1
|
Hussain A, Azam S, Maqsood R, Anwar R, Akash MSH, Hussain H, Wang D, Imran M, Kotwica-Mojzych K, Khan S, Hussain S, Ayub MA. Chemistry, biosynthesis, and theranostics of antioxidant flavonoids and polyphenolics of genus Rhododendron: an overview. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03428-6. [PMID: 39276249 DOI: 10.1007/s00210-024-03428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024]
Abstract
The genus Rhododendron is an ancient and most widely distributed genus of the family Ericaceae consisting of evergreen plant species that have been utilized as traditional medicine since a very long time for the treatment of various ailments including pain, asthma, inflammation, cold, and acute bronchitis. The chemistry of polyphenolics isolated from a number of species of the genus Rhododendron has been investigated. During the currently designed study, an in-depth study on the phytochemistry, natural distribution, biosynthesis, and pharmacological properties including their potential capability as free radical scavengers has been conducted. This work provides structural characteristics of phenolic compounds isolated from the species of Rhododendron with remarkable antioxidant potential. In addition, biosynthesis and theranostic study have also been encompassed with the aims to furnish a wide platform of valuable information for designing of new drug entities. The detailed information including names, structural features, origins, classification, biosynthetic pathways, theranostics, and pharmacological effects of about 171 phenolics and flavonoids isolated from the 36 plant species of the genus Rhododendron with the antioxidant potential has been covered in this manuscript. This study demonstrated that species of Rhododendron genus have excellent antioxidant activities and great potential as a source for natural health products. This comprehensive review might serve as a foundation for more investigation into the Rhododendron genus.
Collapse
Affiliation(s)
- Amjad Hussain
- Institute of Chemistry, University of Okara, Okara, 56300, Pakistan.
| | - Sajjad Azam
- Institute of Chemistry, University of Okara, Okara, 56300, Pakistan
| | - Rabia Maqsood
- Institute of Chemistry, University of Okara, Okara, 56300, Pakistan
| | - Riaz Anwar
- Institute of Chemistry, University of Okara, Okara, 56300, Pakistan
| | | | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany
| | - Daijie Wang
- School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Katarzyna Kotwica-Mojzych
- Chair of Fundamental Sciences, Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwillowska 11, 20-080, Lublin, Poland
| | - Shoaib Khan
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Havelian, Abbottabad, Pakistan
| | - Shabbir Hussain
- Department of Chemistry, Karakoram International University (KIU), Gilgit, Gilgit-Baltistan, 15100, Pakistan
| | | |
Collapse
|
2
|
Janson WP, Breyfogle LE, Bierman JC, Chew ZY, Ehrman MC, Oblong JE. Mitigation of ultraviolet-induced erythema and inflammation by para-hydroxycinnamic acid in human skin. Int J Cosmet Sci 2024. [PMID: 39138602 DOI: 10.1111/ics.13002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVE To evaluate whether p-hydroxycinnamic acid (pHCA) alone and in combination with niacinamide (Nam) can mitigate UV-induced erythema, barrier disruption, and inflammation. METHODS Three independent placebo-controlled double-blinded studies were conducted on female panellists who were pretreated on sites on their backs for 2 weeks with skin care formulations which contained 0.3% or 1% pHCA with 5% Nam, 1% pHCA alone, 1.8% octinoxate, or control formula. Treated sites were then exposed to 1.5 minimal erythemal dose (MED) solar simulated radiation (SSR) and had chromameter and expert grading measures for erythema, barrier integrity via TEWL, and the skin surface IL-1RA/IL-1α inflammatory biomarkers isolated from D-Squame tapes. RESULTS Across the three independent studies, pHCA alone or in combination with Nam showed a significant mitigation of UV-induced erythema, barrier disruption, and levels of the surface inflammatory biomarkers IL-1RA/IL-1α. The cinnamate analogue Octinoxate did not replicate the effects of pHCA. CONCLUSION The study results show that pHCA alone or in combination with Nam can mitigate UV-induced damage to skin. These include mitigation of UV-induced erythema as measured by instrument and expert grade visualization. Additionally, pHCA with Nam protected damage to the barrier and reduced the induction of the SASP-related surface inflammatory biomarker IL-1RA/IL-1α. The inability of Octinoxate to have any protective effect and the detection of low levels of pHCA on skin surface after 24 h of application supports that these effects are based on a biological response to pHCA. These findings add to the body of evidence that pHCA alone or in combination with Nam can enhance the skin's biological response to UV-induced damage. This supports pHCA can potentially impact aging and senescence, thereby maintain skin's functionality and appearance.
Collapse
Affiliation(s)
| | | | | | - Zhi Yan Chew
- The Procter & Gamble Company, Cincinnati, Ohio, USA
| | - Matthew C Ehrman
- Procter & Gamble International Operations (SA) Singapore Branch, Singapore, Singapore
| | | |
Collapse
|
3
|
Ishtiaq S, Rehman S, Kamran SH, Akhtar ZM, Albaik M, Elhady SS. Metabolic profiling of Verbena bonariensis L. extract by LC/MS and evaluation of the hepatoprotective potential with isoniazid- and rifampicin-induced hepatotoxicity in rats. Arch Pharm (Weinheim) 2024; 357:e2400055. [PMID: 38607964 DOI: 10.1002/ardp.202400055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
The study explored the hepatoprotective activity and metabolic profile of Verbena bonariensis L. methanol extract (VBM) and fractions using isoniazid as well as rifampicin-triggered liver toxicity in Wistar albino rats. Metabolite profiling of VBM using HPLC-PDA-ESI-MS identified 12 compounds, mainly iridoids, phenylpropanoids, and flavonoids, where verbascoside represents the major compound. Different biochemical parameters such as aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP), bilirubin, and total protein levels were used to assess liver functions. All the evaluated samples exhibited hepatoprotective potential, but VBM exhibited maximum activity and a notable decline in ALP (p < 0.05, significant), even better than the standard drug (silymarin). VBM significantly reduced the elevated ALT, AST, ALP, and total bilirubin. It also triggered a significant elevation in total proteins compared with diseased animals. This was further consolidated by histopathological studies. Verbena bonariensis L. could serve as a potent hepatoprotective agent and may alleviate liver ailments.
Collapse
Affiliation(s)
- Saiqa Ishtiaq
- Department of Pharmacognosy, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
- Emory College of Arts and Science, Center for the Study of Human Health, Emory University, Atlanta, Georgia, USA
| | - Saira Rehman
- Department of Pharmacognosy, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
- Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Punjab, Pakistan
| | - Sairah Hafeez Kamran
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Zahid Mehmood Akhtar
- Department of Pathology, Gujranwala Medical College, Gujranwala, Punjab, Pakistan
| | - Mai Albaik
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Sameh S Elhady
- King Abdulaziz University Herbarium, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Sokolova DA, Halych TV, Zhuk VV, Kravets AP. Involvement of UV-C-induced genomic instability in stimulation рlant long-term protective reactions. JOURNAL OF PLANT PHYSIOLOGY 2024; 293:154171. [PMID: 38219284 DOI: 10.1016/j.jplph.2024.154171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
The study of the mechanisms affecting single stress factor impact on long-term metabolic rearrangements is necessary for understanding the principles of plant protective reactions. The objective of the study was to assess the involvement of UV-C-induced genomic instability in induction рlant long-term protective reactions. The study was carried out on two genotypes of chamomile, Perlyna Lisostepu (PL) variety and its mutant, using UV-C pre-sowing seed radiation exposure at dose levels 5-15 kJ/m2. Multiple DNA damages under different exposure doses were studied on plant tissues during the flowering stage using - ISSR-RAPD DNA marker PCR. In the cluster analysis of changes within the amplicon spectra as an integral group the Jacquard similarity index was used. The results of the study suggest that genomic instability is a link between the direct effects of UV-C exposure and stimulation of metabolic rearrangements at the final stages of ontogeny. A hypothetical scheme for the transformation of primary UV-C DNA damage into long-term maintenance of genomic instability signs has been proposed.
Collapse
Affiliation(s)
- Daryna A Sokolova
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Academika Zabolotnoho St., 03143, Kyiv, Ukraine.
| | - Taras V Halych
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Academika Zabolotnoho St., 03143, Kyiv, Ukraine
| | - Vladyslav V Zhuk
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Academika Zabolotnoho St., 03143, Kyiv, Ukraine
| | - Alexandra P Kravets
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Academika Zabolotnoho St., 03143, Kyiv, Ukraine
| |
Collapse
|
5
|
Rath D, Kar B, Pattnaik G, Bhukta P. Synergistic Effect of Naringin and Glimepiride in Streptozotocin-induced Diabetic Rats. Curr Diabetes Rev 2024; 20:e170823219938. [PMID: 37592777 DOI: 10.2174/1573399820666230817154835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVE Evaluation of the synergistic effect of Naringin and Glimepiride in streptozotocin (STZ)-induced diabetic rats. METHODS Wistar rats were chosen and divided into five groups (n=6). STZ was used for the induction of diabetes. The combination of naringin and glimepiride was administered to diabetic rats. The changes in fasting blood sugar, body weight, Hb, HbA1c, and creatinine were evaluated, and urine was collected and the volume was observed. The lipid profiles like TC, HDL, LDL, and TG were measured. The biochemical parameters SGOT, SGPT, and ALP were analysed. Besides, endogenous antioxidant parameters like SOD, GSH, and catalase were also assessed. Lastly, the histopathological study of the beta cells in islets of the pancreas, glomerulus, and tubules of kidney and liver cells was conducted in all groups. RESULTS The result shows significant reduction (p<0.001) of blood sugar in the naringin and glimepiride-treated group when compared with the control group (diabetes). Additionally, the combination of Naringin (100 mg/kg) and Glimepiride (0.1 mg/kg) significantly restores the creatinine levels and urine volumes, SGOT, SGPT, and ALP when compared to a single dose of administration. Further, the abnormal lipid profile levels (TC, LDL, TG, and HDL), and endogenous antioxidant enzymes (SOD, GSH, catalase) in diabetic control rats were restored to normal levels in a significant manner. The histopathological result reveals significant alterations, including hypertrophy of islets and mild degeneration, renal necrosis, and inflammation of hepatocytes. CONCLUSION A synergistic effect of Naringin and glimepiride was observed during the estimation of various biochemical parameters like body weight, fasting blood sugar, creatinine, urine level, TG, total cholesterol, SGOT, SGPT, ALP, Insulin, HbA1c, antioxidant parameters like SOD, GSH, and catalase in STZ-induced diabetic rats. Further, the combination of therapy improves the protective effect of the pancreas, kidney, and liver, suggesting a potential antidiabetic effect.
Collapse
Affiliation(s)
- Deepankar Rath
- Department of Pharmacology, School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, 752050, India
| | - Biswakanth Kar
- Department of Pharmacology, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, Odisha, India
| | - Gurudutta Pattnaik
- Department of Pharmaceutics, School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, 752050, India
| | - Pallishree Bhukta
- Department of Pharmacology, School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, 752050, India
| |
Collapse
|
6
|
Hashim M, Badruddeen, Akhtar J, Khan MI, Ahmad M, Islam A, Ahmad A. Diabetic Neuropathy: An Overview of Molecular Pathways and Protective Mechanisms of Phytobioactives. Endocr Metab Immune Disord Drug Targets 2024; 24:758-776. [PMID: 37867264 DOI: 10.2174/0118715303266444231008143430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/31/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
Diabetic neuropathy (DN) is a common and debilitating complication of diabetes mellitus that affects the peripheral nerves and causes pain, numbness, and impaired function. The pathogenesis of DN involves multiple molecular mechanisms, such as oxidative stress, inflammation, and pathways of advanced glycation end products, polyol, hexosamine, and protein kinase C. Phytochemicals are natural compounds derived from plants that have various biological activities and therapeutic potential. Flavonoids, terpenes, alkaloids, stilbenes, and tannins are some of the phytochemicals that have been identified as having protective potential for diabetic neuropathy. These compounds can modulate various cellular pathways involved in the development and progression of neuropathy, including reducing oxidative stress and inflammation and promoting nerve growth and repair. In this review, the current evidence on the effects of phytochemicals on DN by focusing on five major classes, flavonoids, terpenes, alkaloids, stilbenes, and tannins, are summarized. This compilation also discusses the possible molecular targets of numerous pathways of DN that these phytochemicals modulate. These phytochemicals may offer a promising alternative or complementary approach to conventional drugs for DN management by modulating multiple pathological pathways and restoring nerve function.
Collapse
Affiliation(s)
- Mohd Hashim
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Badruddeen
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | | | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Asad Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
7
|
Adam G, Cojocaru FD, Verestiuc L, Cioanca O, Vasilache IA, Adam AM, Mircea C, Nechita A, Harabor V, Huzum B, Harabor A, Hancianu M. Assessing the Antioxidant Properties, In Vitro Cytotoxicity and Antitumoral Effects of Polyphenol-Rich Perilla leaves Extracts. Antioxidants (Basel) 2023; 13:58. [PMID: 38247482 PMCID: PMC10812795 DOI: 10.3390/antiox13010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
(1) Background: This study aimed to outline the antioxidant, antitumoral, and cytotoxic proprieties of various types of Perilla frutescens extracts obtained from the leaves of the species. (2) Methods: We determined total polyphenols, flavonoids and anthocyanins contents, as well as the in vitro antioxidant, antitumoral, and cytotoxic actions in three types of ethanolic extracts (E1, E2, E3) and in three types of acetone: ethanol extracts (A1, A2, A3) of Perilla frutescens according to standardized procedures. (3) Results: We found that Perilla frutescens ethanolic extracts had the highest total phenol and anthocyanins concentrations. The flavonoids concentration was not statistically different between the extracts. The iron chelating capacity, hydroxyl radical scavenging capacity, superoxide anion radical scavenging capacity, and lipoxygenase inhibition capacity showed a significant increase with higher concentrations of Perilla frutescens extracts, particularly the ethanolic extracts. Perillyl alcohol had greater cytotoxic capacity in the MG-63 cell line and E1 extract showed similar significant cytotoxic effects in the A431 cell line. (4) Conclusions: Both ethanolic and acetone-ethanol extracts from Perilla frutescens exhibited important antioxidant and antitumoral actions in vitro, which proportionally increased with concentration. The cytotoxic threshold determined in this study for various types of extracts could help determine the best dosage with the maximum antioxidant and antitumoral potential. Our results could serve as a basis for further studies that will investigate the cytotoxic effects of Perilla frutescens variants on various types of cancer cell lines.
Collapse
Affiliation(s)
- Gigi Adam
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania (C.M.); (M.H.)
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 35 Al. I. Cuza Street, 800216 Galati, Romania; (A.N.); (V.H.); (A.H.)
| | - Florina Daniela Cojocaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700454 Iasi, Romania; (F.D.C.); (L.V.)
| | - Liliana Verestiuc
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700454 Iasi, Romania; (F.D.C.); (L.V.)
| | - Oana Cioanca
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania (C.M.); (M.H.)
| | - Ingrid-Andrada Vasilache
- Department of Obstetrics and Gynecology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ana-Maria Adam
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 35 Al. I. Cuza Street, 800216 Galati, Romania; (A.N.); (V.H.); (A.H.)
| | - Cornelia Mircea
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania (C.M.); (M.H.)
| | - Aurel Nechita
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 35 Al. I. Cuza Street, 800216 Galati, Romania; (A.N.); (V.H.); (A.H.)
| | - Valeriu Harabor
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 35 Al. I. Cuza Street, 800216 Galati, Romania; (A.N.); (V.H.); (A.H.)
| | - Bogdan Huzum
- Department of Orthopaedic and Traumatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - AnaMaria Harabor
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 35 Al. I. Cuza Street, 800216 Galati, Romania; (A.N.); (V.H.); (A.H.)
| | - Monica Hancianu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania (C.M.); (M.H.)
| |
Collapse
|
8
|
Deng C, Li M, Liu Y, Yan C, He Z, Chen ZY, Zhu H. Cholesterol Oxidation Products: Potential Adverse Effect and Prevention of Their Production in Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18645-18659. [PMID: 38011512 DOI: 10.1021/acs.jafc.3c05158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cholesterol oxidation products (COPs) are a group of substances formed during food processing. COPs in diet is a health concern because they may affect human health in association with the risk of various diseases including atherosclerosis, Alzheimer's disease, age-related macular degeneration, diabetes, and chronic gastrointestinal inflammatory colitis. Production of COPs in foods can be affected by many factors such as temperature, pH, light, oxygen, water, carbohydrates, fatty acids, proteins, and metal cations. The key issue is preventing its generation in foods. Some COPs can also be produced in vivo by both nonenzymatic and enzymatic-catalyzed oxidation reactions. Currently, a number of natural antioxidants such as catechins, flavonoids, and other polyphenols have been proven to inhibit the generation of COPs. In addition, measures taken during food processing can also minimize the production of COPs, such as the Maillard reaction and marinating food with plant polyphenol-rich seasonings. In conclusion, a comprehensive approach encompassing the suppression on COPs generation and implementation of processing measures is imperative to safeguard human health against the production of COPs in the food chain.
Collapse
Affiliation(s)
- Chuanling Deng
- School of Food Science and Engineering/Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528000, Guangdong China
| | - Mingxuan Li
- School of Food Science and Engineering/Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528000, Guangdong China
- School of Life Sciences, South China Agricultural University, Guangzhou 510000, Guangdong China
| | - Yang Liu
- School of Food Science and Engineering/Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528000, Guangdong China
| | - Chi Yan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT 999077, Hong Kong China
| | - Zouyan He
- School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT 999077, Hong Kong China
| | - Hanyue Zhu
- School of Food Science and Engineering/Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528000, Guangdong China
| |
Collapse
|
9
|
Velusamy P, Muthusami S, Arumugam R. In vitro evaluation of p-coumaric acid and naringin combination in human epidermoid carcinoma cell line (A431). Med Oncol 2023; 41:4. [PMID: 38019336 DOI: 10.1007/s12032-023-02230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/21/2023] [Indexed: 11/30/2023]
Abstract
Cancer is considered most detrimental due to high mortality worldwide. Among them, skin cancers play a major part by affecting one in three cancer patients globally. About 2-3 million cancer cases were reported to be non-melanoma and melanoma skin cancers, respectively. Although chemotherapeutic drugs act on cancer cells but results in long-lasting morbidities which affects one's quality of life and also works only in the initial stage of the cancer. Hence, an idea of traditional medicine to cure the disease efficiently with less side effects was pursued by the researchers. We have assessed the combination effect of p-coumaric acid and naringin in exerting anticancer activity using A431 (epidermoid carcinoma) cells. The MTT analysis of the combination on A431 cells showed the least IC50 concentration of 41 µg/ml which is effective than the standard drug imiquimod with IC50 concentration of 52 µg/ml. Further, flow cytometric analysis was carried out to identify the molecular mechanism behind the anticancer effects of the combination. The results revealed that the combination arrested the A431 cell cycle at S phase, induced apoptosis as indicated by more early and late apoptotic cells when compared with the control, and further altered reactive oxygen species (ROS) and mitochondrial membrane potential in A431 cells. Hence, the results suggest the potential anticancer effects of p-coumaric acid and naringin combination against the skin cancer (A431) cell line. The observed effects may be additive or synergistic effects in inducing ROS generation and apoptosis, and reducing the viability of A431 cells.
Collapse
Affiliation(s)
- Pradeep Velusamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Deemed to be University, Coimbatore, Tamil Nadu, 32, India
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Deemed to be University, Coimbatore, Tamil Nadu, 32, India
| | - Ramakrishnan Arumugam
- Department of Biochemistry, Karpagam Academy of Higher Education, Deemed to be University, Coimbatore, Tamil Nadu, 32, India.
| |
Collapse
|
10
|
Uçar K, Göktaş Z. Biological activities of naringenin: A narrative review based on in vitro and in vivo studies. Nutr Res 2023; 119:43-55. [PMID: 37738874 DOI: 10.1016/j.nutres.2023.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/24/2023]
Abstract
Naringenin (4',5,7-trihydroxyflavonone) is a phytochemical mainly found in citrus fruits. It is a promising phytochemical for human health because of its beneficial effects. This review aims to present comprehensive information on naringenin biological activities along with its action mechanisms and explain the pharmacokinetic properties of naringenin. This study involves a comprehensive literature review of in vitro and in vivo studies examining the effects of naringenin. Naringenin has antidiabetic, anticancer, antimicrobial, antiobesity, gastroprotective, immunomodulator, cardioprotective, nephroprotective, and neuroprotective properties. These properties are primarily attributed to its antioxidant and anti-inflammatory activities. The most important antioxidant activities of naringenin including free radical scavenging and preventing lipid peroxidation. Naringenin can increase the concentration of antioxidant enzymes and inhibit metal chelation and various pro-oxidant enzymes. Anti-inflammatory activities of naringenin are associated with decreased mitogen-activated protein kinase activities and nuclear factor kappa B by modulating the expression and release of proinflammatory cytokine and enzymes. In vitro and in vivo studies show that naringenin has promising biological activities for a variety of diseases. More research must be conducted on the bioactivities of naringenin, and to determine its optimum dose. In addition, the efficiency of naringenin must be examined with enhanced bioavailability methods to be able to increase its therapeutic effect.
Collapse
Affiliation(s)
- Kübra Uçar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Türkiye
| | - Zeynep Göktaş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Türkiye.
| |
Collapse
|
11
|
Calabrese EJ, Pressman P, Hayes AW, Dhawan G, Kapoor R, Agathokleous E, Manes P, Calabrese V. Naringin commonly acts via hormesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:164728. [PMID: 37295528 DOI: 10.1016/j.scitotenv.2023.164728] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
The present paper provides the first integrative assessment of the capacity of naringin and its metabolite, naringenin, to induce hormetic dose responses within a broad range of experimental biomedical models. The findings indicate that these agents commonly induced protective effects that are typically mediated via hormetic mechanisms leading to biphasic dose-response relationships. The maximum protective effects are generally modest, 30-60 % greater than control group values. The range of experimental findings with these agents has been reported for models with various neurodegenerative diseases, nucleus pulpous cells (NPCs) located within intravertebral discs, several types of stem cells (i.e., bone marrow, amniotic fluid, periodontal, endothelial) as well as cardiac cells. These agents also were effective within preconditioning protocols protecting against environmental toxins such as ultraviolet radiation (UV), cadmium, and paraquat. The mechanism(s) by which the hormetic responses mediates these biphasic dose responses is complex but commonly involves the activation of nuclear factor erythroid 2-related factor (Nrf2), an increasingly recognized regulator of cellular resistance to oxidants. Nrf2 appears to play a role in controlling the basal and induced expression of an array of antioxidant response element-dependent genes to regulate oxidant exposure's physiological and pathophysiological outcomes. Hence its importance in the assessment of toxicologic and adaptive potential is likely to be significant.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME 04469, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | | | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy.
| |
Collapse
|
12
|
Rathee P, Sehrawat R, Rathee P, Khatkar A, Akkol EK, Khatkar S, Redhu N, Türkcanoğlu G, Sobarzo-Sánchez E. Polyphenols: Natural Preservatives with Promising Applications in Food, Cosmetics and Pharma Industries; Problems and Toxicity Associated with Synthetic Preservatives; Impact of Misleading Advertisements; Recent Trends in Preservation and Legislation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4793. [PMID: 37445107 PMCID: PMC10343617 DOI: 10.3390/ma16134793] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023]
Abstract
The global market of food, cosmetics, and pharmaceutical products requires continuous tracking of harmful ingredients and microbial contamination for the sake of the safety of both products and consumers as these products greatly dominate the consumer's health, directly or indirectly. The existence, survival, and growth of microorganisms in the product may lead to physicochemical degradation or spoilage and may infect the consumer at another end. It has become a challenge for industries to produce a product that is safe, self-stable, and has high nutritional value, as many factors such as physical, chemical, enzymatic, or microbial activities are responsible for causing spoilage to the product within the due course of time. Thus, preservatives are added to retain the virtue of the product to ensure its safety for the consumer. Nowadays, the use of synthetic/artificial preservatives has become common and has not been widely accepted by consumers as they are aware of the fact that exposure to preservatives can lead to adverse effects on health, which is a major area of concern for researchers. Naturally occurring phenolic compounds appear to be extensively used as bio-preservatives to prolong the shelf life of the finished product. Based on the convincing shreds of evidence reported in the literature, it is suggested that phenolic compounds and their derivatives have massive potential to be investigated for the development of new moieties and are proven to be promising drug molecules. The objective of this article is to provide an overview of the significant role of phenolic compounds and their derivatives in the preservation of perishable products from microbial attack due to their exclusive antioxidant and free radical scavenging properties and the problems associated with the use of synthetic preservatives in pharmaceutical products. This article also analyzes the recent trends in preservation along with technical norms that regulate the food, cosmetic, and pharmaceutical products in the developing countries.
Collapse
Affiliation(s)
- Priyanka Rathee
- Faculty of Pharmaceutical Sciences, Baba Mastnath University, Rohtak 124021, India;
| | - Renu Sehrawat
- School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram 122103, India;
| | - Pooja Rathee
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India;
| | - Anurag Khatkar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey;
| | - Sarita Khatkar
- Vaish Institute of Pharmaceutical Education and Research, Rohtak 124001, India;
| | - Neelam Redhu
- Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, India;
| | - Gizem Türkcanoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey;
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
13
|
Yao X, Qi Y, Chen H, Zhang B, Chen Z, Lu L. Comparative transcriptomic and proteomic analysis of nutritional quality-related molecular mechanisms of 'Qianmei 419' and 'Qianfu 4' varieties of Camellia sinensis. Gene 2023; 865:147329. [PMID: 36870427 DOI: 10.1016/j.gene.2023.147329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/11/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
In this study, the content of main nutrients in 'QianFu No. 4' were significantly higher than 'QianMei 419.'Transcriptome and proteome were combined to provide new insight of the molecular mechanisms linked to nutritional quality of 'QianFu No. 4' and 'QianMei 419' by leaf function analysis, RNA sequencing and isobaric tags for relative and absolute quantification techniques.A total of 23,813 genes and 361 proteins exhibited differential expression level in 'QianMei 419' when compared with 'QianFu No. 4'. These genes and proteins revealed that the pathway of flavonoids biosynthesis, caffeine metabolism, theanine biosynthesis and amino acid metabolism were linked to nutritional quality of tea. Our results provided transcriptomics and proteomics information with respect to the molecular mechanisms of nutritional changes of tea, identified key genes and proteins that associated with the metabolism and accumulation of nutrients, and helped clarify the molecular mechanisms of nutrient differences.
Collapse
Affiliation(s)
- Xinzhuan Yao
- College of Tea Science, Guizhou University, Guiyang, Guizhou, China
| | - Yong Qi
- Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Hufang Chen
- College of Tea Science, Guizhou University, Guiyang, Guizhou, China
| | - Baohui Zhang
- Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhengwu Chen
- Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Litang Lu
- College of Tea Science, Guizhou University, Guiyang, Guizhou, China; The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region Ministry of Education, Institute of Agro-Bioengineering, Guiyang, Guizhou, China.
| |
Collapse
|
14
|
Mulyaningsih RD, Pratiwi R, Hasanah AN. An Update on the Use of Natural Pigments and Pigment Nanoparticle Adducts for Metal Detection Based on Colour Response. BIOSENSORS 2023; 13:bios13050554. [PMID: 37232915 DOI: 10.3390/bios13050554] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Natural pigments occur in plants as secondary metabolites and have been used as safe colourants in food. Studies have reported that their unstable colour intensity might be related to metal ion interaction, which leads to the formation of metal-pigment complexes. This underlines the need for further investigations on the use of natural pigments in metal detection using colorimetric methods, since metals are important elements and can be hazardous when present in large amounts. This review aimed to discuss the use of natural pigments (mainly betalains, anthocyanins, curcuminoids, carotenoids, and chlorophyll) as reagents for portable metal detection based on their limits of detection, to determine which pigment is best for certain metals. Colorimetric-related articles over the last decade were gathered, including those involving methodological modifications, sensor developments, and a general overview. When considering sensitivity and portability, the results revealed that betalains are best applied for copper, using a smartphone-assisted sensor; curcuminoids are best applied for lead, using a curcumin nanofiber; and anthocyanin is best applied for mercury, using anthocyanin hydrogel. This provides a new perspective on the use of colour instability for the detection of metals with modern sensor developments. In addition, a coloured sheet representing metal concentrations may be useful as a standard to support on-site detection with trials on masking agents to improve selectivity.
Collapse
Affiliation(s)
- Raspati D Mulyaningsih
- Master Program in Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Rimadani Pratiwi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Drug Development Study Centre, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Aliya N Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Drug Development Study Centre, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
15
|
Zhang X, Ahmad N, Zhang Q, Wakeel Umar A, Wang N, Zhao X, Zhou K, Yao N, Liu X. Safflower Flavonoid 3′5′Hydroxylase Promotes Methyl Jasmonate-induced Anthocyanin Accumulation in Transgenic Plants. Molecules 2023; 28:molecules28073205. [PMID: 37049967 PMCID: PMC10095914 DOI: 10.3390/molecules28073205] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Flavonoids are the most abundant class of secondary metabolites that are ubiquitously involved in plant development and resistance to biotic and abiotic stresses. Flavonoid biosynthesis involves multiple channels of orchestrated molecular regulatory factors. Methyl jasmonate (MeJA) has been demonstrated to enhance flavonoid accumulation in numerous plant species; however, the underlying molecular mechanism of MeJA-induced flavonoid biosynthesis in safflower is still not evident. In the present study, we revealed the underlying molecular basis of a putative F3′5′H gene from safflower imparting MeJA-induced flavonoid accumulation in transgenic plants. The constitutive expression of the CtF3′5′H1 gene was validated at different flowering stages, indicating their diverse transcriptional regulation through flower development in safflower. Similarly, the CtF3′5′H1-overexpressed Arabidopsis plants exhibit a higher expression level, with significantly increased anthocyanins and flavonoid content, but less proanthocyanidins than wild-type plants. In addition, transgenic plants treated with exogenous MeJA revealed the up-regulation of CtF3′5′H1 expression over different time points with significantly enhanced anthocyanin and flavonoid content as confirmed by HPLC analysis. Moreover, CtF3′5′H1- overexpressed Arabidopsis plants under methyl violet and UV-B irradiation also indicated significant increase in the expression level of CtF3′5′H1 with improved anthocyanin and flavonoid content, respectively. Noticeably, the virus-induced gene silencing (VIGS) assay of CtF3′5′H1 in safflower leaves also confirmed reduced anthocyanin accumulation. However, the CtF3′5′H1 suppression in safflower leaves under MeJA elicitation demonstrated significant increase in total flavonoid content. Together, our findings confirmed that CtF3′5′H1 is likely mediating methyl jasmonate-induced flavonoid biosynthesis in transgenic plants via enhanced anthocyanin accumulation.
Collapse
Affiliation(s)
- Xinyue Zhang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingyu Zhang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Abdul Wakeel Umar
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519088, China
| | - Nan Wang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Xu Zhao
- Jilin Province Institute of Product Quality Supervision and Inspection, Changchun 130022, China
| | - Kang Zhou
- Jilin Province Science and Technology Information Research Institute, Shenzhen Street 940, Changchun 130033, China
| | - Na Yao
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Xiuming Liu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
16
|
Saleem M, Durani AI, Asari A, Ahmed M, Ahmad M, Yousaf N, Muddassar M. Investigation of antioxidant and antibacterial effects of citrus fruits peels extracts using different extracting agents: Phytochemical analysis with in silico studies. Heliyon 2023; 9:e15433. [PMID: 37113773 PMCID: PMC10126929 DOI: 10.1016/j.heliyon.2023.e15433] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/25/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The peels extracted from various citrus species are major source of phenols, flavonoids and anti-microbial agents. The purpose of this study was a detailed investigation of the phytochemical and pharmacological character of the ethanolic (80%), methanolic and acetone extracts of the peel of local variants of orange (lemon, grape fruit, mousami, fruiter, and shikri malta). The extracts were studied to find out the total phenolic contents (TPC), and total flavonoids (TF) present. The antioxidant activities were assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging effect, and the reducing power was determined through free radical scavenging activity (FRAP) assays. The sensitivity of four bacterial strains to peels extracts was examined by applying the diffusion disc on agar medium method. It was found that ethanol was the best extracting agent for TPC and TF in fruit peels under study. The highest TPC (21.33 ± 0.06 mg GAE/g) was quantified in orange peels, whereas fruiter contained the lowest TPC (20.40 ± 0.03 mg GAE/g) in ethanolic extract. The highest amount of TF (2.02 ± 0.08 mg QE/g) was quantified in lemon peels, whereas shikri malta contained lowest quantity of TF (1.04 ± 0.02 mg QE/g). The highest free radical scavenging activity (93.1%) of DPPH was exhibited by lemon peels, whereas the least activity (78.6%) was shown by mousami peels. Ethanolic extract of orange peels demonstrated more reducing power while showing an absorption of 1.98, followed by methanolic (1.11) and acetone (0.81) extracts. The inhibition effect of methanolic extract of lemon peels (inhibition zone = 18 mm) against B. subtilis was considerable and comparable to that of ciprofloxacin. Gas chromatography/mass spectrometry (GC/MS) was used to detect the compounds in ethanolic extract and up to 14 compounds were detected. These compounds were also assessed for their docking scores. Plausible binding modes with polyphenol oxidase and four best compounds were selected for molecular dynamics (MD) simulation to analyze their structural stability with receptor.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan
| | | | - Asnuzilawati Asari
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
- Corresponding author.
| | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, Pakistan
- Corresponding author.
| | - Muhammad Ahmad
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, Pakistan
| | - Numan Yousaf
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
- Corresponding author.
| |
Collapse
|
17
|
Sokolova DA, Halych TV, Zhuk VV, Kravets AP. Relationship of radiation-induced genomic instability and antioxidant production in the chamomile plant. Int J Radiat Biol 2023; 99:1631-1638. [PMID: 36881557 DOI: 10.1080/09553002.2023.2188934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE To verify the hypothesis about the preservation of signs of radiation-induced genomic instability at the flowering stage of the chamomile plant after pre-sowing seed irradiation, the interaction of dose-dependent changes in the level of DNA damage and stimulation of antioxidant production. MATERIALS AND METHODS The study was carried out on two genotypes of chamomile, Perlyna Lisostepu variety and its mutant, using pre-sowing seed radiation exposure at dose levels 5-15 Gy. Studies of the rearrangement of the primary DNA structure of under different doses were studied on plant tissues at the flowering stage using - ISSR and RAPD DNA markers. Dose-dependent changes relative to the control of the amplicons' spectra were analyzed using the Jacquard similarity index. Antioxidants such as flavonoids and phenols were isolated from pharmaceutical raw materials (inflorescences) using traditional methods. RESULTS Preservation of multiple DNA damages at the stage of plant flowering under pre-sowing seed irradiation at low doses was confirmed. It was found that the largest rearrangements of the primary DNA structure of both genotypes, manifested in reduced similarity with the control spectra of amplicons, were observed under irradiation dose levels 5-10 Gy. There was a tendency to approach this indicator to the control under 15 Gy dose, which means increasing efficiency of the reparative processes. The relationship between the polymorphism of the primary structure of DNA by ISSR-RAPD-markers in different genotypes and the nature of its rearrangement under radiation exposure was shown. Dose dependences of changes in the specific content of antioxidants were non-monotonic with a maximum at 5-10 Gy. CONCLUSIONS Comparison of dose dependences of changes in the coefficient of similarity of the spectrum of amplicons between irradiated and control variants with nonmonotonic dose curves in the specific content of antioxidants allowed to suggest that there was the antioxidant protection stimulation under the doses corresponding to low efficiency of repair processes. The decrease in the specific content of antioxidants followed the restoration of the genetic material normal state. The interpretation of the identified phenomenon has been based on both known connection between the effects of genomic instability and the increasing yield of the reactive oxygen species and general principles of antioxidant protection.
Collapse
Affiliation(s)
- Daryna A Sokolova
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Taras V Halych
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Vladyslav V Zhuk
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Alexandra P Kravets
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
18
|
The antioxidant potential, phenolic compounds, cytotoxic activity and mineral element analysis of Gentiana septemfida Pallas and its antiproliferative effect on HT-29 cell line. Eur J Integr Med 2023. [DOI: 10.1016/j.eujim.2023.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
19
|
Lin Z, Liao L, Zhao S, Gu W, Wang G, Shen Z, Wang Y, Chen K, Liu W, Cai Y, Wan C, Yan T. Corylin inhibits the progression of Non-small cell lung cancer cells by regulating NF-κB signaling pathway via targeting p65. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154627. [PMID: 36610351 DOI: 10.1016/j.phymed.2022.154627] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/29/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Lung cancer is characterized by high-risk and high mortality, among which non-small cell lung cancer (NSCLC) conquers a dominant position. Previous studies have reported that corylin has anti-inflammatory, anti-oxidant, and anti-tumor effects; however, its role in NSCLC cells remains unclear. HYPOTHESIS Corylin inhibits the progression of NSCLC cells. METHODS A lentivector NF-κB luciferase reporter was constructed by molecular cloning. Corylin was screened and identified as an NF-κB pathway inhibitor by luciferase reporter assay. Corylin inhibited the expression of NF-κB downstream genes, which was detected by qRT-PCR. The effect of corylin on NSCLC cells was detected by colony formation assay, cell apoptosis, cell proliferation, in vitro invasion, and cell scratch assay. Corylin inhibited p65 nuclear translocation and was detected by molecular docking, immunofluorescence assay, and Western blot analysis. RESULTS We constructed a lentiviral expression vector, containing an NF-κB luciferase reporter and established a stable A549 cell line for its expression. Using this cell line, corylin was screened and identified as an NF-κB pathway inhibitor. It was found that corylin inhibited the expression of NF-κB downstream genes and inhibited the proliferation and migration of NSCLC cells. Meanwhile, it was also found that corylin significantly reversed the increased proliferation of NSCLC cell lines induced by p65 overexpression. Molecular docking analysis showed that corylin could bind to p65 by hydrogen bonding. Further study showed that corylin inhibited the NF-κB signaling pathway by blocking p65 nuclear translocation. CONCLUSIONS Our study screened and identified corylin as an NF-κB inhibitor and elucidated the molecular mechanism by which corylin inhibits the growth of NSCLC cells. The present study provides a novel strategy for improving the prognosis and treatment of NSCLC patients.
Collapse
Affiliation(s)
- Zihan Lin
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lijuan Liao
- Department of Pathology, Women and Children's Hospital, Decheng Dezhou, Shandong 253017, China
| | - Shengchao Zhao
- School of Life Sciences, Shanghai University, Shanghai 200444, China; Key Lab of Natural Product Chemistry and Application at Universities of Education Department of Xinjiang Uygur Autonomous Region, Yili Normal University, Yining 835000, China
| | - Wei Gu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Guanzhen Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China; Key Lab of Natural Product Chemistry and Application at Universities of Education Department of Xinjiang Uygur Autonomous Region, Yili Normal University, Yining 835000, China
| | - Ziyi Shen
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yuanhui Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Kun Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wei Liu
- Key Lab of Natural Product Chemistry and Application at Universities of Education Department of Xinjiang Uygur Autonomous Region, Yili Normal University, Yining 835000, China
| | - Yi Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, Shanghai 200444, China; Zhejiang Xinda Hospital, Huzhou 313099, China.
| |
Collapse
|
20
|
Meirelles LEDF, de Souza MVF, Carobeli LR, Morelli F, Mari NL, Damke E, Shinobu Mesquita CS, Teixeira JJV, Consolaro MEL, da Silva VRS. Combination of Conventional Drugs with Biocompounds Derived from Cinnamic Acid: A Promising Option for Breast Cancer Therapy. Biomedicines 2023; 11:275. [PMID: 36830811 PMCID: PMC9952910 DOI: 10.3390/biomedicines11020275] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Despite the options available for breast cancer (BC) therapy, several adverse effects and resistance limit the success of the treatment. Furthermore, the use of a single drug is associated with a high failure rate. We investigated through a systematic review the in vitro effects of the combination between conventional drugs and bioactive compounds derived from cinnamic acid in BC treatment. The information was acquired from the following databases: PubMed, Web of Science, Embase, Scopus, Lilacs and Cochrane library. We focused on "Cinnamates", "Drug Combinations" and "Breast neoplasms" for publications dating between January 2012 and December 2022, based on the PRISMA statement. The references of the articles were carefully reviewed. Finally, nine eligible studies were included. The majority of these studies were performed using MCF-7, MDA-MB-231, MDA-MB-468 and BT-20 cell lines and the combination between cisplatin, paclitaxel, doxorubicin, tamoxifen, dactolisib and veliparib, with caffeic acid phenethyl ester, eugenol, 3-caffeoylquinic acid, salvianolic acid A, ferulic acid, caffeic acid, rosmarinic acid and ursolic acid. The combination improved overall conventional drug effects, with increased cytotoxicity, antimigratory effect and reversing resistance. Combining conventional drugs with bioactive compounds derived from cinnamic acid could emerge as a privileged scaffold for establishing new treatment options for different BC types.
Collapse
|
21
|
Emran TB, Islam F, Nath N, Sutradhar H, Das R, Mitra S, Alshahrani MM, Alhasaniah AH, Sharma R. Naringin and Naringenin Polyphenols in Neurological Diseases: Understandings from a Therapeutic Viewpoint. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010099. [PMID: 36676048 PMCID: PMC9867091 DOI: 10.3390/life13010099] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
The glycosides of two flavonoids, naringin and naringenin, are found in various citrus fruits, bergamots, tomatoes, and other fruits. These phytochemicals are associated with multiple biological functions, including neuroprotective, antioxidant, anticancer, antiviral, antibacterial, anti-inflammatory, antiadipogenic, and cardioprotective effects. The higher glutathione/oxidized glutathione ratio in 3-NP-induced rats is attributed to the ability of naringin to reduce hydroxyl radical, hydroperoxide, and nitrite. However, although progress has been made in treating these diseases, there are still global concerns about how to obtain a solution. Thus, natural compounds can provide a promising strategy for treating many neurological conditions. Possible therapeutics for neurodegenerative disorders include naringin and naringenin polyphenols. New experimental evidence shows that these polyphenols exert a wide range of pharmacological activity; particular attention was paid to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, as well as other neurological conditions such as anxiety, depression, schizophrenia, and chronic hyperglycemic peripheral neuropathy. Several preliminary investigations have shown promising evidence of neuroprotection. The main objective of this review was to reflect on developments in understanding the molecular mechanisms underlying the development of naringin and naringenin as potential neuroprotective medications. Furthermore, the configuration relationships between naringin and naringenin are discussed, as well as their plant sources and extraction methods.
Collapse
Affiliation(s)
- Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Correspondence:
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Hriday Sutradhar
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
22
|
Srimathi R, Sabareesh V, Gurunathan J. Naringenin isolated from Citrus reticulata blanco fruit peel inhibits the toxicity of snake venom proteins - An in vitro and in vivo study. Toxicon 2022; 220:106943. [DOI: 10.1016/j.toxicon.2022.106943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2022]
|
23
|
Muruganathan N, Dhanapal AR, Baskar V, Muthuramalingam P, Selvaraj D, Aara H, Shiek Abdullah MZ, Sivanesan I. Recent Updates on Source, Biosynthesis, and Therapeutic Potential of Natural Flavonoid Luteolin: A Review. Metabolites 2022; 12:1145. [PMID: 36422285 PMCID: PMC9696498 DOI: 10.3390/metabo12111145] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 08/27/2023] Open
Abstract
Nature gives immense resources that are beneficial to humankind. The natural compounds present in plants provide primary nutritional values to our diet. Apart from food, plants also provide chemical compounds with therapeutic values. The importance of these plant secondary metabolites is increasing due to more studies revealing their beneficial properties in treating and managing various diseases and their symptoms. Among them, flavonoids are crucial secondary metabolite compounds present in most plants. Of the reported 8000 flavonoid compounds, luteolin is an essential dietary compound. This review discusses the source of the essential flavonoid luteolin in various plants and its biosynthesis. Furthermore, the potential health benefits of luteolins such as anti-cancer, anti-microbial, anti-inflammatory, antioxidant, and anti-diabetic effects and their mechanisms are discussed in detail. The activity of luteolin and its derivatives are diverse, as they help to prevent and control many diseases and their life-threatening effects. This review will enhance the knowledge and recent findings regarding luteolin and its therapeutic effects, which are certainly useful in potentially utilizing this natural metabolite.
Collapse
Affiliation(s)
- Nandakumar Muruganathan
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Anand Raj Dhanapal
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
- Centre for Plant Tissue Culture & Central Instrumentation Laboratory, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Venkidasamy Baskar
- Department of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Dhivya Selvaraj
- Department of Computer Science and Engineering CSE-AI, Amrita School of Engineering, Chennai 601103, Tamil Nadu, India
| | - Husne Aara
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | | | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
24
|
Benchikha N, Messaoudi M, Larkem I, Ouakouak H, Rebiai A, Boubekeur S, Ferhat MA, Benarfa A, Begaa S, Benmohamed M, Almasri DM, Hareeri RH, Youssef FS. Evaluation of Possible Antioxidant, Anti-Hyperglycaemic, Anti-Alzheimer and Anti-Inflammatory Effects of Teucrium polium Aerial Parts (Lamiaceae). LIFE (BASEL, SWITZERLAND) 2022; 12:life12101579. [PMID: 36295014 PMCID: PMC9604868 DOI: 10.3390/life12101579] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/07/2022]
Abstract
Teucrium polium L. is commonly used in folk medicine to treat hypertension and diabetes and to heal wounds. The present work aimed to evaluate the different biological activities of T. polium hydroalcoholic extract, its total phenol and flavonoid content, and its mineral elements. Results showed that T. polium extract showed significant antioxidant potential in 2-diphenyl-1-picrylhydrazyl (DPPH) assay with IC50 equal to 8.68 μg/mL but with moderate activity in galvinoxyl assay with IC50 of 21.82 μg/mL and mild activity in the β-carotene assay. It also showed a pronounced anti-hyperglycemic activity using α-amylase inhibitory assay (IC50 = 111.68 µg/mL) and exceeds that of acarbose. T. polium showed excellent activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50 values of 28.69 and 4.93 μg/mL, respectively, postulating its promising anti-Alzheimer potential. The plant extract exhibited a strong anti-inflammatory effect with Bovine Serum Albumin (BSA) denaturation inhibitory potential estimated by 97.53% at 2 mg/mL, which was further confirmed by the in vivo carrageen-induced edema model. The extract revealed its richness in flavonoids and phenols, evidenced by its polyphenols content (36.35 ± 0.294 μg GAE/mg) and flavonoids (24.30 ± 0.44 μg QE/mg). It is rich in minerals necessary for human health, such as calcium, potassium, iron, sodium, magnesium, manganese and zinc. Molecular docking performed for previously identified compounds on human α-amylase, 5-lipoxygenase (5-LOX) and acetylcholine esterase confirmed the results. Thus, it can be concluded that T. polium can be a good candidate for alleviating many health-debilitating problems and can be highly beneficial in the pharmaceutical industry and medical research.
Collapse
Affiliation(s)
- Naima Benchikha
- Laboratory of Applied Chemistry and Environment (LCAE), Chemistry Department, University of Hamma Lakhdar El-Oued, B.P.789, El-Oued 39000, Algeria
| | - Mohammed Messaoudi
- Laboratory of Applied Chemistry and Environment (LCAE), Chemistry Department, University of Hamma Lakhdar El-Oued, B.P.789, El-Oued 39000, Algeria
- Nuclear Research Centre of Birine, P.O. Box 180, Ain Oussera, Djelfa 17200, Algeria
| | - Imane Larkem
- Laboratory of Diversity of Ecosystems and Dynamics of Agricultural Production Systems in Arid Zones, Department of Agronomy, Faculty of Nature and Life Science, Biskra University, Biskra 07000, Algeria
| | - Hamza Ouakouak
- Laboratory of Applied Chemistry and Environment (LCAE), Chemistry Department, University of Hamma Lakhdar El-Oued, B.P.789, El-Oued 39000, Algeria
| | - Abdelkrim Rebiai
- Laboratory of Applied Chemistry and Environment (LCAE), Chemistry Department, University of Hamma Lakhdar El-Oued, B.P.789, El-Oued 39000, Algeria
| | - Siham Boubekeur
- Research and Development Centre RDC-SAIDAL, 35Benyoucef Khattab Avenue, Mohammadia, El-Harrah, Algiers 16000, Algeria
| | | | - Adel Benarfa
- Centre de Recherche Scientifique Et Technique en Analyses Physico-Chimiques (CRAPC)-PTAPC, P.O. Box 0354, Laghouat 03000, Algeria
| | - Samir Begaa
- Nuclear Research Centre of Birine, P.O. Box 180, Ain Oussera, Djelfa 17200, Algeria
| | - Mokhtar Benmohamed
- Laboratory of Fundamental Sciences, University Amar Télidji of Laghouat, P.O. Box 37G, Road of Ghardaïa, Laghouat 03000, Algeria
| | - Diena M. Almasri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rawan H. Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fadia S. Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo 11566, Egypt
- Correspondence:
| |
Collapse
|
25
|
Sokolova DO, Halych TV, Zhuk VV, Kravets OP, Kuchuk MV. Association of the Stimulation of Plant Antioxidant Protection with Traits of Genome Instability. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722050103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Lin F, Zhu Y, Liang H, Li D, Jing D, Liu H, Pan P, Zhang Y. Association of Coffee and Tea Consumption with the Risk of Asthma: A Prospective Cohort Study from the UK Biobank. Nutrients 2022; 14:nu14194039. [PMID: 36235690 PMCID: PMC9572944 DOI: 10.3390/nu14194039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Previous observational studies investigated the relationship between coffee and tea intake and the risk of asthma, however, the conclusions were inconsistent. Further, the combined effect of coffee and tea consumption on asthma has rarely been studied. Methods: We examined associations between the self-reported intake of tea and coffee and the risk of incident asthma in a total of 424,725 participants aged from 39 to 73 years old from the UK Biobank. Cox proportional hazards models were used to estimate the associations between coffee/tea consumption and incident adult-onset asthma, adjusting for age, sex, race, smoking status, body mass index (BMI), education, and Townsend deprivation index. Results: Cox models with penalized splines showed J-shaped associations of coffee, tea, caffeinated coffee, and caffeine intake from coffee and tea with the risk of adult-onset asthma (p for nonlinear <0.01). Coffee intake of 2 to 3 cups/d (hazard ratio [HR] 0.877, 95% confidence interval [CI] 0.826−0.931) or tea intake of 0.5 to 1 cups/d (HR 0.889, 95% CI 0.816−0.968) or caffeinated coffee intake of 2 to 3 cups/d (HR 0.858, 95% CI 0.806−0.915) or combination caffeine intake from tea and coffee of 160.0 to 235.0 mg per day (HR 0.899, 95% CI 0.842−0.961) were linked with the lowest hazard ratio of incident asthma after adjustment for age, sex, race, smoking status, BMI, qualification, and Townsend deprivation index. Conclusions: Collectively, the study showed light-to-moderate coffee and tea consumption was associated with a reduced risk of adult-onset asthma and controlling total caffeine intake from coffee and tea for a moderate caffeine dose of 160.0 to 305.0 mg/day may be protective against adult-onset asthma. Further investigation on the possible preventive role of caffeine in asthma is warranted.
Collapse
Affiliation(s)
- Fengyu Lin
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, China
| | - Yiqun Zhu
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, China
| | - Huaying Liang
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, China
| | - Dianwu Li
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, China
| | - Danrong Jing
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hong Liu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (H.L.); (P.P.); (Y.Z.)
| | - Pinhua Pan
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (H.L.); (P.P.); (Y.Z.)
| | - Yan Zhang
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (H.L.); (P.P.); (Y.Z.)
| |
Collapse
|
27
|
Exploration of the Protective Mechanism of Naringin in the Acetaminophen-Induced Hepatic Injury by Metabolomics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7138194. [PMID: 36160708 PMCID: PMC9507767 DOI: 10.1155/2022/7138194] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/23/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022]
Abstract
Naringin is a dihydroflavone which was found in citrus fruits. Previous studies have indicated the antiapoptotic, antioxidative stress, and anti-inflammatory effects of naringin. It can improve many common diseases, including fibrosis or hepatotoxicity, cardiovascular disease, and diabetes. Acetaminophen (APAP) is a frequently used painkiller, and hepatotoxic side effects limit its use. The purpose of the current examination is to find the impact of naringin on APAP-induced hepatic injury. Firstly, we pretreated mice model groups with naringin. Then, the liver injury model was established by injecting intraperitoneally into mice with APAP. After the mice were euthanized, we obtained serum and liver tissue samples from the mice. Finally, these samples were analyzed using a metabolomics approach to find the underlying mechanism of the effects of naringin on APAP-induced liver injury and provide a new treatment strategy for APAP-induced liver injury. Our data indicate that naringin significantly improves APAP-induced liver injury in mice and reduces the expression levels of liver injury markers in a dose-dependent manner. Furthermore, analysis of differential metabolites in mice with liver injury showed that naringin reduced APAP-induced hepatotoxicity due to reversing multiple metabolite expression levels and the rescue of energy, amino acid, and purine metabolism.
Collapse
|
28
|
Isolation and characterization of 3,3′-di-O-methyl ellagic acid from the root bark of Afzelia africana and its antimicrobial and antioxidant activities. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Phenolic compounds and antimicrobial properties of mint and thyme. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Lee S, Kim HJ. Antioxidant activities of premature and mature mandarin ( Citrus unshiu) peel and juice extracts. Food Sci Biotechnol 2022; 31:627-633. [PMID: 35529692 PMCID: PMC9033906 DOI: 10.1007/s10068-022-01064-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/06/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
In vitro antioxidant activities of premature and mature mandarin peel and juice extracts were investigated for their potentials as functional food materials. Total phenolic and flavonoid content of premature and mature mandarin peel and juice was in the range of 31.20 to 94.04 mg gallic acid equivalent (GAE)/g and 0.09 to 43.99 mg quercetin equivalent (QE)/g, respectively. Among flavanone compounds, hesperidin and narirutin were identified as 76.81 and 51.35 mg/g, respectively, in the premature mandarin peel extract. Mandarin peel extracts were mostly high in in vitro antioxidant activities compared to mandarin juices. Hydrogen peroxide and hydroxyl radical scavenging activities (81.52-93.24%) of the premature mandarin peel extract were higher than DPPH and ABTS+ radical scavenging activities (24.03-30.39%). These results confirmed that the potential of premature mandarin peels as a natural antioxidant source for functional foods. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01064-5.
Collapse
Affiliation(s)
- Seogyeong Lee
- Department of Food Bioengineering, Jeju National University, 102 Jejudaehak- ro, Jeju, 63243 Korea
| | - Hyun Jung Kim
- Department of Food Bioengineering, Jeju National University, 102 Jejudaehak- ro, Jeju, 63243 Korea
| |
Collapse
|
31
|
Cao YL, Lin JH, Hammes HP, Zhang C. Flavonoids in Treatment of Chronic Kidney Disease. Molecules 2022; 27:molecules27072365. [PMID: 35408760 PMCID: PMC9000519 DOI: 10.3390/molecules27072365] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic kidney disease (CKD) is a progressive systemic disease, which changes the function and structure of the kidneys irreversibly over months or years. The final common pathological manifestation of chronic kidney disease is renal fibrosis and is characterized by glomerulosclerosis, tubular atrophy, and interstitial fibrosis. In recent years, numerous studies have reported the therapeutic benefits of natural products against modern diseases. Substantial attention has been focused on the biological role of polyphenols, in particular flavonoids, presenting broadly in plants and diets, referring to thousands of plant compounds with a common basic structure. Evidence-based pharmacological data have shown that flavonoids play an important role in preventing and managing CKD and renal fibrosis. These compounds can prevent renal dysfunction and improve renal function by blocking or suppressing deleterious pathways such as oxidative stress and inflammation. In this review, we summarize the function and beneficial properties of common flavonoids for the treatment of CKD and the relative risk factors of CKD.
Collapse
Affiliation(s)
- Yi-Ling Cao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Ji-Hong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (J.-H.L.); (H.-P.H.)
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (J.-H.L.); (H.-P.H.)
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
- Correspondence: ; Tel.: +86-027-85726712
| |
Collapse
|
32
|
Sivakumar PM, Prabhakar PK, Cetinel S, R N, Prabhawathi V. Molecular Insights on the Therapeutic Effect of Selected Flavonoids on Diabetic Neuropathy. Mini Rev Med Chem 2022; 22:1828-1846. [PMID: 35264089 DOI: 10.2174/1389557522666220309140855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
One of the common clinical complications of diabetes is diabetic neuropathy affecting the nervous system. Painful diabetic neuropathy is widespread and highly prevalent. At least 50% of diabetes patients develop diabetic neuropathy eventually. The four main types of diabetic neuropathy are peripheral neuropathy, autonomic neuropathy, proximal neuropathy (diabetic polyradiculopathy), and mononeuropathy (Focal neuropathy). Glucose control remains the common therapy for diabetic neuropathy due to limited knowledge on early biomarkers that are expressed during nerve damage, thereby limiting the cure through pharmacotherapy. Glucose control dramatically reduces the onset of neuropathy in type 1 diabetes but proves less effective in type 2 diabetes. Therefore, the focus is on various herbal remedies for prevention and treatment. There is numerous research on the use of anticonvulsants and antidepressants for the management of pain in diabetic neuropathy. Extensive research is being done on natural products including the isolation of pure compounds like flavonoids from plants and their effect on diabetic neuropathy. This review focuses on the use of an important of flavonoids such as flavanols (e.g., quercetin, rutin, kaempferol, and isorhamnetin), flavanones (e.g., hesperidin, naringenin and c,lass eriodictyol), and flavones (e.g., apigenin, luteolin, tangeretin, chrysin, and diosmin) for the prevention and treatment of diabetic neuropathy. The mechanisms of action of flavonoids against diabetic neuropathy by their antioxidant, anti-inflammation, anti-glycation properties, etc. are also covered in this review article.
Collapse
Affiliation(s)
- Ponnurengam Malliappan Sivakumar
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam.
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| | | | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey.
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
| | - Neelakandan R
- Department of Textile Technology, Anna University, Chennai, Tamil Nadu, India
| | - Veluchamy Prabhawathi
- Multidisciplinary Research Unit, Coimbatore Medical College, Coimbatore - 641014, Tamil Nadu, India
| |
Collapse
|
33
|
Bouyahya A, Chamkhi I, Balahbib A, Rebezov M, Shariati MA, Wilairatana P, Mubarak MS, Benali T, El Omari N. Mechanisms, Anti-Quorum-Sensing Actions, and Clinical Trials of Medicinal Plant Bioactive Compounds against Bacteria: A Comprehensive Review. Molecules 2022; 27:1484. [PMID: 35268585 PMCID: PMC8911727 DOI: 10.3390/molecules27051484] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023] Open
Abstract
Bacterial strains have developed an ability to resist antibiotics via numerous mechanisms. Recently, researchers conducted several studies to identify natural bioactive compounds, particularly secondary metabolites of medicinal plants, such as terpenoids, flavonoids, and phenolic acids, as antibacterial agents. These molecules exert several mechanisms of action at different structural, cellular, and molecular levels, which could make them candidates or lead compounds for developing natural antibiotics. Research findings revealed that these bioactive compounds can inhibit the synthesis of DNA and proteins, block oxidative respiration, increase membrane permeability, and decrease membrane integrity. Furthermore, recent investigations showed that some bacterial strains resist these different mechanisms of antibacterial agents. Researchers demonstrated that this resistance to antibiotics is linked to a microbial cell-to-cell communication system called quorum sensing (QS). Consequently, inhibition of QS or quorum quenching is a promising strategy to not only overcome the resistance problems but also to treat infections. In this respect, various bioactive molecules, including terpenoids, flavonoids, and phenolic acids, exhibit numerous anti-QS mechanisms via the inhibition of auto-inducer releases, sequestration of QS-mediated molecules, and deregulation of QS gene expression. However, clinical applications of these molecules have not been fully covered, which limits their use against infectious diseases. Accordingly, the aim of the present work was to discuss the role of the QS system in bacteria and its involvement in virulence and resistance to antibiotics. In addition, the present review summarizes the most recent and relevant literature pertaining to the anti-quorum sensing of secondary metabolites and its relationship to antibacterial activity.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Genomic Center of Human Pathologies, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Imane Chamkhi
- Centre GEOPAC, Laboratoire de Geobiodiversite et Patrimoine Naturel, Université Mohammed V de Rabat, Institut Scientifique de Rabat, Rabat 10106, Morocco;
- Agrobiosciences Program, University Mohammed VI Polytechnic, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology and Genome, Faculty of Sciences, Mohammed V University, Rabat 10106, Morocco;
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, 26 Talalikhina St., 109316 Moscow, Russia;
- Biophotonics Center, Prokhorov General Physics Institute of the Russian Academy of Science, 119991 Moscow, Russia
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 109004 Moscow, Russia;
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 109004 Moscow, Russia;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | | | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi 46030, Morocco;
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V. University in Rabat, B.P. 6203, Rabat 10000, Morocco;
| |
Collapse
|
34
|
Shi R, Tao L, Tu X, Zhang C, Xiong Z, Rami Horowitz A, Asher JB, He J, Hu F. Metabolite Profiling and Transcriptome Analyses Provide Insight Into Phenolic and Flavonoid Biosynthesis in the Nutshell of Macadamia Ternifolia. Front Genet 2022; 12:809986. [PMID: 35265099 PMCID: PMC8899216 DOI: 10.3389/fgene.2021.809986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/29/2021] [Indexed: 12/30/2022] Open
Abstract
Macadamia ternifolia is a dynamic oil-producing nut crop in the world. However, the nutshell is frequently considered as a low-quality material. Further, its metabolic profile is still uncharacterized. In order to explore the industrial significance of the nutshell, this study performed metabolic and transcriptomic analyses at various developmental stages of the nutshell. The qualitative and quantitative metabolic data analysis identified 596 metabolic substances including several species of phenolic acids, flavonoids, lipids, organic acids, amino acids and derivatives, nucleotides and derivatives, alkaloids, lignans, coumarins, terpenoids, tannins, and others. However, phenolic acids and flavonoids were predominant, and their abundance levels were significantly altered across various developmental stages of the nutshell. Comparative transcriptome analysis revealed that the expression patterns of phenolic acid and flavonoid pathway related genes were significantly changed during the nutshell growth. In particular, the expression of phenylalanine ammonia-lyase, C4H, 4CL, CHS, CHI, F3H, and FLS had dynamic differences at the various developmental stages of the nutshell. Our integrative metabolomic and transcriptomic analyses identified the key metabolic substances and their abundance levels. We further discussed the regulatory mechanism of phenolic and flavonoid biosynthesis in the nutshell of M. ternifolia. Our results provide new insights into the biological profiles of the nutshell of M. ternifolia and help to elucidate the molecular mechanisms of phenolic and flavonoid biosynthesis in the nutshell of M. ternifolia.
Collapse
Affiliation(s)
- Rui Shi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, International Ecological Foresty Research Center of Kunming, Horticulture and Landscape Architecture, Southwest Forestry University, Kunming, Yunnan, China
| | - Liang Tao
- Yunnan Institute of Tropical Crops, Xishuangbanna, Yunnan, China
| | - Xinghao Tu
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Chunsheng Zhang
- Office of Academic Affairs, Yunnan University of Finance and Economics, Kunming, China
- *Correspondence: Chunsheng Zhang, ; Jun He, ; Faguang Hu,
| | - Zhi Xiong
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, International Ecological Foresty Research Center of Kunming, Horticulture and Landscape Architecture, Southwest Forestry University, Kunming, Yunnan, China
| | - Abraham Rami Horowitz
- French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Jiftah Ben Asher
- French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Chunsheng Zhang, ; Jun He, ; Faguang Hu,
| | - Faguang Hu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
- *Correspondence: Chunsheng Zhang, ; Jun He, ; Faguang Hu,
| |
Collapse
|
35
|
Zirintunda G, Biryomumaisho S, Kasozi KI, Batiha GES, Kateregga J, Vudriko P, Nalule S, Olila D, Kajoba M, Matama K, Kwizera MR, Ghoneim MM, Abdelhamid M, Zaghlool SS, Alshehri S, Abdelgawad MA, Acai-Okwee J. Emerging Anthelmintic Resistance in Poultry: Can Ethnopharmacological Approaches Offer a Solution? Front Pharmacol 2022; 12:774896. [PMID: 35237147 PMCID: PMC8883056 DOI: 10.3389/fphar.2021.774896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/30/2021] [Indexed: 01/09/2023] Open
Abstract
Limited pharmacological studies have been conducted on plant species used against poultry helminths. The objective of this study was to provide a basis for plant based anthelmintics as possible alternatives against poultry anthelmintic resistance. The study justified the need for alternative anthelmintics. The study places emphasis on the increasing anthelmintic resistance, mechanism of resistance, and preparational protocols for plant anthelmintics and their associated mechanism of action. Pharmaceutical studies on plants as alternative therapies for the control of helminth parasites have not been fully explored especially in several developing countries. Plants from a broad range of species produce a wide variety of compounds that are potential anthelmintics candidates. Important phenolic acids have been found in Brassica rapa L. and Terminalia avicenniodes Guill. and Perri that affect the cell signaling pathways and gene expression. Benzo (c) phenanthridine and isoquinoline alkaloids are neurotoxic to helminths. Steroidal saponins (polyphyllin D and dioscin) interact with helminthic mitochondrial activity, alter cell membrane permeability, vacuolation and membrane damage. Benzyl isothiocyanate glucosinolates interfere with DNA replication and protein expression, while isoflavones from Acacia oxyphylla cause helminth flaccid paralysis, inhibit energy generation, and affect calcium utilization. Condensed tannins have been shown to cause the death of nematodes and paralysis leading to expulsion from the gastro-intestinal tract. Flavonoids from Chenopodium album L and Mangifera indica L act through the action of phosphodiesterase and Ca2+-ATPase, and flavonoids and tannins have been shown to act synergistically and are complementary to praziquantel. Artemisinins from Artemisia cina O. Berg are known to disrupt mitochondrial ATP production. Terpenoids from Cucurbita moschata L disrupt neurotransmission leading to paralysis as well as disruption of egg hatching. Yeast particle encapsulated terpenes are effective for the control of albendazole-resistant helminths.
Collapse
Affiliation(s)
- Gerald Zirintunda
- School of Veterinary Medicine and Animal Resources, Makerere University, Kampala, Uganda
| | - Savino Biryomumaisho
- School of Veterinary Medicine and Animal Resources, Makerere University, Kampala, Uganda
| | - Keneth Iceland Kasozi
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Scotland, United Kingdom
- School of Medicine, Kabale University, Kabale, Uganda
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Albeheira, Egypt
| | - John Kateregga
- School of Veterinary Medicine and Animal Resources, Makerere University, Kampala, Uganda
| | - Patrick Vudriko
- School of Veterinary Medicine and Animal Resources, Makerere University, Kampala, Uganda
| | - Sarah Nalule
- School of Veterinary Medicine and Animal Resources, Makerere University, Kampala, Uganda
| | - Deogracious Olila
- Department of Animal Production and Management, Faculty of Agriculture and Animal Sciences, Busitema University, Soroti, Uganda
| | - Mariam Kajoba
- School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda
| | - Kevin Matama
- School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda
| | - Mercy Rukundo Kwizera
- School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda
| | - Mohammed M. Ghoneim
- Biology Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mahmoud Abdelhamid
- Department of Parasitology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Sameh S. Zaghlool
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Al Jouf, Saudi Arabia
| | - James Acai-Okwee
- School of Veterinary Medicine and Animal Resources, Makerere University, Kampala, Uganda
| |
Collapse
|
36
|
Shamsudin NF, Ahmed QU, Mahmood S, Ali Shah SA, Khatib A, Mukhtar S, Alsharif MA, Parveen H, Zakaria ZA. Antibacterial Effects of Flavonoids and Their Structure-Activity Relationship Study: A Comparative Interpretation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041149. [PMID: 35208939 PMCID: PMC8879123 DOI: 10.3390/molecules27041149] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022]
Abstract
According to the latest report released by the World Health Organization, bacterial resistance to well-known and widely available antibacterial drugs has become a significant and severe global health concern and a grim challenge to tackle in order to cure infections associated with multidrug-resistant pathogenic microorganisms efficiently. Consequently, various strategies have been orchestrated to cure the severe complications related to multidrug-resistant bacteria effectively. Some approaches involved the retardation of biofilm formation and multidrug-resistance pumps in bacteria as well as the discovery of new antimicrobial agents demonstrating different mechanisms of action. In this regard, natural products namely alkaloids, terpenoids, steroids, anthraquinone, flavonoids, saponins, tannins, etc., have been suggested to tackle the multidrug-resistant bacterial strains owing to their versatile pharmacological effects. Amongst these, flavonoids, also known as polyphenolic compounds, have been widely evaluated for their antibacterial property due to their tendency to retard the growth of a wide range of pathogenic microorganisms, including multidrug-resistant bacteria. The hydroxylation of C5, C7, C3′, and C4′; and geranylation or prenylation at C6 have been extensively studied to increase bacterial inhibition of flavonoids. On the other hand, methoxylation at C3′ and C5 has been reported to decrease flavonoids’ antibacterial action. Hence, the latest information on the antibacterial activity of flavonoids is summarized in this review, with particular attention to the structure–activity relationship of this broad class of natural compounds to discover safe and potent antibacterial agents as natural products.
Collapse
Affiliation(s)
- Nur Farisya Shamsudin
- Drug Design and Synthesis Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang D. M., Malaysia; (N.F.S.); (A.K.)
| | - Qamar Uddin Ahmed
- Drug Design and Synthesis Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang D. M., Malaysia; (N.F.S.); (A.K.)
- Correspondence: (Q.U.A.); or (Z.A.Z.)
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Department of Pharmaceutical Engineering, Faculty of Engineering Technology (Chemical), Gambang Campus, Universiti Malaysia Pahang (UMP), Kuantan 26300, Pahang D. M., Malaysia
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia;
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia
| | - Alfi Khatib
- Drug Design and Synthesis Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang D. M., Malaysia; (N.F.S.); (A.K.)
| | - Sayeed Mukhtar
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.M.); (H.P.)
| | - Meshari A. Alsharif
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia;
| | - Humaira Parveen
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.M.); (H.P.)
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
- Correspondence: (Q.U.A.); or (Z.A.Z.)
| |
Collapse
|
37
|
Ansari B, Aschner M, Hussain Y, Efferth T, Khan H. Suppression of colorectal carcinogenesis by naringin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153897. [PMID: 35026507 DOI: 10.1016/j.phymed.2021.153897] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Colorectal cancer is the third most malignant cancer worldwide. Despite novel treatment options, the incidence and mortality rates of colon cancer continue to increase in most countries, especially in US, European and Asian countries. Colorectal carcinogenesis is multifactorial, including dietary and genetic factors, as well as lacking physical activity. Vegetables and fruits contain high amounts of secondary metabolites, which might reduce the risk for colorectal carcinogenesis. Flavonoids are important bioactive polyphenolic compounds. There are more than 4,000 different flavonoids, including flavanones, flavonoids, isoflavonoids, flavones, and catechins in a large variety of plant. HYPOTHESIS Among various other flavonoids, naringin in Citrus fruits has been a subject of intense scrutiny for its activity against many types of cancer, including colorectal cancer. We hypothesize that naringin is capable to inhibit the growth of transformed colonocytes and to induce programmed cell death in colon cancer cells. RESULTS We comprehensively review the inhibitory effects of naringin on colorectal cancers and address the underlying mechanistic pathways such as NF-κB/IL-6/STAT3, PI3K/AKT/mTOR, apoptosis, NF-κB-COX-2-iNOS, and β-catenin pathways. CONCLUSION Naringin suppresses colorectal inflammation and carcinogenesis by various signaling pathways. Randomized clinical trials are needed to determine their effectiveness in combating colorectal cancer.
Collapse
Affiliation(s)
- Bushra Ansari
- Department of Pharmacy, Abdul Wali Khan University Mardan 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Jiangsu, 221400, P R China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Staudinger Weg 5, 55128 Mainz, Germany
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan 23200, Pakistan
| |
Collapse
|
38
|
Nazli A, Irshad Khan MZ, Ahmed M, Akhtar N, Okla MK, Al-Hashimi A, Al-Qahtani WH, Abdelgawad H, Haq IU. HPLC-DAD Based Polyphenolic Profiling and Evaluation of Pharmacological Attributes of Putranjiva roxburghii Wall. Molecules 2021; 27:molecules27010068. [PMID: 35011299 PMCID: PMC8746485 DOI: 10.3390/molecules27010068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/07/2021] [Accepted: 12/18/2021] [Indexed: 11/17/2022] Open
Abstract
The current study was intended to explore the phytochemical profiling and therapeutic activities of Putranjiva roxburghii Wall. Crude extracts of different plant parts were subjected to the determination of antioxidant, antimicrobial, antidiabetic, cytotoxic, and protein kinase inhibitory potential by using solvents of varying polarity ranges. Maximum phenolic content was notified in distilled water extracts of the stem (DW-S) and leaf (DW-L) while the highest flavonoid content was obtained in ethyl acetate leaf (EA-L) extract. HPLC-DAD analysis confirmed the presence of various polyphenols, quantified in the range of 0.02 ± 0.36 to 2.05 ± 0.18 μg/mg extract. Maximum DPPH scavenging activity was expressed by methanolic extract of the stem (MeOH-S). The highest antioxidant capacity and reducing power was shown by MeOH-S and leaf methanolic extract (MeOH-L), respectively. Proficient antibacterial activity was shown by EA-L extract against Bacillus subtilis and Escherichia coli. Remarkable α-amylase and α-glucosidase inhibition potential was expressed by ethyl acetate fruit (EA-F) and n-Hexane leaf (nH-L) extracts, respectively. In case of brine shrimp lethality assay, 41.67% of the extracts (LC50 < 50 µg/mL) were considered as extremely cytotoxic. The test extracts also showed mild antifungal and protein kinase inhibition activities. The present study explores the therapeutic potential of P. roxburghii and calls for subsequent studies to isolate new bioactive leads through bioactivity-guided isolation.
Collapse
Affiliation(s)
- Adila Nazli
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | | | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
- Correspondence: (M.A.); (I.-u.-H.)
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 43600, Pakistan;
| | - Mohammad K. Okla
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (A.A.-H.)
| | - Abdulrahman Al-Hashimi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (A.A.-H.)
| | - Wahidah H. Al-Qahtani
- Department of Food Sciences & Nutrition, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hamada Abdelgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerpen, Belgium;
| | - Ihsan-ul- Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
- Correspondence: (M.A.); (I.-u.-H.)
| |
Collapse
|
39
|
Ali MY, Jannat S, Jung HA, Choi JS. Structural Bases for Hesperetin Derivatives: Inhibition of Protein Tyrosine Phosphatase 1B, Kinetics Mechanism and Molecular Docking Study. Molecules 2021; 26:molecules26247433. [PMID: 34946519 PMCID: PMC8705904 DOI: 10.3390/molecules26247433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/26/2022] Open
Abstract
In the present study, we investigated the structure-activity relationship of naturally occurring hesperetin derivatives, as well as the effects of their glycosylation on the inhibition of diabetes-related enzyme systems, protein tyrosine phosphatase 1B (PTP1B) and α-glycosidase. Among the tested hesperetin derivatives, hesperetin 5-O-glucoside, a single-glucose-containing flavanone glycoside, significantly inhibited PTP1B with an IC50 value of 37.14 ± 0.07 µM. Hesperetin, which lacks a sugar molecule, was the weakest inhibitor compared to the reference compound, ursolic acid (IC50 = 9.65 ± 0.01 µM). The most active flavanone hesperetin 5-O-glucoside suggested that the position of a sugar moiety at the C-5-position influences the PTP1B inhibition. It was observed that the ability to inhibit PTP1B is dependent on the nature, position, and number of sugar moieties in the flavonoid structure, as well as conjugation. In the kinetic study of PTP1B enzyme inhibition, hesperetin 5-O-glucoside led to mixed-type inhibition. Molecular docking studies revealed that hesperetin 5-O-glucoside had a higher binding affinity with key amino residues, suggesting that this molecule best fits the PTP1B allosteric site cavity. The data reported here support hesperetin 5-O-glucoside as a hit for the design of more potent and selective inhibitors against PTP1B in the search for a new anti-diabetic treatment.
Collapse
Affiliation(s)
- Md Yousof Ali
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Susoma Jannat
- Department of Biochemistry and Molecular Biology, University of Calgary, AB T2N 1N4, Canada;
| | - Hyun-Ah Jung
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: (H.-A.J.); (J.-S.C.); Tel.: +82-51-629-7547 (J.-S.C.)
| | - Jae-Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea
- Correspondence: (H.-A.J.); (J.-S.C.); Tel.: +82-51-629-7547 (J.-S.C.)
| |
Collapse
|
40
|
Jomova K, Hudecova L, Lauro P, Simunková M, Barbierikova Z, Malcek M, Alwasel SH, Alhazza IM, Rhodes CJ, Valko M. The effect of Luteolin on DNA damage mediated by a copper catalyzed Fenton reaction. J Inorg Biochem 2021; 226:111635. [PMID: 34717250 DOI: 10.1016/j.jinorgbio.2021.111635] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
Luteolin has been reviewed as a flavonoid possessing potential cardioprotective, anti-inflammatory, anti-cancer activities. Having multiple biological effects, luteolin may act as either an antioxidant or a pro-oxidant. In this work, the protective role of copper(II)-chelation by luteolin on DNA damage via the Cu-Fenton reaction was studied. EPR and UV-vis spectroscopic data demonstrated that the luteolin, lacking 3-OH group, chelates to Cu(II) via the 5-OH and 4-CO groups, respectively. EPR spin trapping experiments using DMPO spin trap confirmed that the coordination of luteolin to Cu(II) significantly suppressed formation of hydroxyl and superoxide radicals (by 80%) in a Cu-Fenton system. Absorption titrations showed that the chelation of Cu(II) by luteolin slightly increased the mild intercalation strength of its interaction with DNA, as compared with free luteolin. Comparison with kaempferol and quercetin revealed, that the strength of the interaction between the free flavonoids/Cu-flavonoid complexes with DNA is only mildly affected by the presence/absence of 3-OH group. Due to the differences in the sensitivities of absorption titrations and viscometry, the latter confirmed weaker DNA intercalating efficiency of Cu-luteolin complex than does free luteolin. A dose dependent protective effect of luteolin against ROS-induced DNA damage was observed using gel electrophoresis. This effect was more pronounced compared to quercetin and kaempferol. In conclusion, the administration of luteolin to patients suffering from oxidative stress-related diseases with disturbed Cu-metabolism such as Alzheimer's diseases (antioxidant effect) and certain cancers (prooxidant effect) may have several health benefits.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, 949 74, Nitra, Slovakia
| | - Lenka Hudecova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, 949 74, Nitra, Slovakia
| | - Peter Lauro
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, 949 74, Nitra, Slovakia
| | - Miriama Simunková
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia
| | - Zuzana Barbierikova
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia
| | - Michal Malcek
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim M Alhazza
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia; Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
41
|
Comparative Phytochemical Profile and Biological Activity of Four Major Medicinal Halophytes from Qassim Flora. PLANTS 2021; 10:plants10102208. [PMID: 34686017 PMCID: PMC8538075 DOI: 10.3390/plants10102208] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022]
Abstract
Four halophytic plants, Lycium shawii, Anabasis articulata, Rumex vesicarius, and Zilla spinosa, growing in the central Qassim area, Saudi Arabia, were phytochemically and biologically investigated. Their hydroalcoholic extracts’ UPLC-ESIQ-TOF analyses demonstrated the presence of 44 compounds of phenolic acids, flavonoids, saponins, carbohydrates, and fatty acids chemical classes. Among all the plants’ extracts, L. shawii showed the highest quantities of total phenolics, and flavonoids contents (52.72 and 13.01 mg/gm of the gallic acid and quercetin equivalents, respectively), along with the antioxidant activity in the TAA (total antioxidant activity), FRAP (ferric reducing antioxidant power), and DPPH-SA (2,2-diphenyl-1-picryl-hydrazyl-scavenging activity) assays with 25.6, 56.68, and 19.76 mg/gm, respectively, as Trolox equivalents. The hydroalcoholic extract of the L. shawii also demonstrated the best chelating activity at 21.84 mg/gm EDTA equivalents. Among all the four halophytes, the hydroalcoholic extract of L. shawii exhibited the highest antiproliferative activity against MCF7 and K562 cell lines with IC50 values at 194.5 µg/mL and 464.9 µg/mL, respectively. The hydroalcoholic extract of A. articulata demonstrated better cytotoxic activity amongst all the tested plants’ extracts against the human pancreatic cancer cell lines (PANC1) with an IC50 value of 998.5 µg/mL. The L. shawii induced apoptosis in the MCF7 cell lines, and the percentage of the necrotic cells changed to 28.1% and 36.5% for the IC50 and double-IC50 values at 22.9% compared with the untreated groups. The hydroalcoholic extract of L. shawii showed substantial antibacterial activity against Bacillus cereus ATCC 10876 with a MIC value of 12.5 mg/mL. By contrast, the A. articulata and Z. spinosa exhibited antifungal activities against Aspergillus niger ATCC 6275 with MIC values at 12.5 and 50 mg/mL, respectively. These findings suggested that the L. shawii is a potential halophyte with remarkable biological properties, attributed to its contents of phenolics and flavonoid classes of compounds in its extract.
Collapse
|
42
|
Evaluation of Antidiabetic Properties of Adenosma Bracteosum Bonati Extracts in Mice with Streptozotocin-Induced Diabetes. Methods Mol Biol 2021. [PMID: 34473321 DOI: 10.1007/978-1-0716-1558-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by persistent hyperglycemia. Traditional medicinal plants with antidiabetic properties can be used as drugs or dietary adjuvants to existing therapies. This chapter presents the preparation of aqueous and ethanol extracts of Adenosma bracteosum Bonati (A. bracteosum) and evaluation of these for antioxidant and α-glucosidase inhibition activities in vitro. In addition, we tested the extracts and the purified A. bracteosum compound (isoscutellarein 8-O-β-D-glucopyranoside) for antihyperglycemic effects in glucose-loaded hyperglycemic and streptozotocin (STZ)-induced diabetic mice.
Collapse
|
43
|
Zhou S, Yang J, Qian C, Yin X, Yan X, Fan X, Fang T, Gao Y, Chang Y, Ma XF. Organic acid metabolites involved in local adaptation to altitudinal gradient in Agriophyllum squarrosum, a desert medicinal plant. JOURNAL OF PLANT RESEARCH 2021; 134:999-1011. [PMID: 34308491 DOI: 10.1007/s10265-021-01325-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Agriophyllum squarrosum (L.) Moq., a pioneer plant endemic to the temperate deserts of Asia, could be domesticated into an ideal crop with outstanding ecological and medicinal characteristics. A previous study showed differential organic acid accumulation between two in situ altitudinal ecotypes. To verify whether this accumulation was determined by environmental or genetic factors, we conducted organic acid targeted metabolic profiling among 14 populations of A. squarrosum collected from regions with different altitudes based on a common garden experiment. Results showed that the most abundant organic acid in A. squarrosum was citric acid (96.03%, 2322.90 μg g-1). Association analysis with in situ environmental variables showed that salicylic acid content was positively correlated with altitudinal gradient. Considering the enrichment of salicylic acid and protocatechualdehyde in high-altitude populations based on the common garden experiment, and the high expression of their biosynthesis relative genes (i.e., PAL and C4H) in the in situ high-altitude ecotype, we propose that organic acid accumulation could be involved in local adaptation to high altitudes. This study not only addresses the molecular basis of local adaptation involving the accumulation of organic acids in the desert plant A. squarrosum but also provides a method to screen wild germplasms to mitigate the impact of global climate change.
Collapse
Affiliation(s)
- Shanshan Zhou
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chaoju Qian
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou, 730000, Gansu, China
| | - Xiaoyue Yin
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xia Yan
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou, 730000, Gansu, China
- School of Life Science, Nantong University, Nantong, 226019, Jiangsu, China
| | - Xingke Fan
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingzhou Fang
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Gao
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Yuxiao Chang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 450002, Guangdong, China
| | - Xiao-Fei Ma
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou, 730000, Gansu, China.
- School of Life Science, Nantong University, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
44
|
Sun J, Ren J, Hu X, Hou Y, Yang Y. Therapeutic effects of Chinese herbal medicines and their extracts on diabetes. Biomed Pharmacother 2021; 142:111977. [PMID: 34364042 DOI: 10.1016/j.biopha.2021.111977] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
With the improvement of people's living standards and changes in the environment, the incidence of diabetes has increased rapidly. It has gradually become one of the main diseases threatening the health and life of modern people, bringing a great burden to the society. Although the existing treatment methods can effectively control the symptoms of diabetes and delay its progression, they have not brought satisfactory improvement in the quality of life and treatment of patients. Traditional Chinese herbal medicines and their extracts combine thousands of years of experience and the scientific basis provided by modern experimental research, which is expected to bring a qualitative leap in the clinical management of diabetes. Therefore, this article systematically reviews studies on the effects of Chinese herbal medicine and its extracts on diabetes and its complications, and aims to bring new ideas and options for the clinical treatment of diabetes.
Collapse
Affiliation(s)
- Jie Sun
- Department of Diabetes, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Jiangong Ren
- Department of Diabetes, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Xuejian Hu
- Department of Diabetes, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Yuanhua Hou
- Department of Diabetes, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Yan Yang
- Department of Diabetes, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China.
| |
Collapse
|
45
|
Petkova N, Ognyanov M, Kirchev M, Stancheva M. Bioactive compounds in water extracts prepared from rosehip‐containing herbal blends. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.14645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nadezhda Petkova
- Department of Organic Chemistry and Inorganic Chemistry Technological Faculty University of Food Technologies Plovdiv Bulgaria
| | - Manol Ognyanov
- Laboratory of Biologically Active Substances Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences Plovdiv Bulgaria
| | - Mihail Kirchev
- Department of Organic Chemistry and Inorganic Chemistry Technological Faculty University of Food Technologies Plovdiv Bulgaria
| | - Mihaela Stancheva
- Department of Organic Chemistry and Inorganic Chemistry Technological Faculty University of Food Technologies Plovdiv Bulgaria
| |
Collapse
|
46
|
Sotillo WS, Tarqui S, Huang X, Almanza G, Oredsson S. Breast cancer cell line toxicity of a flavonoid isolated from Baccharis densiflora. BMC Complement Med Ther 2021; 21:188. [PMID: 34215226 PMCID: PMC8254278 DOI: 10.1186/s12906-021-03349-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/08/2021] [Indexed: 12/25/2022] Open
Abstract
Background Flavonoids are compounds of interest in the search for new anti-cancer therapies. We have previously isolated the methoxyflavones 5,4′-dihydroxy-6,7,8,3′-tetramethoxyflavone (8-methoxycirsilineol), 5,4′-dihydroxy-6,7,8-trimethoxyflavone (xanthomicrol), and 5,4,'3′-trihydroxy-6,7,8-trimethoxyflavone (sideritoflavone) from Baccharis densiflora. Herein, we investigate the toxicity of these methoxyflavones in human breast-derived cell line. Our main aim was to focus on the cancer stem cell (CSC) sub-population of JIMT-1 breast cancer cells. Methods Initially, dose response experiments yielding inhibitory concentration 50 (IC50) values were performed using MCF-7, HCC1937, and JIMT-1 breast cancer, and the MCF-10A normal-like breast cell lines to get an understanding of toxic ranges. Due to a clear difference in the toxicity of the flavones, only sideritoflavone was selected for further studies using the JIMT-1 cell line. Effects on the CSC sub-population was investigated using flow cytometry-based methods. A wound healing assay and digital holographic microscopy were used to investigate effects on cell movement. A reporter assay was used to study effects on signal transduction pathways and Western blot for protein expression. Results The dose response data showed that 8-methoxycirsilineol was non-toxic at concentrations below 100 μM, that the IC50 of xanthomicrol was between 50 and 100 μM, while sideritoflavone was highly toxic with a single digit μM IC50 in all cell lines. Treatment of the JIMT-1 cells with 2 μM sideritoflavone did not selectively effect the CSC sub-population. Instead, sideritoflavone treatment inhibited the proliferation of both the non-CSC and the CSC sub-populations to the same extent. The inhibition of cell proliferation resulted in an accumulation of cells in the G2 phase of the cell cycle and the treated cells showed an increased level of γ-H2A histone family member X indicating DNA double strand breaks. Analysis of the effect of sideritoflavone treatment on signal transduction pathways showed activation of the Wnt, Myc/Max, and transforming growth factor-β pathways. The level of p65/nuclear factor kappa-light-chain-enhancer of activated Β cells was increased in sideritoflavone-treated cells. Cell movement was decreased by sideritoflavone treatment. Conclusions Altogether our data show that the methoxyflavone sideritoflavone has favourable anti-cancer effects that may be exploited for development to be used in combination with CSC specific compounds. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03349-4.
Collapse
Affiliation(s)
- Wendy Soria Sotillo
- Department of Biology, Lund University, Lund, Sweden.,Molecular Biology and Biotechnology Institute, University Major of San Andres, La Paz, Bolivia
| | - Santiago Tarqui
- Chemical Research Institute, University Major of San Andres, La Paz, Bolivia
| | - Xiaoli Huang
- Department of Biology, Lund University, Lund, Sweden
| | - Giovanna Almanza
- Chemical Research Institute, University Major of San Andres, La Paz, Bolivia
| | | |
Collapse
|
47
|
ZHUK V, SOKOLOVA D, KRAVETS A, SAKADA V, GLUSHCENKO L, KUCHUK M. Efficiency of pre-sowing seeds by UV-C and X-ray exposure on the accumulation of antioxidants in inflorescence of plants of Matricaria chamomilla L. genotypes. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2021. [DOI: 10.21448/ijsm.889860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
48
|
|
49
|
Musarra-Pizzo M, Pennisi R, Ben-Amor I, Mandalari G, Sciortino MT. Antiviral Activity Exerted by Natural Products against Human Viruses. Viruses 2021; 13:v13050828. [PMID: 34064347 PMCID: PMC8147851 DOI: 10.3390/v13050828] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022] Open
Abstract
Viral infections are responsible for several chronic and acute diseases in both humans and animals. Despite the incredible progress in human medicine, several viral diseases, such as acquired immunodeficiency syndrome, respiratory syndromes, and hepatitis, are still associated with high morbidity and mortality rates in humans. Natural products from plants or other organisms are a rich source of structurally novel chemical compounds including antivirals. Indeed, in traditional medicine, many pathological conditions have been treated using plant-derived medicines. Thus, the identification of novel alternative antiviral agents is of critical importance. In this review, we summarize novel phytochemicals with antiviral activity against human viruses and their potential application in treating or preventing viral disease.
Collapse
Affiliation(s)
- Maria Musarra-Pizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Shenzhen International Institute for Biomedical Research, 1301 Guanguang Rd. 3F Building 1-B, Silver Star Hi-Tech Park Longhua District, Shenzhen 518116, China
| | - Ichrak Ben-Amor
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Unit of Biotechnology and Pathologies, Higher Institute of Biotechnology of Sfax, University of Sfax, Sfax 3029, Tunisia
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Correspondence: (G.M.); (M.T.S.); Tel.: +39-090-6767-5217 (G.M. & M.T.S.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Correspondence: (G.M.); (M.T.S.); Tel.: +39-090-6767-5217 (G.M. & M.T.S.)
| |
Collapse
|
50
|
Chen J, Liu J, Huang Y, Li R, Ma C, Zhang B, Wu F, Yu W, Zuo X, Liang Y, Wang Q. Insights into oral bioavailability enhancement of therapeutic herbal constituents by cytochrome P450 3A inhibition. Drug Metab Rev 2021; 53:491-507. [PMID: 33905669 DOI: 10.1080/03602532.2021.1917598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Herbal plants typically have complex compositions and diverse mechanisms. Among them, bioactive constituents with relatively high exposure in vivo are likely to exhibit therapeutic efficacy. On the other hand, their bioavailability may be influenced by the synergistic effects of different bioactive components. Cytochrome P450 3A (CYP3A) is one of the most abundant CYP enzymes, responsible for the metabolism of 50% of approved drugs. In recent years, many therapeutic herbal constituents have been identified as CYP3A substrates. It is more evident that CYP3A inhibition derived from the herbal formula plays a critical role in improving the oral bioavailability of therapeutic constituents. CYP3A inhibition may be the mechanism of the synergism of herbal formula. In this review, we explored the multiplicity of CYP3A, summarized herbal monomers with CYP3A inhibitory effects, and evaluated herb-mediated CYP3A inhibition, thereby providing new insights into the mechanisms of CYP3A inhibition-mediated oral herb bioavailability.
Collapse
Affiliation(s)
- Junmei Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinman Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yueyue Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruoyu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cuiru Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Beiping Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fanchang Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenqian Yu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue Zuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|