1
|
Berthier J, Endomba FT, Lecendreux M, Mauries S, Geoffroy PA. Cerebral blood flow in attention deficit hyperactivity disorder: A systematic review. Neuroscience 2025; 567:67-76. [PMID: 39631658 DOI: 10.1016/j.neuroscience.2024.11.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND AND OBJECTIVES Attention deficit hyperactivity disorder (ADHD) is one of the most frequent and disabling neurodevelopmental disorders. Recent research on cerebral blood flow (CBF) has enhanced understanding of the underlying pathophysiology in neuropsychiatric disorders. This systematic review aims to synthesize the existing literature on CBF anomalies among individuals with ADHD in comparison to controls. METHODS Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) approach, a systematic literature search was conducted using PubMed, PsycInfo, and Web of Science to identify relevant studies on CBF in ADHD. RESULTS Twenty studies, encompassing a total of 1652 participants with ADHD and 580 controls, were included, employing measurements from SPECT (n = 9), ASL (n = 6), PET (n = 4), and BOLD-derived quantitative maps (n = 1). In individuals with ADHD during resting state, hypoperfusion was frequently observed in the right orbitofrontal gyrus, temporal cortex, basal ganglia and putamen. Conversely, hyperperfusion was noted in frontal lobes, left postcentral gyrus, and occipital lobes. During cognitive tasks, hyperperfusion was observed in frontal areas, temporal regions, cingulate cortex and the precuneus. Furthermore, the administration of methylphenidate was associated with increased CBF in striatal and posterior periventricular regions, the right thalamus, and the precentral gyrus. CONCLUSION This review highlights diverse CBF anomalies in ADHD. The most consistently reported findings suggest hypoperfusion during resting state in prefrontal and temporal areas, along with the basal ganglia, while there is a hyperperfusion in frontal, parietal and occipital regions. Further research, including longitudinal studies, is essential to develop a comprehensive understanding of CBF implications in ADHD.
Collapse
Affiliation(s)
- Johanna Berthier
- Centre ChronoS, GHU Paris - Psychiatry & Neurosciences, Paris, France
| | - Francky Teddy Endomba
- University of Burgundy, Dijon, France; PADYS team, INSERM Research Center U1231, Dijon, France; Department of Psychiatry, Dijon University Hospital (CHU), Dijon, France.
| | - Michel Lecendreux
- AP-HP, Pediatric Sleep Center, Robert-Debré Hospital, National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, INSERM CIC1426, Paris, France
| | - Sibylle Mauries
- Department of Psychiatry and Addictology, AP-HP, GHU Paris Nord, DMU Neurosciences, Bichat-Claude Bernard Hospital, Paris, France; Université Paris Cité, NeuroDiderot, Inserm, Paris, France
| | - Pierre A Geoffroy
- Centre ChronoS, GHU Paris - Psychiatry & Neurosciences, Paris, France; Department of Psychiatry and Addictology, AP-HP, GHU Paris Nord, DMU Neurosciences, Bichat-Claude Bernard Hospital, Paris, France; Université Paris Cité, NeuroDiderot, Inserm, Paris, France
| |
Collapse
|
2
|
Bouchouras G, Sofianidis G, Kotis K. Temporal Anomaly Detection in Attention-Deficit/Hyperactivity Disorder Using Recurrent Neural Networks. Cureus 2024; 16:e76496. [PMID: 39872563 PMCID: PMC11770283 DOI: 10.7759/cureus.76496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2024] [Indexed: 01/30/2025] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a prevalent neurodevelopmental condition marked by movement hyperactivity, often persisting into adulthood. Understanding the movement patterns associated with ADHD is crucial for improving diagnostic precision and tailoring interventions. This study leverages the HYPERAKTIV dataset, which includes high-resolution temporal data on motor activity from people diagnosed with ADHD. We used the isolation forest algorithm to detect anomalies in activity data, followed by the development of a recurrent neural network (RNN) model to predict these anomalies over time. The RNN model demonstrated high predictive accuracy, with a mean accuracy of 0.953 and a mean loss of 0.124 for participants with ADHD. These findings suggest that machine learning techniques, particularly RNNs, can effectively identify and predict anomalies in temporal motor activity data, offering objective insights into ADHD-related movement behaviors. This approach is promising for informing personalized interventions and improving clinical decision-making in the management of ADHD.
Collapse
Affiliation(s)
- Georgios Bouchouras
- Rehabilitation, School of Health Sciences, Metropolitan College, Thessaloniki, GRC
| | - Georgios Sofianidis
- Rehabilitation, School of Health Sciences, Metropolitan College, Thessaloniki, GRC
| | - Konstantinos Kotis
- Cultural Technology and Communication, Intelligent Systems Lab, University of the Aegean, Mytilene, GRC
| |
Collapse
|
3
|
Gaiser C, van der Vliet R, de Boer AAA, Donchin O, Berthet P, Devenyi GA, Mallar Chakravarty M, Diedrichsen J, Marquand AF, Frens MA, Muetzel RL. Population-wide cerebellar growth models of children and adolescents. Nat Commun 2024; 15:2351. [PMID: 38499518 PMCID: PMC10948906 DOI: 10.1038/s41467-024-46398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
In the past, the cerebellum has been best known for its crucial role in motor function. However, increasingly more findings highlight the importance of cerebellar contributions in cognitive functions and neurodevelopment. Using a total of 7240 neuroimaging scans from 4862 individuals, we describe and provide detailed, openly available models of cerebellar development in childhood and adolescence (age range: 6-17 years), an important time period for brain development and onset of neuropsychiatric disorders. Next to a traditionally used anatomical parcellation of the cerebellum, we generated growth models based on a recently proposed functional parcellation. In both, we find an anterior-posterior growth gradient mirroring the age-related improvements of underlying behavior and function, which is analogous to cerebral maturation patterns and offers evidence for directly related cerebello-cortical developmental trajectories. Finally, we illustrate how the current approach can be used to detect cerebellar abnormalities in clinical samples.
Collapse
Affiliation(s)
- Carolin Gaiser
- Department of Neuroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Rick van der Vliet
- Department of Neuroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Neurology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Augustijn A A de Boer
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Opher Donchin
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Pierre Berthet
- Department of Psychology, University of Oslo, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Gabriel A Devenyi
- Cerebral Imaging Centre, Douglas Research Centre, McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Research Centre, McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| | - Jörn Diedrichsen
- Western Institute of Neuroscience, Western University, London, Ontario, Canada
- Department of Statistical and Actuarial Sciences, Western University, London, Ontario, Canada
- Department of Computer Science, Western University, London, Ontario, Canada
| | - Andre F Marquand
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Maarten A Frens
- Department of Neuroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Faraone SV, Bellgrove MA, Brikell I, Cortese S, Hartman CA, Hollis C, Newcorn JH, Philipsen A, Polanczyk GV, Rubia K, Sibley MH, Buitelaar JK. Attention-deficit/hyperactivity disorder. Nat Rev Dis Primers 2024; 10:11. [PMID: 38388701 DOI: 10.1038/s41572-024-00495-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
Abstract
Attention-deficit/hyperactivity disorder (ADHD; also known as hyperkinetic disorder) is a common neurodevelopmental condition that affects children and adults worldwide. ADHD has a predominantly genetic aetiology that involves common and rare genetic variants. Some environmental correlates of the disorder have been discovered but causation has been difficult to establish. The heterogeneity of the condition is evident in the diverse presentation of symptoms and levels of impairment, the numerous co-occurring mental and physical conditions, the various domains of neurocognitive impairment, and extensive minor structural and functional brain differences. The diagnosis of ADHD is reliable and valid when evaluated with standard diagnostic criteria. Curative treatments for ADHD do not exist but evidence-based treatments substantially reduce symptoms and/or functional impairment. Medications are effective for core symptoms and are usually well tolerated. Some non-pharmacological treatments are valuable, especially for improving adaptive functioning. Clinical and neurobiological research is ongoing and could lead to the creation of personalized diagnostic and therapeutic approaches for this disorder.
Collapse
Affiliation(s)
- Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Mark A Bellgrove
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
| | - Isabell Brikell
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- Solent NHS Trust, Southampton, UK
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, NY, USA
- DiMePRe-J-Department of Precision and Rigenerative Medicine-Jonic Area, University of Bari "Aldo Moro", Bari, Italy
| | - Catharina A Hartman
- Interdisciplinary Center Psychopathology and Emotion regulation (ICPE), Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Chris Hollis
- National Institute for Health and Care Research (NIHR) MindTech MedTech Co-operative and NIHR Nottingham Biomedical Research Centre, Institute of Mental Health, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jeffrey H Newcorn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Guilherme V Polanczyk
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Katya Rubia
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neurosciences, King's College London, London, UK
- Department of Child & Adolescent Psychiatry, Transcampus Professor KCL-Dresden, Technical University, Dresden, Germany
| | | | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
- Karakter Child and Adolescent Psychiatry University Center, Nijmegen, Netherlands
| |
Collapse
|
5
|
Chang JC, Lin HY, Gau SSF. Distinct developmental changes in regional gray matter volume and covariance in individuals with attention-deficit hyperactivity disorder: A longitudinal voxel-based morphometry study. Asian J Psychiatr 2024; 91:103860. [PMID: 38103476 DOI: 10.1016/j.ajp.2023.103860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Very few studies have investigated longitudinal clinical cohorts of attention-deficit/hyperactivity disorder (ADHD). Moreover, how baseline brain changes could affect the development of ADHD symptoms later in life remains elusive. Therefore, we aimed to fill this gap by exploring brain and clinical changes in youth with ADHD using a longitudinal design. METHODS This prospective study consisted of 74 children and adolescents with ADHD and 50 age-, sex-, intelligence-matched typically developing controls (TDC), evaluated at baseline (aged 7-19 years) and re-evaluated 5.3 years later (a mean follow-up latency). We applied voxel-based morphometry to characterize brain structures, followed by both mass-univariate and multivariate structural covariance statistics to identify brain regions with significant diagnosis-by-time interactions from late childhood/adolescence to early adulthood. We used the cross-lagged panel model to investigate the longitudinal association between structural brain metrics and core ADHD symptoms. RESULTS The mass-univariate statistic revealed significant diagnosis-by-time interactions in the right striatum and the sixth lobule of the cerebellum. This was expressed by increased striatal and decreased cerebellar volume in ADHD, while TDC showed inverse volume changes over time. The multivariate method showed significant diagnosis-by-time interactions in a structural covariance network consisting of the regions involved in the functional sensory-motor and default-mode networks. Higher baseline right striatal and cerebellar volumes were associated with elevated ADHD symptoms at follow-up. CONCLUSIONS Our findings suggest a temporal association between the divergent development of striatal and cerebellar regions and dynamical ADHD phenotypic expression through young adulthood. These results highlight a potential brain marker of future outcomes.
Collapse
Affiliation(s)
- Jung-Chi Chang
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Yuan Lin
- Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Susan Shur-Fen Gau
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences and Department of Psychology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
6
|
Wang Y, Ma L, Chen R, Liu N, Zhang H, Li Y, Wang J, Hu M, Zhao G, Men W, Tan S, Gao J, Qin S, He Y, Dong Q, Tao S. Emotional and behavioral problems change the development of cerebellar gray matter volume, thickness, and surface area from childhood to adolescence: A longitudinal cohort study. CNS Neurosci Ther 2023; 29:3528-3548. [PMID: 37287420 PMCID: PMC10580368 DOI: 10.1111/cns.14286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/27/2023] [Accepted: 05/21/2023] [Indexed: 06/09/2023] Open
Abstract
AIMS Increasing evidence indicates that major neurodevelopmental disorders have potential links to abnormal cerebellar development. However, the developmental trajectories of cerebellar subregions from childhood to adolescence are lacking, and it is not clear how emotional and behavioral problems affect them. We aim to map the developmental trajectories of gray matter volume (GMV), cortical thickness (CT), and surface area (SA) in cerebellar subregions from childhood to adolescence and examine how emotional and behavioral problems change the cerebellar development trajectory in a longitudinal cohort study. METHOD This population-based longitudinal cohort study used data on a representative sample of 695 children. Emotional and behavioral problems were assessed at baseline and at three annual follow-ups with the Strengths and Difficulties Questionnaire (SDQ). RESULTS Using an innovative automated image segmentation technique, we quantified the GMV, CT, and SA of the whole cerebellum and 24 subdivisions (lobules I-VI, VIIB, VIIIA&B, and IX-X plus crus I-II) with 1319 MRI scans from a large longitudinal sample of 695 subjects aged 6-15 years and mapped their developmental trajectories. We also examined sex differences and found that boys showed more linear growth, while girls showed more nonlinear growth. Boys and girls showed nonlinear growth in the cerebellar subregions; however, girls reached the peak earlier than boys. Further analysis found that emotional and behavioral problems modulated cerebellar development. Specifically, emotional symptoms impede the expansion of the SA of the cerebellar cortex, and no gender differences; conduct problems lead to inadequate cerebellar GMV development only in girls, but not boys; hyperactivity/inattention delays the development of cerebellar GMV and SA, with left cerebellar GMV, right VIIIA GMV and SA in boys and left V GMV and SA in girls; peer problems disrupt CT growth and SA expansion, resulting in delayed GMV development, with bilateral IV, right X CT in boys and right Crus I GMV, left V SA in girls; and prosocial behavior problems impede the expansion of the SA and lead to excessive CT growth, with bilateral IV, V, right VI CT, left cerebellum SA in boys and right Crus I GMV in girls. CONCLUSIONS This study maps the developmental trajectories of GMV, CT, and SA in cerebellar subregions from childhood to adolescence. In addition, we provide the first evidence for how emotional and behavioral problems affect the dynamic development of GMV, CT, and SA in the cerebellum, which provides an important basis and guidance for the prevention and intervention of cognitive and emotional behavioral problems in the future.
Collapse
Affiliation(s)
- Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Leilei Ma
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Rui Chen
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Ningyu Liu
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Haibo Zhang
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Yuanyuan Li
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Jiali Wang
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Mingming Hu
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Gai Zhao
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Shuping Tan
- Psychiatry Research Center, Beijing HuiLongGuan HospitalPeking UniversityBeijingChina
| | - Jia‐Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| |
Collapse
|
7
|
Zhao G, Zhang H, Ma L, Wang Y, Chen R, Liu N, Men W, Tan S, Gao JH, Qin S, He Y, Dong Q, Tao S. Reduced volume of the left cerebellar lobule VIIb and its increased connectivity within the cerebellum predict more general psychopathology one year later via worse cognitive flexibility in children. Dev Cogn Neurosci 2023; 63:101296. [PMID: 37690374 PMCID: PMC10507200 DOI: 10.1016/j.dcn.2023.101296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
Predicting the risk for general psychopathology (the p factor) requires the examination of multiple factors ranging from brain to cognitive skills. While an increasing number of findings have reported the roles of the cerebral cortex and executive functions, it is much less clear whether and how the cerebellum and cognitive flexibility (a core component of executive function) may be associated with the risk for general psychopathology. Based on the data from more than 400 children aged 6-12 in the Children School Functions and Brain Development (CBD) Project, this study examined whether the left cerebellar lobule VIIb and its connectivity within the cerebellum may prospectively predict the risk for general psychopathology one year later and whether cognitive flexibility may mediate such predictions in school-age children. The reduced gray matter volume in the left cerebellar lobule VIIb and the increased connectivity of this region to the left cerebellar lobule VI prospectively predicted the risk for general psychopathology and was partially mediated by worse cognitive flexibility. Deficits in cognitive flexibility may play an important role in linking cerebellar structure and function to the risk for general psychopathology.
Collapse
Affiliation(s)
- Gai Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Haibo Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Leilei Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Rui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Ningyu Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuping Tan
- Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University, Beijing 100096, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
8
|
Borges MS, Hoffmann MS, Simioni A, Axelrud LK, Teixeira DS, Zugman A, Jackowski A, Pan PM, Bressan RA, Parker N, Germann J, Bado PP, Satterthwaite TD, Milham MP, Chakravarty MM, Paim Rohde LA, Constantino Miguel E, Paus T, Salum GA. Deviations from a typical development of the cerebellum in youth are associated with psychopathology, executive functions and educational outcomes. Psychol Med 2023; 53:5698-5708. [PMID: 36226568 DOI: 10.1017/s0033291722002926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Understanding deviations from typical brain development is a promising approach to comprehend pathophysiology in childhood and adolescence. We investigated if cerebellar volumes different than expected for age and sex could predict psychopathology, executive functions and academic achievement. METHODS Children and adolescents aged 6-17 years from the Brazilian High-Risk Cohort Study for Mental Conditions had their cerebellar volume estimated using Multiple Automatically Generated Templates from T1-weighted images at baseline (n = 677) and at 3-year follow-up (n = 447). Outcomes were assessed using the Child Behavior Checklist and standardized measures of executive functions and school achievement. Models of typically developing cerebellum were based on a subsample not exposed to risk factors and without mental-health conditions (n = 216). Deviations from this model were constructed for the remaining individuals (n = 461) and standardized variation from age and sex trajectory model was used to predict outcomes in cross-sectional, longitudinal and mediation analyses. RESULTS Cerebellar volumes higher than expected for age and sex were associated with lower externalizing specific factor and higher executive functions. In a longitudinal analysis, deviations from typical development at baseline predicted inhibitory control at follow-up, and cerebellar deviation changes from baseline to follow-up predicted changes in reading and writing abilities. The association between deviations in cerebellar volume and academic achievement was mediated by inhibitory control. CONCLUSIONS Deviations in the cerebellar typical development are associated with outcomes in youth that have long-lasting consequences. This study highlights both the potential of typical developing models and the important role of the cerebellum in mental health, cognition and education.
Collapse
Affiliation(s)
- Marina S Borges
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
| | - Maurício S Hoffmann
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Neuropsychiatry, Universidade Federal de Santa Maria, Avenida Roraima 1000, Santa Maria, 97105-900, Brazil
| | - André Simioni
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiza K Axelrud
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Danielle S Teixeira
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Zugman
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Laboratório Interdisciplinar de Neurociências Integrativas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Andrea Jackowski
- Laboratório Interdisciplinar de Neurociências Integrativas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Pedro M Pan
- Laboratório Interdisciplinar de Neurociências Integrativas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Rodrigo A Bressan
- Laboratório Interdisciplinar de Neurociências Integrativas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Nadine Parker
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Jurgen Germann
- University Health Network, Toronto, ON, Canada
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Patrícia P Bado
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Michael P Milham
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Center for the Developing Brain, Child Mind Institute, New York, NY 10022, USA
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Luis Augusto Paim Rohde
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
| | - Eurípedes Constantino Miguel
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
- Universidade de São Paulo (USP), São Paulo, Brazil
| | - Tomas Paus
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- Centre hospitalier universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Giovanni A Salum
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
- Department of Psychiatry and Legal Medicine, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
| |
Collapse
|
9
|
Dekkers TJ, van Hoorn J. Understanding Problematic Social Media Use in Adolescents with Attention-Deficit/Hyperactivity Disorder (ADHD): A Narrative Review and Clinical Recommendations. Brain Sci 2022; 12:1625. [PMID: 36552085 PMCID: PMC9776226 DOI: 10.3390/brainsci12121625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) is consistently associated with a host of social problems, such as victimization and difficulties in maintaining close friendships. These problems are not limited to offline relations but also manifest in the online social world, as previous research shows that ADHD is associated with problematic use of social media. Given the ubiquitous nature of social media, the goal of the current review is to understand why adolescents with ADHD demonstrate more problematic social media use than their typically developing peers. To this end, we provide a narrative review on the evidence for the link between ADHD and social media use, and consequently present an integrative framework, which encompasses neurobiological mechanisms (i.e., imbalance theory of brain development and dual pathway model of ADHD) and social mechanisms, including influences from peers and parents. We conclude that empirical work shows most consistent evidence for the link between problematic social media use and ADHD (symptoms), while intensity of social media use is also associated with several other behaviors and outcomes. Finally, we hypothesize how existing interventions for ADHD may work on the identified mechanisms and provide at-hand clinical recommendations for therapists working with adolescents with ADHD who exhibit problematic social media use.
Collapse
Affiliation(s)
- Tycho J. Dekkers
- University Medical Center Groningen, Department of Child and Adolescent Psychiatry, University of Groningen, 9723 HE Groningen, The Netherlands
- Accare Child Study Center, 9713 GZ Groningen, The Netherlands
- Levvel, Academic Center for Child and Adolescent Psychiatry, 1105 AZ Amsterdam, The Netherlands
- Amsterdam University Medical Center (AUMC), Department of Child and Adolescent Psychiatry, 1100 DD Amsterdam, The Netherlands
| | - Jorien van Hoorn
- Levvel, Academic Center for Child and Adolescent Psychiatry, 1105 AZ Amsterdam, The Netherlands
- Department of Developmental and Educational Psychology, Leiden University, 2311 EZ Leiden, The Netherlands
| |
Collapse
|
10
|
Wang P, Wang J, Jiang Y, Wang Z, Meng C, Castellanos FX, Biswal BB. Cerebro-cerebellar Dysconnectivity in Children and Adolescents With Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry 2022; 61:1372-1384. [PMID: 35661770 DOI: 10.1016/j.jaac.2022.03.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/16/2022] [Accepted: 03/30/2022] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Abnormal cerebellar development has been implicated in attention-deficit/hyperactivity disorder (ADHD), although cerebro-cerebellar functional connectivity (FC) has yet to be examined in ADHD. Our objective is to investigate the disturbed cerebro-cerebellar FC in children and adolescents with ADHD. METHOD We analyzed a dataset of 106 individuals with ADHD (68 children, 38 adolescents) and 62 healthy comparison individuals (34 children, 28 adolescents) from the publicly available ADHD-200 dataset. We identified 7 cerebellar subregions based on cerebro-cerebellar FC and subsequently obtained the FC maps of cerebro-cerebellar networks. The main effects of ADHD and age and their interaction were examined using 2-way analysis of variance. RESULTS Compared to comparisons, ADHD showed higher cerebro-cerebellar FC in the superior temporal gyrus within the somatomotor network. Interactions of diagnosis and age were identified in the supplementary motor area and postcentral gyrus within the somatomotor network and middle temporal gyrus within the ventral attention network. Follow-up Pearson correlation analysis revealed decreased cerebro-cerebellar FC in these regions with increasing age in comparisons, whereas the opposite pattern of increased cerebro-cerebellar FC occurred in ADHD. CONCLUSION Increased cerebro-cerebellar FC in the superior temporal gyrus within the somatomotor network could underlie impairments in cognitive control and somatic motor function in ADHD. In addition, increasing cerebro-cerebellar FC in older participants with ADHD suggests that enhanced cerebellar involvement may compensate for dysfunctions of the cerebral cortex in ADHD.
Collapse
Affiliation(s)
- Pan Wang
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianlin Wang
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan Jiang
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zedong Wang
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chun Meng
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - F Xavier Castellanos
- New York University School of Medicine, New York, and the Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Bharat B Biswal
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; New Jersey Institute of Technology, Newark.
| |
Collapse
|
11
|
Laidi C, Floris DL, Tillmann J, Elandaloussi Y, Zabihi M, Charman T, Wolfers T, Durston S, Moessnang C, Dell'Acqua F, Ecker C, Loth E, Murphy D, Baron-Cohen S, Buitelaar JK, Marquand AF, Beckmann CF, Frouin V, Leboyer M, Duchesnay E, Coupé P, Houenou J. Cerebellar Atypicalities in Autism? Biol Psychiatry 2022; 92:674-682. [PMID: 36137706 DOI: 10.1016/j.biopsych.2022.05.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND The cerebellum contains more than 50% of the brain's neurons and is involved in social cognition. Cerebellar anatomical atypicalities have repeatedly been reported in individuals with autism. However, studies have yielded inconsistent findings, likely because of a lack of statistical power, and did not capture the clinical and neuroanatomical diversity of autism. Our aim was to better understand cerebellar anatomy and its diversity in autism. METHODS We studied cerebellar gray matter morphology in 274 individuals with autism and 219 control subjects of a multicenter European cohort, EU-AIMS LEAP (European Autism Interventions-A Multicentre Study for Developing New Medications; Longitudinal European Autism Project). To ensure the robustness of our results, we conducted lobular parcellation of the cerebellum with 2 different pipelines in addition to voxel-based morphometry. We performed statistical analyses with linear, multivariate (including normative modeling), and meta-analytic approaches to capture the diversity of cerebellar anatomy in individuals with autism and control subjects. Finally, we performed a dimensional analysis of cerebellar anatomy in an independent cohort of 352 individuals with autism-related symptoms. RESULTS We did not find any significant difference in the cerebellum when comparing individuals with autism and control subjects using linear models. In addition, there were no significant deviations in our normative models in the cerebellum in individuals with autism. Finally, we found no evidence of cerebellar atypicalities related to age, IQ, sex, or social functioning in individuals with autism. CONCLUSIONS Despite positive results published in the last decade from relatively small samples, our results suggest that there is no striking difference in cerebellar anatomy of individuals with autism.
Collapse
Affiliation(s)
- Charles Laidi
- Department of Translational Neuro-Psychiatry, Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale U955, Créteil, France; Fondation FondaMental, Créteil, France; Département Médico-Universitaire de Psychiatrie et d'Addictologie, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Créteil, France; Neurospin, CEA, Paris-Saclay University, Gif-sur-Yvette; Center for the Developing Brain, Child Mind Institute, New York, New York.
| | - Dorothea L Floris
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands; Methods of Plasticity Research, Department of Psychology, University of Zürich, Zürich, Switzerland
| | - Julian Tillmann
- Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Yannis Elandaloussi
- Department of Translational Neuro-Psychiatry, Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale U955, Créteil, France; Fondation FondaMental, Créteil, France; Neurospin, CEA, Paris-Saclay University, Gif-sur-Yvette
| | - Mariam Zabihi
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Thomas Wolfers
- Department of Psychology, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Norwegian Center for Mental Disorders Research, Oslo, Norway
| | - Sarah Durston
- Education Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University Heidelberg, Heidelberg
| | - Flavio Dell'Acqua
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Christine Ecker
- Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Frankfurt am Main, Goethe University, Frankfurt, Germany
| | - Eva Loth
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Declan Murphy
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Simon Baron-Cohen
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Jan K Buitelaar
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands; Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Andre F Marquand
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | | | - Marion Leboyer
- Department of Translational Neuro-Psychiatry, Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale U955, Créteil, France; Fondation FondaMental, Créteil, France; Département Médico-Universitaire de Psychiatrie et d'Addictologie, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Créteil, France
| | | | - Pierrick Coupé
- Pictura Research Group, Unité Mixte de Recherche Centre National de la Recherche Scientifique (UMR 5800), Laboratoire Bordelais de Recherche en Informatique, Centre National de la Recherche Scientifique, Talence, France; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands; Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Josselin Houenou
- Department of Translational Neuro-Psychiatry, Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale U955, Créteil, France; Fondation FondaMental, Créteil, France; Département Médico-Universitaire de Psychiatrie et d'Addictologie, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Créteil, France; Neurospin, CEA, Paris-Saclay University, Gif-sur-Yvette
| |
Collapse
|
12
|
Baselmans B, Hammerschlag AR, Noordijk S, Ip H, van der Zee M, de Geus E, Abdellaoui A, Treur JL, van ’t Ent D. The Genetic and Neural Substrates of Externalizing Behavior. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:389-399. [PMID: 36324656 PMCID: PMC9616240 DOI: 10.1016/j.bpsgos.2021.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Background To gain more insight into the biological factors that mediate vulnerability to display externalizing behaviors, we leveraged genome-wide association study summary statistics on 13 externalizing phenotypes. Methods After data classification based on genetic resemblance, we performed multivariate genome-wide association meta-analyses and conducted extensive bioinformatic analyses, including genetic correlation assessment with other traits, Mendelian randomization, and gene set and gene expression analyses. Results The genetic data could be categorized into disruptive behavior (DB) and risk-taking behavior (RTB) factors, and subsequent genome-wide association meta-analyses provided association statistics for DB and RTB (N eff = 523,150 and 1,506,537, respectively), yielding 50 and 257 independent genetic signals. The statistics of DB, much more than RTB, signaled genetic predisposition to adverse cognitive, mental health, and personality outcomes. We found evidence for bidirectional causal influences between DB and substance use behaviors. Gene set analyses implicated contributions of neuronal cell development (DB/RTB) and synapse formation and transcription (RTB) mechanisms. Gene-brain mapping confirmed involvement of the amygdala and hypothalamus and highlighted other candidate regions (cerebellar dentate, cuneiform nucleus, claustrum, paracentral cortex). At the cell-type level, we noted enrichment of glutamatergic neurons for DB and RTB. Conclusions This bottom-up, data-driven study provides new insights into the genetic signals of externalizing behaviors and indicates that commonalities in genetic architecture contribute to the frequent co-occurrence of different DBs and different RTBs, respectively. Bioinformatic analyses supported the DB versus RTB categorization and indicated relevant biological mechanisms. Generally similar gene-brain mappings indicate that neuroanatomical differences, if any, escaped the resolution of our methods.
Collapse
Affiliation(s)
- Bart Baselmans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Anke R. Hammerschlag
- Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health research institute, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Stephany Noordijk
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Hill Ip
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health research institute, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Matthijs van der Zee
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health research institute, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Eco de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health research institute, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Abdel Abdellaoui
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jorien L. Treur
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Dennis van ’t Ent
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health research institute, Amsterdam University Medical Centre, Amsterdam, the Netherlands
- Address correspondence to Dennis van ’t Ent, Ph.D.
| |
Collapse
|
13
|
Mattheisen M, Grove J, Als TD, Martin J, Voloudakis G, Meier S, Demontis D, Bendl J, Walters R, Carey CE, Rosengren A, Strom NI, Hauberg ME, Zeng B, Hoffman G, Zhang W, Bybjerg-Grauholm J, Bækvad-Hansen M, Agerbo E, Cormand B, Nordentoft M, Werge T, Mors O, Hougaard DM, Buxbaum JD, Faraone SV, Franke B, Dalsgaard S, Mortensen PB, Robinson EB, Roussos P, Neale BM, Daly MJ, Børglum AD. Identification of shared and differentiating genetic architecture for autism spectrum disorder, attention-deficit hyperactivity disorder and case subgroups. Nat Genet 2022; 54:1470-1478. [PMID: 36163277 PMCID: PMC10848300 DOI: 10.1038/s41588-022-01171-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/20/2022] [Indexed: 02/02/2023]
Abstract
Attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are highly heritable neurodevelopmental conditions, with considerable overlap in their genetic etiology. We dissected their shared and distinct genetic etiology by cross-disorder analyses of large datasets. We identified seven loci shared by the disorders and five loci differentiating them. All five differentiating loci showed opposite allelic directions in the two disorders and significant associations with other traits, including educational attainment, neuroticism and regional brain volume. Integration with brain transcriptome data enabled us to identify and prioritize several significantly associated genes. The shared genomic fraction contributing to both disorders was strongly correlated with other psychiatric phenotypes, whereas the differentiating portion was correlated most strongly with cognitive traits. Additional analyses revealed that individuals diagnosed with both ASD and ADHD were double-loaded with genetic predispositions for both disorders and showed distinctive patterns of genetic association with other traits compared with the ASD-only and ADHD-only subgroups. These results provide insights into the biological foundation of the development of one or both conditions and of the factors driving psychopathology discriminatively toward either ADHD or ASD.
Collapse
Affiliation(s)
- Manuel Mattheisen
- Department of Biomedicine - Human Genetics and the iSEQ Center, Aarhus University, Aarhus, Denmark.
- Department of Community Health and Epidemiology & Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany.
| | - Jakob Grove
- Department of Biomedicine - Human Genetics and the iSEQ Center, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Thomas D Als
- Department of Biomedicine - Human Genetics and the iSEQ Center, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Joanna Martin
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Georgios Voloudakis
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandra Meier
- Department of Biomedicine - Human Genetics and the iSEQ Center, Aarhus University, Aarhus, Denmark
- Department of Community Health and Epidemiology & Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Ditte Demontis
- Department of Biomedicine - Human Genetics and the iSEQ Center, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raymond Walters
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Caitlin E Carey
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anders Rosengren
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Services Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nora I Strom
- Department of Biomedicine - Human Genetics and the iSEQ Center, Aarhus University, Aarhus, Denmark
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mads Engel Hauberg
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Biao Zeng
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wen Zhang
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonas Bybjerg-Grauholm
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Marie Bækvad-Hansen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Esben Agerbo
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Bru Cormand
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Research Centre for Mental Health (CORE), Mental Health Centre Copenhagen, Copenhagen, Denmark
- University Hospital, Hellerup, Denmark
| | - Thomas Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Services Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
- GLOBE Institute, Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital-Psychiatry, Aarhus, Denmark
| | - David M Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen V Faraone
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Barbara Franke
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Søren Dalsgaard
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Preben B Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Elise B Robinson
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, JJ Peters VA Medical Center, Bronx, NY, USA
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Anders D Børglum
- Department of Biomedicine - Human Genetics and the iSEQ Center, Aarhus University, Aarhus, Denmark.
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.
- Center for Genomics and Personalized Medicine, Aarhus, Denmark.
| |
Collapse
|
14
|
Martí-Clua J. Times of neuron origin and neurogenetic gradients in mice Purkinje cells and deep cerebellar nuclei neurons during the development of the cerebellum. A review. Tissue Cell 2022; 78:101897. [DOI: 10.1016/j.tice.2022.101897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
|
15
|
Rapport MD, Friedman LM, Pothoven C, Calub C. Attention-Deficit/Hyperactivity Disorder (ADHD) and Forgetfulness: Does Time-Related Decay Reflect Deficient Rehearsal? JOURNAL OF PSYCHOPATHOLOGY AND BEHAVIORAL ASSESSMENT 2022. [DOI: 10.1007/s10862-022-09979-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Hoogman M, van Rooij D, Klein M, Boedhoe P, Ilioska I, Li T, Patel Y, Postema MC, Zhang‐James Y, Anagnostou E, Arango C, Auzias G, Banaschewski T, Bau CHD, Behrmann M, Bellgrove MA, Brandeis D, Brem S, Busatto GF, Calderoni S, Calvo R, Castellanos FX, Coghill D, Conzelmann A, Daly E, Deruelle C, Dinstein I, Durston S, Ecker C, Ehrlich S, Epstein JN, Fair DA, Fitzgerald J, Freitag CM, Frodl T, Gallagher L, Grevet EH, Haavik J, Hoekstra PJ, Janssen J, Karkashadze G, King JA, Konrad K, Kuntsi J, Lazaro L, Lerch JP, Lesch K, Louza MR, Luna B, Mattos P, McGrath J, Muratori F, Murphy C, Nigg JT, Oberwelland‐Weiss E, O'Gorman Tuura RL, O'Hearn K, Oosterlaan J, Parellada M, Pauli P, Plessen KJ, Ramos‐Quiroga JA, Reif A, Reneman L, Retico A, Rosa PGP, Rubia K, Shaw P, Silk TJ, Tamm L, Vilarroya O, Walitza S, Jahanshad N, Faraone SV, Francks C, van den Heuvel OA, Paus T, Thompson PM, Buitelaar JK, Franke B. Consortium neuroscience of attention deficit/hyperactivity disorder and autism spectrum disorder: The ENIGMA adventure. Hum Brain Mapp 2022; 43:37-55. [PMID: 32420680 PMCID: PMC8675410 DOI: 10.1002/hbm.25029] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/07/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
Neuroimaging has been extensively used to study brain structure and function in individuals with attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) over the past decades. Two of the main shortcomings of the neuroimaging literature of these disorders are the small sample sizes employed and the heterogeneity of methods used. In 2013 and 2014, the ENIGMA-ADHD and ENIGMA-ASD working groups were respectively, founded with a common goal to address these limitations. Here, we provide a narrative review of the thus far completed and still ongoing projects of these working groups. Due to an implicitly hierarchical psychiatric diagnostic classification system, the fields of ADHD and ASD have developed largely in isolation, despite the considerable overlap in the occurrence of the disorders. The collaboration between the ENIGMA-ADHD and -ASD working groups seeks to bring the neuroimaging efforts of the two disorders closer together. The outcomes of case-control studies of subcortical and cortical structures showed that subcortical volumes are similarly affected in ASD and ADHD, albeit with small effect sizes. Cortical analyses identified unique differences in each disorder, but also considerable overlap between the two, specifically in cortical thickness. Ongoing work is examining alternative research questions, such as brain laterality, prediction of case-control status, and anatomical heterogeneity. In brief, great strides have been made toward fulfilling the aims of the ENIGMA collaborations, while new ideas and follow-up analyses continue that include more imaging modalities (diffusion MRI and resting-state functional MRI), collaborations with other large databases, and samples with dual diagnoses.
Collapse
Affiliation(s)
- Martine Hoogman
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Daan van Rooij
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Cognitive NeuroscienceRadboud University Medical CenterNijmegenThe Netherlands
| | - Marieke Klein
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of PsychiatryUniversity Medical Center Utrecht, UMC Utrecht Brain CenterUtrechtThe Netherlands
| | - Premika Boedhoe
- Department of Psychiatry, Department of Anatomy & NeurosciencesAmsterdam Neuroscience, Amsterdam UMC Amsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Iva Ilioska
- Department of Cognitive NeuroscienceRadboud University Medical CenterNijmegenThe Netherlands
| | - Ting Li
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Yash Patel
- Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
| | - Merel C. Postema
- Department of Language & GeneticsMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Yanli Zhang‐James
- Department of Psychiatry and behavioral sciencesSUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Evdokia Anagnostou
- Department of Pediatrics University of TorontoHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
| | - Celso Arango
- Department of Child and Adolescent PsychiatryInstitute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAMMadridSpain
- School of Medicine, Universidad ComplutenseMadridSpain
| | | | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and PsychotherapyCentral Institute of Mental Health, Mannheim, Medical Faculty Mannheim/Heidelberg UniversityMannheimGermany
| | - Claiton H. D. Bau
- Department of Genetics, Institute of BiosciencesUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Adulthood ADHD Outpatient Program (ProDAH), Clinical Research CenterHospital de Clínicas de Porto AlegrePorto AlegreBrazil
- Developmental Psychiatry Program, Experimental Research CenterHospital de Clínicas de Porto AlegrePorto AlegreBrazil
| | - Marlene Behrmann
- Department of Psychology and Neuroscience InstituteCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Mark A. Bellgrove
- Turner Institute for Brain and Mental Health and School of Psychological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and PsychotherapyCentral Institute of Mental Health, Mannheim, Medical Faculty Mannheim/Heidelberg UniversityMannheimGermany
- Department of Child and Adolescent Psychiatry and PsychotherapyPsychiatric Hospital, University of ZurichZurichSwitzerland
- The Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and PsychotherapyPsychiatric Hospital, University of ZurichZurichSwitzerland
- The Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Geraldo F. Busatto
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloBrazil
| | - Sara Calderoni
- Department of Developmental NeuroscienceIRCCS Fondazione Stella MarisPisaItaly
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Department of Child and Adolescent Psychiatry and PsychologyHospital ClínicBarcelonaSpain
| | - Rosa Calvo
- IDIBAPSBarcelonaSpain
- Biomedical Network Research Centre on Mental Health (CIBERSAM)BarcelonaSpain
- Department of MedicineUniversity of BarcelonaBarcelonaSpain
- Department of Child and Adolescent PsychiatryHassenfeld Children's Hospital at NYU LangoneNew YorkNew YorkUSA
| | - Francisco X. Castellanos
- Department of Child and Adolescent PsychiatryHassenfeld Children's Hospital at NYU LangoneNew YorkNew YorkUSA
- Nathan Kline Institute for Psychiatric ResearchOrangeburgNew YorkUSA
| | - David Coghill
- Department of Paediatrics and PsychiatryUniversity of MelbourneMelbourneVictoriaAustralia
- Murdoch Children's Research InstituteMelbourneVictoriaAustralia
| | - Annette Conzelmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyUniversity Hospital of Psychiatry and PsychotherapyTübingenGermany
- PFH – Private University of Applied Sciences, Department of Psychology (Clinical Psychology II)GöttingenGermany
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental ScienceInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | | | - Ilan Dinstein
- Department of PsychologyBen Gurion UniversityBeer ShevaIsrael
| | - Sarah Durston
- NICHE lab, Deptartment of PsychiatryUMC Utrecht Brain CenterUtrechtThe Netherlands
| | - Christine Ecker
- Department of Forensic and Neurodevelopmental ScienceInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
- Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyAutism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe UniversityFrankfurt am MainGermany
| | - Stefan Ehrlich
- Division of Psychological & Social Medicine and Developmental Neurosciences, Faculty of MedicineTechnischen Universität DresdenDresdenGermany
- Eating Disorders Research and Treatment Center at the Dept. of Child and Adolescent Psychiatry, Faculty of MedicineTechnischen Universität DresdenDresdenGermany
| | - Jeffery N. Epstein
- Division of Behavioral Medicine and Clinical PsychologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of PediatricsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Damien A. Fair
- Department of PsychiatryOregon Health & Science UniversityPortlandOregonUSA
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandOregonUSA
| | | | - Christine M. Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyAutism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe UniversityFrankfurt am MainGermany
| | - Thomas Frodl
- Department of Psychiatry, School of MedicineTrinity College DublinDublinIreland
- Department of Psychiatry and PsychotherapyOtto von Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Disorders (DZNE)MagdeburgGermany
| | - Louise Gallagher
- Department of Psychiatry, School of MedicineTrinity College DublinDublinIreland
| | - Eugenio H. Grevet
- Adulthood ADHD Outpatient Program (ProDAH), Clinical Research CenterHospital de Clínicas de Porto AlegrePorto AlegreBrazil
- Developmental Psychiatry Program, Experimental Research CenterHospital de Clínicas de Porto AlegrePorto AlegreBrazil
- Department of Psychiatry, Faculty of Medical ScienceUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Jan Haavik
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of BiomedicineUniversity of BergenBergenNorway
- Division of PsychiatryHaukeland University HospitalBergenNorway
| | - Pieter J. Hoekstra
- Department of Child and Adolescent PsychiatryUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Joost Janssen
- Department of Child and Adolescent PsychiatryInstitute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAMMadridSpain
| | - Georgii Karkashadze
- Scientific research institute of Pediatrics and child health of Central clinical Hospital RAoSMoscowRussia
| | - Joseph A. King
- Division of Psychological & Social Medicine and Developmental Neurosciences, Faculty of MedicineTechnischen Universität DresdenDresdenGermany
| | - Kerstin Konrad
- Child Neuropsychology SectionUniversity Hospital RWTH AachenAachenGermany
- JARA Institute Molecular Neuroscience and Neuroimaging (INM‐11), Institute for Neuroscience and MedicineResearch Center JülichJulichGermany
| | - Jonna Kuntsi
- Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Luisa Lazaro
- Department of Child and Adolescent Psychiatry and PsychologyHospital ClínicBarcelonaSpain
- IDIBAPSBarcelonaSpain
- Biomedical Network Research Centre on Mental Health (CIBERSAM)BarcelonaSpain
- Department of MedicineUniversity of BarcelonaBarcelonaSpain
| | - Jason P. Lerch
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department for Clinical NeurosciencesUniversity of OxfordUK
- The Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Klaus‐Peter Lesch
- Division of Molecular Psychiatry, Center of Mental HealthUniversity of WürzburgWürzburgGermany
- Laboratory of Psychiatric NeurobiologyInstitute of Molecular Medicine, I.M. Sechenov First Moscow State Medical UniversityMoscowRussia
- Department of Neuroscience, School for Mental Health and Neuroscience (MHeNS)Maastricht UniversityMaastrichtThe Netherlands
| | - Mario R. Louza
- Department and Institute of Psychiatry, Faculty of MedicineUniversity of Sao PauloSao PauloBrazil
| | - Beatriz Luna
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Paulo Mattos
- D'Or Institute for Research and EducationRio de JaneiroBrazil
- Federal University of Rio de JaneiroRio de JaneiroBrazil
| | - Jane McGrath
- Department of Psychiatry, School of MedicineTrinity College DublinDublinIreland
| | - Filippo Muratori
- Department of Developmental NeuroscienceIRCCS Fondazione Stella MarisPisaItaly
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Clodagh Murphy
- Department of Forensic and Neurodevelopmental ScienceInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Joel T. Nigg
- Department of PsychiatryOregon Health & Science UniversityPortlandOregonUSA
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandOregonUSA
| | - Eileen Oberwelland‐Weiss
- JARA Institute Molecular Neuroscience and Neuroimaging (INM‐11), Institute for Neuroscience and MedicineResearch Center JülichJulichGermany
- Translational Neuroscience, Child and Adolescent PsychiatryUniversity Hospital RWTH AachenAachenGermany
| | - Ruth L. O'Gorman Tuura
- Center for MR ResearchUniversity Children's HospitalZurichSwitzerland
- Zurich Center for Integrative Human Physiology (ZIHP)ZurichSwitzerland
| | - Kirsten O'Hearn
- Department of physiology and pharmacologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Jaap Oosterlaan
- Clinical Neuropsychology SectionVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Emma Children's Hospital Amsterdam Medical CenterAmsterdamThe Netherlands
| | - Mara Parellada
- Department of Child and Adolescent PsychiatryInstitute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAMMadridSpain
- School of MedicineUniversidad ComplutenseMadridSpain
| | - Paul Pauli
- Department of Biological PsychologyClinical Psychology and PsychotherapyWürzburgGermany
| | - Kerstin J. Plessen
- Child and Adolescent Mental Health CentreCopenhagenDenmark
- Division of Child and Adolescent Psychiatry, Department of PsychiatryUniversity Hospital LausanneSwitzerland
| | - J. Antoni Ramos‐Quiroga
- Biomedical Network Research Centre on Mental Health (CIBERSAM)BarcelonaSpain
- Department of PsychiatryHospital Universitari Vall d'HebronBarcelonaSpain
- Group of Psychiatry, Addictions and Mental HealthVall d'Hebron Research InstituteBarcelonaSpain
- Department of Psychiatry and Forensic MedicineUniversitat Autonoma de BarcelonaBarcelonaSpain
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and PsychotherapyUniversity Hospital FrankfurtFrankfurtGermany
| | - Liesbeth Reneman
- Department of Radiology and Nuclear MedicineAmsterdam University Medical CentersAmsterdamThe Netherlands
- Brain Imaging CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
| | | | - Pedro G. P. Rosa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloBrazil
| | - Katya Rubia
- Department of Child and Adolescent PsychiatryInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Philip Shaw
- National Human Genome Research InstituteBethesdaMarylandUSA
- National Institute of Mental HealthBethesdaMarylandUSA
| | - Tim J. Silk
- Murdoch Children's Research InstituteMelbourneVictoriaAustralia
- Deakin UniversitySchool of PsychologyGeelongAustralia
| | - Leanne Tamm
- Department of PediatricsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- College of MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Oscar Vilarroya
- Department of Psychiatry and Forensic MedicineUniversitat Autonoma de BarcelonaBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and PsychotherapyPsychiatric Hospital, University of ZurichZurichSwitzerland
- The Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Neda Jahanshad
- Imaging Genetics CenterStevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Stephen V. Faraone
- Department of Psychiatry and of Neuroscience and PhysiologySUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Clyde Francks
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Language & GeneticsMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Odile A. van den Heuvel
- Department of Psychiatry, Department of Anatomy & NeurosciencesAmsterdam Neuroscience, Amsterdam UMC Amsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Tomas Paus
- Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
- Departments of Psychology & PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Paul M. Thompson
- Imaging Genetics CenterStevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Jan K. Buitelaar
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Cognitive NeuroscienceRadboud University Medical CenterNijmegenThe Netherlands
- Karakter child and adolescent psychiatry University CenterNijmegenThe Netherlands
| | - Barbara Franke
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of PsychiatryRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
17
|
Chen LZ, Holmes AJ, Zuo XN, Dong Q. Neuroimaging brain growth charts: A road to mental health. PSYCHORADIOLOGY 2021; 1:272-286. [PMID: 35028568 PMCID: PMC8739332 DOI: 10.1093/psyrad/kkab022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022]
Abstract
Mental disorders are common health concerns and contribute to a heavy global burden on our modern society. It is challenging to identify and treat them timely. Neuroimaging evidence suggests the incidence of various psychiatric and behavioral disorders is closely related to the atypical development of brain structure and function. The identification and understanding of atypical brain development provide chances for clinicians to detect mental disorders earlier, perhaps even prior to onset, and treat them more precisely. An invaluable and necessary method in identifying and monitoring atypical brain development are growth charts of typically developing individuals in the population. The brain growth charts can offer a series of standard references on typical neurodevelopment, representing an important resource for the scientific and medical communities. In the present paper, we review the relationship between mental disorders and atypical brain development from a perspective of normative brain development by surveying the recent progress in the development of brain growth charts, including four aspects on growth chart utility: 1) cohorts, 2) measures, 3) mechanisms, and 4) clinical translations. In doing so, we seek to clarify the challenges and opportunities in charting brain growth, and to promote the application of brain growth charts in clinical practice.
Collapse
Affiliation(s)
- Li-Zhen Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Avram J Holmes
- Department of Psychology, Yale University, New Haven, CT 06511, USA
- Department of Psychiatry, Yale University, New Haven, CT 06511, USA
| | - Xi-Nian Zuo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- National Basic Science Data Center, Beijing 100190, China
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Research Center for Lifespan Development of Mind and Brain, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
18
|
Zhong Y, An L, Wang Y, Yang L, Cao Q. Functional abnormality in the sensorimotor system attributed to NRXN1 variants in boys with attention deficit hyperactivity disorder. Brain Imaging Behav 2021; 16:967-976. [PMID: 34687402 DOI: 10.1007/s11682-021-00579-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/01/2021] [Indexed: 12/22/2022]
Abstract
Impaired sensorimotor circuits have been suggested in Attention-deficit/hyperactivity disorder (ADHD). NRXN1, highly expressed in cortex and cerebellum, was one of the candidate risk genes for ADHD, while its effects on sensorimotor circuits are unclear. In this content, we aimed to investigate the differential brain effects as functions of the cumulative genetic effects of NRXN1 variants in ADHD and healthy controls (HCs), identifying a potential pathway mapping from NRXN1, sensorimotor circuits, to ADHD. Magnetic resonance imaging, blood samples and clinical assessments were acquired from 53 male ADHD and 46 sex-matched HCs simultaneously. The effects of the cumulative genetic effects of NRXN1 variants valued by poly-variant risk score (PRS), on brain function was measured by resting-state functional connectivity (rs-FC) of cerebrocerebellar circuits. Mediation analyses were conducted to evaluate the association between NRXN1, functional abnormality, and ADHD diagnosis, as well as ADHD symptoms. The results were validated by bootstrapping and 10,000 times permutation tests. The rs-FC analyses demonstrated significant mediation models for ADHD diagnosis, and emphasized the involvement of cerebellum, middle cingulate gyrus and temporal gyrus, which are crucial parts of sensorimotor circuits. The current study suggested NRXN1 conferred risk for ADHD by regulating the function of sensorimotor circuits.
Collapse
Affiliation(s)
- Yuanxin Zhong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Huayuan Bei Road 51, Haidian District, Beijing, 100191, China
| | - Li An
- Institute of Applied Psychology, Tianjin University, Tianjin, China
| | - Yufeng Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Huayuan Bei Road 51, Haidian District, Beijing, 100191, China
| | - Li Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Huayuan Bei Road 51, Haidian District, Beijing, 100191, China.
| | - Qingjiu Cao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Huayuan Bei Road 51, Haidian District, Beijing, 100191, China.
| |
Collapse
|
19
|
Maron DN, Bowe SJ, Spencer-Smith M, Mellahn OJ, Perrykkad K, Bellgrove MA, Johnson BP. Oculomotor deficits in attention deficit hyperactivity disorder (ADHD): A systematic review and comprehensive meta-analysis. Neurosci Biobehav Rev 2021; 131:1198-1213. [PMID: 34655657 DOI: 10.1016/j.neubiorev.2021.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 10/04/2021] [Accepted: 10/10/2021] [Indexed: 02/01/2023]
Abstract
Atypical motor coordination and cognitive processes, such as response inhibition and working memory, have been extensively researched in individuals with attention deficit hyperactivity disorder (ADHD). Oculomotor neural circuits overlap extensively with regions involved in motor planning and cognition, therefore studies of oculomotor function may offer unique insights into motor and cognitive control in ADHD. We performed a series of pairwise meta-analyses based on data from 26 oculomotor studies in ADHD to examine whether there were differences in performance on visually-guided saccade, gap, antisaccade, memory-guided, pursuit eye movements and fixation tasks. These analyses revealed oculomotor disturbances in ADHD, particularly for difficulties relating to saccade inhibition, memorizing visual target locations and initiating antisaccades. There was no evidence for pursuit eye movement disturbances or saccade dysmetria. Investigating oculomotor abnormalities in ADHD may provide insight into top-down cognitive control processes and motor control, and may serve as a promising biomarker in ADHD research and clinical practice.
Collapse
Affiliation(s)
- Dalia N Maron
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, 18 Innovation Walk, Monash University, VIC, 3800, Australia
| | - Steven J Bowe
- Deakin Biostatistics Unit, Faculty of Health, Deakin University, Geelong, VIC, 3220, Australia
| | - Megan Spencer-Smith
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, 18 Innovation Walk, Monash University, VIC, 3800, Australia
| | - Olivia J Mellahn
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, 18 Innovation Walk, Monash University, VIC, 3800, Australia
| | - Kelsey Perrykkad
- Cognition and Philosophy Lab, Philosophy Department, School of Philosophical, Historical and International Studies, Monash University, VIC, 3800, Australia
| | - Mark A Bellgrove
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, 18 Innovation Walk, Monash University, VIC, 3800, Australia
| | - Beth P Johnson
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, 18 Innovation Walk, Monash University, VIC, 3800, Australia.
| |
Collapse
|
20
|
Li T, van Rooij D, Roth Mota N, Buitelaar JK, Hoogman M, Arias Vasquez A, Franke B. Characterizing neuroanatomic heterogeneity in people with and without ADHD based on subcortical brain volumes. J Child Psychol Psychiatry 2021; 62:1140-1149. [PMID: 33786843 PMCID: PMC8403135 DOI: 10.1111/jcpp.13384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder. Neuroanatomic heterogeneity limits our understanding of ADHD's etiology. This study aimed to parse heterogeneity of ADHD and to determine whether patient subgroups could be discerned based on subcortical brain volumes. METHODS Using the large ENIGMA-ADHD Working Group dataset, four subsamples of 993 boys with and without ADHD and to subsamples of 653 adult men, 400 girls, and 447 women were included in analyses. We applied exploratory factor analysis (EFA) to seven subcortical volumes in order to constrain the complexity of the input variables and ensure more stable clustering results. Factor scores derived from the EFA were used to build networks. A community detection (CD) algorithm clustered participants into subgroups based on the networks. RESULTS Exploratory factor analysis revealed three factors (basal ganglia, limbic system, and thalamus) in boys and men with and without ADHD. Factor structures for girls and women differed from those in males. Given sample size considerations, we concentrated subsequent analyses on males. Male participants could be separated into four communities, of which one was absent in healthy men. Significant case-control differences of subcortical volumes were observed within communities in boys, often with stronger effect sizes compared to the entire sample. As in the entire sample, none were observed in men. Affected men in two of the communities presented comorbidities more frequently than those in other communities. There were no significant differences in ADHD symptom severity, IQ, and medication use between communities in either boys or men. CONCLUSIONS Our results indicate that neuroanatomic heterogeneity in subcortical volumes exists, irrespective of ADHD diagnosis. Effect sizes of case-control differences appear more pronounced at least in some of the subgroups.
Collapse
Affiliation(s)
- Ting Li
- Department of Human GeneticsDonders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Daan van Rooij
- Department of Cognitive NeuroscienceDonders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Nina Roth Mota
- Department of Human GeneticsDonders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of PsychiatryDonders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegen
The Netherlands
| | - Jan K. Buitelaar
- Department of Cognitive NeuroscienceDonders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Martine Hoogman
- Department of Human GeneticsDonders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Alejandro Arias Vasquez
- Department of Human GeneticsDonders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of Cognitive NeuroscienceDonders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of PsychiatryDonders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegen
The Netherlands
| | - Barbara Franke
- Department of Human GeneticsDonders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of PsychiatryDonders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegen
The Netherlands
| |
Collapse
|
21
|
Predicting the course of ADHD symptoms through the integration of childhood genomic, neural, and cognitive features. Mol Psychiatry 2021; 26:4046-4054. [PMID: 33173195 PMCID: PMC8345321 DOI: 10.1038/s41380-020-00941-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 11/09/2022]
Abstract
Childhood attention deficit hyperactivity disorder (ADHD) shows a highly variable course with age: some individuals show improving, others stable or worsening symptoms. The ability to predict symptom course could help individualize treatment and guide interventions. By studying a cohort of 362 youth, we ask if polygenic risk for ADHD, combined with baseline neural and cognitive features could aid in the prediction of the course of symptoms over an average period of 4.8 years. Compared to a never-affected comparison group, we find that participants with worsening symptoms carried the highest polygenic risk for ADHD, followed by those with stable symptoms, then those whose symptoms improved. Participants with worsening symptoms also showed atypical baseline cognition. Atypical microstructure of the cingulum bundle and anterior thalamic radiation was associated with improving symptoms while reduction of thalamic volume was found in those with stable symptoms. Machine-learning algorithms, trained and tested on independent groups, performed well in classifying those never affected against groups with worsening, stable, and improving symptoms (area under the curve >0.79). We conclude that some measures of polygenic risk, cognition, and neuroimaging show significant associations with the future course of ADHD symptoms and may have modest predictive power. These features warrant further exploration as prognostic tools.
Collapse
|
22
|
Mooney MA, Bhatt P, Hermosillo RJM, Ryabinin P, Nikolas M, Faraone SV, Fair DA, Wilmot B, Nigg JT. Smaller total brain volume but not subcortical structure volume related to common genetic risk for ADHD. Psychol Med 2021; 51:1279-1288. [PMID: 31973781 PMCID: PMC7461955 DOI: 10.1017/s0033291719004148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mechanistic endophenotypes can inform process models of psychopathology and aid interpretation of genetic risk factors. Smaller total brain and subcortical volumes are associated with attention-deficit hyperactivity disorder (ADHD) and provide clues to its development. This study evaluates whether common genetic risk for ADHD is associated with total brain volume (TBV) and hypothesized subcortical structures in children. METHODS Children 7-15 years old were recruited for a case-control study (N = 312, N = 199 ADHD). Children were assessed with a multi-informant, best-estimate diagnostic procedure and motion-corrected MRI measured brain volumes. Polygenic scores were computed based on discovery data from the Psychiatric Genomics Consortium (N = 19 099 ADHD, N = 34 194 controls) and the ENIGMA + CHARGE consortium (N = 26 577). RESULTS ADHD was associated with smaller TBV, and altered volumes of caudate, cerebellum, putamen, and thalamus after adjustment for TBV; however, effects were larger and statistically reliable only in boys. TBV was associated with an ADHD polygenic score [β = -0.147 (-0.27 to -0.03)], and mediated a small proportion of the effect of polygenic risk on ADHD diagnosis (average ACME = 0.0087, p = 0.012). This finding was stronger in boys (average ACME = 0.019, p = 0.008). In addition, we confirm genetic variation associated with whole brain volume, via an intracranial volume polygenic score. CONCLUSION Common genetic risk for ADHD is not expressed primarily as developmental alterations in subcortical brain volumes, but appears to alter brain development in other ways, as evidenced by TBV differences. This is among the first demonstrations of this effect using molecular genetic data. Potential sex differences in these effects warrant further examination.
Collapse
Affiliation(s)
- Michael A Mooney
- Division of Bioinformatics & Computational Biology, Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
- OHSU Knight Cancer Institute, Portland, Oregon, USA
| | - Priya Bhatt
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, USA
| | - Robert J M Hermosillo
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Peter Ryabinin
- Oregon Clinical and Translational Research Institute, Portland, Oregon, USA
| | - Molly Nikolas
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, Iowa, USA
| | - Stephen V Faraone
- Departments of Psychiatry and Neuroscience & Physiology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Damien A Fair
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
- Advanced Imaging Research Center, OHSU, Portland, Oregon, USA
| | - Beth Wilmot
- Division of Bioinformatics & Computational Biology, Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
- Oregon Clinical and Translational Research Institute, Portland, Oregon, USA
| | - Joel T Nigg
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
23
|
Ding L, Pang G. Identification of Brain Regions with Enhanced Functional Connectivity with the Cerebellum Region in Children with Attention Deficit Hyperactivity Disorder: A Resting-State fMRI Study. Int J Gen Med 2021; 14:2109-2115. [PMID: 34079352 PMCID: PMC8166311 DOI: 10.2147/ijgm.s303339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
Background To explore the brain regions with higher functional connectivity with the cerebellum at resting state and the brain functions related to cognitive function in children with attention-deficit hyperactivity disorder (ADHD). Methods Thirty children with ADHD and 33 typically developing children (TDC) were examined using resting-state functional magnetic resonance imaging (fMRI) scans. Seed-based functional connectivity (FC) analysis was performed. Results Four brain areas with higher FC values were identified in ADHD children. These four areas were the left middle frontal gyrus, right middle frontal gyrus, right superior temporal gyrus and left parahippocampal gyrus (P < 0.05). The results of the CPT show that the number of omission errors was significantly higher in the children with ADHD than in the TD group (5.13±5.12 vs 2.18±2.36, P = 0.000). The commission number in the ADHD group was also significantly higher than that of the TD group (4.03±6.56 vs 2.00±2.85, P = 0.002). However, no statistically significant difference was observed in the correct reaction time between the two groups (641.54±146.79 ms vs 584.81±145.82 ms, P = 0.835). Conclusion The dysfunction of cerebellar functional connectivity in specific brain regions may be one of the pathological and physiological causes of cognitive impairment of ADHD.
Collapse
Affiliation(s)
- Li Ding
- Department of Pediatrics, Changzhou Children's Hospital of Nantong University, Changzhou, 213003, People's Republic of China
| | - Gaofeng Pang
- Department of Pediatrics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China
| |
Collapse
|
24
|
Fotopoulos NH, Devenyi GA, Guay S, Sengupta SM, Chakravarty MM, Grizenko N, Karama S, Joober R. Cumulative exposure to ADHD medication is inversely related to hippocampus subregional volume in children. NEUROIMAGE-CLINICAL 2021; 31:102695. [PMID: 34015673 PMCID: PMC8141923 DOI: 10.1016/j.nicl.2021.102695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022]
Abstract
Cumulative exposure to ADHD medication characterized as the product of lifetime duration and dose. Medication effects investigated on 51 subregional volumes. Smaller hippocampus CA1 volumes associated with higher medication exposure. Effects remained when correcting for age and ADHD symptom severity. No global effects of medication on cortical thickness or surface area detected.
Background Although there is some evidence for a normalization of brain structure following exposure to ADHD medication, literature on the effects of duration and dose of continued use on the brain is scarce. Here, we investigated the association between cumulative exposure to medication (range 1 week to 4.69 years) and cortical structures and subcortical volumes in a clinical sample of children with ADHD taking medication (n = 109). To the best of our knowledge, this is the first structural MRI study investigating the effects of cumulative exposure to medication on subregional volumes in children treated for ADHD. Methods Cumulative exposure to ADHD medication (CEM) was defined as the product of duration on medication (days) and dose (mg/day), yielding the area under the curve (total mg). Cortical thickness and surface area measurements (CIVET-1.1.12), and subcortical volumes in 51 regions (MAGeT-Brain) were analyzed using general linear modelling. Results Significant effects of CEM were found in two subregions of the left hippocampus, the CA1 (df = 95; q = 0.003) and the strata radiatum/lacunosum/moleculare (df = 95; q = 0.003). Specifically, higher CEM was associated with smaller volumes within these subregions. No effects of medication exposure were detected on cortical thickness or surface area. Conclusions Although this study is cross-sectional, the results found within this sample of children show that prolonged ADHD medication use at higher doses is significantly associated with smaller hippocampus volumes in specific subregions. More research is required to determine whether these results are reproduced in other samples of children of ADHD, and further, whether these are beneficial or off-target effects of the medication.
Collapse
Affiliation(s)
- Nellie H Fotopoulos
- Douglas Mental Health University Institute, Montréal, Québec, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Gabriel A Devenyi
- Douglas Mental Health University Institute, Montréal, Québec, Canada; Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Stephanie Guay
- Faculty of Dentistry, McGill University, Montréal, Québec, Canada
| | - Sarojini M Sengupta
- Douglas Mental Health University Institute, Montréal, Québec, Canada; Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - M Mallar Chakravarty
- Douglas Mental Health University Institute, Montréal, Québec, Canada; Department of Psychiatry, McGill University, Montréal, Québec, Canada; Department of Biological and Biomedical Engineering, McGill University, Montréal, Québec, Canada
| | - Natalie Grizenko
- Douglas Mental Health University Institute, Montréal, Québec, Canada; Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Sherif Karama
- Douglas Mental Health University Institute, Montréal, Québec, Canada; Department of Psychiatry, McGill University, Montréal, Québec, Canada; Montréal Neurological Institute, Montréal, Québec, Canada.
| | - Ridha Joober
- Douglas Mental Health University Institute, Montréal, Québec, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada; Department of Psychiatry, McGill University, Montréal, Québec, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
25
|
Chambers T, Anney R, Taylor PN, Teumer A, Peeters RP, Medici M, Caseras X, Rees DA. Effects of Thyroid Status on Regional Brain Volumes: A Diagnostic and Genetic Imaging Study in UK Biobank. J Clin Endocrinol Metab 2021; 106:688-696. [PMID: 33274371 PMCID: PMC7947746 DOI: 10.1210/clinem/dgaa903] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Thyroid hormone is essential for optimal human neurodevelopment and may modify the risk of attention-deficit/hyperactivity disorder (ADHD). However, the brain structures involved are unknown and it is unclear if the adult brain is also susceptible to changes in thyroid status. METHODS We used International Classification of Disease-10 codes, polygenic thyroid scores at different thresholds of association with thyroid traits (PT-values), and image-derived phenotypes in UK Biobank (n = 18 825) to investigate the effects of a recorded diagnosis of thyroid disease and genetic risk for thyroid status on cerebellar and subcortical gray matter volume. Regional genetic pleiotropy between thyroid status and ADHD was explored using the GWAS-pairwise method. RESULTS A recorded diagnosis of hypothyroidism (n = 419) was associated with significant reductions in total cerebellar and pallidum gray matter volumes (β [95% CI] = -0.14[-0.23, -0.06], P = 0.0005 and β [95%CI] = -0.12 [-0.20, -0.04], P = 0.0042, respectively), mediated in part by increases in body mass index. While we found no evidence for total cerebellar volume alterations with increased polygenic scores for any thyroid trait, opposing influences of increased polygenic scores for hypo- and hyperthyroidism were found in the pallidum (PT < 1e-3: β [95% CI] = -0.02 [-0.03, -0.01], P = 0.0003 and PT < 1e-7: β [95% CI] = 0.02 [0.01, 0.03], P = 0.0003, respectively). Neither hypo- nor hyperthyroidism showed evidence of regional genetic pleiotropy with ADHD. CONCLUSIONS Thyroid status affects gray matter volume in adults, particularly at the level of the cerebellum and pallidum, with potential implications for the regulation of motor, cognitive, and affective function.
Collapse
Affiliation(s)
- Tom Chambers
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Richard Anney
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Peter N Taylor
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Germany
| | - Robin P Peeters
- Department of Internal Medicine and Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marco Medici
- Department of Internal Medicine and Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, HB Nijmegen, The Netherlands
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - D Aled Rees
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, UK
- Correspondence: D. Aled Rees, FRCP, PhD, Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom.
| |
Collapse
|
26
|
Development of lateral pulvinar resting state functional connectivity and its role in attention. Cortex 2020; 136:77-88. [PMID: 33486158 DOI: 10.1016/j.cortex.2020.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/22/2020] [Accepted: 12/08/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The lateral pulvinar nucleus (LPN) has a well-established role in visual attention. Oscillatory activity of the LPN is critical for cortico-cortical communication within and among occipital and temporal visual processing regions. However, the functional development of the LPN and its role in attention deficits is not understood. This study examined the development of thalamic functional connectivity and its relation to attention abilities. METHOD Resting state functional Magnetic Resonance Imaging images from 950 participants (ages 8-21) in the Philadelphia Neurodevelopmental Cohort (PNC) were used to examine age effects. Follow-up General Linear Models were performed to examine brain-behavior effects with Attention Deficit Hyperactivity Disorder (ADHD) symptom ratings and D-prime scores from the Penn Continuous Performance Task, a behavioral measure of selective attention. RESULTS LPN functional connectivity with ventral visual stream regions of the occipital and temporal cortices decreased with age, while LPN functional connectivity with the supplementary motor area increased with age. Weaker LPN connectivity in the inferior parietal lobule, supramarginal gyrus, posterior insula, and inferior frontal gyrus was associated with more ADHD symptoms; stronger pulvinar-cerebellar connectivity was also associated with more ADHD symptoms. Better D-prime scores were associated with greater connectivity between the pulvinar and superior parietal gyrus; better D-prime scores were associated with weaker pulvinar connectivity with striatal, middle temporal gyrus, and medial prefrontal cortex regions. CONCLUSION These findings implicate the LPN in the development of the ventral visual processing stream between late childhood and early adulthood and suggest that LPN connectivity with higher order attention networks is important for attention abilities.
Collapse
|
27
|
Tuvi I, Harro J, Kiive E, Vaht M, Bachmann T. Associations of attention distractibility with attention deficit and with variation in the KTN1 gene. Neurosci Lett 2020; 738:135397. [PMID: 32956741 DOI: 10.1016/j.neulet.2020.135397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/01/2020] [Accepted: 09/15/2020] [Indexed: 11/25/2022]
Abstract
Attention distractibility in a low load visual search experiment with a rare irrelevant distractor could be an objective continuous measure in adulthood that correlates well with the symptoms of attention deficit throughout lifespan. This was studied using a birth cohort representative sample in a longitudinal study. The expected correlations were not found between the distractor cost measured in the experiment in adulthood and the inattention questionnaire scores from ages 15-33. However, the coefficient of variability for RT (CVRT) correlated negatively with self-reported motor restlessness (age 15) and attention deficit (age 25). We suggest that hyperactivity in childhood improved motor control at age 33. Associations with the gene KTN1 rs945270 (found to affect putamen size) were explored. CVRT, motor restlessness at age 15 and attention deficit scores at age 25 were especially low for male C-allele carriers. A possible association with the volume of putamen of individual participants is considered.
Collapse
Affiliation(s)
- Iiris Tuvi
- University of Tartu, Institute of Education, Näituse 2, Tartu, Estonia.
| | - Jaanus Harro
- University of Tartu, Institute of Psychology, Ravila 14A Chemicum, Tartu, Estonia.
| | - Evelyn Kiive
- University of Tartu, Institute of Education, Näituse 2, Tartu, Estonia.
| | - Mariliis Vaht
- University of Tartu, Institute of Genomics, Riia 32b, Tartu, Estonia.
| | - Talis Bachmann
- University of Tartu, Faculty of Law, Kaarli Pst 1, Tallinn, Estonia.
| |
Collapse
|
28
|
Dekkers TJ, Rapport MD, Calub CA, Eckrich SJ, Irurita C. ADHD and hyperactivity: The influence of cognitive processing demands on gross motor activity level in children. Child Neuropsychol 2020; 27:63-82. [PMID: 32662360 DOI: 10.1080/09297049.2020.1793924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Excessive gross motor activity is a prominent feature of children with ADHD, and accruing evidence indicates that their gross motor activity is significantly higher in situations associated with high relative to low working memory processing demands. It remains unknown, however, whether children's gross motor activity rises to an absolute level or accelerates incrementally as a function of increasingly more difficult cognitive processing demands imposed on the limited capacity working memory (WM) system - a question of both theoretical and applied significance. The present investigation examined the activity level of 8- to 12-year-old children with ADHD (n = 36) and Typically Developing (TD) children (n = 24) during multiple experimental conditions: a control condition with no storage and negligible WM processing demands; a short-term memory (STM) storage condition; and a sequence of WM conditions that required both STM and incrementally more difficult higher-order cognitive processing. Relative to the control condition, all children, regardless of diagnostic status, exhibited higher levels of gross motor activity while engaged in WM tasks that required STM alone and STM combined with upper level cognitive processing demands, and children with ADHD were motorically more active under all WM conditions relative to TD children. The increase in activity as a consequence of cognitive demand was similar for all experimental conditions. Findings suggest that upregulation of physical movement rises and remains relatively stable to promote arousal related mechanisms when engaged in cognitive activities involving WM for all children, and to a greater extent for children with ADHD.
Collapse
Affiliation(s)
- Tycho J Dekkers
- Department of Psychology, University of Central Florida , Orlando, FL, USA.,Department of Psychology, University of Amsterdam , Amsterdam, The Netherlands.,Academic Center for Child and Adolescent Psychiatry, de Bascule , Amsterdam, The Netherlands.,Department of Child and Adolescent Psychiatry, Free University Medical Center, Amsterdam UMC , Amsterdam, The Netherlands
| | - Mark D Rapport
- Department of Psychology, University of Central Florida , Orlando, FL, USA
| | - Catrina A Calub
- Department of Psychology, University of Central Florida , Orlando, FL, USA
| | - Samuel J Eckrich
- Department of Psychology, University of Central Florida , Orlando, FL, USA
| | - Carolina Irurita
- Department of Psychology, University of Central Florida , Orlando, FL, USA
| |
Collapse
|
29
|
Dekkers TJ, Popma A, Sonuga-Barke EJS, Oldenhof H, Bexkens A, Jansen BRJ, Huizenga HM. Risk Taking by Adolescents with Attention-Deficit/Hyperactivity Disorder (ADHD): a Behavioral and Psychophysiological Investigation of Peer Influence. JOURNAL OF ABNORMAL CHILD PSYCHOLOGY 2020; 48:1129-1141. [PMID: 32607755 PMCID: PMC7392932 DOI: 10.1007/s10802-020-00666-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adolescents with ADHD demonstrate increased risk-taking behavior (RTB) like substance abuse and dangerous traffic conduct. RTB in adolescence is more likely under peer influence. The current investigation (1) tests the hypothesis that adolescents with ADHD are particularly susceptible to such influence and (2) tests whether groups differed in autonomic reactivity to peer influence. Adolescent boys between 12 and 19 years with (n = 81) and without (n = 99) ADHD performed the Balloon Analogue Risk Task twice. In the peer condition, a highly credible virtual peer manipulation that encouraged risk taking was added, in the solo condition this was absent. Autonomic reactivity was indexed by heart rate (HR), pre-ejection period (PEP) and respiratory sinus arrhythmia (RSA). All adolescents engaged in more risk taking in the peer condition relative to solo condition. Autonomic differences between groups were only found on PEP: a stronger sympathetic response to peer influence was observed in typically developing adolescents relative to adolescents with ADHD. Increased physiological stress (as indexed by PEP) in the peer relative to the solo condition predicted peer-induced risk taking in all adolescents. We conclude that susceptibility to peer influence is not exaggerated in ADHD but rather reflects a general tendency of adolescents. As adolescents experiencing peer influence as stressful are most susceptible to peer influence, we suggest that increasing resistance to peer influence may be an important treatment aim for these adolescents specifically.
Collapse
Affiliation(s)
- Tycho J Dekkers
- Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129B, 1018WS, Amsterdam, The Netherlands. .,Department of Forensic Psychiatry and Complex Behavioral Disorders, De Bascule, Academic Center for Child- and Adolescent Psychiatry, Amsterdam, The Netherlands. .,Amsterdam UMC, Department of Child- and Adolescent Psychiatry, Free University Medical Center (VUmc), Amsterdam, The Netherlands.
| | - Arne Popma
- Department of Forensic Psychiatry and Complex Behavioral Disorders, De Bascule, Academic Center for Child- and Adolescent Psychiatry, Amsterdam, The Netherlands.,Amsterdam UMC, Department of Child- and Adolescent Psychiatry, Free University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Edmund J S Sonuga-Barke
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College, London, UK
| | - Helena Oldenhof
- Amsterdam UMC, Department of Child- and Adolescent Psychiatry, Free University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Anika Bexkens
- Department of Developmental and Educational Psychology, Leiden University, Leiden, The Netherlands.,Department of Child and Adolescent Psychiatry, GGZ Delfland, Center for Psychiatry, Delft, The Netherlands
| | - Brenda R J Jansen
- Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129B, 1018WS, Amsterdam, The Netherlands
| | - Hilde M Huizenga
- Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129B, 1018WS, Amsterdam, The Netherlands.,Amsterdam Brain and Cognition Center, University of Amsterdam, Amsterdam, The Netherlands.,Research Priority Area Yield, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Thompson PM, Jahanshad N, Ching CRK, Salminen LE, Thomopoulos SI, Bright J, Baune BT, Bertolín S, Bralten J, Bruin WB, Bülow R, Chen J, Chye Y, Dannlowski U, de Kovel CGF, Donohoe G, Eyler LT, Faraone SV, Favre P, Filippi CA, Frodl T, Garijo D, Gil Y, Grabe HJ, Grasby KL, Hajek T, Han LKM, Hatton SN, Hilbert K, Ho TC, Holleran L, Homuth G, Hosten N, Houenou J, Ivanov I, Jia T, Kelly S, Klein M, Kwon JS, Laansma MA, Leerssen J, Lueken U, Nunes A, Neill JO, Opel N, Piras F, Piras F, Postema MC, Pozzi E, Shatokhina N, Soriano-Mas C, Spalletta G, Sun D, Teumer A, Tilot AK, Tozzi L, van der Merwe C, Van Someren EJW, van Wingen GA, Völzke H, Walton E, Wang L, Winkler AM, Wittfeld K, Wright MJ, Yun JY, Zhang G, Zhang-James Y, Adhikari BM, Agartz I, Aghajani M, Aleman A, Althoff RR, Altmann A, Andreassen OA, Baron DA, Bartnik-Olson BL, Marie Bas-Hoogendam J, Baskin-Sommers AR, Bearden CE, Berner LA, Boedhoe PSW, Brouwer RM, Buitelaar JK, Caeyenberghs K, Cecil CAM, Cohen RA, Cole JH, Conrod PJ, De Brito SA, de Zwarte SMC, Dennis EL, Desrivieres S, Dima D, Ehrlich S, Esopenko C, Fairchild G, Fisher SE, Fouche JP, Francks C, Frangou S, Franke B, Garavan HP, Glahn DC, Groenewold NA, Gurholt TP, Gutman BA, Hahn T, Harding IH, Hernaus D, Hibar DP, Hillary FG, Hoogman M, Hulshoff Pol HE, Jalbrzikowski M, Karkashadze GA, Klapwijk ET, Knickmeyer RC, Kochunov P, Koerte IK, Kong XZ, Liew SL, Lin AP, Logue MW, Luders E, Macciardi F, Mackey S, Mayer AR, McDonald CR, McMahon AB, Medland SE, Modinos G, Morey RA, Mueller SC, Mukherjee P, Namazova-Baranova L, Nir TM, Olsen A, Paschou P, Pine DS, Pizzagalli F, Rentería ME, Rohrer JD, Sämann PG, Schmaal L, Schumann G, Shiroishi MS, Sisodiya SM, Smit DJA, Sønderby IE, Stein DJ, Stein JL, Tahmasian M, Tate DF, Turner JA, van den Heuvel OA, van der Wee NJA, van der Werf YD, van Erp TGM, van Haren NEM, van Rooij D, van Velzen LS, Veer IM, Veltman DJ, Villalon-Reina JE, Walter H, Whelan CD, Wilde EA, Zarei M, Zelman V. ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl Psychiatry 2020; 10:100. [PMID: 32198361 PMCID: PMC7083923 DOI: 10.1038/s41398-020-0705-1] [Citation(s) in RCA: 334] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/11/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors.
Collapse
Affiliation(s)
- Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA.
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Lauren E Salminen
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Joanna Bright
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Sara Bertolín
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Willem B Bruin
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Robin Bülow
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Jian Chen
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
| | - Yann Chye
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Carolien G F de Kovel
- Biometris Wageningen University and Research, Wageningen, The Netherlands
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Gary Donohoe
- The Center for Neuroimaging and Cognitive Genomics, School of Psychology, National University of Ireland, Galway, Ireland
| | - Lisa T Eyler
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Desert-Pacific Mental Illness Research, Education, and Clinical Center, VA San Diego Healthcare System, San Diego, CA, USA
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Pauline Favre
- INSERM Unit 955 Team 15 'Translational Psychiatry', Créteil, France
- NeuroSpin, UNIACT Lab, Psychiatry Team, CEA Saclay, Gif-Sur-Yvette, France
| | - Courtney A Filippi
- National Institute of Mental Health, National of Health, Bethesda, MD, USA
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Daniel Garijo
- Information Sciences Institute, University of Southern California, Marina del Rey, CA, USA
| | - Yolanda Gil
- Information Sciences Institute, University of Southern California, Marina del Rey, CA, USA
- Department of Computer Science, University of Southern California, Los Angeles, CA, USA
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Katrina L Grasby
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- National Institute of Mental Health, Klecany, Czech Republic
| | - Laura K M Han
- Department of Psychiatry, Amsterdam University Medical Centers, VU University Medical Center, GGZ inGeest, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Sean N Hatton
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USA
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Kevin Hilbert
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tiffany C Ho
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA
- Department of Psychiatry & Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Laurena Holleran
- The Center for Neuroimaging and Cognitive Genomics, School of Psychology, National University of Ireland, Galway, Ireland
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Norbert Hosten
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Josselin Houenou
- INSERM Unit 955 Team 15 'Translational Psychiatry', Créteil, France
- NeuroSpin, UNIACT Lab, Psychiatry Team, CEA Saclay, Gif-Sur-Yvette, France
- APHP, Mondor University Hospitals, School of Medicine, DMU Impact, Psychiatry Department, Créteil, France
| | - Iliyan Ivanov
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tianye Jia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Centre for Population Neuroscience and Precision Medicine (PONS), MRC SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sinead Kelly
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - Marieke Klein
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Max A Laansma
- Department of Anatomy & Neurosciences, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jeanne Leerssen
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Ulrike Lueken
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Abraham Nunes
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| | - Joseph O' Neill
- Child & Adolescent Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Merel C Postema
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Elena Pozzi
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia
| | - Natalia Shatokhina
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain
- CIBERSAM-G17, Madrid, Spain
- Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Daqiang Sun
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Mental Health, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Amanda K Tilot
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Leonardo Tozzi
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Celia van der Merwe
- Stanley Center for Psychiatric Research, The Broad Institute, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Psychiatry and Integrative Neurophysiology, VU University, Amsterdam UMC, Amsterdam, The Netherlands
| | - Guido A van Wingen
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research, Partner Site Greifswald, Greifswald, Germany
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, UK
| | - Lei Wang
- Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Anderson M Winkler
- National Institute of Mental Health, National of Health, Bethesda, MD, USA
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
| | - Je-Yeon Yun
- Seoul National University Hospital, Seoul, Republic of Korea
- Yeongeon Student Support Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Guohao Zhang
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, MD, USA
| | - Yanli Zhang-James
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Bhim M Adhikari
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health & Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Research & Innovation, GGZ InGeest, Amsterdam, The Netherlands
| | - André Aleman
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert R Althoff
- Psychiatry, Pediatrics, and Psychological Sciences, University of Vermont, Burlington, VT, USA
| | - Andre Altmann
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health & Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - David A Baron
- Provost and Senior Vice President, Western University of Health Sciences, Pomona, CA, USA
| | | | - Janna Marie Bas-Hoogendam
- Institute of Psychology, Leiden University, Leiden, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | | | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Laura A Berner
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Premika S W Boedhoe
- Department of Psychiatry, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Rachel M Brouwer
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, VIC, Australia
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Ronald A Cohen
- Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, USA
- Clinical and Health Psychology, Gainesville, FL, USA
| | - James H Cole
- Centre for Medical Image Computing (CMIC), Department of Computer Science, University College London, London, UK
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Patricia J Conrod
- Universite de Montreal, Centre de Recherche CHU Ste-Justine, Montreal, QC, Canada
| | - Stephane A De Brito
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Sonja M C de Zwarte
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Emily L Dennis
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sylvane Desrivieres
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Danai Dima
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, UK
- Department of Neuroimaging, Institute of Psychology, Psychiatry and Neurosciences, King's College London, London, UK
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Carrie Esopenko
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers Biomedical Health Sciences, Newark, NJ, USA
| | | | - Simon E Fisher
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Jean-Paul Fouche
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- SU/UCT MRC Unit on Risk & Resilience in Mental Disorders, University of Stellenbosch, Stellenbosch, South Africa
| | - Clyde Francks
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- University of British Columbia, Vancouver, Canada
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hugh P Garavan
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford, CT, USA
| | - Nynke A Groenewold
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Tiril P Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health & Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Boris A Gutman
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
- Institute for Information Transmission Problems, Kharkevich Institute, Moscow, Russian Federation
| | - Tim Hahn
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Ian H Harding
- Turner Institute for Brain and Mental Health & School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Dennis Hernaus
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | - Frank G Hillary
- Department of Psychology, Penn State University, University Park, PA, USA
- Social Life and Engineering Sciences Imaging Center, University Park, PA, USA
| | - Martine Hoogman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - George A Karkashadze
- Research and Scientific Institute of Pediatrics and Child Health, CCH RAS, Ministry of Science and Higher Education, Moscow, Russian Federation
| | - Eduard T Klapwijk
- Institute of Psychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Rebecca C Knickmeyer
- Department of Pediatrics, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, East Lansing, MI, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peter Kochunov
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- CBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Xiang-Zhen Kong
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Sook-Lei Liew
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Chan Division of Occupational Science and Occupational Therapy, Los Angeles, CA, USA
| | - Alexander P Lin
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mark W Logue
- National Center for PTSD at Boston VA Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA
| | - Eileen Luders
- School of Psychology, University of Auckland, Auckland, New Zealand
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Scott Mackey
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | | | - Carrie R McDonald
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USA
- Psychiatry, San Diego, CA, USA
| | - Agnes B McMahon
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
- The Kavli Foundation, Los Angeles, CA, USA
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Gemma Modinos
- Department of Neuroimaging, Institute of Psychology, Psychiatry and Neurosciences, King's College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Rajendra A Morey
- Department of Psychiatry, Duke University School of Medicine, Durham, NC, USA
- Mental Illness Research Education and Clinical Center, Durham VA Medical Center, Durham, NC, USA
| | - Sven C Mueller
- Experimental Clinical & Health Psychology, Ghent University, Ghent, Belgium
- Department of Personality, Psychological Assessment and Treatment, University of Deusto, Bilbao, Spain
| | | | - Leyla Namazova-Baranova
- Research and Scientific Institute of Pediatrics and Child Health, CCH RAS, Ministry of Science and Higher Education, Moscow, Russian Federation
- Department of Pediatrics, Russian National Research Medical University MoH RF, Moscow, Russian Federation
| | - Talia M Nir
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Alexander Olsen
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | | | - Daniel S Pine
- National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Fabrizio Pizzagalli
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Miguel E Rentería
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | | | - Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine (PONS), MRC SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Psychiatry and Psychotherapy, Charite, Humboldt University, Berlin, Germany
| | - Mark S Shiroishi
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
- Department of Radiology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, University College London, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Dirk J A Smit
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Ida E Sønderby
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health & Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Dan J Stein
- Department of Psychiatry & Neuroscience Institute, SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, South Africa
| | - Jason L Stein
- Department of Genetics & UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Masoud Tahmasian
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, I. R., Iran
| | - David F Tate
- Department of Neurology, TBI and Concussion Center, Salt Lake City, UT, USA
- Missouri Institute of Mental Health, Berkeley, MO, USA
| | - Jessica A Turner
- Psychology Department & Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Odile A van den Heuvel
- Department of Anatomy & Neurosciences, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Ysbrand D van der Werf
- Department of Anatomy & Neurosciences, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA
| | - Neeltje E M van Haren
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Daan van Rooij
- Donders Centre for Cognitive Neuroimaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Laura S van Velzen
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Ilya M Veer
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Julio E Villalon-Reina
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Henrik Walter
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christopher D Whelan
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Research and Early Development, Biogen Inc, Cambridge, MA, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- VA Salt Lake City Healthcare System, Salt Lake City, UT, USA
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, I. R., Iran
| | - Vladimir Zelman
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| |
Collapse
|
31
|
Lai S, Zhong S, Shan Y, Wang Y, Chen G, Luo X, Chen F, Zhang Y, Shen S, Huang H, Ning Y, Jia Y. Altered biochemical metabolism and its lateralization in the cortico-striato-cerebellar circuit of unmedicated bipolar II depression. J Affect Disord 2019; 259:82-90. [PMID: 31442883 DOI: 10.1016/j.jad.2019.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/30/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Evidence of the relationship between neurometabolic changes in the cortico-striato-cerebellar (CSC) circuit and bipolar disorder (BD) is still limited. To elucidate the pathogenesis of BD, we investigated the underlying neurometabolic changes and their effect on CSC lateralization circuits in unmedicated patients with bipolar II depression. METHODS Forty unmedicated participants with bipolar II depression and forty healthy controls underwent proton magnetic resonance spectroscopy (1H-MRS). We obtained bilateral metabolic ratios of N-acetylaspartate (NAA)/creatine (Cr) and choline (Cho)/Cr in the prefrontal white matter (PWM), anterior cingulate cortex (ACC), basal ganglia (BG) and the cerebellum. Metabolic ratios were characterized using a laterality index (LI) for left-right asymmetry. RESULTS Overall, aberrant lateralization in the CSC circuit was characteristic in patients with bipolar II depression. Patients with bipolar II depression showed significantly lower NAA/Cr ratios in the left PWM, right ACC, left BG and left cerebellum when compared with the healthy controls. For bipolar II depression, we found lower NAA/Cr LI in the PWM, BG, and cerebellum, higher NAA/Cr LI in the ACC, and higher Cho/Cr LI in the BG and cerebellum when compared to the standard value (1.0). For healthy controls, we found lower NAA/Cr LI only in the BG and higher Cho/Cr LI in the cerebellum when compared to 1.0. LIMITATIONS As a cross-sectional study with a small sample size, progressive changes and complex metabolic interactions with treatment were not observed. CONCLUSIONS Our findings suggest that abnormal biochemical metabolism with aberrant lateralization in the CSC circuit may be an underlying pathophysiology of bipolar II depression.
Collapse
Affiliation(s)
- Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yanyan Shan
- School of Management, Jinan University, Guangzhou 510316, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiaomei Luo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Feng Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yiliang Zhang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shiyi Shen
- School of Management, Jinan University, Guangzhou 510316, China
| | - Hui Huang
- School of Management, Jinan University, Guangzhou 510316, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou 510370, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
32
|
Kipping JA, Xie Y, Qiu A. Cerebellar development and its mediation role in cognitive planning in childhood. Hum Brain Mapp 2018; 39:5074-5084. [PMID: 30133063 DOI: 10.1002/hbm.24346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 12/30/2022] Open
Abstract
Recent evidence suggests that the cerebellum contributes not only to the planning and execution of movement but also to the high-order cognitive planning. Childhood is a critical period for development of the cerebellum and cognitive planning. This study aimed (a) to examine the development of cerebellar morphology and microstructure and (b) to examine the cerebellar mediation roles in the relationship between age and cognitive planning in 6- to 10-year-old children (n = 126). We used an anatomical parcellation to quantify cerebellar regional gray matter (GM) and white matter (WM) volumes, and WM microstructure, including fractional anisotropy (FA) and mean diffusivity (MD). We assessed planning ability using the Stockings of Cambridge (SOC) task in all children. We revealed (a) a measure-specific anterior-to-posterior gradient of the cerebellar development in childhood, that is, smaller GM volumes and greater WM FA of the anterior segment of the cerebellum but larger GM volumes and lower WM FA in the posterior segment of the cerebellum in older children; (b) an age-related improvement of the SOC performance at the most demanding level of five-move problems; and (c) a mediation role of the lateral cerebellar WM volumes in age-related improvement in the SOC performance in childhood. These results highlight the differential development of the cerebellum during childhood and provide evidence that brain adaptation to the acquisition of planning ability during childhood could partially be achieved through the engagement of the lateral cerebellum.
Collapse
Affiliation(s)
- Judy A Kipping
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Yingyao Xie
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Singapore Institute for Clinical Sciences, Singapore, Singapore.,Clinical Imaging Research Center, National University of Singapore, Singapore, Singapore
| |
Collapse
|