1
|
Ganguly DR, Li Y, Bhat SS, Tiwari S, Ng PJ, Gregory BD, Sunkar R. mRNA ADENOSINE METHYLASE promotes drought tolerance through N 6-methyladenosine-dependent and independent impacts on mRNA regulation in Arabidopsis. THE NEW PHYTOLOGIST 2025; 245:183-199. [PMID: 39462792 PMCID: PMC11617654 DOI: 10.1111/nph.20227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
Among many mRNA modifications, adenine methylation at the N6 position (N6-methyladenosine, m6A) is known to affect mRNA biology extensively. The influence of m6A has yet to be assessed under drought, one of the most impactful abiotic stresses. We show that Arabidopsis thaliana (L.) Heynh. (Arabidopsis) plants lacking mRNA ADENOSINE METHYLASE (MTA) are drought-sensitive. Subsequently, we comprehensively assess the impacts of MTA-dependent m6A changes during drought on mRNA abundance, stability, and translation in Arabidopsis. During drought, there is a global trend toward hypermethylation of many protein-coding transcripts that does not occur in mta. We also observe complex regulation of m6A at a transcript-specific level, possibly reflecting compensation by other m6A components. Importantly, a subset of transcripts that are hypermethylated in an MTA-dependent manner exhibited reduced turnover and translation in mta, compared with wild-type (WT) plants, during drought. Additionally, MTA impacts transcript stability and translation independently of m6A. We also correlate drought-associated deposition of m6A with increased translation of modulators of drought response, such as RD29A, COR47, COR413, ALDH2B, ERD7, and ABF4 in WT, which is impaired in mta. m6A is dynamic during drought and, alongside MTA, promotes tolerance by regulating drought-responsive changes in transcript turnover and translation.
Collapse
Affiliation(s)
- Diep R. Ganguly
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Yongfang Li
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| | | | - Shalini Tiwari
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| | - Pei Jia Ng
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| | - Brian D. Gregory
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| |
Collapse
|
2
|
Bai W, Salih H, Yang R, Yang Q, Jin P, Liang Y, Zhang D, Li X. ScDREBA5 Enhances Cold Tolerance by Regulating Photosynthetic and Antioxidant Genes in the Desert Moss Syntrichia caninervis. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39723616 DOI: 10.1111/pce.15336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
Extreme cold events, becoming more frequent, affect plant growth and development. Much is known about C-repeat binding transcription factor (CBF)-dependent cold-signaling pathways in plants. However, the CBF-independent regulatory pathway in angiosperms is unclear, and the cold-signaling pathways in non-angiosperms lacking CBFs, such as the extremely cold-tolerant desert moss Syntrichia caninervis, are largely unknown. In this study, we determined that fully hydrated S. caninervis without cold acclimation could tolerate a low-temperature of -16°C. Transcriptome analysis of S. caninervis under 4°C and -4°C treatments revealed that sugar and energy metabolism, lipid metabolism and antioxidant activity were altered in response to cold stress, and surprisingly, most photosynthesis-related genes were upregulated under cold treatment. Transcription factors analysis revealed that A-5 DREB genes, which share a common origin with CBFs, are the hubs in the freezing-stress response of S. caninervis, in which ScDREBA5 was upregulated ~1000-fold. Overexpressing ScDREBA5 significantly enhanced freezing tolerance in both S. caninervis and Physcomitrium patens by upregulating genes involved in photosynthetic and antioxidant pathways. This is the first study to uncover the mechanism regulating the cold-stress response in S. caninervis. Our findings increase our understanding of different cold-stress response strategies in non-angiosperms and provide valuable genetic resources for breeding cold-tolerant crops.
Collapse
Affiliation(s)
- Wenwan Bai
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haron Salih
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Ruirui Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Qilin Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pei Jin
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuqing Liang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
3
|
Han J, Dai Y, Zhou J, Tian J, Chen Q, Kou X, Raza G, Zhang B, Wang K. Tissue-specific chromatin accessibility and transcriptional regulation in maize cold stress response. Genomics 2024; 117:110981. [PMID: 39701501 DOI: 10.1016/j.ygeno.2024.110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/19/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Maize, a vital crop globally, faces significant yield losses due to its sensitivity to cold stress, especially in temperate regions. Understanding the molecular mechanisms governing maize response to cold stress is crucial for developing strategies to enhance cold tolerance. However, the precise chromatin-level regulatory mechanisms involved remain largely unknown. In this study, we employed DNase-seq and RNA-seq techniques to investigate chromatin accessibility and gene expression changes in maize root, stem, and leaf tissues subjected to cold treatment. We discovered widespread changes in chromatin accessibility and gene expression across these tissues, with strong tissue specificity. Cold stress-induced DNase I hypersensitive sites (coiDHSs) were associated with differentially expressed genes, suggesting a direct link between chromatin accessibility and gene regulation under cold stress. Motif enrichment analysis identified ERF transcription factors (TFs) as central regulators conserved across tissues, with ERF5 emerging as pivotal in the cold response regulatory network. Additionally, TF co-localization analysis highlighted six TF pairs (ERF115-SHN3, ERF9-LEP, ERF7-SHN3, LEP-SHN3, LOB-SHN3, and AS2-LOB) conserved across tissues but showing tissue-specific binding preferences. These findings indicate intricate regulatory networks in maize cold response. Overall, our study provides insights into the chromatin-level regulatory mechanisms underpinning maize adaptive response to cold stress, offering potential targets for enhancing cold tolerance in agricultural contexts.
Collapse
Affiliation(s)
- Jinlei Han
- School of Life Sciences, Nantong University, Nantong 226019, China.
| | - Yan Dai
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Jialiang Zhou
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Jingjing Tian
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Qi Chen
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Xiaobing Kou
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Ghulam Raza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong 226019, China.
| |
Collapse
|
4
|
Hu R, Zhang J, Jawdy S, Sreedasyam A, Lipzen A, Wang M, Ng V, Daum C, Keymanesh K, Liu D, Hu A, Chen JG, Tuskan GA, Schmutz J, Yang X. Transcriptomic Analysis of the CAM Species Kalanchoë fedtschenkoi Under Low- and High-Temperature Regimes. PLANTS (BASEL, SWITZERLAND) 2024; 13:3444. [PMID: 39683237 DOI: 10.3390/plants13233444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Temperature stress is one of the major limiting environmental factors that negatively impact global crop yields. Kalanchoë fedtschenkoi is an obligate crassulacean acid metabolism (CAM) plant species, exhibiting much higher water-use efficiency and tolerance to drought and heat stresses than C3 or C4 plant species. Previous studies on gene expression responses to low- or high-temperature stress have been focused on C3 and C4 plants. There is a lack of information about the regulation of gene expression by low and high temperatures in CAM plants. To address this knowledge gap, we performed transcriptome sequencing (RNA-Seq) of leaf and root tissues of K. fedtschenkoi under cold (8 °C), normal (25 °C), and heat (37 °C) conditions at dawn (i.e., 2 h before the light period) and dusk (i.e., 2 h before the dark period). Our analysis revealed differentially expressed genes (DEGs) under cold or heat treatment in comparison to normal conditions in leaf or root tissue at each of the two time points. In particular, DEGs exhibiting either the same or opposite direction of expression change (either up-regulated or down-regulated) under cold and heat treatments were identified. In addition, we analyzed gene co-expression modules regulated by cold or heat treatment, and we performed in-depth analyses of expression regulation by temperature stresses for selected gene categories, including CAM-related genes, genes encoding heat shock factors and heat shock proteins, circadian rhythm genes, and stomatal movement genes. Our study highlights both the common and distinct molecular strategies employed by CAM and C3/C4 plants in adapting to extreme temperatures, providing new insights into the molecular mechanisms underlying temperature stress responses in CAM species.
Collapse
Affiliation(s)
- Rongbin Hu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Sara Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Avinash Sreedasyam
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35801, USA
| | - Anna Lipzen
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94589, USA
| | - Mei Wang
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94589, USA
| | - Vivian Ng
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94589, USA
| | - Christopher Daum
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94589, USA
| | - Keykhosrow Keymanesh
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94589, USA
| | - Degao Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Alex Hu
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA 92521, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35801, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94589, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
5
|
Luo H, Guan Y, Zhang Z, Zhang Z, Zhang Z, Li H. FveDREB1B improves cold tolerance of woodland strawberry by positively regulating FveSCL23 and FveCHS. PLANT, CELL & ENVIRONMENT 2024; 47:4630-4650. [PMID: 39051467 DOI: 10.1111/pce.15052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Cold stress has seriously inhibited the growth and development of strawberry during production. CBF/DREB1 is a key central transcription factor regulating plant cold tolerance, but its regulatory mechanisms are varied in different plants. Especially in strawberry, the molecular mechanism of CBF/DREB1 regulating cold tolerance is still unclear. In this study, we found that FveDREB1B was most significantly induced by cold stress in CBF/DREB1 family of diploid woodland strawberry. FveDREB1B was localized to the nucleus, and DREB1B sequences were highly conserved in diploid and octoploid strawberry, and even similar in Rosaceae. And FveDREB1B overexpressed strawberry plants showed delayed flowering and increased cold tolerance, while FveDREB1B silenced plants showed early flowering and decreased cold tolerance. Under cold stress, FveDREB1B activated FveSCL23 expression by directly binding to its promoter. Meanwhile, FveDREB1B and FveSCL23 interacted with FveDELLA, respectively. In addition, we also found that FveDREB1B promoted anthocyanin accumulation in strawberry leaves by directly activating FveCHS expression after cold treatment and recovery to 25°C. DREB1B genes were also detected to be highly expressed in cold-tolerant strawberry resources 'Fragaria mandschurica' and 'Fragaria nipponica'. In conclusion, our study reveals the molecular mechanism of FveDREB1B-FveSCL23-FveDELLA module and FveDREB1B-FveCHS module to enhance the cold tolerance of woodland strawberry. It provides a new idea for improving the cold tolerance of cultivated strawberry and evaluating the cold tolerance of strawberry germplasm resources.
Collapse
Affiliation(s)
- He Luo
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yuhan Guan
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhuo Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zihui Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhihong Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - He Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
6
|
Long J, Zhou H, Huang H, Xiao Y, Luo J, Pu Y, Liu Z, Qiu M, Lu X, He Y, Liu C. The high-affinity pineapple sucrose transporter AcSUT1B, regulated by AcCBF1, exhibited enhanced cold tolerance in transgenic Arabidopsis. Int J Biol Macromol 2024; 283:137952. [PMID: 39579829 DOI: 10.1016/j.ijbiomac.2024.137952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Sucrose transporter (SUT) plays essential roles in plant growth and development, as well as responses to diverse abiotic stresses. However, limited information about the function of SUT was available in pineapple, an important tropical fruit crop with crassulacean acid metabolism. Here, four AcSUT genes were identified in pineapple genome, and divided into three clades according to the phylogenetic analysis. The expression profiles of AcSUTs were systemically examined, and they were all localized to plasma membrane. Transport activity assay by two-electrode voltage clamp of Xenopus oocytes showed that AcSUT1A and AcSUT1B were capable of transporting a range of glucosides, and they were exhibited high affinity for sucrose with Km value of 0.09 mM and 0.41 mM at pH 5.0, respectively. Overexpression of the cold-induced AcSUT1B conferred enhanced cold tolerance in transgenic Arabidopsis. DNA-protein interaction analysis further demonstrated that AcCBF1 directly binds the CRT/DRE element of the AcSUT1B promoter and activated its expression. Heterologous expression of AcCBF1 in Arabidopsis also increased cold tolerance. In this study, we investigated the transport activities of AcSUTs in pineapple and identified the AcCBF1-AcSUT1B module involved in cold stress, which provided new insights into the molecular mechanism of the cold response in pineapple.
Collapse
Affiliation(s)
- Jianmei Long
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Huimin Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Haixin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Yufei Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Jiandong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Yue Pu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Institute of South Subtropical Crops, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, Guangdong, China
| | - Zihong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Institute of South Subtropical Crops, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, Guangdong, China
| | - Mengqing Qiu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Xinxin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Yehua He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Chaoyang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Xue C, Huang X, Zhao Y. CsWRKY29, a key transcription factor in tea plant for freezing tolerance, ABA sensitivity, and sugar metabolism. Sci Rep 2024; 14:28620. [PMID: 39562785 PMCID: PMC11576853 DOI: 10.1038/s41598-024-80143-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Tea plants (Camellia sinensis L.) are prone to spring frosts, leading to substantial economic damage. WRKY transcription factors are key in plant abiotic stress responses, yet the role of CsWRKY29 in freezing tolerance is unclear. In this study, quantitative real-time PCR (qRT-PCR) and transient green fluorescent protein assay revealed that CsWRKY29 localizes to the nucleus and its expression is induced by cold and abscisic acid (ABA). CsWRKY29 overexpression in Arabidopsis enhanced freezing tolerance, reduced electrolyte leakage, increased soluble sugars, and boosted superoxide dismutase activity, with upregulated COR genes. These lines also showed heightened ABA and glucose sensitivity. Cold treatment of CsWRKY29-overexpressing lines upregulated AtABI5, AtHXK1, and AtSUS4 compared to wild type, and yeast one-hybrid assays confirmed CsWRKY29 binding to the W-box in the CsABI5 promoter. Furthermore, the application of virus-induced gene silencing (VIGS) technology to reduce CsWRKY29 expression in tea plants revealed a significant decrease in the transcript levels of CsCBFs, CsABI5, CsHXK1, and CsSUS4 in the silenced plants. In summary, our findings indicate that CsWRKY29 may serve as a critical transcription factor that contributes to freezing tolerance, ABA responsiveness, and sugar metabolism within tea plants.
Collapse
Affiliation(s)
- Chengjin Xue
- College of Tea Sciences, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Xiaozhen Huang
- College of Tea Sciences, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.
| | - Yichen Zhao
- College of Tea Sciences, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
8
|
Long X, Cai Y, Wang H, Liu Y, Huang X, Xuan H, Li W, Zhang X, Zhang H, Fang X, He H, Xu G, Dean C, Yang H. Cotranscriptional splicing is required in the cold to produce COOLAIR isoforms that repress Arabidopsis FLC. Proc Natl Acad Sci U S A 2024; 121:e2407628121. [PMID: 39546565 PMCID: PMC11588071 DOI: 10.1073/pnas.2407628121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/04/2024] [Indexed: 11/17/2024] Open
Abstract
Plants use seasonal cold to time the transition to reproductive development. Short- and long-term cold exposure is registered via parallel transcriptional shutdown and Polycomb-dependent epigenetic silencing of the Arabidopsis thaliana major flowering repressor locus FLOWERING LOCUS C (FLC). The cold-induced antisense transcripts (COOLAIR) determine the dynamics of FLC transcriptional shutdown, but the thermosensory mechanisms are still unresolved. Here, through a forward genetic screen, we identify a mutation that perturbs cold-induced COOLAIR expression and FLC repression. The mutation is a hypomorphic allele of SUPPRESSORS OF MEC-8 AND UNC-52 1 (SMU1), a conserved subunit of the spliceosomal B complex. SMU1 interacts in vivo with the proximal region of nascent COOLAIR and RNA 3' processing/cotranscriptional regulators and enhances COOLAIR proximal intron splicing to promote specific COOLAIR isoforms. SMU1 also interacts with ELF7, an RNA Polymerase II Associated Factor (Paf1) component and limits COOLAIR transcription. Cold thus changes cotranscriptional splicing/RNA Pol II functionality in an SMU1-dependent mechanism to promote two different isoforms of COOLAIR that lead to reduced FLC transcription. Such cotranscriptional mechanisms are emerging as important regulators underlying plasticity in gene expression.
Collapse
Affiliation(s)
- Xiaogang Long
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Yajun Cai
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Huamei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Yue Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Xiaoyi Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Hua Xuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Wenjuan Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Xiaoling Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Hongya Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Xiaofeng Fang
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, NorwichNR4 7UH, United Kingdom
| | - Hang He
- College of Life Sciences, Peking University, Beijing100871, China
| | - Guoyong Xu
- Hubei Hongshan Laboratory, Wuhan430070, China
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan430072, China
| | - Caroline Dean
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, NorwichNR4 7UH, United Kingdom
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- RNA Institute, Wuhan University, Wuhan430072, China
| |
Collapse
|
9
|
Wang J, Liang X, Zhang W, Khalil A, Wu Y, Liu S, Tahir ul Qamar M, Wang X, Guo J. Comparative genomic profiling of CBFs pan-gene family in five yellowhorn cultivars and functional identification of Xg11_CBF11. FRONTIERS IN PLANT SCIENCE 2024; 15:1481358. [PMID: 39628536 PMCID: PMC11613637 DOI: 10.3389/fpls.2024.1481358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/10/2024] [Indexed: 12/06/2024]
Abstract
C-repeat binding factor (CBF) transcription factors can activate the expression of a series of cold regulation-related genes, thereby improving the cold resistance of plants. However, no detailed information is known about the biological functions of CBF proteins in yellowhorn (Xanthoceras sorbifolium). In this study, a total of 59 CBF gene family members were identified in five yellowhorn cultivars (WF18, Zhongshi 4, Jinguanxipei 2021, Zhong Guan NO.2, and XsoG11), revealing their intraspecific structural and functional diversity, with 8 core genes present in all cultivars. Phylogenetic and motif analyses highlighted conserved features and species-specific adaptations. Gene duplication events revealed that tandem duplicates are major factors involved in the expansion of this gene family in yellowhorn. Expression profiling under stress conditions demonstrated the involvement of these genes in stress responses. Of particular interest was Xg11_CBF11, which showed strong induction by low-temperature stress. Overexpression of Xg11_CBF11 in Arabidopsis thaliana was performed to validate its cold resistance function. The wild-type and T2 transgenic A. thaliana plants were subjected to low-temperature stress at 4°C for 0, 24, and 48 h, and physiological indexes related to antioxidant enzyme activity, photosynthesis, and cell membrane permeability were determined by comparative test. The results were as follows: the POD and SOD activities of transgenic lines were significantly higher than those of wild-type lines, indicating Xg11_CBF11 improved the adaptability of A. thaliana to low-temperature; The increase of relative conductivity and malondialdehyde, the decrease of chlorophyll content in transgenic lines were smaller than those of wild-type lines, indicating Xg11_CBF11 enhanced the resistance of A. thaliana to low-temperature stress. These results implied that Xg11_CBF11 has a positive regulatory effect on A. thaliana 's response to low-temperature stress.
Collapse
Affiliation(s)
- Juan Wang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xizhen Liang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Weiyang Zhang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Asma Khalil
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Yingying Wu
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Sisi Liu
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Muhammad Tahir ul Qamar
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Xingqiang Wang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jinping Guo
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
10
|
Zhou Y, Sommer ML, Meyer A, Wang D, Klaus A, Stöcker T, Marcon C, Schoof H, Haberer G, Schön CC, Yu P, Hochholdinger F. Cold mediates maize root hair developmental plasticity via epidermis-specific transcriptomic responses. PLANT PHYSIOLOGY 2024; 196:2105-2120. [PMID: 39190817 DOI: 10.1093/plphys/kiae449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
Cold stress during early development limits maize (Zea mays L.) production in temperate zones. Low temperatures restrict root growth and reprogram gene expression. Here, we provide a systematic transcriptomic landscape of maize primary roots, their tissues, and cell types in response to cold stress. The epidermis exhibited a unique transcriptomic cold response, and genes involved in root hair formation were dynamically regulated in this cell type by cold. Consequently, activation of genes involved in root hair tip growth contributed to root hair recovery under moderate cold conditions. The maize root hair defective mutants roothair defective 5 (rth5) and roothair defective 6 (rth6) displayed enhanced cold tolerance with respect to primary root elongation. Furthermore, DEHYDRATION RESPONSE ELEMENT-BINDING PROTEIN 2.1 (DREB2.1) was the only member of the dreb subfamily of AP2/EREB transcription factor genes upregulated in primary root tissues and cell types but exclusively downregulated in root hairs upon cold stress. Plants overexpressing dreb2.1 significantly suppressed root hair elongation after moderate cold stress. Finally, the expression of rth3 was regulated by dreb2.1 under cold conditions, while rth6 transcription was regulated by DREB2.1 irrespective of the temperature regime. We demonstrated that dreb2.1 negatively regulates root hair plasticity at low temperatures by coordinating the expression of root hair defective genes in maize.
Collapse
Affiliation(s)
- Yaping Zhou
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Mauritz Leonard Sommer
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Annika Meyer
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
- INRES, Emmy Noether Group Root Functional Biology, University of Bonn, Bonn 53113, Germany
| | - Danning Wang
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
- INRES, Emmy Noether Group Root Functional Biology, University of Bonn, Bonn 53113, Germany
| | - Alina Klaus
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Tyll Stöcker
- INRES, Institute of Crop Science and Resource Conservation, Crop Bioinformatics, University of Bonn, Bonn 53115, Germany
| | - Caroline Marcon
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Heiko Schoof
- INRES, Institute of Crop Science and Resource Conservation, Crop Bioinformatics, University of Bonn, Bonn 53115, Germany
| | - Georg Haberer
- Plant Genome and System Biology, Helmholtz Center Munich, Neuherberg 85764, Germany
| | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Peng Yu
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
- INRES, Emmy Noether Group Root Functional Biology, University of Bonn, Bonn 53113, Germany
| | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| |
Collapse
|
11
|
Peng Y, Ming Y, Jiang B, Zhang X, Fu D, Lin Q, Zhang X, Wang Y, Shi Y, Gong Z, Ding Y, Yang S. Differential phosphorylation of Ca2+-permeable channel CYCLIC NUCLEOTIDE-GATED CHANNEL20 modulates calcium-mediated freezing tolerance in Arabidopsis. THE PLANT CELL 2024; 36:4356-4371. [PMID: 38875155 PMCID: PMC11449002 DOI: 10.1093/plcell/koae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/17/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Plants respond to cold stress at multiple levels, including increasing cytosolic calcium (Ca2+) influx and triggering the expression of cold-responsive genes. In this study, we show that the Ca2+-permeable channel CYCLIC NUCLEOTIDE-GATED CHANNEL20 (CNGC20) positively regulates freezing tolerance in Arabidopsis (Arabidopsis thaliana) by mediating cold-induced Ca2+ influx. Moreover, we demonstrate that the leucine-rich repeat receptor-like kinase PLANT PEPTIDE CONTAINING SULFATED TYROSINE1 RECEPTOR (PSY1R) is activated by cold, phosphorylating and enhancing the activity of CNGC20. The psy1r mutant exhibits decreased cold-evoked Ca2+ influx and freezing tolerance. Conversely, COLD-RESPONSIVE PROTEIN KINASE1 (CRPK1), a protein kinase that negatively regulates cold signaling, phosphorylates and facilitates the degradation of CNGC20 under prolonged periods of cold treatment, thereby attenuating freezing tolerance. This study thus identifies PSY1R and CRPK1 kinases that regulate CNGC20 activity and stability, respectively, thereby antagonistically modulating freezing tolerance in plants.
Collapse
Affiliation(s)
- Yue Peng
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuhang Ming
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bochen Jiang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiuyue Zhang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Diyi Fu
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qihong Lin
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Yanglin Ding
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Xin X, Wang S, Pan Y, Ye L, Zhai T, Gu M, Wang Y, Zhang J, Li X, Yang W, Zhang S. MYB Transcription Factor CDC5 Activates CBF3 Expression to Positively Regulates Freezing Tolerance via Cooperating With ICE1 and Histone Modification in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39248548 DOI: 10.1111/pce.15144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024]
Abstract
The freezing temperature greatly limits the growth, development and productivity of plants. The C-repeat/DRE binding factor (CBF) plays a major role in cold acclimation, enabling plants to increase their freezing tolerance. Notably, the INDUCER OF CBF EXPRESSION1 (ICE1) protein has garnered attention for its pivotal role in bolstering plants' resilience against freezing through transcriptional upregulation of DREB1A/CBF3. However, the research on the interaction between ICE1 and other transcription factors and its function in regulating cold stress tolerance is largely inadequate. In this study, we found that a R2R3 MYB transcription factor CDC5 interacts with ICE1 and regulates the expression of CBF3 by recruiting RNA polymerase II, overexpression of ICE1 can complements the freezing deficient phenotype of cdc5 mutant. CDC5 increases the expression of CBF3 in response to freezing. Furthermore, CDC5 influences the expression of CBF3 by altering the chromatin status through H3K4me3 and H3K27me3 modifications. Our work identified a novel component that regulates CBF3 transcription in both ICE1-dependent and ICE1-independent manner, improving the understanding of the freezing signal transduction in plants.
Collapse
Affiliation(s)
- Xin Xin
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Shu Wang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yunjiao Pan
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Linhan Ye
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Tingting Zhai
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Mengjie Gu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yanjiao Wang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Jiedao Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Xiang Li
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Wei Yang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Shuxin Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
13
|
Zhang Y, Wang S, Zhang C, Qi M, Liu L, Yang L, Lian N. Genome-Wide Characterization of IQD Family Proteins in Apple and Functional Analysis of the Microtubule-Regulating Abilities of MdIQD17 and MdIQD28 under Cold Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2532. [PMID: 39274016 PMCID: PMC11397337 DOI: 10.3390/plants13172532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
Microtubules undergo dynamic remodeling in response to diverse abiotic stress in plants. The plant-specific IQ67 DOMAIN (IQD) family proteins serve as microtubule-associated proteins, playing multifaceted roles in plant development and response to abiotic stress. However, the biological function of IQD genes in apple remains unclear. In this study, we conducted a comprehensive analysis of the Malus domestica genome, identifying 42 IQD genes distributed across 17 chromosomes and categorized them into four subgroups. Promoter analysis revealed the presence of stress-responsive elements. Subsequent expression analysis highlighted the significant upregulation of MdIQD17 and MdIQD28 in response to cold treatments, prompting their selection for further functional investigation. Subcellular localization studies confirmed the association of MdIQD17 and MdIQD28 with microtubules. Crucially, confocal microscopy and quantification revealed diminished microtubule depolymerization in cells transiently overexpressing MdIQD17 and MdIQD28 compared to wild-type cells during cold conditions. In conclusion, this study provides a comprehensive analysis of IQD genes in apple, elucidating their molecular mechanism in response to cold stress.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shengjie Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chaochao Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Meng Qi
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Luoqi Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lipeng Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Na Lian
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
14
|
Xiao P, Qu J, Wang Y, Fang T, Xiao W, Wang Y, Zhang Y, Khan M, Chen Q, Xu X, Li C, Liu JH. Transcriptome and metabolome atlas reveals contributions of sphingosine and chlorogenic acid to cold tolerance in Citrus. PLANT PHYSIOLOGY 2024; 196:634-650. [PMID: 38875157 DOI: 10.1093/plphys/kiae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 06/16/2024]
Abstract
Citrus is one of the most important fruit crop genera in the world, but many Citrus species are vulnerable to cold stress. Ichang papeda (Citrus ichangensis), a cold-hardy citrus species, holds great potential for identifying valuable metabolites that are critical for cold tolerance in Citrus. However, the metabolic changes and underlying mechanisms that regulate Ichang papeda cold tolerance remain largely unknown. In this study, we compared the metabolomes and transcriptomes of Ichang papeda and HB pummelo (Citrus grandis "Hirado Buntan", a cold-sensitive species) to explore the critical metabolites and genes responsible for cold tolerance. Metabolomic analyses led to the identification of common and genotype-specific metabolites, consistent with transcriptomic alterations. Compared to HB pummelo under cold stress, Ichang papeda accumulated more sugars, flavonoids, and unsaturated fatty acids, which are well-characterized metabolites involved in stress responses. Interestingly, sphingosine and chlorogenic acid substantially accumulated only in Ichang papeda. Knockdown of CiSPT (C. ichangensis serine palmitoyltransferase) and CiHCT2 (C. ichangensis hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyltransferase2), two genes involved in sphingosine and chlorogenic acid biosynthesis, dramatically decreased endogenous sphingosine and chlorogenic acid levels, respectively. This reduction in sphingosine and chlorogenic acid notably compromised the cold tolerance of Ichang papeda, whereas exogenous application of these metabolites increased plant cold tolerance. Taken together, our findings indicate that greater accumulation of a spectrum of metabolites, particularly sphingosine and chlorogenic acid, promotes cold tolerance in cold-tolerant citrus species. These findings broaden our understanding of plant metabolic alterations in response to cold stress and provide valuable targets that can be manipulated to improve Citrus cold tolerance.
Collapse
Affiliation(s)
- Peng Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Qu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tian Fang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yilei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Madiha Khan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiyu Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoyong Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Chunlong Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
15
|
Aerts N, Hickman R, Van Dijken AJH, Kaufmann M, Snoek BL, Pieterse CMJ, Van Wees SCM. Architecture and dynamics of the abscisic acid gene regulatory network. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2538-2563. [PMID: 38949092 DOI: 10.1111/tpj.16899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 06/13/2024] [Indexed: 07/02/2024]
Abstract
The plant hormone abscisic acid (ABA) regulates essential processes in plant development and responsiveness to abiotic and biotic stresses. ABA perception triggers a post-translational signaling cascade that elicits the ABA gene regulatory network (GRN), encompassing hundreds of transcription factors (TFs) and thousands of transcribed genes. To further our knowledge of this GRN, we performed an RNA-seq time series experiment consisting of 14 time points in the 16 h following a one-time ABA treatment of 5-week-old Arabidopsis rosettes. During this time course, ABA rapidly changed transcription levels of 7151 genes, which were partitioned into 44 coexpressed modules that carry out diverse biological functions. We integrated our time-series data with publicly available TF-binding site data, motif data, and RNA-seq data of plants inhibited in translation, and predicted (i) which TFs regulate the different coexpression clusters, (ii) which TFs contribute the most to target gene amplitude, (iii) timing of engagement of different TFs in the ABA GRN, and (iv) hierarchical position of TFs and their targets in the multi-tiered ABA GRN. The ABA GRN was found to be highly interconnected and regulated at different amplitudes and timing by a wide variety of TFs, of which the bZIP family was most prominent, and upregulation of genes encompassed more TFs than downregulation. We validated our network models in silico with additional public TF-binding site data and transcription data of selected TF mutants. Finally, using a drought assay we found that the Trihelix TF GT3a is likely an ABA-induced positive regulator of drought tolerance.
Collapse
Affiliation(s)
- Niels Aerts
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Richard Hickman
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Anja J H Van Dijken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Michael Kaufmann
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, The Netherlands
| |
Collapse
|
16
|
Dong J, Li J, Zuo Y, Wang J, Chen Y, Tu W, Wang H, Li C, Shan Y, Wang Y, Song B, Cai X. Haplotype-resolved genome and mapping of freezing tolerance in the wild potato Solanum commersonii. HORTICULTURE RESEARCH 2024; 11:uhae181. [PMID: 39247882 PMCID: PMC11374536 DOI: 10.1093/hr/uhae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/01/2024] [Indexed: 09/10/2024]
Abstract
Solanum commersonii (2n = 2x = 24, 1EBN, Endosperm Balance Number), native to the southern regions of Brazil, Uruguay, and northeastern Argentina, is the first wild potato germplasm collected by botanists and exhibits a remarkable array of traits related to disease resistance and stress tolerance. In this study, we present a high-quality haplotype-resolved genome of S. commersonii. The two identified haplotypes demonstrate chromosome sizes of 706.48 and 711.55 Mb, respectively, with corresponding chromosome anchoring rates of 94.2 and 96.9%. Additionally, the contig N50 lengths are documented at 50.87 and 45.16 Mb. The gene annotation outcomes indicate that the haplotypes encompasses a gene count of 39 799 and 40 078, respectively. The genome contiguity, completeness, and accuracy assessments collectively indicate that the current assembly has produced a high-quality genome of S. commersonii. Evolutionary analysis revealed significant positive selection acting on certain disease resistance genes, stress response genes, and environmentally adaptive genes during the evolutionary process of S. commersonii. These genes may be related to the formation of diverse and superior germplasm resources in the wild potato species S. commersonii. Furthermore, we utilized a hybrid population of S. commersonii and S. verrucosum to conduct the mapping of potato freezing tolerance genes. By combining BSA-seq analysis with traditional QTL mapping, we successfully mapped the potato freezing tolerance genes to a specific region on Chr07, spanning 1.25 Mb, with a phenotypic contribution rate of 18.81%. In short, current research provides a haplotype-resolved reference genome of the diploid wild potato species S. commersonii and establishes a foundation for further cloning and unraveling the mechanisms underlying cold tolerance in potatoes.
Collapse
Affiliation(s)
- Jianke Dong
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Jingwen Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Yingtao Zuo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Jin Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Ye Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Tu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China
| | - Haibo Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Chenxi Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Yacheng Shan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Botao Song
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Xingkui Cai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
17
|
Xu P, Ma W, Feng H, Cai W. The NAC056 transcription factor confers freezing tolerance by positively regulating expression of CBFs and NIA1 in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:100923. [PMID: 38637986 PMCID: PMC11287163 DOI: 10.1016/j.xplc.2024.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Freezing stress can seriously affect plant growth and development, but the mechanisms of these effects and plant responses to freezing stress require further exploration. Here, we identified a NAM, ATAF1/2, and CUC2 (NAC)-family transcription factor (TF), NAC056, that can promote freezing tolerance in Arabidopsis. NAC056 mRNA levels are strongly induced by freezing stress in roots, and the nac056 mutant exhibits compromised freezing tolerance. NAC056 acts positively in response to freezing by directly promoting key C-repeat-binding factor (CBF) pathway genes. Interestingly, we found that CBF1 regulates nitrate assimilation by regulating the nitrate reductase gene NIA1 in plants; therefore, NAC056-CBF1-NIA1 form a regulatory module for the assimilation of nitrate and the growth of roots under freezing stress. In addition, 35S::NAC056 transgenic plants show enhanced freezing tolerance, which is partially reversed in the cbfs triple mutant. Thus, NAC056 confers freezing tolerance through the CBF pathway, mediating plant responses to balance growth and freezing stress tolerance.
Collapse
Affiliation(s)
- Peipei Xu
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai 200032, China.
| | - Wei Ma
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Huafeng Feng
- Department of Food Science, College of Hospitality Management, Shanghai Business School, Shanghai 200235, China
| | - Weiming Cai
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
18
|
Wang Y, Li S, Shi Y, Lv S, Zhu C, Xu C, Zhang B, Allan AC, Grierson D, Chen K. The R2R3 MYB Ruby1 is activated by two cold responsive ethylene response factors, via the retrotransposon in its promoter, to positively regulate anthocyanin biosynthesis in citrus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38922743 DOI: 10.1111/tpj.16866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/07/2024] [Accepted: 04/08/2024] [Indexed: 06/28/2024]
Abstract
Anthocyanins are natural pigments and dietary antioxidants that play multiple biological roles in plants and are important in animal and human nutrition. Low temperature (LT) promotes anthocyanin biosynthesis in many species including blood orange. A retrotransposon in the promoter of Ruby1, which encodes an R2R3 MYB transcription factor, controls cold-induced anthocyanin accumulation in blood orange flesh. However, the specific mechanism remains unclear. In this study, we characterized two LT-induced ETHYLENE RESPONSE FACTORS (CsERF054 and CsERF061). Both CsERF054 and CsERF061 can activate the expression of CsRuby1 by directly binding to a DRE/CRT cis-element within the retrotransposon in the promoter of CsRuby1, thereby positively regulating anthocyanin biosynthesis. Further investigation indicated that CsERF061 also forms a protein complex with CsRuby1 to co-activate the expression of anthocyanin biosynthetic genes, providing a dual mechanism for the upregulation of the anthocyanin pathway. These results provide insights into how LT mediates anthocyanin biosynthesis and increase the understanding of the regulatory network of anthocyanin biosynthesis in blood orange.
Collapse
Affiliation(s)
- Yuxin Wang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Shaojia Li
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Yanna Shi
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Shouzheng Lv
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Changqing Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Changjie Xu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Bo Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Andrew C Allan
- New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Donald Grierson
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| |
Collapse
|
19
|
Deng D, Guo Y, Guo L, Li C, Nie Y, Wang S, Wu W. Functional Divergence in Orthologous Transcription Factors: Insights from AtCBF2/3/1 and OsDREB1C. Mol Biol Evol 2024; 41:msae089. [PMID: 38723179 PMCID: PMC11119335 DOI: 10.1093/molbev/msae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Despite traditional beliefs of orthologous genes maintaining similar functions across species, growing evidence points to their potential for functional divergence. C-repeat binding factors/dehydration-responsive element binding protein 1s (CBFs/DREB1s) are critical in cold acclimation, with their overexpression enhancing stress tolerance but often constraining plant growth. In contrast, a recent study unveiled a distinctive role of rice OsDREB1C in elevating nitrogen use efficiency (NUE), photosynthesis, and grain yield, implying functional divergence within the CBF/DREB1 orthologs across species. Here, we delve into divergent molecular mechanisms of OsDREB1C and AtCBF2/3/1 by exploring their evolutionary trajectories across rice and Arabidopsis genomes, regulatomes, and transcriptomes. Evolutionary scrutiny shows discrete clades for OsDREB1C and AtCBF2/3/1, with the Poaceae-specific DREB1C clade mediated by a transposon event. Genome-wide binding profiles highlight OsDREB1C's preference for GCCGAC compared to AtCBF2/3/1's preference for A/GCCGAC, a distinction determined by R12 in the OsDREB1C AP2/ERF domain. Cross-species multiomic analyses reveal shared gene orthogroups (OGs) and underscore numerous specific OGs uniquely bound and regulated by OsDREB1C, implicated in NUE, photosynthesis, and early flowering, or by AtCBF2/3/1, engaged in hormone and stress responses. This divergence arises from gene gains/losses (∼16.7% to 25.6%) and expression reprogramming (∼62.3% to 66.2%) of OsDREB1C- and AtCBF2/3/1-regulated OGs during the extensive evolution following the rice-Arabidopsis split. Our findings illustrate the regulatory evolution of OsDREB1C and AtCBF2/3/1 at a genomic scale, providing insights on the functional divergence of orthologous transcription factors following gene duplications across species.
Collapse
Affiliation(s)
- Deyin Deng
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Yixin Guo
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Chengyang Li
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuqi Nie
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Zhejiang International Science and Technology Cooperation Base for Plant Germplasm Resources Conservation and Utilization, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
20
|
Fu J, Zhao Y, Zhou Y, Wang Y, Fei Z, Wang W, Wu J, Zhang F, Zhao Y, Li J, Hao J, Niu Y. MrERF039 transcription factor plays an active role in the cold response of Medicago ruthenica as a sugar molecular switch. PLANT, CELL & ENVIRONMENT 2024; 47:1834-1851. [PMID: 38318779 DOI: 10.1111/pce.14845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
Cold stress severely restricts plant development, causing significant agricultural losses. We found a critical transcription factor network in Medicago ruthenica was involved in plant adaptation to low-temperature. APETALA2/ethylene responsive factor (AP2/ERF) transcription factor MrERF039 was transcriptionally induced by cold stress in M. ruthenica. Overexpression of MrERF039 significantly increased the glucose and maltose content, thereby improving the tolerance of M. ruthenica. MrERF039 could bind to the DRE cis-acting element in the MrCAS15A promoter. Additionally, the methyl group of the 14th amino acid in MrERF039 was required for binding. Transcriptome analysis showed that MrERF039 acted as a sugar molecular switch, regulating numerous sugar transporters and sugar metabolism-related genes. In addition, we found that MrERF039 could directly regulate β-amylase gene, UDP glycosyltransferase gene, and C2H2 zinc finger protein gene expression. In conclusion, these findings suggest that high expression of MrERF039 can significantly improve the cold tolerance of M. ruthenica root tissues during cold acclimation. Our results provide a new theoretical basis and candidate genes for breeding new legume forage varieties with high resistance.
Collapse
Affiliation(s)
- Jiabin Fu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yanyun Zhao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yan Zhou
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yu Wang
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhimin Fei
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Waner Wang
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jiaming Wu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Feng Zhang
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yan Zhao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jiayu Li
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jinfeng Hao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yiding Niu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Science and Technology, Hohhot, China
| |
Collapse
|
21
|
Huang X, Gao F, Zhou P, Ma C, Tan W, Ma Y, Li M, Ni Z, Shi T, Hayat F, Li Y, Gao Z. Allelic variation of PmCBF03 contributes to the altitude and temperature adaptability in Japanese apricot (Prunus mume Sieb. et Zucc.). PLANT, CELL & ENVIRONMENT 2024; 47:1379-1396. [PMID: 38221869 DOI: 10.1111/pce.14813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/26/2023] [Accepted: 12/31/2023] [Indexed: 01/16/2024]
Abstract
Japanese apricot is an important subtropical deciduous fruit tree in China, widely distributed in different altitude areas. How does it adapt to the different temperature environments in these areas? In this study, we identified a low-temperature transcription factor PmCBF03 on chromosome 7 through adaptive analysis of populations at different altitudes, which has an early termination single nucleotide polymorphism mutation. There were two different types of variation, PmCBF03A type in high-altitude areas and PmCBF03T type in low-altitude areas. PmCBF03A gene increased the survival rate, Fv/Fm values, antioxidant enzyme activity, and expression levels of antioxidant enzyme genes, and reducing electrolyte leakage and accumulation of reactive oxygen species in transgenic Arabidopsis under low temperature and freezing stress. Simultaneously, PmCBF03A gene promoted the dormancy of transgenic Arabidopsis seeds than wild-type. Biochemical analysis demonstrated that PmCBF03A directly bound to the DRE/CRT element in the promoters of the PmCOR413, PmDAM6 and PmABI5 genes, promoting their transcription and enhanced the cold resistance and dormancy of the overexpressing PmCBF03A lines. While PmCBF03T gene is unable to bind to the promoters of PmDAM6 and PmABI5 genes, leading to early release of dormancy to adapt to the problem of insufficient chilling requirement in low-altitude areas.
Collapse
Affiliation(s)
- Xiao Huang
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Feng Gao
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Pengyu Zhou
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chengdong Ma
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wei Tan
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yufan Ma
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Minglu Li
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhaojun Ni
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ting Shi
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Faisal Hayat
- Department of Pomology, College of Horticulture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Yongping Li
- Department of Special Fruit Tree Germplasm Resources, Yunnan Green Food Development Center, Kunming, Yunnan, China
| | - Zhihong Gao
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
22
|
Li R, Song Y, Wang X, Zheng C, Liu B, Zhang H, Ke J, Wu X, Wu L, Yang R, Jiang M. OsNAC5 orchestrates OsABI5 to fine-tune cold tolerance in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:660-682. [PMID: 37968901 DOI: 10.1111/jipb.13585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/14/2023] [Indexed: 11/17/2023]
Abstract
Due to its tropical origins, rice (Oryza sativa) is susceptible to cold stress, which poses severe threats to production. OsNAC5, a NAC-type transcription factor, participates in the cold stress response of rice, but the detailed mechanisms remain poorly understood. Here, we demonstrate that OsNAC5 positively regulates cold tolerance at germination and in seedlings by directly activating the expression of ABSCISIC ACID INSENSITIVE 5 (OsABI5). Haplotype analysis indicated that single nucleotide polymorphisms in a NAC-binding site in the OsABI5 promoter are strongly associated with cold tolerance. OsNAC5 also enhanced OsABI5 stability, thus regulating the expression of cold-responsive (COR) genes, enabling fine-tuned control of OsABI5 action for rapid, precise plant responses to cold stress. DNA affinity purification sequencing coupled with transcriptome deep sequencing identified several OsABI5 target genes involved in COR expression, including DEHYDRATION-RESPONSIVE ELEMENT BINDING FACTOR 1A (OsDREB1A), OsMYB20, and PEROXIDASE 70 (OsPRX70). In vivo and in vitro analyses suggested that OsABI5 positively regulates COR gene transcription, with marked COR upregulation in OsNAC5-overexpressing lines and downregulation in osnac5 and/or osabi5 knockout mutants. This study extends our understanding of cold tolerance regulation via OsNAC5 through the OsABI5-CORs transcription module, which may be used to ameliorate cold tolerance in rice via advanced breeding.
Collapse
Affiliation(s)
- Ruiqing Li
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Yue Song
- Hainan Institute, Yazhou Bay Sci-Tech City, Zhejiang University, Sanya, 572025, China
- National Key Laboratory of Rice Biology, Advanced Seed Institute, Zhejiang University, Hangzhou, 311225, China
| | - Xueqiang Wang
- Hainan Institute, Yazhou Bay Sci-Tech City, Zhejiang University, Sanya, 572025, China
- National Key Laboratory of Rice Biology, Advanced Seed Institute, Zhejiang University, Hangzhou, 311225, China
| | - Chenfan Zheng
- Hainan Institute, Yazhou Bay Sci-Tech City, Zhejiang University, Sanya, 572025, China
- National Key Laboratory of Rice Biology, Advanced Seed Institute, Zhejiang University, Hangzhou, 311225, China
| | - Bo Liu
- Hainan Institute, Yazhou Bay Sci-Tech City, Zhejiang University, Sanya, 572025, China
- National Key Laboratory of Rice Biology, Advanced Seed Institute, Zhejiang University, Hangzhou, 311225, China
| | - Huali Zhang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Jian Ke
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Xuejing Wu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Liquan Wu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Ruifang Yang
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Meng Jiang
- Hainan Institute, Yazhou Bay Sci-Tech City, Zhejiang University, Sanya, 572025, China
- National Key Laboratory of Rice Biology, Advanced Seed Institute, Zhejiang University, Hangzhou, 311225, China
| |
Collapse
|
23
|
Zhang Y, Xiao W, Wang M, Khan M, Liu JH. A C2H2-type zinc finger protein ZAT12 of Poncirus trifoliata acts downstream of CBF1 to regulate cold tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1317-1329. [PMID: 38017362 DOI: 10.1111/tpj.16562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/21/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
The Cys2/His2 (C2H2)-type zinc finger family has been reported to regulate multiple aspects of plant development and abiotic stress response. However, the role of C2H2-type zinc finger proteins in cold tolerance remains largely unclear. Through RNA-sequence analysis, a cold-responsive zinc finger protein, named as PtrZAT12, was identified and isolated from trifoliate orange (Poncirus trifoliata L. Raf.), a cold-hardy plant closely related to citrus. Furthermore, we found that PtrZAT12 was markedly induced by various abiotic stresses, especially cold stress. PtrZAT12 is a nuclear protein, and physiological analysis suggests that overexpression of PtrZAT12 conferred enhanced cold tolerance in transgenic tobacco (Nicotiana tabacum) plants, while knockdown of PtrZAT12 by virus-induced gene silencing (VIGS) increased the cold sensitivity of trifoliate orange and repressed expression of genes involved in stress tolerance. The promoter of PtrZAT12 harbors a DRE/CRT cis-acting element, which was verified to be specifically bound by PtrCBF1 (Poncirus trifoliata C-repeat BINDING FACTOR1). VIGS-mediated silencing of PtrCBF1 reduced the relative expression levels of PtrZAT12 and decreased the cold resistance of trifoliate orange. Based on these results, we propose that PtrZAT12 is a direct target of CBF1 and plays a positive role in modulation of cold stress tolerance. The knowledge gains new insight into a regulatory module composed of CBF1-ZAT12 in response to cold stress and advances our understanding of cold stress response in plants.
Collapse
Affiliation(s)
- Yang Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Wei Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Madiha Khan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
24
|
Zhang H, Pei Y, Zhu F, He Q, Zhou Y, Ma B, Chen X, Guo J, Khan A, Jahangir M, Ou L, Chen R. CaSnRK2.4-mediated phosphorylation of CaNAC035 regulates abscisic acid synthesis in pepper (Capsicum annuum L.) responding to cold stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1377-1391. [PMID: 38017590 DOI: 10.1111/tpj.16568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023]
Abstract
Plant NAC transcription factors play a crucial role in enhancing cold stress tolerance, yet the precise molecular mechanisms underlying cold stress remain elusive. In this study, we identified and characterized CaNAC035, an NAC transcription factor isolated from pepper (Capsicum annuum) leaves. We observed that the expression of the CaNAC035 gene is induced by both cold and abscisic acid (ABA) treatments, and we elucidated its positive regulatory role in cold stress tolerance. Overexpression of CaNAC035 resulted in enhanced cold stress tolerance, while knockdown of CaNAC035 significantly reduced resistance to cold stress. Additionally, we discovered that CaSnRK2.4, a SnRK2 protein, plays an essential role in cold tolerance. In this study, we demonstrated that CaSnRK2.4 physically interacts with and phosphorylates CaNAC035 both in vitro and in vivo. Moreover, the expression of two ABA biosynthesis-related genes, CaAAO3 and CaNCED3, was significantly upregulated in the CaNAC035-overexpressing transgenic pepper lines. Yeast one-hybrid, Dual Luciferase, and electrophoretic mobility shift assays provided evidence that CaNAC035 binds to the promoter regions of both CaAAO3 and CaNCED3 in vivo and in vitro. Notably, treatment of transgenic pepper with 50 μm Fluridone (Flu) enhanced cold tolerance, while the exogenous application of ABA at a concentration of 10 μm noticeably reduced cold tolerance in the virus-induced gene silencing line. Overall, our findings highlight the involvement of CaNAC035 in the cold response of pepper and provide valuable insights into the molecular mechanisms underlying cold tolerance. These results offer promising prospects for molecular breeding strategies aimed at improving cold tolerance in pepper and other crops.
Collapse
Affiliation(s)
- Huafeng Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Yingping Pei
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Feilong Zhu
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Qiang He
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Yunyun Zhou
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Bohui Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Xiaoqing Chen
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Jiangbai Guo
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur, 22620, Pakistan
| | - Maira Jahangir
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Lijun Ou
- College of Horticulture, Hunan Agricultural University, Changshai, 410125, China
| | - Rugang Chen
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
- Shaanxi Engineering Research Center for Vegetables, Yangling, 712100, China
| |
Collapse
|
25
|
Dong S, Li C, Tian H, Wang W, Yang X, Beckles DM, Liu X, Guan J, Gu X, Sun J, Miao H, Zhang S. Natural variation in STAYGREEN contributes to low-temperature tolerance in cucumber. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2552-2568. [PMID: 37811725 DOI: 10.1111/jipb.13571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
Low-temperature (LT) stress threatens cucumber production globally; however, the molecular mechanisms underlying LT tolerance in cucumber remain largely unknown. Here, using a genome-wide association study (GWAS), we found a naturally occurring single nucleotide polymorphism (SNP) in the STAYGREEN (CsSGR) coding region at the gLTT5.1 locus associated with LT tolerance. Knockout mutants of CsSGR generated by clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 exhibit enhanced LT tolerance, in particularly, increased chlorophyll (Chl) content and reduced reactive oxygen species (ROS) accumulation in response to LT. Moreover, the C-repeat Binding Factor 1 (CsCBF1) transcription factor can directly activate the expression of CsSGR. We demonstrate that the LT-sensitive haplotype CsSGRHapA , but not the LT-tolerant haplotype CsSGRHapG could interact with NON-YELLOW COLORING 1 (CsNYC1) to mediate Chl degradation. Geographic distribution of the CsSGR haplotypes indicated that the CsSGRHapG was selected in cucumber accessions from high latitudes, potentially contributing to LT tolerance during cucumber cold-adaptation in these regions. CsSGR mutants also showed enhanced tolerance to salinity, water deficit, and Pseudoperonospora cubensis, thus CsSGR is an elite target gene for breeding cucumber varieties with broad-spectrum stress tolerance. Collectively, our findings provide new insights into LT tolerance and will ultimately facilitate cucumber molecular breeding.
Collapse
Affiliation(s)
- Shaoyun Dong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Caixia Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haojie Tian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weiping Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueyong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Diane M Beckles
- Department of Plant Sciences, University of California, One Shield Avenue, Davis, CA, 95616, USA
| | - Xiaoping Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiantao Guan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xingfang Gu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Han Miao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shengping Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
26
|
Hu X, Liang J, Wang W, Cai C, Ye S, Wang N, Han F, Wu Y, Zhu Q. Comprehensive genome-wide analysis of the DREB gene family in Moso bamboo (Phyllostachys edulis): evidence for the role of PeDREB28 in plant abiotic stress response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1248-1270. [PMID: 37566437 DOI: 10.1111/tpj.16420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/16/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Dehydration response element binding (DREB) proteins are vital for plant abiotic stress responses, but the understanding of DREBs in bamboo, an important sustainable non-timber forest product, is limited. Here we conducted a comprehensive genome-wide analysis of the DREB gene family in Moso bamboo, representing the most important running bamboo species in Asia. In total, 44 PeDREBs were identified, and information on their gene structures, protein motifs, phylogenetic relationships, and stress-related cis-regulatory elements (CREs) was provided. Based on the bioinformatical analysis, we further analyzed PeDREBs from the A5 group and found that four of five PeDREB transcripts were induced by salt, drought, and cold stresses, and their proteins could bind to stress-related CREs. Among these, PeDREB28 was selected as a promising candidate for further functional characterization. PeDREB28 is localized in nucleus, has transcriptional activation activity, and could bind to the DRE- and coupling element 1- (CE1) CREs. Overexpression of PeDREB28 in Arabidopsis and bamboo improved plant abiotic stress tolerance. Transcriptomic analysis showed that broad changes due to the overexpression of PeDREB28. Furthermore, 628 genes that may act as the direct PeDREB28 downstream genes were identified by combining DAP-seq and RNA-seq analysis. Moreover, we confirmed that PeDREB28 could bind to the promoter of pyrabactin-resistance-like gene (DlaPYL3), which is a homolog of abscisic acid receptor in Arabidopsis, and activates its expression. In summary, our study provides important insights into the DREB gene family in Moso bamboo, and contributes to their functional verification and genetic engineering applications in the future.
Collapse
Affiliation(s)
- Xin Hu
- Basic Forestry and Proteomics Center (BFPC), HaiXia Institute for Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, 350002, Fujian, China
| | - Jianxiang Liang
- Basic Forestry and Proteomics Center (BFPC), HaiXia Institute for Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, 350002, Fujian, China
| | - Wenjia Wang
- Basic Forestry and Proteomics Center (BFPC), HaiXia Institute for Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, 350002, Fujian, China
| | - Changyang Cai
- Basic Forestry and Proteomics Center (BFPC), HaiXia Institute for Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, 350002, Fujian, China
| | - Shanwen Ye
- Basic Forestry and Proteomics Center (BFPC), HaiXia Institute for Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, 350002, Fujian, China
| | - Nannan Wang
- Basic Forestry and Proteomics Center (BFPC), HaiXia Institute for Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, 350002, Fujian, China
| | - Fangying Han
- Basic Forestry and Proteomics Center (BFPC), HaiXia Institute for Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, 350002, Fujian, China
| | - Yuxin Wu
- Basic Forestry and Proteomics Center (BFPC), HaiXia Institute for Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, 350002, Fujian, China
| | - Qiang Zhu
- Basic Forestry and Proteomics Center (BFPC), HaiXia Institute for Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, 350002, Fujian, China
| |
Collapse
|
27
|
Franzoni G, Spadafora ND, Sirangelo TM, Ferrante A, Rogers HJ. Biochemical and molecular changes in peach fruit exposed to cold stress conditions. MOLECULAR HORTICULTURE 2023; 3:24. [PMID: 37953307 PMCID: PMC10641970 DOI: 10.1186/s43897-023-00073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
Storage or transportation temperature is very important for preserving the quality of fruit. However, low temperature in sensitive fruit such as peach can induce loss of quality. Fruit exposed to a specific range of temperatures and for a longer period can show chilling injury (CI) symptoms. The susceptibility to CI at low temperature varies among cultivars and genetic backgrounds. Along with agronomic management, appropriate postharvest management can limit quality losses. The importance of correct temperature management during postharvest handling has been widely demonstrated. Nowadays, due to long-distance markets and complex logistics that require multiple actors, the management of storage/transportation conditions is crucial for the quality of products reaching the consumer.Peach fruit exposed to low temperatures activate a suite of physiological, metabolomic, and molecular changes that attempt to counteract the negative effects of chilling stress. In this review an overview of the factors involved, and plant responses is presented and critically discussed. Physiological disorders associated with CI generally only appear after the storage/transportation, hence early detection methods are needed to monitor quality and detect internal changes which will lead to CI development. CI detection tools are assessed: they need to be easy to use, and preferably non-destructive to avoid loss of products.
Collapse
Affiliation(s)
- Giulia Franzoni
- Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Natasha Damiana Spadafora
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy.
| | - Tiziana Maria Sirangelo
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development-Division Biotechnologies and Agroindustry, 00123, Rome, Italy
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Hilary J Rogers
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| |
Collapse
|
28
|
Wang S, Shen Y, Deng D, Guo L, Zhang Y, Nie Y, Du Y, Zhao X, Ye X, Huang J, Huang H, Zhu JK, Wu W. Orthogroup and phylotranscriptomic analyses identify transcription factors involved in the plant cold response: A case study of Arabidopsis BBX29. PLANT COMMUNICATIONS 2023; 4:100684. [PMID: 37674317 PMCID: PMC10721519 DOI: 10.1016/j.xplc.2023.100684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023]
Abstract
C-repeat binding factors (CBFs) are well-known transcription factors (TFs) that regulate plant cold acclimation. RNA sequencing (RNA-seq) data from diverse plant species provide opportunities to identify other TFs involved in the cold response. However, this task is challenging because gene gain and loss has led to an intertwined community of co-orthologs and in-paralogs between and within species. Using orthogroup (closely related homologs) analysis, we identified 10,549 orthogroups in five representative eudicots. A phylotranscriptomic analysis of cold-treated seedlings from eudicots identified 35 high-confidence conserved cold-responsive transcription factor orthogroups (CoCoFos). These 35 CoCoFos included the well-known cold-responsive regulators CBFs, HSFC1, ZAT6/10, and CZF1 among others. We used Arabidopsis BBX29 for experimental validation. Expression and genetic analyses showed that cold-induction of BBX29 is CBF- and abscisic acid-independent, and BBX29 is a negative regulator of cold tolerance. Integrative RNA-seq and Cleavage Under Targets and Tagmentation followed by sequencing analyses revealed that BBX29 represses a set of cold-induced TFs (ZAT12, PRR9, RVE1, MYB96, etc.). Altogether, our analysis yielded a library of eudicot CoCoFos and demonstrated that BBX29 is a negative regulator of cold tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Hangzhou, China
| | - Yirong Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Hangzhou, China
| | - Deyin Deng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Hangzhou, China
| | - Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Hangzhou, China
| | - Yixian Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Hangzhou, China
| | - Yuqi Nie
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Hangzhou, China
| | - Yunfei Du
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Hangzhou, China
| | - Xijuan Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Hangzhou, China
| | - Xiaoxue Ye
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Hangzhou, China
| | - Huahong Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Hangzhou, China.
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Hangzhou, China.
| |
Collapse
|
29
|
Zhang L, Zhang N, Wang S, Tian H, Liu L, Pei D, Yu X, Zhao L, Chen F. A TaSnRK1α Modulates TaPAP6L-Mediated Wheat Cold Tolerance through Regulating Endogenous Jasmonic Acid. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303478. [PMID: 37740426 PMCID: PMC10625090 DOI: 10.1002/advs.202303478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/22/2023] [Indexed: 09/24/2023]
Abstract
Here, a sucrose non-fermenting-1-related protein kinase alpha subunit (TaSnRK1α-1A) is identified as associated with cold stress through integration of genome-wide association study, bulked segregant RNA sequencing, and virus-induced gene silencing. It is confirmed that TaSnRK1α positively regulates cold tolerance by transgenes and ethyl methanesulfonate (EMS) mutants. A plastid-lipid-associated protein 6, chloroplastic-like (TaPAP6L-2B) strongly interacting with TaSnRK1α-1A is screened. Molecular chaperone DJ-1 family protein (TaDJ-1-7B) possibly bridged the interaction of TaSnRK1α-1A and TaPAP6L-2B. It is further revealed that TaSnRK1α-1A phosphorylated TaPAP6L-2B. Subsequently, a superior haplotype TaPAP6L-2B30S /38S is identified and confirmed that both R30S and G38S are important phosphorylation sites that influence TaPAP6L-2B in cold tolerance. Overexpression (OE) and EMS-mutant lines verified TaPAP6L positively modulating cold tolerance. Furthermore, transcriptome sequencing revealed that TaPAP6L-2B-OE lines significantly increased jasmonic acid (JA) content, possibly by improving precursor α-linolenic acid contributing to JA synthesis and by repressing JAR1 degrading JA. Exogenous JA significantly improved the cold tolerance of wheat plants. In summary, TaSnRK1α profoundly regulated cold stress, possibly through phosphorylating TaPAP6L to increase endogenous JA content of wheat plants.
Collapse
Affiliation(s)
- Lingran Zhang
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Ning Zhang
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Sisheng Wang
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Hongyan Tian
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Lu Liu
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Dan Pei
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Xiaodong Yu
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Lei Zhao
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| |
Collapse
|
30
|
Gu S, Zhang Z, Li J, Sun J, Cui Z, Li F, Zhuang J, Chen W, Su C, Wu L, Wang X, Guo Z, Xu H, Zhao M, Ma D, Chen W. Natural variation in OsSEC13 HOMOLOG 1 modulates redox homeostasis to confer cold tolerance in rice. PLANT PHYSIOLOGY 2023; 193:2180-2196. [PMID: 37471276 DOI: 10.1093/plphys/kiad420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 06/05/2023] [Indexed: 07/22/2023]
Abstract
Rice (Oryza sativa L.) is a cold-sensitive species that often faces cold stress, which adversely affects yield productivity and quality. However, the genetic basis for low-temperature adaptation in rice remains unclear. Here, we demonstrate that 2 functional polymorphisms in O. sativa SEC13 Homolog 1 (OsSEH1), encoding a WD40-repeat nucleoporin, between the 2 subspecies O. sativa japonica and O. sativa indica rice, may have facilitated cold adaptation in japonica rice. We show that OsSEH1 of the japonica variety expressed in OsSEH1MSD plants (transgenic line overexpressing the OsSEH1 allele from Mangshuidao [MSD], cold-tolerant landrace) has a higher affinity for O. sativa metallothionein 2b (OsMT2b) than that of OsSEH1 of indica. This high affinity of OsSEH1MSD for OsMT2b results in inhibition of OsMT2b degradation, with decreased accumulation of reactive oxygen species and increased cold tolerance. Transcriptome analysis indicates that OsSEH1 positively regulates the expression of the genes encoding dehydration-responsive element-binding transcription factors, i.e. OsDREB1 genes, and induces the expression of multiple cold-regulated genes to enhance cold tolerance. Our findings highlight a breeding resource for improving cold tolerance in rice.
Collapse
Affiliation(s)
- Shuang Gu
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhe Zhang
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Jinquan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Strube Research GmbH & Co. KG, Söllingen 38387, Germany
| | - Jian Sun
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhibo Cui
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Fengcheng Li
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Jia Zhuang
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Wanchun Chen
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Chang Su
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Lian Wu
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoliang Wang
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhifu Guo
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Hai Xu
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Minghui Zhao
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | | | - Wenfu Chen
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
31
|
Degon Z, Dixon S, Rahmatallah Y, Galloway M, Gulutzo S, Price H, Cook J, Glazko G, Mukherjee A. Azospirillum brasilense improves rice growth under salt stress by regulating the expression of key genes involved in salt stress response, abscisic acid signaling, and nutrient transport, among others. FRONTIERS IN AGRONOMY 2023; 5:1216503. [PMID: 38223701 PMCID: PMC10785826 DOI: 10.3389/fagro.2023.1216503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Major food crops, such as rice and maize, display severe yield losses (30-50%) under salt stress. Furthermore, problems associated with soil salinity are anticipated to worsen due to climate change. Therefore, it is necessary to implement sustainable agricultural strategies, such as exploiting beneficial plant-microbe associations, for increased crop yields. Plants can develop associations with beneficial microbes, including arbuscular mycorrhiza and plant growth-promoting bacteria (PGPB). PGPB improve plant growth via multiple mechanisms, including protection against biotic and abiotic stresses. Azospirillum brasilense, one of the most studied PGPB, can mitigate salt stress in different crops. However, little is known about the molecular mechanisms by which A. brasilense mitigates salt stress. This study shows that total and root plant mass is improved in A. brasilense-inoculated rice plants compared to the uninoculated plants grown under high salt concentrations (100 mM and 200 mM NaCl). We observed this growth improvement at seven- and fourteen days post-treatment (dpt). Next, we used transcriptomic approaches and identified differentially expressed genes (DEGs) in rice roots when exposed to three treatments: 1) A. brasilense, 2) salt (200 mM NaCl), and 3) A. brasilense and salt (200 mM NaCl), at seven dpt. We identified 786 DEGs in the A. brasilense-treated plants, 4061 DEGs in the salt-stressed plants, and 1387 DEGs in the salt-stressed A. brasilense-treated plants. In the A. brasilense-treated plants, we identified DEGs involved in defense, hormone, and nutrient transport, among others. In the salt-stressed plants, we identified DEGs involved in abscisic acid and jasmonic acid signaling, antioxidant enzymes, sodium and potassium transport, and calcium signaling, among others. In the salt-stressed A. brasilense-treated plants, we identified some genes involved in salt stress response and tolerance (e.g., abscisic acid and jasmonic acid signaling, antioxidant enzymes, calcium signaling), and sodium and potassium transport differentially expressed, among others. We also identified some A. brasilense-specific plant DEGs, such as nitrate transporters and defense genes. Furthermore, our results suggest genes involved in auxin and ethylene signaling are likely to play an important role during these interactions. Overall, our transcriptomic data indicate that A. brasilense improves rice growth under salt stress by regulating the expression of key genes involved in defense and stress response, abscisic acid and jasmonic acid signaling, and ion and nutrient transport, among others. Our findings will provide essential insights into salt stress mitigation in rice by A. brasilense.
Collapse
Affiliation(s)
- Zachariah Degon
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| | - Seth Dixon
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| | - Yasir Rahmatallah
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mary Galloway
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| | - Sophia Gulutzo
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| | - Hunter Price
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| | - John Cook
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| | - Galina Glazko
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Arijit Mukherjee
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| |
Collapse
|
32
|
Wang X, Li Z, Shi Y, Liu Z, Zhang X, Gong Z, Yang S. Strigolactones promote plant freezing tolerance by releasing the WRKY41-mediated inhibition of CBF/DREB1 expression. EMBO J 2023; 42:e112999. [PMID: 37622245 PMCID: PMC10548171 DOI: 10.15252/embj.2022112999] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Cold stress is a major abiotic stress that adversely affects plant growth and crop productivity. The C-REPEAT BINDING FACTOR/DRE BINDING FACTOR 1 (CBF/DREB1) transcriptional regulatory cascade plays a key role in regulating cold acclimation and freezing tolerance in Arabidopsis (Arabidopsis thaliana). Here, we show that max (more axillary growth) mutants deficient in strigolactone biosynthesis and signaling display hypersensitivity to freezing stress. Exogenous application of GR245DS , a strigolactone analog, enhances freezing tolerance in wild-type plants and strigolactone-deficient mutants and promotes the cold-induced expression of CBF genes. Biochemical analysis showed that the transcription factor WRKY41 serves as a substrate for the F-box E3 ligase MAX2. WRKY41 directly binds to the W-box in the promoters of CBF genes and represses their expression, negatively regulating cold acclimation and freezing tolerance. MAX2 ubiquitinates WRKY41, thus marking it for cold-induced degradation and thereby alleviating the repression of CBF expression. In addition, SL-mediated degradation of SMXLs also contributes to enhanced plant freezing tolerance by promoting anthocyanin biosynthesis. Taken together, our study reveals the molecular mechanism underlying strigolactones promote the cold stress response in Arabidopsis.
Collapse
Affiliation(s)
- Xi Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zhuoyang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yiting Shi
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Ziyan Liu
- College of Plant Science and TechnologyBeijing University of AgricultureBeijingChina
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
- College of Life Sciences, Institute of Life Science and Green DevelopmentHebei UniversityBaodingChina
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
33
|
Yang Z, Cao Y, Shi Y, Qin F, Jiang C, Yang S. Genetic and molecular exploration of maize environmental stress resilience: Toward sustainable agriculture. MOLECULAR PLANT 2023; 16:1496-1517. [PMID: 37464740 DOI: 10.1016/j.molp.2023.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/03/2023] [Accepted: 07/15/2023] [Indexed: 07/20/2023]
Abstract
Global climate change exacerbates the effects of environmental stressors, such as drought, flooding, extreme temperatures, salinity, and alkalinity, on crop growth and grain yield, threatening the sustainability of the food supply. Maize (Zea mays) is one of the most widely cultivated crops and the most abundant grain crop in production worldwide. However, the stability of maize yield is highly dependent on environmental conditions. Recently, great progress has been made in understanding the molecular mechanisms underlying maize responses to environmental stresses and in developing stress-resilient varieties due to advances in high-throughput sequencing technologies, multi-omics analysis platforms, and automated phenotyping facilities. In this review, we summarize recent advances in dissecting the genetic factors and networks that contribute to maize abiotic stress tolerance through diverse strategies. We also discuss future challenges and opportunities for the development of climate-resilient maize varieties.
Collapse
Affiliation(s)
- Zhirui Yang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yibo Cao
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Feng Qin
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Caifu Jiang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
34
|
An JP, Liu ZY, Zhang XW, Wang DR, Zeng F, You CX, Han Y. Brassinosteroid signaling regulator BIM1 integrates brassinolide and jasmonic acid signaling during cold tolerance in apple. PLANT PHYSIOLOGY 2023; 193:1652-1674. [PMID: 37392474 DOI: 10.1093/plphys/kiad371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 07/03/2023]
Abstract
Although brassinolide (BR) and jasmonic acid (JA) play essential roles in the regulation of cold stress responses, the molecular basis of their crosstalk remains elusive. Here, we show a key component of BR signaling in apple (Malus × domestica), BR INSENSITIVE1 (BRI1)-EMS-SUPPRESSOR1 (BES1)-INTERACTING MYC-LIKE PROTEIN1 (MdBIM1), increases cold tolerance by directly activating expression of C-REPEAT BINDING FACTOR1 (MdCBF1) and forming a complex with C-REPEAT BINDING FACTOR2 (MdCBF2) to enhance MdCBF2-activated transcription of cold-responsive genes. Two repressors of JA signaling, JAZMONATE ZIM-DOMAIN1 (MdJAZ1) and JAZMONATE ZIM-DOMAIN2 (MdJAZ2), interact with MdBIM1 to integrate BR and JA signaling under cold stress. MdJAZ1 and MdJAZ2 reduce MdBIM1-promoted cold stress tolerance by attenuating transcriptional activation of MdCBF1 expression by MdBIM1 and interfering with the formation of the MdBIM1-MdCBF2 complex. Furthermore, the E3 ubiquitin ligase ARABIDOPSIS TÓXICOS en LEVADURA73 (MdATL73) decreases MdBIM1-promoted cold tolerance by targeting MdBIM1 for ubiquitination and degradation. Our results not only reveal crosstalk between BR and JA signaling mediated by a JAZ-BIM1-CBF module but also provide insights into the posttranslational regulatory mechanism of BR signaling.
Collapse
Affiliation(s)
- Jian-Ping An
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Zhi-Ying Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Xiao-Wei Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Da-Ru Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Fanchang Zeng
- College of Agriculture, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
35
|
Chen Y, Huang Q, Hua X, Zhang Q, Pan W, Liu G, Yu C, Zhong F, Lian B, Zhang J. A homolog of AtCBFs, SmDREB A1-4, positively regulates salt stress tolerance in Arabidopsis thaliana and Salix matsudana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107963. [PMID: 37595402 DOI: 10.1016/j.plaphy.2023.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/22/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
CBFs (C-repeat binding factors) have multiple functions in abiotic stress adaption; functional research of these genes will provide precious gene resources for plant genetic improvement. In this study, a homolog of AtCBFs, SmDREB A1-4 was cloned and its role in salt tolerance was explored. SmDREB A1-4 is a member of DREB A1 subgroup with 10 members. SmDREB A1-4 localized in nuclei and cytoplasm and expressed ubiquitously in different tissue and organs. The expression level of SmDREB A1-4 could be induced by NaCl treatment and the TC-rich repeat and DREB motif on the SmDREB A1-4 gene promoter may mediate the NaCl-induced expression pattern. Overexpression of the SmDREB A1-4 gene in Arabidopsis enhanced the salt tolerance of transgenic Arabidopsis lines, while down-regulated the expression level in Salix plantlets by Virus induce gene silencing decreased the salt tolerance capacity in VIGS Salix plantlets. Experiments data from both sides confirmed that SmDREB A1-4 is a positive regulatory factor in salt stress tolerance. qRT-PCR and luciferase reporter assays revealed that SOS1 and DREB2A are downstream genes of SmDREB A1-4. Through upregulating the expression of SOS1 and DREB2A, SmDREB A1-4 enhanced plant tolerance to salinity by regulating ion homeostasis, reduction of Na+/K+ ratio, and improvement of proline biosynthesis. This research offers a potentially valuable gene resource for the stress-resistant varieties breeding of Salix matsudana in the future.
Collapse
Affiliation(s)
- Yanhong Chen
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| | - Qianhui Huang
- School of Life Sciences, Nantong University, Nantong, China.
| | - Xuan Hua
- School of Life Sciences, Nantong University, Nantong, China.
| | - Qi Zhang
- School of Life Sciences, Nantong University, Nantong, China.
| | - Wenjia Pan
- School of Life Sciences, Nantong University, Nantong, China.
| | - Guoyuan Liu
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| | - Chunmei Yu
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| | - Fei Zhong
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| | - Bolin Lian
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| | - Jian Zhang
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| |
Collapse
|
36
|
Ren H, Zhong Y, Guo L, Hussian J, Zhou C, Cao Y, Wu W, Liu S, Qi G. Molecular mechanisms of low-temperature sensitivity in tropical/subtropical plants: a case study of Casuarina equisetifolia. FORESTRY RESEARCH 2023; 3:20. [PMID: 39526253 PMCID: PMC11524302 DOI: 10.48130/fr-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/24/2023] [Indexed: 11/16/2024]
Abstract
Low temperature is a limiting factor affecting plant growth and development. Casuarina equisetifolia, a typical tropical and subtropical tree important for the ecological restoration of coastal beaches, is sensitive to cold stress. By comparing cold tolerance between C. equisetifolia and Arabidopsis, we investigated the molecular basis underlying the cold sensitivity of C. equisetifolia. Transcriptomic analysis showed that the number of cold-induced genes in C. equisetifolia was significantly less than that in Arabidopsis, and notably, the response of cold-induced genes was also delayed in C. equisetifolia. Among the cold-induced genes, C-repeat binding factors (CBFs), the major transcription factors in cold acclimation in Arabidopsis, showed a delayed cold-induced expression in C. equisetifolia, despite that C. equisetifolia CBFs could restore the low temperature-sensitive phenotype of Arabidopsis cbfs triple mutants. Interestingly, some key cold-responsive genes (e.g., COR15A and COR15B) targeted by Arabidopsis CBF were absent in the C. equisetifolia genome and many cold-responsive genes in C. equisetifolia lacked the DRE element (i.e., CBF binding cis-element). Moreover, like in C. equisetifolia, many COR genes in other tropical/subtropical plants lacked the DRE element or were directly missing. These two factors could be the underlying reasons for the low-temperature sensitivity of C. equisetifolia and other tropical/subtropical plants.
Collapse
Affiliation(s)
- Huimin Ren
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Yue Zhong
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Jamshaid Hussian
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, University Road Abbottabad, Pakistan
| | - Chen Zhou
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Youzhi Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Guoning Qi
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| |
Collapse
|
37
|
Zhu W, Li H, Dong P, Ni X, Fan M, Yang Y, Xu S, Xu Y, Qian Y, Chen Z, Lü P. Low temperature-induced regulatory network rewiring via WRKY regulators during banana peel browning. PLANT PHYSIOLOGY 2023; 193:855-873. [PMID: 37279567 PMCID: PMC10469544 DOI: 10.1093/plphys/kiad322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/08/2023]
Abstract
Banana (Musa spp.) fruits, as typical tropical fruits, are cold sensitive, and lower temperatures can disrupt cellular compartmentalization and lead to severe browning. How tropical fruits respond to low temperature compared to the cold response mechanisms of model plants remains unknown. Here, we systematically characterized the changes in chromatin accessibility, histone modifications, distal cis-regulatory elements, transcription factor binding, and gene expression levels in banana peels in response to low temperature. Dynamic patterns of cold-induced transcripts were generally accompanied by concordant chromatin accessibility and histone modification changes. These upregulated genes were enriched for WRKY binding sites in their promoters and/or active enhancers. Compared to banana peel at room temperature, large amounts of banana WRKYs were specifically induced by cold and mediated enhancer-promoter interactions regulating critical browning pathways, including phospholipid degradation, oxidation, and cold tolerance. This hypothesis was supported by DNA affinity purification sequencing, luciferase reporter assays, and transient expression assay. Together, our findings highlight widespread transcriptional reprogramming via WRKYs during banana peel browning at low temperature and provide an extensive resource for studying gene regulation in tropical plants in response to cold stress, as well as potential targets for improving cold tolerance and shelf life of tropical fruits.
Collapse
Affiliation(s)
- Wenjun Zhu
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hua Li
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengfei Dong
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xueting Ni
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Minlei Fan
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingjie Yang
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shiyao Xu
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanbing Xu
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yangwen Qian
- WIMI Biotechnology Co., Ltd., Changzhou 213000, China
| | - Zhuo Chen
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peitao Lü
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
38
|
Yan J, Liu Y, Yan J, Liu Z, Lou H, Wu J. The salt-activated CBF1/CBF2/CBF3-GALS1 module fine-tunes galactan-induced salt hypersensitivity in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1904-1917. [PMID: 37149782 DOI: 10.1111/jipb.13501] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023]
Abstract
Plant growth and development are significantly hampered in saline environments, limiting agricultural productivity. Thus, it is crucial to unravel the mechanism underlying plant responses to salt stress. β-1,4-Galactan (galactan), which forms the side chains of pectic rhamnogalacturonan I, enhances plant sensitivity to high-salt stress. Galactan is synthesized by GALACTAN SYNTHASE1 (GALS1). We previously showed that NaCl relieves the direct suppression of GALS1 transcription by the transcription factors BPC1 and BPC2 to induce the excess accumulation of galactan in Arabidopsis (Arabidopsis thaliana). However, how plants adapt to this unfavorable environment remains unclear. Here, we determined that the transcription factors CBF1, CBF2, and CBF3 directly interact with the GALS1 promoter and repress its expression, leading to reduced galactan accumulation and enhanced salt tolerance. Salt stress enhances the binding of CBF1/CBF2/CBF3 to the GALS1 promoter by inducing CBF1/CBF2/CBF3 transcription and accumulation. Genetic analysis suggested that CBF1/CBF2/CBF3 function upstream of GALS1 to modulate salt-induced galactan biosynthesis and the salt response. CBF1/CBF2/CBF3 and BPC1/BPC2 function in parallel to regulate GALS1 expression, thereby modulating the salt response. Our results reveal a mechanism in which salt-activated CBF1/CBF2/CBF3 inhibit BPC1/BPC2-regulated GALS1 expression to alleviate galactan-induced salt hypersensitivity, providing an activation/deactivation fine-tune mechanism for dynamic regulation of GALS1 expression under salt stress in Arabidopsis.
Collapse
Affiliation(s)
- Jingwei Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ya Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jiawen Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhihui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| |
Collapse
|
39
|
Shan X, Yang Y, Wei S, Wang C, Shen W, Chen HB, Shen JY. Involvement of CBF in the fine-tuning of litchi flowering time and cold and drought stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1167458. [PMID: 37377797 PMCID: PMC10291182 DOI: 10.3389/fpls.2023.1167458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023]
Abstract
Litchi (Litchi chinensis) is an economically important fruit tree in southern China and is widely cultivated in subtropical regions. However, irregular flowering attributed to inadequate floral induction leads to a seriously fluctuating bearing. Litchi floral initiation is largely determined by cold temperatures, whereas the underlying molecular mechanisms have yet to be identified. In this study, we identified four CRT/DRE BINDING FACTORS (CBF) homologs in litchi, of which LcCBF1, LcCBF2 and LcCBF3 showed a decrease in response to the floral inductive cold. A similar expression pattern was observed for the MOTHER OF FT AND TFL1 homolog (LcMFT) in litchi. Furthermore, both LcCBF2 and LcCBF3 were found to bind to the promoter of LcMFT to activate its expression, as indicated by the analysis of yeast-one-hybrid (Y1H), electrophoretic mobility shift assays (EMSA), and dual luciferase complementation assays. Ectopic overexpression of LcCBF2 and LcCBF3 in Arabidopsis caused delayed flowering and increased freezing and drought tolerance, whereas overexpression of LcMFT in Arabidopsis had no significant effect on flowering time. Taken together, we identified LcCBF2 and LcCBF3 as upstream activators of LcMFT and proposed the contribution of the cold-responsive CBF to the fine-tuning of flowering time.
Collapse
|
40
|
Zhang Y, Peng Y, Liu J, Yan J, Zhu K, Sun X, Bu X, Wang X, Ahammed GJ, Liu Y, Sun Z, Qi M, Wang F, Li T. Tetratricopeptide repeat protein SlREC2 positively regulates cold tolerance in tomato. PLANT PHYSIOLOGY 2023; 192:648-665. [PMID: 36760172 PMCID: PMC10152682 DOI: 10.1093/plphys/kiad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 05/03/2023]
Abstract
Cold stress is a key environmental constraint that dramatically affects the growth, productivity, and quality of tomato (Solanum lycopersicum); however, the underlying molecular mechanisms of cold tolerance remain poorly understood. In this study, we identified REDUCED CHLOROPLAST COVERAGE 2 (SlREC2) encoding a tetratricopeptide repeat protein that positively regulates tomato cold tolerance. Disruption of SlREC2 largely reduced abscisic acid (ABA) levels, photoprotection, and the expression of C-REPEAT BINDING FACTOR (CBF)-pathway genes in tomato plants under cold stress. ABA deficiency in the notabilis (not) mutant, which carries a mutation in 9-CIS-EPOXYCAROTENOID DIOXYGENASE 1 (SlNCED1), strongly inhibited the cold tolerance of SlREC2-silenced plants and empty vector control plants and resulted in a similar phenotype. In addition, foliar application of ABA rescued the cold tolerance of SlREC2-silenced plants, which confirms that SlNCED1-mediated ABA accumulation is required for SlREC2-regulated cold tolerance. Strikingly, SlREC2 physically interacted with β-RING CAROTENE HYDROXYLASE 1b (SlBCH1b), a key regulatory enzyme in the xanthophyll cycle. Disruption of SlBCH1b severely impaired photoprotection, ABA accumulation, and CBF-pathway gene expression in tomato plants under cold stress. Taken together, this study reveals that SlREC2 interacts with SlBCH1b to enhance cold tolerance in tomato via integration of SlNCED1-mediated ABA accumulation, photoprotection, and the CBF-pathway, thus providing further genetic knowledge for breeding cold-resistant tomato varieties.
Collapse
Affiliation(s)
- Ying Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yinxia Peng
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Juan Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiarong Yan
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Kangyou Zhu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Sun
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Bu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiujie Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Henan University of Science and Technology, Luoyang 471023, China
| | - Yufeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhouping Sun
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Feng Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang 110866, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang 110866, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China
| |
Collapse
|
41
|
Gusain S, Joshi S, Joshi R. Sensing, signalling, and regulatory mechanism of cold-stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107646. [PMID: 36958153 DOI: 10.1016/j.plaphy.2023.107646] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Cold stress is a crucial environmental factor influencing growth and distribution and possessing yield penalties. To survive in the cold, plants have evolved to use a range of molecular mechanisms. The major regulatory pathway under low-temperature stress involves the conversion of external stimulus into an internal signal that triggers a defence mechanism through a transcriptional cascade to counter stress. Cold-receptive mechanism and cell signalling involve cold-related signalling molecules, sensors, calcium signals, MAPK cascade, and ICE-COR-CBF pathway that modulate signal transduction in plants. Of these, the ICE-CBF-COR signalling is considered to be an important regulator for cold-stress acclimation. ICE stimulates acclimation to cold and plays a pivotal role in regulating CBF-mediated cold-tolerance mechanism. Thus, CBFs regulate COR gene expression by binding to its promoter. Similarly, the C-repeat binding factor-dependent signalling cascade also stimulates osmotic stress-regulatory gene expression. This review elucidates the regulatory mechanism underlying cold stress, i.e., signal molecules, cold receptors, signal-transduction pathways, metabolic regulation under cold stress, and crosstalk of regulatory pathways with other abiotic stresses in plants. The results may pave the way for crop improvement in low-temperature environments.
Collapse
Affiliation(s)
- Suman Gusain
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, 201002, India
| | - Shubham Joshi
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, 201002, India
| | - Rohit Joshi
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, 201002, India.
| |
Collapse
|
42
|
Song J, Sun P, Kong W, Xie Z, Li C, Liu JH. SnRK2.4-mediated phosphorylation of ABF2 regulates ARGININE DECARBOXYLASE expression and putrescine accumulation under drought stress. THE NEW PHYTOLOGIST 2023; 238:216-236. [PMID: 36210523 DOI: 10.1111/nph.18526] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Arginine decarboxylase (ADC)-mediated putrescine (Put) biosynthesis plays an important role in plant abiotic stress response. SNF1-related protein kinases 2s (SnRK2s) and abscisic acid (ABA)-response element (ABRE)-binding factors (ABFs), are core components of the ABA signaling pathway involved in drought stress response. We previously reported that ADC of Poncirus trifoliata (PtrADC) functions in drought tolerance. However, whether and how SnRK2 and ABF regulate PtrADC to modulate putrescine accumulation under drought stress remains largely unclear. Herein, we employed a set of physiological, biochemical, and molecular approaches to reveal that a protein complex composed of PtrSnRK2.4 and PtrABF2 modulates putrescine biosynthesis and drought tolerance by directly regulating PtrADC. PtrABF2 was upregulated by dehydration in an ABA-dependent manner. PtrABF2 activated PtrADC expression by directly and specifically binding to the ABRE core sequence within its promoter and positively regulated drought tolerance via modulating putrescine accumulation. PtrSnRK2.4 interacts with and phosphorylates PtrABF2 at Ser93. PtrSnRK2.4-mediated PtrABF2 phosphorylation is essential for the transcriptional regulation of PtrADC. Besides, PtrSnRK2.4 was shown to play a positive role in drought tolerance by facilitating putrescine synthesis. Taken together, this study sheds new light on the regulatory module SnRK2.4-ABF2-ADC responsible for fine-tuning putrescine accumulation under drought stress, which advances our understanding on transcriptional regulation of putrescine synthesis.
Collapse
Affiliation(s)
- Jie Song
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peipei Sun
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Weina Kong
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zongzhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
43
|
Li Y, Tian Q, Wang Z, Li J, Liu S, Chang R, Chen H, Liu G. Integrated analysis of transcriptomics and metabolomics of peach under cold stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1153902. [PMID: 37051086 PMCID: PMC10083366 DOI: 10.3389/fpls.2023.1153902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Low temperature is one of the environmental factors that restrict the growth and geographical distribution of peach (Prunus persica L. Batsch). To explore the molecular mechanisms of peach brunches in response to cold, we analyzed the metabolomics and transcriptomics of 'Donghe No.1' (cold-tolerant, CT) and '21st Century' (cold-sensitive, CS) treated by different temperatures (-5 to -30°C) for 12 h. Some cold-responsive metabolites (e.g., saccharides, phenolic acids and flavones) were identified with upregulation only in CT. Further, we identified 1991 cold tolerance associated genes in these samples and they were significantly enriched in the pathways of 'galactose metabolism', 'phenylpropanoid biosynthesis' and 'flavonoids biosynthesis'. Weighted gene correlation network analysis showed that soluble sugar, flavone, and lignin biosynthetic associated genes might play a key role in the cold tolerance of peach. In addition, several key genes (e.g., COMT, CCR, CAD, PER and F3'H) were substantially expressed more in CT than CS under cold stress, indicating that they might be major factors during the adaptation of peach to low temperature. This study will not only improve our understanding towards the molecular mechanisms of peach trees under cold stress but also contribute to the screening and breeding program of peach in the future.
Collapse
|
44
|
Salih H, Bai W, Zhao M, Liang Y, Yang R, Zhang D, Li X. Genome-Wide Characterization and Expression Analysis of Transcription Factor Families in Desert Moss Syntrichia caninervis under Abiotic Stresses. Int J Mol Sci 2023; 24:ijms24076137. [PMID: 37047111 PMCID: PMC10094499 DOI: 10.3390/ijms24076137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/05/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Transcription factor (TF) families play important roles in plant stress responses. S. caninervis is a new model moss for plant desiccation tolerance studies. Here, we report a high-confidence identification and characterization of 591 TFs representing 52 families that covered all chromosomes in S. caninervis. GO term and KEGG pathway analysis showed that TFs were involved in the regulation of transcription, DNA-templated, gene expression, binding activities, plant hormone signal transduction, and circadian rhythm. A number of TF promoter regions have a mixture of various hormones-related cis-regulatory elements. AP2/ERF, bHLH, MYB, and C2H2-zinc finger TFs were the overrepresented TF families in S. caninervis, and the detailed classification of each family is performed based on structural features. Transcriptome analysis revealed the transcript abundances of some ScAP2/ERF, bHLH, MYB, and C2H2 genes were accumulated in the treated S. caninervis under cold, dehydration, and rehydration stresses. The RT-qPCR results strongly agreed with RNA-seq analysis, indicating these TFs might play a key role in S. caninervis response to abiotic stress. Our comparative TF characterization and classification provide the foundations for functional investigations of the dominant TF genes involved in S. caninervis stress response, as well as excellent stress tolerance gene resources for plant stress resistance breeding.
Collapse
|
45
|
Ma T, Wang S, Sun C, Tian J, Guo H, Cui S, Zhao H. Arabidopsis LFR, a SWI/SNF complex component, interacts with ICE1 and activates ICE1 and CBF3 expression in cold acclimation. FRONTIERS IN PLANT SCIENCE 2023; 14:1097158. [PMID: 37025149 PMCID: PMC10070696 DOI: 10.3389/fpls.2023.1097158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Low temperatures restrict the growth and geographic distribution of plants, as well as crop yields. Appropriate transcriptional regulation is critical for cold acclimation in plants. In this study, we found that the mutation of Leaf and flower related (LFR), a component of SWI/SNF chromatin remodeling complex (CRC) important for transcriptional regulation in Arabidopsis (Arabidopsis thaliana), resulted in hypersensitivity to freezing stress in plants with or without cold acclimation, and this defect was successfully complemented by LFR. The expression levels of CBFs and COR genes in cold-treated lfr-1 mutant plants were lower than those in wild-type plants. Furthermore, LFR was found to interact directly with ICE1 in yeast and plants. Consistent with this, LFR was able to directly bind to the promoter region of CBF3, a direct target of ICE1. LFR was also able to bind to ICE1 chromatin and was required for ICE1 transcription. Together, these results demonstrate that LFR interacts directly with ICE1 and activates ICE1 and CBF3 gene expression in response to cold stress. Our work enhances our understanding of the epigenetic regulation of cold responses in plants.
Collapse
|
46
|
Wu J, Sun W, Sun C, Xu C, Li S, Li P, Xu H, Zhu D, Li M, Yang L, Wei J, Hanzawa A, Tapati SJ, Uenoyama R, Miyazaki M, Rahman A, Wu S. Cold stress induces malformed tomato fruits by breaking the feedback loops of stem cell regulation in floral meristem. THE NEW PHYTOLOGIST 2023; 237:2268-2283. [PMID: 36564973 DOI: 10.1111/nph.18699] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Fruit malformation is a major constrain in fruit production worldwide resulting in substantial economic losses. The farmers for decades noticed that the chilling temperature before blooming often caused malformed fruits. However, the molecular mechanism underlying this phenomenon is unclear. Here we examined the fruit development in response to cold stress in tomato, and demonstrated that short-term cold stress increased the callose accumulation in both shoot apical and floral meristems, resulting in the symplastic isolation and altered intercellular movement of WUS. In contrast to the rapidly restored SlWUS transcription during the recovery from cold stress, the callose removal was delayed due to obstructed plasmodesmata. The delayed reinstatement of cell-to-cell transport of SlWUS prevented the activation of SlCLV3 and TAG1, causing the interrupted feedback inhibition of SlWUS expression, leading to the expanded stem cell population and malformed fruits. We further showed that the callose dynamics in response to short-term cold stress presumably exploits the mechanism of bud dormancy during the seasonal growth, involving two antagonistic hormones, abscisic acid and gibberellin. Our results provide a novel insight into the cold stress regulated malformation of fruit.
Collapse
Affiliation(s)
- Junqing Wu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenru Sun
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chao Sun
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chunmiao Xu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuang Li
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pengxue Li
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huimin Xu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Danyang Zhu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meng Li
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liling Yang
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinbo Wei
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Aya Hanzawa
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Sumaiya Jannat Tapati
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Reiko Uenoyama
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Masao Miyazaki
- Department of Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Abidur Rahman
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, 020-8550, Japan
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Shuang Wu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
47
|
Jeon M, Jeong G, Yang Y, Luo X, Jeong D, Kyung J, Hyun Y, He Y, Lee I. Vernalization-triggered expression of the antisense transcript COOLAIR is mediated by CBF genes. eLife 2023; 12:84594. [PMID: 36722843 PMCID: PMC10036118 DOI: 10.7554/elife.84594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023] Open
Abstract
To synchronize flowering time with spring, many plants undergo vernalization, a floral-promotion process triggered by exposure to long-term winter cold. In Arabidopsis thaliana, this is achieved through cold-mediated epigenetic silencing of the floral repressor, FLOWERING LOCUS C (FLC). COOLAIR, a cold-induced antisense RNA transcribed from the FLC locus, has been proposed to facilitate FLC silencing. Here, we show that C-repeat (CRT)/dehydration-responsive elements (DREs) at the 3'-end of FLC and CRT/DRE-binding factors (CBFs) are required for cold-mediated expression of COOLAIR. CBFs bind to CRT/DREs at the 3'-end of FLC, both in vitro and in vivo, and CBF levels increase gradually during vernalization. Cold-induced COOLAIR expression is severely impaired in cbfs mutants in which all CBF genes are knocked-out. Conversely, CBF-overexpressing plants show increased COOLAIR levels even at warm temperatures. We show that COOLAIR is induced by CBFs during early stages of vernalization but COOLAIR levels decrease in later phases as FLC chromatin transitions to an inactive state to which CBFs can no longer bind. We also demonstrate that cbfs and FLCΔCOOLAIR mutants exhibit a normal vernalization response despite their inability to activate COOLAIR expression during cold, revealing that COOLAIR is not required for the vernalization process.
Collapse
Affiliation(s)
- Myeongjune Jeon
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| | - Goowon Jeong
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| | - Yupeng Yang
- Shanghai Center for Plant Stress Biology & National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Luo
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Daesong Jeong
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| | - Jinseul Kyung
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| | - Youbong Hyun
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| | - Yuehui He
- Shanghai Center for Plant Stress Biology & National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Ilha Lee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
48
|
Yang J, Guo X, Mei Q, Qiu L, Chen P, Li W, Mao K, Ma F. MdbHLH4 negatively regulates apple cold tolerance by inhibiting MdCBF1/3 expression and promoting MdCAX3L-2 expression. PLANT PHYSIOLOGY 2023; 191:789-806. [PMID: 36331333 PMCID: PMC9806570 DOI: 10.1093/plphys/kiac512] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Low temperature affects the yield and quality of crops. Inducer of CBF expression 1 (ICE1) plays a positive role in plant cold tolerance by promoting the expression of CRT binding factor (CBF) and cold-responsive (COR) genes. Several ICE1-interacting transcription factors (TFs) that regulate plant cold tolerance have been identified. However, how these TFs affect the function of ICE1 and CBF expression under cold conditions remains unclear. Here, we identified the MYC-type TF MdbHLH4, a negative regulator of cold tolerance in Arabidopsis (Arabidopsis thaliana) and apple (Malus domestica) plants. Under cold conditions, MdbHLH4 inhibits the expression of MdCBF1 and MdCBF3 by directly binding to their promoters. It also interacts with MdICE1L, a homolog of AtICE1 in apple, and inhibits the binding of MdICE1L to the promoters of MdCBF1/3 and thus their expression. We showed that MdCAX3L-2, a Ca2+/H+ exchanger (CAX) family gene that negatively regulates plant cold tolerance, is also a direct target of MdbHLH4. MdbHLH4 reduced apple cold tolerance by promoting MdCAX3L-2 expression. Moreover, overexpression of either MdCAX3L-2 or MdbHLH4 promoted the cold-induced ubiquitination and degradation of MdICE1L. Overall, our results reveal that MdbHLH4 negatively regulates plant cold tolerance by inhibiting MdCBF1/3 expression and MdICE1L promoter-binding activity, as well as by promoting MdCAX3L-2 expression and cold-induced MdICE1L degradation. These findings provide insights into the mechanisms by which ICE1-interacting TFs regulate CBF expression and ICE1 function and thus plant cold tolerance.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xin Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Quanlin Mei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Lina Qiu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Peihong Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Weihan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
49
|
Zhang X, Cao X, Xia Y, Ban Q, Cao L, Li S, Li Y. CsCBF5 depletion impairs cold tolerance in tea plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111463. [PMID: 36126878 DOI: 10.1016/j.plantsci.2022.111463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 06/15/2023]
Abstract
CBFs play important roles in tea plant cold tolerance. In our study, 16 tea varieties were used to investigate the relationship between the expression level of CsCBFs and cold tolerance in field experiments. A strong and positive correlation was found between cold stress-regulated CsCBF1, CsCBF3 and CsCBF5 expression levels (R2 > 0.8) in tea mesophyll cells and cold tolerance in 16 tea varieties. A previous study reported that CsCBF1 and CsCBF3 were important components associated with cold tolerance in tea plants; thus, the function of CsCBF5 in the CsCBF family was targeted. Our previous study reported that CsCBF5 was localized in the nucleus and exhibited transcriptional activity. In the current study, MDA content in leaves was significantly increased in CsCBF5-silenced leaves, which exhibited poor cold tolerance, compared with WT plants under cold stress. In contrast, increased germination rates and antioxidant enzyme activities under cold conditions compared with WT plants. Furthermore, CsCBF5 overexpression in Arabidopsis promoted the expression levels of the cold-regulated genes AtCOR15a, AtCOR78, AtERD4 and AtRD29B; however, the expression levels of downstream genes, including CsCOR47, CsCOR413, CsERD4 and CsRD29B, were significantly reduced in CsCBF5-silenced tea leaves. Taken together, our results indicated that CsCBF5 could function as a positive regulator in the cold stress response.
Collapse
Affiliation(s)
- Xianchen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xiaojie Cao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yuhui Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Qiuyan Ban
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lu Cao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Siya Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yeyun Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
50
|
Hu Y, Zhang H, Gu B, Zhang J. The transcription factor VaMYC2 from Chinese wild Vitis amurensis enhances cold tolerance of grape (V. vinifera) by up-regulating VaCBF1 and VaP5CS. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:218-229. [PMID: 36272189 DOI: 10.1016/j.plaphy.2022.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/26/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Cultivated grapes, one of the most important fruit crops in the world, are sensitive to low temperature. Since Chinese wild grape Vitis amurensis is highly tolerant to cold, it is imperative to study and utilize its cold-tolerance genes for molecular breeding. Here, a VaMYC2 gene from V. amurensis was cloned, and its function was investigated by expressing VaMYC2 in the cold-sensitive V. vinifera cultivar 'Thompson Seedless'. The expression of VaMYC2 could be induced by cold stress, methyl jasmonate and ethylene treatment, but was inhibited by abscisic acid in leaves of V. amurensis. When transgenic grape lines expressing VaMYC2 were subjected to cold stress (-1 °C) for 41 h, the transgenic lines showed less freezing injury and lower electrolyte leakage and malondialdehyde content, but higher contents of soluble sugars, soluble proteins and proline, and antioxidant enzyme activities compared with wild-type. Moreover, the expression of some cold-tolerance related genes increased in transgenic lines. Besides, the interactions of VaMYC2 with VaJAZ1 and VaJAZ7B were confirmed by yeast two-hybrid and bimolecular fluorescence complementation assays. Yeast one-hybrid and dual luciferase assays showed that VaMYC2 can bind to the promoters of VaCBF1 and VaP5CS and activate their expressions. In conclusion, expression of VaMYC2 in V. vinifera enhances cold tolerance of transgenic grapes which is attributed to enhanced accumulation of osmotic regulatory substances, cell membrane stability, antioxidant enzyme activity, and expression of cold tolerance-related genes. Also, VaMYC2 interacts with VaJAZ1 and VaJAZ7, and activates the expression of VaCBF1 and VaP5CS to mediate cold tolerance in grapes.
Collapse
Affiliation(s)
- Yafan Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Hongjuan Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Bao Gu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|