1
|
Kumamoto E. Anesthetic- and Analgesic-Related Drugs Modulating Both Voltage-Gated Na + and TRP Channels. Biomolecules 2024; 14:1619. [PMID: 39766326 PMCID: PMC11727300 DOI: 10.3390/biom14121619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Nociceptive information is transmitted by action potentials (APs) through primary afferent neurons from the periphery to the central nervous system. Voltage-gated Na+ channels are involved in this AP production, while transient receptor potential (TRP) channels, which are non-selective cation channels, are involved in receiving and transmitting nociceptive stimuli in the peripheral and central terminals of the primary afferent neurons. Peripheral terminal TRP vanilloid-1 (TRPV1), ankylin-1 (TRPA1) and melastatin-8 (TRPM8) activation produces APs, while central terminal TRP activation enhances the spontaneous release of L-glutamate from the terminal to spinal cord and brain stem lamina II neurons that play a pivotal role in modulating nociceptive transmission. There is much evidence demonstrating that chemical compounds involved in Na+ channel (or nerve AP conduction) inhibition modify TRP channel functions. Among these compounds are local anesthetics, anti-epileptics, α2-adrenoceptor agonists, antidepressants (all of which are used as analgesic adjuvants), general anesthetics, opioids, non-steroidal anti-inflammatory drugs and plant-derived compounds, many of which are involved in antinociception. This review mentions the modulation of Na+ channels and TRP channels including TRPV1, TRPA1 and TRPM8, both of which modulations are produced by pain-related compounds.
Collapse
Affiliation(s)
- Eiichi Kumamoto
- Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
2
|
Miyazawa H, Kawakami T, Sugiyama M. Allergic contact dermatitis caused by menthoxypropanediol in a skin care lotion. Contact Dermatitis 2024; 91:264-266. [PMID: 38769757 DOI: 10.1111/cod.14591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Affiliation(s)
| | - Tsuyoshi Kawakami
- Division of Environmental Chemistry, National Institute of Health Sciences, Kawasaki, Japan
| | - Mariko Sugiyama
- Department of Integrative Medical Science for Allergic Disease, Fujita Health University School of Medicine, Nagoya, Japan
- General Incorporated Association SSCI-Net, Nagoya, Japan
| |
Collapse
|
3
|
Beekwilder J, Schempp FM, Styles MQ, Zelder O. Microbial synthesis of terpenoids for human nutrition - an emerging field with high business potential. Curr Opin Biotechnol 2024; 87:103099. [PMID: 38447324 DOI: 10.1016/j.copbio.2024.103099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/08/2024]
Abstract
Because of their complicated biosynthesis and hydrophobic nature, fermentative production of terpenoids did not play a significant role on a commercial scale until a few years ago. Driven by technological progress in metabolic engineering and process biotechnology, terpene-based food ingredients such as flavors, sweeteners, and vitamins produced by fermentation have now become viable and commercially competitive options. In recent years, several companies have developed microbial platforms for commercial terpene production. Impressive progress has been made in the fermentative production of sesquiterpenes used in flavorings. The development of sweeteners, such as steviol glycosides and mogrosides, and the production of vitamins A and E based on fermentation are also being explored. The production of monoterpenes remains challenging due to their antimicrobial effects.
Collapse
Affiliation(s)
| | - Florence M Schempp
- BASF SE, Industrial Biotechnology I, RGD/BD - A30, 67056 Ludwigshafen, Germany
| | | | - Oskar Zelder
- BASF SE, Industrial Biotechnology I, RGD/BD - A30, 67056 Ludwigshafen, Germany.
| |
Collapse
|
4
|
Akinola LS, Gonzales J, Buzzi B, Mathews HL, Papke RL, Stitzel JA, Damaj MI. Investigating the role of nicotinic acetylcholine receptors in menthol's effects in mice. Drug Alcohol Depend 2024; 257:111262. [PMID: 38492255 PMCID: PMC11031278 DOI: 10.1016/j.drugalcdep.2024.111262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/13/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
The use of menthol in tobacco products has been linked to an increased likelihood of developing nicotine dependence. The widespread use of menthol can be attributed to its unique sensory characteristics; however, emerging evidence suggests that menthol also alters sensitivity to nicotine through modulation of nicotinic acetylcholine receptors (nAChRs). Nicotinic subunits, such as β2 and α5, are of interest due to their implications in nicotine reward, reinforcement, intake regulation, and aversion. This study, therefore, examined the in vivo relevance of β2 and α5 nicotinic subunits on the pharmacological and behavioral effects of menthol. Data suggests that the α5 nicotinic subunit modulates menthol intake in mice. Overall, deletion or a reduction in function of the α5 subunit lessened aversion to menthol. α5 KO mice and mice possessing the humanized α5 SNP, a variant that confers a nicotine dependence phenotype in humans, demonstrated increased menthol intake compared to their WT counterparts and in a sex-related fashion for α5 SNP mice. We further reported that the modulatory effects of the α5 subunit do not extend to other aversive tastants like quinine, suggesting that deficits in α5* nAChR signaling may not abolish general sensitivity to the aversive effects of other noxious chemicals. Further probing into the role of α5 in other pharmacological properties of menthol revealed that the α5 subunit does not modulate the antinociceptive properties of menthol in mice and suggests that the in vivo differences observed are likely not due to the direct effects of menthol on α5-containing nAChRs in vitro.
Collapse
Affiliation(s)
- Lois S Akinola
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA.
| | - Jada Gonzales
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Belle Buzzi
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Hunter L Mathews
- Department of Psychology and Neuroscience, The University of Colorado Boulder, Institute for Behavioral Genetics, Boulder, CO, USA
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Jerry A Stitzel
- Department of Psychology and Neuroscience, The University of Colorado Boulder, Institute for Behavioral Genetics, Boulder, CO, USA; Department of Integrative Physiology, The University of Colorado Boulder, Institute for Behavioral Genetics, Boulder, CO, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
5
|
Villegas-Serna T, Wilson LJ, Curtis C. Topical application of L-Menthol - Physiological and genetic considerations to assist in developing female athlete research: A narrative review. J Therm Biol 2024; 119:103758. [PMID: 38070272 DOI: 10.1016/j.jtherbio.2023.103758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 02/25/2024]
Abstract
L-menthol is a cyclic monoterpene derived from aromatic plants, which gives a cooling sensation upon application. With this in mind, L-menthol is beginning to be considered as a potential ergogenic aid for exercise and sporting competitions, particularly in hot environments, however female-specific research is lacking. The aim of this narrative review is to summarize available literature relating to topical application of L-menthol and provide commentary on avenues of consideration relating to future research developments of topical L-menthol in female athletes. From available studies in male participants, L-menthol topical application results in no endurance exercise performance improvements, however decreases in thermal sensation are observed. Mixed results are observed within strength performance parameters. Several genetic variations and single nucleotide polymorphisms have been identified in relation to sweat production, fluid loss and body mass changes - factors which may influence topical application of L-menthol. More specifically to female athletes, genetic variations relating to sweat responses and skin thickness, phases of the menstrual cycle, and body composition indices may affect the ergogenic effects of L-menthol topical application, via alterations in thermogenic responses, along with differing tissue distribution compared to their male counterparts. This narrative review concludes that further development of female athlete research and protocols for topical application of L-menthol is warranted due to physiological and genetic variations. Such developments would benefit research and practitioners alike with further personalized sport science strategies around phases of the menstrual cycle and body composition indices, with a view to optimize ergogenic effects of L-menthol.
Collapse
Affiliation(s)
- Tatiana Villegas-Serna
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Pamplona, Spain; University of Navarra, Pamplona, Spain
| | - Laura J Wilson
- London Sport Institute, Middlesex University, London, NW4 4BT, United Kingdom
| | - Christopher Curtis
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Pamplona, Spain; University of Navarra, Pamplona, Spain.
| |
Collapse
|
6
|
Yanagibashi S, Bamba T, Kirisako T, Kondo A, Hasunuma T. Beneficial effect of optimizing the expression balance of the mevalonate pathway introduced into the mitochondria on terpenoid production in Saccharomyces cerevisiae. J Biosci Bioeng 2024; 137:16-23. [PMID: 38042754 DOI: 10.1016/j.jbiosc.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/04/2023]
Abstract
Terpenoids are used in various industries, and Saccharomyces cerevisiae is a promising microorganism for terpenoid production. Introducing the mevalonate (MVA) pathway into the mitochondria of a strain with an augmented inherent cytosolic MVA pathway increased terpenoid production but also led to the accumulation of toxic pyrophosphate intermediates that negatively affected terpenoid production. We first engineered the inherent MVA pathway in the cytosol and then introduced the MVA pathway into the mitochondria using several promoter combinations, considering the toxicity of pyrophosphate intermediates. However, the highest titer, 183 mg/L, tends to be only 5% higher than that of the strain that only augmented the inherent MVA pathway (SYCM1; 174 mg/L). Next, we hypothesized that, in addition to the toxicity of pyrophosphate, other compounds in the MVA pathway could affect the squalene titer. Thus, we constructed a combinatorial strain library expressing MVA pathway enzymes in the mitochondria with various promoter combinations. The highest squalene titer (230 mg/L) was 32% higher than that of SYCM1. The promoter set revealed that mitigation of mono- and pyrophosphate compound accumulation was important for mitochondrial usage. This study demonstrated that a combinatorial strain library is useful for discovering the optimal gene expression balance in engineering yeast.
Collapse
Affiliation(s)
- So Yanagibashi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1-12-12 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takahiro Bamba
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Takayoshi Kirisako
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1-12-12 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
7
|
Hudz N, Kobylinska L, Pokajewicz K, Horčinová Sedláčková V, Fedin R, Voloshyn M, Myskiv I, Brindza J, Wieczorek PP, Lipok J. Mentha piperita: Essential Oil and Extracts, Their Biological Activities, and Perspectives on the Development of New Medicinal and Cosmetic Products. Molecules 2023; 28:7444. [PMID: 37959863 PMCID: PMC10649426 DOI: 10.3390/molecules28217444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
This review aims to analyze Mentha piperita L. as a potential raw material for the development of new health-promoting products (nutraceuticals, cosmetics, and pharmaceutical products). A lot of scientific publications were retrieved from the Scopus, PubMed, and Google Scholar databases which enable the study and generalization of the extraction procedures, key biologically active compounds of essential oil and extracts, biological properties, and therapeutic potential of M. piperita, along with perspectives on the development of its dosage forms, including combinations of synthetic active substances and herbal preparations of M. piperita. The results of this review indicate that M. piperita is a source rich in phytoconstituents of different chemical nature and can be regarded as a source of active substances to enhance health and to develop medicinal products for complementary therapy of various conditions, especially those related with oxidant stress, inflammation, and moderate infections. Essential oil has a broad spectrum of activities. Depending on the test and concentration, this essential oil has both anti- and prooxidant properties. Gram-positive bacteria are more sensitive to the essential oil of M. piperita than Gram-negative ones. This review also considered some facets of the standardization of essential oil and extracts of M. piperita. Among the identified phenolics of extracts were caffeic acid, rosmarinic acid, eriocitrin, luteolin derivates (luteolin-7-O-rutinoside, luteolin-7-O-glucoronide), and hesperidin. The concentration of these phenolics depends on the solvent used. This review also considered the relationships between the chemical component and biological activity. The results showed that the essential oil and extracts reduced inflammation in vitro by inhibiting the production of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), and in vivo by reducing the paw edema induced using carrageenan injection in rats. Therefore, herbal preparations of M. piperita are promising medicinal and cosmetic preparations for their usage in skincare and oral cavity care products with antimicrobial, anti-inflammatory, and wound-healing properties. This plant can also be regarded as a platform for the development of antibacterial preparations and combined anti-inflammatory and cardioprotective medicinal products (synthetic active substances plus herbal preparations). This review could be considered for the justification of the composition of some medicinal products during their pharmaceutical development for writing a registration dossier in the format of Common Technical Document.
Collapse
Affiliation(s)
- Nataliia Hudz
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
- Department of Drug Technology and Biopharmacy, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Lesya Kobylinska
- Department of Biochemistry, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Katarzyna Pokajewicz
- Department of Analytical Chemistry, University of Opole, 45-052 Opole, Poland; (K.P.); (P.P.W.)
| | - Vladimira Horčinová Sedláčková
- Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia; (V.H.S.); (J.B.)
| | - Roman Fedin
- Department of Pharmacy and Biology, Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies of Lviv, 79010 Lviv, Ukraine;
| | - Mariia Voloshyn
- Department of Foreign Languages, Lviv Polytechnic National University, 79000 Lviv, Ukraine; (M.V.); (I.M.)
| | - Iryna Myskiv
- Department of Foreign Languages, Lviv Polytechnic National University, 79000 Lviv, Ukraine; (M.V.); (I.M.)
| | - Ján Brindza
- Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia; (V.H.S.); (J.B.)
| | - Piotr Paweł Wieczorek
- Department of Analytical Chemistry, University of Opole, 45-052 Opole, Poland; (K.P.); (P.P.W.)
| | - Jacek Lipok
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
| |
Collapse
|
8
|
Hedayati S, Tarahi M, Azizi R, Baeghbali V, Ansarifar E, Hashempur MH. Encapsulation of mint essential oil: Techniques and applications. Adv Colloid Interface Sci 2023; 321:103023. [PMID: 37863014 DOI: 10.1016/j.cis.2023.103023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/22/2023]
Abstract
Mint essential oil (MEO) is an outstanding antibacterial and antioxidant agent, that can be considered as a promising natural preservative, flavor, insecticide, coolant, and herbal medicine. However, the low solubility and volatility of MEO limits its extensive applications. In order to utilize MEO in different products, it is essential to develop treatments that can overcome these limitations. More recently, encapsulation technology has been developed as a promising method to overcome the shortcomings of MEO. In which, sensitive compounds such as essential oils (EOs) are entrapped in a carrier to produce micro or nanoparticles with increased stability against environmental conditions. Additionally, encapsulation of EOs makes transportation and handling easier, reduces their volatility, controls their release and consequently improves the efficiency of these bioactive compounds and extends their industrial applications. Several encapsulation techniques, such as emulsification, coacervation, ionic gelation, inclusion complexation, spray drying, electrospinning, melt dispersion, melt homogenization, and so on, have been emerged to improve the stability of MEO. These encapsulated MEOs can be also used in a variety of food, bioagricultural, pharmaceutical, and health care products with excellent performance. Therefore, this review aims to summarize the physicochemical and functional properties of MEO, recent advances in encapsulation techniques for MEO, and the application of micro/nanocapsulated MEO in different products.
Collapse
Affiliation(s)
- Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Rezvan Azizi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Baeghbali
- Food and Markets Department, Natural Resources Institute, University of Greenwich, Medway, UK
| | - Elham Ansarifar
- Social Determinants of Health Research Center, Department of Public Health, School of Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Leventhal AM, Tackett AP, Whitted L, Jordt SE, Jabba SV. Ice flavours and non-menthol synthetic cooling agents in e-cigarette products: a review. Tob Control 2023; 32:769-777. [PMID: 35483721 PMCID: PMC9613790 DOI: 10.1136/tobaccocontrol-2021-057073] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/19/2022] [Indexed: 01/21/2023]
Abstract
E-cigarettes with cooling flavours have diversified in ways that complicate tobacco control with the emergence of: (1) Ice-hybrid flavours (eg, 'Raspberry Ice') that combine cooling and fruity/sweet properties; and (2) Products containing non-menthol synthetic cooling agents (eg, Wilkinson Sword (WS), WS-3, WS-23 (termed 'koolada')). This paper reviews the background, chemistry, toxicology, marketing, user perceptions, use prevalence and policy implications of e-cigarette products with ice-hybrid flavours or non-menthol coolants. Scientific literature search supplemented with industry-generated and user-generated information found: (a) The tobacco industry has developed products containing synthetic coolants since 1974, (b) WS-3 and WS-23 are detected in mass-manufactured e-cigarettes (eg, PuffBar); (c) While safe for limited oral ingestion, inhalational toxicology and health effects from daily synthetic coolant exposure are unknown and merit scientific inquiry and attention from regulatory agencies; (d) Ice-hybrid flavours are marketed with themes incorporating fruitiness and/or coolness (eg, snow-covered raspberries); (e) WS-23/WS-3 concentrates also are sold as do-it-yourself additives, (f) Pharmacology research and user-generated and industry-generated information provide a premise to hypothesise that e-cigarette products with ice flavours or non-menthol cooling agents generate pleasant cooling sensations that mask nicotine's harshness while lacking certain aversive features of menthol-only products, (g) Adolescent and young adult use of e-cigarettes with ice-hybrid or other cooling flavours may be common and cross-sectionally associated with more frequent vaping and nicotine dependence in convenience samples. Evidence gaps in the epidemiology, toxicology, health effects and smoking cessation-promoting potential of using these products exist. E-cigarettes with ice flavours or synthetic coolants merit scientific and regulatory attention.
Collapse
Affiliation(s)
- Adam M Leventhal
- Institute for Addiction Science, University of Southern California, Los Angeles, California, USA
| | - Alayna P Tackett
- Department of Preventive Medicine, Keck School of Medicine University of Southern California, Los Angeles, California, USA
| | - Lauren Whitted
- Department of Preventive Medicine, Keck School of Medicine University of Southern California, Los Angeles, California, USA
| | - Sven Eric Jordt
- Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
- Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sairam V Jabba
- Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
10
|
Hsu YC, Yang SC, Ku KF, Shiau LD. The Influence of the Solid Solution Formation on Purification of L-Menthol from the Enantiomer Mixture by Three-Phase Crystallization. Int J Mol Sci 2023; 24:14933. [PMID: 37834381 PMCID: PMC10573351 DOI: 10.3390/ijms241914933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Three-phase crystallization (TPC) was introduced in this study to purify L-menthol from menthol enantiomer mixtures in consideration of the formation of solid solutions. TPC is a new separation technology, which combines melt crystallization and vaporization to result in the desired crystalline product from a liquid mixture along with the unwanted components vaporized via the three-phase transformation by reducing temperature and pressure. The three-phase transformation conditions for the liquid menthol enantiomer mixtures were determined based on the thermodynamic calculations to direct the TPC experiments. A new model was proposed based on the mass and energy balances in consideration of the formation of the solid solutions to predict the yield and purity of the final L-menthol product during TPC. The yield and purity obtained from the TPC experiments were compared with those predicted by the model.
Collapse
Affiliation(s)
- Yu-Chao Hsu
- Department of Urology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Sheng-Chin Yang
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan; (S.-C.Y.); (K.-F.K.)
| | - Kai-Fang Ku
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan; (S.-C.Y.); (K.-F.K.)
| | - Lie-Ding Shiau
- Department of Urology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan; (S.-C.Y.); (K.-F.K.)
| |
Collapse
|
11
|
Roukka S, Puputti S, Aisala H, Hoppu U, Seppä L, Sandell M. Factors explaining individual differences in the oral perception of capsaicin, l-menthol, and aluminum ammonium sulfate. Clin Transl Sci 2023; 16:1815-1827. [PMID: 37424404 PMCID: PMC10582669 DOI: 10.1111/cts.13587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/28/2023] [Accepted: 06/24/2023] [Indexed: 07/11/2023] Open
Abstract
This research focused on the oral perception of naturally occurring chemical food compounds that are used in the pharma and food industries due to their pharmacological properties. They stimulate chemically sensitive receptors of the somatosensory system and are also chemesthetic compounds. Capsaicin is a naturally occurring alkaloid activating pungency perception. l-Menthol is a cyclic monoterpene working also as a medical cooling agent. Aluminum ammonium sulfate is used as a dehydrating agent and additive known to activate astringency in oral cavity. The objective of the study was to identify factors explaining individual differences in the perception of oral chemesthesis measured as sensitivity to chemesthetic compounds and their recognition. The subjects (N = 205) evaluated quality-specific prototypic compounds at five different concentration levels. Differences between gender were discovered in capsaicin sensitivity with men being less sensitive than women. Age was associated with the perception of capsaicin, l-menthol, aluminum ammonium sulfate, and the combined oral chemesthetic sensitivity. Quality-specific recognition ratings were also contributing to the sensitivity to chemesthetic compounds. A combined oral chemesthetic recognition score was created based on quality-specific recognition ratings. Increasing age generally indicated weaker recognition skills. Better recognizers had a higher combined oral chemesthetic sensitivity score than poorer recognizers. These results provide new information about chemesthesis. The results suggest that age and gender are important factors in explaining individual differences in sensitivity to capsaicin, l-menthol, and aluminum ammonium sulfate. In addition, recognition skills are associated with the sensitivity based on the quality-specific recognition scores.
Collapse
Affiliation(s)
- Sulo Roukka
- Department of Food and NutritionUniversity of HelsinkiHelsinkiFinland
- Functional Foods ForumUniversity of TurkuTurkuFinland
| | - Sari Puputti
- Functional Foods ForumUniversity of TurkuTurkuFinland
- Present address:
Valio Ltd.HelsinkiFinland
| | - Heikki Aisala
- Functional Foods ForumUniversity of TurkuTurkuFinland
- Present address:
VTT Technical Research Centre of Finland Ltd.EspooFinland
| | - Ulla Hoppu
- Department of Food and NutritionUniversity of HelsinkiHelsinkiFinland
- Functional Foods ForumUniversity of TurkuTurkuFinland
| | - Laila Seppä
- Department of Food and NutritionUniversity of HelsinkiHelsinkiFinland
| | - Mari Sandell
- Department of Food and NutritionUniversity of HelsinkiHelsinkiFinland
- Functional Foods ForumUniversity of TurkuTurkuFinland
| |
Collapse
|
12
|
Jerram ML, Baker D, Smith TB, Healey P, Taylor L, Black K. A 0.1% L-Menthol Mouth Swill in Elite Male Rugby Players Has Different Effects in Forwards and Backs. Int J Sports Physiol Perform 2023; 18:909-917. [PMID: 36689991 DOI: 10.1123/ijspp.2022-0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/20/2022] [Accepted: 10/26/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Menthol mouth swills can improve endurance performance in the heat, which is attributed to attenuations in nonthermally derived thermal sensation (TS) and perception of effort. However, research in elite team-sport athletes is absent. Therefore, this study investigated the performance and TS responses to a 0.1% menthol mouth rinse (MR) or placebo (PLA) among elite male rugby union players. METHOD Twenty-seven (15 Forwards and 12 Backs) elite male Super Rugby players completed two 3-minute 15-a-side rugby-specific conditioning blocks, with MR or PLA provided at the start of training (baseline), at the start of each 3-minute block (swill 1 [S1] and swill 2 [S2]), and at the end of training (swill 3 [S3]). TS was assessed using the American Society of Heating, Refrigerating and Air-Conditioning Engineers 9-point Analog Sensation Scale after each swill and at baseline (preconditioning block). Acceptability was measured after baseline swill and S3 using a 5-question Likert scale. Physical performance was measured throughout training using global positioning system metrics. RESULTS MR attenuated TS from baseline to S1 (P = .003, SD = 1.01) and S2 (P = .002, SD = 1.09) in Forwards only, compared with PLA. Acceptability was higher only for Forwards in MR versus PLA at baseline (P = .003, SD = 1.3) and S3 (P = .004, SD = 0.75). MR had no effect on physical performance metrics (P > .05). CONCLUSION MR attenuated the rise in TS with higher acceptability at S1 and S3 (in Forwards only) with no effect on selected physical performance metrics. Longer-duration exercise (eg, a match) in hot-humid conditions eliciting markedly increased body temperatures could theoretically allow favorable changes in TS to enhance performance-these postulations warrant experimental investigation.
Collapse
Affiliation(s)
- Marcia L Jerram
- Department of Human Nutrition, University of Otago, Dunedin,New Zealand
| | - Dane Baker
- Department of Human Nutrition, University of Otago, Dunedin,New Zealand
| | | | - Phil Healey
- Blues Super Rugby Franchise, Auckland,New Zealand
| | - Lee Taylor
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine (NCSEM), Loughborough University, Loughborough,United Kingdom
- Human Performance Research Centre, University of Technology Sydney (UTS), Sydney, NSW,Australia
- Sport & Exercise Discipline Group, Faculty of Health, University of Technology Sydney (UTS), Sydney, NSW,Australia
| | - Katherine Black
- Department of Human Nutrition, University of Otago, Dunedin,New Zealand
| |
Collapse
|
13
|
Illidi CR, Romer LM, Johnson MA, Williams NC, Rossiter HB, Casaburi R, Tiller NB. Distinguishing science from pseudoscience in commercial respiratory interventions: an evidence-based guide for health and exercise professionals. Eur J Appl Physiol 2023; 123:1599-1625. [PMID: 36917254 PMCID: PMC10013266 DOI: 10.1007/s00421-023-05166-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/19/2023] [Indexed: 03/16/2023]
Abstract
Respiratory function has become a global health priority. Not only is chronic respiratory disease a leading cause of worldwide morbidity and mortality, but the COVID-19 pandemic has heightened attention on respiratory health and the means of enhancing it. Subsequently, and inevitably, the respiratory system has become a target of the multi-trillion-dollar health and wellness industry. Numerous commercial, respiratory-related interventions are now coupled to therapeutic and/or ergogenic claims that vary in their plausibility: from the reasonable to the absurd. Moreover, legitimate and illegitimate claims are often conflated in a wellness space that lacks regulation. The abundance of interventions, the range of potential therapeutic targets in the respiratory system, and the wealth of research that varies in quality, all confound the ability for health and exercise professionals to make informed risk-to-benefit assessments with their patients and clients. This review focuses on numerous commercial interventions that purport to improve respiratory health, including nasal dilators, nasal breathing, and systematized breathing interventions (such as pursed-lips breathing), respiratory muscle training, canned oxygen, nutritional supplements, and inhaled L-menthol. For each intervention we describe the premise, examine the plausibility, and systematically contrast commercial claims against the published literature. The overarching aim is to assist health and exercise professionals to distinguish science from pseudoscience and make pragmatic and safe risk-to-benefit decisions.
Collapse
Affiliation(s)
- Camilla R Illidi
- Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, Faculty of Education, McGill University, Montréal, QC, Canada
| | - Lee M Romer
- Division of Sport, Health and Exercise Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Michael A Johnson
- Exercise and Health Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, Nottinghamshire, UK
| | - Neil C Williams
- Exercise and Health Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, Nottinghamshire, UK
| | - Harry B Rossiter
- Institute of Respiratory Medicine and Exercise Physiology, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 W. Carson Street, CDCRC Building, Torrance, CA, 90502, USA
| | - Richard Casaburi
- Institute of Respiratory Medicine and Exercise Physiology, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 W. Carson Street, CDCRC Building, Torrance, CA, 90502, USA
| | - Nicholas B Tiller
- Institute of Respiratory Medicine and Exercise Physiology, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 W. Carson Street, CDCRC Building, Torrance, CA, 90502, USA.
| |
Collapse
|
14
|
Trius-Soler M, Praticò G, Gürdeniz G, Garcia-Aloy M, Canali R, Fausta N, Brouwer-Brolsma EM, Andrés-Lacueva C, Dragsted LO. Biomarkers of moderate alcohol intake and alcoholic beverages: a systematic literature review. GENES & NUTRITION 2023; 18:7. [PMID: 37076809 PMCID: PMC10114415 DOI: 10.1186/s12263-023-00726-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
The predominant source of alcohol in the diet is alcoholic beverages, including beer, wine, spirits and liquors, sweet wine, and ciders. Self-reported alcohol intakes are likely to be influenced by measurement error, thus affecting the accuracy and precision of currently established epidemiological associations between alcohol itself, alcoholic beverage consumption, and health or disease. Therefore, a more objective assessment of alcohol intake would be very valuable, which may be established through biomarkers of food intake (BFIs). Several direct and indirect alcohol intake biomarkers have been proposed in forensic and clinical contexts to assess recent or longer-term intakes. Protocols for performing systematic reviews in this field, as well as for assessing the validity of candidate BFIs, have been developed within the Food Biomarker Alliance (FoodBAll) project. The aim of this systematic review is to list and validate biomarkers of ethanol intake per se excluding markers of abuse, but including biomarkers related to common categories of alcoholic beverages. Validation of the proposed candidate biomarker(s) for alcohol itself and for each alcoholic beverage was done according to the published guideline for biomarker reviews. In conclusion, common biomarkers of alcohol intake, e.g., as ethyl glucuronide, ethyl sulfate, fatty acid ethyl esters, and phosphatidyl ethanol, show considerable inter-individual response, especially at low to moderate intakes, and need further development and improved validation, while BFIs for beer and wine are highly promising and may help in more accurate intake assessments for these specific beverages.
Collapse
Affiliation(s)
- Marta Trius-Soler
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark
- Polyphenol Research Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XIA School of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921, Santa Coloma de Gramanet, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Giulia Praticò
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark
| | - Gözde Gürdeniz
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark
| | - Mar Garcia-Aloy
- Biomarker & Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Italy
| | - Raffaella Canali
- Consiglio Per La Ricerca in Agricoltura E L'analisi Dell'economia Agraria (CREA) Research Centre for Food and Nutrition, Rome, Italy
| | - Natella Fausta
- Consiglio Per La Ricerca in Agricoltura E L'analisi Dell'economia Agraria (CREA) Research Centre for Food and Nutrition, Rome, Italy
| | - Elske M Brouwer-Brolsma
- Division of Human Nutrition and Health, Department Agrotechnology and Food Sciences, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Cristina Andrés-Lacueva
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921, Santa Coloma de Gramanet, Spain
- Biomarker & Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark.
| |
Collapse
|
15
|
Castillo-Lopez E, Rivera-Chacon R, Ricci S, Khorrami B, Haselmann A, Reisinger N, Zebeli Q. Dynamics of chewing and eating behavior, lying behavior, and salivary characteristics associated with duration of high grain feeding in cows with or with no phytogenic supplement. Appl Anim Behav Sci 2023. [DOI: 10.1016/j.applanim.2023.105877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
16
|
Hooper JS, Taylor-Clark TE. Irritant-evoked reflex tachyarrhythmia in spontaneously hypertensive rats is reduced by inhalation of TRPM8 agonists l-menthol and WS-12. J Appl Physiol (1985) 2023; 134:307-315. [PMID: 36603045 PMCID: PMC9886351 DOI: 10.1152/japplphysiol.00495.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/06/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
Inhalation of noxious irritants activates nociceptive sensory afferent nerves innervating the airways, inducing reflex regulation of autonomic networks and the modulation of respiratory drive and cardiovascular (CV) parameters such as heart rate and blood pressure. In healthy mammals, irritant-evoked pulmonary-cardiac reflexes cause parasympathetic-mediated bradycardia. However, in spontaneously hypertensive (SH) rats, irritant inhalation also increases sympathetic drive to the heart. This remodeled pulmonary-cardiac reflex may contribute to cardiovascular risk caused by inhalation of air pollutants/irritants in susceptible individuals with cardiovascular disease (CVD). Previous studies have shown that the cooling mimic l-menthol, an agonist for the cold-sensitive transient receptor potential melastatin 8 (TRPM8), can alleviate nasal inflammatory symptoms and respiratory reflexes evoked by irritants. Here, we investigated the impact of inhalation of TRPM8 agonists l-menthol and WS-12 on pulmonary-cardiac reflexes evoked by inhalation of the irritant allyl isothiocyanate (AITC) using radiotelemetry. l-Menthol, but not its inactive analog d-menthol, significantly reduced the AITC-evoked reflex tachycardia and premature ventricular contractions (PVCs) in SH rats but had no effect on the AITC-evoked bradycardia in either SH or normotensive Wistar-Kyoto (WKY) rats. WS-12 reduced AITC-evoked tachycardia and PVCs in SH rats, but this more potent TRPM8 agonist also reduced AITC-evoked bradycardia. l-Menthol had no effect on heart rate when given alone, whereas WS-12 evoked a minor bradycardia in WKY rats. We conclude that stimulation of TRPM8-expressing afferents within the airways reduces irritant-evoked pulmonary-cardiac reflexes, especially the aberrant reflex tachyarrhythmia in SH rats. Airway menthol treatment may be an effective therapy for reducing pollution-associated CV exacerbations.NEW & NOTEWORTHY Irritant-evoked pulmonary-cardiac reflexes are remodeled in spontaneously hypertensive (SH) rats-causing de novo sympathetic reflexes that drive tachyarrhythmia. This remodeling may contribute to air pollution-associated risk in susceptible individuals with cardiovascular disease. We found that inhalation of TRPM8 agonists, l-menthol and WS-12, but not the inactive analog d-menthol, selectively reduces the reflex tachyarrhythmia evoked by allyl isothiocyanate (AITC) inhalation in SH rats. Use of menthol may protect susceptible individuals from pollution-associated CV exacerbations.
Collapse
Affiliation(s)
- J Shane Hooper
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Thomas E Taylor-Clark
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
17
|
Baumlin N, Silswal N, Dennis JS, Niloy AJ, Kim MD, Salathe M. Nebulized Menthol Impairs Mucociliary Clearance via TRPM8 and MUC5AC/MUC5B in Primary Airway Epithelial Cells. Int J Mol Sci 2023; 24:1694. [PMID: 36675209 PMCID: PMC9865048 DOI: 10.3390/ijms24021694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Flavorings enhance the palatability of e-cigarettes (e-cigs), with menthol remaining a popular choice among e-cig users. Menthol flavor remains one of the only flavors approved by the United States FDA for use in commercially available, pod-based e-cigs. However, the safety of inhaled menthol at the high concentrations used in e-cigs remains unclear. Here, we tested the effects of menthol on parameters of mucociliary clearance (MCC) in air-liquid interface (ALI) cultures of primary airway epithelial cells. ALI cultures treated with basolateral menthol (1 mM) showed a significant decrease in ciliary beat frequency (CBF) and airway surface liquid (ASL) volumes after 24 h. Menthol nebulized onto the surface of ALI cultures similarly reduced CBF and increased mucus concentrations, resulting in decreased rates of mucociliary transport. Nebulized menthol further increased the expression of mucin 5AC (MUC5AC) and mRNA expression of the inflammatory cytokines IL1B and TNFA. Menthol activated TRPM8, and the effects of menthol on MCC and inflammation could be blocked by a specific TRPM8 antagonist. These data provide further evidence that menthol at the concentrations used in e-cigs could cause harm to the airways.
Collapse
Affiliation(s)
| | | | | | | | | | - Matthias Salathe
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
18
|
Stinson RJ, Morice AH, Sadofsky LR. Modulation of transient receptor potential (TRP) channels by plant derived substances used in over-the-counter cough and cold remedies. Respir Res 2023; 24:45. [PMID: 36755306 PMCID: PMC9907891 DOI: 10.1186/s12931-023-02347-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Upper respiratory tract infections (URTIs) impact all age groups and have a significant economic and social burden on society, worldwide. Most URTIs are mild and self-limiting, but due to the wide range of possible causative agents, including Rhinovirus (hRV), Adenovirus, Respiratory Syncytial Virus (RSV), Coronavirus and Influenza, there is no single and effective treatment. Over-the-counter (OTC) remedies, including traditional medicines and those containing plant derived substances, help to alleviate symptoms including inflammation, pain, fever and cough. PURPOSE This systematic review focuses on the role of the major plant derived substances in several OTC remedies used to treat cold symptoms, with a particular focus on the transient receptor potential (TRP) channels involved in pain and cough. METHODS Literature searches were done using Pubmed and Web of Science, with no date limitations, using the principles of the PRISMA statement. The search terms used were 'TRP channel AND plant compound', 'cough AND plant compound', 'cough AND TRP channels AND plant compound', 'cough AND P2X3 AND plant compound' and 'P2X3 AND plant compound' where plant compound represents menthol or camphor or eucalyptus or turpentine or thymol. RESULTS The literature reviewed showed that menthol activates TRPM8 and may inhibit respiratory reflexes reducing irritation and cough. Menthol has a bimodal action on TRPA1, but inhibition may have an analgesic effect. Eucalyptus also activates TRPM8 and inhibits TRPA1 whilst down regulating P2X3, aiding in the reduction of cough, pain and airway irritation. Camphor inhibits TRPA1 and the activation of TRPM8 may add to the effects of menthol. Activation of TRPV1 by camphor, may also have an analgesic effect. CONCLUSIONS The literature suggests that these plant derived substances have multifaceted actions and can interact with the TRP 'cough' receptors. The plant derived substances used in cough and cold medicines have the potential to target multiple symptoms experienced during a cold.
Collapse
Affiliation(s)
- Rebecca J. Stinson
- grid.9481.40000 0004 0412 8669Centre for Biomedicine, Hull York Medical School, The University of Hull, Cottingham Road, Hull, HU6 7RX UK
| | - Alyn H. Morice
- grid.413631.20000 0000 9468 0801Clinical Sciences Centre, Hull York Medical School, Castle Hill Hospital, Cottingham, Hull, HU16 5JQ UK
| | - Laura R. Sadofsky
- grid.9481.40000 0004 0412 8669Centre for Biomedicine, Hull York Medical School, The University of Hull, Cottingham Road, Hull, HU6 7RX UK
| |
Collapse
|
19
|
Brown JL, Neptune E. Role of Menthol and Other Flavors on Tobacco and Nicotine Product Use. Respir Med 2023. [DOI: 10.1007/978-3-031-24914-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
20
|
Vogel RM, Ross MLR, Swann C, Rothwell JE, Stevens CJ. Athlete perceptions of flavored, menthol-enhanced energy gels ingested prior to endurance exercise in the heat. J Int Soc Sports Nutr 2022; 19:580-592. [DOI: 10.1080/15502783.2022.2117995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Roxanne M Vogel
- Southern Cross University, Discipline of Sport and Exercise Science, Coffs Harbour, Australia
- GU Energy Labs, Berkeley, CA, USA
| | - Megan LR Ross
- Australian Catholic University, Melbourne, Australia
| | - Christian Swann
- Southern Cross University, Discipline of Sport and Exercise Science, Coffs Harbour, Australia
| | - Jessica E Rothwell
- Athletics Australia, Melbourne, Australia
- Victorian Institute of Sport, Australia
| | - Christopher J Stevens
- Southern Cross University, Discipline of Sport and Exercise Science, Coffs Harbour, Australia
| |
Collapse
|
21
|
Spekker E, Körtési T, Vécsei L. TRP Channels: Recent Development in Translational Research and Potential Therapeutic Targets in Migraine. Int J Mol Sci 2022; 24:ijms24010700. [PMID: 36614146 PMCID: PMC9820749 DOI: 10.3390/ijms24010700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Migraine is a chronic neurological disorder that affects approximately 12% of the population. The cause of migraine headaches is not yet known, however, when the trigeminal system is activated, neuropeptides such as calcitonin gene-related peptide (CGRP) and substance P (SP) are released, which cause neurogenic inflammation and sensitization. Advances in the understanding of migraine pathophysiology have identified new potential pharmacological targets. In recent years, transient receptor potential (TRP) channels have been the focus of attention in the pathophysiology of various pain disorders, including primary headaches. Genetic and pharmacological data suggest the role of TRP channels in pain sensation and the activation and sensitization of dural afferents. In addition, TRP channels are widely expressed in the trigeminal system and brain regions which are associated with the pathophysiology of migraine and furthermore, co-localize several neuropeptides that are implicated in the development of migraine attacks. Moreover, there are several migraine trigger agents known to activate TRP channels. Based on these, TRP channels have an essential role in migraine pain and associated symptoms, such as hyperalgesia and allodynia. In this review, we discuss the role of the certain TRP channels in migraine pathophysiology and their therapeutic applicability.
Collapse
Affiliation(s)
- Eleonóra Spekker
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Tamás Körtési
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31, H-6726 Szeged, Hungary
| | - László Vécsei
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545351; Fax: +36-62-545597
| |
Collapse
|
22
|
Alhadyan SK, Sivaraman V, Onyenwoke RU. E-cigarette Flavors, Sensory Perception, and Evoked Responses. Chem Res Toxicol 2022; 35:2194-2209. [PMID: 36480683 DOI: 10.1021/acs.chemrestox.2c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The chemosensory experiences evoked by flavors encompass a number of unique sensations that include olfactory stimuli (smell), gustatory stimuli (taste, i.e., salty, sweet, sour, bitter, and umami (also known as "savoriness")), and chemesthesis (touch). As such, the responses evoked by flavors are complex and, as briefly stated above, involve multiple perceptive mechanisms. The practice of adding flavorings to tobacco products dates back to the 17th century but is likely much older. More recently, the electronic cigarette or "e-cigarette" and its accompanying flavored e-liquids emerged on to the global market. These new products contain no combustible tobacco but often contain large concentrations (reported from 0 to more than 50 mg/mL) of nicotine as well as numerous flavorings and/or flavor chemicals. At present, there are more than 400 e-cigarette brands available along with potentially >15,000 different/unique flavored products. However, surprisingly little is known about the flavors/flavor chemicals added to these products, which can account for >1% by weight of some e-liquids, and their resultant chemosensory experiences, and the US FDA has done relatively little, until recently, to regulate these products. This article will discuss e-cigarette flavors and flavor chemicals, their elicited responses, and their sensory effects in some detail.
Collapse
Affiliation(s)
- Shatha K Alhadyan
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
| | - Vijay Sivaraman
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
| | - Rob U Onyenwoke
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, North Carolina 27707, United States
| |
Collapse
|
23
|
Picanço JMA, Limberger RP, Apel MA. Uncovering cloves: characterization of volatile compounds present in clove cigarettes. Toxicol Res (Camb) 2022; 11:987-1002. [PMID: 36569486 PMCID: PMC9773057 DOI: 10.1093/toxres/tfac074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/24/2022] [Accepted: 10/04/2022] [Indexed: 11/12/2022] Open
Abstract
Indonesian clove cigarettes-called "kretek" due to the crackling sound that can be heard when the product burns-are tobacco products containing clove and the "saus", a mixture of essential oils and plant extracts whose ingredients are mostly kept in secret. It is important to determine which ingredients those are to properly assess the effects that clove cigarettes can cause. An organoleptic, qualitative and quantitative analysis was made in 9 different brands of clove cigarettes obtained in Brazil. Nicotine, eugenol, menthol, and β-caryophyllene were quantified through gas chromatography coupled to mass spectrometry. The samples presented 20 different compounds, and all samples had a different combination of the compounds. Nicotine concentrations were generally higher than eugenol, and lower than nicotine concentration in a conventional cigarette. One sample had menthol even though the cigarette pack did not inform that it was a menthol product. There were traces of 2 unusual substances. Clindamycin is an antibiotic that can be used to treat bacterial infections in respiratory airways, and octodrine is an amphetaminic stimulant used in nutritional supplements, considered as a substance of doping by the World Anti-Doping Association. The presence of both substances was not tested using certified reference materials, but its possible presence raises concern about the compounds in kretek cigarettes. There should be more studies about the contents of clove cigarettes, to improve antitobacco legislations and regulations. This way it would be possible to properly inform the risks of smoking clove cigarettes and to diminish the number of tobacco users throughout the world.
Collapse
Affiliation(s)
- João Marcelo Astolfi Picanço
- Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), BrazilAv. Ipiranga 2752, Porto Alegre, 90160-093, Brazil
| | - Renata Pereira Limberger
- Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), BrazilAv. Ipiranga 2752, Porto Alegre, 90160-093, Brazil
| | - Miriam Anders Apel
- Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), BrazilAv. Ipiranga 2752, Porto Alegre, 90160-093, Brazil
| |
Collapse
|
24
|
Alarcón-Alarcón D, Cabañero D, de Andrés-López J, Nikolaeva-Koleva M, Giorgi S, Fernández-Ballester G, Fernández-Carvajal A, Ferrer-Montiel A. TRPM8 contributes to sex dimorphism by promoting recovery of normal sensitivity in a mouse model of chronic migraine. Nat Commun 2022; 13:6304. [PMID: 36272975 PMCID: PMC9588003 DOI: 10.1038/s41467-022-33835-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 09/30/2022] [Indexed: 12/25/2022] Open
Abstract
TRPA1 and TRPM8 are transient receptor potential channels expressed in trigeminal neurons that are related to pathophysiology in migraine models. Here we use a mouse model of nitroglycerine-induced chronic migraine that displays a sexually dimorphic phenotype, characterized by mechanical hypersensitivity that develops in males and females, and is persistent up to day 20 in female mice, but disappears by day 18 in male mice. TRPA1 is required for development of hypersensitivity in males and females, whereas TRPM8 contributes to the faster recovery from hypersensitivity in males. TRPM8-mediated antinociception effects required the presence of endogenous testosterone in males. Administration of exogenous testosterone to females and orchidectomized males led to recovery from hypersensitivity. Calcium imaging and electrophysiological recordings in in vitro systems confirmed testosterone activity on murine and human TRPM8, independent of androgen receptor expression. Our findings suggest a protective function of TRPM8 in shortening the time frame of hypersensitivity in a mouse model of migraine.
Collapse
Affiliation(s)
- David Alarcón-Alarcón
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - David Cabañero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain.
| | - Jorge de Andrés-López
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Magdalena Nikolaeva-Koleva
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Simona Giorgi
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Gregorio Fernández-Ballester
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Asia Fernández-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain.
| | - Antonio Ferrer-Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain.
| |
Collapse
|
25
|
Roriz M, Brito P, Teixeira FJ, Brito J, Teixeira VH. Performance effects of internal pre- and per-cooling across different exercise and environmental conditions: A systematic review. Front Nutr 2022; 9:959516. [PMID: 36337635 PMCID: PMC9632747 DOI: 10.3389/fnut.2022.959516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/19/2022] [Indexed: 11/13/2022] Open
Abstract
Exercise in a hot and humid environment may endanger athlete's health and affect physical performance. This systematic review aimed to examine whether internal administration of ice, cold beverages or menthol solutions may be beneficial for physical performance when exercising in different environmental conditions and sports backgrounds. A systematic search was performed in PubMed, Web of Science, Scopus and SPORTDiscus databases, from inception to April 2022, to identify studies meeting the following inclusion criteria: healthy male and female physically active individuals or athletes (aged ≥18 years); an intervention consisting in the internal administration (i.e., ingestion or mouth rinse) of ice slush, ice slurry or crushed ice and/or cold beverages and/or menthol solutions before and/or during exercise; a randomized crossover design with a control or placebo condition; the report of at least one physical performance outcome; and to be written in English. Our search retrieved 2,714 articles in total; after selection, 43 studies were considered, including 472 participants, 408 men and 64 women, aged 18-42 years, with a VO2max ranging from 46.2 to 67.2 mL⋅kg-1⋅min-1. Average ambient temperature and relative humidity during the exercise tasks were 32.4 ± 3.5°C (ranging from 22°C to 38°C) and 50.8 ± 13.4% (varying from 20.0% to 80.0%), respectively. Across the 43 studies, 7 exclusively included a menthol solution mouth rinse, 30 exclusively involved ice slurry/ice slush/crushed ice/cold beverages intake, and 6 examined both the effect of thermal and non-thermal internal techniques in the same protocol. Rinsing a menthol solution (0.01%) improved physical performance during continuous endurance exercise in the heat. Conversely, the ingestion of ice or cold beverages did not seem to consistently increase performance, being more likely to improve performance in continuous endurance trials, especially when consumed during exercises. Co-administration of menthol with or within ice beverages seems to exert a synergistic effect by improving physical performance. Even in environmental conditions that are not extreme, internal cooling strategies may have an ergogenic effect. Further studies exploring both intermittent and outdoor exercise protocols, involving elite male and female athletes and performed under not extreme environmental conditions are warranted. Systematic review registration: [https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021268197], identifier [CRD42021268197].
Collapse
Affiliation(s)
- Maria Roriz
- Faculty of Nutrition and Food Sciences, University of Porto (FCNAUP), Porto, Portugal
- Futebol Clube do Porto, Porto, Portugal
| | - Pedro Brito
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, ISMAI, Maia, Portugal
| | - Filipe J. Teixeira
- Interdisciplinary Center for the Study of Human Performance (CIPER), Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz-Quebrada, Portugal
- Atlântica, Instituto Universitário, Fábrica da Pólvora de Barcarena, Barcarena, Portugal
- Bettery Lifelab, Bettery S.A., Lisbon, Portugal
| | - João Brito
- Portugal Football School, Portuguese Football Federation, Oeiras, Portugal
| | - Vitor Hugo Teixeira
- Faculty of Nutrition and Food Sciences, University of Porto (FCNAUP), Porto, Portugal
- Futebol Clube do Porto, Porto, Portugal
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP), Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| |
Collapse
|
26
|
Li X, Wu Y, Wang S, Liu J, Zhang T, Wei Y, Zhu L, Bai W, Ye T, Wang S. Menthol nanoliposomes enhanced anti-tumor immunotherapy by increasing lymph node homing of dendritic cell vaccines. Clin Immunol 2022; 244:109119. [PMID: 36109005 DOI: 10.1016/j.clim.2022.109119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/18/2022]
Abstract
Menthol, a cyclic terpene alcohol, plays a critical role in overcoming the blood-brain barrier and stratum corneum barrier. Herein, we innovatively propose a menthol nanoliposome (Men-nanoLips) that can dramatically increase lymph node accumulation of the dendritic cell (DC)-based anti-tumor vaccines. Specifically, Men-nanoLips efficiently enhanced lymphatic endothelial cell (EC) barrier permeability by reducing the expression of tight junction proteins. And interestingly, Men-nanoLips not only up-regulated the expression of CCR7 in DCs but also increased the secretion of CCL21 in lymphatic ECs. Moreover, Men-nanoLips promoted DC vaccine maturation as evidenced by increasing the expression of costimulatory molecules and up-regulating the pseudopodia-like protein. With those complementary mechanisms provided by Men-nanoLips, the number of the B16 whole-tumor cell lysate-loaded DCs that target the draining LN enhanced remarkably and significantly boosted the treatment efficacy of DC anti-tumor vaccines. Therefore, we concluded that Men-nanoLips could be instructive for increasing LN homing of DC vaccines.
Collapse
Affiliation(s)
- Xianqiang Li
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, Liaoning, China
| | - Yue Wu
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, Liaoning, China
| | - Sixue Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, Liaoning, China
| | - Jun Liu
- Shenyang Junhong Pharmaceutical Co. LTD, 110016 Shenyang, Liaoning, China
| | - Tingting Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, Liaoning, China
| | - Yimei Wei
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, Liaoning, China
| | - Lili Zhu
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, Liaoning, China
| | - Wei Bai
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, Liaoning, China
| | - Tiantian Ye
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, Liaoning, China.
| | - Shujun Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, Liaoning, China.
| |
Collapse
|
27
|
Rivera-Chacon R, Ricci S, Petri RM, Haselmann A, Reisinger N, Zebeli Q, Castillo-Lopez E. Effect of Duration of High-Grain Feeding on Chewing, Feeding Behavior, and Salivary Composition in Cows with or without a Phytogenic Feed Supplement. Animals (Basel) 2022; 12:ani12152001. [PMID: 35953990 PMCID: PMC9367443 DOI: 10.3390/ani12152001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Switching diets from forage to a high-grain (HG) diet increases the risk of rumen fermentation disorders in cattle. However, the effects of the duration of the HG feeding, after the diet switch, on animal behavior and health have received considerably less attention. This experiment primarily aimed to assess the effects of the duration of an HG diet on the chewing, eating, and lying behavior and salivation dynamics in a control group (CON) and a group of cows receiving a phytogenic feed supplement (TRT) at 0.04% (DM basis), which included L-menthol, thymol, eugenol, mint oil, and cloves powder. The experiment was a crossover design with nine non-lactating cows, and two experimental periods with an intermediate washout of four weeks. In each period, the cows were first fed a forage diet for a week to collect baseline measurements representing week 0; then, the diet was switched over a week to HG (65% concentrate), which was fed for four continuous weeks (week 1, week 2, week 3, and week 4 on an HG diet, respectively). The cows were divided in two groups of four and five animals and were randomly allocated to CON or TRT. The data analysis revealed that at the start of the HG feeding, the dry matter intake and the cows’ number of lying bouts increased, but the eating time, rumination time, and meal frequency decreased, resulting in a greater eating rate. We also found that an advanced duration on an HG diet further decreased the rumination time, total chewing time, chewing index, and sorting in favor of short feed particles, with the lowest values in week 4. The feed bolus size increased but feed the ensalivation decreased in week 4 compared to week 0. The dietary switch increased salivary lysozyme activity, and the advanced duration on the HG diet increased salivary pH, but salivary phosphate decreased in weeks 1 and 2 on the HG diet. Supplementation with TRT increased sorting in favor of physically effective NDF (peNDF) in week 2 and increased salivary pH in week 4 on an HG diet. Overall, the negative effects of the HG diet in cattle are more pronounced during the initial stage of the HG feeding. However, several detrimental effects were exacerbated with the cows’ advanced duration on feed, with host adaptive changes still observed after 3 and 4 weeks following the diet switch. The TRT mitigated some of the negative effects through the temporal improvement of the salivary properties and the intake of peNDF, which are known to modulate rumen fermentation.
Collapse
Affiliation(s)
- Raul Rivera-Chacon
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Veterinärplatz 1, 1210 Vienna, Austria
| | - Sara Ricci
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Veterinärplatz 1, 1210 Vienna, Austria
| | - Renée M. Petri
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Veterinärplatz 1, 1210 Vienna, Austria
| | - Andreas Haselmann
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, BOKU-University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
| | - Nicole Reisinger
- BIOMIN Research Center, BIOMIN Holding GmbH, 3430 Tulln, Austria
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Veterinärplatz 1, 1210 Vienna, Austria
| | - Ezequias Castillo-Lopez
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Veterinärplatz 1, 1210 Vienna, Austria
- Correspondence:
| |
Collapse
|
28
|
Johnson NL, Patten T, Ma M, De Biasi M, Wesson DW. Chemosensory Contributions of E-Cigarette Additives on Nicotine Use. Front Neurosci 2022; 16:893587. [PMID: 35928010 PMCID: PMC9344001 DOI: 10.3389/fnins.2022.893587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
While rates of smoking combustible cigarettes in the United States have trended down in recent years, use of electronic cigarettes (e-cigarettes) has dramatically increased, especially among adolescents. The vast majority of e-cigarette users consume "flavored" products that contain a variety of chemosensory-rich additives, and recent literature suggests that these additives have led to the current "teen vaping epidemic." This review, covering research from both human and rodent models, provides a comprehensive overview of the sensory implications of e-cigarette additives and what is currently known about their impact on nicotine use. In doing so, we specifically address the oronasal sensory contributions of e-cigarette additives. Finally, we summarize the existing gaps in the field and highlight future directions needed to better understand the powerful influence of these additives on nicotine use.
Collapse
Affiliation(s)
- Natalie L. Johnson
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
| | - Theresa Patten
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Minghong Ma
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mariella De Biasi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel W. Wesson
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
| |
Collapse
|
29
|
Havermans A, Mallock N, Zervas E, Caillé-Garnier S, Mansuy T, Michel C, Pennings JLA, Schulz T, Schwarze PE, Solimini R, Tassin JP, Vardavas CI, Merino M, Pauwels CGGM, van Nierop LE, Lambré C, Bolling AK. Review of industry reports on EU priority tobacco additives part A: Main outcomes and conclusions. Tob Prev Cessat 2022; 8:27. [PMID: 35860504 PMCID: PMC9255285 DOI: 10.18332/tpc/151529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023]
Abstract
The European Union Tobacco Products Directive (EU TPD) mandates enhanced reporting obligations for tobacco manufacturers regarding 15 priority additives. Within the Joint Action on Tobacco Control (JATC), a review panel of independent experts was appointed for the scientific evaluation of the additive reports submitted by a consortium of 12 tobacco manufacturers. As required by the TPD, the reports were evaluated based on their comprehensiveness, methodology and conclusions. In addition, we evaluated the chemical, toxicological, addictive, inhalation facilitating and flavoring properties of the priority additives based on the submitted reports, supplemented by the panel's expert knowledge and some independent literature. The industry concluded that none of the additives is associated with concern. Due to significant methodological limitations, we question the scientific validity of these conclusions and conclude that they are not warranted. Our review demonstrates that many issues regarding toxicity, addictiveness and attractiveness of the additives have not been sufficiently addressed, and therefore concerns remain. For example, menthol facilitates inhalation by activation of the cooling receptor TRPM8. The addition of sorbitol and guar gum leads to a significant increase of aldehydes that may contribute to toxicity and addictiveness. Titanium dioxide particles (aerodynamic diameter <10 µm) are legally classified as carcinogenic when inhaled. For diacetyl no report was provided. Overall, the industry reports were not comprehensive, and the information presented provides an insufficient basis for the regulation of most additives. We, therefore, advise MS to consider alternative approaches such as the precautionary principle.
Collapse
Affiliation(s)
- Anne Havermans
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Nadja Mallock
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Efthimios Zervas
- Hellenic Thoracic Society, Athens, Greece
- School of Applied Arts and Sustainable Design, Hellenic Open University, Athens, Greece
| | | | - Thibault Mansuy
- French Agency for Food, Environmental and Occupational Health and Safety, Paris, France
| | - Cécile Michel
- French Agency for Food, Environmental and Occupational Health and Safety, Paris, France
| | - Jeroen L. A. Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Thomas Schulz
- German Federal Institute for Risk Assessment, Berlin, Germany
| | | | | | | | | | - Miguel Merino
- Andalusia Agency For Agriculture and Fisheries Development, Seville, Spain
| | - Charlotte G. G. M. Pauwels
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Lotte E. van Nierop
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Claude Lambré
- National Institute of Health and Medical Research, Paris, France
| | | |
Collapse
|
30
|
Peters VCT, Dunkel A, Frank O, Rajmohan N, McCormack B, Dowd E, Didzbalis J, Gianfagna TJ, Dawid C, Hofmann T. High-Throughput Flavor Analysis and Mapping of Flavor Alterations Induced by Different Genotypes of Mentha by Means of UHPLC-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5668-5679. [PMID: 35475602 DOI: 10.1021/acs.jafc.2c01689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The demand for mint is increasing from year to year, and it is more important than ever to secure a sustainable and robust supply of such an important plant. The USDA mint core collection provides the basis for many researches worldwide regarding, e.g., sequencing, cytology, and disease resistances. A recently developed toolbox enables here for the first time the analysis of such a complex collection in terms of the aroma compound composition and the mapping of flavor alterations depending on taxonomy, environmental conditions, and growing stages by means of comprehensive liquid chromatography tandem mass spectrometry. Therefore, in this study, not only the aroma compound composition of 153 genotypes was characterized but it was also demonstrated that the composition varies depending on taxonomy and changes during the growth of the plant. Furthermore, it could be shown that greenhouse conditions have an enormous influence on the concentrations of aroma compounds.
Collapse
Affiliation(s)
- Verena Christina Tabea Peters
- Chair of Food Chemistry and Molecular and Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising, Germany
| | - Andreas Dunkel
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising, Germany
| | - Oliver Frank
- Chair of Food Chemistry and Molecular and Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising, Germany
| | - Nimmi Rajmohan
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Brian McCormack
- Flavor/Mint Science, Mars Wrigley, 1132 W. Blackhawk Street, Chicago, Illinois 60642, United States
| | - Eric Dowd
- Flavor/Mint Science, Mars Wrigley, 1132 W. Blackhawk Street, Chicago, Illinois 60642, United States
| | - John Didzbalis
- Mars, Incorporated, Mars Advanced Research Institute, McLean, Virginia 22101, United States
| | - Thomas J Gianfagna
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular and Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular and Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising, Germany
| |
Collapse
|
31
|
Crosby S, Butcher A, McDonald K, Berger N, Bekker PJ, Best R. Menthol Mouth Rinsing Maintains Relative Power Production during Three-Minute Maximal Cycling Performance in the Heat Compared to Cold Water and Placebo Rinsing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063527. [PMID: 35329209 PMCID: PMC8949398 DOI: 10.3390/ijerph19063527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 11/16/2022]
Abstract
Previous menthol studies have demonstrated ergogenic effects in endurance-based activity. However, there is a need for research in sports whose physiological requirements exceed maximal aerobic capacity. This study assessed the effects of 0.1% menthol mouth-rinsing upon a modified three-minute maximal test in the heat (33.0 ± 3.0 °C; RH 46.0 ± 5.0%). In a randomised crossover single blind placebo-controlled study, 11 participants completed three modified maximal tests, where each trial included a different mouth rinse: either menthol (MEN), cold water (WAT) or placebo (PLA). Participants were asked to rate their thermal comfort (TC), thermal sensation (TS) and rating of perceived exertion (RPE) throughout the test. Heart rate, core temperature, oxygen uptake (VO2), ventilation (VE) and respiratory exchange ratio (RER) were monitored continuously throughout the test, alongside cycling power variables (W; W/kg). A blood lactate (BLa) level was taken pre- and post- test. Small to moderate effects (Cohen's d and accompanying 90% confidence intervals) between solutions MEN, WAT and PLA were observed towards the end of the test in relation to relative power. Specifically, from 75-105 s between solutions MEN and WAT (ES: 0.795; 90% CI: 0.204 to 1.352) and MEN and PLA (ES: 1.059; 90% CI: 0.412 to 1.666), this continued between MEN and WAT (ES: 0.729; 90% CI: 0.152 to 1.276) and MEN and PLA (ES: 0.791; 90% CI: 0.202 to 1.348) from 105-135 s. Between 135-165 s there was a moderate difference between solutions MEN and WAT (ES: 1.058; 90% CI: 0.411 to 1.665). This indicates participants produced higher relative power for longer durations with the addition of the menthol mouth rinse, compared to cold water or placebo. The use of menthol (0.1%) as a mouth rinse showed small performance benefits for short duration high intensity exercise in the heat.
Collapse
Affiliation(s)
- Seana Crosby
- Centre for Sport Science & Human Performance, Waikato Institute of Technology, Hamilton 3200, New Zealand; (S.C.); (A.B.); (K.M.); (P.J.B.)
| | - Anna Butcher
- Centre for Sport Science & Human Performance, Waikato Institute of Technology, Hamilton 3200, New Zealand; (S.C.); (A.B.); (K.M.); (P.J.B.)
| | - Kerin McDonald
- Centre for Sport Science & Human Performance, Waikato Institute of Technology, Hamilton 3200, New Zealand; (S.C.); (A.B.); (K.M.); (P.J.B.)
| | - Nicolas Berger
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK;
| | - Petrus J. Bekker
- Centre for Sport Science & Human Performance, Waikato Institute of Technology, Hamilton 3200, New Zealand; (S.C.); (A.B.); (K.M.); (P.J.B.)
| | - Russ Best
- Centre for Sport Science & Human Performance, Waikato Institute of Technology, Hamilton 3200, New Zealand; (S.C.); (A.B.); (K.M.); (P.J.B.)
- Correspondence:
| |
Collapse
|
32
|
Shulman RJ, Chumpitazi BP, Abdel-Rahman SM, Garg U, Musaad S, Kearns GL. Randomised trial: Peppermint oil (menthol) pharmacokinetics in children and effects on gut motility in children with functional abdominal pain. Br J Clin Pharmacol 2022; 88:1321-1333. [PMID: 34528282 PMCID: PMC8863319 DOI: 10.1111/bcp.15076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/29/2021] [Accepted: 09/04/2021] [Indexed: 12/18/2022] Open
Abstract
AIMS Little is known regarding the pharmacokinetics and pharmacodynamics of menthol, the active ingredient in peppermint oil (PMO). Our aim was to investigate the pharmacokinetics of menthol at 3 dose levels in children and determine their effects on gut motility and transit. METHODS Thirty children ages 7-12 years with functional abdominal pain underwent wireless motility capsule (WMC) testing. Approximately 1 week later they were randomized to 180, 360 or 540 mg of enteric coated PMO (10 participants per dose). Menthol pharmacokinetics were determined via blood sampling over 24 hours. They then took their respective dose of PMO (180 mg once, 180 mg twice or 180 mg thrice daily) for 1 week during which time the WMC test was repeated. RESULTS Evaluable area under the plasma concentration vs. time curve (AUClast ) data were available in 29 of 30 participants. A direct linear relationship (apparent dose-proportionality for systemic menthol exposure) was observed between PMO dose and menthol systemic exposure with mean elimination half-life 2.1, 3.5 and 4.6 hours for the 180, 360 and 540 mg doses, respectively. WMC technical issues precluded complete motility data in all participants. Colonic transit time was inversely related to AUClast (P = .003); transit time in other regions was not affected. In contrast, stomach, small bowel and whole gut (but not colonic) contractility positively correlated with menthol AUClast (P < .05). CONCLUSION Pharmacokinetics and pharmacodynamics of menthol derived from PMO demonstrated apparent dose-proportionality. A higher dose of PMO may be needed to achieve maximal gut response. www.clinicaltrials.gov NCT03295747.
Collapse
Affiliation(s)
- Robert J. Shulman
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA,Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA,Texas Children’s Hospital, Houston, TX, USA
| | - Bruno P. Chumpitazi
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA,Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA,Texas Children’s Hospital, Houston, TX, USA
| | | | - Uttam Garg
- Departments of Pathology and Laboratory Medicine, Children’s Mercy Hospital; University of Missouri School of Medicine, Kansas City, MO, USA
| | - Salma Musaad
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA,Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Gregory L. Kearns
- Texas Christian University and University of North Texas Health Science Center School of Medicine, Fort Worth, TX, USA
| |
Collapse
|
33
|
Arendt-Nielsen L, Carstens E, Proctor G, Boucher Y, Clavé P, Albin Nielsen K, Nielsen TA, Reeh PW. The Role of TRP Channels in Nicotinic Provoked Pain and Irritation from the Oral Cavity and Throat: Translating Animal Data to Humans. Nicotine Tob Res 2022; 24:1849-1860. [PMID: 35199839 PMCID: PMC9653082 DOI: 10.1093/ntr/ntac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 01/19/2022] [Accepted: 02/22/2022] [Indexed: 01/03/2023]
Abstract
Tobacco smoking-related diseases are estimated to kill more than 8 million people/year and most smokers are willing to stop smoking. The pharmacological approach to aid smoking cessation comprises nicotine replacement therapy (NRT) and inhibitors of the nicotinic acetylcholine receptor, which is activated by nicotine. Common side effects of oral NRT products include hiccoughs, gastrointestinal disturbances and, most notably, irritation, burning and pain in the mouth and throat, which are the most common reasons for premature discontinuation of NRT and termination of cessation efforts. Attempts to reduce the unwanted sensory side effects are warranted, and research discovering the most optimal masking procedures is urgently needed. This requires a firm mechanistic understanding of the neurobiology behind the activation of sensory nerves and their receptors by nicotine. The sensory nerves in the oral cavity and throat express the so-called transient receptor potential (TRP) channels, which are responsible for mediating the nicotine-evoked irritation, burning and pain sensations. Targeting the TRP channels is one way to modulate the unwanted sensory side effects. A variety of natural (Generally Recognized As Safe [GRAS]) compounds interact with the TRP channels, thus making them interesting candidates as safe additives to oral NRT products. The present narrative review will discuss (1) current evidence on how nicotine contributes to irritation, burning and pain in the oral cavity and throat, and (2) options to modulate these unwanted side-effects with the purpose of increasing adherence to NRT. Nicotine provokes irritation, burning and pain in the oral cavity and throat. Managing these side effects will ensure better compliance to oral NRT products and hence increase the success of smoking cessation. A specific class of sensory receptors (TRP channels) are involved in mediating nicotine's sensory side effects, making them to potential treatment targets. Many natural (Generally Recognized As Safe [GRAS]) compounds are potentially beneficial modulators of TRP channels.
Collapse
Affiliation(s)
- Lars Arendt-Nielsen
- Corresponding Author: Lars Arendt-Nielsen PhD, Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark. Telephone: +45 99408831; E-mail:
| | - Earl Carstens
- Neurobiology, Physiology and Behavior, University of California, Davis
| | - Gordon Proctor
- Centre for Host-Microbiome Interactions, Professor of Salivary Biology, King´s CollegeLondon, UK
| | - Yves Boucher
- Laboratory of Orofacial Neurobiology, Paris Diderot University, Paris, France
| | - Pere Clavé
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Hospital de Mataró, Universitat Autònoma de Barcelona, Mataró, Barcelona, Spain
| | | | - Thomas A Nielsen
- Mech-Sense & Centre for Pancreatic Diseases, Department of Gastroenterology & Hepatology, Clinical Institute, Aalborg University Hospital, Aalborg, Denmark
| | - Peter W Reeh
- Institute Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
34
|
Systematic Review on the Effectiveness of Essential and Carrier Oils as Skin Penetration Enhancers in Pharmaceutical Formulations. Sci Pharm 2022. [DOI: 10.3390/scipharm90010014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Oils, including essential oils and their constituents, are widely reported to have penetration enhancement activity and have been incorporated into a wide range of pharmaceutical formulations. This study sought to determine if there is an evidence base for the selection of appropriate oils for particular applications and compare their effectiveness across different formulation types. A systematic review of the data sources, consisting of Google Scholar, EMBASE, PubMed, Medline, and Scopus, was carried out and, following screening and quality assessment, 112 articles were included within the analysis. The research was classified according to the active pharmaceutical ingredient, dosage form, in vitro/in vivo study, carrier material(s), penetration enhancers as essential oils, and other chemical enhancers. The review identified four groups of oils used in the formulation of skin preparations; in order of popularity, these are terpene-type essential oils (63%), fatty acid-containing essential oils (29%) and, finally, 8% of essential oils comprising Vitamin E derivatives and miscellaneous essential oils. It was concluded that terpene essential oils may have benefits over the fatty acid-containing oils, and their incorporation into advanced pharmaceutical formulations such as nanoemulsions, microemulsions, vesicular systems, and transdermal patches makes them an attractive proposition to enhance drug permeation through the skin.
Collapse
|
35
|
Directional Growth of cm-Long PLGA Nanofibers by a Simple and Fast Wet-Processing Method. MATERIALS 2022; 15:ma15020687. [PMID: 35057400 PMCID: PMC8777905 DOI: 10.3390/ma15020687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 01/25/2023]
Abstract
The development of aligned nanofibers as useful scaffolds for tissue engineering is an actively sought-for research objective. Here, we propose a novel improvement of an existing self-assembly-based nanofabrication technique (ASB-SANS). This improvement, which we termed Directional ASB-SANS, allows one to produce cm2-large domains of highly aligned poly(lactic-co-glycolic acid) (PLGA) nanofibers in a rapid, inexpensive, and easy way. The so-grown aligned PLGA nanofibers exhibited remarkable adhesion to different substrates (glass, polyimide, and Si/SiOx), even when immersed in PBS solution and kept at physiological temperature (37 °C) for up to two weeks. Finally, the Directional ASB-SANS technique allowed us to grow PLGA fibers also on highly heterogeneous substrates such as polyimide-based, gold-coated flexible electrodes. These results suggest the viability of Directional ASB-SANS method for realizing biocompatible/bioresorbable, nanostructured coatings, potentially suitable for neural interface systems.
Collapse
|
36
|
Neomenthol prevents the proliferation of skin cancer cells by restraining tubulin polymerization and hyaluronidase activity. J Adv Res 2022; 34:93-107. [PMID: 35024183 PMCID: PMC8655237 DOI: 10.1016/j.jare.2021.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction Neomenthol, a cyclic monoterpenoid, is a stereoisomer of menthol present in the essential oil of Mentha spp. It is used in food as a flavoring agent, in cosmetics and medicines because of its cooling effects. However, neomenthol has not been much explored for its anticancer potential. Additionally, targeting hyaluronidase, Cathepsin-D, and ODC by phytochemicals is amongst the efficient approach for cancer prevention and/or treatment. Objectives To investigate the molecular and cell target-based antiproliferative potential of neomenthol on human cancer (A431, PC-3, K562, A549, FaDu, MDA-MB-231, COLO-205, MCF-7, and WRL-68) and normal (HEK-293) cell lines. Methods The potency of neomenthol was evaluated on human cancer and normal cell line using SRB, NRU and MTT assays. The molecular target based study of neomenthol was carried out in cell-free and cell-based test systems. Further, the potency of neomenthol was confirmed by quantitative real-time PCR analysis and molecular docking studies. The in vivo anticancer potential of neomenthol was performed on mice EAC model and the toxicity examination was accomplished through in silico, ex vivo and in vivo approaches. Results Neomenthol exhibits a promising activity (IC50 17.3 ± 6.49 μM) against human epidermoid carcinoma (A431) cells by arresting the G2/M phase and increasing the number of sub-diploid cells. It significantly inhibits hyaluronidase activity (IC50 12.81 ± 0.01 μM) and affects the tubulin polymerization. The expression analysis and molecular docking studies support the in vitro molecular and cell target based results. Neomenthol prevents EAC tumor formation by 58.84% and inhibits hyaluronidase activity up to 10% at 75 mg/kg bw, i.p. dose. The oral dose of 1000 mg/kg bw was found safe in acute oral toxicity studies. Conclusion Neomenthol delayed the growth of skin carcinoma cells by inhibiting the tubulin polymerization and hyaluronidase activity, which are responsible for tumor growth, metastasis, and angiogenesis.
Collapse
Key Words
- AA, Arachidonic acid
- AKLP, Alkaline phosphatase
- Ab/Am, Antibiotic/antimycotic
- BE, Binding energy
- BIL, Bilirubin total & direct
- BSA, Bovine serum albumin
- BUN, Blood urea nitrogen
- CATD, Cathepsin D
- CHOL, Cholesterol
- CM-H2DCFDA, Chloromethyl derivative of dichloro fluorescin diacetate
- COX-2, Cyclooxygenase 2
- CRTN, Creatinine
- Cancer biomarker
- DCFDA, 2′,7′ dichloro fluorescin diacetate
- DFMO, α-difluoro methyl ornithine
- DHFR, Dihydrofolatereductase
- DMEM, Dulbecco’s minimal essential media
- DMSO, Dimethyl sulfoxide
- DNA, Deoxyribonucleic acid
- DOXO, Doxorubicin
- EAC, Ehlrich Ascites Carcinoma
- EC50, Half maximal effective concentration
- EDTA, Ethylene diamine tetra acetic acid
- ELISA, enzyme-linked immunosorbent assay
- Ehrlich Ascites Carcinoma
- FACS, Fluorescence-Activated Cell Sorting
- FBS, Fetal bovine serum
- FDA, Food and Drug Administration
- FOX, Ferrous oxidation-xylenol orange
- GAPDH, Glyceraldehyde 3-phosphate dehydrogenase, HEPES, N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid
- HA, Hyaluronic acid
- HDAC, Histone deacetylase
- HDL, High density lipoprotein
- HYAL, Hyaluronidase
- Human epidermoid carcinoma
- Hyaluronidase
- IC50, Half maximal inhibitory concentration
- IDT, Integrated DNA Technologies
- Ki, Inhibitory constant
- LDH, Lactate dehydrogenase
- LOX-5, Lipoxygenase-5
- MEF, Mean erythrocyte fragility
- MMP, Mitochondrial membrane potential
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- MTX, Methotrexate
- NAC, N-acetyl cysteine
- NADPH, Nicotinamide adenine dinucleotide phosphate hydrogen
- NRU, Neutral red uptake
- NaOH, Sodium hydroxide
- Neomenthol
- ODC, Ornithine decarboxylase
- OECD, Organization for Economic Co-operation and Development
- OF, Osmotic fragility
- PBS, Phosphate buffer saline
- PCR, Polymerase chain reaction
- PDB, Protein Data Bank
- PDT, Podophyllotoxin
- PEP A, pepstatin A
- PI, Propidium iodide
- PI3K, Phosphotidyl inositol-3 kinase
- PKB/Akt, Protein kinase B
- RBC, Red blood cell
- RIPA, Radio immune precipitation assay buffer
- RNA, Ribonucleic acid
- RNase A, Ribonuclease A
- ROS, Reactive oxygen species
- RPMI, Roswell park memorial institute
- Rh123, Rhodamine 123
- SGOT, Aspartate aminotransferase
- SGPT, Alanine aminotransferase
- SRB, Sulphorhodamine B
- TCA, Tricarboxylic acid
- TMPD, N,N,N′,N′-tetramethyl-p-phenylenediamine
- TNBS, Trinitrobenzenesulphonic acid
- TPA, 12-O-Tetradecanoylphorbol-13-acetate
- TPR, Total protein
- TRIG, Triglyceraldehyde
- TRPM8, Transient receptor potential member 8
- Tubulin
- URIC, Uric acid
- WBC, White blood cell
- mTOR, Mammalian target of rapamycin
Collapse
|
37
|
Mathews JE, Hood JC, Klumpp DA. Synthesis of aniline-based menthol glycinates and derivatives. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
38
|
l-Menthol increases extracellular dopamine and c-Fos-like immunoreactivity in the dorsal striatum, and promotes ambulatory activity in mice. PLoS One 2021; 16:e0260713. [PMID: 34847183 PMCID: PMC8631625 DOI: 10.1371/journal.pone.0260713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/15/2021] [Indexed: 01/12/2023] Open
Abstract
Similar to psychostimulants, the peripheral administration of menthol promotes mouse motor activity, and the neurotransmitter dopamine has been suggested to be involved in this effect. The present study aimed to elucidate the effects of l-menthol on parts of the central nervous system that are involved in motor effects. The subcutaneous administration of l-menthol significantly increased the number of c-Fos-like immunoreactive nuclei in the dorsal striatum of the mice, and motor activity was promoted. It also increased the extracellular dopamine level in the dorsal striatum of the mice. These observations indicated that after subcutaneous administration, l-menthol enhances dopamine-mediated neurotransmission, and activates neuronal activity in the dorsal striatum, thereby promoting motor activity in mice.
Collapse
|
39
|
Mira A, Rubio-Camacho M, Alarcón D, Rodríguez-Cañas E, Fernández-Carvajal A, Falco A, Mallavia R. L-Menthol-Loadable Electrospun Fibers of PMVEMA Anhydride for Topical Administration. Pharmaceutics 2021; 13:1845. [PMID: 34834260 PMCID: PMC8618103 DOI: 10.3390/pharmaceutics13111845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Poly(methyl vinyl ether-alt-maleic anhydride) (PMVEMA) of 119 and 139 molecular weights (P119 and P139, respectively) were electrospun to evaluate the resulting fibers as a topical delivery vehicle for (L-)menthol. Thus, electrospinning parameters were optimized for the production of uniform bead-free fibers from 12% w/w PMVEMA (±2.3% w/w menthol) solutions, and their morphology and size were characterized by field emission scanning electron microscopy (FESEM). The fibers of P119 (F119s) and P139 (F139s) showed average diameter sizes of approximately 534 and 664 nm, respectively, when unloaded, and 837 and 1369 nm when loaded with menthol. The morphology of all types of fibers was cylindrical except for F139s, which mostly displayed a double-ribbon-like shape. Gas chromatography-mass spectrometry (GC-MS) analysis determined that not only was the menthol encapsulation efficiency higher in F139s (92% versus 68% in F119s) but also that its stability over time was higher, given that in contrast with F119s, no significant losses in encapsulated menthol were detected in the F139s after 10 days post-production. Finally, in vitro biological assays showed no significant induction of cytotoxicity for any of the experimental fibers or in the full functionality of the encapsulated menthol, as it achieved equivalent free-menthol levels of activation of its specific receptor, the (human) transient receptor potential cation channel subfamily M (melastatin) member 8 (TRPM8).
Collapse
Affiliation(s)
| | | | | | | | | | - Alberto Falco
- Institute of Research Development and Innovation in Biotechnology of Elche (IDiBE), Miguel Hernández University (UMH), 03202 Elche, Spain; (A.M.); (M.R.-C.); (D.A.); (E.R.-C.); (A.F.-C.)
| | - Ricardo Mallavia
- Institute of Research Development and Innovation in Biotechnology of Elche (IDiBE), Miguel Hernández University (UMH), 03202 Elche, Spain; (A.M.); (M.R.-C.); (D.A.); (E.R.-C.); (A.F.-C.)
| |
Collapse
|
40
|
Podlogar T, Bolčič T, Cirnski S, Verdel N, Debevec T. Commercially available carbohydrate drink with menthol fails to improve thermal perception or cycling exercise capacity in males. Eur J Sport Sci 2021; 22:1705-1713. [PMID: 34559601 DOI: 10.1080/17461391.2021.1986140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The purpose of this double-blinded, crossover randomized and counterbalanced study was to compare the effects of ingesting a tepid commercially available carbohydrate-menthol-containing sports drink (menthol) and an isocaloric carbohydrate-containing sports drink (placebo) on thermal perception and cycling endurance capacity "in a simulated home virtual cycling environment". It was hypothesized that the addition of menthol would improve indicators of thermal perception and improve endurance exercise capacity. Twelve healthy, endurance-trained males (age 29 ± 5 years, height 181 ± 6 cm, body mass 79 ± 2 kg and V̇O2max 57.3 ± 6.4 mL kg-1 min-1) completed two experimental trials on a stationary bicycle without external air flow. Each trial consisted of (1) cycling for 60 min at 90% of the first ventilatory threshold while receiving a fixed amount of menthol or placebo every 10 min followed immediately by (2) cycling until volitional exhaustion (TTE) at 105% of the intensity corresponding to the respiratory compensation point. TTE did not differ between both conditions (541 ± 177 and 566 ± 150 s for menthol and placebo; p > 0.05) and neither did ratings of perceived thermal comfort or thermal sensation (p > 0.05). Also, the rectal temperature at the end of TTE was comparable between menthol and placebo trials (38.7 ± 0.2°C and 38.7 ± 0.3°C, respectively; p > 0.05). The present results demonstrate that the addition of menthol to commercially available sports drink does not improve thermal comfort or endurance exercise capacity during ∼65 min of intense virtual cycling.
Collapse
Affiliation(s)
- Tim Podlogar
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Tina Bolčič
- Faculty of Sports, University of Ljubljana, Ljubljana, Slovenia
| | | | - Nina Verdel
- Swedish Winter Sports Research Centre, Mid Sweden University, Östersund, Sweden
| | - Tadej Debevec
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Sports, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
41
|
Dilution Method of Menthol Solutions Affects Subsequent Perceptual Thermal Responses during Passive Heat Exposure in Non-Heat Acclimated Participants. BEVERAGES 2021. [DOI: 10.3390/beverages7030062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Due to its volatility, the qualitative experience of menthol may be modulated by its preparation and combination with other compounds. One such method of preparation is dilution, with two dilution methods existing within the sport and exercise science literature, where menthol is used to impart feelings of oral cooling and improve thermal comfort and sensation during heat exposure. This study compared these two dilution methods; one using a solvent the other using temperature, via a randomized counterbalanced repeated measures design (n = 12; Height: 174.0 ± 8.5 cm Mass: 73.4 ± 13.3 kg Age: 28.7 ± 8.4 y; two exposures to each solution) to assess the effect of solution and heat exposure, upon thermal comfort, thermal sensation and associated physiological parameters in non-heat acclimated participants. Thermal comfort was significantly affected by solution (p = 0.041; η2 = 0.017) and time (p < 0.001; η2 = 0.228), whereas thermal sensation was significantly affected by time only (p = 0.012; η2 = 0.133), as was tympanic temperature (p < 0.001; η2 = 0.277). Small to moderate clear differences between solutions at matched time points were also observed. These trends and effects suggest that, depending upon the dilution method employed, the resultant perceptual effects are likely impacted; this also likely depends upon the timing of menthol administration within a heat exposure session.
Collapse
|
42
|
Peiris M, Weerts ZZRM, Aktar R, Masclee AAM, Blackshaw A, Keszthelyi D. A putative anti-inflammatory role for TRPM8 in irritable bowel syndrome-An exploratory study. Neurogastroenterol Motil 2021; 33:e14170. [PMID: 34145938 DOI: 10.1111/nmo.14170] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Chronic and recurring pain is a characteristic symptom in irritable bowel syndrome (IBS). Altered signaling between immune cells and sensory neurons within the gut may promote generation of pain symptoms. As transient receptor potential melastatin 8 (TRPM8) agonists, such as L-menthol in peppermint oil, have shown to attenuate IBS pain symptoms, we began investigating potential molecular mechanisms. METHODS Colonic biopsy tissues were collected from patients with IBS and controls, in two separate cohorts. Immunohistochemistry was performed to identify TRPM8 localization. Quantitative PCR was performed to measure mucosal mRNA levels of TRPM8. In addition, functional experiments with the TRPM8 agonist icilin were performed ex vivo to examine cytokine release from biopsies. Daily diaries were collected to ascertain pain symptoms. RESULTS In biopsy tissue from IBS patients, we showed that TRPM8 immunoreactivity is colocalized with immune cells predominantly of the dendritic cell lineage, in close approximation to nerve endings, and TRPM8 protein and mRNA expression was increased in IBS patients compared to controls (p < 0.001). TRPM8 mRNA expression showed a significant positive association with abdominal pain scores (p = 0.015). Treatment of IBS patient biopsies with icilin reduced release of inflammatory cytokines IL-1β, IL-6, and TNF-α (p < 0.05). CONCLUSIONS AND INFERENCES These data indicate TRPM8 may have important anti-inflammatory properties and by this virtue can impact neuro-immune disease mechanisms in IBS.
Collapse
Affiliation(s)
- Madusha Peiris
- Wingate Institute for Neurogastroenterology, Centre for Neuroscience, Trauma & Surgery, Blizard Institute, Queen Mary University of London, London, UK
| | - Zsa Zsa R M Weerts
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Rubina Aktar
- Wingate Institute for Neurogastroenterology, Centre for Neuroscience, Trauma & Surgery, Blizard Institute, Queen Mary University of London, London, UK
| | - Ad A M Masclee
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ashley Blackshaw
- Wingate Institute for Neurogastroenterology, Centre for Neuroscience, Trauma & Surgery, Blizard Institute, Queen Mary University of London, London, UK
| | - Daniel Keszthelyi
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
43
|
Zouchoune B. Theoretical investigation on the biological activities of ginger and some of its combinations: an overview of the antioxidant activity. Struct Chem 2021. [DOI: 10.1007/s11224-021-01725-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Zhan J, Shou C, Zheng Y, Chen Q, Pan J, Li C, Xu J. Discovery and Engineering of Bacterial (−)‐Isopiperitenol Dehydrogenases to Enhance (−)‐Menthol Precursor Biosynthesis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jing‐Ru Zhan
- Laboratory of Biocatalysis and Synthetic Biotechnology State Key Laboratory of Bioreactor Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Chao Shou
- Laboratory of Biocatalysis and Synthetic Biotechnology State Key Laboratory of Bioreactor Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Yu‐Cong Zheng
- Laboratory of Biocatalysis and Synthetic Biotechnology State Key Laboratory of Bioreactor Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Qi Chen
- Laboratory of Biocatalysis and Synthetic Biotechnology State Key Laboratory of Bioreactor Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing School of Biotechnology East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Jiang Pan
- Laboratory of Biocatalysis and Synthetic Biotechnology State Key Laboratory of Bioreactor Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing School of Biotechnology East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Chun‐Xiu Li
- Laboratory of Biocatalysis and Synthetic Biotechnology State Key Laboratory of Bioreactor Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing School of Biotechnology East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Jian‐He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology State Key Laboratory of Bioreactor Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing School of Biotechnology East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| |
Collapse
|
45
|
Umezu T. Identification of novel target molecules of l-menthol. Heliyon 2021; 7:e07329. [PMID: 34195432 PMCID: PMC8237303 DOI: 10.1016/j.heliyon.2021.e07329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/03/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
The present study used a binding assay to identify novel target biomolecules of l-menthol ([−]-menthol) that promote mouse ambulation. Among 88 different ligands to specific biomolecules examined, 0.1 mM l-menthol inhibited the binding of 13 ligands with relatively high inhibition rates. The assays showed that l-menthol acts on calcium channels, sodium channels, γ-aminobutyric acid type A (GABAA) receptor, GABA transporter, dopamine transporter, dopamine D4 receptor, adenosine A2a receptor, α2A-adrenergic receptor, histamine H2 receptor, bombesin receptor, angiotensin AT1 receptor, vasopressin V2 receptor, and leukotriene B4 receptor over a similar concentration range. The inhibition constant (Ki) for l-menthol inhibition of binding of [3H]-WIN35,428 to the human recombinant dopamine transporter was 6.15 × 10−4 mol/L. The Ki for l-menthol inhibition of binding of [3H]-ethynylbicycloorthobenzoate (EBOB), a ligand of GABAA receptor picrotoxin site, was 2.88 × 10−4 mol/L. These results should aid future research by providing clues for investigating the mechanisms underlying l-menthol activities, including the ambulation-promoting effect. The present results suggest that the dopamine transporter, adenosine A2a receptor, dopamine D4 receptor, α2A-adrenergic receptor, and GABAA receptor are promising candidate molecules that are involved in the mechanisms underlying the psychostimulant-like effect of l-menthol.
Collapse
Affiliation(s)
- Toyoshi Umezu
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| |
Collapse
|
46
|
Ricci S, Rivera-Chacon R, Petri RM, Sener-Aydemir A, Sharma S, Reisinger N, Zebeli Q, Castillo-Lopez E. Supplementation With Phytogenic Compounds Modulates Salivation and Salivary Physico-Chemical Composition in Cattle Fed a High-Concentrate Diet. Front Physiol 2021; 12:645529. [PMID: 34149443 PMCID: PMC8209472 DOI: 10.3389/fphys.2021.645529] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Saliva facilitates feed ingestion, nutrient circulation, and represents an important pH buffer for ruminants, especially for cattle fed high-concentrate diets that promote rumen acidification. This experiment evaluated the short-term effects of nine phytogenic compounds on salivation, saliva physico-chemical composition as well as ingested feed boli characteristics in cattle. A total of nine ruminally cannulated Holstein cows were used. Each compound was tested in four of these cows as part of a high-concentrate meal (2.5 kg of total mixed ration in dry matter basis for 4 h) in low or high dose, and was compared to a control meal without compound. Saliva was sampled orally (unstimulated saliva) for physico-chemical composition analysis. Composition of the ingested saliva (stimulated saliva), salivation and feed boli characteristics were assessed from ingesta collected at the cardia during the first 30 min of the meal. Analysis of unstimulated saliva showed that supplementation with capsaicin and thyme oil increased buffer capacity, while supplementation with thymol, L-menthol and gentian root decreased saliva pH. In addition, supplementing angelica root decreased saliva osmolality. Regression analysis on unstimulated saliva showed negative associations between mucins and bicarbonate as well as with phosphate when garlic oil, thyme oil or angelica root was supplemented. Analysis of stimulated saliva demonstrated that supplementation with garlic oil increased phosphate concentration, thyme oil tended to increase osmolality, capsaicin and thymol increased buffer capacity, and ginger increased phosphate content. Furthermore, salivation rate increased with ginger and thymol, and tended to increase with garlic oil, capsaicin, L-menthol and mint oil. Feed ensalivation increased with capsaicin. A positive association was found between feed bolus size and salivation rate when any of the phytogenic compounds was supplemented. Overall, our results demonstrate positive short-term effects of several phytogenic compounds on unstimulated and stimulated saliva physico-chemical properties, salivation or feed boli characteristics. Thus, the phytogenic compounds enhancing salivary physico-chemical composition have the potential to contribute to maintain or improve ruminal health in cattle fed concentrate-rich rations.
Collapse
Affiliation(s)
- Sara Ricci
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Raul Rivera-Chacon
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Renee M. Petri
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Arife Sener-Aydemir
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Suchitra Sharma
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | | | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Ezequias Castillo-Lopez
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| |
Collapse
|
47
|
Mancuso S, Brennan E, Dunstone K, Vittiglia A, Durkin S, Thrasher JF, Hoek J, Wakefield M. Australian Smokers' Sensory Experiences and Beliefs Associated with Menthol and Non-Menthol Cigarettes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115501. [PMID: 34063735 PMCID: PMC8196669 DOI: 10.3390/ijerph18115501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
Many current smokers incorrectly believe that menthol cigarettes are less harmful, likely due to the biological and sensory effects of menthol, which can lead smokers to have favourable sensory experiences. In this study, we measured the extent to which Australian smokers associate certain sensory experiences with smoking menthol and non-menthol cigarettes, and their beliefs about how damaging and enjoyable they find cigarettes with each of these sensory experiences. A sample of 999 Australian 18–69-year-old weekly smokers was recruited from a non-probability online panel; this study focuses on the 245 respondents who currently smoked menthol cigarettes at least once per week. Current menthol smokers were four to nine times more likely to experience menthol rather than non-menthol cigarettes as having favourable sensory experiences, including feeling smooth, being soothing on the throat, fresh-tasting and clean-feeling. Menthol smokers perceived cigarettes with these favourable sensations as less damaging and more enjoyable than cigarettes with the opposite more aversive sensory experience. Efforts to correct these misperceptions about risk will likely require messages that provide new information to help smokers understand that these sensations do not indicate a lower level of risk. Banning menthol in tobacco products—as has recently been done in some nations—would also be a timely and justified strategy for protecting consumers.
Collapse
Affiliation(s)
- Serafino Mancuso
- Centre for Behavioural Research in Cancer, Cancer Council Victoria, Melbourne, VIC 3004, Australia; (S.M.); (K.D.); (A.V.); (S.D.); (M.W.)
| | - Emily Brennan
- Centre for Behavioural Research in Cancer, Cancer Council Victoria, Melbourne, VIC 3004, Australia; (S.M.); (K.D.); (A.V.); (S.D.); (M.W.)
- Correspondence:
| | - Kimberley Dunstone
- Centre for Behavioural Research in Cancer, Cancer Council Victoria, Melbourne, VIC 3004, Australia; (S.M.); (K.D.); (A.V.); (S.D.); (M.W.)
| | - Amanda Vittiglia
- Centre for Behavioural Research in Cancer, Cancer Council Victoria, Melbourne, VIC 3004, Australia; (S.M.); (K.D.); (A.V.); (S.D.); (M.W.)
| | - Sarah Durkin
- Centre for Behavioural Research in Cancer, Cancer Council Victoria, Melbourne, VIC 3004, Australia; (S.M.); (K.D.); (A.V.); (S.D.); (M.W.)
| | - James F. Thrasher
- Department of Health Promotion, Education, and Behavior, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA;
| | - Janet Hoek
- Department of Public Health, University of Otago, Wellington 6140, New Zealand;
| | - Melanie Wakefield
- Centre for Behavioural Research in Cancer, Cancer Council Victoria, Melbourne, VIC 3004, Australia; (S.M.); (K.D.); (A.V.); (S.D.); (M.W.)
| |
Collapse
|
48
|
How two sesquiterpenes drive horse manure rolling behavior in wild giant pandas. CHEMOECOLOGY 2021. [DOI: 10.1007/s00049-021-00344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Structural basis for promiscuous action of monoterpenes on TRP channels. Commun Biol 2021; 4:293. [PMID: 33674682 PMCID: PMC7935860 DOI: 10.1038/s42003-021-01776-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
Monoterpenes are major constituents of plant-derived essential oils and have long been widely used for therapeutic and cosmetic applications. The monoterpenes menthol and camphor are agonists or antagonists for several TRP channels such as TRPM8, TRPV1, TRPV3 and TRPA1. However, which regions within TRPV1 and TRPV3 confer sensitivity to monoterpenes or other synthesized chemicals such as 2-APB are unclear. In this study we identified conserved arginine and glycine residues in the linker between S4 and S5 that are related to the action of these chemicals and validated these findings in molecular dynamics simulations. The involvement of these amino acids differed between TRPV3 and TRPV1 for chemical-induced and heat-evoked activation. These findings provide the basis for characterization of physiological function and biophysical properties of ion channels.
Collapse
|
50
|
Shimomura K, Oikawa H, Hasobe M, Suzuki N, Yajima S, Tomizawa M. Contact repellency by l-menthol is mediated by TRPM channels in the red flour beetle Tribolium castaneum. PEST MANAGEMENT SCIENCE 2021; 77:1422-1427. [PMID: 33128491 DOI: 10.1002/ps.6160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/05/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Among insects, beetles are one of the most destructive pests of agricultural and stored products. Researchers have been investigating alternatives to pesticides for more sustainable pest management. Here, we focused on insect transient receptor potential (TRP) channel-targeted repellency. Among transient receptor potential melastatin (TRPM) channels, mammalian TRPM8 is activated by menthol and its derivatives, but few previous studies have reported on whether the insect TRPM channel is activated by chemical compounds. Here, we investigated whether the TRPM channel (TcTRPM) of the red flour beetle Tribolium castaneum (Herbst), a major stored-products pest, mediated the repellent behavior of l-menthol and its derivatives. RESULTS We initially investigated the repellent activity of l-menthol and menthoxypropanediol (MPD) against T. castaneum. The laboratory bioassay revealed that the repellent activities of l-menthol and MPD were dose dependent. RNA interference was used for transcriptional knockdown of TcTRPM and revealed that a reduced transcript level resulted in a significant decrease in l-menthol and MPD repellent activities. However, no significant decrease was observed for N,N-diethyl-3-methylbenzamide (DEET) repellency. The most abundant TcTRPM transcripts were observed in the antennae. However, antennae-plucked beetles maintained their repellent behavior with l-menthol. CONCLUSION The repellent activities of l-menthol and MPD for T. castaneum are mediated by TcTRPM, and it was suggested that the olfactory response is not adequate for avoidance, but that contact repellency might be a more important repellant method. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kenji Shimomura
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Tokyo, Japan
| | - Hinoki Oikawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Maaya Hasobe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Nobuhiro Suzuki
- Biological and Chemical Products Division, Nippi Inc., Tokyo, Japan
| | - Shunsuke Yajima
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Motohiro Tomizawa
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|