis of Streptococcus pneumoniae populations isolated from the nasopharynx and middle ear of one OM case. Isolates were assessed for growth in vitro and infection in a mouse intranasal challenge model. Whole genome sequencing was performed to compare the nasopharyngeal and middle ear isolates. The middle ear isolate displayed a reduced rate of growth and enhanced potential to transit to the middle ear in a murine model. The middle ear population possessed a single nucleotide polymorphism (SNP) in the IgA1 protease gene igA, predicted to render its product non-functional. Allelic exchange mutagenesis of the igA alleles from the genetic variant middle ear and nasopharyngeal isolates was able to reverse the niche-adaptation phenotype in the murine model. These results indicate the potential role of a SNP in the gene encoding the IgA1 protease, in determining S. pneumoniae adaptation to the middle ear during chronic OM. In contrast, a functional IgA1 protease was associated with increased colonisation of the nasopharynx.
Collapse
Affiliation(s)
- Alexandra Tikhomirova
- Research Centre for Infectious Diseases, Australian Centre for Antimicrobial Resistance Ecology, and Department of Molecular and Biomedical Science, The University of Adelaide, 5005, Adelaide, Australia
| | - Claudia Trappetti
- Research Centre for Infectious Diseases, Australian Centre for Antimicrobial Resistance Ecology, and Department of Molecular and Biomedical Science, The University of Adelaide, 5005, Adelaide, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Australian Centre for Antimicrobial Resistance Ecology, and Department of Molecular and Biomedical Science, The University of Adelaide, 5005, Adelaide, Australia
| | - Nathan Watson-Haigh
- South Australian Genomics Centre, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - David Wabnitz
- Department of Otolaryngology, The Women's and Children's Hospital, King William Road, 5006, Adelaide, Australia
| | - Jake Jervis-Bardy
- Department of Otolaryngology, The Women's and Children's Hospital, King William Road, 5006, Adelaide, Australia
| | - Camille Jardeleza
- Department of Otolaryngology, The Women's and Children's Hospital, King William Road, 5006, Adelaide, Australia
| | - Stephen P Kidd
- Research Centre for Infectious Diseases, Australian Centre for Antimicrobial Resistance Ecology, and Department of Molecular and Biomedical Science, The University of Adelaide, 5005, Adelaide, Australia
- Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
27
|
van Gool MMJ, van Egmond M. IgA and FcαRI: Versatile Players in Homeostasis, Infection, and Autoimmunity. Immunotargets Ther 2021; 9:351-372. [PMID: 33447585 PMCID: PMC7801909 DOI: 10.2147/itt.s266242] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Mucosal surfaces constitute the frontiers of the body and are the biggest barriers of our body for the outside world. Immunoglobulin A (IgA) is the most abundant antibody class present at these sites. It passively contributes to mucosal homeostasis via immune exclusion maintaining a tight balance between tolerating commensals and providing protection against pathogens. Once pathogens have succeeded in invading the epithelial barriers, IgA has an active role in host-pathogen defense by activating myeloid cells through divers receptors, including its Fc receptor, FcαRI (CD89). To evade elimination, several pathogens secrete proteins that interfere with either IgA neutralization or FcαRI-mediated immune responses, emphasizing the importance of IgA-FcαRI interactions in preventing infection. Depending on the IgA form, either anti- or pro-inflammatory responses can be induced. Moreover, the presence of excessive IgA immune complexes can result in continuous FcαRI-mediated activation of myeloid cells, potentially leading to severe tissue damage. On the one hand, enhancing pathogen-specific mucosal and systemic IgA by vaccination may increase protective immunity against infectious diseases. On the other hand, interfering with the IgA-FcαRI axis by monovalent targeting or blocking FcαRI may resolve IgA-induced inflammation and tissue damage. This review describes the multifaceted role of FcαRI as immune regulator between anti- and pro-inflammatory responses of IgA, and addresses potential novel therapeutic strategies that target FcαRI in disease. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/xlijXy5W0xA
Collapse
Affiliation(s)
- Melissa Maria Johanna van Gool
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands.,Department of Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
28
|
Martins RARC, Costa FWG, Silva SM, Silva PGDB, Carvalho FSR, Fonteles CSR, Ribeiro TR. Salivary immunoglobulins (A, G, and M) in type 1 diabetes mellitus patients: A PROSPERO-registered systematic review and meta-analysis. Arch Oral Biol 2020; 122:105025. [PMID: 33341591 DOI: 10.1016/j.archoralbio.2020.105025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/28/2020] [Accepted: 12/06/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To assess the difference in the salivary levels of immunoglobulins between patients with type 1 diabetes mellitus (DM1) and healthy controls. DESIGN This systematic review was registered on the PROSPERO (CRD42020159198) database. All references were cross-checked and the risk of bias assessment was conducted using the Newcastle-Ottawa Scale. The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach was used to appraise the quality of evidence. The standardized mean difference and Cohen's d as the effect size were used in the meta-analysis. I-square statistics was used to estimate heterogeneity. Analysis was performed using the RevMan® software (p < 0.05) with a 95 % confidence interval. RESULTS Of the total 92 articles, 9 were selected for this study. The meta-analysis included 333 DM1 patients and 325 healthy controls. DM1 patients showed a significant reduction in salivary flow (p = 0.0008; Cohen's d= -0.19, CI 95 %= -0.33, -0.05), although not significant enough to modify the IgA concentration (p = 0.120; Cohen's d = 0.58, CI 95 %= -0.15, 1.32). However, DM1 increased IgA concentration by reducing salivary flow (Cohen's d = 0.84; CI 95 % = 0.36, 1.32), with a strong estimate of effect (p = 0.0006). Regarding IgG, no significant change was noted with DM1 in the patient's saliva (p = 0.420). Furthermore, there was no significant variation in the salivary IgM levels (p = 0.300). CONCLUSIONS The data suggest that the salivary levels of the evaluated immunoglobulins do not seem to be altered in DM1 patients when compared to that in healthy controls. However, the increase in IgA salivary concentration was dependent on total protein estimation.
Collapse
Affiliation(s)
- Renata Asfor Rocha Carvalho Martins
- Department of Clinical Dentistry, School of Dentistry, Federal University of Ceará, Rua Monsenhor Furtado, s/n, Rodolfo Teófilo, CEP: 60430-160, Fortaleza, Ceará, Brazil.
| | - Fábio Wildson Gurgel Costa
- Department of Clinical Dentistry, School of Dentistry, Federal University of Ceará, Rua Monsenhor Furtado, s/n, Rodolfo Teófilo, CEP: 60430-160, Fortaleza, Ceará, Brazil.
| | - Sara Maria Silva
- Department of Clinical Dentistry, School of Dentistry, Federal University of Ceará, Rua Monsenhor Furtado, s/n, Rodolfo Teófilo, CEP: 60430-160, Fortaleza, Ceará, Brazil.
| | | | - Francisco Samuel Rodrigues Carvalho
- Division of Oral and Maxillofacial Surgery, School of Dentistry, Federal University of Ceará CampusSobral, Rua Conselheiro José Júlio, S/N, Centro, CEP: 62010-820, Sobral, Ceará, Brazil.
| | - Cristiane Sá Roriz Fonteles
- Department of Clinical Dentistry, School of Dentistry, Federal University of Ceará, Rua Monsenhor Furtado, s/n, Rodolfo Teófilo, CEP: 60430-160, Fortaleza, Ceará, Brazil.
| | - Thyciana Rodrigues Ribeiro
- Department of Clinical Dentistry, School of Dentistry, Federal University of Ceará, Rua Monsenhor Furtado, s/n, Rodolfo Teófilo, CEP: 60430-160, Fortaleza, Ceará, Brazil.
| |
Collapse
|
29
|
Sureda A, Daglia M, Argüelles Castilla S, Sanadgol N, Fazel Nabavi S, Khan H, Belwal T, Jeandet P, Marchese A, Pistollato F, Forbes-Hernandez T, Battino M, Berindan-Neagoe I, D'Onofrio G, Nabavi SM. Oral microbiota and Alzheimer's disease: Do all roads lead to Rome? Pharmacol Res 2019; 151:104582. [PMID: 31794871 DOI: 10.1016/j.phrs.2019.104582] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative pathology affecting milions of people worldwide associated with deposition of senile plaques. While the genetic and environmental risk factors associated with the onset and consolidation of late onset AD are heterogeneous and sporadic, growing evidence also suggests a potential link between some infectious diseases caused by oral microbiota and AD. Oral microbiota dysbiosis is purported to contribute either directly to amyloid protein production, or indirectly to neuroinflammation, occurring as a consequence of bacterial invasion. Over the last decade, the development of Human Oral Microbiome database (HOMD) has deepened our understanding of oral microbes and their different roles during the human lifetime. Oral pathogens mostly cause caries, periodontal disease, and edentulism in aged population, and, in particular, alterations of the oral microbiota causing chronic periodontal disease have been associated with the risk of AD. Here we describe how different alterations of the oral microbiota may be linked to AD, highlighting the importance of a good oral hygiene for the prevention of oral microbiota dysbiosis.
Collapse
Affiliation(s)
- Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, CIBEROBN (Physiopathology of Obesity and Nutrition), and IdisBa, Palma de Mallorca, Balearic Islands, Spain.
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | | | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran; Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agri-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
| | - Philippe Jeandet
- Induced Resistance and Plant Bioprotection, Faculty of Sciences, University of Reims Champagne-Ardenne, Reims Cedex 51687, France
| | | | - Francesca Pistollato
- Centre for Health & Nutrition, Universidad Europea del Atlantico, Santander, Spain
| | - Tamara Forbes-Hernandez
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain; Dept of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Ioana Berindan-Neagoe
- MEDFUTURE - Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, Cluj-Napoca, Romania; Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, Cluj-Napoca, Romania
| | - Grazia D'Onofrio
- Unit of Geriatrics, Department of Medical Sciences, Fondazione Casa Sollievo della sofferenza, San Giovanni Rotondo, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Ayalew S, Murdock BK, Snider TA, Confer AW. Mannheimia haemolytica IgA-specific proteases. Vet Microbiol 2019; 239:108487. [PMID: 31767097 DOI: 10.1016/j.vetmic.2019.108487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 12/25/2022]
Abstract
Mannheimia haemolytica colonizes the nasopharynx of cattle and can cause severe fibrinous pleuropneumonia. IgA proteases are metalloendopeptidases released by bacteria that cleave IgA, enhancing colonization of mucosa. The objectives of these studies were to characterize M. haemolytica IgA1 and IgA2 proteases in vitro and in silico, to clone and sequence the genes for these proteases, and to demonstrate immunogenicity of components of the entire IgA protease molecule. Both IgA protease genes were cloned, expressed, and sequenced. Sequences were compared to other published sequences. Components were used to immunize mice to determine immunogenicity. Sera from healthy cattle and cattle that recovered from respiratory disease were examined for antibodies to IgA proteases. In order to assay the cleavage of bovine IgA with IgA1 protease, M. haemolytica culture supernatant was incubated with bovine IgA. Culture supernatant cleaved purified bovine IgA in the presence of ZnCl2. Both IgA proteases contain three domains, 1) IgA peptidase, 2) PL1_Passenger_AT and 3) autotransporter. IgA1 and IgA2 peptidases have molecular weights of 96.5 and 87 kDa, respectively. Convalescent bovine sera with naturally high anti-M. haemolytica antibody titers had high antibodies against all IgA1 & IgA2 protease components. Mouse immunizations indicated high antibodies to the IgA peptidases and autotransporters but not to PL1_Passenger_AT. These data indicate that M. haemolytica produces two IgA proteases that are immunogenic, can cleave bovine IgA, and are produced in vivo, as evidenced by antibodies in convalescent bovine sera. Further studies could focus on IgA protease importance in pathogenesis and immunity.
Collapse
Affiliation(s)
- Sahlu Ayalew
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078-2007, USA
| | - Betsy K Murdock
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078-2007, USA
| | - Timothy A Snider
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078-2007, USA
| | - Anthony W Confer
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078-2007, USA.
| |
Collapse
|
31
|
Orysiak J, Witek K, Malczewska-Lenczowska J, Zembron-Lacny A, Pokrywka A, Sitkowski D. Upper Respiratory Tract Infection and Mucosal Immunity in Young Ice Hockey Players During the Pretournament Training Period. J Strength Cond Res 2019; 33:3129-3135. [PMID: 31644518 DOI: 10.1519/jsc.0000000000002557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Orysiak, J, Witek, K, Malczewska-Lenczowska, J, Zembron-Lacny, A, Pokrywka, A, and Sitkowski, D. Upper respiratory tract infection and mucosal immunity in young ice hockey players during the pretournament training period. J Strength Cond Res 33(11): 3129-3135, 2019-The aim of this study was to determine the effects of 17 days of training during preparation for the Ice Hockey Under 18 World Championship of the Polish ice hockey national team on the mucosal immune function and monitor upper respiratory tract infection (URTI) incidence before, during, and after the competition. Twelve male ice hockey players (age, 17.7 ± 0.5 years) were recruited for this study. The first saliva and blood collection took place at the beginning of the training camp (without training at the training camp), the second one was collected on the 9th day of the training camp immediately after the intensification of training, and the third collection was performed on the 13th day of training (4 days before leaving for the World Championship) in the tapering phase. To assess the mucosal immune function, concentrations of secretory immunoglobulin A (sIgA), sIgA1, and sIgA2 were analyzed in saliva. Cortisol concentration and creatine kinase activity were determined in blood, as indicators of stress and muscle damage, respectively. The Wisconsin Upper Respiratory Symptom Survey-21 questionnaire was used to assess URTI symptoms. A significant increase in the sIgA1 and sIgA2 concentrations was observed in the third collection compared with the second time point (114.45 ± 33.00 vs. 77.49 ± 27.29 and 88.97 ± 25.33 vs. 71.65 ± 32.44 U, respectively). There were no statistically significant correlations between the URTI incidence and saliva variables. In conclusion, the tapering period positively affects the mucosal immune function, especially sIgA1 and sIgA2 concentrations, with no significant change in the frequency of URTI in young ice hockey players.
Collapse
Affiliation(s)
| | - Konrad Witek
- Biochemistry, Institute of Sport-National Research Institute, Warsaw, Poland
| | | | | | - Andrzej Pokrywka
- Faculty of Medicine and Health Sciences, University of Zielona Gora, Zielona Gora, Poland
| | - Dariusz Sitkowski
- Department of Physiology, Institute of Sport-National Research Institute, Warsaw, Poland
| |
Collapse
|
32
|
Identification of Virulence-Associated Properties by Comparative Genome Analysis of Streptococcus pneumoniae, S. pseudopneumoniae, S. mitis, Three S. oralis Subspecies, and S. infantis. mBio 2019; 10:mBio.01985-19. [PMID: 31481387 PMCID: PMC6722419 DOI: 10.1128/mbio.01985-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pneumoniae is one of the most important human pathogens but is closely related to Streptococcus mitis, with which humans live in harmony. The fact that the two species evolved from a common ancestor provides a unique basis for studies of both infection-associated properties and properties important for harmonious coexistence with the host. By detailed comparisons of genomes of the two species and other related streptococci, we identified 224 genes associated with virulence and 25 genes unique to the mutualistic species. The exclusive presence of the virulence factors in S. pneumoniae enhances their potential as vaccine components, as a direct impact on beneficial members of the commensal microbiota can be excluded. Successful adaptation of S. mitis and other commensal streptococci to a harmonious relationship with the host relied on genetic stability and properties facilitating life in biofilms. From a common ancestor, Streptococcus pneumoniae and Streptococcus mitis evolved in parallel into one of the most important pathogens and a mutualistic colonizer of humans, respectively. This evolutionary scenario provides a unique basis for studies of both infection-associated properties and properties important for harmonious coexistence with the host. We performed detailed comparisons of 60 genomes of S. pneumoniae, S. mitis, Streptococcus pseudopneumoniae, the three Streptococcus oralis subspecies oralis, tigurinus, and dentisani, and Streptococcus infantis. Nonfunctional remnants of ancestral genes in both S. pneumoniae and in S. mitis support the evolutionary model and the concept that evolutionary changes on both sides were required to reach their present relationship to the host. Confirmed by screening of >7,500 genomes, we identified 224 genes associated with virulence. The striking difference to commensal streptococci was the diversity of regulatory mechanisms, including regulation of capsule production, a significantly larger arsenal of enzymes involved in carbohydrate hydrolysis, and proteins known to interfere with innate immune factors. The exclusive presence of the virulence factors in S. pneumoniae enhances their potential as vaccine components, as a direct impact on beneficial members of the commensal microbiota can be excluded. In addition to loss of these virulence-associated genes, adaptation of S. mitis to a mutualistic relationship with the host apparently required preservation or acquisition of 25 genes lost or absent from S. pneumoniae. Successful adaptation of S. mitis and other commensal streptococci to a harmonious relationship with the host relied on genetic stability and properties facilitating life in biofilms.
Collapse
|
33
|
Shehaj L, Choudary SK, Makwana KM, Gallo MC, Murphy TF, Kritzer JA. Small-Molecule Inhibitors of Haemophilus influenzae IgA1 Protease. ACS Infect Dis 2019; 5:1129-1138. [PMID: 31016966 PMCID: PMC6625846 DOI: 10.1021/acsinfecdis.9b00004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Newly identified, nontypable Haemophilus influenzae (H. influenza) strains represent a serious threat to global health. Due to the increasing prevalence of antibiotic resistance, virulence factors have emerged as potential therapeutic targets that would be less likely to promote resistance. IgA1 proteases are secreted virulence factors of many Gram-negative human pathogens. These enzymes play important roles in tissue invasion as well as evasion of the immune response, yet there has been limited work on pharmacological inhibitors. Here, we report the discovery of the first small molecule, nonpeptidic inhibitors of H. influenzae IgA1 proteases. We screened over 47 000 compounds in a biochemical assay using recombinant protease and identified a hit compound with micromolar potency. Preliminary structure-activity relationships produced additional inhibitors, two of which showed improved inhibition and selectivity for IgA protease over other serine proteases. We further showed dose-dependent inhibition against four different IgA1 protease variants collected from clinical isolates. These data support further development of IgA protease inhibitors as potential therapeutics for antibiotic-resistant H. influenza strains. The newly discovered inhibitors also represent valuable probes for exploring the roles of these proteases in bacterial colonization, invasion, and infection of mucosal tissues.
Collapse
Affiliation(s)
- Livia Shehaj
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, Massachusetts 02155, United States
| | - Santosh K. Choudary
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, Massachusetts 02155, United States
| | - Kamlesh M. Makwana
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, Massachusetts 02155, United States
| | - Mary C. Gallo
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, 3435 Main St., Buffalo, NY 14203, United States
- Clinical and Translational Research Center, 875 Ellicott St., University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, United States
| | - Timothy F. Murphy
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, 3435 Main St., Buffalo, NY 14203, United States
- Clinical and Translational Research Center, 875 Ellicott St., University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, United States
- Division of Infectious Disease, Department of Medicine, 875 Ellicott St., University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, United States
| | - Joshua A. Kritzer
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, Massachusetts 02155, United States
| |
Collapse
|
34
|
Koers J, Derksen NIL, Ooijevaar-de Heer P, Nota B, van de Bovenkamp FS, Vidarsson G, Rispens T. Biased N-Glycosylation Site Distribution and Acquisition across the Antibody V Region during B Cell Maturation. THE JOURNAL OF IMMUNOLOGY 2019; 202:2220-2228. [PMID: 30850477 DOI: 10.4049/jimmunol.1801622] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/01/2019] [Indexed: 12/28/2022]
Abstract
Abs can acquire N-linked glycans in their V regions during Ag-specific B cell responses. Among others, these N-linked glycans can affect Ag binding and Ab stability. Elevated N-linked glycosylation has furthermore been associated with several B cell-associated pathologies. Basic knowledge about patterns of V region glycosylation at different stages of B cell development is scarce. The aim of the current study is to establish patterns of N-glycosylation sites in Ab V regions of naive and memory B cell subsets. We analyzed the distribution and acquisition of N-glycosylation sites within Ab V regions of peripheral blood and bone marrow B cells of 12 healthy individuals, eight myasthenia gravis patients, and six systemic lupus erythematosus patients, obtained by next-generation sequencing. N-glycosylation sites are clustered around CDRs and the DE loop for both H and L chains, with similar frequencies for healthy donors and patients. No evidence was found for an overall selection bias against acquiring an N-glycosylation site, except for the CDR3 of the H chain. Interestingly, both IgE and IgG4 subsets have a 2-fold higher propensity to acquire Fab glycans compared with IgG1 or IgA. When expressed as rmAb, 35 out of 38 (92%) nongermline N-glycosylation sites became occupied. These results point toward a differential selection pressure of N-glycosylation site acquisition during affinity maturation of B cells, which depends on the location within the V region and is isotype and subclass dependent. Elevated Fab glycosylation represents an additional hallmark of TH2-like IgG4/IgE responses.
Collapse
Affiliation(s)
- Jana Koers
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands;
| | - Ninotska I L Derksen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Pleuni Ooijevaar-de Heer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Benjamin Nota
- Department of Research Facilities, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Fleur S van de Bovenkamp
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| |
Collapse
|
35
|
Intranasal Immunization with the Commensal Streptococcus mitis Confers Protective Immunity against Pneumococcal Lung Infection. Appl Environ Microbiol 2019; 85:AEM.02235-18. [PMID: 30683742 DOI: 10.1128/aem.02235-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/02/2019] [Indexed: 02/04/2023] Open
Abstract
Streptococcus pneumoniae is a bacterial pathogen that causes various diseases of public health concern worldwide. Current pneumococcal vaccines target the capsular polysaccharide surrounding the cells. However, only up to 13 of more than 90 pneumococcal capsular serotypes are represented in the current conjugate vaccines. In this study, we used two experimental approaches to evaluate the potential of Streptococcus mitis, a commensal that exhibits immune cross-reactivity with S. pneumoniae, to confer protective immunity to S. pneumoniae lung infection in mice. First, we assessed the immune response and protective effect of wild-type S. mitis against lung infection by S. pneumoniae strains D39 (serotype 2) and TIGR4 (serotype 4). Second, we examined the ability of an S. mitis mutant expressing the S. pneumoniae type 4 capsule (S. mitis TIGR4cps) to elicit focused protection against S. pneumoniae TIGR4. Our results showed that intranasal immunization of mice with S. mitis produced significantly higher levels of serum IgG and IgA antibodies reactive to both S. mitis and S. pneumoniae, as well as enhanced production of interleukin 17A (IL-17A), but not gamma interferon (IFN-γ) and IL-4, compared with control mice. The immunization resulted in a reduced bacterial load in respiratory tissues following lung infection with S. pneumoniae TIGR4 or D39 compared with control mice. With S. mitis TIGR4cps, protection upon challenge with S. pneumoniae TIGR4 was superior. Thus, these findings show the potential of S. mitis to elicit natural serotype-independent protection against two pneumococcal serotypes and to provide the benefits of the well-recognized protective effect of capsule-targeting vaccines.IMPORTANCE Streptococcus pneumoniae causes various diseases worldwide. Current pneumococcal vaccines protect against a limited number of more than 90 pneumococcal serotypes, accentuating the urgent need to develop novel prophylactic strategies. S. pneumoniae and the commensal Streptococcus mitis share immunogenic characteristics that make S. mitis an attractive vaccine candidate against S. pneumoniae In this study, we evaluated the potential of S. mitis and its mutant expressing pneumococcal capsule type 4 (S. mitis TIGR4cps) to induce protection against S. pneumoniae lung infection in mice. Our findings show that intranasal vaccination with S. mitis protects against S. pneumoniae strains D39 (serotype 2) and TIGR4 (serotype 4) in a serotype-independent fashion, which is associated with enhanced antibody and T cell responses. Furthermore, S. mitis TIGR4cps conferred additional protection against S. pneumoniae TIGR4, but not against D39. The findings highlight the potential of S. mitis to generate protection that combines both serotype-independent and serotype-specific responses.
Collapse
|
36
|
Kotelnikova O, Alliluev A, Zinchenko A, Zhigis L, Prokopenko Y, Nokel E, Razgulyaeva O, Zueva V, Tokarskaya M, Yastrebova N, Gordeeva E, Melikhova T, Kaliberda E, Rumsh L. Protective potency of recombinant meningococcal IgA1 protease and its structural derivatives upon animal invasion with meningococcal and pneumococcal infections. Microbes Infect 2019; 21:336-340. [PMID: 30797878 DOI: 10.1016/j.micinf.2019.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Abstract
Immunization of mice with recombinant IgA1 protease of Neisseria meningitidis or several structural derivatives thereof protects the animals infected with a variety of deadly pathogens, including N. meningitidis serogroups A, B, and C and 3 serotypes of Streptococcus pneumonia. In sera of rabbits immunized with inactivated pneumococcal cultures, antibodies binding IgA1-protease from N. meningitidis serogroup B were detected. Thus, the cross-reactive protection against meningococcal and pneumococcal infections has been demonstrated in vivo. Presumably it indicates the presence of common epitopes in the N. meningitidis IgA1 protease and S. pneumoniae surface proteins.
Collapse
Affiliation(s)
- Olga Kotelnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - Alexander Alliluev
- Central Research Institute of Epidemiology of the Federal Service on Customers' Rights Protection and Human Well-Being Surveillance, ul. Novogireevskaya 3a, Moscow, 111123, Russia
| | - Alexei Zinchenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - Larisa Zhigis
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia.
| | - Yuri Prokopenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - Elena Nokel
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - Olga Razgulyaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - Vera Zueva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - Marina Tokarskaya
- Mechnikov Research Institute for Vaccines and Sera, Malyi Kazennyi per. 5a, Moscow, 105064, Russia
| | - Natalia Yastrebova
- Mechnikov Research Institute for Vaccines and Sera, Malyi Kazennyi per. 5a, Moscow, 105064, Russia
| | - Elena Gordeeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - Tatyana Melikhova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - Elena Kaliberda
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - Lev Rumsh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| |
Collapse
|
37
|
Resman F, Manat G, Lindh V, Murphy TF, Riesbeck K. Differential distribution of IgA-protease genotypes in mucosal and invasive isolates of Haemophilus influenzae in Sweden. BMC Infect Dis 2018; 18:592. [PMID: 30466407 PMCID: PMC6249890 DOI: 10.1186/s12879-018-3464-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Several different IgA-proteases exist in Haemophilus influenzae. The variants have been suggested to play differential roles in pathogenesis, but there is limited information on their distribution in clinical isolates. The objective of this study was to investigate the distribution of IgA-protease genotypes in H. influenzae and assess the association between IgA-protease genotype and type of clinical infection. METHODS We performed PCR-screening of the IgA-protease gene variants in two cohorts of clinical H. influenzae. The first cohort consisted of 177 isolates from individuals with respiratory tract infection in January 2010, 2011 and 2012. Information on age, gender and clinical infection was available in this cohort. The second cohort comprised 53 isolates, including NTHi from bloodstream, cerebrospinal fluid (CSF) and urogenital origin as well as encapsulated isolates respresenting all capsule types. We assessed associations between IgA protease genotype and clinical predictors using basic statistical tests of association as well as regression analysis. RESULTS The igaB gene was found in 46% of isolates in the respiratory tract cohort, and no evident trend could be seen during the study years. However, the igaB gene was significantly less common among invasive isolates (19%), p = 0.003 (Fischer's exact test), even when encapsulated isolates were excluded (21%), p = 0.012. A significantly negative association between bacteraemia and igaB genotype remained after adjusting for covariates. We did not identify a significant association between IgA-protease gene variants and type of respiratory tract infection, but isolates with an igaA2 genotype were overrepresented in pre-school children. CONCLUSIONS The distribution of IgA-protease gene variants in Swedish H. influenzae highlighted the widespread abundance of the igaB in isolates from cases of respiratory tract infection, but the igaB gene variant was significantly less common in invasive (bloodstream and CSF) isolates of H. influenzae compared with respiratory tract isolates.
Collapse
Affiliation(s)
- Fredrik Resman
- Clinical Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden.,Riesbeck Lab, Clinical Microbiology, Department of Translational Medicine, Lund University, Jan Waldenströms gata 59, SE20502, Malmö, Sweden
| | - Guillaume Manat
- Riesbeck Lab, Clinical Microbiology, Department of Translational Medicine, Lund University, Jan Waldenströms gata 59, SE20502, Malmö, Sweden
| | - Victor Lindh
- Riesbeck Lab, Clinical Microbiology, Department of Translational Medicine, Lund University, Jan Waldenströms gata 59, SE20502, Malmö, Sweden
| | - Timothy F Murphy
- Clinical and Translational Research Center, University at Buffalo, the State University of New York, New York, USA
| | - Kristian Riesbeck
- Riesbeck Lab, Clinical Microbiology, Department of Translational Medicine, Lund University, Jan Waldenströms gata 59, SE20502, Malmö, Sweden.
| |
Collapse
|
38
|
Jalalvand F, Riesbeck K. Update on non-typeable Haemophilus influenzae-mediated disease and vaccine development. Expert Rev Vaccines 2018; 17:503-512. [DOI: 10.1080/14760584.2018.1484286] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Farshid Jalalvand
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
39
|
Engholm DH, Kilian M, Goodsell DS, Andersen ES, Kjærgaard RS. A visual review of the human pathogen Streptococcus pneumoniae. FEMS Microbiol Rev 2018; 41:854-879. [PMID: 29029129 DOI: 10.1093/femsre/fux037] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 09/04/2017] [Indexed: 11/12/2022] Open
Abstract
Being the principal causative agent of bacterial pneumonia, otitis media, meningitis and septicemia, the bacterium Streptococcus pneumoniae is a major global health problem. To highlight the molecular basis of this problem, we have portrayed essential biological processes of the pneumococcal life cycle in eight watercolor paintings. The paintings are done to a consistent nanometer scale based on currently available data from structural biology and proteomics. In this review article, the paintings are used to provide a visual review of protein synthesis, carbohydrate metabolism, cell wall synthesis, cell division, teichoic acid synthesis, virulence, transformation and pilus synthesis based on the available scientific literature within the field of pneumococcal biology. Visualization of the molecular details of these processes reveals several scientific questions about how molecular components of the pneumococcal cell are organized to allow biological function to take place. By the presentation of this visual review, we intend to stimulate scientific discussion, aid in the generation of scientific hypotheses and increase public awareness. A narrated video describing the biological processes in the context of a whole-cell illustration accompany this article.
Collapse
Affiliation(s)
- Ditte Høyer Engholm
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Mogens Kilian
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - David S Goodsell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.,Rutgers, the State University of New Jersey, NJ 08901, USA
| | - Ebbe Sloth Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark
| | | |
Collapse
|
40
|
Murphy TF, Kirkham C, Gallo MC, Yang Y, Wilding GE, Pettigrew MM. Immunoglobulin A Protease Variants Facilitate Intracellular Survival in Epithelial Cells By Nontypeable Haemophilus influenzae That Persist in the Human Respiratory Tract in Chronic Obstructive Pulmonary Disease. J Infect Dis 2017; 216:1295-1302. [PMID: 28968876 DOI: 10.1093/infdis/jix471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/06/2017] [Indexed: 01/02/2023] Open
Abstract
Background Nontypeable Haemophilus influenzae (NTHi) persists in the airways in chronic obstructive pulmonary disease (COPD). NTHi expresses 4 immunoglobulin (Ig)A protease variants (A1, A2, B1, B2) with distinct cleavage specificities for human IgA1. Little is known about the different roles of IgA protease variants in NTHi infection. Methods Twenty-six NTHi isolates from a 20-year longitudinal study of COPD were analyzed for IgA protease expression, survival in human respiratory epithelial cells, and cleavage of lysosomal-associated membrane protein 1 (LAMP1). Results IgA protease B1 and B2-expressing strains showed greater intracellular survival in host epithelial cells than strains expressing no IgA protease (P < .001) or IgA protease A1 or A2 (P < .001). Strains that lost IgA protease expression showed reduced survival in host cells compared with the same strain that expressed IgA protease B1 (P = .006) or B2 (P = .015). IgA proteases B1 and B2 cleave LAMP1. Passage of strains through host cells selected for expression of IgA proteases B1 and B2 but not A1. Conclusions IgA proteases B1 and B2 cleave LAMP1 and mediate intracellular survival in respiratory epithelial cells. Intracellular persistence of NTHi selects for expression of IgA proteases B1 and B2. The variants of NTHi IgA proteases play distinct roles in pathogenesis of infection.
Collapse
Affiliation(s)
- Timothy F Murphy
- Division of Infectious Diseases, Department of Medicine.,Department of Microbiology and Immunology.,Clinical and Translational Research Center, University at Buffalo, the State University of New York
| | - Charmaine Kirkham
- Division of Infectious Diseases, Department of Medicine.,Clinical and Translational Research Center, University at Buffalo, the State University of New York
| | - Mary C Gallo
- Department of Microbiology and Immunology.,Clinical and Translational Research Center, University at Buffalo, the State University of New York
| | | | | | - Melinda M Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut
| |
Collapse
|
41
|
Ahearn CP, Gallo MC, Murphy TF. Insights on persistent airway infection by non-typeable Haemophilus influenzae in chronic obstructive pulmonary disease. Pathog Dis 2017; 75:3753446. [PMID: 28449098 PMCID: PMC5437125 DOI: 10.1093/femspd/ftx042] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/28/2017] [Indexed: 12/21/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) is the most common bacterial cause of infection of the lower airways in adults with chronic obstructive pulmonary disease (COPD). Infection of the COPD airways causes acute exacerbations, resulting in substantial morbidity and mortality. NTHi has evolved multiple mechanisms to establish infection in the hostile environment of the COPD airways, allowing the pathogen to persist in the airways for months to years. Persistent infection of the COPD airways contributes to chronic airway inflammation that increases symptoms and accelerates the progressive loss of pulmonary function, which is a hallmark of the disease. Persistence mechanisms of NTHi include the expression of multiple redundant adhesins that mediate binding to host cellular and extracellular matrix components. NTHi evades host immune recognition and clearance by invading host epithelial cells, forming biofilms, altering gene expression and displaying surface antigenic variation. NTHi also binds host serum factors that confer serum resistance. Here we discuss the burden of COPD and the role of NTHi infections in the course of the disease. We provide an overview of NTHi mechanisms of persistence that allow the pathogen to establish a niche in the hostile COPD airways.
Collapse
Affiliation(s)
- Christian P. Ahearn
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Clinical and Translational Research Center, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Mary C. Gallo
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Clinical and Translational Research Center, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Timothy F. Murphy
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Clinical and Translational Research Center, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Division of Infectious Disease, Department of Medicine, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
42
|
Agace WW, McCoy KD. Regionalized Development and Maintenance of the Intestinal Adaptive Immune Landscape. Immunity 2017; 46:532-548. [PMID: 28423335 DOI: 10.1016/j.immuni.2017.04.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/14/2022]
Abstract
The intestinal immune system has the daunting task of protecting us from pathogenic insults while limiting inflammatory responses against the resident commensal microbiota and providing tolerance to food antigens. This role is particularly impressive when one considers the vast mucosal surface and changing landscape that the intestinal immune system must monitor. In this review, we highlight regional differences in the development and composition of the adaptive immune landscape of the intestine and the impact of local intrinsic and environmental factors that shape this process. To conclude, we review the evidence for a critical window of opportunity for early-life exposures that affect immune development and alter disease susceptibility later in life.
Collapse
Affiliation(s)
- William W Agace
- Division of Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark; Immunology Section, Department of Experimental Medical Science, Lund University, BMC D14, Sölvegatan 19, 221 84 Lund, Sweden.
| | - Kathy D McCoy
- Department of Physiology and Pharmacology and Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
43
|
Chi Y, Rahkola JT, Kendrick AA, Holliday MJ, Paukovich N, Roberts TS, Janoff EN, Eisenmesser EZ. Streptococcus pneumoniae IgA1 protease: A metalloprotease that can catalyze in a split manner in vitro. Protein Sci 2017; 26:600-610. [PMID: 28028839 PMCID: PMC5326571 DOI: 10.1002/pro.3110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/01/2016] [Accepted: 12/21/2016] [Indexed: 01/07/2023]
Abstract
IgA1 proteases (IgA1P) from diverse pathogenic bacteria specifically cleave human immunoglobulin A1 (IgA1) at the hinge region, thereby thwarting protective host immune responses. Streptococcus pneumoniae (S. pneumoniae) IgA1P shares no sequence conservation with serine or cysteine types of IgA1Ps or other known proteins, other than a conserved HExxH Zn-binding motif (1604-1608) found in metalloproteases. We have developed a novel expression system to produce the mature S. pneumoniae IgA1P and we have discovered that this form is both attached to the bacterial cell surface and released in its full form. Our data demonstrate that the S. pneumoniae IgA1P comprises two distinct regions that associate to form an active metalloprotease, the first such example of a metalloprotease that can be split in vitro and recombined to form an active enzyme. By capitalizing on this novel domain architecture, we show that the N-terminal region of S. pneumoniae IgA1P comprises the primary binding region for IgA1, although the C-terminal region of S. pneumoniae IgA1P is necessary for cleavage of IgA1. Our findings lend insight into the protein domain architecture of the S. pneumoniae IgA1P and function of this important virulence factor for S. pneumoniae infection.
Collapse
Affiliation(s)
- Ying‐Chih Chi
- Departments of Biochemistry and Molecular GeneticsUniversity of Colorado DenverAuroraCO
| | - Jeremy T. Rahkola
- Mucosal and Vaccine Research Program Colorado (MAVRC), University of Colorado DenverAuroraCO
- Denver Veterans Affairs Medical CenterDenverCO
| | - Agnieszka A. Kendrick
- Departments of Biochemistry and Molecular GeneticsUniversity of Colorado DenverAuroraCO
| | - Michael J. Holliday
- Departments of Biochemistry and Molecular GeneticsUniversity of Colorado DenverAuroraCO
| | - Natasia Paukovich
- Departments of Biochemistry and Molecular GeneticsUniversity of Colorado DenverAuroraCO
| | - Thomas S. Roberts
- Departments of Biochemistry and Molecular GeneticsUniversity of Colorado DenverAuroraCO
| | - Edward N. Janoff
- Mucosal and Vaccine Research Program Colorado (MAVRC), University of Colorado DenverAuroraCO
- Denver Veterans Affairs Medical CenterDenverCO
| | - Elan Z. Eisenmesser
- Departments of Biochemistry and Molecular GeneticsUniversity of Colorado DenverAuroraCO
| |
Collapse
|
44
|
Walsh SI, Craney A, Romesberg FE. Not just an antibiotic target: Exploring the role of type I signal peptidase in bacterial virulence. Bioorg Med Chem 2016; 24:6370-6378. [PMID: 27769673 PMCID: PMC5279723 DOI: 10.1016/j.bmc.2016.09.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/17/2016] [Accepted: 09/19/2016] [Indexed: 01/23/2023]
Abstract
The looming antibiotic crisis has prompted the development of new strategies towards fighting infection. Traditional antibiotics target bacterial processes essential for viability, whereas proposed antivirulence approaches rely on the inhibition of factors that are required only for the initiation and propagation of infection within a host. Although antivirulence compounds have yet to prove their efficacy in the clinic, bacterial signal peptidase I (SPase) represents an attractive target in that SPase inhibitors exhibit broad-spectrum antibiotic activity, but even at sub-MIC doses also impair the secretion of essential virulence factors. The potential consequences of SPase inhibition on bacterial virulence have not been thoroughly examined, and are explored within this review. In addition, we review growing evidence that SPase has relevant biological functions outside of mediating secretion, and discuss how the inhibition of these functions may be clinically significant.
Collapse
Affiliation(s)
- Shawn I Walsh
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Arryn Craney
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
45
|
Segura M, Calzas C, Grenier D, Gottschalk M. Initial steps of the pathogenesis of the infection caused by Streptococcus suis: fighting against nonspecific defenses. FEBS Lett 2016; 590:3772-3799. [PMID: 27539145 DOI: 10.1002/1873-3468.12364] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 12/16/2022]
Abstract
Interactions between a bacterial pathogen and its potentially susceptible host are initiated with the colonization step. During respiratory/oral infection, the pathogens must compete with the normal microflora, resist defense mechanisms of the local mucosal immunity, and finally reach, adhere, and breach the mucosal epithelial cell barrier in order to induce invasive disease. This is the case during infection by the swine and zoonotic pathogen Streptococcus suis, which is able to counteract mucosal barriers to induce severe meningitis and sepsis in swine and in humans. The initial steps of the pathogenesis of S. suis infection has been a neglected area of research, overshadowed by studies on the systemic and central nervous phases of the disease. In this Review article, we provide for the first time, an exclusive focus on S. suis colonization and the potential mechanisms involved in S. suis establishment at the mucosa, as well as the mechanisms regulating mucosal barrier breakdown. The role of mucosal immunity is also addressed. Finally, we demystify the extensive list of putative adhesins and virulence factors reported to be involved in the initial steps of pathogenesis by S. suis.
Collapse
Affiliation(s)
- Mariela Segura
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada.,Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Cynthia Calzas
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada.,Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Laboratory of Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Daniel Grenier
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Laboratory of Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
46
|
Mestecky J, Novak J, Moldoveanu Z, Raska M. IgA nephropathy enigma. Clin Immunol 2016; 172:72-77. [PMID: 27444044 DOI: 10.1016/j.clim.2016.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 01/03/2023]
Abstract
IgA nephropathy (IgAN) is the leading cause of primary glomerulonephritis in the world. The disease is characterized by the presence of IgA-containing immune complexes in the circulation and in mesangial deposits with ensuing glomerular injury. Although in humans there are two IgA subclasses, only IgA1 molecules are involved. The exclusivity of participation of IgA1 in IgAN prompted extensive structural and immunological studies of the unique hinge region (HR) of IgA1, which is absent in otherwise highly homologous IgA2. HR of IgA1 with altered O-glycans serves as an antigen recognized by autoantibodies specific for aberrant HR glycans leading to the generation of nephritogenic immune complexes. However, there are several unresolved questions concerning the phylogenetic origin of human IgA1 HR, the structural basis of its antigenicity, the origin of antibodies specific for HR with altered glycan moieties, the regulatory defects in IgA1 glycosylation pathways, and the potential approaches applicable to the disease-specific interventions in the formation of nephritogenic immune complexes. This review focuses on the gaps in our knowledge of molecular and cellular events that are involved in the immunopathogenesis of IgAN.
Collapse
Affiliation(s)
- Jiri Mestecky
- University of Alabama at Birmingham, Department of Microbiology, Birmingham, AL, USA; First School of Medicine, Department of Immunology and Microbiology, Charles University, Prague, Czech Republic; Czech Academy of Sciences, Institute of Microbiology, Prague, Czech Republic.
| | - Jan Novak
- University of Alabama at Birmingham, Department of Microbiology, Birmingham, AL, USA
| | - Zina Moldoveanu
- University of Alabama at Birmingham, Department of Microbiology, Birmingham, AL, USA
| | - Milan Raska
- University of Alabama at Birmingham, Department of Microbiology, Birmingham, AL, USA; Palacky University, Faculty of Medicine and Dentistry and University Hospital, Department of Immunology, Olomouc, Czech Republic
| |
Collapse
|
47
|
Bårnes GK, Workalemahu B, Kristiansen PA, Beyene D, Merdekios B, Fissiha P, Aseffa A, Caugant DA, Næss LM. Salivary and Serum Antibody Response Against
Neisseria meningitidis
After Vaccination With Conjugate Polysaccharide Vaccines in Ethiopian Volunteers. Scand J Immunol 2016; 84:118-29. [DOI: 10.1111/sji.12451] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/18/2016] [Indexed: 12/27/2022]
Affiliation(s)
- G. K. Bårnes
- Department of Bacteriology and Immunology Norwegian Institute of Public Health Oslo Norway
- Department of Community Medicine Section of International Community Health University of Oslo Oslo Norway
| | - B. Workalemahu
- Arba Minch College of Health Sciences Arba Minch Ethiopia
| | - P. A. Kristiansen
- Department of Bacteriology and Immunology Norwegian Institute of Public Health Oslo Norway
| | - D. Beyene
- Armauer Hansen Research Institute Addis Ababa Ethiopia
| | - B. Merdekios
- College of Medicine and Health Sciences Arba Minch University Arba Minch Ethiopia
| | - P. Fissiha
- Arba Minch General Hospital Arba Minch Ethiopia
| | - A. Aseffa
- Armauer Hansen Research Institute Addis Ababa Ethiopia
| | - D. A. Caugant
- Department of Bacteriology and Immunology Norwegian Institute of Public Health Oslo Norway
- Department of Community Medicine Section of International Community Health University of Oslo Oslo Norway
| | - L. M. Næss
- Department of Bacteriology and Immunology Norwegian Institute of Public Health Oslo Norway
| |
Collapse
|
48
|
Draft Genome Sequence of Type Strain Streptococcus gordonii ATCC 10558. GENOME ANNOUNCEMENTS 2016; 4:4/1/e01745-15. [PMID: 26893427 PMCID: PMC4759074 DOI: 10.1128/genomea.01745-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptococcus gordonii ATCC 10558(T) was isolated from a patient with infective endocarditis in 1946 and announced as a type strain in 1989. Here, we report the 2,154,510-bp draft genome sequence of S. gordonii ATCC 10558(T). This sequence will contribute to knowledge about the pathogenesis of infective endocarditis.
Collapse
|
49
|
Davitt CJ, Lavelle EC. Delivery strategies to enhance oral vaccination against enteric infections. Adv Drug Deliv Rev 2015; 91:52-69. [PMID: 25817337 DOI: 10.1016/j.addr.2015.03.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/25/2015] [Accepted: 03/12/2015] [Indexed: 01/22/2023]
Abstract
While the majority of human pathogens infect the body through mucosal sites, most licensed vaccines are injectable. In fact the only mucosal vaccine that has been widely used globally for infant and childhood vaccination programs is the oral polio vaccine (OPV) developed by Albert Sabin in the 1950s. While oral vaccines against Cholera, rotavirus and Salmonella typhi have also been licensed, the development of additional non-living oral vaccines against these and other enteric pathogens has been slow and challenging. Mucosal vaccines can elicit protective immunity at the gut mucosa, in part via antigen-specific secretory immunoglobulin A (SIgA). However, despite their advantages over the injectable route, oral vaccines face many hurdles. A key challenge lies in design of delivery strategies that can protect antigens from degradation in the stomach and intestine, incorporate appropriate immune-stimulatory adjuvants and control release at the appropriate gastrointestinal site. A number of systems including micro and nanoparticles, lipid-based strategies and enteric capsules have significant potential either alone or in advanced combined formulations to enhance intestinal immune responses. In this review we will outline the opportunities, challenges and potential delivery solutions to facilitate the development of improved oral vaccines for infectious enteric diseases.
Collapse
|
50
|
Murphy TF, Kirkham C, Jones MM, Sethi S, Kong Y, Pettigrew MM. Expression of IgA Proteases by Haemophilus influenzae in the Respiratory Tract of Adults With Chronic Obstructive Pulmonary Disease. J Infect Dis 2015; 212:1798-805. [PMID: 25995193 DOI: 10.1093/infdis/jiv299] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/13/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Immunoglobulin (Ig)A proteases of Haemophilus influenzae are highly specific endopeptidases that cleave the hinge region of human IgA1 and also mediate invasion and trafficking in human respiratory epithelial cells, facilitating persistence of H. influenzae. Little is known about the expression of IgA proteases in clinical settings of H. influenzae infection. METHODS We identified and characterized IgA protease genes in H. influenzae and studied their expression and proteolytic specificity, in vitro and in vivo in 169 independent strains of H. influenzae collected longitudinally over 10 years from adults with chronic obstructive pulmonary disease. RESULTS The H. influenzae pangenome has 2 alleles of IgA protease genes; all strains have igaA, and 40% of strains have igaB. Each allele has 2 variants with differing proteolytic specificities for human IgA1. A total of 88% of 169 strains express IgA protease activity. Expression of the 4 forms of IgA protease varies among strains. Based on the presence of IgA1 fragments in sputum samples, each of the different forms of IgA protease is selectively expressed in the human airways during infection. CONCLUSIONS Four variants of IgA proteases are variably expressed by H. influenzae during infection of the human airways.
Collapse
Affiliation(s)
- Timothy F Murphy
- Division of Infectious Diseases Department of Microbiology and Immunology Clinical and Translational Research Center, University at Buffalo, State University of New York
| | - Charmaine Kirkham
- Division of Infectious Diseases Clinical and Translational Research Center, University at Buffalo, State University of New York
| | - Megan M Jones
- Department of Microbiology and Immunology Clinical and Translational Research Center, University at Buffalo, State University of New York
| | - Sanjay Sethi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine Veterans Affairs Western New York Healthcare System, Buffalo, New York
| | - Yong Kong
- Department of Molecular Biophysics and Biochemistry, W.M. Keck Biotechnology Resource Laboratory
| | - Melinda M Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut
| |
Collapse
|