1
|
Pang WK, Kuznetsova E, Holota H, De Haze A, Beaudoin C, Volle DH. Understanding the role of endocrine disrupting chemicals in testicular germ cell cancer: Insights into molecular mechanisms. Mol Aspects Med 2024; 99:101307. [PMID: 39213722 DOI: 10.1016/j.mam.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/14/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
This comprehensive review examines the complex interplay between endocrine disrupting chemicals (EDCs) and the development of testicular germ cell tumors (TGCTs). Despite the high cure rates of TGCTs, challenges in diagnosis and treatment remain, necessitating a deeper understanding of the etiology of the disease. Here, we emphasize current knowledge on the role of EDCs as potential risk factors for TGCTs, focusing on pesticides and perfluorinated and polyfluoroalkyl substances (PFAs/PFCs). Evidence suggests that EDCs disrupt endocrine pathways and induce epigenetic changes that contribute to the development of TGCTs. However, the direct link between EDCs and TGCTs remains elusive and requires further investigation of the molecular mechanisms. We also highlighted the importance of studying nuclear receptors as potential targets for understanding TGCT etiology. In addition, recent evidence implicates PFAs/PFCs in TGCT incidence, highlighting the need for further research into their impact on human health. Overall, this review provides valuable insights into the potential role of EDCs in TGCT development and suggests avenues for future research, while also highlighting how understanding their influence may pave the way for novel therapeutic approaches to improve disease management.
Collapse
Affiliation(s)
- Won-Ki Pang
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France.
| | - Ekaterina Kuznetsova
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - Hélène Holota
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - Angélique De Haze
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - Claude Beaudoin
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - David H Volle
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France.
| |
Collapse
|
2
|
Xu Y, Zhao J, Huang H, Guo X, Li X, Zou W, Li W, Zhang C, Huang M. Biodegradation of phthalate esters by Pantoea dispersa BJQ0007 isolated from Baijiu. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
Bornman MS, Aneck-Hahn NH. EDCs and male urogenital cancers. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:521-553. [PMID: 34452696 DOI: 10.1016/bs.apha.2021.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Male sex determination and sexual differentiation occur between 6-12 weeks of gestation. During the "male programming window" the fetal testes start to produce testosterone that initiates the development of the male reproductive tract. Exposure to endocrine disrupting chemicals (EDCs) able to mimic or disrupt steroid hormone actions may disrupt testicular development and adversely impact reproductive health at birth, during puberty and adulthood. The testicular dysgenesis syndrome (TDS) occurs as a result inhibition of androgen action on fetal development preceding Sertoli and Leydig cell dysfunction and may result from direct or epigenetic effects. Hypospadias, cryptorchidism and poor semen quality are elements of TDS, which may be considered a risk factor for testicular germ cell cancer (TGCC). Exposure to estrogen or estrogenic EDCs results in developmental estrogenization/estrogen imprinting in the rodent for prostate cancer (PCa). This can disrupt prostate histology by disorganization of the epithelium, prostatic intraepithelial neoplasia (PIN) lesions, in particular high-grade PIN (HGPIN) lesions which are precursors of prostatic adenocarcinoma. These defects persist throughout the lifespan of the animal and later in life estrogen exposure predispose development of cancer. Exposure of pregnant dams to vinclozolin, a competitive anti-androgen, and results in prominent, focal regions of inflammation in all exposed animals. The inflammation closely resembles human nonbacterial prostatitis that occurs in young men and evidence indicates that inflammation plays a central role in the development of PCa. In conclusion, in utero exposure to endocrine disrupters may predispose to the development of TDS, testicular cancer (TCa) and PCa and are illustrations of Developmental Origins of Health and Disease (DOHaD).
Collapse
Affiliation(s)
- M S Bornman
- Environmental Chemical Pollution and Health Research Unit, Faculty of Health Sciences, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.
| | - N H Aneck-Hahn
- Environmental Chemical Pollution and Health Research Unit, Faculty of Health Sciences, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa; Environmental Chemical Pollution and Health Research Unit, Faculty of Health Sciences, School of Medicine, Department of Urology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Liu S, Wang K, Svoboda LK, Rygiel CA, Neier K, Jones TR, Cavalcante RG, Colacino JA, Dolinoy DC, Sartor MA. Perinatal DEHP exposure induces sex- and tissue-specific DNA methylation changes in both juvenile and adult mice. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab004. [PMID: 33986952 PMCID: PMC8107644 DOI: 10.1093/eep/dvab004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/12/2021] [Accepted: 03/17/2021] [Indexed: 05/04/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a type of phthalate plasticizer found in a variety of consumer products and poses a public health concern due to its metabolic and endocrine disruption activities. Dysregulation of epigenetic modifications, including DNA methylation, has been shown to be an important mechanism for the pathogenic effects of prenatal exposures, including phthalates. In this study, we used an established mouse model to study the effect of perinatal DEHP exposure on the DNA methylation profile in liver (a primary target tissue of DEHP) and blood (a common surrogate tissue) of both juvenile and adult mice. Despite exposure ceasing at 3 weeks of age (PND21), we identified thousands of sex-specific differential DNA methylation events in 5-month old mice, more than identified at PND21, both in blood and liver. Only a small number of these differentially methylated cytosines (DMCs) overlapped between the time points, or between tissues (i.e. liver and blood), indicating blood may not be an appropriate surrogate tissue to estimate the effects of DEHP exposure on liver DNA methylation. We detected sex-specific DMCs common between 3-week and 5-month samples, pointing to specific DNA methylation alterations that are consistent between weanling and adult mice. In summary, this is the first study to assess the genome-wide DNA methylation profiles in liver and blood at two different aged cohorts in response to perinatal DEHP exposure. Our findings cast light on the implications of using surrogate tissue instead of target tissue in human population-based studies and identify epigenetic biomarkers for DEHP exposure.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, 500 S State St., Ann Arbor, MI 48109, USA
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, University of Michigan, 500 S State St., Ann Arbor, MI 48109, USA
| | - Laurie K Svoboda
- Environmental Health Sciences, University of Michigan, 500 S State St., Ann Arbor, MI 48109, USA
| | - Christine A Rygiel
- Environmental Health Sciences, University of Michigan, 500 S State St., Ann Arbor, MI 48109, USA
| | - Kari Neier
- Environmental Health Sciences, University of Michigan, 500 S State St., Ann Arbor, MI 48109, USA
| | - Tamara R Jones
- Environmental Health Sciences, University of Michigan, 500 S State St., Ann Arbor, MI 48109, USA
| | - Raymond G Cavalcante
- Epigenomics Core, University of Michigan, 500 S State St., Ann Arbor, MI 48109, USA
| | - Justin A Colacino
- Environmental Health Sciences, University of Michigan, 500 S State St., Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan, 500 S State St., Ann Arbor, MI 48109, USA
| | - Dana C Dolinoy
- Correspondence address. Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA. Tel: +734-647-3155; Fax: +734-936-7283; E-mail: (D.C.D.); Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Ave., Ann Arbor, MI 48109-2218, USA . Tel: +734-763-8013; Fax: +734-615-6553; E-mail: (M.A.S.)
| | - Maureen A Sartor
- Correspondence address. Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA. Tel: +734-647-3155; Fax: +734-936-7283; E-mail: (D.C.D.); Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Ave., Ann Arbor, MI 48109-2218, USA . Tel: +734-763-8013; Fax: +734-615-6553; E-mail: (M.A.S.)
| |
Collapse
|
5
|
Avilès A, Cordeiro A, Maria A, Bozzolan F, Boulogne I, Dacher M, Goutte A, Alliot F, Maibeche M, Massot M, Siaussat D. Effects of DEHP on the ecdysteroid pathway, sexual behavior and offspring of the moth Spodoptera littoralis. Horm Behav 2020; 125:104808. [PMID: 32628962 DOI: 10.1016/j.yhbeh.2020.104808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 11/28/2022]
Abstract
Bis(2-ethylhexyl) phthalate (DEHP) is a widely produced plasticizer that is considered to act as an endocrine-disrupting chemical in vertebrates and invertebrates. Indeed, many studies have shown that DEHP alters hormonal levels, reproduction and behavior in vertebrates. Few studies have focused on the effects of DEHP on insects, although DEHP is found almost everywhere in their natural habitats, particularly in soils and plants. Here, we investigated the effects of DEHP on the sexual behavior and physiology of a pest insect, the noctuid moth Spodoptera littoralis. In this nocturnal species, olfaction is crucial for sexual behavior, and ecdysteroids at the antennal level have been shown to modulate sex pheromone detection by males. In the present study, larvae were fed food containing different DEHP concentrations, and DEHP concentrations were then measured in the adults (males and females). Hemolymphatic ecdysteroid concentrations, the antennal expression of genes involved in the ecdysteroid pathway (nuclear receptors EcR, USP, E75, and E78 and calmodulin) and sexual behavior were then investigated in adult males. The success and latency of mating as well as the hatching success were also studied in pairs consisting of one DEHP male and one uncontaminated female or one DEHP female and one uncontaminated male. We also studied the offspring produced from pairs involving contaminated females to test the transgenerational effect of DEHP. Our results showed the general downregulation of nuclear receptors and calmodulin gene expression associated with the higher concentrations of DEHP, suggesting peripheral olfactory disruption. We found some effects on male behavior but without an alteration of the mating rate. Effects on offspring mortality and developmental rates in the N + 1 generation were also found at the higher doses of DEHP. Taken together, the results of the study show for the first time that larval exposure to DEHP can induce delayed endocrine-disruptive effects in the adults of a terrestrial insect as well as effects on the next generation. To date, our study is also the first description of an impact of endocrine disrupter on olfaction in insects.
Collapse
Affiliation(s)
- Amandine Avilès
- Sorbonne Université - Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris) - Département d'Écologie Sensorielle, Campus Pierre et Marie Curie (UPMC), 75252 Paris Cedex 05, France
| | - Alexandra Cordeiro
- Sorbonne Université - Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris) - Département d'Écologie Sensorielle, Campus Pierre et Marie Curie (UPMC), 75252 Paris Cedex 05, France
| | - Annick Maria
- Sorbonne Université - Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris) - Département d'Écologie Sensorielle, Campus Pierre et Marie Curie (UPMC), 75252 Paris Cedex 05, France
| | - Françoise Bozzolan
- Sorbonne Université - Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris) - Département d'Écologie Sensorielle, Campus Pierre et Marie Curie (UPMC), 75252 Paris Cedex 05, France
| | - Isabelle Boulogne
- Sorbonne Université - Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris) - Département d'Écologie Sensorielle, Campus Pierre et Marie Curie (UPMC), 75252 Paris Cedex 05, France; UPRES-EA 4358 GlycoMev, Université de Rouen, Rouen, France
| | - Matthieu Dacher
- Sorbonne Université - Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris) - Département d'Écologie Sensorielle, Campus Pierre et Marie Curie (UPMC), 75252 Paris Cedex 05, France; Sorbonne Université - Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris) - Département d'Écologie Sensorielle, Centre INRA, Bâtiment 1, Route de Saint Cyr, 78026 Versailles cedex, Versailles, France
| | - Aurélie Goutte
- École Pratique des Hautes Études (EPHE), PSL. UMR 7619 METIS, Université Pierre et Marie Curie (UPMC) - Sorbonne Universités, Paris, France
| | - Fabrice Alliot
- École Pratique des Hautes Études (EPHE), PSL. UMR 7619 METIS, Université Pierre et Marie Curie (UPMC) - Sorbonne Universités, Paris, France
| | - Martine Maibeche
- Sorbonne Université - Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris) - Département d'Écologie Sensorielle, Campus Pierre et Marie Curie (UPMC), 75252 Paris Cedex 05, France
| | - Manuel Massot
- Sorbonne Université - Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris) - Département d'Écologie Sensorielle, Campus Pierre et Marie Curie (UPMC), 75252 Paris Cedex 05, France
| | - David Siaussat
- Sorbonne Université - Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris) - Département d'Écologie Sensorielle, Campus Pierre et Marie Curie (UPMC), 75252 Paris Cedex 05, France.
| |
Collapse
|
6
|
Moody L, Hernández-Saavedra D, Kougias DG, Chen H, Juraska JM, Pan YX. Tissue-specific changes in Srebf1 and Srebf2 expression and DNA methylation with perinatal phthalate exposure. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz009. [PMID: 31240115 PMCID: PMC6586200 DOI: 10.1093/eep/dvz009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 05/30/2023]
Abstract
Perinatal exposure to endocrine disrupting chemicals negatively impacts health, but the mechanism by which such toxicants damage long-term reproductive and metabolic function is unknown. Lipid metabolism plays a pivotal role in steroid hormone synthesis as well as energy utilization and storage; thus, aberrant lipid regulation may contribute to phthalate-driven health impairments. In order to test this hypothesis, we specifically examined epigenetic disruptions in lipid metabolism pathways after perinatal phthalate exposure. During gestation and lactation, pregnant Long-Evans rat dams were fed environmentally relevant doses of phthalate mixture: 0 (CON), 200 (LO), or 1000 (HI) µg/kg body weight/day. On PND90, male offspring in the LO and HI groups had higher body weights than CON rats. Gene expression of lipid metabolism pathways was altered in testis and adipose tissue of males exposed to the HI phthalate dosage. Specifically, Srebf1 was downregulated in testis and Srebf2 was upregulated in adipose tissue. In testis of HI rats, DNA methylation was increased at two loci and reduced at one other site surrounding Srebf1 transcription start site. In adipose tissue of HI rats, we observed increased DNA methylation at one region within the first intron of Srebf2. Computational analysis revealed several potential transcriptional regulator binding sites, suggesting functional relevance of the identified differentially methylated CpGs. Overall, we show that perinatal phthalate exposure affects lipid metabolism gene expression in a tissue-specific manner possibly through altering DNA methylation of Srebf1 and Srebf2.
Collapse
Affiliation(s)
- Laura Moody
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Daniel G Kougias
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hong Chen
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Janice M Juraska
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yuan-Xiang Pan
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
7
|
Huang LL, Zhou B, Ai SH, Yang P, Chen YJ, Liu C, Deng YL, Lu Q, Miao XP, Lu WQ, Wang YX, Zeng Q. Prenatal phthalate exposure, birth outcomes and DNA methylation of Alu and LINE-1 repetitive elements: A pilot study in China. CHEMOSPHERE 2018; 206:759-765. [PMID: 29793068 DOI: 10.1016/j.chemosphere.2018.05.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Epigenetic mechanisms, such as altered DNA methylation, may participate in the relationship between prenatal phthalate exposure and adverse birth outcomes. OBJECTIVE To explore the mediation effect of DNA methylation in the associations of phthalate exposure before delivery with birth outcomes in a Chinese cohort. METHODS Eight phthalate metabolites in maternal urine before delivery and DNA methylation of Alu and long interspersed nucleotide elements (LINE-1) in cord blood were determined among 106 mother-infant pairs. General additive models were used to assess the associations of maternal urinary phthalate metabolites with birth outcomes and DNA methylation; the mediating role of DNA methylation in cord blood was evaluated by mediation analysis. RESULTS We found sex-specific associations between prenatal phthalate exposure and birth outcomes and DNA methylation of cord blood. For example, the molar sum of di-2-(ethylhexyl) phthalate (∑DEHPm) metabolites in maternal urine was positively associated with gestational age among male newborns only (P < 0.05); maternal urinary monobenzyl phthalate (MBzP) was negatively associated with Alu methylation among female newborns only (P < 0.05). Mediation analysis did not find that methylation of Alu and LINE-1 to be a direct mediator in the relationships between maternal urinary phthalate metabolites before delivery and birth outcomes. CONCLUSION Prenatal exposure to certain phthalates was associated with altered birth outcomes and decreased repetitive element methylation of newborns. However, the altered birth outcomes exerted by prenatal phthalate exposure does not seem to be directly mediated through repetitive element methylation in cord blood.
Collapse
Affiliation(s)
- Li-Li Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Bin Zhou
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, WuHan, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Song-Hua Ai
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ying-Jun Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiao-Ping Miao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yi-Xin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
8
|
Lymperi S, Giwercman A. Endocrine disruptors and testicular function. Metabolism 2018; 86:79-90. [PMID: 29605435 DOI: 10.1016/j.metabol.2018.03.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023]
Abstract
Despite concerns of the scientific community regarding the adverse effects of human exposure to exogenous man-made chemical substances or mixtures that interfere with normal hormonal balance, the so called "endocrine disruptors (EDs)", their production has been increased during the last few decades. EDs' extensive use has been implicated in the increasing incidence of male reproductive disorders including poor semen quality, testicular malignancies and congenital developmental defects such as hypospadias and cryptorchidism. Several animal studies have demonstrated that exposure to EDs during fetal, neonatal and adult life has deleterious consequences on male reproductive system; however, the evidence on humans remains ambiguous. The complexity of their mode of action, the differential effect according to the developmental stage that exposure occurs, the latency from exposure and the influence of the genetic background in the manifestation of their toxic effects are all responsible factors for the contradictory outcomes. Furthermore, the heterogeneity in the published human studies has hampered agreement in the field. Interventional studies to establish causality would be desirable, but unfortunately the nature of the field excludes this possibility. Therefore, future studies based on standardized guidelines are necessary, in order to estimate human health risks and implement policies to limit public exposure.
Collapse
Affiliation(s)
- Stefania Lymperi
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | |
Collapse
|
9
|
Tindula G, Murphy SK, Grenier C, Huang Z, Huen K, Escudero-Fung M, Bradman A, Eskenazi B, Hoyo C, Holland N. DNA methylation of imprinted genes in Mexican-American newborn children with prenatal phthalate exposure. Epigenomics 2018; 10:1011-1026. [PMID: 29957030 PMCID: PMC6088267 DOI: 10.2217/epi-2017-0178] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/28/2018] [Indexed: 02/06/2023] Open
Abstract
AIM Imprinted genes exhibit expression in a parent-of-origin-dependent manner and are critical for child development. Recent limited evidence suggests that prenatal exposure to phthalates, ubiquitous endocrine disruptors, can affect their epigenetic dysregulation. MATERIALS & METHODS We quantified DNA methylation of nine imprinted gene differentially methylated regions by pyrosequencing in 296 cord blood DNA samples in a Mexican-American cohort. Fetal exposure was estimated by phthalate metabolite concentrations in maternal urine samples during pregnancy. RESULTS Several differentially methylated regions of imprinted genes were associated with high molecular weight phthalates. The most consistent, positive, and false discovery rate significant associations were observed for MEG3. CONCLUSION Phthalate exposure in utero may affect methylation status of imprinted genes in newborn children.
Collapse
Affiliation(s)
- Gwen Tindula
- Center for Environmental Research & Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Susan K Murphy
- Epigenetics Research Laboratory, Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27708, USA
| | - Carole Grenier
- Epigenetics Research Laboratory, Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27708, USA
| | - Zhiqing Huang
- Epigenetics Research Laboratory, Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27708, USA
| | - Karen Huen
- Center for Environmental Research & Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Maria Escudero-Fung
- Center for Environmental Research & Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Asa Bradman
- Center for Environmental Research & Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Brenda Eskenazi
- Center for Environmental Research & Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Cathrine Hoyo
- Epigenetics Research Laboratory, Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27708, USA
- Department of Biological Sciences, Center for Human Health & the Environment, North Carolina State University (NCSU), Raleigh, NC 27606, USA
| | - Nina Holland
- Center for Environmental Research & Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Chen CH, Jiang SS, Chang IS, Wen HJ, Sun CW, Wang SL. Association between fetal exposure to phthalate endocrine disruptor and genome-wide DNA methylation at birth. ENVIRONMENTAL RESEARCH 2018; 162:261-270. [PMID: 29367177 DOI: 10.1016/j.envres.2018.01.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/20/2017] [Accepted: 01/11/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Phthalic acid esters are ubiquitous and antiandrogenic, and may cause systemic effects in humans, particularly with in utero exposure. Epigenetic modification, such as DNA methylation, has been hypothesized to be an important mechanism that mediates certain biological processes and pathogenic effects of in utero phthalate exposure. OBJECTIVE The aim of this study was to examine the association between genome-wide DNA methylation at birth and prenatal exposure to phthalate. METHODS We studied 64 infant-mother pairs included in TMICS (Taiwan Maternal and Infant Cohort Study), a long-term follow-up birth cohort from the general population. DNA methylation levels at more than 450,000 CpG sites were measured in cord blood samples using Illumina Infinium HumanMethylation450 BeadChips. The concentrations of three metabolites of di-(2-ethylhexyl) phthalate (DEHP) were measured using liquid chromatography tandem-mass spectrometry (LC-MS/MS) in urine samples collected from the pregnant women during 28-36 weeks gestation. RESULTS We identified 25 CpG sites whose methylation levels in cord blood were significantly correlated with prenatal DEHP exposure using a false discovery rate (FDR) of 5% (q-value < 0.05). Via gene-set enrichment analysis (GSEA), we also found that there was significant enrichment of genes involved in the androgen response, estrogen response, and spermatogenesis within those genes showing DNA methylation changes in response to exposure. Specifically, PA2G4, HMGCR, and XRCC6 genes were involved in genes in response to androgen. CONCLUSIONS Phthalate exposure in utero may cause significant alterations in the DNA methylation in cord blood. These changes in DNA methylation might serve as biomarkers of maternal exposure to phthalate in infancy and potential candidates for studying mechanisms via which phthalate may impact on health in later life. Future investigations are warranted.
Collapse
Affiliation(s)
- Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan; Taiwan Bioinformatics Core, National Health Research Institutes, Zhunan, Taiwan
| | - Shih Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan.
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan; Taiwan Bioinformatics Core, National Health Research Institutes, Zhunan, Taiwan; Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Hui-Ju Wen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Chien-Wen Sun
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan; School of Public Health, National Defense Medical Center, Taipei.
| |
Collapse
|
11
|
Pan Y, Wang X, Yeung LWY, Sheng N, Cui Q, Cui R, Zhang H, Dai J. Dietary exposure to di-isobutyl phthalate increases urinary 5-methyl-2'-deoxycytidine level and affects reproductive function in adult male mice. J Environ Sci (China) 2017; 61:14-23. [PMID: 29191310 DOI: 10.1016/j.jes.2017.04.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Phthalates are a large family of ubiquitous environmental pollutants suspected of being endocrine disruptors. Epidemiological studies have associated phthalate metabolites with decreased reproductive parameters and linked phthalate exposure with the level of urinary 5-methyl-2'-deoxycytidine (5mdC, a product of methylated DNA). In this study, adult male mice were exposed to 450mg di-isobutyl phthalate (DiBP)/(kg·day) via dietary exposure for 28days. Mono-isobutyl phthalate (MiBP, the urinary metabolite) and reproductive function parameters were determined. The levels of 5mdC and 5-hydroxymethyl-2'-deoxycytidine (5hmdC) were measured in urine to evaluate if their contents were also altered by DiBP exposure in this animal model. Results showed that DiBP exposure led to a significant increase in the urinary 5mdC level and significant decreases in sperm concentration and motility in the epididymis, accompanied with reduced testosterone levels and down-regulation of the P450 cholesterol side-chain cleavage enzyme (P450scc) gene in the mice testes. Our findings indicated that exposure to DiBP increased the urinary 5mdC levels, which supported our recent epidemiological study about the associations of urinary 5mdC with phthalate exposure in the male human population. In addition, DiBP exposure impaired male reproductive function, possibly by disturbing testosterone levels; P450scc might be a major steroidogenic enzyme targeted by DiBP or other phthalates.
Collapse
Affiliation(s)
- Yitao Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyang Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Leo W Y Yeung
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro, SE -70182, Sweden
| | - Nan Sheng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qianqian Cui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruina Cui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
12
|
Nettersheim D, Jostes S, Schneider S, Schorle H. Elucidating human male germ cell development by studying germ cell cancer. Reproduction 2017; 152:R101-13. [PMID: 27512122 DOI: 10.1530/rep-16-0114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/07/2016] [Indexed: 12/19/2022]
Abstract
Human germ cell development is regulated in a spatio-temporal manner by complex regulatory networks. Here, we summarize results obtained in germ cell tumors and respective cell lines and try to pinpoint similarities to normal germ cell development. This comparison allows speculating about the critical and error-prone mechanisms, which when disturbed, lead to the development of germ cell tumors. Short after specification, primordial germ cells express markers of pluripotency, which, in humans, persists up to the stage of fetal/infantile spermatogonia. Aside from the rare spermatocytic tumors, virtually all seminomas and embryonal carcinomas express markers of pluripotency and show signs of pluripotency or totipotency. Therefore, it appears that proper handling of the pluripotency program appears to be the most critical step in germ cell development in terms of tumor biology. Furthermore, data from mice reveal that germline cells display an epigenetic signature, which is highly similar to pluripotent cells. This signature (poised histone code, DNA hypomethylation) is required for the rapid induction of toti- and pluripotency upon fertilization. We propose that adult spermatogonial cells, when exposed to endocrine disruptors or epigenetic active substances, are prone to reinitiate the pluripotency program, giving rise to a germ cell tumor. The fact that pluripotent cells can be derived from adult murine and human testicular cells further corroborates this idea.
Collapse
Affiliation(s)
- Daniel Nettersheim
- Department of Developmental PathologyInstitute of Pathology, University of Bonn Medical School, Bonn, Germany
| | - Sina Jostes
- Department of Developmental PathologyInstitute of Pathology, University of Bonn Medical School, Bonn, Germany
| | - Simon Schneider
- Department of Developmental PathologyInstitute of Pathology, University of Bonn Medical School, Bonn, Germany
| | - Hubert Schorle
- Department of Developmental PathologyInstitute of Pathology, University of Bonn Medical School, Bonn, Germany
| |
Collapse
|
13
|
Heindler FM, Alajmi F, Huerlimann R, Zeng C, Newman SJ, Vamvounis G, van Herwerden L. Toxic effects of polyethylene terephthalate microparticles and Di(2-ethylhexyl)phthalate on the calanoid copepod, Parvocalanus crassirostris. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:298-305. [PMID: 28365455 DOI: 10.1016/j.ecoenv.2017.03.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 02/21/2017] [Accepted: 03/21/2017] [Indexed: 05/06/2023]
Abstract
Large amounts of plastic end up in the oceans every year where they fragment into microplastics over time. During this process, microplastics and their associated plasticizers become available for ingestion by different organisms. This study assessed the effects of microplastics (Polyethylene terephthalate; PET) and one plasticizer (Di(2-ethylhexyl)phthalate; DEHP) on mortality, productivity, population sizes and gene expression of the calanoid copepod Parvocalanus crassirostris. Copepods were exposed to DEHP for 48h to assess toxicity. Adults were very healthy following chemical exposure (up to 5120µg L-1), whereas nauplii were severely affected at very low concentrations (48h LC50value of 1.04 ng L-1). Adults exposed to sub-lethal concentrations of DEHP (0.1-0.3µg L-1) or microplastics (10,000-80,000 particles mL-1) exhibited substantial reductions in egg production. Populations were exposed to either microplastics or DEHP for 6 days with 18 days of recovery or for 24 days. Populations exposed to microplastics for 24 days significantly depleted in population size (60±4.1%, p<0.001) relative to controls, whilst populations exposed for only 6 days (with 18 days of recovery) experienced less severe depletions (75±6.0% of control, p<0.05). Populations exposed to DEHP, however, exhibited no recovery and both treatments (6 and 24 days) yielded the same average population size at the termination of the experiment (59±4.9% and 59±3.4% compared to control; p<0.001). These results suggest that DEHP may induce reproductive disorders that can be inherited by subsequent generations. Histone 3 (H3) was significantly (p<0.05) upregulated in both plastic and DEHP treatments after 6 days of exposure, but not after 18 days of recovery. Hsp70-like expression showed to be unresponsive to either DEHP or microplastic exposure. Clearly, microplastics and plasticizers pose a serious threat to zooplankton and potentially to higher trophic levels.
Collapse
Affiliation(s)
- Franz M Heindler
- College of Marine & Environmental Sciences, James Cook University, 1 James Cook Drive, Townsville, Australia.
| | - Fahad Alajmi
- College of Marine & Environmental Sciences, James Cook University, 1 James Cook Drive, Townsville, Australia; Environment Public Authority Kuwait, P. O. Box 24395, Safat 13104, Kuwait
| | - Roger Huerlimann
- College of Marine & Environmental Sciences, James Cook University, 1 James Cook Drive, Townsville, Australia
| | - Chaoshu Zeng
- College of Marine & Environmental Sciences, James Cook University, 1 James Cook Drive, Townsville, Australia; Centre of Sustainable Tropical Fisheries and Aquaculture, James Cook University, 1 James Cook Drive, Townsville, Australia
| | - Stephen J Newman
- Western Australian Fisheries and Marine Research Laboratories, Department of Fisheries, Government of Western Australia, P.O. Box 20, North Beach, Western Australia 6920, Australia
| | - George Vamvounis
- College of Science, Technology and Engineering, James Cook University, 1 James Cook Drive, Townsville, Australia
| | - Lynne van Herwerden
- College of Marine & Environmental Sciences, James Cook University, 1 James Cook Drive, Townsville, Australia; Centre of Sustainable Tropical Fisheries and Aquaculture, James Cook University, 1 James Cook Drive, Townsville, Australia; Comparative Genomics Centre, James Cook University, 1 James Cook Drive, Townsville, Australia
| |
Collapse
|
14
|
Priya ES, Kumar TS, Singh PR, Balakrishnan S, Arunakaran J. Impact of Lactational Exposure to Polychlorinated Biphenyl Causes Epigenetic Modification and Impairs Sertoli Cells Functional Regulators in F1 Progeny. Reprod Sci 2017; 25:818-829. [DOI: 10.1177/1933719117699707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- E. Sugantha Priya
- Department of Endocrinology, Dr ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, Tamil Nadu, India
| | - T. Sathish Kumar
- Department of Endocrinology, Dr ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, Tamil Nadu, India
| | - P. Raja Singh
- Department of Endocrinology, Dr ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, Tamil Nadu, India
| | - S. Balakrishnan
- Department of Endocrinology, Dr ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, Tamil Nadu, India
| | - J. Arunakaran
- Department of Endocrinology, Dr ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
15
|
Quinnies KM, Harris EP, Snyder RW, Sumner SS, Rissman EF. Direct and transgenerational effects of low doses of perinatal di-(2-ethylhexyl) phthalate (DEHP) on social behaviors in mice. PLoS One 2017; 12:e0171977. [PMID: 28199414 PMCID: PMC5310861 DOI: 10.1371/journal.pone.0171977] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/30/2017] [Indexed: 11/29/2022] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is an endocrine disrupting chemical commonly used as a plasticizer in medical equipment, food packaging, flooring, and children’s toys. DEHP exposure during early development has been associated with adverse neurobehavioral outcomes in children. In animal models, early exposure to DEHP results in abnormal development of the reproductive system as well as altered behavior and neurodevelopment. Based on these data, we hypothesized that developmental exposure to DEHP would decrease social interactions and increase anxiety-like behaviors in mice in a dose-dependent manner, and that the effects would persist over generations. C57BL/6J mice consumed one of three DEHP doses (0, 5, 40, and 400 μg/kg body weight) throughout pregnancy and during the first ten days of lactation. The two higher doses yielded detectable levels of DEHP metabolites in serum. Pairs of mice from control, low, and high DEHP doses were bred to create three dose lineages in the third generation (F3). Average anogenital index (AGI: anogenital distance/body weight) was decreased in F1 males exposed to the low dose of DEHP and in F1 females exposed to the highest dose. In F1 mice, juvenile pairs from the two highest DEHP dose groups displayed fewer socially investigative behaviors and more exploratory behaviors as compared with control mice. The effect of DEHP on these behaviors was reversed in F3 mice as compared with F1 mice. F1 mice exposed to low and medium DEHP doses spent more time in the closed arms of the elevated plus maze than controls, indicating increased anxiety-like behavior. The generation-dependent effects on behavior and AGI suggest complex mechanisms by which DEHP directly impacts reproductive and neurobehavioral development and influences germline-inherited traits.
Collapse
Affiliation(s)
- Kayla M. Quinnies
- Department of Biochemistry and Molecular Genetics and Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Erin P. Harris
- Department of Biochemistry and Molecular Genetics and Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Rodney W. Snyder
- Discovery Science Technology, RTI International, Research Triangle Park, NC, United States of America
| | - Susan S. Sumner
- Discovery Science Technology, RTI International, Research Triangle Park, NC, United States of America
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States of America
| | - Emilie F. Rissman
- Department of Biochemistry and Molecular Genetics and Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, VA, United States of America
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States of America
- * E-mail:
| |
Collapse
|
16
|
Zarean M, Keikha M, Poursafa P, Khalighinejad P, Amin M, Kelishadi R. A systematic review on the adverse health effects of di-2-ethylhexyl phthalate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:24642-24693. [PMID: 27714658 DOI: 10.1007/s11356-016-7648-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/07/2016] [Indexed: 05/23/2023]
Abstract
Di (ethylhexyl) phthalate (DEHP) is a global environmental pollutant. This study aims to systematically review the literature on health effects of exposure to DEHP including effects on reproductive health, carcinogenesis, pregnancy outcome, and respiratory system. The literature search was done through Scopus, ISI Web of Science, Google Scholar, PubMed, Medline, and the reference lists of previous review articles to identify relevant articles published to June 2016 in each subject area. The inclusion criteria were as follows: original research, cross-sectional studies, case-control studies, cohort studies, interventional studies, and review articles. Both human and animal studies were included. The search was limited to English language papers. Conference papers, editorials, and letters were not included. The systematic review was conducted and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Overall, 152 of the 407 papers met the inclusion criteria. We provided an up-to-date comprehensive and critical assessment of both human and animal studies undertaken to explore the effects of DEHP. It revealed that in experimental studies, exposure to DEHP mainly targeted the reproductive, neurodevelopment, and respiratory systems. Human studies reported that exposure to this contaminant had carcinogenic effects and influenced neurodevelopment in early life. This systematic review underscored the adverse health effects of DEHP for pregnant women and the pediatric age group. It summarizes different response of humans and experimental animals to DEHP exposure, and some suggested underlying mechanisms.
Collapse
Affiliation(s)
- Maryam Zarean
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Environmental Health Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Keikha
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parinaz Poursafa
- Environmental Health Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
- Students' Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pooyan Khalighinejad
- Students' Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Kimia Gostar Saba, Isfahan, Iran
| | - Mohammadmehdi Amin
- Environmental Health Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
17
|
Zhao Y, Chen J, Wang X, Song Q, Xu HH, Zhang YH. Third trimester phthalate exposure is associated with DNA methylation of growth-related genes in human placenta. Sci Rep 2016; 6:33449. [PMID: 27653773 PMCID: PMC5031987 DOI: 10.1038/srep33449] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/16/2016] [Indexed: 12/15/2022] Open
Abstract
Strong evidence implicates maternal phthalate exposure during pregnancy in contributing to adverse birth outcomes. Recent research suggests these effects might be mediated through the improper regulation of DNA methylation in offspring tissue. In this study, we examined associations between prenatal phthalate exposure and DNA methylation in human placenta. We recruited 181 mother-newborn pairs (80 fetal growth restriction newborns, 101 normal newborns) in Wenzhou, China and measured third trimester urinary phthalate metabolite concentrations and placental DNA methylation levels of IGF2 and AHRR. We found urinary concentrations of mono (2-ethyl-5- hydroxyhexyl) phthalate (MEHHP), and mono (2-ethyl-5-oxohexyl) phthalate (MEOHP) were significantly inversely associated with placental IGF2 DNA methylation. The associations were much more evident in fetal growth restriction (FGR) newborns than those in normal newborns. These findings suggest that changes in placental DNA methylation might be part of the underlying biological pathway between prenatal phthalate exposure and adverse fetal growth.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Jiao Chen
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Xiu Wang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Qi Song
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Hui-Hui Xu
- Shanghai Municipal Center for Disease Control &Prevention, Shanghai, China
| | - Yun-Hui Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Pan Y, Jing J, Yeung LWY, Sheng N, Zhang H, Yao B, Dai J. Associations of urinary 5-methyl-2'-deoxycytidine and 5-hydroxymethyl-2'-deoxycytidine with phthalate exposure and semen quality in 562 Chinese adult men. ENVIRONMENT INTERNATIONAL 2016; 94:583-590. [PMID: 27346742 DOI: 10.1016/j.envint.2016.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 05/27/2023]
Abstract
5-methyl-2'-deoxycytidine (5mdC) and 5-hydroxymethyl-2'-deoxycytidine (5hmdC), products of DNA methylation and hydroxymethylation processes, have been detected previously in human urine, but their associations with environmental chemicals or healthy outcomes are unclear. The present investigation explored the associations between urinary 5mdC and 5hmdC with phthalate exposure and semen quality. We assessed semen parameters including sperm concentration, motility, and morphology, before measuring urinary 5mdC, 5hmdC and 13 phthalate metabolites among 562 subfertile men from Nanjing, China. Urinary 5mdC and 5hmdC were positively associated with the levels of low molecular weight phthalate metabolites (Low-MWP), high molecular weight phthalate metabolites (High-MWP), and the sum of all phthalate metabolites (ΣPAEs), respectively. Urinary 5mdC was associated with below-reference sperm concentration (odds ratios for increasing quartiles=1.0, 2.2, 3.0, 2.0; p for trend =0.02), sperm motility (1.0, 1.1, 1.9, 1.3; p for trend =0.05), and sperm morphology (1.0, 1.4, 2.3, 1.5; p for trend =0.05). Sperm concentration was associated with the highest quartile of urinary 5hmdC [odds ratio=1.9 (95% CI: 1.1, 3.6)]. Our findings showed significant associations between urinary 5mdC and 5hmdC with phthalate metabolites and semen parameters, which suggested urinary 5mdC and 5hmdC may be promising biomarkers in future epidemiological studies.
Collapse
Affiliation(s)
- Yitao Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jun Jing
- Reproductive Medical Center, Nanjing Jinling Hospital, Nanjing University, School of Medicine, Nanjing 210002, Jiangsu, PR China
| | - Leo W Y Yeung
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
| | - Nan Sheng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Bing Yao
- Reproductive Medical Center, Nanjing Jinling Hospital, Nanjing University, School of Medicine, Nanjing 210002, Jiangsu, PR China.
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
19
|
Liu Y, Zhang Y, Tao S, Guan Y, Zhang T, Wang Z. Global DNA methylation in gonads of adult zebrafish Danio rerio under bisphenol A exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 130:124-32. [PMID: 27101439 DOI: 10.1016/j.ecoenv.2016.04.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/02/2016] [Accepted: 04/07/2016] [Indexed: 05/18/2023]
Abstract
Altered DNA methylation is pervasively associated with changes in gene expression and signal transduction after exposure to a wide range of endocrine disrupting chemicals. As a weak estrogenic chemical, bisphenol A (BPA) has been extensively studied for reproductive toxicity. In order to explore the effects of BPA on epigenetic modification in gonads of zebrafish Danio rerio, we measured the global DNA methylation together with the gene expression of DNA methyltransferase (dnmts), glycine N-methyltransferase (gnmt), and ten-eleven translocation (tets) in gonads of D. rerio under BPA exposure by ELISA and quantitative real-time PCR method, respectively. The global level of DNA methylation was significantly decreased in ovaries after exposed to BPA for 7 days, and testes following 35-day exposure. Moreover, the global level of DNA methylation was also significantly reduced in testes after exposed to 15μg/L BPA for 7 days. Besides the alteration of the global level of DNA methylation, varying degrees of transcriptional changes of dnmts, gnmt and tets were detected in gonads of D. rerio under BPA exposure. The present study suggested that BPA might cause the global DNA demethylation in gonads of zebrafish by regulating the transcriptional changes of the DNA methylation/demethylation-associated genes (dnmts, gnmt, and tets).
Collapse
Affiliation(s)
- Yan Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Yingying Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Shiyu Tao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Yongjing Guan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Ting Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
20
|
Abstract
Exposure to environmental chemicals has adverse effects on the health and survival of humans. Emerging evidence supports the idea that exposure to endocrine-disrupting compounds (EDCs) can perturb an individual’s physiological set point and as a result increase his/her propensity toward several diseases. The purpose of this review is to provide an update on di-(2-ethylhexyl) phthalate, the primary plasticizer found in plastic medical devices used in neonatal intensive care units, its effects on the fetus and newborn, epidemiological studies, pharmacokinetics, toxicity and epigenetic implications. We searched the PubMed databases to identify relevant studies. Phthalates are known EDCs that primarily are used to improve the flexibility of polyvinyl chloride plastic products and are called plasticizers in lay terms. Neonates and infants are particularly vulnerable to the effects of phthalates, beginning with maternal exposure and placental transfer during gestation and during infancy following birth. In line with the developmental origins of adult disease, a focus on the effects of environmental chemicals in utero or early childhood on the genesis of adult diseases through epigenome modulation is timely and important. The epigenetic effects of phthalates have not been fully elucidated, but accumulating evidence suggests that they may be associated with adverse health effects, some of which may be heritable. Phthalate exposure during pregnancy and the perinatal period is particularly worrisome in health-care settings. Although the clinical significance of phthalate exposure has been difficult to assess with epidemiologic studies, the evidence that physiological changes occur due to exposure to phthalates is growing and points toward the need for more investigation at a molecular, specifically epigenetic level.
Collapse
|
21
|
Huen K, Calafat AM, Bradman A, Yousefi P, Eskenazi B, Holland N. Maternal phthalate exposure during pregnancy is associated with DNA methylation of LINE-1 and Alu repetitive elements in Mexican-American children. ENVIRONMENTAL RESEARCH 2016; 148:55-62. [PMID: 27019040 PMCID: PMC4874877 DOI: 10.1016/j.envres.2016.03.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/24/2016] [Accepted: 03/18/2016] [Indexed: 05/21/2023]
Abstract
Phthalates are frequently used in personal care products and plasticizers and phthalate exposure is ubiquitous in the US population. Exposure to phthalates during critical periods in utero has been associated with a variety of adverse health outcomes but the biological mechanisms linking these exposures with disease are not well characterized. In this study, we examined the relationship of in utero phthalate exposure with repetitive element DNA methylation, an epigenetic marker of genome instability, in children from the longitudinal birth cohort CHAMACOS. Methylation of Alu and long interspersed nucleotide elements (LINE-1) was determined using pyrosequencing of bisulfite-treated DNA isolated from whole blood samples collected from newborns and 9 year old children (n=355). Concentrations of eleven phthalate metabolites were measured in urine collected from pregnant mothers at 13 and 26 weeks gestation. We found a consistent inverse association between prenatal concentrations of monoethyl phthalate, the most frequently detected urinary metabolite, with cord blood methylation of Alu repeats (β(95%CI): -0.14 (-0.28,0.00) and -0.16 (-0.31, -0.02)) for early and late pregnancy, respectively, and a similar but weaker association with LINE-1 methylation. Additionally, increases in urinary concentrations of di-(2-ethylhexyl) phthalate metabolites during late pregnancy were associated with lower levels of methylation of Alu repeats in 9 year old blood (significant p-values ranged from 0.003 to 0.03). Our findings suggest that prenatal exposure to some phthalates may influence differences in repetitive element methylation, highlighting epigenetics as a plausible biological mechanism through which phthalates may affect health.
Collapse
Affiliation(s)
- Karen Huen
- Center for Children's Environmental Health, School of Public Health, University of California, Berkeley, 1995 University Avenue Suite 265, Berkeley, CA 94720, USA.
| | - Antonia M Calafat
- Centers for Disease Control and Prevention, 4770 Buford Hwy, MS F17, Atlanta, GA 30341, USA.
| | - Asa Bradman
- Center for Children's Environmental Health, School of Public Health, University of California, Berkeley, 1995 University Avenue Suite 265, Berkeley, CA 94720, USA.
| | - Paul Yousefi
- Center for Children's Environmental Health, School of Public Health, University of California, Berkeley, 1995 University Avenue Suite 265, Berkeley, CA 94720, USA.
| | - Brenda Eskenazi
- Center for Children's Environmental Health, School of Public Health, University of California, Berkeley, 1995 University Avenue Suite 265, Berkeley, CA 94720, USA.
| | - Nina Holland
- Center for Children's Environmental Health, School of Public Health, University of California, Berkeley, 1995 University Avenue Suite 265, Berkeley, CA 94720, USA.
| |
Collapse
|
22
|
Jones S, Boisvert A, Naghi A, Hullin-Matsuda F, Greimel P, Kobayashi T, Papadopoulos V, Culty M. Stimulatory effects of combined endocrine disruptors on MA-10 Leydig cell steroid production and lipid homeostasis. Toxicology 2016; 355-356:21-30. [PMID: 27181934 DOI: 10.1016/j.tox.2016.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/20/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
Abstract
Previous work in our laboratory demonstrated that in-utero exposure to a mixture of the phytoestrogen Genistein (GEN), and plasticizer DEHP, induces short- and long-term alterations in testicular gene and protein expression different from individual exposures. These studies identified fetal and adult Leydig cells as sensitive targets for low dose endocrine disruptor (ED) mixtures. To further investigate the direct effects and mechanisms of toxicity of GEN and DEHP, MA-10 mouse tumor Leydig cells were exposed in-vitro to varying concentrations of GEN and MEHP, the principal bioactive metabolite of DEHP. Combined 10μM GEN+10μM MEHP had a stimulatory effect on basal progesterone production. Consistent with increased androgenicity, the mRNA of steroidogenic and cholesterol mediators Star, Cyp11a, Srb1 and Hsl, as well as upstream orphan nuclear receptors Nr2f2 and Sf1 were all significantly increased uniquely in the mixture treatment group. Insl3, a sensitive marker of Leydig endocrine disruption and cell function, was significantly decreased by combined GEN+MEHP. Lipid analysis by high-performance thin layer chromatography demonstrated the ability of combined 10μM combined GEN+MEHP, but not individual exposures, to increase levels of several neutral lipids and phospholipid classes, indicating a generalized deregulation of lipid homeostasis. Further investigation by qPCR analysis revealed a concomitant increase in cholesterol (Hmgcoa) and phospholipid (Srebp1c, Fasn) mediator mRNAs, suggesting the possible involvement of upstream LXRα agonism. These results suggest a deregulation of MA-10 Leydig function in response to a combination of GEN+MEHP. We propose a working model for GEN+MEHP doses relevant to human exposure involving LXR agonism and activation of other transcription factors. Taken more broadly, this research highlights the importance of assessing the impact of ED mixtures in multiple toxicological models across a range of environmentally relevant doses.
Collapse
Affiliation(s)
- Steven Jones
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Annie Boisvert
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Andrada Naghi
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Françoise Hullin-Matsuda
- Lipid Biology Laboratory, RIKEN Institute, Wakoshi, Saitama, Japan; INSERM UMR1060, University Lyon 1, Villeurbanne, France
| | - Peter Greimel
- Lipid Biology Laboratory, RIKEN Institute, Wakoshi, Saitama, Japan
| | | | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Martine Culty
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
23
|
Martinez-Arguelles DB, Papadopoulos V. Prenatal phthalate exposure: epigenetic changes leading to lifelong impact on steroid formation. Andrology 2016; 4:573-84. [DOI: 10.1111/andr.12175] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/11/2016] [Accepted: 01/28/2016] [Indexed: 01/02/2023]
Affiliation(s)
- D. B. Martinez-Arguelles
- The Research Institute of the McGill University Health Centre; McGill University; Montreal QC Canada
- Department of Medicine; McGill University; Montreal QC Canada
| | - V. Papadopoulos
- The Research Institute of the McGill University Health Centre; McGill University; Montreal QC Canada
- Department of Medicine; McGill University; Montreal QC Canada
- Department of Biochemistry; McGill University; Montreal QC Canada
- Department of Pharmacology & Therapeutics; McGill University; Montreal Quebec Canada
| |
Collapse
|
24
|
Wood RK, Crowley E, Martyniuk CJ. Developmental profiles and expression of the DNA methyltransferase genes in the fathead minnow (Pimephales promelas) following exposure to di-2-ethylhexyl phthalate. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:7-18. [PMID: 26251286 DOI: 10.1007/s10695-015-0112-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/31/2015] [Indexed: 06/04/2023]
Abstract
DNA methylation is an epigenetic regulator of gene expression, and this process has been shown to be disrupted by environmental contaminants. Di-2-(ethylhexyl) phthalate (DEHP) and related phthalate esters have been shown to affect development in early life stages of fish and can alter genomic methylation patterns in vertebrates. The objectives of this study were the following: (1) Describe the expression patterns of the DNA methyltransferase (dnmt) genes during early fathead minnow (FHM) development. These genes are critical for methylation and imprinting during development. (2) Determine the effects of DEHP on the development of FHM larvae [1 and 14 days post-hatch (dph)]. (3) Determine the effect of DEHP on dnmt expression and global methylation status in larval FHM. FHMs were first collected over a developmental time course [1, 3, 5, 6, and 14 days post-fertilization (dpf)] to investigate the expression patterns of five dnmt isoforms. The expression of dnmt1 and dnmt7 was relatively high in embryos at 1 dpf but was variable in expression, and these transcripts were later expressed at a lower level (>3 dpf); dnmt3 was significantly higher in embryos at 1 dpf compared to those at 3 dpf. Dnmt6 showed more of a constitutive pattern of expression during the first 2 weeks of development, and the mRNA levels of dnmt8 were higher in embryos at 5 and 6 dpf compared to those at 1 and 3 dpf, corresponding to the hatching period of the embryos. A waterborne exposure to three concentrations of DEHP (1, 10 and 100 µg/L) was conducted on 1-day FHM embryos for 24 h and on larval fish for 2 weeks, ending at 14 dpf. DEHP did not negatively affect survival, hatch rate, or the expression of dnmt isoforms in FHMs. There were no differences in global cytosine methylation following DEHP treatments in 14 dpf larvae, suggesting that environmentally relevant levels of DEHP may not affect global methylation at this stage of FHM development. However, additional targeted methylome studies are required to determine whether specific gene promoters are differently methylated following exposure to DEHP. This study offers new insight into the roles of the dnmt enzymes during FHM development.
Collapse
Affiliation(s)
- Richard K Wood
- Department of Biology, Canadian Rivers Institute, University of New Brunswick, Saint John, NB, E2L 4L5, Canada
| | - Emma Crowley
- Department of Biology, Canadian Rivers Institute, University of New Brunswick, Saint John, NB, E2L 4L5, Canada
| | - Christopher J Martyniuk
- Department of Biology, Canadian Rivers Institute, University of New Brunswick, Saint John, NB, E2L 4L5, Canada.
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
25
|
Sweeney MF, Hasan N, Soto AM, Sonnenschein C. Environmental endocrine disruptors: Effects on the human male reproductive system. Rev Endocr Metab Disord 2015; 16:341-57. [PMID: 26847433 PMCID: PMC4803593 DOI: 10.1007/s11154-016-9337-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Incidences of altered development and neoplasia of male reproductive organs have increased during the last 50 years, as shown by epidemiological data. These data are associated with the increased presence of environmental chemicals, specifically "endocrine disruptors," that interfere with normal hormonal action. Much research has gone into testing the effects of specific endocrine disrupting chemicals (EDCs) on the development of male reproductive organs and endocrine-related cancers in both in vitro and in vivo models. Efforts have been made to bridge the accruing laboratory findings with the epidemiological data to draw conclusions regarding the relationship between EDCs, altered development and carcinogenesis. The ability of EDCs to predispose target fetal and adult tissues to neoplastic transformation is best explained under the framework of the tissue organization field theory of carcinogenesis (TOFT), which posits that carcinogenesis is development gone awry. Here, we focus on the available evidence, from both empirical and epidemiological studies, regarding the effects of EDCs on male reproductive development and carcinogenesis of endocrine target tissues. We also critique current research methodology utilized in the investigation of EDCs effects and outline what could possibly be done to address these obstacles moving forward.
Collapse
Affiliation(s)
- M F Sweeney
- Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - N Hasan
- Program in Cell, Molecular & Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - A M Soto
- Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
- Program in Cell, Molecular & Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
- Department of Integrative Physiology & Pathobiology, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA
| | - C Sonnenschein
- Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA.
- Program in Cell, Molecular & Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA.
- Department of Integrative Physiology & Pathobiology, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA.
| |
Collapse
|
26
|
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015; 36:E1-E150. [PMID: 26544531 PMCID: PMC4702494 DOI: 10.1210/er.2015-1010] [Citation(s) in RCA: 1318] [Impact Index Per Article: 146.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
Abstract
The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
Collapse
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - V A Chappell
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - S E Fenton
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J A Flaws
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - A Nadal
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - G S Prins
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J Toppari
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - R T Zoeller
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
27
|
Quinnies KM, Doyle TJ, Kim KH, Rissman EF. Transgenerational Effects of Di-(2-Ethylhexyl) Phthalate (DEHP) on Stress Hormones and Behavior. Endocrinology 2015; 156:3077-83. [PMID: 26168342 PMCID: PMC4541619 DOI: 10.1210/en.2015-1326] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exposure to di-(2-ethylhexyl) phthalate (DEHP) has been linked to male reproductive abnormalities. Here, we assessed transgenerational actions of DEHP on several behaviors and stress responses. We used 2 doses of DEHP (150- and 200-mg/kg body weight) and a treatment regimen previously shown to produce transgenerational effects on male reproduction. Mice, 3 generations removed from DEHP exposure (F3), were tested for social behavior and anxiety on the elevated plus maze. We collected blood and pituitaries from undisturbed and restrained mice. Body weights, anogenital distances, and reproductive organ weights were collected at killing. In social interaction tests juvenile males from the DEHP lineage (200 mg/kg) displayed more digging and less self-grooming than did controls. Interestingly, 150-mg/kg lineage males, killed in early puberty, had smaller seminal vesicle weights than their controls. However, the 200-mg/kg males (killed on average 10 d later) did not show this effect. Females from a DEHP lineage had lower corticosterone concentrations than controls after restraint stress. We also found sex- and DEHP-specific mRNA expression changes in the pituitary in 2 of the 6 stress-related genes we measured. In particular, Gnas mRNA was elevated by the combination of DEHP lineage and stress. Thus, transgenerational effects of DEHP are noted in male behavior, and in females, DEHP had transgenerational effects on levels of corticosterone. Both of these results may be related to transgenerational modifications in the expression of several pituitary hormones involved in the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Kayla M Quinnies
- Neuroscience Graduate Program and Department of Biochemistry and Molecular Genetics (K.M.Q., E.F.R.), University of Virginia School of Medicine, Charlottesville, Virginia 22903; and School of Molecular Biosciences (T.J.D., K.H.K.), College of Veterinary Medicine, Washington State University, Pullman, Washington 99164
| | - Timothy J Doyle
- Neuroscience Graduate Program and Department of Biochemistry and Molecular Genetics (K.M.Q., E.F.R.), University of Virginia School of Medicine, Charlottesville, Virginia 22903; and School of Molecular Biosciences (T.J.D., K.H.K.), College of Veterinary Medicine, Washington State University, Pullman, Washington 99164
| | - Kwan Hee Kim
- Neuroscience Graduate Program and Department of Biochemistry and Molecular Genetics (K.M.Q., E.F.R.), University of Virginia School of Medicine, Charlottesville, Virginia 22903; and School of Molecular Biosciences (T.J.D., K.H.K.), College of Veterinary Medicine, Washington State University, Pullman, Washington 99164
| | - Emilie F Rissman
- Neuroscience Graduate Program and Department of Biochemistry and Molecular Genetics (K.M.Q., E.F.R.), University of Virginia School of Medicine, Charlottesville, Virginia 22903; and School of Molecular Biosciences (T.J.D., K.H.K.), College of Veterinary Medicine, Washington State University, Pullman, Washington 99164
| |
Collapse
|
28
|
Jones S, Boisvert A, Francois S, Zhang L, Culty M. In utero exposure to di-(2-ethylhexyl) phthalate induces testicular effects in neonatal rats that are antagonized by genistein cotreatment. Biol Reprod 2015; 93:92. [PMID: 26316063 DOI: 10.1095/biolreprod.115.129098] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022] Open
Abstract
Fetal exposure to endocrine disruptors (EDs) is believed to predispose males to reproductive abnormalities. Although males are exposed to combinations of chemicals, few studies have evaluated the effects of ED mixtures at environmentally relevant doses. Our previous work showed that fetal exposure to a mixture of the phytoestrogen genistein (GEN) and the plasticizer di-(2-ethylhexyl) phthalate (DEHP) induced unique alterations in adult testis. In this follow-up study, we examined Postnatal Day 3 (PND3) and PND6 male offspring exposed from Gestational Day 14 to parturition to corn oil, 10mg/kg GEN, DEHP, or their combination, to gain insight into the early molecular events driving long-term alterations. DEHP stimulated the mRNA and protein expression of the steroidogenic enzyme HSD3B, uniquely at PND3. DEHP also increased the mRNA expression of Nestin, a Leydig progenitor/Sertoli cell marker, and markers of Sertoli cell (Wt1), gonocyte (Plzf, Foxo1), and proliferation (Pcna) at PND3, while these genes were unchanged by the mixture. Redox (Nqo1, Sod2, Sod3, Trx, Gst, Cat) and xenobiotic transporter (Abcb1b, Abcg2) gene expression was also increased by DEHP at PND3, while attenuated when combined with GEN, suggesting the involvement of cellular stress in short-term DEHP effects and a protective effect of GEN. The direct effects of GEN and mono-(2-ethylhexyl) phthalate, the principal bioactive metabolite of DEHP, on testis were investigated in PND3 organ cultures, showing a stimulatory effect of 10 μM mono-(2-ethylhexyl) phthalate on basal testosterone production that was normalized by GEN. These effects contrasted with previous reports of androgen suppression and decreased gene expression in perinatal rat testis by high DEHP doses, implying that neonatal effects are not predictive of adult effects. We propose that GEN, through an antioxidant action, normalizes reactive oxygen species-induced neonatal effects of DEHP. The notion that these EDs do not follow classical dose-response effects and involve different mechanisms of toxicity from perinatal ages to adulthood highlights the importance of assessing impacts across a range of doses and ages.
Collapse
Affiliation(s)
- Steven Jones
- Division of Experimental Medicine, The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Annie Boisvert
- Department of Medicine, The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Sade Francois
- Department of Pharmacology & Therapeutics, The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Liandong Zhang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Martine Culty
- Division of Experimental Medicine, The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada Department of Medicine, The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada Department of Pharmacology & Therapeutics, The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Parent AS, Franssen D, Fudvoye J, Gérard A, Bourguignon JP. Developmental variations in environmental influences including endocrine disruptors on pubertal timing and neuroendocrine control: Revision of human observations and mechanistic insight from rodents. Front Neuroendocrinol 2015; 38:12-36. [PMID: 25592640 DOI: 10.1016/j.yfrne.2014.12.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 12/13/2014] [Accepted: 12/15/2014] [Indexed: 12/21/2022]
Abstract
Puberty presents remarkable individual differences in timing reaching over 5 years in humans. We put emphasis on the two edges of the age distribution of pubertal signs in humans and point to an extended distribution towards earliness for initial pubertal stages and towards lateness for final pubertal stages. Such distortion of distribution is a recent phenomenon. This suggests changing environmental influences including the possible role of nutrition, stress and endocrine disruptors. Our ability to assess neuroendocrine effects and mechanisms is very limited in humans. Using the rodent as a model, we examine the impact of environmental factors on the individual variations in pubertal timing and the possible underlying mechanisms. The capacity of environmental factors to shape functioning of the neuroendocrine system is thought to be maximal during fetal and early postnatal life and possibly less important when approaching the time of onset of puberty.
Collapse
Affiliation(s)
- Anne-Simone Parent
- Developmental Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Sart-Tilman, B-4000 Liège, Belgium; Department of Pediatrics, CHU de Liège, Rue de Gaillarmont 600, B-4032 Chênée, Belgium
| | - Delphine Franssen
- Developmental Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Sart-Tilman, B-4000 Liège, Belgium
| | - Julie Fudvoye
- Developmental Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Sart-Tilman, B-4000 Liège, Belgium; Department of Pediatrics, CHU de Liège, Rue de Gaillarmont 600, B-4032 Chênée, Belgium
| | - Arlette Gérard
- Developmental Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Sart-Tilman, B-4000 Liège, Belgium; Department of Pediatrics, CHU de Liège, Rue de Gaillarmont 600, B-4032 Chênée, Belgium
| | - Jean-Pierre Bourguignon
- Developmental Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Sart-Tilman, B-4000 Liège, Belgium; Department of Pediatrics, CHU de Liège, Rue de Gaillarmont 600, B-4032 Chênée, Belgium.
| |
Collapse
|
30
|
Chen J, Wu S, Wen S, Shen L, Peng J, Yan C, Cao X, Zhou Y, Long C, Lin T, He D, Hua Y, Wei G. The Mechanism of Environmental Endocrine Disruptors (DEHP) Induces Epigenetic Transgenerational Inheritance of Cryptorchidism. PLoS One 2015; 10:e0126403. [PMID: 26035430 PMCID: PMC4452760 DOI: 10.1371/journal.pone.0126403] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/01/2015] [Indexed: 11/19/2022] Open
Abstract
Discussion on the role of DEHP in the critical period of gonadal development in pregnant rats (F0), studied the evolution of F1-F4 generation of inter-generational inheritance of cryptorchidism and the alteration of DNA methylation levels in testis. Pregnant SD rats were randomly divided into two groups: normal control group and DEHP experimental group. From pregnancy 7d to 19d, experimental group was sustained to gavage DEHP 750mg/kg bw/day, observed the incidence of cryptorchidism in offspring and examined the pregnancy rate of female rats through mating experiments. Continuous recording the rat’s weight and AGD value, after maturation (PND80) recording testis and epididymis’ size and weight, detected the sperm number and quality. Subsequently, we examined the evolution morphological changes of testicular tissue for 4 generation rats by HE staining and Western Blot. Completed the MeDIP-sequencing analysis of 6 samples (F1 generation, F4 generation and Control). DEHP successfully induced cryptorchidism occurrence in offspring during pregnancy. The incidence of cryptorchidism in F1 was 30%, in F2 was 12.5%, and there was no cryptorchidism coming up in F3 and F4. Mating experiment shows conception rate 50% in F1, F2 generation was 75%, the F3 and F4 generation were 100%. HE staining showed that the seminiferous epithelium of F1 generation was atrophy and with a few spermatogenic cell, F2 generation had improved, F3 and F4 generation were tend to be normal. The DNA methyltransferase expression was up-regulated with the increase of generations by Real Time-PCR, immunohistochemistry and Western Blot. MeDIP-seq Data Analysis Results show many differentially methylated DNA sequences between F1 and F4. DEHP damage male reproductive function in rats, affect expression of DNA methyltransferase enzyme, which in turn leads to genomic imprinting methylation pattern changes and passed on to the next generation, so that the offspring of male reproductive system critical role in the development of imprinted genes imbalances, and eventually lead to producing offspring cryptorchidism. This may be an important mechanism of reproductive system damage.
Collapse
Affiliation(s)
- Jinjun Chen
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Shengde Wu
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Sheng Wen
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Lianju Shen
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Jinpu Peng
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Chao Yan
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Xining Cao
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Yue Zhou
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Chunlan Long
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Tao Lin
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Dawei He
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Yi Hua
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- * E-mail: (YH); (GHW)
| | - Guanghui Wei
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- * E-mail: (YH); (GHW)
| |
Collapse
|
31
|
Sekaran S, Jagadeesan A. In Utero Exposure to Phthalate Downregulates Critical Genes in Leydig Cells of F1Male Progeny. J Cell Biochem 2015; 116:1466-77. [DOI: 10.1002/jcb.25108] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 01/23/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Suganya Sekaran
- Department of Endocrinology; Dr. ALM Post-Graduate Institute of Basic Medical Sciences; University of Madras; Chennai 600113 India
| | - Arunakaran Jagadeesan
- Department of Endocrinology; Dr. ALM Post-Graduate Institute of Basic Medical Sciences; University of Madras; Chennai 600113 India
| |
Collapse
|
32
|
Rajesh P, Balasubramanian K. Phthalate exposure in utero causes epigenetic changes and impairs insulin signalling. J Endocrinol 2014; 223:47-66. [PMID: 25232145 DOI: 10.1530/joe-14-0111] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Di-(2-ethylhexyl)phthalate (DEHP) is an endocrine-disrupting chemical (EDC), widely used as a plasticiser. Developmental exposure to EDCs could alter epigenetic programming and result in adult-onset disease. We investigated whether DEHP exposure during development affects glucose homoeostasis in the F1 offspring as a result of impaired insulin signal transduction in gastrocnemius muscle. Pregnant Wistar rats were administered DEHP (0, 1, 10 and 100 mg/kg per day) from embryonic days 9-21 orally. DEHP-exposed offspring exhibited elevated blood glucose, impaired serum insulin, glucose tolerance and insulin tolerance, along with reduced insulin receptor, glucose uptake and oxidation in the muscle at postnatal day 60. The levels of insulin signalling molecules and their phosphorylation were down-regulated in DEHP-exposed offspring. However, phosphorylated IRS1(Ser636/639), which impedes binding of downstream effectors and the negative regulator (PTEN) of PIP3, was increased in DEHP-exposed groups. Down-regulation of glucose transporter 4 (Glut4 (Slc2a4)) gene expression and increased GLUT4(Ser488) phosphorylation, which decreases its intrinsic activity and translocation towards the plasma membrane, were recorded. Chromatin immunoprecipitation assays detected decreased MYOD binding and increased histone deacetylase 2 interaction towards Glut4, indicative of the tight chromatin structure at the Glut4 promoter. Increased DNMTs and global DNA methylation levels were also observed. Furthermore, methylation of Glut4 at the MYOD-binding site was increased in DEHP-exposed groups. These findings indicate that, gestational DEHP exposure predisposes F1 offspring to glucometabolic dysfunction at adulthood by down-regulating the expression of critical genes involved in the insulin signalling pathway. Furthermore, DEHP-induced epigenetic alterations in Glut4 appear to play a significant role in disposition towards this metabolic abnormality.
Collapse
Affiliation(s)
- Parsanathan Rajesh
- Department of EndocrinologyDr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600 113, India
| | - Karundevi Balasubramanian
- Department of EndocrinologyDr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600 113, India
| |
Collapse
|
33
|
Jones S, Boisvert A, Duong TB, Francois S, Thrane P, Culty M. Disruption of Rat Testis Development Following Combined In Utero Exposure to the Phytoestrogen Genistein and Antiandrogenic Plasticizer Di-(2-Ethylhexyl) Phthalate1. Biol Reprod 2014; 91:64. [DOI: 10.1095/biolreprod.114.120907] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
34
|
Kay VR, Bloom MS, Foster WG. Reproductive and developmental effects of phthalate diesters in males. Crit Rev Toxicol 2014; 44:467-98. [DOI: 10.3109/10408444.2013.875983] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
35
|
Hala D, Huggett DB, Burggren WW. Environmental stressors and the epigenome. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 12:e3-e8. [PMID: 25027372 DOI: 10.1016/j.ddtec.2012.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Epigenetic modification and transgenerational transfer of phenotype at the individual or population level, particularly in response to environmental change, is at the forefront of biological investigation. The plasticity of this process allows an organism to respond to changes in environmental conditions, potentially conferring a survival advantage. In this review, we discuss epigenetic transgenerational phenomena in the specific context of environmental stressors including hypoxia and environmental toxicants.:
Collapse
Affiliation(s)
- D Hala
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA.
| | - D B Huggett
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
| | - W W Burggren
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
| |
Collapse
|
36
|
|
37
|
Martinez-Arguelles DB, Campioli E, Culty M, Zirkin BR, Papadopoulos V. Fetal origin of endocrine dysfunction in the adult: the phthalate model. J Steroid Biochem Mol Biol 2013; 137:5-17. [PMID: 23333934 DOI: 10.1016/j.jsbmb.2013.01.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/27/2012] [Accepted: 01/07/2013] [Indexed: 11/16/2022]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a plasticizer with endocrine disrupting properties that is found ubiquitously in the environment as well as in human amniotic fluid, umbilical cord blood, human milk, semen, and saliva. It is used in the industry to add flexibility to polyvinyl chloride-derived plastics and its wide spread use and presence has resulted in constant human exposure through fetal development and postnatal life. Epidemiological studies have suggested an association between phthalate exposures and human reproductive effects in infant and adult populations. The effects of fetal exposure to phthalates on the male reproductive system were unequivocally shown on animal models, principally rodents, in which short term deleterious reproductive effects are well established. By contrast, information on the long term effects of DEHP in utero exposure on gonadal function are scarce, while its potential effects on other organs are just starting to emerge. The present review focuses on these novel findings, which suggest that DEHP exerts more complex and broader disruptive effects on the endocrine system and metabolism than previously thought. This article is part of a Special Issue entitled "CSR 2013".
Collapse
Affiliation(s)
- D B Martinez-Arguelles
- The Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
38
|
Doyle TJ, Bowman JL, Windell VL, McLean DJ, Kim KH. Transgenerational effects of di-(2-ethylhexyl) phthalate on testicular germ cell associations and spermatogonial stem cells in mice. Biol Reprod 2013; 88:112. [PMID: 23536373 DOI: 10.1095/biolreprod.112.106104] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent evidence has linked human phthalate exposure to abnormal reproductive and hormonal effects. Phthalates are plasticizers that confer flexibility and transparency to plastics, but they readily contaminate the body and the environment. In this study, timed pregnant CD1 outbred mice were treated with di-(2-ethylhexyl) phthalate (DEHP) from Embryonic Day 7 (E7) to E14. The subsequent generation (F1) offspring were then bred to produce the F2, F3, and F4 offspring, without any further DEHP treatment. This exposure scheme disrupted testicular germ cell association and decreased sperm count and motility in F1 to F4 offspring. By spermatogonial transplantation techniques, the exposure scheme also disrupted spermatogonial stem cell (SSC) function of F3 offspring. The W/W(V) recipient testes transplanted with F3 offspring germ cells from the DEHP-treated group had a dramatically lower percentage of donor germ cell-derived spermatogenic recovery in seminiferous tubules when compared to the recipient testes transplanted with CD1 control germ cells. Further characterization showed that the major block of donor germ cell-derived spermatogenesis was before the appearance of undifferentiated spermatogonia. Interestingly, the testes transplanted with the F3 offspring germ cells from the DEHP-treated group, when regenerated, replicated testis morphology similar to that observed in the testes from the F1 to F3 offspring of the DEHP-treated group, suggesting that the germ cell disorganization phenotype originates from the stem cells of F3 offspring. In conclusion, embryonic exposure to DEHP was found to disrupt testicular germ cell organization and SSC function in a transgenerational manner.
Collapse
Affiliation(s)
- Timothy J Doyle
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | |
Collapse
|
39
|
Choudhry S, Deshpande A, Qiao L, Beckman K, Sen S, Baskin LS. Genome-wide DNA methylation profiling of CpG islands in hypospadias. J Urol 2012; 188:1450-5. [PMID: 22906644 PMCID: PMC3725975 DOI: 10.1016/j.juro.2012.03.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Indexed: 10/28/2022]
Abstract
PURPOSE Hypospadias is one of the most frequent genital malformations in the male newborn, and results from abnormal penile and urethral development. The etiology of hypospadias remains largely unknown despite intensive investigations. Fetal androgens have a crucial role in genital differentiation. Recent studies have suggested that molecular mechanisms that underlie the effects of androgens on the fetus may involve disruption of epigenetic programming of gene expression during development. We assessed whether epigenetic modification of DNA methylation is associated with hypospadias in a case-control study of 12 hypospadias and 8 control subjects. MATERIALS AND METHODS Genome-wide DNA methylation profiling was performed on the study subjects using the Illumina Infinium® HumanMethylation450 BeadChip, which enables the direct investigation of methylation status of more than 485,000 individual CpG sites throughout the genome. The methylation level at each CpG site was compared between cases and controls using the t test and logistic regression. RESULTS We identified 14 CpG sites that were associated with hypospadias with p <0.00001. These CpG sites were in or near the SCARB1, MYBPH, SORBS1, LAMA4, HOXD11, MYO1D, EGFL7, C10orf41, LMAN1L and SULF1 genes. Two CpG sites in SCARB1 and MYBPH genes remained statistically significant after correction for multiple testing (p = 2.61 × 10(-09), p(corrected) = 0.008; p = 3.06 × 10(-08), p(corrected) = 0.02, respectively). CONCLUSIONS To our knowledge this is the first study to investigate hypospadias using a unique and novel epigenetic approach. Our findings suggest DNA methylation patterns are useful in identifying new genes such as SCARB1 and MYBPH that may be involved in the etiology of hypospadias.
Collapse
Affiliation(s)
- Shweta Choudhry
- Department of Urology, University of California, San Francisco, California 94158, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Sun Y, Guo Z, Iku S, Saito T, Kurasaki M. Diethyl phthalate enhances expression of SIRT1 and DNMT3a during apoptosis in PC12 cells. J Appl Toxicol 2012; 33:1484-92. [DOI: 10.1002/jat.2816] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/02/2012] [Accepted: 08/02/2012] [Indexed: 12/21/2022]
Affiliation(s)
- Yongkun Sun
- Environmental Adaptation Science, Division of Environmental Science Development, Graduate School of Environmental Science; Hokkaido University; 060-0810 Sapporo Japan
| | - Zhikun Guo
- Key Laboratory for Medical Tissue Regeneration of Henan Province; Xinxiang Medical University, Department of Basic Medicine Xinxiang Medical University; 453003 Xinxiang China
| | - Shouhei Iku
- Key Laboratory for Medical Tissue Regeneration of Henan Province; Xinxiang Medical University, Department of Basic Medicine Xinxiang Medical University; 453003 Xinxiang China
- Beijing Academy of Science and Technology; 100089 Beijing China
- Jiangsu Alphay Biological Technology Co., Ltd; 226009 Nantong China
| | - Takeshi Saito
- Division of Health Sciences, Faculty of Health Sciences; Hokkaido University; 060-0812 Sapporo Japan
| | - Masaaki Kurasaki
- Environmental Adaptation Science, Division of Environmental Science Development, Graduate School of Environmental Science; Hokkaido University; 060-0810 Sapporo Japan
- Group of Environmental Adaptation Science, Faculty of Environmental Earth Science; Hokkaido University; 060-0810 Sapporo Japan
| |
Collapse
|
41
|
Sun Y, Takahashi K, Hosokawa T, Saito T, Kurasaki M. Diethyl phthalate enhances apoptosis induced by serum deprivation in PC12 cells. Basic Clin Pharmacol Toxicol 2012; 111:113-9. [PMID: 22348465 DOI: 10.1111/j.1742-7843.2012.00869.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 01/30/2012] [Indexed: 11/30/2022]
Abstract
In this study, to examine the mechanism of diethyl phthalate toxicity to cells, the effects of diethyl phthalate on apoptosis in a PC12 cell system were investigated by assaying apoptotic factors such as caspase-3, Bax, cytochrome c and DNA damage. Diethyl phthalate was shown to enhance the apoptosis induced by serum deprivation according to the results of DNA electrophoresis and TUNEL signal assays, although it could not induce apoptosis itself in the cells. This enhancement was thought to be because of an increase in caspase-3-like activity. In addition, the expression of bax and contents of cytochrome c in the cytosol showed a tendency to increase the cells exposed to diethyl phthalate. These results indicated that diethyl phthalate, a potential endocrine disrupter, affects the apoptotic system in PC12 cells. Diethyl phthalate may enhance oxidative stress such as that induced by reactive oxygen species in PC12 cells.
Collapse
Affiliation(s)
- Yongkun Sun
- Division of Environmental Science Development, Environmental Adaptation Science, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
42
|
Vandegehuchte MB, Janssen CR. Epigenetics and its implications for ecotoxicology. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:607-624. [PMID: 21424724 DOI: 10.1007/s10646-011-0634-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/05/2011] [Indexed: 05/30/2023]
Abstract
Epigenetics is the study of mitotically or meiotically heritable changes in gene function that occur without a change in the DNA sequence. Interestingly, epigenetic changes can be triggered by environmental factors. Environmental exposure to e.g. metals, persistent organic pollutants or endocrine disrupting chemicals has been shown to modulate epigenetic marks, not only in mammalian cells or rodents, but also in environmentally relevant species such as fish or water fleas. The associated changes in gene expression often lead to modifications in the affected organism's phenotype. Epigenetic changes can in some cases be transferred to subsequent generations, even when these generations are no longer exposed to the external factor which induced the epigenetic change, as observed in a study with fungicide exposed rats. The possibility of this phenomenon in other species was demonstrated in water fleas exposed to the epigenetic drug 5-azacytidine. This way, populations can experience the effects of their ancestors' exposure to chemicals, which has implications for environmental risk assessment. More basic research is needed to assess the potential phenotypic and population-level effects of epigenetic modifications in different species and to evaluate the persistence of chemical exposure-induced epigenetic effects in multiple subsequent generations.
Collapse
Affiliation(s)
- Michiel B Vandegehuchte
- Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University (UGent), Jozef Plateaustraat 22, 9000 Ghent, Belgium.
| | | |
Collapse
|