1
|
Zhang XJ, Huang XH, Landis JB, Fu QS, Chen JT, Luo PR, Li LJ, Lu HY, Sun H, Deng T. Shifts in reproductive strategies in the evolutionary trajectory of plant lineages. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2499-2510. [PMID: 39190128 DOI: 10.1007/s11427-024-2597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/16/2024] [Indexed: 08/28/2024]
Abstract
Understanding the maintenance and shift in reproductive strategies is a fundamental question in evolutionary research. Although many efforts have been made to compare different reproductive strategies, the association between reproductive strategies and lineage divergence is largely unknown. To explore the impact of different reproductive strategies on lineage divergence, we investigated the evolution of clonality in Saxifraga sect. Irregulares+Heterisia. By integrating several lines of evidence, we found that the loss of clonality in Irregulares+Heterisia was associated with a progressive increase in diversification rate and intraspecific morphological diversity but with a reduction in species distribution range. Our findings provide insights into the ecological and evolutionary effects of different reproductive strategies, suggesting the necessity of integrating clonality into ecological and evolutional research.
Collapse
Affiliation(s)
- Xin-Jian Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xian-Han Huang
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L. H. Bailey Hortorium, Cornell University, New York, 14850, USA
- BTI Computational Biology Center, Boyce Thompson Institute, New York, 14853, USA
| | - Quan-Sheng Fu
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun-Tong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Peng-Rui Luo
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Juan Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Heng-Yi Lu
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Hang Sun
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Tao Deng
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
2
|
Janzen T, Etienne RS. Phylogenetic tree statistics: A systematic overview using the new R package 'treestats'. Mol Phylogenet Evol 2024; 200:108168. [PMID: 39117295 DOI: 10.1016/j.ympev.2024.108168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/19/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Phylogenetic trees are believed to contain a wealth of information on diversification processes. However, comparing phylogenetic trees is not straightforward due to their high dimensionality. Researchers have therefore defined a wide range of low-dimensional summary statistics. Currently, it remains unexplored to what extent these summary statistics cover the same underlying information and what summary statistics best explain observed variation across phylogenies. Furthermore, a large subset of available summary statistics focusses on measuring the topological features of a phylogenetic tree, but are often only explored at the extreme edge cases of the fully balanced or imbalanced tree and not for trees of intermediate balance. Here, we introduce a new R package called 'treestats', that provides speed optimized code to compute 70 summary statistics. We study correlations between summary statistics on empirical trees and on trees simulated using several diversification models. Furthermore, we introduce an algorithm to create intermediately balanced trees in a well-defined manner, in order to explore variation in summary statistics across a balance gradient. We find that almost all summary statistics are correlated with tree size, and find that it is difficult, if not impossible, to correct for tree size, unless the tree generating model is known. Furthermore, we find that across empirical and simulated trees, at least three large clusters of correlated summary statistics can be found, where statistics group together based on information used (topology or branching times). However, the finer grained correlation structure appears to depend strongly on either the taxonomic group studied (in empirical studies) or the tree generating model (in simulation studies). Amongst statistics describing the (im)balance of a tree, we find that almost all statistics vary non-linearly, and sometimes even non-monotonically, with our generated balance gradient. This indicates that balance is perhaps a more complex property of a tree than previously thought. Furthermore, using our new imbalancing algorithm, we devise a numerical test to identify balance statistics, and identify several statistics as balance statistics that were not previously considered as such. Lastly, our results lead to several recommendations on which statistics to select when analyzing and comparing phylogenetic trees.
Collapse
Affiliation(s)
- Thijs Janzen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands.
| | - Rampal S Etienne
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
3
|
Cai Q, Codjia JEI, Buyck B, Cui YY, Ryberg M, Yorou NS, Yang ZL. The evolution of ectomycorrhizal symbiosis and host-plant switches are the main drivers for diversification of Amanitaceae (Agaricales, Basidiomycota). BMC Biol 2024; 22:230. [PMID: 39390520 PMCID: PMC11465788 DOI: 10.1186/s12915-024-02031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Evolutionary radiation is widely recognized as a mode of species diversification, but the drivers of the rapid diversification of fungi remain largely unknown. Here, we used Amanitaceae, one of the most diverse families of macro-fungi, to investigate the mechanism underlying its diversification. RESULTS The ancestral state of the nutritional modes was assessed based on phylogenies obtained from fragments of 36 single-copy genes and stable isotope analyses of carbon and nitrogen. Moreover, a number of time-, trait-, and paleotemperature-dependent models were employed to investigate if the acquisition of ectomycorrhizal (ECM) symbiosis and climate changes promoted the diversification of Amanitaceae. The results indicate that the evolution of ECM symbiosis has a single evolutionary origin in Amanitaceae. The earliest increase in diversification coincided with the acquisition of the ECM symbiosis with angiosperms in the middle Cretaceous. The recent explosive diversification was primarily triggered by the host-plant switches from angiosperms to the mixed forests dominated by Fagaceae, Salicaceae, and Pinaceae or to Pinaceae. CONCLUSIONS Our study provides a good example of integrating phylogeny, nutritional mode evolution, and ecological analyses for deciphering the mechanisms underlying fungal evolutionary diversification. This study also provides new insights into how the transition to ECM symbiosis has driven the diversification of fungi.
Collapse
Affiliation(s)
- Qing Cai
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, 650201, China
| | - Jean Evans I Codjia
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Research Unit Tropical Mycology and Plants-Soil Fungi Interactions, Faculty of Agronomy, University of Parakou, Parakou, BP 123, Benin
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Bart Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 39, 57 rue Cuvier, Paris, 75005, France
| | - Yang-Yang Cui
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, 650201, China
| | - Martin Ryberg
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Nourou S Yorou
- Research Unit Tropical Mycology and Plants-Soil Fungi Interactions, Faculty of Agronomy, University of Parakou, Parakou, BP 123, Benin
| | - Zhu L Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, 650201, China.
| |
Collapse
|
4
|
Heuer MM, Fischer K, Tensen L. Color polymorphic carnivores have faster speciation rates. Sci Rep 2024; 14:23721. [PMID: 39390235 PMCID: PMC11467396 DOI: 10.1038/s41598-024-74747-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Variation in coat color is a prominent feature in carnivores, thought to be shaped by environmental factors. As new traits could allow populations to occupy novel niches and habitats, color polymorphism may be maintained by balancing selection. Consequently, color polymorphic species may speciate more rapidly and can give rise to monomorphic daughter species. We thus predicted that, within the Carnivora, (i) speciation rate is higher in polymorphic lineages, (ii) divergence between color polymorphic lineages is more recent, and (iii) within closely related groups, polymorphic lineages are ancestral and monomorphic lineages derived. We also tested whether accelerated speciation rates relate to niche breadth, measured by the number of occupied habitats and range size. We collected data of 48 polymorphic and 192 monomorphic carnivore species, and assessed speciation rates using phylogenetic comparative methods. We found that polymorphic carnivores had higher speciation rates (λ1 = 0.29, SD = 0.13) than monomorphic species (λ0 = 0.053, SD = 0.044). Hidden and quantitative state speciation and extinction models inferred that color polymorphism was the main contributing factor, and that niche breadth was not of influence. Therefore, other selective forces than spatial niche segregation, such as predator-prey coevolution, may contribute to color polymorphism in wild carnivores.
Collapse
Affiliation(s)
- Moritz M Heuer
- Department of Physical Geography, Trier University, Trier, Germany
- Department of Biology, Institute for Integrated Natural Sciences, Koblenz University, Koblenz, Germany
| | - Klaus Fischer
- Department of Biology, Institute for Integrated Natural Sciences, Koblenz University, Koblenz, Germany
| | - Laura Tensen
- Department of Biology, Institute for Integrated Natural Sciences, Koblenz University, Koblenz, Germany.
- Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg, South Africa.
- Department of Biology, Section Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Gu S, Wu S, Zeng W, Deng Y, Luo G, Li P, Yang Y, Wang Z, Hu Q, Tan L. High-elevation-induced decrease in soil pH weakens ecosystem multifunctionality by influencing soil microbiomes. ENVIRONMENTAL RESEARCH 2024; 257:119330. [PMID: 38830394 DOI: 10.1016/j.envres.2024.119330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
Plant environmental stress response has become a global research hotspot, yet there is a lack of clear understanding regarding the mechanisms that maintain microbial diversity and their ecosystem services under environmental stress. In our research, we examined the effects of moderate elevation on the rhizosphere soil characteristics, microbial community composition, and ecosystem multifunctionality (EMF) within agricultural systems. Our findings revealed a notable negative correlation between EMF and elevation, indicating a decline in multifunctionality at higher elevations. Additionally, our analysis across bacterial and protistan communities showed a general decrease in microbial richness with increasing elevation. Using random forest models, pH was identified as the key environmental stressor influencing microbial communities. Furthermore, we found that microbial community diversity is negatively correlated with stability by mediating complexity. Interestingly, while pH was found to affect the complexity within bacterial networks, it did not significantly impact the ecosystem stability along the elevation gradients. Using a Binary-State Speciation and Extinction (BiSSE) model to explore the evolutionary dynamics, we found that Generalists had higher speciation rates and lower extinction rates compared to specialists, resulting in a skewed distribution towards higher net diversification for generalists under increasing environmental stress. Moreover, structural equation modeling (SEM) analysis highlighted a negative correlation between environmental stress and community diversity, but showed a positive correlation between environmental stress and degree of cooperation & competition. These interactions under environmental stress indirectly increased community stability and decreased multifunctionality. Our comprehensive study offers valuable insights into the intricate relationship among environmental factors, microbial communities, and ecosystem functions, especially in the context of varying elevation gradients. These findings contribute significantly to our understanding of how environmental stressors affect microbial diversity and ecosystem services, providing a foundation for future ecological research and management strategies in similar contexts.
Collapse
Affiliation(s)
- Songsong Gu
- Hunan Agricultural University, Changsha, China; CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Shaolong Wu
- Tobacco Company of Hunan Province, Changsha, Hunan, China
| | - Weiai Zeng
- Changsha Tobacco Company of Hunan Province, Changsha, Hunan, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Gongwen Luo
- Hunan Agricultural University, Changsha, China
| | - Pengfei Li
- Wenshan Tobacco Company of Yunnan Province, Wenshan, Yunnan, China
| | | | | | - Qiulong Hu
- Hunan Agricultural University, Changsha, China.
| | - Lin Tan
- Hunan Agricultural University, Changsha, China.
| |
Collapse
|
6
|
Liu R, Wang WJ, Wang H, Ree RH, Li DZ, Yu WB. Plant species diversification in the Himalaya-Hengduan Mountains region: an example from an endemic lineage of Pedicularis (Orobanchaceae) in the role of floral specializations and rapid range expansions. Cladistics 2024. [PMID: 39258812 DOI: 10.1111/cla.12596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 09/12/2024] Open
Abstract
The c. 270 endemic species of Pedicularis in the Himalaya-Hengduan Mountains (HHM) region exhibit high diversity in geographic distribution, elevational range and floral morphology. Many of these, including the species with the longest corolla tubes and beaked galeas, are monophyletic and represent a putative in situ radiation. In this study, we focus on the representative Clade 3 within the HHM region. We integrate the plastid phylogeny of this clade with environmental data and species distributions to infer environmental correlates of species diversity. We estimate macroevolutionary rates and reconstructed ancestral states for geographic ranges and corolla traits, and analyse patterns of range overlap and niche evolution to assess drivers of diversification in the HHM region. Our results show that the region from northwest Yunnan to southwest Sichuan is the centre of diversity for this clade of Pedicularis. Rates of diversification are associated with precipitation and multiple environmental factors. Multiple range expansions from the Sanjiang (Three Parallel Rivers) region, followed by allopatric speciation across the HHM region, contributed to early rapid diversification. Corolla traits are not significantly associated with species diversification. This study highlights the importance of integrated evidence for understanding species diversification dynamics and contributes to our understanding of the origins of the remarkable richness of plant species in the HHM region.
Collapse
Affiliation(s)
- Rong Liu
- Center for Integrative Conservation and Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 101408, China
| | - Wei-Jia Wang
- Center for Integrative Conservation and Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Hong Wang
- University of Chinese Academy of Sciences, Huairou District, Beijing, 101408, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Richard H Ree
- Negaunee Integrative Research Center, Field Museum, Chicago, Illinois, 60605, USA
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Wen-Bin Yu
- Center for Integrative Conservation and Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| |
Collapse
|
7
|
Alencar LRV, Schwery O, Gade MR, Domínguez-Guerrero SF, Tarimo E, Bodensteiner BL, Uyeda JC, Muñoz MM. Opportunity begets opportunity to drive macroevolutionary dynamics of a diverse lizard radiation. Evol Lett 2024; 8:623-637. [PMID: 39328284 PMCID: PMC11424082 DOI: 10.1093/evlett/qrae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 09/28/2024] Open
Abstract
Evolution proceeds unevenly across the tree of life, with some lineages accumulating diversity more rapidly than others. Explaining this disparity is challenging as similar evolutionary triggers often do not result in analogous shifts across the tree, and similar shifts may reflect different evolutionary triggers. We used a combination of approaches to directly consider such context-dependency and untangle the complex network of processes that shape macroevolutionary dynamics, focusing on Pleurodonta, a diverse radiation of lizards. Our approach shows that some lineage-wide signatures are lost when conditioned on sublineages: while viviparity appears to accelerate diversification, its effect size is overestimated by its association with the Andean mountains. Conversely, some signals that erode at broader phylogenetic scales emerge at shallower ones. Mountains, in general, do not affect speciation rates; rather, the occurrence in the Andean mountains specifically promotes diversification. Likewise, the evolution of larger sizes catalyzes diversification rates, but only within certain ecological and geographical settings. We caution that conventional methods of fitting models to entire trees may mistakenly assign diversification heterogeneity to specific factors despite evidence against their plausibility. Our study takes a significant stride toward disentangling confounding factors and identifying plausible sources of ecological opportunities in the diversification of large evolutionary radiations.
Collapse
Affiliation(s)
- Laura R V Alencar
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Orlando Schwery
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Meaghan R Gade
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | | | - Eliza Tarimo
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Brooke L Bodensteiner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Josef C Uyeda
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| |
Collapse
|
8
|
Eliason CM, Nicolaï MPJ, Bom C, Blom E, D'Alba L, Shawkey MD. Transitions between colour mechanisms affect speciation dynamics and range distributions of birds. Nat Ecol Evol 2024; 8:1723-1734. [PMID: 39060476 DOI: 10.1038/s41559-024-02487-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Several ecogeographical 'rules' have been proposed to explain colour variation at broad spatial and phylogenetic scales but these rarely consider whether colours are based on pigments or structural colours. However, mechanism can have profound effects on the function and evolution of colours. Here, we combine geographic information, climate data and colour mechanism at broad phylogenetic (9,409 species) and spatial scales (global) to determine how transitions between pigmentary and structural colours influence speciation dynamics and range distributions in birds. Among structurally coloured species, we find that rapid dispersal into tropical regions drove the accumulation of iridescent species, whereas the build-up of non-iridescent species in the tropics was driven by a combination of dispersal and faster in situ evolution in the tropics. These results could be explained by pleiotropic links between colouration and dispersal behaviour or ecological factors influencing colonization success. These data elucidate geographic patterns of colouration at a global scale and provide testable hypotheses for future work on birds and other animals with structural colours.
Collapse
Affiliation(s)
- Chad M Eliason
- Grainger Bioinformatics Center, Field Museum of Natural History, Chicago, IL, USA.
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA.
| | - Michaël P J Nicolaï
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ghent, Belgium
- Department of Recent Vertebrates, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Cynthia Bom
- Faculty of Science, Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Eline Blom
- Evolutionary Ecology Group, Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Liliana D'Alba
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ghent, Belgium
- Evolutionary Ecology Group, Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Matthew D Shawkey
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Thompson JB, Hernández-Hernández T, Keeling G, Vásquez-Cruz M, Priest NK. Identifying the multiple drivers of cactus diversification. Nat Commun 2024; 15:7282. [PMID: 39179557 PMCID: PMC11343764 DOI: 10.1038/s41467-024-51666-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Our understanding of the complexity of forces at play in the rise of major angiosperm lineages remains incomplete. The diversity and heterogeneous distribution of most angiosperm lineages is so extraordinary that it confounds our ability to identify simple drivers of diversification. Using machine learning in combination with phylogenetic modelling, we show that five separate abiotic and biotic variables significantly contribute to the diversification of Cactaceae. We reconstruct a comprehensive phylogeny, build a dataset of 39 abiotic and biotic variables, and predict the variables of central importance, while accounting for potential interactions between those variables. We use state-dependent diversification models to confirm that five abiotic and biotic variables shape diversification in the cactus family. Of highest importance are diurnal air temperature range, soil sand content and plant size, with lesser importance identified in isothermality and geographic range size. Interestingly, each of the estimated optimal conditions for abiotic variables were intermediate, indicating that cactus diversification is promoted by moderate, not extreme, climates. Our results reveal the potential primary drivers of cactus diversification, and the need to account for the complexity underlying the evolution of angiosperm lineages.
Collapse
Affiliation(s)
- Jamie B Thompson
- School of Biological Sciences, University of Reading, Whiteknights, Reading, Berkshire, UK.
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom.
| | | | - Georgia Keeling
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Marilyn Vásquez-Cruz
- Instituto Tecnológico Superior de Irapuato, Tecnológico Nacional de México, Irapuato, Guanajuato, México
| | - Nicholas K Priest
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
| |
Collapse
|
10
|
Jonika MM, Wilhoit KT, Chin M, Arekere A, Blackmon H. Drift drives the evolution of chromosome number II: The impact of range size on genome evolution in Carnivora. J Hered 2024; 115:524-531. [PMID: 38712909 PMCID: PMC11334210 DOI: 10.1093/jhered/esae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/03/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
Chromosome number is a fundamental genomic trait that is often the first recorded characteristic of a genome. Across large clades, a common pattern emerges: many or even most lineages exhibit relative stasis, while a handful of lineages or species exhibit striking variation. Despite recent developments in comparative methods, most of this heterogeneity is still poorly understood. It is essential to understand why some lineages have rapid rates of chromosome number evolution, as it can impact a variety of other traits. Previous research suggests that biased female meiotic drive may shape rates of karyotype evolution in some mammals. However, Carnivora exhibits variation that this female meiotic drive model cannot explain. We hypothesize that variation in effective population size may underlie rate variation in Carnivora. To test this hypothesis, we estimated rates of fusions and fissions while accounting for range size, which we use as a proxy for effective population size. We reason fusions and fissions are deleterious or underdominant and that only in lineages with small range sizes will these changes be able to fix due to genetic drift. In this study, we find that the rates of fusions and fissions are elevated in taxa with small range sizes relative to those with large range sizes. Based on these findings, we conclude that 1) naturally occurring structural mutations that change chromosome number are underdominant or mildly deleterious, and 2) when population sizes are small, structural rearrangements may play an important role in speciation and reduction in gene flow among populations.
Collapse
Affiliation(s)
- Michelle M Jonika
- Department of Biology, Texas A&M University, College Station, TX, United States
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
| | - Kayla T Wilhoit
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Maximos Chin
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Abhimanyu Arekere
- Department of Biology, Texas A&M University, College Station, TX, United States
- Department of Biomedical Engineering, University of Texas, Austin, TX, United States
| | - Heath Blackmon
- Department of Biology, Texas A&M University, College Station, TX, United States
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
- Ecology and Evolutionary Biology Interdepartmental Program, Texas A&M University, College Station, TX, United States
| |
Collapse
|
11
|
Liu K, Li E, Cui X, Wang Y, Xu C, Suo Z, Dong W, Zhang Z. Key innovations and niche variation promoted rapid diversification of the widespread Juniperus (Cupressaceae). Commun Biol 2024; 7:1002. [PMID: 39152250 PMCID: PMC11329744 DOI: 10.1038/s42003-024-06687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
The processes of forming lineages undergoing widespread radiations remain a knowledge gap that is fundamental to our understanding of the geographic distributions of species. Although early studies emphasized the importance of dispersal ability and historical migration events, key innovations that promote rapid diversification and/or adaptation to new habitats may also strongly influence distribution ranges. Juniperus is the second largest genus of conifers and is widely distributed throughout the Northern Hemisphere. Here, we used phylogenetic, phenotypic, and climatic data to investigate the contributions of these processes to the wide distribution and rapid diversification of Juniperus. Combining a time-scaled phylogeny and macroevolutionary theory, we show that the key innovations of berry-like seed cones and dioecy promoted the rapid diversification of Juniperus and that increased dispersal ability promoted allopatric speciation. Ecological niches had significant divergence among different clades of Juniperus. Biogeographic results supported multiple long-distance dispersal events and niche variation that contributed to the modern range of Juniperus, while both phenotypic adaptation and ecological opportunity probably drove its distribution range. Our findings suggest that the current widespread distribution is likely the result of significant divergence driven by niche variation in which ecological opportunities from key innovation and phenotypic divergence.
Collapse
Affiliation(s)
- Kangjia Liu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Enze Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xingyong Cui
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yushuang Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Chao Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhili Suo
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wenpan Dong
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China.
| | - Zhixiang Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China.
| |
Collapse
|
12
|
Valdés-Florido A, Valcárcel V, Maguilla E, Díaz-Lifante Z, Andrés-Camacho C, Zeltner L, Coca-de-la-Iglesia M, Medina NG, Arroyo J, Escudero M. The interplay between climatic niche evolution, polyploidy and reproductive traits explains plant speciation in the Mediterranean Basin: a case study in Centaurium (Gentianaceae). FRONTIERS IN PLANT SCIENCE 2024; 15:1439985. [PMID: 39184574 PMCID: PMC11344271 DOI: 10.3389/fpls.2024.1439985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/19/2024] [Indexed: 08/27/2024]
Abstract
Speciation and diversification patterns in angiosperms are frequently shaped by niche evolution. Centaurium Hill is a Mediterranean genus with ca. 25 species, of which 60% are polyploids (tetra- and hexaploids), distributed mainly in the Mediterranean Basin and in areas with temperate and arid climates of Asia, Europe, North-Central Africa and North America. The evolutionary history of this genus has been studied using morphological, biogeographical and molecular approaches, but its climatic niche characterization and its relation with genome evolution (chromosome number and ploidy level) has not been addressed yet. Thus, this study aims to identify the role of the evolution of climatic niche, ploidy level, life cycle and floral traits in the diversification of Centaurium. Climatic niche characterization involved estimating present climate preferences using quantitative data and reconstructing ancestral niches to evaluate climatic niche shifts. The evolution of climatic niche towards selective optima determined by ploidy level (three ploidy levels) and different binary traits (polyploidy, floral size, floral display, herkogamy and life cycle) was addressed under the Ornstein-Uhlenbeck model. Chromosome number evolution was inferred using the ChromoSSE model, testing if changes are clado- or anagenetic. Chromosome number evolution and its link with cladogenesis, life cycle and floral traits was modeled on the phylogeny. The reconstruction of the ancestral niches shows that Centaurium originated in a mild climate and diversified to both humid and cold as well as to dry and warmer climates. Niche conservatism was estimated in the climatic niche of the ancestors, while the climatic niche of the current taxa experienced transitions from their ancestors' niche. Besides, the evolution of climatic niche towards multiple selective optima determined by the studied traits was supported, life cycle optima receiving the highest support. The reconstruction of chromosome number transitions shows that the rate of speciation process resulting from chromosomal changes (chromosomal cladogenesis) is similar to that of non-chromosomal cladogenesis. Additionally, dependent evolution of floral size, floral display and herkogamy with chromosome number variation was supported. In conclusion, polyploidization is a crucial process in the Mediterranean region that assisted speciation and diversification into new areas with different climates, entailing niche shifts and evolution of reproductive strategies.
Collapse
Affiliation(s)
- Ana Valdés-Florido
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, Spain
| | - Virginia Valcárcel
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Enrique Maguilla
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| | - Zoila Díaz-Lifante
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, Spain
| | - Cristina Andrés-Camacho
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, Spain
| | - Louis Zeltner
- Laboratoire de Botanique Evolutive, Université de Neuchâtel, Neuchâtel, Switzerland
| | | | - Nagore G. Medina
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Arroyo
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, Spain
| | - Marcial Escudero
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, Spain
| |
Collapse
|
13
|
Gao Y, Feder AF. Detecting branching rate heterogeneity in multifurcating trees with applications in lineage tracing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601073. [PMID: 39005367 PMCID: PMC11244928 DOI: 10.1101/2024.06.27.601073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Understanding cellular birth rate differences is crucial for predicting cancer progression and interpreting tumor-derived genetic data. Lineage tracing experiments enable detailed reconstruction of cellular genealogies, offering new opportunities to measure branching rate heterogeneity. However, the lineage tracing process can introduce complex tree features that complicate this effort. Here, we examine tree characteristics in lineage tracing-derived genealogies and find that editing window placement leads to multifurcations at a tree's root or tips. We propose several ways in which existing tree topology-based metrics can be extended to test for rate heterogeneity on trees even in the presence of lineage-tracing associated distortions. Although these methods vary in power and robustness, a test based on theJ 1 statistic effectively detects branching rate heterogeneity in simulated lineage tracing data. Tests based on other common statistics ( s ^ and the Sackin index) show interior performance toJ 1 . We apply our validated methods to xenograft experimental data and find widespread rate heterogeneity across multiple study systems. Our results demonstrate the potential of tree topology statistics in analyzing lineage tracing data, and highlight the challenges associated with adapting phylogenetic methods to these systems.
Collapse
Affiliation(s)
- Yingnan Gao
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Alison F Feder
- Department of Genome Sciences, University of Washington, Seattle, WA
- Herbold Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
14
|
de Vos JM, Streiff SJR, Bachelier JB, Epitawalage N, Maurin O, Forest F, Baker WJ. Phylogenomics of the pantropical Connaraceae: revised infrafamilial classification and the evolution of heterostyly. PLANT SYSTEMATICS AND EVOLUTION = ENTWICKLUNGSGESCHICHTE UND SYSTEMATIK DER PFLANZEN 2024; 310:29. [PMID: 39105137 PMCID: PMC11297820 DOI: 10.1007/s00606-024-01909-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/28/2024] [Indexed: 08/07/2024]
Abstract
Connaraceae is a pantropical family of about 200 species containing lianas and small trees with remarkably diverse floral polymorphisms, including distyly, tristyly, homostyly, and dioecy. To date, relationships within the family have not been investigated using a targeted molecular phylogenetic treatment, severely limiting systematic understanding and reconstruction of trait evolution. Accordingly, their last infrafamilial classification was based only on morphological data. Here, we used phylogenomic data obtained using the Angiosperms353 nuclear target sequence capture probes, sampling all tribes and almost all genera, entirely from herbarium specimens, to revise infrafamilial classification and investigate the evolution of heterostyly. The backbone of the resulting molecular phylogenetic tree is almost entirely resolved. Connaraceae consists of two clades, one containing only the African genus Manotes (4 or 5 species), which we newly recognize at the subfamily level. Vegetative and reproductive synapomorphies are proposed for Manotoideae. Within Connaroideae, Connareae is expanded to include the former Jollydoreae. The backbone of Cnestideae, which contains more than half of the Connaraceae species, remains incompletely resolved. Reconstructions of reproductive system evolution are presented that tentatively support tristyly as the ancestral state for the family, with multiple parallel losses, in agreement with previous hypotheses, plus possible re-gains. However, the great diversity of stylar polymorphisms and their phylogenetic lability preclude a definitive answer. Overall, this study reinforces the usefulness of herbarium phylogenomics, and unlocks the reproductive diversity of Connaraceae as a model system for the evolution of complex biological phenomena. Supplementary Information The online version contains supplementary material available at 10.1007/s00606-024-01909-y.
Collapse
Affiliation(s)
- Jurriaan M. de Vos
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
| | - Serafin J. R. Streiff
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
- UMR DIADE, Université de Montpellier, IRD, CIRAD, 911 Avenue Agropolis, 34090 Montpellier, France
| | - Julien B. Bachelier
- Institüt für Biologie/Dahlem Centre of Plant Sciences, Freie Universität Berlin, Altensteinstrasse 6, 14195 Berlin, Germany
| | - Niroshini Epitawalage
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE UK
- The New York Botanical Garden, 2900 Southern Blvd, Bronx, NY 10458 USA
| | - Olivier Maurin
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE UK
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE UK
| | - William J. Baker
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE UK
- Department of Biology, Aarhus University, Ny Munkegade 116, 8000 Aarhus, Denmark
| |
Collapse
|
15
|
Faurby S, Silvestro D, Werdelin L, Antonelli A. Reliable biogeography requires fossils: insights from a new species-level phylogeny of extinct and living carnivores. Proc Biol Sci 2024; 291:20240473. [PMID: 39106959 DOI: 10.1098/rspb.2024.0473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/21/2024] [Indexed: 08/09/2024] Open
Abstract
A central objective of historical biogeography is to understand where clades originated and how they moved across space and over time. However, given the dynamic history of ecosystem changes in response to climate change and geological events, the manifold long-distance dispersals over evolutionary timescales, and regional and global extinctions, it remains uncertain how reliable inferences based solely on extant taxa can be achieved. Using a novel species-level phylogeny of all known extant and extinct species of the mammalian order Carnivora and related extinct groups, we show that far more precise and accurate ancestral areas can be estimated by fully integrating extinct species into the analyses, rather than solely relying on extant species or identifying ancestral areas only based on the geography of the oldest fossils. Through a series of simulations, we further show that this conclusion is robust under realistic scenarios in which the unknown extinct taxa represent a biased subset of all extinct species. Our results highlight the importance of integrating fossil taxa into a phylogenetic framework to further improve our understanding of historical biogeography and reveal the dynamic dispersal and diversification history of carnivores.
Collapse
Affiliation(s)
- Søren Faurby
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530 Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, 40530 Gothenburg, Sweden
| | - Daniele Silvestro
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530 Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, 40530 Gothenburg, Sweden
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
- Swiss Institute of Bioinformatics, Fribourg 1700, Switzerland
| | - Lars Werdelin
- Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530 Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, 40530 Gothenburg, Sweden
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
16
|
Marion AFP, Condamine FL, Guinot G. Sequential trait evolution did not drive deep-time diversification in sharks. Evolution 2024; 78:1405-1425. [PMID: 38745524 DOI: 10.1093/evolut/qpae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Estimating how traits evolved and impacted diversification across the tree of life represents a critical topic in ecology and evolution. Although there has been considerable research in comparative biology, large parts of the tree of life remain underexplored. Sharks are an iconic clade of marine vertebrates, and key components of marine ecosystems since the early Mesozoic. However, few studies have addressed how traits evolved or whether they impacted their extant diversity patterns. Our study aimed to fill this gap by reconstructing the largest time-calibrated species-level phylogeny of sharks and compiling an exhaustive database for ecological (diet, habitat) and biological (reproduction, maximum body length) traits. Using state-of-the-art models of evolution and diversification, we outlined the major character shifts and modes of trait evolution across shark species. We found support for sequential models of trait evolution and estimated a small to medium-sized lecithotrophic and coastal-dwelling most recent common ancestor for extant sharks. However, our exhaustive hidden traits analyses do not support trait-dependent diversification for any examined traits, challenging previous works. This suggests that the role of traits in shaping sharks' diversification dynamics might have been previously overestimated and should motivate future macroevolutionary studies to investigate other drivers of diversification in this clade.
Collapse
Affiliation(s)
- Alexis F P Marion
- Institut des Sciences de l'Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| | - Fabien L Condamine
- Institut des Sciences de l'Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| | - Guillaume Guinot
- Institut des Sciences de l'Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| |
Collapse
|
17
|
Nicolaï MPJ, Van Hecke B, Rogalla S, Debruyn G, Bowie RCK, Matzke NJ, Hackett SJ, D'Alba L, Shawkey MD. The Evolution of Multiple Color Mechanisms Is Correlated with Diversification in Sunbirds (Nectariniidae). Syst Biol 2024; 73:343-354. [PMID: 38289860 DOI: 10.1093/sysbio/syae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/01/2024] Open
Abstract
How and why certain groups become speciose is a key question in evolutionary biology. Novel traits that enable diversification by opening new ecological niches are likely important mechanisms. However, ornamental traits can also promote diversification by opening up novel sensory niches and thereby creating novel inter-specific interactions. More specifically, ornamental colors may enable more precise and/or easier species recognition and may act as key innovations by increasing the number of species-specific patterns and promoting diversification. While the influence of coloration on diversification is well-studied, the influence of the mechanisms that produce those colors (e.g., pigmentary, nanostructural) is less so, even though the ontogeny and evolution of these mechanisms differ. We estimated a new phylogenetic tree for 121 sunbird species and combined color data of 106 species with a range of phylogenetic tools to test the hypothesis that the evolution of novel color mechanisms increases diversification in sunbirds, one of the most colorful bird clades. Results suggest that: (1) the evolution of novel color mechanisms expands the visual sensory niche, increasing the number of achievable colors, (2) structural coloration diverges more readily across the body than pigment-based coloration, enabling an increase in color complexity, (3) novel color mechanisms might minimize trade-offs between natural and sexual selection such that color can function both as camouflage and conspicuous signal, and (4) despite structural colors being more colorful and mobile, only melanin-based coloration is positively correlated with net diversification. Together, these findings explain why color distances increase with an increasing number of sympatric species, even though packing of color space predicts otherwise.
Collapse
Affiliation(s)
- Michaël P J Nicolaï
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Bert Van Hecke
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Svana Rogalla
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
- Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena, 48940 Leioa, Spain
| | - Gerben Debruyn
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Nicholas J Matzke
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Shannon J Hackett
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Liliana D'Alba
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
- Evolutionary Ecology, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Matthew D Shawkey
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
| |
Collapse
|
18
|
Konno N, Maeno S, Tanizawa Y, Arita M, Endo A, Iwasaki W. Evolutionary paths toward multi-level convergence of lactic acid bacteria in fructose-rich environments. Commun Biol 2024; 7:902. [PMID: 39048718 PMCID: PMC11269746 DOI: 10.1038/s42003-024-06580-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Convergence provides clues to unveil the non-random nature of evolution. Intermediate paths toward convergence inform us of the stochasticity and the constraint of evolutionary processes. Although previous studies have suggested that substantial constraints exist in microevolutionary paths, it remains unclear whether macroevolutionary convergence follows stochastic or constrained paths. Here, we performed comparative genomics for hundreds of lactic acid bacteria (LAB) species, including clades showing a convergent gene repertoire and sharing fructose-rich habitats. By adopting phylogenetic comparative methods we showed that the genomic convergence of distinct fructophilic LAB (FLAB) lineages was caused by parallel losses of more than a hundred orthologs and the gene losses followed significantly similar orders. Our results further suggested that the loss of adhE, a key gene for phenotypic convergence to FLAB, follows a specific evolutionary path of domain architecture decay and amino acid substitutions in multiple LAB lineages sharing fructose-rich habitats. These findings unveiled the constrained evolutionary paths toward the convergence of free-living bacterial clades at the genomic and molecular levels.
Collapse
Affiliation(s)
- Naoki Konno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Shintaro Maeno
- Research Center for Advance Science and Innovation Organization for Research Initiatives, Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Yasuhiro Tanizawa
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Masanori Arita
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Akihito Endo
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan.
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
19
|
Soewongsono AC, Landis MJ. A Diffusion-Based Approach for Simulating Forward-in-Time State-Dependent Speciation and Extinction Dynamics. Bull Math Biol 2024; 86:101. [PMID: 38970749 DOI: 10.1007/s11538-024-01337-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
We establish a general framework using a diffusion approximation to simulate forward-in-time state counts or frequencies for cladogenetic state-dependent speciation-extinction (ClaSSE) models. We apply the framework to various two- and three-region geographic-state speciation-extinction (GeoSSE) models. We show that the species range state dynamics simulated under tree-based and diffusion-based processes are comparable. We derive a method to infer rate parameters that are compatible with given observed stationary state frequencies and obtain an analytical result to compute stationary state frequencies for a given set of rate parameters. We also describe a procedure to find the time to reach the stationary frequencies of a ClaSSE model using our diffusion-based approach, which we demonstrate using a worked example for a two-region GeoSSE model. Finally, we discuss how the diffusion framework can be applied to formalize relationships between evolutionary patterns and processes under state-dependent diversification scenarios.
Collapse
Affiliation(s)
- Albert C Soewongsono
- Department of Biology, Washington University in St. Louis, Rebstock Hall, St. Louis, MO, 63130, USA.
| | - Michael J Landis
- Department of Biology, Washington University in St. Louis, Rebstock Hall, St. Louis, MO, 63130, USA
| |
Collapse
|
20
|
Chen HY, Zhang ZR, Yao X, Ya JD, Jin XH, Wang L, Lu L, Li DZ, Yang JB, Yu WB. Plastid phylogenomics provides new insights into the systematics, diversification, and biogeography of Cymbidium (Orchidaceae). PLANT DIVERSITY 2024; 46:448-461. [PMID: 39280966 PMCID: PMC11390606 DOI: 10.1016/j.pld.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 09/18/2024]
Abstract
Cymbidium (Orchidaceae: Epidendroideae), with around 60 species, is widely-distributed across Southeast Asia, providing a nice system for studying the processes that underlie patterns of biodiversity in the region. However, phylogenetic relationships of Cymbidium have not been well resolved, hampering investigations of species diversification and the biogeographical history of this genus. In this study, we construct a plastome phylogeny of 56 Cymbidium species, with four well-resolved major clades, which provides a framework for biogeographical and diversification rate analyses. Molecular dating and biogeographical analyses show that Cymbidium likely originated in the region spanning northern Indo-Burma to the eastern Himalayas during the early Miocene (∼21.10 Ma). It then rapidly diversified into four major clades in East Asia within approximately a million years during the middle Miocene. Cymbidium spp. migration to the adjacent regions (Borneo, Philippines, and Sulawesi) primarily occurred during the Pliocene-Pleistocene period. Our analyses indicate that the net diversification rate of Cymbidium has decreased since its origin, and is positively associated with changes in temperature and monsoon intensity. Favorable hydrothermal conditions brought by monsoon intensification in the early Miocene possibly contributed to the initial rapid diversification, after which the net diversification rate was reduced with the cooling climate after the middle Miocene. The transition from epiphytic to terrestrial habits may have enabled adaptation to cooler environments and colonization of northern niches, yet without a significant effect on diversification rates. This study provides new insights into how monsoon activity and temperature changes affected the diversification dynamics of plants in Southeast Asia.
Collapse
Affiliation(s)
- Hai-Yao Chen
- Center for Integrative Conservation & Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Zhi-Rong Zhang
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xin Yao
- Center for Integrative Conservation & Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | - Ji-Dong Ya
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xiao-Hua Jin
- State Key Laboratory of Plant Diversity and Specility Crops, Institute of Botany, Chinese Academy of Sciences, Haidian District, Beijing 100093, China
| | - Lin Wang
- Center for Integrative Conservation & Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | - Lu Lu
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, and Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, Yunnan 650500, China
| | - De-Zhu Li
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jun-Bo Yang
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Wen-Bin Yu
- Center for Integrative Conservation & Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| |
Collapse
|
21
|
You Y, Yu J, Nie Z, Peng D, Barrett RL, Rabarijaona RN, Lai Y, Zhao Y, Dang VC, Chen Y, Chen Z, Wen J, Lu L. Transition of survival strategies under global climate shifts in the grape family. NATURE PLANTS 2024; 10:1100-1111. [PMID: 39009829 DOI: 10.1038/s41477-024-01726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/09/2024] [Indexed: 07/17/2024]
Abstract
Faced with environmental changes, plants may either move to track their ancestral niches or evolve to adapt to new niches. Vitaceae, the grape family, has evolved diverse adaptive traits facilitating a global expansion in wide-ranging habitats, making it ideal for investigating transition between move and evolve strategies and exploring the underlying mechanisms. Here we inferred the patterns of biogeographic diversification and trait evolution in Vitaceae based on a robust phylogeny with dense sampling including 495 species (~52% of Vitaceae species). Vitaceae probably originated from Asia-the diversity centre of extant genera and the major source of dispersals. Boundaries of the Eocene, Oligocene and Miocene were identified as turning points in shifting strategies. A significant decrease in move strategy was identified during the Oligocene, followed by increases in move and evolve. After the Miocene, evolve began to dominate, during which increased niche opportunities and key trait innovations played important roles.
Collapse
Affiliation(s)
- Yichen You
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinren Yu
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zelong Nie
- Hunan Provincial Key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources and Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, China
| | - Danxiao Peng
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Russell L Barrett
- Botanic Gardens of Sydney, National Herbarium of New South Wales, Australian Botanic Garden, Sydney, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Romer Narindra Rabarijaona
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Yangjun Lai
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Yujie Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Viet-Cuong Dang
- University of Medicine and Pharmacy, Vietnam National University, Hanoi, Vietnam
| | - Youhua Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhiduan Chen
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- China National Botanical Garden, Beijing, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
| | - Limin Lu
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- China National Botanical Garden, Beijing, China.
| |
Collapse
|
22
|
Li S, Yan X, Abdullah Al M, Ren K, Rensing C, Hu A, Tsyganov AN, Mazei Y, Smirnov A, Mazei N, Yang J. Ecological and evolutionary processes involved in shaping microbial habitat generalists and specialists in urban park ecosystems. mSystems 2024; 9:e0046924. [PMID: 38767347 PMCID: PMC11237591 DOI: 10.1128/msystems.00469-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Microbiomes are integral to ecological health and human well-being; however, their ecological and evolutionary drivers have not been systematically investigated, especially in urban park ecosystems. As microbes have different levels of tolerance to environmental changes and habitat preferences, they can be categorized into habitat generalists and specialists. Here, we explored the ecological and evolutionary characteristics of both prokaryotic and microeukaryotic habitat generalists and specialists from six urban parks across five habitat types, including moss, soil, tree hole, water, and sediment. Our results revealed that different ecological and evolutionary processes maintained and regulated microbial diversity in urban park ecosystems. Under ecological perspective, community assembly of microbial communities was mainly driven by stochastic processes; however, deterministic processes were higher for habitat specialists than generalists. Microbial interactions were highly dynamic among habitats, and habitat specialists played key roles as module hubs in intradomain networks. In aquatic interdomain networks, microeukaryotic habitat specialists and prokaryotic habitat specialists played crucial roles as module hubs and connectors, respectively. Furthermore, analyzing evolutionary characteristics, our results revealed that habitat specialists had a much higher diversification potential than generalists, while generalists showed shorter phylogenetic branch lengths as well as larger genomes than specialists. This study broadens our understanding of the ecological and evolutionary features of microbial habitat generalists and specialists in urban park ecosystems across multi-habitat. IMPORTANCE Urban parks, as an important urban greenspace, play essential roles in ecosystem services and are important hotspots for microbes. Microbial diversity is driven by different ecological and evolutionary processes, while little is currently known about the distinct roles of ecological and evolutionary features in shaping microbial diversity in urban park ecosystems. We explored the ecological and evolutionary characteristics of prokaryotic and microeukaryotic habitat generalists and specialists in urban park ecosystems based on a representative set of different habitats. We found that different ecological and evolutionary drivers jointly maintained and regulated microbial diversity in urban park microbiomes through analyzing the community assembly process, ecological roles in hierarchical interaction, and species diversification potential. These findings significantly advance our understanding regarding the mechanisms governing microbial diversity in urban park ecosystems.
Collapse
Affiliation(s)
- Shuzhen Li
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Xue Yan
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mamun Abdullah Al
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Kexin Ren
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Christopher Rensing
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Institute of Environmental Microbiology, College of Resources and the Environment, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | | | - Yuri Mazei
- Lomonosov Moscow State University, Moscow, Russia
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Smirnov
- Department of Invertebrate Zoology, Faculty of Biolog, St. Petersburg University, St Petersburg, Russia
| | | | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
23
|
Mull CG, Pennell MW, Yopak KE, Dulvy NK. Maternal investment evolves with larger body size and higher diversification rate in sharks and rays. Curr Biol 2024; 34:2773-2781.e3. [PMID: 38843829 DOI: 10.1016/j.cub.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/19/2023] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
Across vertebrates, live bearing evolved at least 150 times from ancestral egg laying into diverse forms and degrees of prepartum maternal investment.1,2 A key question is how reproductive diversity arose and whether reproductive diversification underlies species diversification.3,4,5,6,7,8,9,10,11 To test this, we evaluate the most basal jawed vertebrates: the sharks, rays, and chimaeras, which have one of the greatest ranges of reproductive and ecological diversity among vertebrates.2,12 We reconstruct the sequence of reproductive mode evolution across a phylogeny of 610 chondrichthyans.13 We reveal egg laying as ancestral, with live bearing evolving at least seven times. Matrotrophy evolved at least 15 times, with evidence of one reversal. In sharks, transitions to live bearing and matrotrophy are more prevalent in larger-bodied tropical species. Further, the evolution of live bearing is associated with a near doubling of the diversification rate, but there is only a small increase associated with the appearance of matrotrophy. Although pre-copulatory sexual selection is associated with increased rates of speciation in teleosts,3 sexual size dimorphism in chondrichthyans does not appear to be related to sexual selection,14,15 and instead we find increased rates of speciation associated with the colonization of novel habitats. This highlights a potential key difference between chondrichthyans and other fishes, specifically a slower rate of evolution of reproductive isolation following speciation, suggesting different rate-limiting mechanisms for diversification between these clades.16 The chondrichthyan diversification and radiation, particularly throughout shallow tropical shelf seas and oceanic pelagic habitats, appear to be associated with the evolution of live bearing and proliferation of a wide range of maternal investment in developing offspring.
Collapse
Affiliation(s)
- Christopher G Mull
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; Integrated Fisheries Lab, Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Matthew W Pennell
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90007, USA
| | - Kara E Yopak
- Department of Biology and Marine Biology and UNCW Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Nicholas K Dulvy
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
24
|
Brownstein CD, Zapfe KL, Lott S, Harrington R, Ghezelayagh A, Dornburg A, Near TJ. Synergistic innovations enabled the radiation of anglerfishes in the deep open ocean. Curr Biol 2024; 34:2541-2550.e4. [PMID: 38788708 DOI: 10.1016/j.cub.2024.04.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/10/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024]
Abstract
Major ecological transitions are thought to fuel diversification, but whether they are contingent on the evolution of certain traits called key innovations1 is unclear. Key innovations are routinely invoked to explain how lineages rapidly exploit new ecological opportunities.1,2,3 However, investigations of key innovations often focus on single traits rather than considering trait combinations that collectively produce effects of interest.4 Here, we investigate the evolution of synergistic trait interactions in anglerfishes, which include one of the most species-rich vertebrate clades in the bathypelagic, or "midnight," zone of the deep sea: Ceratioidea.5 Ceratioids are the only vertebrates that possess sexual parasitism, wherein males temporarily attach or permanently fuse to females to mate.6,7 We show that the rapid transition of ancestrally benthic anglerfishes into pelagic habitats occurred during a period of major global warming 50-35 million years ago.8,9 This transition coincided with the origins of sexual parasitism, which is thought to increase the probability of successful reproduction once a mate is found in the midnight zone, Earth's largest habitat.5,6,7 Our reconstruction of the evolutionary history of anglerfishes and the loss of immune genes support that permanently fusing clades have convergently degenerated their adaptive immunity. We find that degenerate adaptive immune genes and sexual body size dimorphism, both variably present in anglerfishes outside the ceratioid radiation, likely promoted their transition into the bathypelagic zone. These results show how traits from separate physiological, morphological, and reproductive systems can interact synergistically to drive major transitions and subsequent diversification in novel environments.
Collapse
Affiliation(s)
- Chase D Brownstein
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT 06511, USA.
| | - Katerina L Zapfe
- Department of Bioinformatics and Genomics, University of North Carolina Charlotte, 9331 Robert D. Snyder Rd., Charlotte, NC 28223, USA
| | - Spencer Lott
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT 06511, USA
| | - Richard Harrington
- Department of Natural Resources, Marine Resources Division, 217 Ft. Johnson Road, Charleston, SC 29412-9110, USA
| | - Ava Ghezelayagh
- Department of Geophysical Sciences, University of Chicago, 5734 S. Ellis Avenue, Chicago, IL 60637, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina Charlotte, 9331 Robert D. Snyder Rd., Charlotte, NC 28223, USA
| | - Thomas J Near
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT 06511, USA; Peabody Museum, Yale University, 21 Sachem Street, New Haven, CT 06511, USA
| |
Collapse
|
25
|
Liu J, Lindstrom AJ, Gong Y, Dong S, Liu YC, Zhang S, Gong X. Eco-evolutionary evidence for the global diversity pattern of Cycas (Cycadaceae). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1170-1191. [PMID: 38477647 DOI: 10.1111/jipb.13638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/04/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
The evolution of the latitudinal diversity gradient (LDG), characterized by a peak in diversity toward the tropics, has captured significant attention in evolutionary biology and ecology. However, the inverse LDG (i-LDG) mechanism, wherein species richness increases toward the poles, remains inadequately explored. Cycads are among one of the oldest lineages of extant seed plants and have undergone extensive diversification in the tropics. Intriguingly, the extant cycad abundance exhibits an i-LDG pattern, and the underlying causes for this phenomenon remain largely elusive. Here, using 1,843 nuclear genes from a nearly complete sampling, we conducted comprehensive phylogenomic analyses to establish a robust species-level phylogeny for Cycas, the largest genus within cycads. We then reconstructed the spatial-temporal dynamics and integrated global environmental data to evaluate the roles of species ages, diversification rates, contemporary environment, and conservatism to ancestral niches in shaping the i-LDG pattern. We found Cycas experienced decreased diversification rates, coupled with the cooling temperature since its origin in the Eocene from continental Asia. Different regions have distinctively contributed to the formation of i-LDG for Cycas, with the northern hemisphere acting as evolutionary museums and the southern hemisphere serving as cradles. Moreover, water-related climate variables, specifically precipitation seasonality and potential evapotranspiration, were identified as paramount factors constraining Cycas species richness in the rainforest biome near the equator. Notably, the adherence to ancestral monsoonal climates emerges as a critical factor in sustaining the diversity pattern. This study underscores the imperative of integrating both evolutionary and ecological approaches to comprehensively unravel the mechanisms underpinning global biodiversity patterns.
Collapse
Affiliation(s)
- Jian Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anders J Lindstrom
- Global Biodiversity Conservancy, 144/124 Moo3, Soi Bua Thong, Bangsalae, Sattahip, Chonburi, 20250, Thailand
| | - Yiqing Gong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Shanshan Dong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Yusheng Chris Liu
- Department of Earth and Environmental Sciences, Indiana University-Indianapolis, Indianapolis, 46202, IN, USA
| | - Shouzhou Zhang
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Xun Gong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
26
|
Quintero I, Lartillot N, Morlon H. Imbalanced speciation pulses sustain the radiation of mammals. Science 2024; 384:1007-1012. [PMID: 38815022 DOI: 10.1126/science.adj2793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
The evolutionary histories of major clades, including mammals, often comprise changes in their diversification dynamics, but how these changes occur remains debated. We combined comprehensive phylogenetic and fossil information in a new "birth-death diffusion" model that provides a detailed characterization of variation in diversification rates in mammals. We found an early rising and sustained diversification scenario, wherein speciation rates increased before and during the Cretaceous-Paleogene (K-Pg) boundary. The K-Pg mass extinction event filtered out more slowly speciating lineages and was followed by a subsequent slowing in speciation rates rather than rebounds. These dynamics arose from an imbalanced speciation process, with separate lineages giving rise to many, less speciation-prone descendants. Diversity seems to have been brought about by these isolated, fast-speciating lineages, rather than by a few punctuated innovations.
Collapse
Affiliation(s)
- Ignacio Quintero
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Nicolas Lartillot
- Université Claude Bernard Lyon 1, CNRS, VetAgroSup, LBBE, UMR 5558, F-69100 Villeurbanne, France
| | - Hélène Morlon
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| |
Collapse
|
27
|
Adams R, Cain Z, Assis R, DeGiorgio M. Robust Phylogenetic Regression. Syst Biol 2024; 73:140-157. [PMID: 38035624 PMCID: PMC11129599 DOI: 10.1093/sysbio/syad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
Modern comparative biology owes much to phylogenetic regression. At its conception, this technique sparked a revolution that armed biologists with phylogenetic comparative methods (PCMs) for disentangling evolutionary correlations from those arising from hierarchical phylogenetic relationships. Over the past few decades, the phylogenetic regression framework has become a paradigm of modern comparative biology that has been widely embraced as a remedy for shared ancestry. However, recent evidence has shown doubt over the efficacy of phylogenetic regression, and PCMs more generally, with the suggestion that many of these methods fail to provide an adequate defense against unreplicated evolution-the primary justification for using them in the first place. Importantly, some of the most compelling examples of biological innovation in nature result from abrupt lineage-specific evolutionary shifts, which current regression models are largely ill equipped to deal with. Here we explore a solution to this problem by applying robust linear regression to comparative trait data. We formally introduce robust phylogenetic regression to the PCM toolkit with linear estimators that are less sensitive to model violations than the standard least-squares estimator, while still retaining high power to detect true trait associations. Our analyses also highlight an ingenuity of the original algorithm for phylogenetic regression based on independent contrasts, whereby robust estimators are particularly effective. Collectively, we find that robust estimators hold promise for improving tests of trait associations and offer a path forward in scenarios where classical approaches may fail. Our study joins recent arguments for increased vigilance against unreplicated evolution and a better understanding of evolutionary model performance in challenging-yet biologically important-settings.
Collapse
Affiliation(s)
- Richard Adams
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA
- Agricultural Statistics Laboratory, University of Arkansas, Fayetteville, AR, USA
| | - Zoe Cain
- Department of Biological and Environmental Sciences, Georgia College, Milledgeville, GA, USA
| | - Raquel Assis
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Boca Raton, FL, USA
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
28
|
Suissa JS, Li FW, Moreau CS. Convergent evolution of fern nectaries facilitated independent recruitment of ant-bodyguards from flowering plants. Nat Commun 2024; 15:4392. [PMID: 38789437 PMCID: PMC11126701 DOI: 10.1038/s41467-024-48646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Plant-herbivore interactions reciprocally influence species' evolutionary trajectories. These interactions have led to many physical and chemical defenses across the plant kingdom. Some plants have even evolved indirect defense strategies to outsource their protection to ant bodyguards by bribing them with a sugary reward (nectar). Identifying the evolutionary processes underpinning these indirect defenses provide insight into the evolution of plant-animal interactions. Using a cross-kingdom, phylogenetic approach, we examined the convergent evolution of ant-guarding nectaries across ferns and flowering plants. Here, we discover that nectaries originated in ferns and flowering plants concurrently during the Cretaceous, coinciding with the rise of plant associations in ants. While nectaries in flowering plants evolved steadily through time, ferns showed a pronounced lag of nearly 100 My between their origin and subsequent diversification in the Cenozoic. Importantly, we find that as ferns transitioned from the forest floor into the canopy, they secondarily recruited ant bodyguards from existing ant-angiosperm relationships.
Collapse
Affiliation(s)
- Jacob S Suissa
- Department of Ecology and Evolutionary Biology, University of Tennessee Knoxville, Knoxville, TN, USA.
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Corrie S Moreau
- Department of Ecology and Evolutionary Biology Cornell University, Ithaca, NY, USA
- Department of Entomology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
29
|
Xue T, Feng T, Liang Y, Yang X, Qin F, Yu J, Janssens SB, Yu S. Radiating diversification and niche conservatism jointly shape the inverse latitudinal diversity gradient of Potentilla L. (Rosaceae). BMC PLANT BIOLOGY 2024; 24:443. [PMID: 38778263 PMCID: PMC11112792 DOI: 10.1186/s12870-024-05083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The latitudinal diversity gradient (LDG), characterized by an increase in species richness from the poles to the equator, is one of the most pervasive biological patterns. However, inverse LDGs, in which species richness peaks in extratropical regions, are also found in some lineages and their causes remain unclear. Here, we test the roles of evolutionary time, diversification rates, and niche conservatism in explaining the inverse LDG of Potentilla (ca. 500 species). We compiled the global distributions of ~ 90% of Potentilla species, and reconstructed a robust phylogenetic framework based on whole-plastome sequences. Next, we analyzed the divergence time, ancestral area, diversification rate, and ancestral niche to investigate the macroevolutionary history of Potentilla. RESULTS The genus originated in the Qinghai-Tibet Plateau during the late Eocene and gradually spread to other regions of the Northern Hemisphere posterior to the late Miocene. Rapid cooling after the late Pliocene promoted the radiating diversification of Potentilla. The polyploidization, as well as some cold-adaptive morphological innovations, enhanced the adaptation of Potentilla species to the cold environment. Ancestral niche reconstruction suggests that Potentilla likely originated in a relatively cool environment. The species richness peaks at approximately 45 °N, a region characterized by high diversification rates, and the environmental conditions are similar to the ancestral climate niche. Evolutionary time was not significantly correlated with species richness in the latitudinal gradient. CONCLUSIONS Our results suggest that the elevated diversification rates in middle latitude regions and the conservatism in thermal niches jointly determined the inverse LDG in Potentilla. This study highlights the importance of integrating evolutionary and ecological approaches to explain the diversity pattern of biological groups on a global scale.
Collapse
Affiliation(s)
- Tiantian Xue
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Feng
- Biosystematics Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, Gelderland, the Netherlands
| | - Yunfen Liang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xudong Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Fei Qin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jianghong Yu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Steven B Janssens
- Meise Botanic Garden, Nieuwelaan 38, Meise, BE-1860, Belgium.
- Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Leuven, BE-3001, Belgium.
| | - Shengxiang Yu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
30
|
Padfield D, Kay S, Vos R, Quince C, Vos M. Macroevolutionary Dynamics in Micro-organisms: Generalists Give Rise to Specialists Across Biomes in the Ubiquitous Bacterial Phylum Myxococcota. Mol Biol Evol 2024; 41:msae088. [PMID: 38717941 PMCID: PMC11127111 DOI: 10.1093/molbev/msae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Prokaryotes dominate the Tree of Life, but our understanding of the macroevolutionary processes generating this diversity is still limited. Habitat transitions are thought to be a key driver of prokaryote diversity. However, relatively little is known about how prokaryotes successfully transition and persist across environments, and how these processes might vary between biomes and lineages. Here, we investigate biome transitions and specialization in natural populations of a focal bacterial phylum, the Myxococcota, sampled across a range of replicated soils and freshwater and marine sediments in Cornwall (UK). By targeted deep sequencing of the protein-coding gene rpoB, we found >2,000 unique Myxococcota lineages, with the majority (77%) classified as biome specialists and with only <5% of lineages distributed across the salt barrier. Discrete character evolution models revealed that specialists in one biome rarely transitioned into specialists in another biome. Instead, evolved generalism mediated transitions between biome specialists. State-dependent diversification models found variation in speciation rates across the tree, but this variation was independent of biome association or specialization. Our findings were robust to phylogenetic uncertainty, different levels of species delineation, and different assumed amounts of unsampled diversity resulting in an incomplete phylogeny. Overall, our results are consistent with a "jack-of-all-trades" tradeoff where generalists suffer a cost in any individual environment, resulting in rapid evolution of niche specialists and shed light on how bacteria could transition between biomes.
Collapse
Affiliation(s)
- Daniel Padfield
- Environment and Sustainability Institute, Penryn Campus, Penryn TR10 9FE, UK
| | - Suzanne Kay
- Environment and Sustainability Institute, Penryn Campus, Penryn TR10 9FE, UK
| | - Rutger Vos
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Christopher Quince
- Organisms and Ecosystems, Earlham Institute, Norwich NR4 7UZ, UK
- Gut Microbes and Health, Quadram Institute, Norwich NR4 7UQ, UK
| | - Michiel Vos
- Environment and Sustainability Institute, Penryn Campus, Penryn TR10 9FE, UK
- European Centre for Environment and Human Health, Penryn Campus, Penryn TR10 9FE, UK
| |
Collapse
|
31
|
Dixit NM, Guicking D. Exploring the evolutionary dynamics of myrmecophytism: Perspectives from the Southeast Asian Macaranga ant-plant symbiosis. Mol Phylogenet Evol 2024; 194:108028. [PMID: 38342161 DOI: 10.1016/j.ympev.2024.108028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Myrmecophytic plants utilise defensive services offered by obligate ant partners nesting in their domatia in a novel means of survival in tropical habitats. Although much is known about the ecology of myrmecophytism, there aren't enough empirical examples to demonstrate whether it substantially influences evolutionary patterns in host plant lineages. In this study, we make use of the species-rich Macaranga (Euphorbiaceae) ant-plant symbiosis distributed in the Southeast Asian Sundaland to delve into the evolutionary dynamics of myrmecophytism in host plants. We generated the most comprehensive dated phylogeny of myrmecophytic Macaranga till date using genotyping-by-sequencing (GBS). With this in hand, we traced the evolutionary history of myrmecophytism in Macaranga using parametric biogeography and ancestral state reconstruction. Diversification rate analysis methods were employed to determine if myrmecophytism enhanced diversification rates in the genus. Our results demonstrate that myrmecophytism is labile and easily lost. Ancestral state reconstruction supported a single origin of myrmecophytism in Macaranga ∼18 mya on Borneo followed by multiple losses. Diversification rate analysis methods did not yield sufficient evidence to support the hypothesis that myrmecophytism enhanced diversification rates in Macaranga; we found that topographical features on Borneo may have played a more direct role in the divergence of clades instead. Our study provides evidence that while the acquisition of domatia clearly functions as a key innovation that has enabled host plants to exploit the environment in novel ways, it may not necessarily enhance diversification rates. In fact, we hypothesise that overly specialised cases of myrmecophytism may even be an evolutionary dead end.
Collapse
Affiliation(s)
- Nadi M Dixit
- Department of Botany, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany.
| | - Daniela Guicking
- Department of Botany, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany.
| |
Collapse
|
32
|
Carvalho APS, Owens HL, St Laurent RA, Earl C, Dexter KM, Messcher RL, Willmott KR, Aduse-Poku K, Collins SC, Homziak NT, Hoshizaki S, Hsu YF, Kizhakke AG, Kunte K, Martins DJ, Mega NO, Morinaka S, Peggie D, Romanowski HP, Sáfián S, Vila R, Wang H, Braby MF, Espeland M, Breinholt JW, Pierce NE, Kawahara AY, Lohman DJ. Comprehensive phylogeny of Pieridae butterflies reveals strong correlation between diversification and temperature. iScience 2024; 27:109336. [PMID: 38500827 PMCID: PMC10945170 DOI: 10.1016/j.isci.2024.109336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/28/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
Temperature is thought to be a key factor influencing global species richness patterns. We investigate the link between temperature and diversification in the butterfly family Pieridae by combining next generation DNA sequences and published molecular data with fine-grained distribution data. We sampled nearly 600 pierid butterfly species to infer the most comprehensive molecular phylogeny of the family and curated a distribution dataset of more than 800,000 occurrences. We found strong evidence that species in environments with more stable daily temperatures or cooler maximum temperatures in the warm seasons have higher speciation rates. Furthermore, speciation and extinction rates decreased in tandem with global temperatures through geological time, resulting in a constant net diversification.
Collapse
Affiliation(s)
- Ana Paula S. Carvalho
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainesville, FL, USA
| | - Hannah L. Owens
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Ryan A. St Laurent
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainesville, FL, USA
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Chandra Earl
- Department of Natural Sciences, Bernice Pauahi Bishop Museum, Honolulu, HI, USA
| | - Kelly M. Dexter
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainesville, FL, USA
| | - Rebeccah L. Messcher
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainesville, FL, USA
| | - Keith R. Willmott
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainesville, FL, USA
| | | | | | - Nicholas T. Homziak
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainesville, FL, USA
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Sugihiko Hoshizaki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yu-Feng Hsu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, R.O.C
| | - Athulya G. Kizhakke
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| | - Krushnamegh Kunte
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| | - Dino J. Martins
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
- Insect Committee of Nature Kenya, The East Africa Natural History Society, Nairobi, Kenya
| | - Nicolás O. Mega
- Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sadaharu Morinaka
- Saitama Study Center, The Open University of Japan, Omiya-ku, Saitama City, Japan
| | - Djunijanti Peggie
- Museum Zoologi Bogor, Research Center for Biosystematics and Evolution, Research Organization for Life Sciences and Environment, National Research and Innovation Agency, Cibinong, Bogor, Indonesia
| | - Helena P. Romanowski
- Laboratório de Ecologia de Insetos, Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Szabolcs Sáfián
- African Butterfly Research Institute, Karen, Nairobi, Kenya
- Institute of Silviculture and Forest Protection, University of Sopron, Sopron, Hungary
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), Barcelona, Spain
| | - Houshuai Wang
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Michael F. Braby
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
- Australian National Insect Collection, National Research Collections Australia, Canberra, ACT, Australia
| | - Marianne Espeland
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| | - Jesse W. Breinholt
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainesville, FL, USA
- Intermountain Healthcare, Intermountain Precision Genomics, St. George, UT, USA
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Akito Y. Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainesville, FL, USA
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - David J. Lohman
- Department of Biology, City University of New York, New York, NY, USA
- PhD Program in Biology, Graduate Center, City University of New York, New York, NY, USA
- Entomology Section, National Museum of Natural History, Manila, Philippines
| |
Collapse
|
33
|
Anest A, Bouchenak-Khelladi Y, Charles-Dominique T, Forest F, Caraglio Y, Hempson GP, Maurin O, Tomlinson KW. Blocking then stinging as a case of two-step evolution of defensive cage architectures in herbivore-driven ecosystems. NATURE PLANTS 2024; 10:587-597. [PMID: 38438539 DOI: 10.1038/s41477-024-01649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/23/2024] [Indexed: 03/06/2024]
Abstract
Dense branching and spines are common features of plant species in ecosystems with high mammalian herbivory pressure. While dense branching and spines can inhibit herbivory independently, when combined, they form a powerful defensive cage architecture. However, how cage architecture evolved under mammalian pressure has remained unexplored. Here we show how dense branching and spines emerged during the age of mammalian radiation in the Combretaceae family and diversified in herbivore-driven ecosystems in the tropics. Phylogenetic comparative methods revealed that modern plant architectural strategies defending against large mammals evolved via a stepwise process. First, dense branching emerged under intermediate herbivory pressure, followed by the acquisition of spines that supported higher speciation rates under high herbivory pressure. Our study highlights the adaptive value of dense branching as part of a herbivore defence strategy and identifies large mammal herbivory as a major selective force shaping the whole plant architecture of woody plants.
Collapse
Affiliation(s)
- Artémis Anest
- Center for Integrative Conservation and Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, China.
- University of Chinese Academy of Sciences, Beijing, China.
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France.
| | - Yanis Bouchenak-Khelladi
- Agroécologie, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, INRAE, Institut Agro, Dijon, France
| | - Tristan Charles-Dominique
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
- Centre National de la Recherche Scientifique (CNRS), Sorbonne University, Paris, France
| | | | - Yves Caraglio
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Gareth P Hempson
- Ecology and Environmental Change, School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | | | - Kyle W Tomlinson
- Center for Integrative Conservation and Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, China.
| |
Collapse
|
34
|
Blackmon H, Jonika MM, Alfieri JM, Fardoun L, Demuth JP. Drift drives the evolution of chromosome number I: The impact of trait transitions on genome evolution in Coleoptera. J Hered 2024; 115:173-182. [PMID: 38181226 PMCID: PMC10936555 DOI: 10.1093/jhered/esae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024] Open
Abstract
Chromosomal mutations such as fusions and fissions are often thought to be deleterious, especially in heterozygotes (underdominant), and consequently are unlikely to become fixed. Yet, many models of chromosomal speciation ascribe an important role to chromosomal mutations. When the effective population size (Ne) is small, the efficacy of selection is weakened, and the likelihood of fixing underdominant mutations by genetic drift is greater. Thus, it is possible that ecological and phenotypic transitions that modulate Ne facilitate the fixation of chromosome changes, increasing the rate of karyotype evolution. We synthesize all available chromosome number data in Coleoptera and estimate the impact of traits expected to change Ne on the rate of karyotype evolution in the family Carabidae and 12 disparate clades from across Coleoptera. Our analysis indicates that in Carabidae, wingless clades have faster rates of chromosome number increase. Additionally, our analysis indicates clades exhibiting multiple traits expected to reduce Ne, including strict inbreeding, oligophagy, winglessness, and island endemism, have high rates of karyotype evolution. Our results suggest that chromosome number changes are likely fixed by genetic drift despite an initial fitness cost and that chromosomal speciation models may be important to consider in clades with very small Ne.
Collapse
Affiliation(s)
- Heath Blackmon
- Department of Biology, Texas A&M University, College Station, TX, United States
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, United States
| | - Michelle M Jonika
- Department of Biology, Texas A&M University, College Station, TX, United States
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
| | - James M Alfieri
- Department of Biology, Texas A&M University, College Station, TX, United States
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, United States
| | - Leen Fardoun
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Jeffery P Demuth
- Department of Biology, University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
35
|
Li W, Wang R, Liu MF, Folk RA, Xue B, Saunders RMK. Climatic and biogeographic processes underlying the diversification of the pantropical flowering plant family Annonaceae. FRONTIERS IN PLANT SCIENCE 2024; 15:1287171. [PMID: 38525154 PMCID: PMC10957689 DOI: 10.3389/fpls.2024.1287171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024]
Abstract
Tropical forests harbor the richest biodiversity among terrestrial ecosystems, but few studies have addressed the underlying processes of species diversification in these ecosystems. We use the pantropical flowering plant family Annonaceae as a study system to investigate how climate and biogeographic events contribute to diversification. A super-matrix phylogeny comprising 835 taxa (34% of Annonaceae species) based on eight chloroplast regions was used in this study. We show that global temperature may better explain the recent rapid diversification in Annonaceae than time and constant models. Accelerated accumulation of niche divergence (around 15 Ma) lags behind the increase of diversification rate (around 25 Ma), reflecting a heterogeneous transition to recent diversity increases. Biogeographic events are related to only two of the five diversification rate shifts detected. Shifts in niche evolution nevertheless appear to be associated with increasingly seasonal environments. Our results do not support the direct correlation of any particular climatic niche shifts or historical biogeographical event with shifts in diversification rate. Instead, we suggest that Annonaceae diversification can lead to later niche divergence as a result of increasing interspecific competition arising from species accumulation. Shifts in niche evolution appear to be associated with increasingly seasonal environments. Our results highlight the complexity of diversification in taxa with long evolutionary histories.
Collapse
Affiliation(s)
- Weixi Li
- Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Runxi Wang
- Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ming-Fai Liu
- Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ryan A. Folk
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Bine Xue
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Richard M. K. Saunders
- Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
36
|
Shao Y, Magee AF, Vasylyeva TI, Suchard MA. Scalable gradients enable Hamiltonian Monte Carlo sampling for phylodynamic inference under episodic birth-death-sampling models. PLoS Comput Biol 2024; 20:e1011640. [PMID: 38551979 PMCID: PMC11006205 DOI: 10.1371/journal.pcbi.1011640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/10/2024] [Accepted: 03/10/2024] [Indexed: 04/09/2024] Open
Abstract
Birth-death models play a key role in phylodynamic analysis for their interpretation in terms of key epidemiological parameters. In particular, models with piecewise-constant rates varying at different epochs in time, to which we refer as episodic birth-death-sampling (EBDS) models, are valuable for their reflection of changing transmission dynamics over time. A challenge, however, that persists with current time-varying model inference procedures is their lack of computational efficiency. This limitation hinders the full utilization of these models in large-scale phylodynamic analyses, especially when dealing with high-dimensional parameter vectors that exhibit strong correlations. We present here a linear-time algorithm to compute the gradient of the birth-death model sampling density with respect to all time-varying parameters, and we implement this algorithm within a gradient-based Hamiltonian Monte Carlo (HMC) sampler to alleviate the computational burden of conducting inference under a wide variety of structures of, as well as priors for, EBDS processes. We assess this approach using three different real world data examples, including the HIV epidemic in Odesa, Ukraine, seasonal influenza A/H3N2 virus dynamics in New York state, America, and Ebola outbreak in West Africa. HMC sampling exhibits a substantial efficiency boost, delivering a 10- to 200-fold increase in minimum effective sample size per unit-time, in comparison to a Metropolis-Hastings-based approach. Additionally, we show the robustness of our implementation in both allowing for flexible prior choices and in modeling the transmission dynamics of various pathogens by accurately capturing the changing trend of viral effective reproductive number.
Collapse
Affiliation(s)
- Yucai Shao
- Department of Biostatistics, University of California, Los Angeles, California, United States of America
| | - Andrew F. Magee
- Department of Biomathematics, University of California, Los Angeles, California, United States of America
| | - Tetyana I. Vasylyeva
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Population Health and Disease Prevention, University of California Irvine, Irvine, California, United States of America
| | - Marc A. Suchard
- Department of Biostatistics, University of California, Los Angeles, California, United States of America
- Department of Biomathematics, University of California, Los Angeles, California, United States of America
- Department of Human Genetics, Universtiy of California, Los Angeles, California, United States of America
| |
Collapse
|
37
|
Popescu SM, Tigae C, Dobrițescu A, Ștefănescu DM. Exploring the Climatic Niche Evolution of the Genus Falco (Aves: Falconidae) in Europe. BIOLOGY 2024; 13:113. [PMID: 38392331 PMCID: PMC10886973 DOI: 10.3390/biology13020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
By integrating species distribution modeling techniques, phylogenetic comparative methods, and climatic data, we analyzed how European falcon climatic niches have changed over evolutionary time in order to understand their tempo and mode of evolution and gain phylogenetic insights related to the ecological context of falcon evolution. For this purpose, we tested the relative contributions of niche conservatism, convergent evolution, and divergent evolution in the evolutionary history of this group of species in Europe. The occupation of climatic niche spaces by falcon species in Europe was not similar, considering that their climatic niche evolution was characterized by heterotachy, especially after ca. 4 Mya. Our results indicate that convergent evolution and niche divergence played an important role in the evolutionary history of these species, with no significant evidence of closely related species retaining their fundamental niche over time (phylogenetic niche conservatism). In most analyses, less closely related falcon species occupied similar climatic environments. We found that speciation in the European genus Falco was influenced by climatic niche differentiation, more prevalent in the last 4 million years, with the main climatic niche shifts occurring between closely related falcon species.
Collapse
Affiliation(s)
- Simona Mariana Popescu
- Department of Biology and Environmental Engineering, University of Craiova, A.I. Cuza, 13, 200585 Craiova, Romania
| | - Cristian Tigae
- Faculty of Science, University of Craiova, A.I. Cuza, 13, 200585 Craiova, Romania
| | - Aurelian Dobrițescu
- Faculty of Science, University of Craiova, A.I. Cuza, 13, 200585 Craiova, Romania
| | - Dragoș Mihail Ștefănescu
- Department of Biology and Environmental Engineering, University of Craiova, A.I. Cuza, 13, 200585 Craiova, Romania
| |
Collapse
|
38
|
Carruthers T, Moerland MS, Ebersbach J, Favre A, Folk RA, Hawkins JA, Muellner-Riehl AN, Röser M, Soltis DE, Tkach N, Baker WJ, de Vos JM, Eiserhardt WL. Repeated upslope biome shifts in Saxifraga during late-Cenozoic climate cooling. Nat Commun 2024; 15:1100. [PMID: 38321017 PMCID: PMC10847498 DOI: 10.1038/s41467-024-45289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
Mountains are among the most biodiverse places on Earth, and plant lineages that inhabit them have some of the highest speciation rates ever recorded. Plant diversity within the alpine zone - the elevation above which trees cannot grow-contributes significantly to overall diversity within mountain systems, but the origins of alpine plant diversity are poorly understood. Here, we quantify the processes that generate alpine plant diversity and their changing dynamics through time in Saxifraga (Saxifragaceae), an angiosperm genus that occurs predominantly in mountain systems. We present a time-calibrated molecular phylogenetic tree for the genus that is inferred from 329 low-copy nuclear loci and incorporates 73% (407) of known species. We show that upslope biome shifts into the alpine zone are considerably more prevalent than dispersal of alpine specialists between regions, and that the rate of upslope biome shifts increased markedly in the last 5 Myr, a timeframe concordant with a cooling and fluctuating climate that is likely to have increased the extent of the alpine zone. Furthermore, alpine zone specialists have lower speciation rates than generalists that occur inside and outside the alpine zone, and major speciation rate increases within Saxifraga significantly pre-date increased rates of upslope biome shifts. Specialisation to the alpine zone is not therefore associated with speciation rate increases. Taken together, this study presents a quantified and broad scale perspective of processes underpinning alpine plant diversity.
Collapse
Affiliation(s)
- Tom Carruthers
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Michelangelo S Moerland
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- School of Biological Sciences, University of Reading, Whiteknights, Reading, Berkshire, RG6 6EX, UK
| | - Jana Ebersbach
- Department of Molecular Evolution and Plant Systematics & Herbarium (LZ), Institute of Biology, Leipzig University, D-04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, D-04103, Leipzig, Germany
| | - Adrien Favre
- Regional Nature Park of the Trient Valley, la Place 24, 1922, Salvan, Switzerland
| | - Ryan A Folk
- Department of Biological Sciences, Mississippi State University, Starkville, MS, 39762, USA
| | - Julie A Hawkins
- School of Biological Sciences, University of Reading, Whiteknights, Reading, Berkshire, RG6 6EX, UK
| | - Alexandra N Muellner-Riehl
- Department of Molecular Evolution and Plant Systematics & Herbarium (LZ), Institute of Biology, Leipzig University, D-04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, D-04103, Leipzig, Germany
| | - Martin Röser
- Martin Luther University Halle-Wittenberg, Institute of Biology, Geobotany and Botanical Garden, Dept. of Systematic Botany, Neuwerk 21, 06108, Halle, Germany
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Natalia Tkach
- Martin Luther University Halle-Wittenberg, Institute of Biology, Geobotany and Botanical Garden, Dept. of Systematic Botany, Neuwerk 21, 06108, Halle, Germany
| | - William J Baker
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Department of Biology, Aarhus University, 8000, Aarhus C, Denmark
| | - Jurriaan M de Vos
- Department of Environmental Sciences-Botany, University of Basel, Schönbeinstrasse 6, 4056, Basel, Switzerland
| | - Wolf L Eiserhardt
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK.
- Department of Biology, Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|
39
|
Tian Q, Stull GW, Kellermann J, Medan D, Nge FJ, Liu SY, Kates HR, Soltis DE, Soltis PS, Guralnick RP, Folk RA, Onstein RE, Yi TS. Rapid in situ diversification rates in Rhamnaceae explain the parallel evolution of high diversity in temperate biomes from global to local scales. THE NEW PHYTOLOGIST 2024; 241:1851-1865. [PMID: 38229185 DOI: 10.1111/nph.19504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
The macroevolutionary processes that have shaped biodiversity across the temperate realm remain poorly understood and may have resulted from evolutionary dynamics related to diversification rates, dispersal rates, and colonization times, closely coupled with Cenozoic climate change. We integrated phylogenomic, environmental ordination, and macroevolutionary analyses for the cosmopolitan angiosperm family Rhamnaceae to disentangle the evolutionary processes that have contributed to high species diversity within and across temperate biomes. Our results show independent colonization of environmentally similar but geographically separated temperate regions mainly during the Oligocene, consistent with the global expansion of temperate biomes. High global, regional, and local temperate diversity was the result of high in situ diversification rates, rather than high immigration rates or accumulation time, except for Southern China, which was colonized much earlier than the other regions. The relatively common lineage dispersals out of temperate hotspots highlight strong source-sink dynamics across the cosmopolitan distribution of Rhamnaceae. The proliferation of temperate environments since the Oligocene may have provided the ecological opportunity for rapid in situ diversification of Rhamnaceae across the temperate realm. Our study illustrates the importance of high in situ diversification rates for the establishment of modern temperate biomes and biodiversity hotspots across spatial scales.
Collapse
Affiliation(s)
- Qin Tian
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Beijing, 100093, China
- Naturalis Biodiversity Center, Darwinweg 2, 2333CR, Leiden, the Netherlands
| | - Gregory W Stull
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jürgen Kellermann
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Hackney Road, Adelaide, SA, 5000, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Diego Medan
- Cátedra de Botánica General, Facultad de Agronomía, Universidad de Buenos Aires, Ave San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Francis J Nge
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Hackney Road, Adelaide, SA, 5000, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
- IRD - Institut de Recherche pour le Développement, Ave Agropolis BP 64501, Montpellier, 34394, France
| | - Shui-Yin Liu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Beijing, 100093, China
| | - Heather R Kates
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Ryan A Folk
- Department of Biological Sciences, Mississippi State University, Mississippi, MS, 39762, USA
| | - Renske E Onstein
- Naturalis Biodiversity Center, Darwinweg 2, 2333CR, Leiden, the Netherlands
- Evolution and Adaptation, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Leipzig University, Leipzig, 04013, Germany
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
40
|
Revell LJ. phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things). PeerJ 2024; 12:e16505. [PMID: 38192598 PMCID: PMC10773453 DOI: 10.7717/peerj.16505] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/31/2023] [Indexed: 01/10/2024] Open
Abstract
Phylogenetic comparative methods comprise the general endeavor of using an estimated phylogenetic tree (or set of trees) to make secondary inferences: about trait evolution, diversification dynamics, biogeography, community ecology, and a wide range of other phenomena or processes. Over the past ten years or so, the phytools R package has grown to become an important research tool for phylogenetic comparative analysis. phytools is a diverse contributed R library now consisting of hundreds of different functions covering a variety of methods and purposes in phylogenetic biology. As of the time of writing, phytools included functionality for fitting models of trait evolution, for reconstructing ancestral states, for studying diversification on trees, and for visualizing phylogenies, comparative data, and fitted models, as well numerous other tasks related to phylogenetic biology. Here, I describe some significant features of and recent updates to phytools, while also illustrating several popular workflows of the phytools computational software.
Collapse
Affiliation(s)
- Liam J. Revell
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
- Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
| |
Collapse
|
41
|
Lambert S, Voznica J, Morlon H. Deep Learning from Phylogenies for Diversification Analyses. Syst Biol 2023; 72:1262-1279. [PMID: 37556735 DOI: 10.1093/sysbio/syad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/20/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023] Open
Abstract
Birth-death (BD) models are widely used in combination with species phylogenies to study past diversification dynamics. Current inference approaches typically rely on likelihood-based methods. These methods are not generalizable, as a new likelihood formula must be established each time a new model is proposed; for some models, such a formula is not even tractable. Deep learning can bring solutions in such situations, as deep neural networks can be trained to learn the relation between simulations and parameter values as a regression problem. In this paper, we adapt a recently developed deep learning method from pathogen phylodynamics to the case of diversification inference, and we extend its applicability to the case of the inference of state-dependent diversification models from phylogenies associated with trait data. We demonstrate the accuracy and time efficiency of the approach for the time-constant homogeneous BD model and the Binary-State Speciation and Extinction model. Finally, we illustrate the use of the proposed inference machinery by reanalyzing a phylogeny of primates and their associated ecological role as seed dispersers. Deep learning inference provides at least the same accuracy as likelihood-based inference while being faster by several orders of magnitude, offering a promising new inference approach for the deployment of future models in the field.
Collapse
Affiliation(s)
- Sophia Lambert
- Institut de Biologie de l'École Normale Supérieure, École Normale Supérieure, CNRS, INSERM, Université Paris Sciences et Lettres, 46 Rue d'Ulm, 75005 Paris, France
- Institute of Ecology and Evolution, Department of Biology, 5289 University of Oregon, Eugene, OR 97403, USA
| | - Jakub Voznica
- Institut Pasteur, Université Paris Cité, Unité Bioinformatique Evolutive, 25-28 Rue du Dr Roux, 75015 Paris, France
- Unité de Biologie Computationnelle, USR 3756 CNRS, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Hélène Morlon
- Institut de Biologie de l'École Normale Supérieure, École Normale Supérieure, CNRS, INSERM, Université Paris Sciences et Lettres, 46 Rue d'Ulm, 75005 Paris, France
| |
Collapse
|
42
|
Mendes FK, Landis MJ. PhyloJunction: a computational framework for simulating, developing, and teaching evolutionary models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571907. [PMID: 38168278 PMCID: PMC10760140 DOI: 10.1101/2023.12.15.571907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
We introduce PhyloJunction, a computational framework designed to facilitate the prototyping, testing, and characterization of evolutionary models. PhyloJunction is distributed as an open-source Python library that can be used to implement a variety of models, through its flexible graphical modeling architecture and dedicated model specification language. Model design and use are exposed to users via command-line and graphical interfaces, which integrate the steps of simulating, summarizing, and visualizing data. This paper describes the features of PhyloJunction - which include, but are not limited to, a general implementation of a popular family of phylogenetic diversification models - and, moving forward, how it may be expanded to not only include new models, but to also become a platform for conducting and teaching statistical learning.
Collapse
Affiliation(s)
- Fábio K. Mendes
- Department of Biology, Washington University in St. Louis, St. Louis, MO
| | - Michael J. Landis
- Department of Biology, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
43
|
Herrando-Moraira S, Roquet C, Calleja JA, Chen YS, Fujikawa K, Galbany-Casals M, Garcia-Jacas N, Liu JQ, López-Alvarado J, López-Pujol J, Mandel JR, Mehregan I, Sáez L, Sennikov AN, Susanna A, Vilatersana R, Xu LS. Impact of the climatic changes in the Pliocene-Pleistocene transition on Irano-Turanian species. The radiation of genus Jurinea (Compositae). Mol Phylogenet Evol 2023; 189:107928. [PMID: 37714444 DOI: 10.1016/j.ympev.2023.107928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The Irano-Turanian region is one of the world's richest floristic regions and the centre of diversity for numerous xerophytic plant lineages. However, we still have limited knowledge on the timing of evolution and biogeographic history of its flora, and potential drivers of diversification remain underexplored. To fill this knowledge gap, we focus on the Eurasian genus Jurinea (ca. 200 species), one of the largest plant radiations that diversified in the region. We applied a macroevolutionary integrative approach to explicitly test diversification hypotheses and investigate the relative roles of geography vs. ecology and niche conservatism vs. niche lability in speciation processes. To do so, we gathered a sample comprising 77% of total genus richness and obtained data about (1) its phylogenetic history, recovering 502 nuclear loci sequences; (2) growth forms; (3) ecological niche, compiling data of 21 variables for more than 2500 occurrences; and (4) paleoclimatic conditions, to estimate climatic stability. Our results revealed that climate was a key factor in the evolutionary dynamics of Jurinea. The main diversification and biogeographic events that occurred during past climate changes, which led to colder and drier conditions, are the following: (1) the origin of the genus (10.7 Ma); (2) long-distance dispersals from the Iranian Plateau to adjacent regions (∼7-4 Ma); and (3) the diversification shift during Pliocene-Pleistocene Transition (ca. 3 Ma), when net diversification rate almost doubled. Our results supported the pre-adaptation hypothesis, i.e., the evolutionary success of Jurinea was linked to the retention of the ancestral niche adapted to aridity. Interestingly, the paleoclimatic analyses revealed that in the Iranian Plateau long-term climatic stability favoured old-lineage persistence, resulting in current high species richness of semi-arid and cold adapted clades; whereas moderate climate oscillations stimulated allopatric diversification in the lineages distributed in the Circumboreal region. In contrast, growth form lability and high niche disparity among closely related species in the Central Asian clade suggest adaptive radiation to mountain habitats. In sum, the radiation of Jurinea is the result of both adaptive and non-adaptive processes influenced by climatic, orogenic and ecological factors.
Collapse
Affiliation(s)
- Sonia Herrando-Moraira
- Botanic Institute of Barcelona (IBB, CSIC-Ajuntament de Barcelona), Pg. del Migdia, s.n., 08038 Barcelona, Spain
| | - Cristina Roquet
- Systematics and Evolution of Vascular Plants (UAB) - Associated Unit to CSIC, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Juan-Antonio Calleja
- Departament of Biology (Botany), Faculty of Sciences, Research Centre on Biodiversity and Global Change (CIBC-UAM), 28049 Madrid, Spain
| | - You-Sheng Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Kazumi Fujikawa
- Kochi Prefectural Makino Botanical Garden, 4200-6, Godaisan, Kochi 781-8125, Japan
| | - Mercè Galbany-Casals
- Systematics and Evolution of Vascular Plants (UAB) - Associated Unit to CSIC, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Núria Garcia-Jacas
- Botanic Institute of Barcelona (IBB, CSIC-Ajuntament de Barcelona), Pg. del Migdia, s.n., 08038 Barcelona, Spain
| | - Jian-Quan Liu
- Key Laboratory for Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Javier López-Alvarado
- Systematics and Evolution of Vascular Plants (UAB) - Associated Unit to CSIC, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jordi López-Pujol
- Botanic Institute of Barcelona (IBB, CSIC-Ajuntament de Barcelona), Pg. del Migdia, s.n., 08038 Barcelona, Spain; Escuela de Ciencias Ambientales, Universidad Espíritu Santo (UEES), Samborondón 091650, Ecuador
| | - Jennifer R Mandel
- Department of Biological Sciences, Center for Biodiversity, University of Memphis, Memphis, TN 38152, USA
| | - Iraj Mehregan
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Llorenç Sáez
- Systematics and Evolution of Vascular Plants (UAB) - Associated Unit to CSIC, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Alexander N Sennikov
- Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, 00014 University of Helsinki, Finland
| | - Alfonso Susanna
- Botanic Institute of Barcelona (IBB, CSIC-Ajuntament de Barcelona), Pg. del Migdia, s.n., 08038 Barcelona, Spain
| | - Roser Vilatersana
- Botanic Institute of Barcelona (IBB, CSIC-Ajuntament de Barcelona), Pg. del Migdia, s.n., 08038 Barcelona, Spain
| | - Lian-Sheng Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
44
|
Valdés-Florido A, Tan L, Maguilla E, Simón-Porcar VI, Zhou YH, Arroyo J, Escudero M. Drivers of diversification in Linum (Linaceae) by means of chromosome evolution: correlations with biogeography, breeding system and habit. ANNALS OF BOTANY 2023; 132:949-962. [PMID: 37738171 PMCID: PMC10808019 DOI: 10.1093/aob/mcad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND AND AIMS Chromosome evolution leads to hybrid dysfunction and recombination patterns and has thus been proposed as a major driver of diversification in all branches of the tree of life, including flowering plants. In this study we used the genus Linum (flax species) to evaluate the effects of chromosomal evolution on diversification rates and on traits that are important for sexual reproduction. Linum is a useful study group because it has considerable reproductive polymorphism (heterostyly) and chromosomal variation (n = 6-36) and a complex pattern of biogeographical distribution. METHODS We tested several traditional hypotheses of chromosomal evolution. We analysed changes in chromosome number across the phylogenetic tree (ChromEvol model) in combination with diversification rates (ChromoSSE model), biogeographical distribution, heterostyly and habit (ChromePlus model). KEY RESULTS Chromosome number evolved across the Linum phylogeny from an estimated ancestral chromosome number of n = 9. While there were few apparent incidences of cladogenesis through chromosome evolution, we inferred up to five chromosomal speciation events. Chromosome evolution was not related to heterostyly but did show significant relationships with habit and geographical range. Polyploidy was negatively correlated with perennial habit, as expected from the relative commonness of perennial woodiness and absence of perennial clonality in the genus. The colonization of new areas was linked to genome rearrangements (polyploidy and dysploidy), which could be associated with speciation events during the colonization process. CONCLUSIONS Chromosome evolution is a key trait in some clades of the Linum phylogeny. Chromosome evolution directly impacts speciation and indirectly influences biogeographical processes and important plant traits.
Collapse
Affiliation(s)
- Ana Valdés-Florido
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012, Seville, Spain
| | - Lu Tan
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang, Sichuan, 615000, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Enrique Maguilla
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012, Seville, Spain
- Área de Botánica, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Ctra de Utrera km 1 sn, 41013, Seville, Spain
| | - Violeta I Simón-Porcar
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012, Seville, Spain
| | - Yong-Hong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Juan Arroyo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012, Seville, Spain
| | - Marcial Escudero
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012, Seville, Spain
| |
Collapse
|
45
|
Chen YS, Muellner-Riehl AN, Yang Y, Liu J, Dimitrov D, Luo A, Luo Y, Sun H, Wang ZH. Dispersal modes affect Rhamnaceae diversification rates in a differentiated manner. Proc Biol Sci 2023; 290:20231926. [PMID: 37989241 PMCID: PMC10688438 DOI: 10.1098/rspb.2023.1926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023] Open
Abstract
The evolution of dispersal modes has been proposed to promote the diversification of angiosperms. However, little is known about the relative impact of different dispersal modes on plant diversification. We test the association between dispersal modes and diversification rates using Rhamnaceae, the cosmopolitan buckthorn family, as a model. We found that species with diplochory have the highest diversification rates followed by those with myrmecochory and ballistic dispersal, while lineages dispersed by vertebrates and wind have relatively low diversification rates. The difference in diversification rates may be closely linked to the difference in dispersal distance and ecological interactions implied by each dispersal mode. Species which disperse over larger geographical distances may have much higher speciation rates due to the increased chance of establishing isolated populations due to geological barriers or habitat fragmentation. However, long-distance dispersal may also increase the chance of extinction. By contrast, species with short-distance dispersal modes may have low speciation rates. Complex interactions with the surrounding environment may, however, impact diversification rates positively by increasing plant survival and reproductive success.
Collapse
Affiliation(s)
- Yong-Sheng Chen
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Alexandra N. Muellner-Riehl
- Department of Molecular Evolution and Plant Systematics & Herbarium (LZ), Institute of Biology, Leipzig University, 04013 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04013 Leipzig, Germany
| | - Yi Yang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, People's Republic of China
- Research Center of Ecological Sciences, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, People's Republic of China
| | - Jian Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Dimitar Dimitrov
- Department of Natural History, University Museum of Bergen, University of Bergen, Bergen 7800, 5020, Norway
| | - Ao Luo
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yuan Luo
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Zhi-Heng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
46
|
Staps M, Miller PW, Tarnita CE, Mallarino R. Development shapes the evolutionary diversification of rodent stripe patterns. Proc Natl Acad Sci U S A 2023; 120:e2312077120. [PMID: 37871159 PMCID: PMC10636316 DOI: 10.1073/pnas.2312077120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/13/2023] [Indexed: 10/25/2023] Open
Abstract
Vertebrate groups have evolved strikingly diverse color patterns. However, it remains unknown to what extent the diversification of such patterns has been shaped by the proximate, developmental mechanisms that regulate their formation. While these developmental mechanisms have long been inaccessible empirically, here we take advantage of recent insights into rodent pattern formation to investigate the role of development in shaping pattern diversification across rodents. Based on a broad survey of museum specimens, we first establish that various rodents have independently evolved diverse patterns consisting of longitudinal stripes, varying across species in number, color, and relative positioning. We then interrogate this diversity using a simple model that incorporates recent molecular and developmental insights into stripe formation in African striped mice. Our results suggest that, on the one hand, development has facilitated pattern diversification: The diversity of patterns seen across species can be generated by a single developmental process, and small changes in this process suffice to recapitulate observed evolutionary changes in pattern organization. On the other hand, development has constrained diversification: Constraints on stripe positioning limit the scope of evolvable patterns, and although pattern organization appears at first glance phylogenetically unconstrained, development turns out to impose a cryptic constraint. Altogether, this work reveals that pattern diversification in rodents can in part be explained by the underlying development and illustrates how pattern formation models can be leveraged to interpret pattern evolution.
Collapse
Affiliation(s)
- Merlijn Staps
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ08544
| | - Pearson W. Miller
- Center for Computational Biology, Flatiron Institute, New York, NY10010
| | - Corina E. Tarnita
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ08544
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
| |
Collapse
|
47
|
Shao Y, Magee AF, Vasylyeva TI, Suchard MA. Scalable gradients enable Hamiltonian Monte Carlo sampling for phylodynamic inference under episodic birth-death-sampling models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564882. [PMID: 37961423 PMCID: PMC10634968 DOI: 10.1101/2023.10.31.564882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Birth-death models play a key role in phylodynamic analysis for their interpretation in terms of key epidemiological parameters. In particular, models with piecewise-constant rates varying at different epochs in time, to which we refer as episodic birth-death-sampling (EBDS) models, are valuable for their reflection of changing transmission dynamics over time. A challenge, however, that persists with current time-varying model inference procedures is their lack of computational efficiency. This limitation hinders the full utilization of these models in large-scale phylodynamic analyses, especially when dealing with high-dimensional parameter vectors that exhibit strong correlations. We present here a linear-time algorithm to compute the gradient of the birth-death model sampling density with respect to all time-varying parameters, and we implement this algorithm within a gradient-based Hamiltonian Monte Carlo (HMC) sampler to alleviate the computational burden of conducting inference under a wide variety of structures of, as well as priors for, EBDS processes. We assess this approach using three different real world data examples, including the HIV epidemic in Odesa, Ukraine, seasonal influenza A/H3N2 virus dynamics in New York state, America, and Ebola outbreak in West Africa. HMC sampling exhibits a substantial efficiency boost, delivering a 10- to 200-fold increase in minimum effective sample size per unit-time, in comparison to a Metropolis-Hastings-based approach. Additionally, we show the robustness of our implementation in both allowing for flexible prior choices and in modeling the transmission dynamics of various pathogens by accurately capturing the changing trend of viral effective reproductive number.
Collapse
Affiliation(s)
- Yucai Shao
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, United States
| | - Andrew F. Magee
- Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, United States
| | - Tetyana I. Vasylyeva
- Department of Medicine, University of California San Diego, La Jolla, United States
- Department of Population Health and Disease Prevention, University of California Irvine, Irvine, United States
| | - Marc A. Suchard
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, United States
- Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, United States
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Universtiy of California, Los Angeles, United States
| |
Collapse
|
48
|
Chow LH, Ahyong ST, Tsang CTT, Lam YF, Naruse T, Ng PKL, Tsang LM. Shift in symbiotic lifestyle as the major process shaping the evolution of pea crabs (Decapoda: Brachyura: Pinnotheroidea). Mol Phylogenet Evol 2023; 188:107904. [PMID: 37579893 DOI: 10.1016/j.ympev.2023.107904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
The pea crabs, superfamily Pinnotheroidea, are exceptional among brachyuran crabs in their diverse symbiotic associations involving both inquilinism and protective symbiosis. While this group presents a rare opportunity for evolutionary comparative study of host switching and morphological evolution in marine macroinvertebrates, previous phylogenetic studies have been focused on systematics. Here, we reconstructed the most extensive phylogeny of Pinnotheroidea based on two mitochondrial and six nuclear markers, with the aim of elucidating the host switching pathways and the correlation between symbiotic lifestyles and selected morphological adaptations. Ancestral state reconstruction of host association revealed a monophyletic origin of symbiosis in the form of inquilinism. Subsequent shifts in microhabitat preference for burrows or worm tubes, and the move to protective symbiosis, primarily in the switch to mollusc endosymbiosis, contributed to radiation in Pinnotheridae. Further parallel colonisations of echinoderms and tunicates occurred but did not lead to extensive diversification, except in the Clypeasterophilus + Dissodactylus lineage, which experienced a unique switch to echinoderm ectosymbiosis. The evolution of the third maxillipeds, carapace shape and ambulatory pereiopods suggests a rather strong coupling with the symbiotic lifestyle (whether inquilinism or protective symbiosis). Phenotypic diversity of these characters was higher among species engaged in protective symbiosis, with convergence in form (or function) among those sharing the same host affiliation. Species having different host affiliations or symbiotic lifestyles might also exhibit convergence in the form of the three morphological traits, suggesting a common adaptive value of the specialisations. Pinnotherid crabs overall exhibited a lower trait diversity than the also symbiotic palaemonid shrimps with comparable species diversity. This may plausibly be attributed to differences in potential for morphological modification to serve additional functions among the traits analysed in the two groups, the less frequent host switching and the less diverse host affiliations, and thus a less complicated evolutionary history in pinnotherids.
Collapse
Affiliation(s)
- Lai Him Chow
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Shane T Ahyong
- Australian Museum Research Institute, 1 William St, Sydney, NSW 2010, Australia; School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Chandler T T Tsang
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yu Fung Lam
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Tohru Naruse
- Tropical Biosphere Research Center, Iriomote Station, University of the Ryukyus, 870 Uehara, Taketomi, Okinawa 907-1541, Japan
| | - Peter K L Ng
- Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, Kent Ridge, Singapore 119260, Singapore
| | - Ling Ming Tsang
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
49
|
Barido-Sottani J, Morlon H. The ClaDS rate-heterogeneous birth-death prior for full phylogenetic inference in BEAST2. Syst Biol 2023; 72:1180-1187. [PMID: 37161619 PMCID: PMC10627560 DOI: 10.1093/sysbio/syad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/16/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023] Open
Abstract
Bayesian phylogenetic inference requires a tree prior, which models the underlying diversification process that gives rise to the phylogeny. Existing birth-death diversification models include a wide range of features, for instance, lineage-specific variations in speciation and extinction (SSE) rates. While across-lineage variation in SSE rates is widespread in empirical datasets, few heterogeneous rate models have been implemented as tree priors for Bayesian phylogenetic inference. As a consequence, rate heterogeneity is typically ignored when reconstructing phylogenies, and rate heterogeneity is usually investigated on fixed trees. In this paper, we present a new BEAST2 package implementing the cladogenetic diversification rate shift (ClaDS) model as a tree prior. ClaDS is a birth-death diversification model designed to capture small progressive variations in birth and death rates along a phylogeny. Unlike previous implementations of ClaDS, which were designed to be used with fixed, user-chosen phylogenies, our package is implemented in the BEAST2 framework and thus allows full phylogenetic inference, where the phylogeny and model parameters are co-estimated from a molecular alignment. Our package provides all necessary components of the inference, including a new tree object and operators to propose moves to the Monte-Carlo Markov chain. It also includes a graphical interface through BEAUti. We validate our implementation of the package by comparing the produced distributions to simulated data and show an empirical example of the full inference, using a dataset of cetaceans.
Collapse
Affiliation(s)
- Joëlle Barido-Sottani
- Institut de Biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Hélène Morlon
- Institut de Biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| |
Collapse
|
50
|
Gómez JM, Gónzalez-Megías A, Verdú M. The evolution of same-sex sexual behaviour in mammals. Nat Commun 2023; 14:5719. [PMID: 37788987 PMCID: PMC10547684 DOI: 10.1038/s41467-023-41290-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 08/29/2023] [Indexed: 10/05/2023] Open
Abstract
Same-sex sexual behaviour has attracted the attention of many scientists working in disparate areas, from sociology and psychology to behavioural and evolutionary biology. Since it does not contribute directly to reproduction, same-sex sexual behaviour is considered an evolutionary conundrum. Here, using phylogenetic analyses, we explore the evolution of same-sex sexual behaviour in mammals. According to currently available data, this behaviour is not randomly distributed across mammal lineages, but tends to be particularly prevalent in some clades, especially primates. Ancestral reconstruction suggests that same-sex sexual behaviour may have evolved multiple times, with its appearance being a recent phenomenon in most mammalian lineages. Our phylogenetically informed analyses testing for associations between same-sex sexual behaviour and other species characteristics suggest that it may play an adaptive role in maintaining social relationships and mitigating conflict.
Collapse
Affiliation(s)
- José M Gómez
- Dpto de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA-CSIC), Carretera de Sacramento s/n, La Cañada de San Urbano, 0-4120, Almería, Spain.
- Research Unit Modeling Nature (MNat), Facultad de Ciencias, Universidad de Granada, Granada, Spain.
| | - A Gónzalez-Megías
- Research Unit Modeling Nature (MNat), Facultad de Ciencias, Universidad de Granada, Granada, Spain.
- Dpto de Zoología, Facultad de Ciencias, Universidad de Granada, Avda Fuentenueva s/n, 18071, Granada, Spain.
| | - M Verdú
- Centro de Investigaciones sobre Desertificación (CSIC-UV-GV), Crta Moncada-Náquera km 4.5, 46113 Moncada, Valencia, Spain.
| |
Collapse
|