1
|
Bertollo AG, Mingoti MED, Ignácio ZM. Neurobiological mechanisms in the kynurenine pathway and major depressive disorder. Rev Neurosci 2024:revneuro-2024-0065. [PMID: 39245854 DOI: 10.1515/revneuro-2024-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Major depressive disorder (MDD) is a prevalent psychiatric disorder that has damage to people's quality of life. Tryptophan is the precursor to serotonin, a critical neurotransmitter in mood modulation. In mammals, most free tryptophan is degraded by the kynurenine pathway (KP), resulting in a range of metabolites involved in inflammation, immune response, and neurotransmission. The imbalance between quinolinic acid (QA), a toxic metabolite, and kynurenic acid (KynA), a protective metabolite, is a relevant phenomenon involved in the pathophysiology of MDD. Proinflammatory cytokines increase the activity of the enzyme indoleamine 2,3-dioxygenase (IDO), leading to the degradation of tryptophan in the KP and an increase in the release of QA. IDO activates proinflammatory genes, potentiating neuroinflammation and deregulating other physiological mechanisms related to chronic stress and MDD. This review highlights the physiological mechanisms involved with stress and MDD, which are underlying an imbalance of the KP and discuss potential therapeutic targets.
Collapse
Affiliation(s)
- Amanda Gollo Bertollo
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Maiqueli Eduarda Dama Mingoti
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| |
Collapse
|
2
|
Liu Q, Tabrez S, Niekamp P, Kim CH. Circadian-clock-controlled endocrine and cytokine signals regulate multipotential innate lymphoid cell progenitors in the bone marrow. Cell Rep 2024; 43:114200. [PMID: 38717905 PMCID: PMC11264331 DOI: 10.1016/j.celrep.2024.114200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/12/2023] [Accepted: 04/22/2024] [Indexed: 06/01/2024] Open
Abstract
Innate lymphoid cells (ILCs), strategically positioned throughout the body, undergo population declines over time. A solution to counteract this problem is timely mobilization of multipotential progenitors from the bone marrow. It remains unknown what triggers the mobilization of bone marrow ILC progenitors (ILCPs). We report that ILCPs are regulated by the circadian clock to emigrate and generate mature ILCs in the periphery. We found that circadian-clock-defective ILCPs fail to normally emigrate and generate ILCs. We identified circadian-clock-controlled endocrine and cytokine cues that, respectively, regulate the retention and emigration of ILCPs at distinct times of each day. Activation of the stress-hormone-sensing glucocorticoid receptor upregulates CXCR4 on ILCPs for their retention in the bone marrow, while the interleukin-18 (IL-18) and RORα signals upregulate S1PR1 on ILCPs for their mobilization to the periphery. Our findings establish important roles of circadian signals for the homeostatic efflux of bone marrow ILCPs.
Collapse
Affiliation(s)
- Qingyang Liu
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Immunology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shams Tabrez
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Patrick Niekamp
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Chang H Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Immunology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Drzyzga Ł, Śpiewak D, Dorecka M, Wyględowska-Promieńska D. Available Therapeutic Options for Corneal Neovascularization: A Review. Int J Mol Sci 2024; 25:5479. [PMID: 38791518 PMCID: PMC11121997 DOI: 10.3390/ijms25105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Corneal neovascularization can impair vision and result in a poor quality of life. The pathogenesis involves a complex interplay of angiogenic factors, notably vascular endothelial growth factor (VEGF). This review provides a comprehensive overview of potential therapies for corneal neovascularization, covering tissue inhibitors of metalloproteinases (TIMPs), transforming growth factor beta (TGF-β) inhibitors, interleukin-1L receptor antagonist (IL-1 Ra), nitric oxide synthase (NOS) isoforms, galectin-3 inhibitors, retinal pigment epithelium-derived factor (PEDF), platelet-derived growth factor (PDGF) receptor inhibitors, and surgical treatments. Conventional treatments include anti-VEGF therapy and laser interventions, while emerging therapies such as immunosuppressive drugs (cyclosporine and rapamycin) have been explored. Losartan and decorin are potential antifibrotic agents that mitigate TGF-β-induced fibrosis. Ocular nanosystems are innovative drug-delivery platforms that facilitate the targeted release of therapeutic agents. Gene therapies, such as small interfering RNA and antisense oligonucleotides, are promising approaches for selectively inhibiting angiogenesis-related gene expression. Aganirsen is efficacious in reducing the corneal neovascularization area without significant adverse effects. These multifaceted approaches underscore the corneal neovascularization management complexity and highlight ideas for enhancing therapeutic outcomes. Furthermore, the importance of combination therapies and the need for further research to develop specific inhibitors while considering their therapeutic efficacy and potential adverse effects are discussed.
Collapse
Affiliation(s)
- Łukasz Drzyzga
- Department of Ophthalmology, Prof. K. Gibiński University Clinical Center, Medical University of Silesia, 40-055 Katowice, Poland
- Clinical Ophthalmology Center Okolux, 40-754 Katowice, Poland
| | - Dorota Śpiewak
- Department of Ophthalmology, Prof. K. Gibiński University Clinical Center, Medical University of Silesia, 40-055 Katowice, Poland
- Clinical Ophthalmology Center Okolux, 40-754 Katowice, Poland
| | - Mariola Dorecka
- Department of Ophthalmology, Prof. K. Gibiński University Clinical Center, Medical University of Silesia, 40-055 Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-514 Katowice, Poland
| | - Dorota Wyględowska-Promieńska
- Department of Ophthalmology, Prof. K. Gibiński University Clinical Center, Medical University of Silesia, 40-055 Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-514 Katowice, Poland
| |
Collapse
|
4
|
Tamta K, Kumar A, Arya H, Arya S, Maurya RC. Neuronal plasticity in hippocampal neurons due to chronic mild stress and after stress removal in postnatal chicks. J Anat 2024; 244:831-860. [PMID: 38153009 PMCID: PMC11021661 DOI: 10.1111/joa.13997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023] Open
Abstract
The avian dorsomedial surface of the cerebral hemisphere is occupied by the hippocampal complex (HCC), which plays an important role in learning, memory, cognitive functions, and regulating instinctive behavior patterns. The objective of the study was to evaluate the effect of chronic mild stress (CMS) in 4, 6, and 8 weeks and after chronic stress removal (CSR) in 6 and 8 weeks, on neuronal plasticity in HCC neurons of chicks through the Golgi-Cox technique. Further, behavioral study and open field test were conducted to test of exploration or of anxiety. The study revealed that the length of CMS and CSR groups shows a similar pattern as in nonstressed (NS) chicks, while weight shows nonsignificant decrease due to CMS as compared to NS and after CSR. The behavioral test depicts that the CMS group took more time to reach the food as compared to the NS and CSR groups. Due to CMS, the dendritic field of multipolar neurons shows significant decrease in 4 weeks, but in 6- and 8-week-old chicks, the multipolar, pyramidal, and stellate neurons depict significant decrease, whereas after CSR all neurons show significant increase in 8-week-old chicks. In 4- and 8-week-old chicks, all neurons depict significant decrease in their spine number, whereas in 6 weeks only multipolar neurons show significant decrease, but after CSR significant increase in 8-week-old chicks was observed. The study revealed that HCC shows continuous neuronal plasticity, which plays a significant role in normalizing and re-establishing the homeostasis in animals to survive.
Collapse
Affiliation(s)
- Kavita Tamta
- Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University, Almora, India
- Kumaun University Nainital, Uttarakhand, India
| | - Adarsh Kumar
- Department of Applied Sciences, Dr. K. N. Modi University, Newai-Tonk, India
| | - Hemlata Arya
- Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University, Almora, India
- Kumaun University Nainital, Uttarakhand, India
| | - Shweta Arya
- Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University, Almora, India
| | - Ram Chandra Maurya
- Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University, Almora, India
- Kumaun University Nainital, Uttarakhand, India
| |
Collapse
|
5
|
Deuter CE, Kaczmarczyk M, Hellmann-Regen J, Kuehl LK, Wingenfeld K, Otte C. The influence of pharmacological mineralocorticoid and glucocorticoid receptor blockade on the cortisol response to psychological stress. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110905. [PMID: 38043634 DOI: 10.1016/j.pnpbp.2023.110905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
The glucocorticoid cortisol is the end product of the hypothalamic-pituitary-adrenal (HPA) axis and crucial for the stress response in humans. Cortisol regulates numerous biological functions by binding to two different types of receptors: the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). Both receptors are found in the brain where they are crucially involved in various mental functions and in feedback inhibition of cortisol release. The precise role of both receptors in the human stress response is not completely understood. In this study, we examined the effects of pharmacological blockade of the MR or the GR on stress-induced cortisol release in a sample of 318 healthy young men (M = 25.42, SD = 5.01). Participants received the MR antagonist spironolactone (300 mg), the GR antagonist mifepristone (600 mg), or a placebo and were subjected 90 min later to a social-evaluative stressor (Trier Social Stress Test) or a non-stressful control condition. We found significantly higher stress-induced cortisol release in the spironolactone group, whereas participants after mifepristone administration did not differ from the control groups. These results suggest that MR blockade results in attenuated fast negative feedback processes and emphasize the important role of the MR during the early phase of the stress response.
Collapse
Affiliation(s)
- Christian E Deuter
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany.
| | - Michael Kaczmarczyk
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany
| | - Julian Hellmann-Regen
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany; DZPG (German Center for Mental Health), Germany
| | | | - Katja Wingenfeld
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany; DZPG (German Center for Mental Health), Germany
| | - Christian Otte
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany; DZPG (German Center for Mental Health), Germany
| |
Collapse
|
6
|
Benítez-Burraco A, Uriagereka J, Nataf S. The genomic landscape of mammal domestication might be orchestrated by selected transcription factors regulating brain and craniofacial development. Dev Genes Evol 2023; 233:123-135. [PMID: 37552321 PMCID: PMC10746608 DOI: 10.1007/s00427-023-00709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
Domestication transforms once wild animals into tamed animals that can be then exploited by humans. The process entails modifications in the body, cognition, and behavior that are essentially driven by differences in gene expression patterns. Although genetic and epigenetic mechanisms were shown to underlie such differences, less is known about the role exerted by trans-regulatory molecules, notably transcription factors (TFs) in domestication. In this paper, we conducted extensive in silico analyses aimed to clarify the TF landscape of mammal domestication. We first searched the literature, so as to establish a large list of genes selected with domestication in mammals. From this list, we selected genes experimentally demonstrated to exhibit TF functions. We also considered TFs displaying a statistically significant number of targets among the entire list of (domestication) selected genes. This workflow allowed us to identify 5 candidate TFs (SOX2, KLF4, MITF, NR3C1, NR3C2) that were further assessed in terms of biochemical and functional properties. We found that such TFs-of-interest related to mammal domestication are all significantly involved in the development of the brain and the craniofacial region, as well as the immune response and lipid metabolism. A ranking strategy, essentially based on a survey of protein-protein interactions datasets, allowed us to identify SOX2 as the main candidate TF involved in domestication-associated evolutionary changes. These findings should help to clarify the molecular mechanics of domestication and are of interest for future studies aimed to understand the behavioral and cognitive changes associated to domestication.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, Seville, Spain.
- Área de Lingüística General, Departamento de Lengua Española, Lingüística y Teoría de la Literatura, Facultad de Filología, Universidad de Sevilla, C/ Palos de la Frontera s/n., 41007-, Sevilla, España.
| | - Juan Uriagereka
- Department of Linguistics and School of Languages, Literatures & Cultures, University of Maryland, College Park, MD, USA
| | - Serge Nataf
- Stem-cell and Brain Research Institute, 18 avenue de Doyen Lépine, F-69500, Bron, France
- University of Lyon 1, 43 Bd du 11 Novembre 1918, F-69100, Villeurbanne, France
- Bank of Tissues and Cells, Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d'Arsonval, F-69003, Lyon, France
| |
Collapse
|
7
|
Choi D, Kang W, Park S, Son B, Park T. Identification of Glucocorticoid Receptor Target Genes That Potentially Inhibit Collagen Synthesis in Human Dermal Fibroblasts. Biomolecules 2023; 13:978. [PMID: 37371558 DOI: 10.3390/biom13060978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Over several decades, excess glucocorticoids (GCs) of endogenous or exogenous origin have been recognized to significantly inhibit collagen synthesis and accelerate skin aging. However, little is known regarding their molecular mechanisms. We hypothesized that the action of GCs on collagen production is at least partially through the glucocorticoid receptor (GR) and its target genes, and therefore aimed to identify GR target genes that potentially inhibit collagen synthesis in Hs68 human dermal fibroblasts. We first confirmed that dexamethasone, a synthetic GC, induced canonical GR signaling in dermal fibroblasts. We then collected 108 candidates for GR target genes reported in previous studies on GR target genes and verified that 17 genes were transcriptionally upregulated in dexamethasone-treated dermal fibroblasts. Subsequently, by individual knockdown of the 17 genes, we identified that six genes, AT-rich interaction domain 5B, FK506 binding protein 5, lysyl oxidase, methylenetetrahydrofolate dehydrogenase (NADP + dependent) 2, zinc finger protein 36, and zinc fingers and homeoboxes 3, are potentially involved in GC-mediated inhibition of collagen synthesis. The present study sheds light on the molecular mechanisms of GC-mediated skin aging and provides a basis for further research on the biological characteristics of individual GR target genes.
Collapse
Affiliation(s)
- Dabin Choi
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Wesuk Kang
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Soyoon Park
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Bomin Son
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Taesun Park
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| |
Collapse
|
8
|
Mondello JE, Gano A, Vore AS, Deak T. Cues associated with repeated ethanol exposure facilitate the corticosterone response to ethanol and immunological challenges in adult male Sprague Dawley rats: implications for neuroimmune regulation. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2023; 49:359-369. [PMID: 36862971 PMCID: PMC10474242 DOI: 10.1080/00952990.2023.2169831] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 03/04/2023]
Abstract
Background: We previously found a conditioned increase in central neuroinflammatory markers (Interleukin 6; IL-6) following exposure to alcohol-associated cues. Recent studies suggest (unconditioned) induction of IL-6 is entirely dependent on ethanol-induced corticosterone.Objectives: The goals of these present studies were to test whether alcohol-paired cues facilitated the hypothalamic-pituitary-adrenal (HPA) axis response to either a subthreshold priming alcohol dose or an immune or psychological stress challengeMethods: In Experiment 1 (N = 64), adult male Sprague Dawley rats were trained (paired or unpaired, four pairings total) with either vehicle or 2 g/kg alcohol [intragastric (i.g.) or intraperitoneal (i.p.)] injections. In Experiments 2 (N = 28) and 3 (N = 30), male rats were similarly trained but with 4 g/kg alcohol i.g. intubations. On test day, all rats were either administered a 0.5 g/kg alcohol dose (i.p. or i.g. Experiment 1), a 100 µg/kg i.p. lipopolysaccharide (LPS) challenge (Experiment 2), or a restraint challenge (Experiment 3), and exposed to alcohol-associated cues. Blood plasma was collected for analysis.Results: Alcohol-associated cues facilitated the plasma corticosterone response to a subthreshold dose of alcohol (F1,28 = 4.85, p < .05) and an immune challenge (F8,80 = 6.23, p < .001), but not a restraint challenge (F2,27 = 0.18, p > .05).Conclusion: These findings reveal that the impact of the cues associated with alcohol intoxication on the HPA axis may be context-specific. This work illustrates how HPA axis learning processes form in the early stages of alcohol use and has important implications for how the HPA and neuroimmune conditioning may develop in alcohol use disorder in humans and facilitate the response to a later immune challenge.
Collapse
Affiliation(s)
- Jamie E. Mondello
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000, USA
| | - Anny Gano
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000, USA
| | - Andrew S. Vore
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000, USA
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000, USA
| |
Collapse
|
9
|
Gulyaeva NV. Glucocorticoids Orchestrate Adult Hippocampal Plasticity: Growth Points and Translational Aspects. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:565-589. [PMID: 37331704 DOI: 10.1134/s0006297923050012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 06/20/2023]
Abstract
The review analyzes modern concepts about the control of various mechanisms of the hippocampal neuroplasticity in adult mammals and humans by glucocorticoids. Glucocorticoid hormones ensure the coordinated functioning of key components and mechanisms of hippocampal plasticity: neurogenesis, glutamatergic neurotransmission, microglia and astrocytes, systems of neurotrophic factors, neuroinflammation, proteases, metabolic hormones, neurosteroids. Regulatory mechanisms are diverse; along with the direct action of glucocorticoids through their receptors, there are conciliated glucocorticoid-dependent effects, as well as numerous interactions between various systems and components. Despite the fact that many connections in this complex regulatory scheme have not yet been established, the study of the factors and mechanisms considered in the work forms growth points in the field of glucocorticoid-regulated processes in the brain and primarily in the hippocampus. These studies are fundamentally important for the translation into the clinic and the potential treatment/prevention of common diseases of the emotional and cognitive spheres and respective comorbid conditions.
Collapse
Affiliation(s)
- Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, 115419, Russia
| |
Collapse
|
10
|
Viho EMG, Kroon J, Feelders RA, Houtman R, van den Dungen ESR, Pereira AM, Hunt HJ, Hofland LJ, Meijer OC. Peripheral glucocorticoid receptor antagonism by relacorilant with modest HPA axis disinhibition. J Endocrinol 2023; 256:JOE-22-0263. [PMID: 36445262 PMCID: PMC9874980 DOI: 10.1530/joe-22-0263] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 11/29/2022]
Abstract
Glucocorticoid stress hormones are produced in response to hypothalamic-pituitary-adrenal (HPA) axis activation. Glucocorticoids are essential for physiology and exert numerous actions via binding to the glucocorticoid receptor (GR). Relacorilant is a highly selective GR antagonist currently undergoing a phase 3 clinical evaluation for the treatment of endogenous Cushing's syndrome. It was found that increases in serum adrenocorticotropic hormone (ACTH) and cortisol concentrations after relacorilant treatment were substantially less than the increases typically observed with mifepristone, but it is unclear what underlies these differences. In this study, we set out to further preclinically characterize relacorilant in comparison to the classical but non-selective GR antagonist mifepristone. In human HEK-293 cells, relacorilant potently antagonized dexamethasone- and cortisol-induced GR signaling, and in human peripheral blood mononuclear cells, relacorilant largely prevented the anti-inflammatory effects of dexamethasone. In mice, relacorilant treatment prevented hyperinsulinemia and immunosuppression caused by increased corticosterone exposure. Relacorilant treatment reduced the expression of classical GR target genes in peripheral tissues but not in the brain. In mice, relacorilant induced a modest disinhibition of the HPA axis as compared to mifepristone. In line with this, in mouse pituitary cells, relacorilant was generally less potent than mifepristone in regulating Pomc mRNA and ACTH release. This contrast between relacorilant and mifepristone is possibly due to the distinct transcriptional coregulator recruitment by the GR. In conclusion, relacorilant is thus an efficacious peripheral GR antagonist in mice with only modest disinhibition of the HPA axis, and the distinct properties of relacorilant endorse the potential of selective GR antagonist treatment for endogenous Cushing's syndrome.
Collapse
Affiliation(s)
- Eva M G Viho
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan Kroon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Corcept Therapeutics, Menlo Park, CA, USA
| | - Richard A Feelders
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | | | - Alberto M Pereira
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | | | - Leo J Hofland
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Corcept Therapeutics, Menlo Park, CA, USA
- Correspondence should be addressed to O C Meijer:
| |
Collapse
|
11
|
Moses TE, Gray E, Mischel N, Greenwald MK. Effects of neuromodulation on cognitive and emotional responses to psychosocial stressors in healthy humans. Neurobiol Stress 2023; 22:100515. [PMID: 36691646 PMCID: PMC9860364 DOI: 10.1016/j.ynstr.2023.100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Physiological and psychological stressors can exert wide-ranging effects on the human brain and behavior. Research has improved understanding of how the sympatho-adreno-medullary (SAM) and hypothalamic-pituitary-adrenocortical (HPA) axes respond to stressors and the differential responses that occur depending on stressor type. Although the physiological function of SAM and HPA responses is to promote survival and safety, exaggerated psychobiological reactivity can occur in psychiatric disorders. Exaggerated reactivity may occur more for certain types of stressors, specifically, psychosocial stressors. Understanding stressor effects and how the body regulates these responses can provide insight into ways that psychobiological reactivity can be modulated. Non-invasive neuromodulation is one way that responding to stressors may be altered; research into these interventions may provide further insights into the brain circuits that modulate stress reactivity. This review focuses on the effects of acute psychosocial stressors and how neuromodulation might be effective in altering stress reactivity. Although considerable research into stress interventions focuses on treating pathology, it is imperative to first understand these mechanisms in non-clinical populations; therefore, this review will emphasize populations with no known pathology and consider how these results may translate to those with psychiatric pathologies.
Collapse
Affiliation(s)
| | | | | | - Mark K. Greenwald
- Corresponding author. Department of Psychiatry and Behavioral Neurosciences, Tolan Park Medical Building, 3901 Chrysler Service Drive, Suite 2A, Detroit, MI, 48201, USA.
| |
Collapse
|
12
|
Minchenko DO, Khita OO, Viletska YM, Sliusar MY, Rudnytska OV, Kozynkevych HE, Bezrodnyi BH, Khikhlo YP, Minchenko OH. Cortisol controls endoplasmic reticulum stress and hypoxia dependent regulation of insulin receptor and related genes expression in HEK293 cells. Endocr Regul 2023; 58:1-10. [PMID: 38345493 DOI: 10.2478/enr-2024-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Objective. Glucocorticoids are important stress-responsive regulators of insulin-dependent metabolic processes realized through specific changes in genome function. The aim of this study was to investigate the impact of cortisol on insulin receptor and related genes expression in HEK293 cells upon induction the endoplasmic reticulum (ER) stress by tunicamycin and hypoxia. Methods. The human embryonic kidney cell line HEK293 was used. Cells were exposed to cortisol (10 µM) as well as inducers of hypoxia (dimethyloxalylglycine, DMOG; 0.5 mM) and ER stress (tunicamycin; 0.2 µg/ml) for 4 h. The RNA from these cells was extracted and reverse transcribed. The expression level of INSR, IRS2, and INSIG2 and some ER stress responsive genes encoding XBP1n, non-spliced variant, XBP1s, alternatively spliced variant of XBP1, and DNAJB9 proteins, was measured by quantitative polymerase chain reaction and normalized to ACTB. Results. We showed that exposure of HEK293 cells to cortisol elicited up-regulation in the expression of INSR and DNAJB9 genes and down-regulation of XBP1s, XBP1n, IRS2, and INSIG2 mRNA levels. At the same time, induction of hypoxia by DMOG led to an up-regulation of the expression level of most studied mRNAs: XBP1s and XBP1n, IRS2 and INSIG2, but did not change significantly INSR and DNAJB9 gene expression. We also showed that combined impact of cortisol and hypoxia introduced the up-regulation of INSR and suppressed XBP1n mRNA expression levels. Furthermore, the exposure of HEK293 cells to tunicamycin affected the expression of IRS2 gene and increased the level of XBP1n mRNA. At the same time, the combined treatment of these cells with cortisol and inductor of ER stress had much stronger impact on the expression of all the tested genes: strongly increased the mRNA level of ER stress dependent factors XBP1s and DNAJB9 as well as INSR and INSIG2, but down-regulated IRS2 and XBP1n. Conclusion. Taken together, the present study indicates that cortisol may interact with ER stress and hypoxia in the regulation of ER stress dependent XBP1 and DNAJB9 mRNA expression as well as INSR and its signaling and that this corticosteroid hormone modified the impact of hypoxia and especially tunicamycin on the expression of most studied genes in HEK293 cells. These data demonstrate molecular mechanisms of glucocorticoids interaction with ER stress and insulin signaling at the cellular level.
Collapse
Affiliation(s)
- Dmytro O Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev 01030, Ukraine
- Departments of Pediatrics No.1 and Surgery, National Bohomolets Medical University, Kyiv, Ukraine
| | - Olena O Khita
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev 01030, Ukraine
| | - Yuliia M Viletska
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev 01030, Ukraine
| | - Myroslava Y Sliusar
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev 01030, Ukraine
| | - Olha V Rudnytska
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev 01030, Ukraine
| | - Halyna E Kozynkevych
- Departments of Pediatrics No.1 and Surgery, National Bohomolets Medical University, Kyiv, Ukraine
| | - Borys H Bezrodnyi
- Departments of Pediatrics No.1 and Surgery, National Bohomolets Medical University, Kyiv, Ukraine
| | - Yevgen P Khikhlo
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev 01030, Ukraine
| | - Oleksandr H Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev 01030, Ukraine
| |
Collapse
|
13
|
Cejudo-Arteaga S, Guerrero-Ramos MÁ, Kuri-Exome R, Martínez-Cordero E, Farias-Serratos F, Maldonado-Vega M. Epidemiology of Breast Cancer in Mexican Women with Obesity as a Risk Factor. Int J Mol Sci 2022; 23:10742. [PMID: 36142655 PMCID: PMC9503491 DOI: 10.3390/ijms231810742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose. Adipose tissue in overweight and obesity shows metabolic imbalance in the function of adipocytes and macrophages, this leads to altered regulation of hunger, lipid storage, and chronic inflammation possibly related to the development of breast cancer. Methods. The study was retrospective of 653 breast cancer patients treated at a tertiary care hospital. Histopathology, hormone receptors, grade, clinical stage, clinical biometry analysis, CEA and CA 15-3 antigens were analyzed. The analyses were performed at diagnosis and at the end of oncological treatments. Results. Mexican women studied and treated for breast cancer have an BMI of 29 from diagnosis and at the end of their cancer treatments. The average age was 52 ± 12 years, 54% in women older than 55 years. Cancer recurrence occurs in any molecular type; however, the common factor was overweight and obesity with 73% vs. 21% in normal weight patients. The most frequent tumor tissue in the population was positive hormone receptors of the luminal type (65%), HER2 (15%), and NT (15%). The analyses of macrophages/lymphocytes (M/L), CEA, and CA 15-3 antigens evaluated in women >55 and <55 years, with and without recurrence are elevated at the end of oncological treatments. Conclusions. The analysis of Mexican women with breast cancer showed a predominance of overweight and obesity at diagnosis and at the end of treatment. A relationship between obesity and cancer recurrence with a low response to treatment due to elevation in Ag CEA and CA 15-3 is suggested. The L/M ratio could be an indicator of inflammation related to adipose tissue since diagnosis.
Collapse
Affiliation(s)
- Shaila Cejudo-Arteaga
- Colonia Centro, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 4 Sur #104, Puebla 72420, Mexico
| | - Miguel Ángel Guerrero-Ramos
- Hospital Regional de Alta Especialidad del Bajío, Servicio de Oncología Médica, Blvd. Milenio #130, Colonia San Carlos La Roncha, León 37660, Mexico
| | - Roberto Kuri-Exome
- Hospital Regional de Alta Especialidad del Bajío, Servicio de Oncología Médica, Blvd. Milenio #130, Colonia San Carlos La Roncha, León 37660, Mexico
| | - Erika Martínez-Cordero
- Hospital Regional de Alta Especialidad del Bajío, Dirección de Planeación, Enseñanza e Investigación, Unidad de Enseñanza e Investigación, Blvd. Milenio #130, Colonia San Carlos La Roncha, León 37660, Mexico
| | - Felipe Farias-Serratos
- Hospital Regional de Alta Especialidad del Bajío, Dirección de Planeación, Enseñanza e Investigación, Unidad de Enseñanza e Investigación, Blvd. Milenio #130, Colonia San Carlos La Roncha, León 37660, Mexico
| | - María Maldonado-Vega
- Hospital Regional de Alta Especialidad del Bajío, Dirección de Planeación, Enseñanza e Investigación, Unidad de Enseñanza e Investigación, Blvd. Milenio #130, Colonia San Carlos La Roncha, León 37660, Mexico
| |
Collapse
|
14
|
Yao Y, Chen X, Yang M, Han Y, Xue T, Zhang H, Wang T, Chen W, Qiu X, Que C, Zheng M, Zhu T. Neuroendocrine stress hormones associated with short-term exposure to nitrogen dioxide and fine particulate matter in individuals with and without chronic obstructive pulmonary disease: A panel study in Beijing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119822. [PMID: 35870527 DOI: 10.1016/j.envpol.2022.119822] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Air pollution is a major trigger of chronic obstructive pulmonary disease (COPD). Dysregulation of the neuroendocrine hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal medullary (SAM) axes is essential in progression of COPD. However, it is not clear whether air pollution exposure is associated with neuroendocrine responses in individuals with and without COPD. Based on a panel study of 51 stable COPD patients and 78 non-COPD participants with 384 clinical visits, we measured the morning serum levels of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), cortisol, norepinephrine, and epinephrine as indicators of stress hormones released from the HPA and SAM axes. Ambient nitrogen dioxide (NO2), fine particulate matter (PM2.5), and meteorological conditions were continuously monitored at the station from 2 weeks before the start of clinical visits. Linear mixed-effects models were used to estimate associations between differences in stress hormones following an average of 1-14-day exposures to NO2 and PM2.5. The average 1 day air pollutant levels prior to the clinical visits were 24.4 ± 14.0 ppb for NO2 and 55.6 ± 41.5 μg/m3 for PM2.5. We observed significant increases in CRH, ACTH, and norepinephrine, and decreases in cortisol and epinephrine with interquartile range increase in the average NO2 and PM2.5 concentrations in all participants. In the stratified analyses, we identified significant between-group difference in epinephrine following NO2 exposure in individuals with and without COPD. These results may suggest the susceptibility of COPD patients to the neuroendocrine responses associated with short-term air pollution exposure.
Collapse
Affiliation(s)
- Yuan Yao
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xi Chen
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Hebei Technology Innovation Center of Human Settlement in Green Building (TCHS), Shenzhen Institute of Building Research Co., Ltd., Shenzhen, 518049, China
| | - Meigui Yang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yiqun Han
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, W12 0BZ, UK
| | - Tao Xue
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; School of Public Health, Peking University, Beijing, 100191, China
| | - Hanxiyue Zhang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Teng Wang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Wu Chen
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xinghua Qiu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Chengli Que
- Peking University First Hospital, Peking University, Beijing, 100034, China
| | - Mei Zheng
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Tong Zhu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
15
|
Tseilikman V, Akulov A, Shevelev O, Khotskina A, Kontsevaya G, Moshkin M, Fedotova J, Pashkov A, Tseilikman O, Agletdinov E, Tseilikman D, Kondashevskaya M, Zavjalov E. Paradoxical Anxiety Level Reduction in Animal Chronic Stress: A Unique Role of Hippocampus Neurobiology. Int J Mol Sci 2022; 23:ijms23169151. [PMID: 36012411 PMCID: PMC9409467 DOI: 10.3390/ijms23169151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
A paradoxical reduction in anxiety levels in chronic predator stress paradigm (PS) in Sprague–Dawley rats has recently been shown in previous works. In this paper, we studied the possible neurobiological mechanism of this phenomenon. We segregated PS-exposed Sprague–Dawley rats into the high- and low-anxiety phenotypes. The long-lasting effects of PS on corticosterone levels, blood flow speed in the carotid arteries, diffusion coefficient, and 1H nuclear magnetic resonance spectra in the hippocampus were compared in the high-anxiety and low-anxiety rats. In addition, we evaluated the gene BDNF expression in the hippocampus which is considered to be a main factor of neuroplasticity. We demonstrated that in low-anxiety rats, the corticosterone level was decreased and carotid blood flow speed was increased. Moreover, in the hippocampus of low-anxiety rats compared to the control group and high-anxiety rats, the following changes were observed: (a) a decrease in N-acetyl aspartate levels with a simultaneous increase in phosphoryl ethanol amine levels; (b) an increase in lipid peroxidation levels; (c) a decrease in apparent diffusion coefficient value; (d) an increase in BDNF gene expression. Based on these findings, we proposed that stress-induced anxiety reduction is associated with the elevation of BDNF gene expression directly. Low corticosterone levels and a rise in carotid blood flow speed might facilitate BDNF gene expression. Meanwhile, the decrease in apparent diffusion coefficient value and decrease in N-acetyl aspartate levels, as well as an increase in the lipid peroxidation levels, in the hippocampus possibly reflected destructive changes in the hippocampus. We suggested that in Sprague–Dawley rats, these morphological alterations might be considered as an impetus for further increase in neuroplasticity in the hippocampus.
Collapse
Affiliation(s)
- Vadim Tseilikman
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
- Correspondence:
| | - Andrey Akulov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Oleg Shevelev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Anna Khotskina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Galina Kontsevaya
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Mikhail Moshkin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Julia Fedotova
- Laboratory of Neuroendocrinology, Pavlov Institute of Physiology, RAS, 199034 St. Petersburg, Russia
| | - Anton Pashkov
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
- FSBI “Federal Neurosurgical Center”, Nemirovich-Danchenko Str. 132/1, 630087 Novosibirsk, Russia
| | - Olga Tseilikman
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
- Department of Basic Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Eduard Agletdinov
- AO Vector-Best, Koltsovo Village, Research and Production Zone, Building 36, Room 211, 630559 Novosibirsk, Russia
| | - David Tseilikman
- Zelman Institute of Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | | | - Evgenii Zavjalov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| |
Collapse
|
16
|
Zheng HS, Daniel JG, Salamat JM, Mackay L, Foradori CD, Kemppainen RJ, Pondugula SR, Tao YX, Huang CCJ. Early transcriptomic response of mouse adrenal gland and Y-1 cells to dexamethasone. Endocr Connect 2022; 11:e220064. [PMID: 35904237 PMCID: PMC9346337 DOI: 10.1530/ec-22-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/05/2022]
Abstract
Glucocorticoids have short- and long-term effects on adrenal gland function and development. RNA sequencing (RNA-seq) was performed to identify early transcriptomic responses to the synthetic glucocorticoid, dexamethasone (Dex), in vitro and in vivo. In total, 1711 genes were differentially expressed in the adrenal glands of the 1-h Dex-treated mice. Among them, only 113 were also considered differentially expressed genes (DEGs) in murine adrenocortical Y-1 cells treated with Dex for 1 h. Gene ontology analysis showed that the upregulated DEGs in the adrenal gland of the 1-h Dex-treated mice were highly associated with the development of neuronal cells, suggesting the adrenal medulla had a rapid response to Dex. Interestingly, only 4.3% of Dex-responsive genes in the Y-1 cell line under Dex treatment for 1 h were differentially expressed under Dex treatment for 24 h. The heatmaps revealed that most early responsive DEGs in Y-1 cells during 1 h of treatment exhibited a transient response. The expression of these genes under treatment for 24 h returned to basal levels similar to that during control treatment. In summary, this research compared the rapid transcriptomic effects of Dex stimulation in vivo and in vitro. Notably, adrenocortical Y-1 cells had a transient early response to Dex treatment. Furthermore, the DEGs had a minimal overlap in the 1-h Dex-treated group in vivo and in vitro.
Collapse
Affiliation(s)
- Huifei Sophia Zheng
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Jeffrey G Daniel
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Julia M Salamat
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Laci Mackay
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Chad D Foradori
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Robert J Kemppainen
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Chen-Che Jeff Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| |
Collapse
|
17
|
Biernacki T, Kokas Z, Sandi D, Füvesi J, Fricska-Nagy Z, Faragó P, Kincses TZ, Klivényi P, Bencsik K, Vécsei L. Emerging Biomarkers of Multiple Sclerosis in the Blood and the CSF: A Focus on Neurofilaments and Therapeutic Considerations. Int J Mol Sci 2022; 23:ijms23063383. [PMID: 35328802 PMCID: PMC8951485 DOI: 10.3390/ijms23063383] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Multiple Sclerosis (MS) is the most common immune-mediated chronic neurodegenerative disease of the central nervous system (CNS) affecting young people. This is due to the permanent disability, cognitive impairment, and the enormous detrimental impact MS can exert on a patient's health-related quality of life. It is of great importance to recognise it in time and commence adequate treatment at an early stage. The currently used disease-modifying therapies (DMT) aim to reduce disease activity and thus halt disability development, which in current clinical practice are monitored by clinical and imaging parameters but not by biomarkers found in blood and/or the cerebrospinal fluid (CSF). Both clinical and radiological measures routinely used to monitor disease activity lack information on the fundamental pathophysiological features and mechanisms of MS. Furthermore, they lag behind the disease process itself. By the time a clinical relapse becomes evident or a new lesion appears on the MRI scan, potentially irreversible damage has already occurred in the CNS. In recent years, several biomarkers that previously have been linked to other neurological and immunological diseases have received increased attention in MS. Additionally, other novel, potential biomarkers with prognostic and diagnostic properties have been detected in the CSF and blood of MS patients. AREAS COVERED In this review, we summarise the most up-to-date knowledge and research conducted on the already known and most promising new biomarker candidates found in the CSF and blood of MS patients. DISCUSSION the current diagnostic criteria of MS relies on three pillars: MRI imaging, clinical events, and the presence of oligoclonal bands in the CSF (which was reinstated into the diagnostic criteria by the most recent revision). Even though the most recent McDonald criteria made the diagnosis of MS faster than the prior iteration, it is still not an infallible diagnostic toolset, especially at the very early stage of the clinically isolated syndrome. Together with the gold standard MRI and clinical measures, ancillary blood and CSF biomarkers may not just improve diagnostic accuracy and speed but very well may become agents to monitor therapeutic efficacy and make even more personalised treatment in MS a reality in the near future. The major disadvantage of these biomarkers in the past has been the need to obtain CSF to measure them. However, the recent advances in extremely sensitive immunoassays made their measurement possible from peripheral blood even when present only in minuscule concentrations. This should mark the beginning of a new biomarker research and utilisation era in MS.
Collapse
Affiliation(s)
- Tamás Biernacki
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Zsófia Kokas
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Dániel Sandi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Judit Füvesi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Zsanett Fricska-Nagy
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Péter Faragó
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Tamás Zsigmond Kincses
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
- Albert Szent-Györgyi Clinical Centre, Department of Radiology, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary
| | - Péter Klivényi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Krisztina Bencsik
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - László Vécsei
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
- MTA-SZTE Neuroscience Research Group, University of Szeged, 6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-356; Fax: +36-62-545-597
| |
Collapse
|
18
|
Climate Resilience in Small Ruminant and Immune system: an old alliance in the new sustainability context. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Gonçalves BSM, Mariotti FFN, Ponsone G, Soares TAA, Perão PCBG, Mônico-Neto M, Cariste LM, Maluf A, Nascimento GDSS, Antunes HKM, Céspedes IC, Viana MDB, Le Sueur-Maluf L. High and fluctuating levels of ovarian hormones induce an anxiogenic effect, which can be modulated under stress conditions: Evidence from an assisted reproductive rodent model. Horm Behav 2022; 137:105087. [PMID: 34826650 DOI: 10.1016/j.yhbeh.2021.105087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/24/2021] [Accepted: 11/14/2021] [Indexed: 11/22/2022]
Abstract
Elevated levels of endogenous ovarian hormones are conditions commonly experienced by women undergoing assisted reproductive technologies (ART). Additionally, infertility-associated stress and treatment routines are factors that together may have a highly negative impact on female emotionality, which can be aggravated when several cycles of ART are needed to attempt pregnancy. This study aimed to investigate the effect of high and fluctuating levels of gonadal hormones induced by repeated ovarian stimulation on the stress response in rodents. To mimic the context of ART, female rats were exposed to an unpredictable chronic mild stress (UCMS) paradigm for four weeks. During this time, three cycles of ovarian stimulation (superovulation) (150 IU/Kg of PMSG and 75 IU/Kg of hCG) were applied, with intervals of two estrous cycles between them. The rats were distributed into four groups: Repeated Superovulation/UCMS; Repeated Superovulation/No Stress; Saline/UCMS; and Saline/No Stress. Anxiety-like and depressive-like behaviors were evaluated in a light-dark transition box and by splash test, respectively. Corticosterone, estradiol, progesterone, and biometric parameters were assessed. Data were analyzed using a two-way Generalized Linear Model (GzLM). Our results showed that repeated ovarian stimulation exerts by itself an expressive anxiogenic effect. Surprisingly, when high and fluctuating levels of ovarian hormones were combined with chronic stress, anxiety-like behavior was no longer observed, and a depressive-like state was not detected. Our findings suggest that females subjected to emotional overload induced by repeated ovarian stimulation and chronic stress seem to trigger the elaboration of adaptive coping strategies.
Collapse
Affiliation(s)
| | | | - Giovana Ponsone
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil
| | | | | | - Marcos Mônico-Neto
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil
| | - Leonardo Moro Cariste
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil
| | - Auro Maluf
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, UNIFESP, 11070-102 Santos, SP, Brazil
| | | | | | - Isabel Cristina Céspedes
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil
| | - Milena de Barros Viana
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil
| | - Luciana Le Sueur-Maluf
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil.
| |
Collapse
|
20
|
Larson S, Arrazola A, Parra R, Morrissey K, Faulkner T, Jafarikia M, Mandell I, Bergeron R, Lu R. Genetic variation in LUMAN/CREB3 and association with stress and meat quality traits in Yorkshire pigs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
LUMAN/CREB3 is a stress regulatory gene that affects the activity of the hypothalamic–pituitary–adrenal axis in mice and presents a promising avenue for exploring variable stress-responsiveness in pigs. Pigs with similar characteristics to LUMAN-deficient mice, including greater resilience to stress and receptivity to human handling, would be valuable in the pork industry from animal welfare and production efficiency perspectives. We previously identified eight genetic variations and five haplotypes throughout the LUMAN locus in Yorkshire pigs. In this study, we analysed associations between LUMAN variations with behavioural stress response during three tests (open field test, novel object test, and human approach test), physiological stress responsiveness (cortisol), and carcass/meat quality measurements from purebred Yorkshire pigs. Haplotypes A1 and A2 were associated with decreased activity levels in novel environments and greater plasma cortisol concentrations at slaughter. Haplotype A1 was associated with lower carcass scratch scores and meat with lower cooking losses and greater tenderness. Haplotypes B1 and B2 were associated with the opposite traits including increased activity levels in novel environments and characteristics for lower meat quality including greater cooking losses, lower marbling, and paler coloured meat. We conclude that DNA variations in the LUMAN locus could potentially be used as genetic markers for stress resistance and meat quality in pig breeding.
Collapse
Affiliation(s)
- Shayla Larson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Aitor Arrazola
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Rebecca Parra
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Krysta Morrissey
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Tess Faulkner
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Mohsen Jafarikia
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- Canadian Centre for Swine Improvement Inc., Central Experimental Farm, Building #75, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - Ira Mandell
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Renée Bergeron
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ray Lu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
21
|
Filaretova L, Komkova O, Sudalina M, Yarushkina N. Non-Invasive Remote Ischemic Preconditioning May Protect the Gastric Mucosa Against Ischemia-Reperfusion-Induced Injury Through Involvement of Glucocorticoids. Front Pharmacol 2021; 12:682643. [PMID: 34744702 PMCID: PMC8563572 DOI: 10.3389/fphar.2021.682643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022] Open
Abstract
Remote ischemic preconditioning (RIPC) is one of the most effective approaches to attenuate tissue injury caused by severe ischemia-reperfusion (I/R). Experimental studies have demonstrated that RIPC is capable of producing a protective effect not only on heart, but also on brain, lungs, kidneys, liver, intestine, and stomach. We previously demonstrated that glucocorticoids participate in protective effect of local gastric ischemic preconditioning against I/R-induced gastric injury. In the present study we investigated whether RIPC may protect the gastric mucosa against I/R-induced injury through involvement of glucocorticoids. Anesthetized fasted Sprague Dawley male rats were exposed to prolonged gastric I/R (30 min occlusion of celiac artery followed by 3 h of reperfusion) alone or with preliminary brief RIPC (10 min non-invasive occlusion of right hind limb blood flow followed by reperfusion for 30 min). First, we investigated the effect of RIPC on I/R-induced injury by itself. Then to study the role of glucocorticoids similar experiments were carried out: 1) in rats pretreated with the inhibitor of glucocorticoid synthesis, metyrapone (30 mg/kg, i.p), and in control animals; 2) in adrenalectomized rats without or with corticosterone replacement (4 mg/kg, s.c.) and in sham-operated animals; 3) in rats pretreated with glucocorticoid receptor antagonist RU-38486 (20 mg/kg, s.c.) and in control animals. I/R induced corticosterone rise and resulted in the gastric erosion formation. RIPC significantly reduced the erosion area in control animals. Metyrapone injected shortly before RIPC caused a decrease in plasma corticosterone levels and prevented the gastroprotective effect of RIPC and, moreover, further aggravated the deleterious effect of I/R. Adrenalectomy performed 1 week before experiment created long-lasting corticosterone deficiency and had no effect on the gastroprotective effect of RIPC. Nevertheless, corticosterone replacement which mimics the corticosterone rise, similar to RIPS, significantly reduced erosion areas of gastric mucosa in adrenalectomized rats supporting the role of glucocorticoids in gastroprotection. RU-38486, which occupied glucocorticoid receptors, similar to metyrapone prevented the gastroprotective effect of RIPC and, moreover, further aggravated the deleterious effect of I/R. The results of the present study demonstrate for the first time that RIPC may protect the gastric mucosa against I/R-induced injury through involvement of glucocorticoids.
Collapse
Affiliation(s)
- Ludmila Filaretova
- Laboratory of Experimental Endocrinology, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Olga Komkova
- Laboratory of Experimental Endocrinology, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Maria Sudalina
- Laboratory of Experimental Endocrinology, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Natalia Yarushkina
- Laboratory of Experimental Endocrinology, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
22
|
Thomas J, Thomson EM. Modulation by Ozone of Glucocorticoid-Regulating Factors in the Lungs in Relation to Stress Axis Reactivity. TOXICS 2021; 9:toxics9110290. [PMID: 34822681 PMCID: PMC8622418 DOI: 10.3390/toxics9110290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022]
Abstract
Exposure to air pollutants increases levels of circulating glucocorticoid stress hormones that exert profound effects relevant to health and disease. However, the nature and magnitude of tissue-level effects are modulated by factors that regulate local glucocorticoid activity; accordingly, inter-individual differences could contribute to susceptibility. In the present study, we characterized effects of ozone (O3) inhalation on glucocorticoid-regulating factors in the lungs of rat strains with contrasting hypothalamic–pituitary–adrenal stress axis responses. Hyper-responsive Fischer (F344) and less responsive Lewis (LEW) rats were exposed to air or 0.8 ppm O3 for 4 h by nose-only inhalation. Levels of the high-specificity and -affinity corticosteroid-binding globulin protein increased in the lungs of both strains proportional to the rise in corticosterone levels following O3 exposure. Ozone reduced the ratio of 11β-hydroxysteroid dehydrogenase type 1 (HSDB1)/HSDB2 mRNA in the lungs of F344 but not LEW, indicating strain-specific transcriptional regulation of the major glucocorticoid metabolism factors that control tissue-level action. Intercellular adhesion molecule (ICAM)-1 and total elastase activity were increased by O3 in both strains, consistent with extravasation and tissue remodeling processes following injury. However, mRNA levels of inflammatory markers were significantly higher in the lungs of O3-exposed LEW compared to F344. The data show that strain differences in the glucocorticoid response to O3 are accompanied by corresponding changes in regulatory factors, and that these effects are collectively associated with a differential inflammatory response to O3. Innate differences in glucocorticoid regulatory factors may modulate the pulmonary effects of inhaled pollutants, thereby contributing to differential susceptibility.
Collapse
Affiliation(s)
- Jith Thomas
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada;
| | - Errol M. Thomson
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada;
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: ; Tel.: +1-613-941-7151
| |
Collapse
|
23
|
McKay NJ, Giorgianni NR, Czajka KE, Brzyski MG, Lewandowski CL, Hales ML, Sequeira IK, Bernardo MB, Mietlicki-Baase EG. Plasma levels of ghrelin and GLP-1, but not leptin or amylin, respond to a psychosocial stressor in women and men. Horm Behav 2021; 134:105017. [PMID: 34174584 DOI: 10.1016/j.yhbeh.2021.105017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022]
Abstract
It is well known that stress elevates intake of total calories and shifts food preference toward unhealthy food choices. There is, however, little known on the physiological mechanisms that drive stress-induced hyperphagia. In order to better understand how to reduce stress eating, it is critical to identify mechanisms in humans that are points of convergence between stress and eating. The feeding-related hormones ghrelin, leptin, glucagon-like peptide-1 (GLP-1), and amylin are likely candidates. It was hypothesized that ghrelin, an orexigenic hormone, would increase in response to an acute laboratory stressor, but that leptin, GLP-1, and amylin (anorexigenic hormones) would decrease after stress. To this aim, participants (n = 47) came into the laboratory and had feeding-related hormones, salivary cortisol and α-amylase, and self-rated anxiety measured. Then they underwent either exposure to a stressor (n = 24), which reliably elevates measures of stress and energy intake, or a no-stress condition (n = 23). Feeding hormones, stress hormones, and self-rated anxiety were measured twice more after the stressor. Elevated self-rated anxiety and α-amylase confirmed the validity of the stressor. Furthermore, there was a time X condition interaction for both ghrelin and GLP-1. Ghrelin was significantly elevated after stress compared to baseline (p = .02) and there was a trend for GLP-1 to be higher in the stress condition over the no-stress condition immediately after the stressor (p = .07). Overall, ghrelin is the most likely candidate driving energy intake after stress in humans.
Collapse
Affiliation(s)
- Naomi J McKay
- Department of Psychology, State University of New York Buffalo State College, Buffalo, NY 14222, USA.
| | - Nicolas R Giorgianni
- Department of Psychology, State University of New York Buffalo State College, Buffalo, NY 14222, USA
| | - Kristin E Czajka
- Department of Psychology, State University of New York Buffalo State College, Buffalo, NY 14222, USA
| | - Michael G Brzyski
- Department of Psychology, State University of New York Buffalo State College, Buffalo, NY 14222, USA
| | - Cassandra L Lewandowski
- Department of Psychology, State University of New York Buffalo State College, Buffalo, NY 14222, USA
| | - Marnee L Hales
- Department of Psychology, State University of New York Buffalo State College, Buffalo, NY 14222, USA
| | - Isabelle K Sequeira
- Department of Psychology, State University of New York Buffalo State College, Buffalo, NY 14222, USA
| | | | - Elizabeth G Mietlicki-Baase
- Department of Exercise and Nutrition Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
24
|
Campana G, Loizzo S, Fortuna A, Rimondini R, Maroccia Z, Scillitani A, Falchetti A, Spampinato SM, Persani L, Chiodini I. Early post-natal life stress induces permanent adrenocorticotropin-dependent hypercortisolism in male mice. Endocrine 2021; 73:186-195. [PMID: 33630246 DOI: 10.1007/s12020-021-02659-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/10/2021] [Indexed: 01/06/2023]
Abstract
PURPOSE It has been hypothesized that specific early-life stress (ES) procedures on CD-1 male mice produce diabetes-like alterations due to the failure of negative feedback of glucocorticoid hormone in the pituitary. The aim of this study is to investigate the possible mechanism that leads to this pathological model, framing it in a more specific clinical condition. METHODS Metabolic and hypothalamic-pituitary-adrenal-related hormones of stressed mice (SM) have been analyzed immediately after stress procedures (21 postnatal days, PND) and after 70 days of a peaceful (unstressed) period (90 PND). These data have been compared to parameters from age-matched controls (CTR), and mice treated during ES procedures with oligonucleotide antisense for pro-opiomelanocortin (AS-POMC). RESULTS At 21 PND, SM presented an increased secretion of hypothalamic CRH and pituitary POMC-derived peptides, as well as higher plasmatic levels of ACTH and corticosterone vs. CTR. At 90 PND, SM showed hyperglycemia, with suppression of hypothalamic CRH, while pituitary and plasmatic ACTH levels, as well as plasma corticosterone, were constantly higher than in CTR. These values are accompanied by a progressive acceleration in gaining total body weight, which became significant vs. CTR at 90 PND together with a higher pituitary weight. Treatment with AS-POMC prevented all hormonal and metabolic alterations observed in SM, both at 21 and 90 PND. CONCLUSIONS These findings show that these specific ES procedures affect the negative glucocorticoid feedback in the pituitary, but not in the hypothalamus, suggesting a novel model of ACTH-dependent hypercortisolism that can be prevented by silencing the POMC gene.
Collapse
Affiliation(s)
- Gabriele Campana
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Stefano Loizzo
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Andrea Fortuna
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Roberto Rimondini
- Department of Medical and Clinical Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Zaira Maroccia
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Alfredo Scillitani
- Endocrinology and Diabetology, Ospedale "Casa Sollievo della sofferenza" IRCCS, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Alberto Falchetti
- Department of Clinical Sciences and Community Health, University of Milan, Via della Commenda 19, 20122, Milan, Italy
| | - Santi Mario Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Luca Persani
- Department of Clinical Sciences and Community Health, University of Milan, Via della Commenda 19, 20122, Milan, Italy
- Division of Endocrine and Metabolic Diseases & Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy
| | - Iacopo Chiodini
- Department of Clinical Sciences and Community Health, University of Milan, Via della Commenda 19, 20122, Milan, Italy
- Division of Endocrine and Metabolic Diseases & Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy
| |
Collapse
|
25
|
Johar H, Spieler D, Bidlingmaier M, Herder C, Rathmann W, Koenig W, Peters A, Kruse J, Ladwig KH. Chronic Inflammation Mediates the Association between Cortisol and Hyperglycemia: Findings from the Cross-Sectional Population-Based KORA Age Study. J Clin Med 2021; 10:jcm10132751. [PMID: 34206644 PMCID: PMC8267679 DOI: 10.3390/jcm10132751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022] Open
Abstract
(1) Background: The study aimed to investigate the role of subclinical inflammation on the association between diurnal cortisol patterns and glycaemia in an aged population. (2) Methods: Salivary cortisol, interleukin-6 (IL-6) and glycated haemoglobin (HbA1c) were analysed in a sample of 394 men and 364 women (mean age = 5 ± 6.3, 65–90 years). The ratio of morning after awakening and late-night cortisol was calculated as an indication of diurnal cortisol slope (DCS). Multivariable regression models were run to examine whether IL-6 mediates the relationship between the DCS and glycaemia. The Sobel test and bootstrapping methods were used to quantify the mediation analyses. (3) Results: In comparison to normoglycaemic counterparts (n = 676, 89.2%), an increase in IL-6 concentrations, in individuals with hyperglycaemia (HbA1c ≥ 6.5%) (n = 82, 10.8%) (p = 0.04), was significantly associated with a flatter DCS. The link between flatter DCS and elevated HbA1c level was significant mediated by a heightened IL-6 level. Our results do not suggest reverse-directionality, whereby cortisol did not mediate the association of IL-6 with HbA1c. (4) Conclusions: In our sample, the relation between flatter DCS and hyperglycaemia was partly explained by IL-6 levels. The paradigm of subclinical inflammation-mediated cortisol response on glucose metabolism could have widespread implications for improving our understanding of the pathophysiology of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Hamimatunnisa Johar
- Department of Psychosomatic Medicine and Psychotherapy, University of Gießen and Marburg, 35392 Gießen, Germany; (H.J.); (J.K.)
- German Center for Diabetes Research (DZD), München, 85764 Neuherberg, Germany; (C.H.); (A.P.)
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany;
| | - Derek Spieler
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany;
- Department of Psychosomatic Medicine and Psychotherapy, Universitätsklinikum Freiburg, Albert-Ludwigs Universität Freiburg, 79085 Freiburg, Germany
| | - Martin Bidlingmaier
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, 80336 Munich, Germany;
| | - Christian Herder
- German Center for Diabetes Research (DZD), München, 85764 Neuherberg, Germany; (C.H.); (A.P.)
- German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Wolfgang Rathmann
- Division of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany;
- German Diabetes Center, Institute for Biometrics and Epidemiology, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Wolfgang Koenig
- Deutsches Herzzentrum München DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80636 Munich, Germany;
- Institute of Epidemiology, Medical Biometry University of Ulm, 89081 Ulm, Germany
| | - Annette Peters
- German Center for Diabetes Research (DZD), München, 85764 Neuherberg, Germany; (C.H.); (A.P.)
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany;
- Deutsches Herzzentrum München DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80636 Munich, Germany;
| | - Johannes Kruse
- Department of Psychosomatic Medicine and Psychotherapy, University of Gießen and Marburg, 35392 Gießen, Germany; (H.J.); (J.K.)
| | - Karl-Heinz Ladwig
- German Center for Diabetes Research (DZD), München, 85764 Neuherberg, Germany; (C.H.); (A.P.)
- Deutsches Herzzentrum München DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80636 Munich, Germany;
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany
- Correspondence:
| |
Collapse
|
26
|
Tejos-Bravo M, Oakley RH, Whirledge SD, Corrales WA, Silva JP, García-Rojo G, Toledo J, Sanchez W, Román-Albasini L, Aliaga E, Aguayo F, Olave F, Maracaja-Coutinho V, Cidlowski JA, Fiedler JL. Deletion of hippocampal Glucocorticoid receptors unveils sex-biased microRNA expression and neuronal morphology alterations in mice. Neurobiol Stress 2021; 14:100306. [PMID: 33665240 PMCID: PMC7906897 DOI: 10.1016/j.ynstr.2021.100306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Sex differences in the brain have prompted many researchers to investigate the underlying molecular actors, such as the glucocorticoid receptor (GR). This nuclear receptor controls gene expression, including microRNAs (miRNAs), in non-neuronal cells. Here, we investigated sex-biased effects of GR on hippocampal miRNA expression and neuronal morphology by generating a neuron-specific GR knockout mouse (Emx1-Nr3c1−/−). The levels of 578 mature miRNAs were assessed using NanoString technology and, in contrast to males, female Emx1-Nr3c1−/− mice showed a substantially higher number of differentially expressed miRNAs, confirming a sex-biased effect of GR ablation. Based on bioinformatic analyses we identified several transcription factors potentially involved in miRNA regulation. Functional enrichment analyses of the miRNA-mRNA interactions revealed pathways related to neuronal arborization and both spine morphology and density in both sexes. Two recognized regulators of dendritic morphology, CAMKII-α and GSK-3β, increased their protein levels by GR ablation in female mice hippocampus, without changes in males. Additionally, sex-specific effects of GR deletion were observed on CA1 neuronal arborization and dendritic spine features. For instance, a reduced density of mushroom spines in apical dendrites was evidenced only in females, while a decreased length in basal dendrites was noted only in males. However, length and arborization of apical dendrites were reduced by GR ablation irrespective of the sex. Overall, our study provides new insights into the sex-biased GR actions, especially in terms of miRNAs expression and neuronal morphology in the hippocampus.
Collapse
Affiliation(s)
- Macarena Tejos-Bravo
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - Robert H Oakley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Shannon D Whirledge
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Wladimir A Corrales
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - Juan P Silva
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - Gonzalo García-Rojo
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, 8380492, Santiago, Chile.,Carrera de Odontología. Facultad de Ciencias, Universidad de La Serena, La Serena, Chile
| | - Jorge Toledo
- Laboratory of Scientific Image Analysis (SCIAN-Lab), Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8380453, Chile
| | - Wendy Sanchez
- Laboratory of Scientific Image Analysis (SCIAN-Lab), Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8380453, Chile
| | - Luciano Román-Albasini
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - Esteban Aliaga
- Department of Kinesiology and the Neuropsychology and Cognitive Neurosciences Research Center (CINPSI-Neurocog), Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| | - Felipe Aguayo
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - Felipe Olave
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases -ACCDiS. Faculty of Chemical and Pharmaceutical Sciences. Department of Biochemistry and Molecular Biology. Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Jenny L Fiedler
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, 8380492, Santiago, Chile
| |
Collapse
|
27
|
Changed signals of blood adenosine and cytokines are associated with parameters of sleep and/or cognition in the patients with chronic insomnia disorder. Sleep Med 2021; 81:42-51. [PMID: 33636543 DOI: 10.1016/j.sleep.2021.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/13/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES This study aimed to investigate whether plasma levels of adenosine, adenosine deaminase (ADA), and certain cytokines change in patients with chronic insomnia disorder (CID), and if so, whether these alterations are associated with poor sleep quality and cognitive dysfunction. METHODS Fifty-five CID patients were selected for the study, along with fifty-five healthy controls (HC) matched to the patients according to their basic data. All subjects completed sleep, emotion, and cognition assessments, with some CID patients also completing an overnight polysomnography. The plasma level of adenosine was measured using liquid chromatography-tandem mass spectrometry, while ADA level was quantified using a quantitative sandwich enzyme-linked immunosorbent assay. Levels of cytokines, including IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, TNF-α, and IFN-γ, were measured using Luminex liquid chip technology. RESULTS CID patients had a lower adenosine level, and higher levels of ADA and some of the cytokines (IL-1β, IL-2, IL-6, IL-10 and TNF-α) compared with controls. In the CID group, plasma concentrations of adenosine were negatively correlated with Pittsburgh Sleep Quality Index scores, while concentrations of IL-1β, IL-6 and TNF-α were positively correlated with these scores. Concentrations of IL-1β and TNF-α were negatively correlated with scores on the Chinese-Beijing Version of the Montreal Cognitive Assessment. Moreover, levels of IL-1β, TNF-α, IL-6, and IL-2 were positively correlated with memory test errors by CID patients after controlling for confounding factors. CONCLUSIONS The reduced adenosine and elevated cytokine levels of CID patients were associated with the severity of insomnia and/or cognitive dysfunction.
Collapse
|
28
|
Chen M, Huang R, Fu W, Ou L, Men L, Zhang Z, Yang S, Liu Q, Luan J. Xiaoyaosan (Tiaogan-Liqi therapy) protects peritoneal macrophages from corticosterone-induced stress by regulating the interaction between glucocorticoid receptor and ABCA1. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1506. [PMID: 33313251 PMCID: PMC7729347 DOI: 10.21037/atm-20-6505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background Previous studies have reported that Xiaoyaosan (XYS), Tiaogan-Liqi therapy, has a protective function in depressive disorder, and can regulate body weight and corticosterone (CORT) level. However, little is known about the effect of XYS in treating atherosclerosis. This study aimed to explore the influence XYS on macrophage foam cell formation and related mechanism. Methods Rat peritoneal macrophages (PMs) were separated and stimulated with CORT and oxidized low density lipoprotein (ox-LDL). The serum was obtained from rats treated with different doses of XYS and was added into the medium for macrophages. Then, the cell activity and lipid content of PMs were measured through Cell Counting Kit-8 (CCK-8) assay and oil red staining, respectively. The expressions of glucocorticoid receptor (GR), ATP binding cassette subfamily A member 1 (ABCA1), and heat shock protein 90 (HSP90) were detected. In addition, overexpression of GR and ABCA1 was performed and the effect on XYS treatment was subsequently assessed. Results The CCK-8 assay showed the serum increased cell activity of CORT-induced stress PMs in a XYS dose-dependent manner. Oil red staining and enzyme-linked immunosorbent assay (ELISA) showed that the serum decreased lipids of PMs. In the XYS treated groups, HSP90 protein was decreased and protein levels of ABCA1 and GR were increased in cytoplasm, while GR protein in nucleus was decreased. Co-immunoprecipitation (Co-IP) assay indicated GR might interact with HSP90 and be involved with the function of XYS. Furthermore, overexpression of GR attenuated the protective function of XYS on CORT-induced stress in PMs, while overexpression of ABCA1 enhanced that. Conclusions This study denoted that XYS could protect PMs from CORT-induced stress by regulating the interaction of GR and ABCA1, which might contribute to the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Mingtai Chen
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, the 4 Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ruolan Huang
- Department of Neurology, Shenzhen University Clinical Research Center for Neurological Diseases, Shenzhen University General Hospital, Shenzhen, China
| | - Wenjun Fu
- Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijun Ou
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, the 4 Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ling Men
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the 4 Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhong Zhang
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, the 4 Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shudong Yang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the 4 Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Qiang Liu
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, the 4 Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jienan Luan
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, the 4 Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
29
|
Cella EC, Conte J, Stolte RCK, Lorenzon F, Gregorio T, Simas BB, Rafacho A, Lima FB. Gestational exposure to excessive levels of dexamethasone impairs maternal care and impacts on the offspring's survival in rats. Life Sci 2020; 264:118599. [PMID: 33127510 DOI: 10.1016/j.lfs.2020.118599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 11/28/2022]
Abstract
Administration of dexamethasone (DEX) during late gestation is a model to study growth restriction in rodents, but the pup's mortality index can be high, depending on DEX dosage, and little is known about the effects of DEX on maternal care (MC). Considering that an inadequate MC can also contribute to pup's mortality in this model, we evaluated the effects of DEX on dams' behavior and its consequences on offspring survival. We also investigated whether the cross-fostering of pups from dams treated or not with DEX could improve pup's survival. Wistar rats were treated with DEX (14th to 19th day of gestation -0.2 mg/kg, B.W, in the drinking water). Nest building, MC and responses in the elevated plus-maze, forced swimming and object recognition tests were evaluated. DEX reduced gestational weight gain and impaired neonatal development, reducing pup's survival to 0% by the 3rd postnatal day. DEX-treated dams reduced the expression of typical MC and increased anxiety-like behaviors. After cross-fostering, DEX-treated mothers behaved similarly to controls, indicating that a healthy offspring is crucial to induce adequate MC. Cross-fostering increased the survival index from zero to 25% in the DEX offspring. Postnatal development of the DEX offspring was comparable to controls after cross-fostering. We concluded that exposure to DEX during late gestation causes behavioral changes that compromise the maternal emotional state, disrupting the expression of MC. Although it does not seem to be the main cause of pup's mortality, our data indicate that an adequate MC improves pup's survival in this model.
Collapse
Affiliation(s)
- Elisa C Cella
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus, Florianópolis, SC, Brazil
| | - Júlia Conte
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Rafaela C K Stolte
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Flaviano Lorenzon
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus, Florianópolis, SC, Brazil
| | - Tamires Gregorio
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus, Florianópolis, SC, Brazil
| | - Bruna B Simas
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Alex Rafacho
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus, Florianópolis, SC, Brazil
| | - Fernanda B Lima
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus, Florianópolis, SC, Brazil.
| |
Collapse
|
30
|
Dubar M, Clerc-Urmès I, Baumann C, Clément C, Alauzet C, Bisson C. Relations of Psychosocial Factors and Cortisol with Periodontal and Bacterial Parameters: A Prospective Clinical Study in 30 Patients with Periodontitis Before and After Non-Surgical Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207651. [PMID: 33092182 PMCID: PMC7588876 DOI: 10.3390/ijerph17207651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022]
Abstract
(1) Background: The progression of periodontitis, induced by polymicrobial dysbiosis, can be modified by systemic or environmental factors such as stress or anxiety affecting host response. The purpose of this study is to evaluate the potential associations between psychosocial factors scores or salivary cortisol levels with clinical periodontal parameters and bacterial environment in patients with periodontitis; (2) Methods: Subgingival microbiota was collected in two pathological and one healthy sites from thirty diseased patients (before/after scaling and root planing (SRP)) and from one healthy site from thirty control patients. Usual clinical periodontal parameters were recorded, and a saliva sample was harvested. Patients completed stress and anxiety self-assessment questionnaires. Cortisol concentrations were determined by ELISA and bacteria were identified by PCR; (3) Results: No correlation between salivary cortisol and the stress-anxiety self-declared was found (p > 0.05), but high concentrations of this molecule were associated positively and linearly with periodontal pocket depth (p = 0.04). It appeared that certain psychosocial stressors are associated with a modulation of the bacterial colonization of pockets of diseased group (before/after SRP), notably concerning Tannerella forsythia (p = 0.02), Porphyromonas gingivalis (p = 0.03), Fusobacterium nucleatum (p = 0.049) and Campylobacter rectus (p = 0.01). (4) Conclusion: This study reveals associations between bacteria colonization and psychosocial parameters in periodontitis that needs to be further investigated.
Collapse
Affiliation(s)
- Marie Dubar
- Department of Periodontology, School of Dentistry, Lille University Hospital, 59000 Lille, France
- Stress Immunity Pathogens Unit (SIMPA), EA 7300, University of Lorraine, F-54000 Nancy, France; (C.A.); (C.B.)
- Correspondence:
| | - Isabelle Clerc-Urmès
- Department of Methodology, Promotion and Investigation, UMDS, University Hospital of Nancy, 54500 Vandoeuvre-lès-Nancy, France; (I.C.-U.); (C.B.)
| | - Cédric Baumann
- Department of Methodology, Promotion and Investigation, UMDS, University Hospital of Nancy, 54500 Vandoeuvre-lès-Nancy, France; (I.C.-U.); (C.B.)
| | - Céline Clément
- CHRU Nancy, Department of Public Health Dentistry, University Hospital, 54000 Nancy, France;
- “Interpsy” Laboratory, University of Lorraine, EA 4432, CEDEX 54015 Nancy, France
- «Health Systemic Process» Laboratory, University Lyon 1, EA 4129, 69008 Lyon, France
| | - Corentine Alauzet
- Stress Immunity Pathogens Unit (SIMPA), EA 7300, University of Lorraine, F-54000 Nancy, France; (C.A.); (C.B.)
- CHRU Nancy, Microbiology Department, University Hospital, F-54000 Nancy, France
| | - Catherine Bisson
- Stress Immunity Pathogens Unit (SIMPA), EA 7300, University of Lorraine, F-54000 Nancy, France; (C.A.); (C.B.)
- Department of Periodontology, Nancy University Hospital, Lorraine University, 54500 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
31
|
K V A, Madhana RM, Bais AK, Singh VB, Malik A, Sinha S, Lahkar M, Kumar P, Samudrala PK. Cognitive Improvement by Vorinostat through Modulation of Endoplasmic Reticulum Stress in a Corticosterone-Induced Chronic Stress Model in Mice. ACS Chem Neurosci 2020; 11:2649-2657. [PMID: 32673474 DOI: 10.1021/acschemneuro.0c00315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic stress is the leading cause of memory impairment today. Various stress-based models are being developed for studying cognitive impairment. Repurposing of existing drugs in a new pharmacology class is the safest and cheapest option for treatment instead of new drug discovery. Vorinostat (VOR) is the first histone deacetylase (HDAC) inhibitor approved for the treatment of cutaneous T-cell lymphoma by the U.S. FDA. VOR follows the rule of five and is reported to cross the blood-brain barrier. Therefore, we aimed to evaluate the procognitive potential of VOR (25 mg/kg) administered by intraperitoneal (ip) route in a stress-based model of chronic corticosterone (CORT) injections (20 mg/kg, subcutaneously (sc)). The study comprised six groups. Normal mice were administered vehicle (VEH) (days 1-21, sc) in the first group, VOR (days 8-21, 25 mg/kg, ip) in the second group, and fluoxetine (FLX) (days 8-21, 15 mg/kg, oral) in the third group. Mice in the remaining three groups were given 20 mg/kg (sc) CORT for 21 days, and VOR (days 8-21, 25 mg/kg, ip) or FLX (days 8-21, 15 mg/kg, oral) was additionally administered to the treatment groups. Behavioral tests such as Morris water maze test, novel object recognition test, and object in place test were performed at the end of the dosing schedule to assess cognition. After behavior tests, mice were sacrificed, and hippocampus was separated from brain tissue for reverse transcriptase polymerase chain reaction (RT-PCR), Western blot, and immunohistochemistry studies. VOR treatment attenuated endoplasmic reticulum (ER) stress in CORT mice as evident from the reduction in DNA damage-inducible transcript 3 (Ddit3) (gene encoding CHOP), caspase 12 (Casp12), and calpain-2 (Capn2) mRNA levels, and cleaved caspase 3 (CASP3) protein expression. Bax inhibitor-1 (BI-1) was significantly increased in VOR-treated CORT mice. VOR also reversed CORT induced increase in HDAC2 level in the CA3 region. The protective effects of VOR were comparable to that of FLX in CORT mice. Thus, VOR has the potential to reverse cognitive dysfunction via modulation of ER stress markers and HDAC2.
Collapse
Affiliation(s)
- Athira K V
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Mirza, Kamrup, 781125 Assam, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682041 Kerala, India
| | - Rajaram Mohanrao Madhana
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Mirza, Kamrup, 781125 Assam, India
| | - Akhilesh Kumar Bais
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Mirza, Kamrup, 781125 Assam, India
| | - Vijay Bahadur Singh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Mirza, Kamrup, 781125 Assam, India
| | - Arpit Malik
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Mirza, Kamrup, 781125 Assam, India
| | - Swapnil Sinha
- DST WOS-A Scientist, Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Mirza, Kamrup, 781125 Assam, India
| | - Mangala Lahkar
- Department of Pharmacology, Gauhati Medical College, Guwahati, 781032 Assam, India
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, 781125 Assam, India
| | - Pavan Kumar Samudrala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Mirza, Kamrup, 781125 Assam, India
| |
Collapse
|
32
|
Ghasemzadeh Rahbardar M, Hosseinzadeh H. Therapeutic effects of rosemary ( Rosmarinus officinalis L.) and its active constituents on nervous system disorders. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1100-1112. [PMID: 32963731 PMCID: PMC7491497 DOI: 10.22038/ijbms.2020.45269.10541] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/28/2020] [Indexed: 12/19/2022]
Abstract
Rosemary (Rosmarinus officinalis L.) is an evergreen bushy shrub which grows along the Mediterranean Sea, and sub-Himalayan areas. In folk medicine, it has been used as an antispasmodic, mild analgesic, to cure intercostal neuralgia, headaches, migraine, insomnia emotional upset, and depression. Different investigations have highlighted rosemary neuropharmacological properties as their main topics. Rosemary has significant antimicrobial, anti-inflammatory, anti-oxidant, anti-apoptotic, anti-tumorigenic, antinociceptive, and neuroprotective properties. Furthermore, it shows important clinical effects on mood, learning, memory, pain, anxiety, and sleep. The aim of the current work is to review the potential neuropharmacological effects of different rosemary extracts and its active constituents on nervous system disorders, their relevant mechanisms and its preclinical application to recall the therapeutic potential of this herb and more directions of future research projects. The data were gathered by searching the English articles in PubMed, Scopus, Google Scholar, and Web of Science. The keywords used as search terms were 'Rosmarinus officinalis', 'rosemary', 'nervous system', 'depression', 'memory', 'Alzheimer's disease' 'epilepsy', 'addiction', 'neuropathic pain', and 'disorders'. All kinds of related articles, abstracts and books were included. No time limitation was considered. Both in vitro and in vivo studies were subjected to this investigation. This review authenticates that rosemary has appeared as a worthy source for curing inflammation, analgesic, anti-anxiety, and memory boosting. It also arranges new perception for further investigations on isolated constituents, especially carnosic acid, rosmarinic acid, and essential oil to find exquisite therapeutics and support drug discovery with fewer side effects to help people suffering from nervous system disorders.
Collapse
Affiliation(s)
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Ladwig KH, Schriever SC, Atasoy S, Bidlingmaier M, Kruse J, Johar H. Association of generalized and central obesity with serum and salivary cortisol secretion patterns in the elderly: findings from the cross sectional KORA-Age study. Sci Rep 2020; 10:14321. [PMID: 32868802 PMCID: PMC7458904 DOI: 10.1038/s41598-020-71204-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
The study aimed to examine the sex specific association of obesity with cortisol metabolism in a sample of older community dwelling people. The cross-sectional analysis included 394 men and 375 women (aged 65–90 years) of the population-based KORA-Age study. Multivariable regression analyses were employed to examine the association between cortisol samples (serum and salivary samples of morning after awakening (M1), 30 min later (M2) and at late night (LNSC)). Obesity was calculated as waist-to-hip ratio (WHR) and body mass index (BMI). Cortisol levels were not significantly different between obesity measures except for elevated serum cortisol (P = 0.02) levels in individuals with a low WHR. Higher M1 levels were especially apparent in women with normal BMI. Serum cortisol levels were inversely related to WHR (P = 0.004) and CARAUC was inversely associated with BMI (P = 0.007). Sex-stratified analytic models revealed that both obesity measures showed a non-linear association with cortisol diurnal pattern (M1/LNSC) in men. Impaired cortisol patterns emerged at both very ends of the body weight distribution. These findings do not support a cortisol driven obesity etiology in an older population and even point to an inverse association of body weight with cortisol levels. Differences of cortisol secretion patterns in generalized and abdominal fat distribution were marginal.
Collapse
Affiliation(s)
- Karl-Heinz Ladwig
- Mental Health Research Unit, Institute of Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany. .,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany. .,Department of Psychosomatic Medicine and Psychotherapy, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany.
| | - Sonja Charlotte Schriever
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Research Unit Neurobiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Seryan Atasoy
- Mental Health Research Unit, Institute of Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany.,Department of Psychosomatic Medicine and Psychotherapy, University of Gießen and Marburg, Gießen, Germany
| | - Martin Bidlingmaier
- Medizinische Klinik Und Poliklinik IV, Klinikum Der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Kruse
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Department of Psychosomatic Medicine and Psychotherapy, University of Gießen and Marburg, Gießen, Germany
| | - Hamimatunnisa Johar
- Mental Health Research Unit, Institute of Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Department of Psychosomatic Medicine and Psychotherapy, University of Gießen and Marburg, Gießen, Germany
| |
Collapse
|
34
|
Lee J, Kim K, Cho JH, Bae JY, O'Leary TP, Johnson JD, Bae YC, Kim EK. Insulin synthesized in the paraventricular nucleus of the hypothalamus regulates pituitary growth hormone production. JCI Insight 2020; 5:135412. [PMID: 32644973 PMCID: PMC7455129 DOI: 10.1172/jci.insight.135412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/02/2020] [Indexed: 01/11/2023] Open
Abstract
Evidence has mounted that insulin can be synthesized in various brain regions, including the hypothalamus. However, the distribution and functions of insulin-expressing cells in the hypothalamus remain elusive. Herein, we show that in the mouse hypothalamus, the perikarya of insulin-positive neurons are located in the paraventricular nucleus (PVN) and their axons project to the median eminence; these findings define parvocellular neurosecretory PVN insulin neurons. Contrary to corticotropin-releasing hormone expression, insulin expression in the PVN was inhibited by restraint stress (RS) in both adult and young mice. Acute RS–induced inhibition of PVN insulin expression in adult mice decreased both pituitary growth hormone (Gh) mRNA level and serum GH concentration, which were attenuated by overexpression of PVN insulin. Notably, PVN insulin knockdown or chronic RS in young mice hindered normal growth via the downregulation of GH gene expression and secretion, whereas PVN insulin overexpression in young mice prevented chronic RS–induced growth retardation by elevating GH production. Our results suggest that in both normal and stressful conditions, insulin synthesized in the parvocellular PVN neurons plays an important role in the regulation of pituitary GH production and body length, unveiling a physiological function of brain-derived insulin. Insulin produced in the paraventricular nucleus regulates body length by modulating pituitary growth hormone expression and secretion under both normal and stress conditions.
Collapse
Affiliation(s)
- Jaemeun Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Kyungchan Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jae Hyun Cho
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jin Young Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Timothy P O'Leary
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D Johnson
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yong Chul Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Eun-Kyoung Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea.,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| |
Collapse
|
35
|
Evans AM, Hardie DG. AMPK and the Need to Breathe and Feed: What's the Matter with Oxygen? Int J Mol Sci 2020; 21:ijms21103518. [PMID: 32429235 PMCID: PMC7279029 DOI: 10.3390/ijms21103518] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
We live and to do so we must breathe and eat, so are we a combination of what we eat and breathe? Here, we will consider this question, and the role in this respect of the AMP-activated protein kinase (AMPK). Emerging evidence suggests that AMPK facilitates central and peripheral reflexes that coordinate breathing and oxygen supply, and contributes to the central regulation of feeding and food choice. We propose, therefore, that oxygen supply to the body is aligned with not only the quantity we eat, but also nutrient-based diet selection, and that the cell-specific expression pattern of AMPK subunit isoforms is critical to appropriate system alignment in this respect. Currently available information on how oxygen supply may be aligned with feeding and food choice, or vice versa, through our motivation to breathe and select particular nutrients is sparse, fragmented and lacks any integrated understanding. By addressing this, we aim to provide the foundations for a clinical perspective that reveals untapped potential, by highlighting how aberrant cell-specific changes in the expression of AMPK subunit isoforms could give rise, in part, to known associations between metabolic disease, such as obesity and type 2 diabetes, sleep-disordered breathing, pulmonary hypertension and acute respiratory distress syndrome.
Collapse
Affiliation(s)
- A. Mark Evans
- Centre for Discovery Brain Sciences and Cardiovascular Science, Edinburgh Medical School, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
- Correspondence:
| | - D. Grahame Hardie
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK;
| |
Collapse
|
36
|
Pavlov D, Gorlova A, Bettendorff L, Kalueff AA, Umriukhin A, Proshin A, Lysko A, Landgraf R, Anthony DC, Strekalova T. Enhanced conditioning of adverse memories in the mouse modified swim test is associated with neuroinflammatory changes - Effects that are susceptible to antidepressants. Neurobiol Learn Mem 2020; 172:107227. [PMID: 32325189 DOI: 10.1016/j.nlm.2020.107227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/09/2020] [Accepted: 03/29/2020] [Indexed: 01/08/2023]
Abstract
Deficient learning and memory are well-established pathophysiologic features of depression, however, mechanisms of the enhanced learning of aversive experiences associated with this disorder are poorly understood. Currently, neurobiological mechanisms of enhanced retention of aversive memories during depression, and, in particular, their relation to neuroinflammation are unclear. As the association between major depressive disorder and inflammation has been recognized for some time, we aimed to address whether neuroinflammatory changes are involved in enhanced learning of adversity in a depressive state. To study this question, we used a recently described mouse model of enhanced contextual conditioning of aversive memories, the modified forced swim model (modFST). In this model, the classic two-day forced swim is followed by an additional delayed session on Day 5, where increased floating behaviour and upregulated glycogen synthase kinase-3 (GSK-3) are context-dependent. Here, increased time spent floating on Day 5, a parameter of enhanced learning of the adverse context, was accompanied by hypercorticosteronemia, increased gene expression of GSK-3α, GSK-3β, c-Fos, cyclooxygenase-1 (COX-1) and pro-inflammatory cytokines interleukin-1 beta (IL-1β), tumor necrosis factor (TNF), and elevated concentrations of protein carbonyl, a marker of oxidative stress, in the prefrontal cortex and hippocampus. There were significant correlations between cytokine levels and GSK-3β gene expression. Two-week administration of compounds with antidepressant properties, imipramine (7 mg/kg/day) or thiamine (vitamin B1; 200 mg/kg/day) ameliorated most of the modFST-induced changes. Thus, enhanced learning of adverse memories is associated with pro-inflammatory changes that should be considered for optimizing pharmacotherapy of depression associated with enhanced learning of aversive memories.
Collapse
Affiliation(s)
- Dmitrii Pavlov
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht University, Maastricht, Netherlands; Sechenov First Moscow State Medical University, Institute of Molecular Medicine Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Moscow, Russia; Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Anna Gorlova
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht University, Maastricht, Netherlands; Sechenov First Moscow State Medical University, Institute of Molecular Medicine Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Moscow, Russia
| | - Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Allan A Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Aleksei Umriukhin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Moscow, Russia; Federal State Budgetary Scientific Institution "P.K. Anokhin Research Institute of Normal Physiology", Moscow, Russia
| | - Andrey Proshin
- Federal State Budgetary Scientific Institution "P.K. Anokhin Research Institute of Normal Physiology", Moscow, Russia
| | - Alexander Lysko
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Rainer Landgraf
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Moscow, Russia; Max Planck Institute of Psychiatry, Munich, Germany
| | - Daniel C Anthony
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Moscow, Russia; Department of Pharmacology, Oxford University, Oxford, UK
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht University, Maastricht, Netherlands; Sechenov First Moscow State Medical University, Institute of Molecular Medicine Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Moscow, Russia.
| |
Collapse
|
37
|
Rauš Balind S, Manojlović-Stojanoski M, Šošić-Jurjević B, Selaković V, Milošević V, Petković B. An Extremely Low Frequency Magnetic Field and Global Cerebral Ischemia Affect Pituitary ACTH and TSH Cells in Gerbils. Bioelectromagnetics 2019; 41:91-103. [PMID: 31828821 DOI: 10.1002/bem.22237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/28/2019] [Indexed: 11/10/2022]
Abstract
The neuroendocrine system can be modulated by a magnetic field and cerebral ischemia as external and internal stressors, respectively. This study deals with the separate or combined effects of an extremely low frequency (ELF) magnetic field (50 Hz, average magnetic field of 0.5 mT) for 7 days and global cerebral ischemia for 10 min on the morpho-functional features of pituitary adrenocorticotrophic (ACTH) and thyrotrophic (TSH) cells in 3-month-old gerbils. To determine the immediate and delayed effects of the applied stressors, measurements were made on the 7th and 14th days after the onset of the experiment. The ELF magnetic field and 10-min global cerebral ischemia, separately and particularly in combination, decreased (P < 0.05) the volume density of ACTH cells, while only in combination were intracellular ACTH content and plasma ACTH concentration increased (P < 0.05) on day 7. The ELF magnetic field elevated serum TSH concentration on day 7 and intracellular TSHβ content on day 14 (P < 0.05). Also, 10-min global cerebral ischemia alone increased serum TSH concentration (P < 0.05), while in combination with the ELF magnetic field it elevated (P < 0.05) intracellular TSHβ content on day 14. In conclusion, an ELF magnetic field and/or 10-min global cerebral ischemia can induce immediate and delayed stimulation of ACTH and TSH synthesis and secretion. Bioelectromagnetics. 2020;41:91-103. © 2019 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Snežana Rauš Balind
- Department of Neurophysiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Manojlović-Stojanoski
- Department of Cytology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branka Šošić-Jurjević
- Department of Cytology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vesna Selaković
- Institute for Medical Research, Military Medical Academy (MMA), Medical Faculty MMA, University of Defence, Belgrade, Serbia
| | - Verica Milošević
- Department of Cytology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branka Petković
- Department of Neurophysiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
38
|
Gulyaeva NV. Biochemical Mechanisms and Translational Relevance of Hippocampal Vulnerability to Distant Focal Brain Injury: The Price of Stress Response. BIOCHEMISTRY (MOSCOW) 2019; 84:1306-1328. [PMID: 31760920 DOI: 10.1134/s0006297919110087] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Focal brain injuries (in particular, stroke and traumatic brain injury) induce with high probability the development of delayed (months, years) cognitive and depressive disturbances which are frequently comorbid. The association of these complications with hippocampal alterations (in spite of the lack of a primary injury of this structure), as well as the lack of a clear dependence between the probability of depression and dementia development and primary damage severity and localization served as the basis for a new hypothesis on the distant hippocampal damage as a key link in the pathogenesis of cognitive and psychiatric disturbances. According to this hypothesis, the excess of corticosteroids secreted after a focal brain damage, in particular in patients with abnormal stress-response due to hypothalamic-pituitary-adrenal axis (HPAA) dysfunction, interacts with corticosteroid receptors in the hippocampus inducing signaling pathways which stimulate neuroinflammation and subsequent events including disturbances in neurogenesis and hippocampal neurodegeneration. In this article, the molecular and cellular mechanisms associated with the regulatory role of the HPAA and multiple functions of brain corticosteroid receptors in the hippocampus are analyzed. Functional and structural damage to the hippocampus, a brain region selectively vulnerable to external factors and responding to them by increased cytokine secretion, forms the basis for cognitive function disturbances and psychopathology development. This concept is confirmed by our own experimental data, results of other groups and by prospective clinical studies of post-stroke complications. Clinically relevant biochemical approaches to predict the risks and probability of post-stroke/post-trauma cognitive and depressive disturbances are suggested using the evaluation of biochemical markers of patients' individual stress-response. Pathogenetically justified ways for preventing these consequences of focal brain damage are proposed by targeting key molecular mechanisms underlying hippocampal dysfunction.
Collapse
Affiliation(s)
- N V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia. .,Moscow Research and Clinical Center for Neuropsychiatry, Healthcare Department of Moscow, Moscow, 115419, Russia
| |
Collapse
|
39
|
Pusceddu MM, Barboza M, Keogh CE, Schneider M, Stokes P, Sladek JA, Kim HJD, Torres-Fuentes C, Goldfild LR, Gillis SE, Brust-Mascher I, Rabasa G, Wong KA, Lebrilla C, Byndloss MX, Maisonneuve C, Bäumler AJ, Philpott DJ, Ferrero RL, Barrett KE, Reardon C, Gareau MG. Nod-like receptors are critical for gut-brain axis signalling in mice. J Physiol 2019; 597:5777-5797. [PMID: 31652348 DOI: 10.1113/jp278640] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS •Nucleotide binding oligomerization domain (Nod)-like receptors regulate cognition, anxiety and hypothalamic-pituitary-adrenal axis activation. •Nod-like receptors regulate central and peripheral serotonergic biology. •Nod-like receptors are important for maintenance of gastrointestinal physiology. •Intestinal epithelial cell expression of Nod1 receptors regulate behaviour. ABSTRACT Gut-brain axis signalling is critical for maintaining health and homeostasis. Stressful life events can impact gut-brain signalling, leading to altered mood, cognition and intestinal dysfunction. In the present study, we identified nucleotide binding oligomerization domain (Nod)-like receptors (NLR), Nod1 and Nod2, as novel regulators for gut-brain signalling. NLR are innate immune pattern recognition receptors expressed in the gut and brain, and are important in the regulation of gastrointestinal physiology. We found that mice deficient in both Nod1 and Nod2 (NodDKO) demonstrate signs of stress-induced anxiety, cognitive impairment and depression in the context of a hyperactive hypothalamic-pituitary-adrenal axis. These deficits were coupled with impairments in the serotonergic pathway in the brain, decreased hippocampal cell proliferation and immature neurons, as well as reduced neural activation. In addition, NodDKO mice had increased gastrointestinal permeability and altered serotonin signalling in the gut following exposure to acute stress. Administration of the selective serotonin reuptake inhibitor, fluoxetine, abrogated behavioural impairments and restored serotonin signalling. We also identified that intestinal epithelial cell-specific deletion of Nod1 (VilCre+ Nod1f/f ), but not Nod2, increased susceptibility to stress-induced anxiety-like behaviour and cognitive impairment following exposure to stress. Together, these data suggest that intestinal epithelial NLR are novel modulators of gut-brain communication and may serve as potential novel therapeutic targets for the treatment of gut-brain disorders.
Collapse
Affiliation(s)
- Matteo M Pusceddu
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Mariana Barboza
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Ciara E Keogh
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Melinda Schneider
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Patricia Stokes
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Jessica A Sladek
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Hyun Jung D Kim
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Cristina Torres-Fuentes
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.,Department of Food Science & Technology, University of California Davis, Davis, CA, USA
| | - Lily R Goldfild
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Shane E Gillis
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Ingrid Brust-Mascher
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Gonzalo Rabasa
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Kyle A Wong
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Carlito Lebrilla
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - Mariana X Byndloss
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
| | | | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Richard L Ferrero
- Hudson Institute of Medical Research, Department of Molecular and Translational Science and Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Kim E Barrett
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Colin Reardon
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Mélanie G Gareau
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
40
|
Squillacioti C, Pelagalli A, Liguori G, Mirabella N. Urocortins in the mammalian endocrine system. Acta Vet Scand 2019; 61:46. [PMID: 31585551 PMCID: PMC6778379 DOI: 10.1186/s13028-019-0480-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 09/21/2019] [Indexed: 12/13/2022] Open
Abstract
Urocortins (Ucns), peptides belonging to the corticotropin-releasing hormone (CRH) family, are classified into Ucn1, Ucn2, and Ucn3. They are involved in regulating several body functions by binding to two G protein-coupled receptors: receptor type 1 (CRHR1) and type 2 (CRHR2). In this review, we provide a historical overview of research on Ucns and their receptors in the mammalian endocrine system. Although the literature on the topic is limited, we focused our attention particularly on the main role of Ucns and their receptors in regulating the hypothalamic–pituitary–adrenal and thyroid axes, reproductive organs, pancreas, gastrointestinal tract, and other tissues characterized by “diffuse” endocrine cells in mammals. The prominent function of these peptides in health conditions led us to also hypothesize an action of Ucn agonists/antagonists in stress and in various diseases with its critical consequences on behavior and physiology. The potential role of the urocortinergic system is an intriguing topic that deserves further in-depth investigations to develop novel strategies for preventing stress-related conditions and treating endocrine diseases.
Collapse
|
41
|
Hajat A, Hazlehurst MF, Golden SH, Merkin SS, Seeman T, Szpiro AA, Kaufman JD, Roux AD. The cross-sectional and longitudinal association between air pollution and salivary cortisol: Evidence from the Multi-Ethnic Study of Atherosclerosis. ENVIRONMENT INTERNATIONAL 2019; 131:105062. [PMID: 31491811 PMCID: PMC6994173 DOI: 10.1016/j.envint.2019.105062] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Cortisol, a stress hormone released by the activation of the hypothalamic-pituitary-adrenal (HPA) axis, is critical to the body's adaptive response to physiological and psychological stress. Cortisol has also been implicated in the health effects of air pollution through the activation of the sympathetic nervous system. This study evaluates the cross-sectional and longitudinal association between several air pollutants and salivary cortisol. METHODS We used data from the Multi-Ethnic Study of Atherosclerosis (MESA), a cohort of 45-85 years old participants from six US cities. Salivary cortisol was evaluated at two time points between 2004 and 2006 and then again from 2010 to 2012. Cortisol samples were taken several times per day on two or three consecutive days. Particulate matter <2.5 μm in diameter (PM2.5), nitrogen dioxide (NO2) and nitrogen oxides (NOx) in the year prior to cortisol sampling were examined. We used piecewise linear mixed models that were adjusted for demographics, socioeconomic status and cardiovascular risk factors to examine both cross-sectional and longitudinal associations. Longitudinal models evaluated change in cortisol over time. RESULTS The pooled cross-sectional results revealed largely null results with the exception of a 9.7% higher wake-up cortisol associated with a 10 ppb higher NO2 (95% CI, -0.2%, 20.5%). Among all participants, the features of the cortisol curve became flatter over 5 years. The wake-to-bed slope showed a more pronounced flattening over time (0.014, 95% CI, 0.0, 0.03) with a 10 ppb higher NO2 level. Other air pollutants were not associated with change in cortisol over time. CONCLUSIONS Our results suggest only a moderate association between traffic related air pollution and cortisol. Very few epidemiologic studies have examined the long-term impact of air pollution on the stress response systems, thus warranting further exploration of these findings.
Collapse
Affiliation(s)
- Anjum Hajat
- University of Washington, Department of Epidemiology, Box 357236, Seattle, WA 98195, USA.
| | - Marnie F Hazlehurst
- University of Washington, Department of Epidemiology, Box 357236, Seattle, WA 98195, USA.
| | - Sherita Hill Golden
- Johns Hopkins University, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, 1830 E. Monument Street, Room 9052, Baltimore, MD 21287, USA.
| | - Sharon Stein Merkin
- University of California Los Angeles, Geffen School of Medicine, Division of Geriatrics, 10945 Le Conte Avenue, Suite 2339, Los Angeles, CA 90095, USA.
| | - Teresa Seeman
- University of California Los Angeles, Geffen School of Medicine, Division of Geriatrics, 10945 Le Conte Avenue, Suite 2339, Los Angeles, CA 90095, USA.
| | - Adam A Szpiro
- University of Washington, Department of Biostatistics, Box 357232, Seattle, WA 98195, USA.
| | - Joel D Kaufman
- University of Washington, Departments of Environmental and Occupational Health Sciences and Epidemiology, Box 354695, Seattle, WA 98195, USA.
| | - Ana Diez Roux
- Drexel University Dornsife School of Public Health, Urban Health Collaborative Nesbitt Hall 3215 Market Street Philadelphia, PA 19104, USA.
| |
Collapse
|
42
|
Verstraeten BSE, McCreary JK, Falkenberg EA, Fang X, Weyers S, Metz GAS, Olson DM. Multiple prenatal stresses increase sexual dimorphism in adult offspring behavior. Psychoneuroendocrinology 2019; 107:251-260. [PMID: 31174163 DOI: 10.1016/j.psyneuen.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Maternal gestational stress and immune activation have independently been associated with affective and neurodevelopmental disorders across the lifespan. We investigated whether rats exposed to prenatal maternal stressors (PNMS) consisting of psychological stress, interleukin (IL)-1β or both (two-hit stress) during critical developmental windows displayed a behavioral phenotype representative of these conditions. METHODS Long-Evans dams were exposed to psychological stressors consisting of restraint stress and forced swimming from gestational day (GD)12 to 18 or to no stress (controls). From GD17 until day of delivery, these same animals were injected with saline or IL-1β as a second hit and immune stressor (5 μg/day, intraperitoneally). The behavior of F1 offspring adults was tested on the open field test, elevated plus maze and affective exploration task on postnatal days (P)90, 100 and 110 respectively. RESULTS The effects of PNMS differed depending on the specific testing environment and potentially the age at assessment, especially in female offspring. Both locomotion and anxiety-like behavioral measures were susceptible to PNMS effects. In females, psychological stress increased anxiety-like behavior, whereas IL-1β had an opposite effect, inducing exploration and risk-taking behavior on the open field test and the elevated plus maze. When present, interactions between both stressors limited the anxiogenic effect of psychological stress on its own. In contrast, prenatal psychological stress increased anxiety-like behavior in adult males overall. A similar anxiogenic effect of IL-1β was only found on the open field test while the Stress*IL-1β interaction appeared to limit the effect of either alone. Contrarily, the PNMS effects on anxiety-like behavior on the affective exploration task were highly similar between both sexes. Analysis of males and females together revealed an additive effect of Stress and IL-1β on the number of exits from the refuge, a measure of risk assessment and thus correlated with anxiety. CONCLUSION PNMS affected offspring adult behavior in a sex-dependent manner. Effects on females were more variable, whereas psychological stress mostly induced anxiety-like behavior in males. These data highlight the sexual dimorphism in vulnerability to prenatal stressors. Maternal or stress-induced programming of the stress response and neuroinflammation may play an important role in mediating stress effects on offspring adult behavior.
Collapse
Affiliation(s)
- Barbara S E Verstraeten
- Departments of Obstetrics and Gynecology, Pediatrics and Physiology, University of Alberta, 227 HMRC, Edmonton, AB T6G 2S2, Canada; Department of Human Structure and Repair, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - J Keiko McCreary
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Erin A Falkenberg
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Xin Fang
- Departments of Obstetrics and Gynecology, Pediatrics and Physiology, University of Alberta, 227 HMRC, Edmonton, AB T6G 2S2, Canada
| | - Steven Weyers
- Department of Human Structure and Repair, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada.
| | - David M Olson
- Departments of Obstetrics and Gynecology, Pediatrics and Physiology, University of Alberta, 227 HMRC, Edmonton, AB T6G 2S2, Canada.
| |
Collapse
|
43
|
Tilston TW, Brown RD, Wateridge MJ, Arms-Williams B, Walker JJ, Sun Y, Wells T. A Novel Automated System Yields Reproducible Temporal Feeding Patterns in Laboratory Rodents. J Nutr 2019; 149:1674-1684. [PMID: 31287142 PMCID: PMC6736427 DOI: 10.1093/jn/nxz116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/23/2019] [Accepted: 05/07/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The impact of temporal feeding patterns remains a major unanswered question in nutritional science. Progress has been hampered by the absence of a reliable method to impose temporal feeding in laboratory rodents, without the confounding influence of food-hoarding behavior. OBJECTIVE The aim of this study was to develop and validate a reliable method for supplying crushed diets to laboratory rodents in consistent, relevant feeding patterns for prolonged periods. METHODS We programmed our experimental feeding station to deliver a standard diet [StD; Atwater Fuel Energy (AFE) 13.9% fat] or high-fat diet (HFD; AFE 45% fat) during nocturnal grazing [providing 1/24th of the total daily food intake (tdF/I) of ad libitum-fed controls every 30 min] and meal-fed (3 × 1-h periods of ad libitum feeding) patterns in male rats (Sprague-Dawley: 4 wk old, 72-119 g) and mice [C57/Bl6J wild-type (WT): 6 mo old, 29-37 g], and ghrelin-null littermates (Ghr-/-; 27-34 g). RESULTS Grazing yielded accurate, consistent feeding events in rats, with an approximately linear rise in nocturnal cumulative food intake [tdF/I (StD): 97.4 ± 1.5% accurate compared with manual measurement; R2 = 0.86; tdF/I (HFD): 99.0 ± 1.4% accurate; R2 = 0.86]. Meal-feeding produced 3 nocturnal meals of equal size and duration in StD-fed rats (tdF/I: 97.4 ± 0.9% accurate; R2 = 0.90), whereas the second meal size increased progressively in HFD-fed rats (44% higher on day 35 than on day 14; P < 0.01). Importantly, cumulative food intake in grazing and meal-fed rats was identical. Similar results were obtained in WT mice except that less restricted grazing induced hyperphagia (compared with meal-fed WT mice; P < 0.05 from day 1). This difference was abolished in Ghr-/- mice, with meal initiation delayed and meal duration enhanced. Neither pattern elevated corticosterone secretion in rats, but meal-feeding aligned ultradian pulses. CONCLUSIONS We have established a consistent, measurable, researcher-defined, stress-free method for imposing temporal feeding patterns in rats and mice. This approach will facilitate progress in understanding the physiologic impact of feeding patterns.
Collapse
Affiliation(s)
- Thomas W Tilston
- Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Richard D Brown
- Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Matthew J Wateridge
- Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Bradley Arms-Williams
- Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Jamie J Walker
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
- Wellcome Trust Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, United Kingdom
- EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, United Kingdom
| | - Yuxiang Sun
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| | - Timothy Wells
- Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
44
|
D'Souza D, Sadananda M. Stressor during Early Adolescence in Hyperreactive Female Wistar Kyoto Rats Induces a 'Double Hit' Manifested by Variation in Neurobehaviors and Brain Monoamines. Neuroscience 2019; 414:200-209. [PMID: 31279049 DOI: 10.1016/j.neuroscience.2019.06.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/21/2023]
Abstract
Stress is an additive factor in the development of depressive-like profiles that mainly onsets during adolescence. However, effects of early post-weaning stress on developing brain neurochemical pathways in inducing anxiety- and depressive-like profiles in vulnerable females have not been extensively studied. The Wistar Kyoto (WKY) rat, a putative model of adolescent depression and stress-sensitivity could elucidate the pathophysiology of stress-related depression in vulnerability. Through such an approach, links between inherent risk for predisposition to depression and homotypic stress, as in a 'double hit' would unravel endocrine regulation, interference in developing neural pathways and neurobehaviors. Here, early adolescent WKY female rats were subjected to 1-h physical restraint over 7 days followed by neurobehavioral testing in the elevated plus maze (EPM) and forced swim test (FST). The stressor's effectiveness was assayed by plasma corticosterone (CORT) and altered functioning in depression-implicated brain areas by assaying monoamines/metabolites. Homotypic stress induced an anxiolytic-like response in the EPM with learned helplessness and reduced struggling behavior in FST. Significant elevation in CORT levels (p < 0.05) indicated an upregulated HPA axis. Medial prefrontal cortex, a still maturing brain area, exhibited increased serotonin (5-HT) metabolite (p < 0.01) and turnover rates (p < 0.01) indicative of altered/maladaptive serotonergic functioning. Nucleus accumbens (p < 0.05) and dorsal striatum (p < 0.01) also depicted increased 5-HT metabolite, with the latter also demonstrating reduced Dopamine turnover (p < 0.01) as a result of homotypic stress. Hence, female WKY rats could constitute a diathesis-stress model to study underlying mechanisms of stress-related depression.
Collapse
Affiliation(s)
- Deepthi D'Souza
- Brain Research Laboratory, Biotechnology Unit, Department of Biosciences, Mangalore University, Mangalagangothri- 574 199, Karnataka, India
| | - Monika Sadananda
- Brain Research Laboratory, Biotechnology Unit, Department of Biosciences, Mangalore University, Mangalagangothri- 574 199, Karnataka, India.
| |
Collapse
|
45
|
Taylor ZE, Evich CD, Marceau K, Nair N, Jones BL. Associations between Effortful Control, Cortisol Awakening Response, and Depressive Problems in Latino Preadolescents. THE JOURNAL OF EARLY ADOLESCENCE 2019; 39:1050-1077. [PMID: 31558851 PMCID: PMC6761986 DOI: 10.1177/0272431618798509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The present study examined associations between effortful control, a trait marker of self-regulation, adaptive HPA system functioning (as reflected by the CAR), and concurrent and longitudinal depressive problems, in a sample of preadolescent Latino youth (N = 119, mean age = 11.53 years, 59% female). We hypothesized that trait readiness for self-regulation (e.g., effortful control) could be related to physiological state readiness for self-regulation (e.g., CAR), and that both may counter depressive problems. We found that youth's CAR was positively associated with effortful control, and negatively with youth depressive problems. Effortful control and youth depressive problems were also negatively associated. Longitudinal relations of CAR and effortful control on depressive problems at T2 were not significant in the structural equation model after controlling for T1 depressive problems, although these variables were significant in the bivariate correlations. Results suggest that both trait-regulation and physiological regulation may counter depressive problems in Latino youth.
Collapse
Affiliation(s)
- Zoe E. Taylor
- Purdue University, Department of Human Development and Family Studies
| | - Carly D. Evich
- Purdue University, Department of Human Development and Family Studies
| | - Kristine Marceau
- Purdue University, Department of Human Development and Family Studies
| | - Nayantara Nair
- Purdue University, Department of Human Development and Family Studies
| | - Blake L. Jones
- Purdue University, Department of Human Development and Family Studies
| |
Collapse
|
46
|
Chave E, Edwards KL, Paris S, Prado N, Morfeld KA, Brown JL. Variation in metabolic factors and gonadal, pituitary, thyroid, and adrenal hormones in association with musth in African and Asian elephant bulls. Gen Comp Endocrinol 2019; 276:1-13. [PMID: 30735672 DOI: 10.1016/j.ygcen.2019.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 11/28/2022]
Abstract
Longitudinal analyses of serum testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH), prolactin, glucose, insulin, triglycerides, cholesterol, total and free thyroxine (T4), total triiodothyronine (T3), thyroid stimulating hormone (TSH), and cortisol were conducted to investigate pituitary, metabolic, and adrenal changes related to testicular function and musth status in zoo-housed elephant bulls. Blood samples were collected twice a month for 12 months from 14 African and 12 Asian bulls at 17 facilities in North America. Building on previous studies, our results show that musth is associated with increased testosterone, LH, FSH, and cortisol secretion, and a decrease in thyroid hormone (total and free T4) production. In addition, glucose and triglycerides were higher during musth than non-musth periods, indicative of altered sugar and fat metabolism. There were significant differences associated with age for LH, FSH and testosterone, all increasing, whereas the glucose-to-insulin ratio (G:I) decreased with age. A species comparison found African and Asian elephants differed in measures of insulin, prolactin, cholesterol and the G:I. Across all hormones, high inter-individual variability was observed, making it difficult to define a general musth endocrine profile or to assess musth status from single samples. These results highlight the need for facilities hosting bulls to closely and consistently monitor each individual from an early age and throughout musth and non-musth periods to determine the pattern for each male.
Collapse
Affiliation(s)
- Emmanuelle Chave
- Center for Species Survival, Smithsonian Conservation Biology Institute, 1500 Remount Rd., Front Royal, VA 22630, USA; Université François-Rabelais, 60 Rue du Plat d'Étain, 37000 Tours, France
| | - Katie L Edwards
- Center for Species Survival, Smithsonian Conservation Biology Institute, 1500 Remount Rd., Front Royal, VA 22630, USA.
| | - Steve Paris
- Center for Species Survival, Smithsonian Conservation Biology Institute, 1500 Remount Rd., Front Royal, VA 22630, USA
| | - Natalia Prado
- Center for Species Survival, Smithsonian Conservation Biology Institute, 1500 Remount Rd., Front Royal, VA 22630, USA
| | - Kari A Morfeld
- Lincoln Children's Zoo, 1222 S 27th Street, Lincoln, NE 68502, USA
| | - Janine L Brown
- Center for Species Survival, Smithsonian Conservation Biology Institute, 1500 Remount Rd., Front Royal, VA 22630, USA.
| |
Collapse
|
47
|
Vera F, Antenucci CD, Zenuto RR. Different regulation of cortisol and corticosterone in the subterranean rodent Ctenomys talarum: Responses to dexamethasone, angiotensin II, potassium, and diet. Gen Comp Endocrinol 2019; 273:108-117. [PMID: 29782839 DOI: 10.1016/j.ygcen.2018.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 05/09/2018] [Accepted: 05/17/2018] [Indexed: 12/13/2022]
Abstract
When harmful environmental stimuli occur, glucocorticoids (GCs), cortisol and corticosterone are currently used to evaluate stress status in vertebrates, since their secretions are primarily associated to an increased activity of the hypothalamic-pituitaryadrenal (HPA) axis. To advance in our comprehension about GCs regulation, we evaluated the subterranean rodent Ctenomys talarum to assess cortisol and corticosterone response to (1) the negative feedback of the HPA axis using the dexamethasone (DEX) suppression test, (2) angiotensin II (Ang II), (3) potassium (K+) intake, and (4) different diets (vegetables, grasses, acute fasting). Concomitantly, several indicators of individual condition (body mass, neutrophil to lymphocyte ratio, blood glucose, triglycerides and hematocrit) were measured for diet treatments. Results confirm the effect of DEX on cortisol and corticosterone in recently captured animals in the field but not on corticosterone in captive animals. Data suggest that Ang II is capable of stimulating corticosterone, but not cortisol, secretion. Neither cortisol nor corticosterone were responsive to K+ intake. Cortisol levels increased in animals fed with grasses in comparison to those fed with vegetables while corticosterone levels were unaffected by diet type. Moreover, only cortisol responded to fasting. Overall, these results confirm that cortisol and corticosterone are not interchangeable hormones in C. talarum.
Collapse
Affiliation(s)
- Federico Vera
- Laboratorio de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina.
| | - C Daniel Antenucci
- Laboratorio de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina.
| | - Roxana R Zenuto
- Laboratorio de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina.
| |
Collapse
|
48
|
Maly MA, Edwards KL, Farin CE, Koester DC, Crosier AE. Assessing puberty in ex situ male cheetahs (Acinonyx jubatus) via fecal hormone metabolites and body weights. Gen Comp Endocrinol 2018; 268:22-33. [PMID: 30026021 DOI: 10.1016/j.ygcen.2018.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 07/10/2018] [Accepted: 07/15/2018] [Indexed: 01/28/2023]
Abstract
Cheetahs are one of the most heavily studied felid species, with numerous publications on health, disease, and reproductive physiology produced over the last 30 years. Despite this relatively long history of research, there is a paucity of crucial biological data, such as pubertal onset, which has direct and significant applications to improved management of ex situ cheetah populations. This study aimed to determine age of pubertal onset in ex situ male cheetahs using non-invasive fecal steroid hormone monitoring and body weights. Fecal samples from 12 male cheetahs from four institutions were collected 2-3 times weekly from 1 to 42 months of age. Fecal androgen and glucocorticoid metabolites were analyzed using enzyme immunoassays previously validated for use with cheetah feces. Animal body weights were recorded monthly. Fecal hormone and body weight data were analyzed using generalized linear mixed models. Androgen concentrations exhibited an increase to levels similar to those observed in adult males by 18-24 months of age, and males attained adult body weights by 21 months of age. Based on these weight data and the initial increase in androgens toward adult concentrations, males were considered pubertal from 18 to 24 months of age. Glucocorticoid concentrations and amplitude of concentration over baseline were also increased during this period. Knowledge about the physiological changes associated with puberty is useful for management and improving reproductive success of cheetah populations under human care, particularly for determining timing of litter separation from dam, littermate dispersal and when to introduce potential breeding pairs.
Collapse
Affiliation(s)
- Morgan A Maly
- Center for Species Survival, Department of Reproductive Sciences, Smithsonian Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630, United States; Department of Animal Science, College of Agriculture and Life Sciences, North Carolina State University, 123 Polk Hall, 120 Broughton Drive, Raleigh, NC 27695, United States
| | - Katie L Edwards
- Center for Species Survival, Department of Reproductive Sciences, Smithsonian Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630, United States
| | - Charlotte E Farin
- Department of Animal Science, College of Agriculture and Life Sciences, North Carolina State University, 123 Polk Hall, 120 Broughton Drive, Raleigh, NC 27695, United States
| | - Diana C Koester
- Department of Conservation and Science, Cleveland Metroparks Zoo, 3900 Wildlife Way, Cleveland, OH 44109, United States
| | - Adrienne E Crosier
- Center for Species Survival, Department of Reproductive Sciences, Smithsonian Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630, United States.
| |
Collapse
|
49
|
Garamszegi LZ, Donald J, Francis CD, Fuxjager MJ, Goymann W, Hau M, Husak JF, Johnson MA, Kircher B, Knapp R, Martin LB, Miller ET, Schoenle LA, Vitousek MN, Williams TD. Species-Specific Means and Within-Species Variance in Glucocorticoid Hormones and Speciation Rates in Birds. Integr Comp Biol 2018; 58:763-776. [PMID: 30011006 DOI: 10.1093/icb/icy086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
At macroevolutionary scales, stress physiology may have consequences for species diversification and subspecies richness. Populations that exploit new resources or undergo range expansion should cope with new environmental challenges, which could favor higher mean stress responses. Within-species variation in the stress response may also play a role in mediating the speciation process: in species with broad variation, there will always be some individuals that can tolerate an unpredictable environment, whereas in species with narrow variation there will be fewer individuals that are able to thrive in a new ecological niche. We tested for the evolutionary relationship between stress response, speciation rate, and subspecies richness in birds by relying on the HormoneBase repository, from which we calculated within- and among-species variation in baseline (BL) and stress-induced (SI) corticosterone levels. To estimate speciation rates, we applied Bayesian analysis of macroevolutionary mixtures that can account for variation in diversification rate among clades and through time. Contrary to our predictions, lineages with higher diversification rates were not characterized by higher BL or SI levels of corticosterone either at the tips or at the deeper nodes of the phylogeny. We also found no association between mean hormone levels and subspecies richness. Within-species variance in corticosterone levels showed close to zero repeatability, thus it is highly unlikely that this is a species-specific trait that influences diversification rates. These results imply that stress physiology may play a minor, if any, role in determining speciation rates in birds.
Collapse
Affiliation(s)
- László Zsolt Garamszegi
- Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC, c/Americo Vespucio, 26, 41092 Seville, Spain.,MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Jeremy Donald
- Coates Library, Trinity University, San Antonio, TX 78212, USA
| | - Clinton D Francis
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Matthew J Fuxjager
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | | | - Michaela Hau
- Max Planck Institute for Ornithology, Seewiesen 82319, Germany.,University of Konstanz, Konstanz 78464, Germany
| | - Jerry F Husak
- Department of Biology, University of St. Thomas, St. Paul, MN 55105, USA
| | - Michele A Johnson
- Department of Biology, Trinity University, San Antonio, TX 78212, USA
| | - Bonnie Kircher
- Department of Biology, University of Florida, Gainesville, FL 32608, USA
| | - Rosemary Knapp
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Lynn B Martin
- Department of Global Health, University of South Florida, Tampa, FL 33620, USA
| | | | - Laura A Schoenle
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Maren N Vitousek
- Cornell Lab of Ornithology, Ithaca, NY 14850, USA.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
50
|
Caroprese M, Ciliberti M, De Palo P, Santillo A, Sevi A, Albenzio M. Glucocorticoid effects on sheep peripheral blood mononuclear cell proliferation and cytokine production under in vitro hyperthermia. J Dairy Sci 2018; 101:8544-8551. [DOI: 10.3168/jds.2018-14471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/15/2018] [Indexed: 12/28/2022]
|