1
|
Fang L, Shen J, Wu Y, Tan Z. Involvement of intestinal mucosal microbiota in adenine-induced liver function injury. 3 Biotech 2025; 15:6. [PMID: 39676888 PMCID: PMC11638458 DOI: 10.1007/s13205-024-04180-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Abstract
Adenine is frequently utilized as a model medication for chronic renal disease. Adenine can affect organs other than the kidneys, including the heart and the intestine. The liver is a vital organ involved in the in vivo metabolism of adenine. Adenine may negatively impact liver function. Research indicated that adenine caused dysbiosis of the gut microbiota in mice. Investigations into the gut-liver axis have demonstrated a substantial association between drug-induced hepatic dysfunction and gut microbiota. Consequently, we delivered distinct dosages of adenine via gavage to mice to examine the correlation between adenine-induced liver impairment and gut microbiota dysbiosis. Mice were treated with low-dose adenine suspension (NLA), medium-dose adenine suspension (NMA), high-dose adenine suspension (NHA), and sterile water (NC) as a control. The results indicated that mice in the NLA, NMA, and NHA groups had decreased body weight and a reduction in liver index. Subsequent to adenine administration, the concentrations of AST, ALT, and LDH increased, whereas SDH levels decreased. As doses increased, liver function impairment and hepatic energy metabolism abnormalities aggravated. Adenine also damaged the colonic architecture in mice. Moreover, adenine modified the makeup and structure of the gut mucosal microbiota, enhancing specific bacterial genera and influencing the microbiota's energy metabolism-related functions. The results of our research established a correlation among certain bacteria, liver function injury, and hepatic energy metabolism. The gut mucosal microbiota was involved in adenine-induced liver injury and hepatic energy metabolism. These results can offer novel insights into the role of gut microbiota in drug-induced liver injury and provide specific guidelines for the modeling and therapeutic application of adenine.
Collapse
Affiliation(s)
- Leyao Fang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Hanpu Science and Education Park, Yuelu District, Changsha, Hunan 410208 People’s Republic of China
| | - Junxi Shen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Hanpu Science and Education Park, Yuelu District, Changsha, Hunan 410208 People’s Republic of China
| | - Yi Wu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Hanpu Science and Education Park, Yuelu District, Changsha, Hunan 410208 People’s Republic of China
| | - Zhoujin Tan
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Hanpu Science and Education Park, Yuelu District, Changsha, Hunan 410208 People’s Republic of China
| |
Collapse
|
2
|
Liu W, Liu Q, Zhang Z, Hu Y, Fang J. Integrating network pharmacology and experimental validation to explore the pharmacological mechanism of Astragaloside IV in alleviating urotensin II-mediated renal tubular epithelial cell injury. PLoS One 2024; 19:e0310210. [PMID: 39705287 DOI: 10.1371/journal.pone.0310210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/27/2024] [Indexed: 12/22/2024] Open
Abstract
Renal tubular epithelial cell injury is an important manifestation of chronic kidney disease (CKD). This study aims to explore the mechanism of astragaloside IV (AS-IV) in the treatment of UII-mediated renal tubular epithelial cell injury by integrating network pharmacology and experimental validation. BATMAN, SwissTarget-Prediction and ETCM data bases were used to screen the target proteins of AS-IV. DAVID software was then used to perform GO and KEGG enrichment analysis on these target genes, and STRING and cytoscape were used to construct a protein interaction network. Molecular docking analysis was performed on key genes. The CCK8 assay was applied to detect the cell viability. ELISA, laser confocal, RT-PCR, and Western blot methods were used to detect the expression of cell pathway indicators and inflammatory factors in each group. Network pharmacology analysis found that the cAMP signaling pathway is one of the most important pathways for AS-IV to treat CKD. Molecular docking results showed that the AS-IV can be well embedded in the active pockets of target proteins, such as ALB, VEGFA, AKT1, ROCK1, and DRD2. The cAMP content and expression of GPR-14, PKA, NF-κB, and TGF-β in the UII group and the UII+cAMP agonist group (Forskolin) were all higher than those in the control group (P<0.05). In the UII+SB-611812 group, UII+AS-IV group, UII+losartan group, and UII+cAMP inhibitor (H89) group, the cAMP content and the expressions of GPR-14, PKA, NF-κB and TGF-β were all decreased compared with those in the UII group (P<0.05). In conclusion, AS-IV may improve UII-mediated renal tubular epithelial cell damage by down-regulating the cAMP/PKA signaling pathway.
Collapse
Affiliation(s)
- Wenyuan Liu
- Department of Nephrology, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qianwei Liu
- Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Nephrology, Beijing Daxing District People's Hospital, Daxing, Beijing, China
| | - Ziyuan Zhang
- Department of Nephrology, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yaling Hu
- Department of Nephrology, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jingai Fang
- Department of Nephrology, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
3
|
Beikoghli Kalkhoran S, Basalay M, He Z, Golforoush P, Roper T, Caplin B, Salama AD, Davidson SM, Yellon DM. Investigating the cause of cardiovascular dysfunction in chronic kidney disease: capillary rarefaction and inflammation may contribute to detrimental cardiovascular outcomes. Basic Res Cardiol 2024; 119:937-955. [PMID: 39472324 PMCID: PMC11628583 DOI: 10.1007/s00395-024-01086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 12/10/2024]
Abstract
Myocardial ischemia-reperfusion (IR) injury is a major cause of morbidity and mortality in patients with chronic kidney disease (CKD). The most frequently used and representative experimental model is the rat dietary adenine-induced CKD, which leads to CKD-associated CVD. However, the continued intake of adenine is a potential confounding factor. This study investigated cardiovascular dysfunction following brief adenine exposure, CKD development and return to a normal diet. Male Wistar rats received a 0.3% adenine diet for 10 weeks and normal chow for an additional 8 weeks. Kidney function was assessed by urinalysis and histology. Heart function was assessed by echocardiography. Sensitivity to myocardial IR injury was assessed using the isolated perfused rat heart (Langendorff) model. The inflammation profile of rats with CKD was assessed via cytokine ELISA, tissue histology and RNA sequencing. Induction of CKD was confirmed by a significant increase in plasma creatinine and albuminuria. Histology revealed extensive glomerular and tubular damage. Diastolic dysfunction, measured by the reduction of the E/A ratio, was apparent in rats with CKD even following a normal diet. Hearts from rats with CKD had significantly larger infarcts after IR injury. The CKD rats also had statistically higher levels of markers of inflammation including myeloperoxidase, KIM-1 and interleukin-33. RNA sequencing revealed several changes including an increase in inflammatory signaling pathways. In addition, we noted that CKD induced significant cardiac capillary rarefaction. We have established a modified model of adenine-induced CKD, which leads to cardiovascular dysfunction in the absence of adenine. Our observations of capillary rarefaction and inflammation suggest that these may contribute to detrimental cardiovascular outcomes.
Collapse
Affiliation(s)
- Siavash Beikoghli Kalkhoran
- The Hatter Cardiovascular Institute, University College London & UCL Hospital, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Maryna Basalay
- The Hatter Cardiovascular Institute, University College London & UCL Hospital, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Zhenhe He
- The Hatter Cardiovascular Institute, University College London & UCL Hospital, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Pelin Golforoush
- The Hatter Cardiovascular Institute, University College London & UCL Hospital, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Tayeba Roper
- Centre for Kidney and Bladder Health, Royal Free Hospital, University College London, London, England, UK
| | - Ben Caplin
- Centre for Kidney and Bladder Health, Royal Free Hospital, University College London, London, England, UK
| | - Alan D Salama
- Centre for Kidney and Bladder Health, Royal Free Hospital, University College London, London, England, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London & UCL Hospital, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London & UCL Hospital, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
4
|
Wang J, Chen R, Wu K, Mo J, Li M, Chen Z, Wang G, Zhou P, Lan T. Establishment and optimization of a novel mouse model of hyperuricemic nephropathy. Ren Fail 2024; 46:2427181. [PMID: 39540397 PMCID: PMC11565683 DOI: 10.1080/0886022x.2024.2427181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Hyperuricemia is a metabolic disorder characterized by elevated serum uric acid levels. Soluble urate can activate immune responses, and the excessive accumulation of urate in the kidneys results in hyperuricemic nephropathy (HN). However, the lack of an established HN model is a major obstacle to advancing research into the pathogenesis of HN and the development of novel drugs. In this study, we generated and evaluated an optimized mouse model of HN by the combined administration of potassium oxonate and hypoxanthine at various dosages. Our results demonstrated that intraperitoneal injection of 200 mg/kg potassium oxonate with gavage of 500 mg/kg hypoxanthine caused renal injury in mice, as evidenced by the elevation in serum uric acid, serum creatinine, and 24 h albuminuria levels, as well as pathological changes in renal histology. Intraperitoneal injection of 200 mg/kg potassium oxonate with gavage of 500 mg/kg hypoxanthine markedly increased the production of uric acid, inhibited uricase activity, and disrupted uric acid transporters. This led to supersaturated urate deposition in the kidneys, triggering renal inflammation and fibrosis, thereby promoting HN progression. In conclusion, we successfully established a stable and efficient mouse model that can mimic the pathogenesis of HN. This novel model may facilitate the discovery of therapeutic targets and the development of new drugs for the treatment of HN.
Collapse
Affiliation(s)
- Jiamin Wang
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Rong Chen
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Kaireng Wu
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Juxian Mo
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Minghui Li
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Zhe Chen
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Guixiang Wang
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Ping Zhou
- Department of Pediatric Nephrology and Rheumatology, Sichuan Provincial Maternity and Child Health Care Hospital, Sichuan Clinical Research Center for Pediatric Nephrology, Chengdu, Sichuan, China
| | - Tian Lan
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Zhang M, Gao J, Kulyar MF, Luo W, Zhang G, Yang X, Zhang T, Gao H, Peng Y, Zhang J, Altaf M, Algharib SA, Zhou D, He J. Antioxidant and renal protective effects of Nano-selenium on adenine-induced acute renal failure in canines. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117274. [PMID: 39536559 DOI: 10.1016/j.ecoenv.2024.117274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Acute renal failure is a common clinical disease in canines, affecting antioxidant levels and decreasing the body's resistance. This study aims to explore the therapeutic mechanism of Nano-selenium in acute renal failure. The histopathological and imaging changes of kidney tissue were observed with the gene and protein expression levels of Keap1, Nrf2, HO-1, and NQO1 in the kidney. According to our findings, adding nano-selenium can effectively reduce the concentration of CRE and BUN in blood and kidney tissues. It increased the activity of GSH-PX and SOD by an effective reduction of MDA. Through pathological and imaging observations, it was found that adding nano-selenium could improve the kidney tissue structure of acute renal failure. The results of the RT-qPCR experiment showed that after the addition of nano-selenium, the mRNA expression of the Keap1 gene decreased significantly. In contrast, the mRNA expression of the Nrf2, HO-1, and NQO1 genes increased significantly. The experimental results were further verified by western blot and immunohistochemical analysis. Hence, the nano-selenium intervention improved kidney function and increased antioxidant levels in canines suffering from acute renal failure with the involvement of the Keap1-Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Mengdi Zhang
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control/College of Animal Science, Tarim University, Alar, Xinjiang 843300, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jindong Gao
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control/College of Animal Science, Tarim University, Alar, Xinjiang 843300, China
| | - Md F Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wanhe Luo
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control/College of Animal Science, Tarim University, Alar, Xinjiang 843300, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Guodong Zhang
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control/College of Animal Science, Tarim University, Alar, Xinjiang 843300, China
| | - Xiaoqi Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Tianguang Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Haihang Gao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuxuan Peng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiabin Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Muhammad Altaf
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Samah Attia Algharib
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, QG 13736, Egypt
| | - Donghai Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Jianzhong He
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control/College of Animal Science, Tarim University, Alar, Xinjiang 843300, China.
| |
Collapse
|
6
|
Li HY, Xu XY, Lv SH, Chen W, Wang Y, Fu Y, Yang JP. LncRNA H19 accelerates renal fibrosis by negatively regulating the let-7b-5p/TGF-βR1/COL1A1 axis. Cell Signal 2024; 123:111373. [PMID: 39214267 DOI: 10.1016/j.cellsig.2024.111373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/31/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Transforming growth factor-beta1 (TGF-β1)-mediated renal fibrosis is a critical pathological process of chronic kidney disease worsening to end-stage renal disease. Recent studies have shown that long noncoding RNA H19 (lncRNA H19) is widely involved in the formation and progression of fibrosis in multiple organs. However, its molecular events in renal fibrosis remain to be elucidated. METHODS Rats were treated with adenine intragastrically and HK-2 cells were induced by TGF-β1 to construct renal fibrosis models in vivo and in vitro, respectively. Renal histopathological examination was performed using HE and Masson staining. Gene expression levels of interleukin-1beta (IL-1β), tumor necrosis factor-alpha (TNF-α), TGF-β1, fibronectin (Fn), alpha-smooth muscle actin (α-SMA), H19, let-7b-5p, TGF-β receptor 1 (TGF-βR1), and type I collagen (COL1A1) were detected by qRT-PCR. Immunohistochemistry, immunofluorescence, and western blot analysis were used to evaluate the expression of renal fibrosis biomarkers. Dual-luciferase reporter assay was used to verify the presence of binding sites between H19 and let-7b-5p, and between let-7b-5p and TGF-βR1 and COL1A1. RESULTS H19 was overexpressed in both in vivo and in vitro renal fibrosis models. H19 knockdown significantly reversed TGF-β1-induced upregulation of fibronectin, COL1A1, and α-SMA and downregulation of E-cadherin in HK-2 cells, accompanied by an increase in let-7b-5p. Let-7b-5p was bound to H19 in HK-2 cells, and its overexpression inhibited TGF-β1-induced HK-2 cell fibrosis. Further experiments determined that let-7b-5p directly targets TGF-βR1 and COL1A1 in HK-2 cells. In addition, inhibition of let-7b-5p reversed the reduction in HK-2 cell fibrosis induced by H19 knockdown. Finally, knockdown of H19 alleviated renal fibrosis in vivo and was associated with regulation of the let-7b-5p/TGF-βR1/COL1A1 axis. CONCLUSION Our results indicate that knockdown of H19 inhibits renal tubular epithelial fibrosis by negatively regulating the let-7b-5p/TGF-βR1/COL1A1 axis, which may provide new mechanistic insights into CRF progression.
Collapse
Affiliation(s)
- Huai-Yu Li
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xian-Yun Xu
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Sen-Hao Lv
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Wei Chen
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Ying Wang
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Yong Fu
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Jun-Ping Yang
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
| |
Collapse
|
7
|
Carvalho LRRA, Shimari M, Boeder AM, Zhuge Z, Cai M, Leijding C, Gastaldello S, Kleschyov AL, Schiffer TA, Guimarães DD, Picozzi G, Lund LH, Fellström B, Weitzberg E, Lundberg JO, Hagberg CE, Pironti G, Andersson DC, Carlström M. A novel model of cardiovascular-kidney-metabolic syndrome combining unilateral nephrectomy and high-salt-sugar-fat diet in mice. Lab Anim (NY) 2024; 53:336-346. [PMID: 39438661 PMCID: PMC11519006 DOI: 10.1038/s41684-024-01457-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
The aim of this study was to explore biological interaction and pathophysiology mechanisms in a new mouse model of cardiovascular-kidney-metabolic (CKM) syndrome, induced by chronic moderate renal failure in combination with consumption of a customized Western diet rich in carbohydrates, fat and salt. Male C57BL/6J mice were subjected to unilateral nephrectomy, fed a customized Western diet rich not only in sugar and fat but also in salt, and followed for 12 weeks or 20 weeks. Sham-operated mice on a standard chow served as healthy controls. Body composition, weight gain, glucose metabolism, fat distribution, blood pressure, cardiac function, vascular reactivity, renal function, inflammation and mitochondrial function were measured and combined with biochemical and histopathological analyses. The novel triple-hit model of CKM syndrome showed signs and symptoms of metabolic syndrome, disturbed glucose metabolism, impaired adipocyte physiology and fat redistribution, cardiovascular dysfunction, renal damage and dysfunction, systemic inflammation, elevated blood pressure and cardiac remodeling. The pathological changes were more pronounced in mice after prolonged exposure for 20 weeks, but no deaths occurred. In the present mouse model of CKM syndrome, profound and significant metabolic, cardiac, vascular and renal dysfunctions and injuries emerged by using a Western diet rich not only in fat and carbohydrates but also in salt. This multisystem disease model could be used for mechanistic studies and the evaluation of new therapeutic strategies.
Collapse
Affiliation(s)
| | - Miho Shimari
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ariela Maína Boeder
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Zhengbing Zhuge
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Min Cai
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Leijding
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Stefano Gastaldello
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Andrei L Kleschyov
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Tomas A Schiffer
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Gaia Picozzi
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lars H Lund
- Department of Medicine, Cardiology Unit, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Bengt Fellström
- Department of Medical Science, Renal Unit, University Hospital, Uppsala, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gianluigi Pironti
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Cardiology Unit, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel C Andersson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Heart, Vascular and Neurology Theme, Cardiology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
Jiao L, Wang R, Dong Y, Su J, Yu J, Yan M, Chen S, Lv G. The impact of chrysanthemi indici flos-enriched flavonoid part on the model of hyperuricemia based on inhibiting synthesis and promoting excretion of uric acid. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118488. [PMID: 38925319 DOI: 10.1016/j.jep.2024.118488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In recent years, in addition to hypertension, hyperglycemia, and hyperlipidemia, the prevalence of hyperuricemia (HUA) has increased considerably. Being the fourth major health risk factor, HUA can affect the kidneys and cardiovascular system. Chrysanthemi Indici Flos is a flavonoid-containing traditional Chinese patent medicine that exhibits a uric acid (UA)-lowering effect. However, the mechanisms underlying Chrysanthemi Indici Flos-enriched flavonoid part (CYM.E) mediated alleviation of HUA remain unelucidated. AIM OF THE STUDY This study aimed to elucidate the efficacy of CYM.E in preventing and treating HUA and its specific effects on UA-related transport proteins, to explore possible mechanism. METHODS The buddleoside content in CYM.E was determined through high-performance liquid chromatography. HUA was induced in mice models using adenine and potassium oxonate. Subsequently, mice were administered 10 mg/kg allopurinol, and 30, 60, and 90 mg/kg CYM.E to evaluate the effects of CYM.E on the of HUA mice model. Herein, plasma uric acid (UA), creatinine (CR), blood urea nitrogen (BUN), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-c), and low-density lipoprotein cholesterol (LDL-c) contents, along with serum alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activities were measured. Additionally, xanthine oxidase (XOD) and adenosine deaminase (ADA) activities in the liver were determined. The histomorphologies of the liver and kidney tissues were examined through hematoxylin and eosin staining. The messenger RNA (mRNA) expression of facilitated glucose transporter 9 (GLUT9), organic anion transporter (OAT)1, OAT3, and adenosine triphosphate binding cassette subfamily G2 (ABCG2) in the kidney was assessed by real-time quantitative polymerase chain reaction. Furthermore, the expression of urate transporter 1 (URAT1), GLUT9, OAT1, and OAT3 in the kidney, OAT4, and ABCG2 proteins was determined by immunohistochemistry and western blotting. RESULTS The buddleoside content in CYM.E was approximately 32.77%. CYM.E improved body weight and autonomous activity in HUA mice. Additionally, it reduced plasma UA, BUN, and CR levels and serum ALT and AST activities, thus improving hepatic and renal functions, which further reduced the plasma UA content. CYM.E reduced histopathological damage to the kidneys. Furthermore, it lowered plasma TC, TG, and LDL-c levels, thereby improving lipid metabolism disorder. CYM.E administration inhibited hepatic XOD and ADA activities and reduced the mRNA expression of renal GLUT9. CYM.E inhibited the protein expression of renal URAT1, GLUT9, and OAT4, and increased the mRNA and protein expression of renal OAT1, OAT3, and ABCG2. Altogether, these results show that CYM.E could inhibit the production and promote reabsorption of UA and its excretion.
Collapse
MESH Headings
- Animals
- Hyperuricemia/drug therapy
- Hyperuricemia/chemically induced
- Uric Acid/blood
- Male
- Flavonoids/pharmacology
- Flavonoids/analysis
- Mice
- Organic Anion Transporters/metabolism
- Organic Anion Transporters/genetics
- Disease Models, Animal
- Kidney/drug effects
- Kidney/pathology
- Kidney/metabolism
- Flowers/chemistry
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- Organic Anion Transporters, Sodium-Independent/metabolism
- Organic Anion Transporters, Sodium-Independent/genetics
- Glucose Transport Proteins, Facilitative/metabolism
- Glucose Transport Proteins, Facilitative/genetics
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Allopurinol/pharmacology
- Mice, Inbred ICR
Collapse
Affiliation(s)
- Lin Jiao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China
| | - Rou Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China
| | - Yingjie Dong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China
| | - Jie Su
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China
| | - Jingjing Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China
| | - Meiqiu Yan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Guiyuan Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China.
| |
Collapse
|
9
|
Jiang W, He Z, Yao R, Xiao W, Chen Z, Zeng X, Zheng M, Wang J, Li J, Jiang Y. Eucommiae cortex extract alleviates renal fibrosis in CKD mice induced by adenine through the TGF-β1/Smad signaling pathway. J Nat Med 2024:10.1007/s11418-024-01848-5. [PMID: 39443397 DOI: 10.1007/s11418-024-01848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Research into the potential therapeutic benefits of herbal remedies for treating chronic kidney disease (CKD), a condition marked by renal fibrosis and persistent inflammation, has become popular. Eucommiae cortex (EC) is a vital herb for strengthening bones and muscles and tonifying the kidneys and liver. In the study, C57 BL/6 mice were given a diet containing 0.2% adenine to create a CKD model. The findings demonstrated that exogenous EC supplementation successfully decreased the levels of creatinine and urea nitrogen, down-regulated the TGF-β1/Smad signaling pathway's expression levels of TGF-β1, α-SMA, Smad3, and phospho-Smad3, and prevented renal fibrosis. Consequently, it was determined that EC might have a nephroprotective impact.
Collapse
Affiliation(s)
- Wenyi Jiang
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Zhengyou He
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China.
| | - Ruijiao Yao
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Wenyan Xiao
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Zhiyang Chen
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Xia Zeng
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Miao Zheng
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Jing Wang
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Jia Li
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Yong Jiang
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
10
|
Tukhovskaya EA, Ismailova AM, Perepechenova NA, Slashcheva GA, Palikov VA, Palikova YA, Rzhevsky DI, Rykov VA, Novikova NI, Dyachenko IA, Murashev AN. Development and Worsening of Hypertension with Age in Male Wistar Rats as a Physiological Model of Age-Related Hypertension: Correction of Hypertension with Taxifolin. Int J Mol Sci 2024; 25:11216. [PMID: 39456996 PMCID: PMC11509042 DOI: 10.3390/ijms252011216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
To preclinically study the effectiveness of new antihypertensive drugs, various animal hypertension models are used. However, most of them do not correspond to primary hypertension, which develops in people with age. We used male Wistar rats of 4, 10, 12 and 18 months old. The animals were divided according to systolic blood pressure (SBP) into normotensive (SBP ≤ 114 mmHg) or hypertensive (SBP ≥ 115 mmHg). Within hypertensive animals, two cohorts were distinguished-with SBP below and above 125 mmHg. The animals received 100 µg/kg of taxifolin intraperitoneally for 7 days. A significant difference was shown between animals with SBP above and below 115 mmHg, as well as between cohorts of hypertensive animals with SBP above and below 125 mmHg within each age. The number of animals with elevated SBP increased with age both for clusters with an SBP above 115 mmHg and for cohorts with an SBP above 125 mmHg. Administration of taxifolin led to a significant decrease in the SBP only in hypertensive animals. A physiological model of age-related hypertension was obtained in male Wistar rats. It has been shown that hypertension develops and worsens with age. In preclinical studies, it should be taken into account that drugs may have different effects depending on the initial SBP of the animals.
Collapse
Affiliation(s)
- Elena A. Tukhovskaya
- Biological Testing Laboratory, Shemyakin-Ovchinnicov Institute of Bioorganic Chemistry (Branch), Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino 142290, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zuo D, Luo M, Liu C, Yang A, Shen Y, Xu J, He A, Li X. HAO2 protects from proximal tubular cells injured in rats with chronic kidney disease by promoting fatty acid metabolic processes. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167342. [PMID: 39002705 DOI: 10.1016/j.bbadis.2024.167342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
The complex pathogenesis of kidney disease is closely related to the diversity of kidney intrinsic cells. In this study, single-cell transcriptome sequencing technology was used to sequence and analyze blood and kidney tissue cells in normal control rats and rats with chronic kidney disease (CKD), focusing on key cell populations and functional enrichment to explore the pathogenesis of CKD. Oil red O staining and enzyme-linked immunosorbent assay (ELISA) were used to detect lipid droplets and free fatty acid (FFA). Quantitative real-time polymerase chain reaction (RT-PCR), western blot (WB) were used to verify the differential gene hydroxyacid oxidase 2 (HAO2) and fatty acid metabolic process in tissue to ensure the reliability of single-cell sequencing results. We successfully established a single-cell transcriptome atlas of blood and kidney tissue in rats with CKD, which were annotated into 14 cell subsets (MPCs, PT, Tc, DCT, B-IC, A-IC, CNT, ALOH, BC, Neu, Endo, Pla, NKT, Baso) according to marker gene, and the integrated single-cell atlas of rats showed a significant increase and decrease of MPCs and PTs in the CKD group, respectively. Functional analysis found extensive enrichment of metabolic-related pathways in PT cells, includes fatty acid metabolic process, cellular amino acid metabolic process and generation of precursor metabolites and energy. Immunohistochemical experiments determined that the differential gene HAO2 was localized in the renal tubules, and its expression was significantly reduced in CKD group compared with control, and oil red O staining showed that lipid droplets increased in the CKD group, after overexpression of HAO2 the lipid droplets was inhibited. ELISA assay showed that ATP content decreased in the CKD group and FFA increased in the CKD group. Moreover, the mitochondrial membrane potential of the cells in the OE-HAO2 group was significantly increased compared with OE-NC. The acyl-CoA oxidase 1(ACOX1), peroxisome proliferator-activated receptor alpha (PPARα), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) were decreased in the CKD group, while genes and proteins were increased after overexpression of HAO2, and the AMP-activated protein kinase (AMPK) phosphorylated proteins were increased, the acetyl-CoA carboxylase (ACC) phosphorylated proteins were decreased, reversely. Therefore, HAO2 may be an important regulator of fatty acid metabolic processes in CKD, and overexpression of HAO2 can enhance fatty acid metabolism by promoting fatty acid oxidation (FAO) pathway.
Collapse
Affiliation(s)
- Deyu Zuo
- Department of Rehabilitation Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China; Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China
| | - Minghao Luo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.; Cardiovascular Disease Laboratory of Chongqing Medical University, Chongqing, China
| | - Chengxuan Liu
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Youfeng Shen
- Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China
| | - Jian Xu
- Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China
| | - An He
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.; Cardiovascular Disease Laboratory of Chongqing Medical University, Chongqing, China.
| | - Xunjia Li
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China; Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China.
| |
Collapse
|
12
|
Tanaka N, Fukuda T, Takano R, Sasaki K, Tsuji T, Goto R, Kuribayashi T, Yamaguchi K, Niitsu Y, Ishii K, Hashimoto M, Takahashi S, Obayashi H. Discovery of DS-1093a: An oral hypoxia-inducible factor prolyl hydroxylase inhibitor for the treatment of renal anemia. Bioorg Med Chem Lett 2024; 111:129891. [PMID: 39019240 DOI: 10.1016/j.bmcl.2024.129891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Inhibition of the hypoxia-inducible factor prolyl hydroxylase (HIF-PHD) represents a promising strategy for discovering next-generation treatments for renal anemia. We discovered DS44470011 in our previous study, which showed potent in vitro activity and in vivo efficacy based on HIF-PHD inhibition. However, DS44470011 was also found to exert genotoxic effects. By converting the biphenyl structure, which is suspected to be the cause of this genotoxicity, to a 1-phenylpiperidine structure, we were able to avoid genotoxicity and further improve the in vitro activity and in vivo efficacy. Furthermore, through the optimization of pyrimidine derivatives, we discovered DS-1093a, which has a wide safety margin with potent in vitro activity and an optimal pharmacokinetic profile. DS-1093a achieved an increase in hemoglobin levels in an adenine-induced rat model of chronic kidney disease after its continuous administration for 4 days.
Collapse
Affiliation(s)
- Naoki Tanaka
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | - Takeshi Fukuda
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Rieko Takano
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Koji Sasaki
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Takashi Tsuji
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Riki Goto
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Takeshi Kuribayashi
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kyoji Yamaguchi
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yoichi Niitsu
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Ken Ishii
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Masami Hashimoto
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Shinichi Takahashi
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Hisakuni Obayashi
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
13
|
Abdelfattah AM, Mohammed ZA, Talaat A, Samy W, Eldesoqui M, Elgarhi RI. A PDE1 inhibitor, vinpocetine, ameliorates epithelial-mesenchymal transition and renal fibrosis in adenine-induced chronic kidney injury in rats by targeting the DNMT1/Klotho/β-catenin/Snail 1 and MMP-7 pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03393-0. [PMID: 39276250 DOI: 10.1007/s00210-024-03393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/16/2024] [Indexed: 09/16/2024]
Abstract
Tubulointerstitial fibrosis (TIF) is present with chronic kidney disease (CKD). Vinpocetine (Vinpo) is used for treating cerebrovascular deficits, exhibiting some kidney-beneficial effects; however, its role in TIF is uncertain. So, the aim of this study was to investigate its potential impact on adenine-induced fibrotic CKD and explore the underlying mechanistic aspects. Eighteen male Wistar rats were categorized into three groups (n = 6 each). Group I was kept as controls and given saline; group II received adenine (300 mg/kg, twice weekly, i.p.) for induction of the CKD model; and group III was administered Vinpo (20 mg/kg/d, orally) concurrently with adenine. All treatments were administered for 4 weeks. Vinpo revealed an improvement in renal function and an alleviation of inflammation triggered by adenine via diminishing serum tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) levels. Further, Vinpo repressed the epithelial-mesenchymal transition (EMT) with preserved E-cadherin mRNA expression and lowered gene and immune expression of fibronectin and vimentin, respectively, besides attenuating the elevated G2/M arrest-related molecules (renal Ki67 protein contents and p21 gene expression). Renal pathological alterations caused by adenine were attenuated upon Vinpo administration. Interestingly, Vinpo suppressed abnormal renal β-catenin immunoreactivity, Snail 1, and MMP-7 gene expression while simultaneously restored Klotho protein expression by downregulating DNA methyltransferase 1 enzyme (DNMT1) protein expression in the kidney. These data indicated that Vinpo effectively mitigated EMT and G2/M arrest-induced renal fibrosis in adenine-induced CKD rats by targeting DNMT1-associated Klotho suppression, subsequently inhibiting β-catenin and its fibrotic downstream genes.
Collapse
Affiliation(s)
| | - Zeinab A Mohammed
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Aliaa Talaat
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Walaa Samy
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, 11597, Riyadh, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Reham I Elgarhi
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
14
|
Liu H, Diep TN, Wang Y, Wang Y, Yan LJ. Diabetic Kidney Disease: Contribution of Phenyl Sulfate Derived from Dietary Tyrosine upon Gut Microbiota Catabolism. Biomolecules 2024; 14:1153. [PMID: 39334919 PMCID: PMC11429668 DOI: 10.3390/biom14091153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Deranged gut microbiota can release increased levels of uremic toxins leading to exacerbated kidney injury. In diabetic kidney disease (DKD), phenyl sulfate (PS) derived from tyrosine catabolism by gut microbiota has been demonstrated to be both an early diagnostic marker and a therapeutic target. In this perspective article, we summarize PS generation pathways and recent findings on PS and kidney injury in DKD. Increasing evidence has shown that the underlying mechanisms of PS-induced kidney injury mainly involve oxidative stress, redox imbalance, and mitochondrial dysfunction, which all may be targeted to attenuate PS-induced kidney injury. For future research directions, we think that a deeper understanding of the pathogenic role of PS in kidney injury using a variety of diabetic animal models should be investigated. Moreover, we also suggest beneficial approaches that could be used to mitigate the deleterious effect of PS on the kidney. These approaches include caloric restriction, tyrosine restriction, and administration of ketogenic drugs, ketogenic diets or natural products; all of which should be conducted under obese and diabetic conditions.
Collapse
Affiliation(s)
- Haoxin Liu
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Tram N Diep
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Ying Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
15
|
Park J, Nam KH, Nam BY, Kim G, Kim H, Lee KU, Song SC, Nam TW, Kim WK, Park JT, Yoo TH, Kang SW, Ko G, Han SH. Lactobacillus acidophilus KBL409 protects against kidney injury via improving mitochondrial function with chronic kidney disease. Eur J Nutr 2024; 63:2121-2135. [PMID: 38705901 DOI: 10.1007/s00394-024-03408-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE Recent advances have led to greater recognition of the role of mitochondrial dysfunction in the pathogenesis of chronic kidney disease (CKD). There has been evidence that CKD is also associated with dysbiosis. Here, we aimed to evaluate whether probiotic supplements can have protective effects against kidney injury via improving mitochondrial function. METHODS An animal model of CKD was induced by feeding C57BL/6 mice a diet containing 0.2% adenine. KBL409, a strain of Lactobacillus acidophilus, was administered via oral gavage at a dose of 1 × 109 CFU daily. To clarify the underlying mechanisms by which probiotics exert protective effects on mitochondria in CKD, primary mouse tubular epithelial cells stimulated with TGF-β and p-cresyl sulfate were administered with butyrate. RESULTS In CKD mice, PGC-1α and AMPK, key mitochondrial energy metabolism regulators, were down-regulated. In addition, mitochondrial dynamics shifted toward fission, the number of fragmented cristae increased, and mitochondrial mass decreased. These alterations were restored by KBL409 administration. KBL409 supplementation also improved defects in fatty acid oxidation and glycolysis and restored the suppressed enzyme levels involved in TCA cycle. Accordingly, there was a concomitant improvement in mitochondrial respiration and ATP production assessed by mitochondrial function assay. These favorable effects of KBL409 on mitochondria ultimately decreased kidney fibrosis in CKD mice. In vitro analyses with butyrate recapitulated the findings of animal study. CONCLUSIONS This study demonstrates that administration of the probiotic Lactobacillus acidophilus KBL409 protects against kidney injury via improving mitochondrial function.
Collapse
Affiliation(s)
- Jimin Park
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ki Heon Nam
- Division of Integrated Medicine, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Bo Young Nam
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Gyuri Kim
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Hyoungnae Kim
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | | | | | | | - Woon-Ki Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Jung Tak Park
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - GwangPyo Ko
- KoBiolabs, Inc., Seoul, Korea
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Seung Hyeok Han
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea.
| |
Collapse
|
16
|
Tain YL, Hou CY, Chen WL, Liao WT, Hsu CN. Lactoferrin Supplementation during Pregnancy and Lactation Protects Adult Male Rat Offspring from Hypertension Induced by Maternal Adenine Diet. Nutrients 2024; 16:2607. [PMID: 39203744 PMCID: PMC11357372 DOI: 10.3390/nu16162607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Lactoferrin, a glycoprotein derived from breastmilk, is recognized for its health benefits in infants and children; however, its protective effects when administered during gestation and lactation against offspring hypertension remain unclear. This study aimed to investigate whether maternal lactoferrin supplementation could prevent hypertension in offspring born to mothers with chronic kidney disease (CKD), with a focus on nitric oxide (NO), renin-angiotensin system (RAS) regulation, and alterations in gut microbiota and short-chain fatty acids (SCFAs). Prior to pregnancy, female rats were subjected to a 0.5% adenine diet for 3 weeks to induce CKD. During pregnancy and lactation, pregnant rats received one of four diets: normal chow, 0.5% adenine diet, 10% lactoferrin diet, or adenine diet supplemented with lactoferrin. Male offspring were euthanized at 12 weeks of age (n = 8 per group). Supplementation with lactoferrin during gestation and lactation prevented hypertension in adult offspring induced by a maternal adenine diet. The maternal adenine diet caused a decrease in the index of NO availability, which was restored by 67% with maternal LF supplementation. Additionally, LF was related to the regulation of the RAS, as evidenced by a reduced renal expression of renin and the angiotensin II type 1 receptor. Combined maternal adenine and LF diets altered beta diversity, shifted the offspring's gut microbiota, decreased propionate levels, and reduced the renal expression of SCFA receptors. The beneficial effects of lactoferrin are likely mediated through enhanced NO availability, rebalancing the RAS, and alterations in gut microbiota composition and SCFAs. Our findings suggest that maternal lactoferrin supplementation improves hypertension in offspring in a model of adenine-induced CKD, bringing us closer to potentially translating lactoferrin supplementation clinically for children born to mothers with CKD.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 330, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Wei-Ling Chen
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Wei-Ting Liao
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
17
|
Tain YL, Hou CY, Chang-Chien GP, Lin SF, Hsu CN. Chondroitin Sulfate Ameliorates Hypertension in Male Offspring Rat Born to Mothers Fed an Adenine Diet. Antioxidants (Basel) 2024; 13:944. [PMID: 39199190 PMCID: PMC11351932 DOI: 10.3390/antiox13080944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Pregnant women with chronic kidney disease (CKD) face increased risks of adverse outcomes in their adult offspring. Offspring rats born to dams fed an adenine diet develop hypertension, coinciding with dysregulated hydrogen sulfide (H2S) and nitric oxide (NO) pathways, as well as alterations in gut microbiota. Chondroitin sulfate (CS) is a multifunctional food known for its diverse bioactivities. As a sulfate prebiotic, CS has shown therapeutic potential in various diseases. Here, we investigated the protective effects of maternal CS supplementation against hypertension in offspring induced by an adenine diet. Mother rats were administered regular chow, 0.5% adenine, 3% CS, or a combination throughout gestation and lactation. Maternal CS supplementation effectively protected offspring from hypertension induced by the adenine diet. These beneficial effects of CS were connected with increased renal mRNA and protein levels of 3-mercaptopyruvate sulfurtransferase, an enzyme involved in H2S production. Furthermore, maternal CS treatment significantly enhanced alpha diversity and altered beta diversity of gut microbiota in adult offspring. Specifically, perinatal CS treatment promoted the abundance of beneficial microbes such as Roseburia hominis and Ruminococcus gauvreauii. In conclusion, perinatal CS treatment mitigates offspring hypertension associated with maternal adenine diet, suggesting that early administration of sulfate prebiotics may hold preventive potential. These findings warrant further translational research to explore their clinical implications.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 330, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Guo-Ping Chang-Chien
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.-F.L.)
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Shu-Fen Lin
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.-F.L.)
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
18
|
Liu Q, Pei Y, Xie Q, Bao W, Li X, Luan J, Han J. Renal Artery Coil Embolization as an Endovascular Approach for Establishing a Rabbit Model of Chronic Kidney Disease. J Vasc Interv Radiol 2024; 35:1234-1241.e3. [PMID: 38663515 DOI: 10.1016/j.jvir.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/23/2024] Open
Abstract
PURPOSE To investigate the safety and feasibility of renal artery coil embolization for establishing chronic kidney disease (CKD) in rabbits. MATERIALS AND METHODS Ten male adult New Zealand rabbits underwent renal artery coil embolization. Initially, the main renal artery on 1 side was completely embolized, followed by embolization of approximately two-thirds of the primary branches of the contralateral renal artery 1 week later. Four rabbits were randomly chosen for sacrifice at 4 weeks after embolization, whereas the remaining 6 were sacrificed at 8 weeks after embolization. The assessment encompassed the animals' general condition, angiography, biochemical parameters, inflammatory markers, and histopathological examination of the kidneys and hearts. RESULTS Four weeks after embolization, serum creatinine level showed a substantial increase (2.4 mg/dL [SD ± 0.6]; P = .009 vs baseline), with a subsequent 4.12-fold elevation at 8 weeks after embolization (4.9 mg/dL [SD ± 1.4]; P < .001 vs baseline). Additionally, considerable increases in serum blood urea nitrogen, calcium, and potassium ions were observed at 8 weeks after embolization (58.3 mg/dL [SD ± 19.0]; P < .001 vs baseline; 23.1 mg/dL [SD ± 4.4]; P < .001 vs baseline; and 6.3 mEq/L [SD ± 0.7]; P < .001 vs baseline, respectively). The completely embolized kidney exhibited notable atrophy, severe fibrosis, and cortical calcification, whereas the contralateral partially embolized kidney displayed compensatory hypertrophy, along with glomerulosclerosis, tubular dilation, tubular casts, and interstitial fibrosis. CONCLUSIONS Renal artery coil embolization proved to be effective and safe for establishing a CKD model in rabbits.
Collapse
Affiliation(s)
- Qijia Liu
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, China
| | - Yun Pei
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, China
| | - Qian Xie
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Wenhan Bao
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Xuan Li
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, China
| | - Jingyuan Luan
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, China
| | - Jintao Han
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
19
|
Jiang Q, Yang Q, Zhang C, Hou C, Hong W, Du M, Shan X, Li X, Zhou D, Wen D, Xiong Y, Yang K, Lin Z, Song J, Mo Z, Feng H, Xing Y, Fu X, Liu C, Peng F, Wu L, Li B, Lu W, Yuan JXJ, Wang J, Chen Y. Nephrectomy and high-salt diet inducing pulmonary hypertension and kidney damage by increasing Ang II concentration in rats. Respir Res 2024; 25:288. [PMID: 39080603 PMCID: PMC11290206 DOI: 10.1186/s12931-024-02916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a significant risk factor for pulmonary hypertension (PH), a complication that adversely affects patient prognosis. However, the mechanisms underlying this association remain poorly understood. A major obstacle to progress in this field is the lack of a reliable animal model replicating CKD-PH. METHODS This study aimed to establish a stable rat model of CKD-PH. We employed a combined approach, inducing CKD through a 5/6 nephrectomy and concurrently exposing the rats to a high-salt diet. The model's hemodynamics were evaluated dynamically, alongside a comprehensive assessment of pathological changes in multiple organs. Lung tissues and serum samples were collected from the CKD-PH rats to analyze the expression of angiotensin-converting enzyme 2 (ACE2), evaluate the activity of key vascular components within the renin-angiotensin-aldosterone system (RAAS), and characterize alterations in the serum metabolic profile. RESULTS At 14 weeks post-surgery, the CKD-PH rats displayed significant changes in hemodynamic parameters indicative of pulmonary arterial hypertension. Additionally, right ventricular hypertrophy was observed. Notably, no evidence of pulmonary vascular remodeling was found. Further analysis revealed RAAS dysregulation and downregulated ACE2 expression within the pulmonary vascular endothelium of CKD-PH rats. Moreover, the serum metabolic profile of these animals differed markedly from the sham surgery group. CONCLUSIONS Our findings suggest that the development of pulmonary arterial hypertension in CKD-PH rats is likely a consequence of a combined effect: RAAS dysregulation, decreased ACE2 expression in pulmonary vascular endothelial cells, and metabolic disturbances.
Collapse
Grants
- 82370063, 82170069, 82241012, 82120108001, 81970057, 82170065, 82000045, 82270052 National Natural Science Foundation of China
- 82370063, 82170069, 82241012, 82120108001, 81970057, 82170065, 82000045, 82270052 National Natural Science Foundation of China
- National Key Research and Development Program of China
Collapse
Affiliation(s)
- Qian Jiang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Qifeng Yang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Chenting Zhang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Chi Hou
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Wei Hong
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Min Du
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Xiaoqian Shan
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Xuanyi Li
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Dansha Zhou
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Dongmei Wen
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Yuanhui Xiong
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Kai Yang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Ziying Lin
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Jingjing Song
- Department of Stomatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Zhanjie Mo
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Huazhuo Feng
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Yue Xing
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Xin Fu
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Chunli Liu
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Fang Peng
- Department of Critical Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Liling Wu
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518000, Guangdong, China
| | - Bing Li
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China.
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510320, Guangdong, China.
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China.
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
20
|
Commey KL, Enaka A, Nakamura R, Yamamoto A, Tsukigawa K, Nishi K, Otagiri M, Yamasaki K. 7-Phenylheptanoic Acid-Hydroxypropyl β-Cyclodextrin Complex Slows the Progression of Renal Failure in Adenine-Induced Chronic Kidney Disease Mice. Toxins (Basel) 2024; 16:316. [PMID: 39057956 PMCID: PMC11281668 DOI: 10.3390/toxins16070316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The characteristic accumulation of circulating uremic toxins, such as indoxyl sulfate (IS), in chronic kidney disease (CKD) further exacerbates the disease progression. The gut microbiota, particularly gut bacterial-specific enzymes, represents a selective and attractive target for suppressing uremic toxin production and slowing the progression of renal failure. This study investigates the role of 4-phenylbutyrate (PB) and structurally related compounds, which are speculated to possess renoprotective properties in suppressing IS production and slowing or reversing renal failure in CKD. In vitro enzyme kinetic studies showed that 7-phenylheptanoic acid (PH), a PB homologue, suppresses the tryptophan indole lyase (TIL)-catalyzed decomposition of tryptophan to indole, the precursor of IS. A hydroxypropyl β-cyclodextrin (HPβCD) inclusion complex formulation of PH was prepared to enhance its biopharmaceutical properties and to facilitate in vivo evaluation. Prophylactic oral administration of the PH-HPβCD complex formulation reduced circulating IS and attenuated the deterioration of renal function and tubulointerstitial fibrosis in adenine-induced CKD mice. Additionally, treatment of moderately advanced adenine-induced CKD mice with the formulation ameliorated renal failure, although tissue fibrosis was not improved. These findings suggest that PH-HPβCD can slow the progression of renal failure and may have implications for preventing or managing CKD, particularly in early-stage disease.
Collapse
Affiliation(s)
- Kindness Lomotey Commey
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (M.O.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Airi Enaka
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (M.O.)
| | - Ryota Nakamura
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (M.O.)
| | - Asami Yamamoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (M.O.)
| | - Kenji Tsukigawa
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (M.O.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Koji Nishi
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (M.O.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (M.O.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (M.O.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| |
Collapse
|
21
|
Li Y, Chen S, Yang Q, Liu X, Zhou W, Kang T, Wu W, Ou S. The ANGPTL4-HIF-1α loop: a critical regulator of renal interstitial fibrosis. J Transl Med 2024; 22:649. [PMID: 38992710 PMCID: PMC11241841 DOI: 10.1186/s12967-024-05466-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Renal interstitial fibrosis (RIF) is a progressive, irreversible terminal kidney disease with a poor prognosis and high mortality. Angiopoietin-like 4 (ANGPTL4) is known to be associated with fibrosis in various organs, but its impact on the RIF process remains unclear. This study aimed to elucidate the role and underlying mechanisms of ANGPTL4 in the progression of RIF. METHODS In vivo, a chronic kidney disease (CKD) rat model of renal interstitial fibrosis was established via intragastric administration of adenine at different time points (4 and 6 weeks). Blood and urine samples were collected to assess renal function and 24-h urinary protein levels. Kidney tissues were subjected to HE and Masson staining for pathological observation. Immunohistochemistry and real-time quantitative PCR (qRT‒PCR) were performed to evaluate the expression of ANGPTL4 and hypoxia-inducible factor-1α (HIF-1α), followed by Pearson correlation analysis. Subsequently, kidney biopsy tissues from 11 CKD patients (6 with RIF and 5 without RIF) were subjected to immunohistochemical staining to validate the expression of ANGPTL4. In vitro, a fibrosis model of human renal tubular epithelial cells (HK2) was established through hypoxic stimulation. Subsequently, an HIF-1α inhibitor (2-MeOE2) was used, and ANGPTL4 was manipulated using siRNA or plasmid overexpression. Changes in ANGPTL4 and fibrosis markers were analyzed through Western blotting, qRT‒PCR, and immunofluorescence. RESULTS ANGPTL4 was significantly upregulated in the CKD rat model and was significantly positively correlated with renal injury markers, the fibrotic area, and HIF-1α. These results were confirmed by clinical samples, which showed a significant increase in the expression level of ANGPTL4 in CKD patients with RIF, which was positively correlated with HIF-1α. Further in vitro studies indicated that the expression of ANGPTL4 is regulated by HIF-1α, which in turn is subject to negative feedback regulation by ANGPTL4. Moreover, modulation of ANGPTL4 expression influences the progression of fibrosis in HK2 cells. CONCLUSION Our findings indicate that ANGPTL4 is a key regulatory factor in renal fibrosis, forming a loop with HIF-1α, potentially serving as a novel therapeutic target for RIF.
Collapse
Affiliation(s)
- Yan Li
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephrology, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Shuang Chen
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephrology, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Qian Yang
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephrology, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Xiao Liu
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephrology, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Weiming Zhou
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephrology, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Ting Kang
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephrology, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Weihua Wu
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephrology, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Santao Ou
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China.
- Sichuan Clinical Research Center for Nephrology, Luzhou, 646000, Sichuan, China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
22
|
Jackson JW, Frederick C Streich, Pal A, Coricor G, Boston C, Brueckner CT, Canonico K, Chapron C, Cote S, Dagbay KB, Danehy FT, Kavosi M, Kumar S, Lin S, Littlefield C, Looby K, Manohar R, Martin CJ, Wood M, Zawadzka A, Wawersik S, Nicholls SB, Datta A, Buckler A, Schürpf T, Carven GJ, Qatanani M, Fogel AI. An antibody that inhibits TGF-β1 release from latent extracellular matrix complexes attenuates the progression of renal fibrosis. Sci Signal 2024; 17:eadn6052. [PMID: 38980922 DOI: 10.1126/scisignal.adn6052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024]
Abstract
Inhibitors of the transforming growth factor-β (TGF-β) pathway are potentially promising antifibrotic therapies, but nonselective simultaneous inhibition of all three TGF-β homologs has safety liabilities. TGF-β1 is noncovalently bound to a latency-associated peptide that is, in turn, covalently bound to different presenting molecules within large latent complexes. The latent TGF-β-binding proteins (LTBPs) present TGF-β1 in the extracellular matrix, and TGF-β1 is presented on immune cells by two transmembrane proteins, glycoprotein A repetitions predominant (GARP) and leucine-rich repeat protein 33 (LRRC33). Here, we describe LTBP-49247, an antibody that selectively bound to and inhibited the activation of TGF-β1 presented by LTBPs but did not bind to TGF-β1 presented by GARP or LRRC33. Structural studies demonstrated that LTBP-49247 recognized an epitope on LTBP-presented TGF-β1 that is not accessible on GARP- or LRRC33-presented TGF-β1, explaining the antibody's selectivity for LTBP-complexed TGF-β1. In two rodent models of kidney fibrosis of different etiologies, LTBP-49247 attenuated fibrotic progression, indicating the central role of LTBP-presented TGF-β1 in renal fibrosis. In mice, LTBP-49247 did not have the toxic effects associated with less selective TGF-β inhibitors. These results establish the feasibility of selectively targeting LTBP-bound TGF-β1 as an approach for treating fibrosis.
Collapse
Affiliation(s)
| | | | - Ajai Pal
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - George Coricor
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Chris Boston
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | | | | | - Shaun Cote
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Kevin B Dagbay
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | - Mania Kavosi
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Sandeep Kumar
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Susan Lin
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | - Kailyn Looby
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Rohan Manohar
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | - Marcie Wood
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
- ToxStrategies LLC, 23501 Cinco Ranch Boulevard, Katy, TX 77494, USA
| | - Agatha Zawadzka
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Stefan Wawersik
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | - Abhishek Datta
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Alan Buckler
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Thomas Schürpf
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | | | - Adam I Fogel
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| |
Collapse
|
23
|
Wei M, Liu J, Wang X, Liu X, Jiang L, Jiang Y, Ma Y, Wang J, Yuan H, An X, Song Y, Zhang L. Multi-omics analysis of kidney tissue metabolome and proteome reveals the protective effect of sheep milk against adenine-induced chronic kidney disease in mice. Food Funct 2024; 15:7046-7062. [PMID: 38864415 DOI: 10.1039/d4fo00619d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Chronic kidney disease (CKD) is characterized by impaired renal function and is associated with inflammation, oxidative stress, and fibrosis. Sheep milk contains several bioactive molecules with protective effects against inflammation and oxidative stress. In the current study, we investigated the potential renoprotective effects of sheep milk and the associated mechanisms of action in an adenine-induced CKD murine model. Sheep milk delayed renal chronic inflammation (e.g., significant reduction in levels of inflammatory factors Vcam1, Icam1, Il6, and Tnfa), fibrosis (significant reduction in levels of fibrosis factors Col1a1, Fn1, and Tgfb), oxidative stress (significant increase in levels of antioxidants and decrease in oxidative markers), mineral disorders, and renal injury in adenine-treated mice (e.g. reduced levels of kidney injury markers NGAL and KIM-1). The combined proteomics and metabolomics analyses showed that sheep milk may affect the metabolic processes of several compounds, including proteins, lipids, minerals, and hormones in mice with adenine-induced chronic kidney disease. In addition, it may regulate the expression of fibrosis-related factors and inflammatory factors through the JAK1/STAT3/HIF-1α signaling pathway, thus exerting its renoprotective effects. Therefore, sheep milk may be beneficial for patients with CKD and should be evaluated in preclinical and clinical studies.
Collapse
Affiliation(s)
- Mengyao Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Jiaxin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Xiaofei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Xiaorui Liu
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luyao Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Yue Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Yingtian Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Jiangang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Hao Yuan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| |
Collapse
|
24
|
Sonia J, Kumara BN, Pinto KJ, Hashim A, Priya ESS, Kalpana B, Thomas R, Sudhakara Prasad K. Disposable paper electrodes for detection of changes in dopamine concentrations in rat brain homogenates. Talanta 2024; 274:125940. [PMID: 38537354 DOI: 10.1016/j.talanta.2024.125940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/09/2024] [Accepted: 03/16/2024] [Indexed: 05/04/2024]
Abstract
Dopamine, the main catecholamine neurotransmitter plays an important role in renal, cardiovascular, central nervous systems, and pathophysiological processes. The abnormal dopamine levels can result in neurological disorders such as Parkinson's, Alzheimer's, schizophrenia, acute anxiety, neuroblastoma and also contribute to cognitive dysfunctions. Given the widespread importance of dopamine concentration levels, it is imperative to develop sensors that are able to monitor dopamine. Herein, we have developed pre-anodized disposable paper electrode modified with 1-pyrenebutyric acid, for the selective and sensitive determination of dopamine. The sensor was characterized with Fourier transform infrared spectroscopy, Energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electrochemical techniques for addressing the robust formation and electrochemical activity. The modified electrode exhibited excellent electrocatalytic activity towards dopamine without the common interference from ascorbic acid. The calibration plot for the dopamine sensor resulted linear range from 0.003 μM to 0.5 μM with a detection limit of 0.11 nM. The sensor's potential utility was tested by monitoring dopamine concentration changes in rat brain homogenates when subjected to neurotoxicity. The developed sensor was validated with gold-standard UV-Vis spectroscopy studies and computational studies were performed to understand the interaction between 1-pyrenebutyric acid and dopamine.
Collapse
Affiliation(s)
- J Sonia
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, India
| | - B N Kumara
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, India
| | - Kevin Joakim Pinto
- Department of Physiology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - A Hashim
- Department of Forensic Medicine and Toxicology, Yenepoya Medical College, Yenepoya Deemed to be University, Mangalore, Dakshina, Karnataka, 575018, India
| | - E S Sindhu Priya
- Department of Pharmacology, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - B Kalpana
- Department of Physiology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Renjith Thomas
- Department of Chemistry, St Berchmans College (Autonomous), Mahatma Gandhi University, Changanassery, Kerala, India
| | - K Sudhakara Prasad
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, India; Centre for Nutrition Studies, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, India.
| |
Collapse
|
25
|
Xia J, Zhang Y, Zhang S, Lu C, Huan H, Guan X. Oat Dietary Fiber Delays the Progression of Chronic Kidney Disease in Mice by Modulating the Gut Microbiota and Reducing Uremic Toxin Levels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38836841 DOI: 10.1021/acs.jafc.4c02591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Chronic kidney disease (CKD) has emerged as a significant public health concern. In this article, we investigated the mechanism of oat dietary fiber in regulating CKD. Our findings indicated that the gut microbiota of CKD patients promoted gut microbiota dysbiosis and kidney injury in CKD mice. Intervention with oat-resistant starch prepared by ultrasonic combined enzymatic hydrolysis (ORSU) and oat β-glucan with a molecular weight of 5 × 104 Da (OBGM) elevated the levels of short-chain fatty acids (SCFAs) and regulated gut dysbiosis in the gut-humanized CKD mice. ORSU and OBGM also reduced CKD-related uremic toxins such as creatinine, indoxyl sulfate (IS), and p-cresol sulfate (PCS) levels; reinforced the intestinal barrier function of the gut-humanized CKD mice; and mitigated renal inflammation and fibrosis via the NF-κB/TGF-β pathway. Therefore, ORSU and OBGM might delay the progression of CKD by modulating the gut microbiota to reduce uremic toxins levels. Our results explain the mechanism of oat dietary fiber aimed at mitigating CKD.
Collapse
Affiliation(s)
- Ji'an Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Suhua Zhang
- Suzhou Kowloon Hospital Shanghai Jiao Tong University School of Medicine, Suzhou, Jiangsu 215028, China
| | - Chunlai Lu
- The 905th Hospital of People's Liberation Army Navy, Shanghai 200050, China
| | - Hongdi Huan
- The 905th Hospital of People's Liberation Army Navy, Shanghai 200050, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| |
Collapse
|
26
|
Birder LA, Wolf-Johnston AS, Zabbarova I, Ikeda Y, Robertson AM, Cardozo R, Azari F, Kanai AJ, Kuchel GA, Jackson EK. Hypoxanthine Induces Signs of Bladder Aging With Voiding Dysfunction and Lower Urinary Tract Remodeling. J Gerontol A Biol Sci Med Sci 2024; 79:glad171. [PMID: 37463319 PMCID: PMC11083631 DOI: 10.1093/gerona/glad171] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Lower urinary tract syndrome (LUTS) is a group of urinary tract symptoms and signs that can include urinary incontinence. Advancing age is a major risk factor for LUTS; however, the underlying biochemical mechanisms of age-related LUTS remain unknown. Hypoxanthine (HX) is a purine metabolite associated with generation of tissue-damaging reactive oxygen species (ROS). This study tested the hypothesis that exposure of the adult bladder to HX-ROS over time damages key LUT elements, mimicking qualitatively some of the changes observed with aging. METHODS Adult 3-month-old female Fischer 344 rats were treated with vehicle or HX (10 mg/kg/day; 3 weeks) administered in drinking water. Targeted purine metabolomics and molecular approaches were used to assess purine metabolites and biomarkers for oxidative stress and cellular damage. Biomechanical approaches assessed LUT structure and measurements of LUT function (using custom-metabolic cages and cystometry) were also employed. RESULTS HX exposure increased biomarkers indicative of oxidative stress, pathophysiological ROS production, and depletion of cellular energy with declines in NAD+ levels. Moreover, HX treatment caused bladder remodeling and decreased the intercontraction interval and leak point pressure (surrogate measure to assess stress urinary incontinence). CONCLUSIONS These studies provide evidence that in adult rats chronic exposure to HX causes changes in voiding behavior and in bladder structure resembling alterations observed with aging. These results suggest that increased levels of uro-damaging HX were associated with ROS/oxidative stress-associated cellular damage, which may be central to age-associated development of LUTS, opening up potential opportunities for geroscience-guided interventions.
Collapse
Affiliation(s)
- Lori A Birder
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Amanda S Wolf-Johnston
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Irina Zabbarova
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Youko Ikeda
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anne M Robertson
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ricardo Cardozo
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fatemeh Azari
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony J Kanai
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut, Farmington, Connecticut, USA
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
27
|
Hong YA, Nangaku M. Endogenous adenine as a key player in diabetic kidney disease progression: an integrated multiomics approach. Kidney Int 2024; 105:918-920. [PMID: 38642987 DOI: 10.1016/j.kint.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 04/22/2024]
Affiliation(s)
- Yu Ah Hong
- Division of Nephrology, Department of Internal Medicine, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Jung-gu, Daejeon, Republic of Korea; Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
28
|
Rodríguez-Ortiz ME, Jurado-Montoya D, Valdés-Díaz K, García-Sáez RM, Torralbo AI, Obrero T, Vidal-Jiménez V, Jiménez MJ, Carmona A, Guerrero F, Pendón-Ruiz de Mier MV, Rodelo-Haad C, Canalejo A, Rodríguez M, Soriano-Cabrera S, Muñoz-Castañeda JR. Cognitive Impairment Related to Chronic Kidney Disease Is Associated with a Decreased Abundance of Membrane-Bound Klotho in the Cerebral Cortex. Int J Mol Sci 2024; 25:4194. [PMID: 38673780 PMCID: PMC11050028 DOI: 10.3390/ijms25084194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Cognitive impairment (CI) is a complication of chronic kidney disease (CKD) that is frequently observed among patients. The aim of this study was to evaluate the potential crosstalk between changes in cognitive function and the levels of Klotho in the brain cortex in an experimental model of CKD. To induce renal damage, Wistar rats received a diet containing 0.25% adenine for six weeks, while the control group was fed a standard diet. The animals underwent different tests for the assessment of cognitive function. At sacrifice, changes in the parameters of mineral metabolism and the expression of Klotho in the kidney and frontal cortex were evaluated. The animals with CKD exhibited impaired behavior in the cognitive tests in comparison with the rats with normal renal function. At sacrifice, CKD-associated mineral disorder was confirmed by the presence of the expected disturbances in the plasma phosphorus, PTH, and both intact and c-terminal FGF23, along with a reduced abundance of renal Klotho. Interestingly, a marked and significant decrease in Klotho was observed in the cerebral cortex of the animals with renal dysfunction. In sum, the loss in cerebral Klotho observed in experimental CKD may contribute to the cognitive dysfunction frequently observed among patients. Although further studies are required, Klotho might have a relevant role in the development of CKD-associated CI and represent a potential target in the management of this complication.
Collapse
Affiliation(s)
- María E. Rodríguez-Ortiz
- Nephrology Service, Reina Sofia University Hospital, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Cordoba, Spain; (M.E.R.-O.); (M.V.P.-R.d.M.); (C.R.-H.); (S.S.-C.); (J.R.M.-C.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.I.T.); (A.C.); (F.G.)
| | - Daniel Jurado-Montoya
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain; (D.J.-M.); (K.V.-D.); (R.M.G.-S.); (T.O.); (V.V.-J.); (M.J.J.)
| | - Karen Valdés-Díaz
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain; (D.J.-M.); (K.V.-D.); (R.M.G.-S.); (T.O.); (V.V.-J.); (M.J.J.)
| | - Raquel M. García-Sáez
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain; (D.J.-M.); (K.V.-D.); (R.M.G.-S.); (T.O.); (V.V.-J.); (M.J.J.)
| | - Ana I. Torralbo
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.I.T.); (A.C.); (F.G.)
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain; (D.J.-M.); (K.V.-D.); (R.M.G.-S.); (T.O.); (V.V.-J.); (M.J.J.)
| | - Teresa Obrero
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain; (D.J.-M.); (K.V.-D.); (R.M.G.-S.); (T.O.); (V.V.-J.); (M.J.J.)
| | - Victoria Vidal-Jiménez
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain; (D.J.-M.); (K.V.-D.); (R.M.G.-S.); (T.O.); (V.V.-J.); (M.J.J.)
| | - María J. Jiménez
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain; (D.J.-M.); (K.V.-D.); (R.M.G.-S.); (T.O.); (V.V.-J.); (M.J.J.)
| | - Andrés Carmona
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.I.T.); (A.C.); (F.G.)
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain; (D.J.-M.); (K.V.-D.); (R.M.G.-S.); (T.O.); (V.V.-J.); (M.J.J.)
| | - Fátima Guerrero
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.I.T.); (A.C.); (F.G.)
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain; (D.J.-M.); (K.V.-D.); (R.M.G.-S.); (T.O.); (V.V.-J.); (M.J.J.)
| | - María V. Pendón-Ruiz de Mier
- Nephrology Service, Reina Sofia University Hospital, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Cordoba, Spain; (M.E.R.-O.); (M.V.P.-R.d.M.); (C.R.-H.); (S.S.-C.); (J.R.M.-C.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.I.T.); (A.C.); (F.G.)
| | - Cristian Rodelo-Haad
- Nephrology Service, Reina Sofia University Hospital, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Cordoba, Spain; (M.E.R.-O.); (M.V.P.-R.d.M.); (C.R.-H.); (S.S.-C.); (J.R.M.-C.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.I.T.); (A.C.); (F.G.)
| | - Antonio Canalejo
- Department of Integrated Sciences/Research Center on Natural Resources, Health, and Environment (RENSMA), University of Huelva Campus el Carmen, Avda. Del Tres de Marzo, s/n, 21071 Huelva, Spain;
| | - Mariano Rodríguez
- Nephrology Service, Reina Sofia University Hospital, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Cordoba, Spain; (M.E.R.-O.); (M.V.P.-R.d.M.); (C.R.-H.); (S.S.-C.); (J.R.M.-C.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.I.T.); (A.C.); (F.G.)
| | - Sagrario Soriano-Cabrera
- Nephrology Service, Reina Sofia University Hospital, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Cordoba, Spain; (M.E.R.-O.); (M.V.P.-R.d.M.); (C.R.-H.); (S.S.-C.); (J.R.M.-C.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.I.T.); (A.C.); (F.G.)
| | - Juan R. Muñoz-Castañeda
- Nephrology Service, Reina Sofia University Hospital, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Avda. Menéndez Pidal, s/n, 14004 Cordoba, Spain; (M.E.R.-O.); (M.V.P.-R.d.M.); (C.R.-H.); (S.S.-C.); (J.R.M.-C.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.I.T.); (A.C.); (F.G.)
| |
Collapse
|
29
|
Sugai K, Hirano M, Oda A, Fujisawa M, Shono S, Ishioka K, Tamura T, Katsumata Y, Sano M, Kobayashi E, Hakamata Y. Establishment and application of a new 4/6 infarct nephrectomy rat model for moderate chronic kidney disease. Acta Cir Bras 2024; 39:e391324. [PMID: 38477787 DOI: 10.1590/acb391324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/15/2023] [Indexed: 03/14/2024] Open
Abstract
PURPOSE To develop a new 4/6 infarct nephrectomy (INx) model rat mimicking moderate chronic kidney disease (CKD) and to evaluate its application. METHODS We modified the conventional 5/6 INx rat model to create the 4/6 INx model by ligating the renal artery branch to induce infarction of one-third of the left kidney after right kidney removal and compared biochemically and histologically both models. To demonstrate the application of the 4/6 INx model, the effects of a supplementary compound containing calcium carbonate, chitosan, palm shell activated charcoal etc., that is effective for both CKD and its complications, were compared between both models. RESULTS Impairment of renal function in the 4/6 INx group was significantly more moderate than in the 5/6 INx group (P < 0.05). The 4/6 INx group showed less histological damage in kidney than in the 5/6 INx group. The supplementary compound did not improve CKD in the 5/6 INx group, but ameliorated elevation of blood urea nitrogen in the 4/6 INx group. CONCLUSIONS We developed the 4/6 INx model, which is more moderate than the conventional 5/6 INx model. This model could potentially demonstrate the effectiveness of drugs and supplements intended to prevent CKD and its progression.
Collapse
Affiliation(s)
- Kazuhisa Sugai
- Nippon Veterinary and Life Science University - School of Veterinary Nursing and Technology - Department of Basic Science - Tokyo, Japan
| | - Momoko Hirano
- Nippon Veterinary and Life Science University - School of Veterinary Nursing and Technology - Department of Basic Science - Tokyo, Japan
| | - Asahi Oda
- Nippon Veterinary and Life Science University - School of Veterinary Nursing and Technology - Department of Basic Science - Tokyo, Japan
| | - Masahiko Fujisawa
- Nippon Veterinary and Life Science University - School of Veterinary Nursing and Technology - Department of Basic Science - Tokyo, Japan
| | - Saori Shono
- Nippon Veterinary and Life Science University - School of Veterinary Nursing and Technology - Department of Applied Science - Tokyo, Japan
| | - Katsumi Ishioka
- Nippon Veterinary and Life Science University - School of Veterinary Nursing and Technology - Department of Veterinary Nursing - Tokyo, Japan
| | - Tomoyoshi Tamura
- Keio University - School of Medicine - Department of Emergency and Critical Care Medicine - Tokyo, Japan
| | - Yoshinori Katsumata
- Keio University - School of Medicine - Department of Cardiology - Tokyo, Japan
- Keio University - School of Medicine - Institute for Integrated Sports Medicine - Tokyo, Japan
| | - Motoaki Sano
- Keio University - School of Medicine - Department of Cardiology - Tokyo, Japan
| | - Eiji Kobayashi
- Nippon Veterinary and Life Science University - School of Veterinary Nursing and Technology - Department of Basic Science - Tokyo, Japan
- Keio University - School of Medicine - Department of Cardiology - Tokyo, Japan
- Jikei University - School of Medicine - Department of Kidney Regenerative Medicine - Tokyo, Japan
| | - Yoji Hakamata
- Nippon Veterinary and Life Science University - School of Veterinary Nursing and Technology - Department of Basic Science - Tokyo, Japan
- Nippon Veterinary and Life Science University - Research Center for Animal Life Science - Tokyo, Japan
| |
Collapse
|
30
|
Zhou M, Li X, Liu J, Wu Y, Tan Z, Deng N. Adenine's impact on mice's gut and kidney varies with the dosage administered and relates to intestinal microorganisms and enzyme activities. 3 Biotech 2024; 14:88. [PMID: 38406640 PMCID: PMC10884393 DOI: 10.1007/s13205-024-03959-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
This study aimed to investigate the effects of different dosages of adenine on intestinal microorganisms and enzyme activities, laying the experimental groundwork for subsequent exploration of the microbial mechanisms underlying diarrhea with kidney yang deficiency syndrome. Twenty-four mice were assigned to the following four groups: the control (NC) group, low-dosage adenine (NML) group, middle-dosage adenine (NMM) group, and high-dosage adenine (NMH) group. Mice in the NML, NMM, and NMH groups received 25 mg/(kg·d), 50 mg/(kg·d), and 100 mg/(kg·d) of adenine, respectively, 0.4 mL/each, once a day for 14 days. The NC group received 0.4 mL sterile water. Parameters including body weight, rectal temperature, intestinal microorganisms, enzyme activities, and microbial activity were measured. Results indicated that mice in the experimental group displayed signs of a poor mental state, curled up with their backs arched, and felt sleepy and lazy, with sparse fur that was easily shed, and damp bedding. Some mice showed fecal adhesion contamination in the perianal and tail areas. Dosage-dependent effects were observed, with decreased food intake, body weight, rectal temperature, and microbial activity and increased water intake and fecal water content. Enzyme activity analyses revealed significantly higher activities of protease, sucrase, amylase, and cellulase in intestinal contents and lactase, sucrase, amylase, and cellulase in the mucosa of the NMM group compared to those of other groups. Ultimately, the higher adenine dosage was associated with more pronounced symptoms of kidney yang deficiency syndrome, with 50 mg/kg adenine exhibiting the most substantial impact on the number of intestinal microbial colonies and enzyme activities.
Collapse
Affiliation(s)
- Mengsi Zhou
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208 China
| | - Xiaoya Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208 China
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650000 China
| | - Jin Liu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208 China
| | - Yi Wu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208 China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208 China
| | - Na Deng
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208 China
| |
Collapse
|
31
|
Li J, Nie J, Zhou Z, Guo M, Yang Q, Yuan D, Huang J, Li R, Li Q. Changes of FGF23 and hearing in chronic renal failure and their correlation analysis. Cytokine 2024; 174:156478. [PMID: 38134554 DOI: 10.1016/j.cyto.2023.156478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND To explore the association between fibroblast growth factor 23 (FGF23) and hearing in chronic renal failure (CRF). METHODS Pure tone audiometry was used to detect the hearing of patients with CRF; the level of serum FGF23, creatinine, blood urea nitrogen (BUN), parathyroid hormone (PTH), and mean binaural hearing threshold were compared to the control group (people without kidney disease). The rat model of renal failure was established by 5/6 nephrectomy, and the auditory brainstem response (ABR) of rats after modeling was detected by the Tucker Davis Technologies (TDT) system; the expression level of FGF23 in the peripheral blood, renal and cochlear tissue was also detected. RESULTS The incidence of hearing loss (HL) and serum FGF23 were higher in CRF patients than the control group; the sFGF23 was positively correlated with the mean binaural hearing threshold. Animal studies showed that the ABR threshold, creatinine, FGF23, BUN, and PTH increased after modeling; although, an increase in FGF23 was observed earlier than other indicators. The HL of rats with renal failure was significantly correlated with BUN, phosphate, PTH, sFGF23, kFGF23/β-actin, eFGF23/β-actin, weight, and modeling cycle. CONCLUSIONS Both CRF patients and rat models showed high-frequency HL. FGF23 was highly expressed in the serum of HL renal failure patients and rats, as well as in the renal tissue and cochlea of renal failure rats. Therefore, FGF23 may be involved in the occurrence and development of HL caused by CRF.
Collapse
Affiliation(s)
- Jiaqing Li
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jingwen Nie
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhu Zhou
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Min Guo
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qing Yang
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dunlu Yuan
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jingjing Huang
- Department of Medical Record, The Third People's Hospital of Kunming, Kunming, China
| | - Ruomei Li
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qing Li
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
32
|
Beegam S, Al-Salam S, Zaaba NE, Elzaki O, Ali BH, Nemmar A. Effects of Waterpipe Smoke Exposure on Experimentally Induced Chronic Kidney Disease in Mice. Int J Mol Sci 2024; 25:585. [PMID: 38203756 PMCID: PMC10778784 DOI: 10.3390/ijms25010585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Tobacco smoking is an independent risk factor in the onset of kidney disease. To date, there have been no reports on the influence of waterpipe smoke (WPS) in experimentally induced chronic kidney disease (CKD) models. We studied the effects and mechanisms of actions of WPS on a mouse model of adenine-induced CKD. Mice fed either a normal diet, or an adenine-added diet and were exposed to either air or WPS (30 min/day and 5 days/week) for four consecutive weeks. Plasma creatinine, urea and indoxyl sulfate increased and creatinine clearance decreased in adenine + WPS versus either WPS or adenine + saline groups. The urinary concentrations of kidney injury molecule-1 and adiponectin and the activities of neutrophil gelatinase-associated lipocalin and N-acetyl-β-D-glucosaminidase were augmented in adenine + WPS compared with either adenine + air or WPS groups. In the kidney tissue, several markers of oxidative stress and inflammation were higher in adenine + WPS than in either adenine + air or WPS groups. Compared with the controls, WPS inhalation in mice with CKD increased DNA damage, and urinary concentration of 8-hydroxy-2-deoxyguanosine. Furthermore, the expressions of nuclear factor κB (NF-κB) and mitogen-activated protein kinases (MAPKs) (ERK and p38) were elevated in the kidneys of adenine + WPS group, compared with the controls. Likewise, the kidneys of adenine + WPS group revealed more marked histological tubular injury, chronic inflammation and interstitial fibrosis. In conclusion, WPS inhalation aggravates kidney injury, oxidative stress, inflammation, DNA damage and fibrosis in mice with adenine-induced CKD, indicating that WPS exposure intensifies CKD. These effects were associated with a mechanism involving NF-κB, ERK and p38 activations.
Collapse
Affiliation(s)
- Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
| | | | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
33
|
Nuñez-Durán E, Westlund J, Najar D, Ebefors K. Evaluation of peritoneal dialysis prescriptions in uremic rats. Perit Dial Int 2024; 44:56-65. [PMID: 37592841 DOI: 10.1177/08968608231191054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Patients with end-stage kidney disease (ESKD) require dialysis or transplantation for their survival. There are few experimental animal models mimicking the human situation in which the animals are dependent on dialysis for their survival. We developed a peritoneal dialysis (PD) system for rats to enable long-term treatment under controlled conditions. METHOD Rats were chemically nephrectomised using orellanine to render them uremic. Two studies were performed, the first with highly uremic rats on PD for 5 days, and the other with moderately uremic rats on PD for 21 days. Blood and dialysate samples were collected repeatedly from the first study and solute concentrations analysed. Based on these values, dialysis parameters were calculated together with generation rates allowing for kinetic modelling of the effects of PD. In the second study, the general conditions of the rats were evaluated during a longer dialysis period. RESULTS For rats with estimated glomerular filtration rate (GFR) 5-10% of normal (moderately uremic rats), five daily PD cycles kept the rats in good condition for 3 weeks. For highly uremic rats (GFR below 3% of normal), more extensive dialysis is needed to maintain homeostasis and our simulations show that a six daily and four nightly PD cycles should be needed to keep the rats in good condition. CONCLUSION In conclusion, the PD system described in this study can be used for long-term studies of PD on uremic dialysis-dependent rats mimicking the human setting. To maintain whole body homeostasis of highly uremic rats, intense PD is needed during both day and night.
Collapse
Affiliation(s)
| | | | - Deman Najar
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Kerstin Ebefors
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
34
|
Cheng L, Correia MSP, Higdon SM, Romero Garcia F, Tsiara I, Joffré E, Sjöling Å, Boulund F, Norin EL, Engstrand L, Globisch D, Du J. The protective role of commensal gut microbes and their metabolites against bacterial pathogens. Gut Microbes 2024; 16:2356275. [PMID: 38797999 PMCID: PMC11135852 DOI: 10.1080/19490976.2024.2356275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Multidrug-resistant microorganisms have become a major public health concern around the world. The gut microbiome is a gold mine for bioactive compounds that protect the human body from pathogens. We used a multi-omics approach that integrated whole-genome sequencing (WGS) of 74 commensal gut microbiome isolates with metabolome analysis to discover their metabolic interaction with Salmonella and other antibiotic-resistant pathogens. We evaluated differences in the functional potential of these selected isolates based on WGS annotation profiles. Furthermore, the top altered metabolites in co-culture supernatants of selected commensal gut microbiome isolates were identified including a series of dipeptides and examined for their ability to prevent the growth of various antibiotic-resistant bacteria. Our results provide compelling evidence that the gut microbiome produces metabolites, including the compound class of dipeptides that can potentially be applied for anti-infection medication, especially against antibiotic-resistant pathogens. Our established pipeline for the discovery and validation of bioactive metabolites from the gut microbiome as novel candidates for multidrug-resistant infections represents a new avenue for the discovery of antimicrobial lead structures.
Collapse
Affiliation(s)
- Liqin Cheng
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
- The Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Mário S. P. Correia
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Shawn M. Higdon
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| | - Fabricio Romero Garcia
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| | - Ioanna Tsiara
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Enrique Joffré
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| | - Åsa Sjöling
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Fredrik Boulund
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| | - Elisabeth Lissa Norin
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| | - Lars Engstrand
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Daniel Globisch
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Juan Du
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| |
Collapse
|
35
|
Sabra MS, Hemida FK, Allam EAH. Adenine model of chronic renal failure in rats to determine whether MCC950, an NLRP3 inflammasome inhibitor, is a renopreventive. BMC Nephrol 2023; 24:377. [PMID: 38114914 PMCID: PMC10731818 DOI: 10.1186/s12882-023-03427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Chronic renal failure (CRF) is defined by a significant decline in renal function that results in decreased salt filtration and inhibition of tubular reabsorption, which ultimately causes volume enlargement. This study evaluated the potential renopreventive effects of the NLRP3 inflammasome inhibitor MCC950 in adenine-induced CRF in rats due to conflicting evidence on the effects of MCC950 on the kidney. METHODS Since the majority of the kidney tubular abnormalities identified in people with chronic renal disease are comparable to those caused by adding 0.75 percent of adenine powder to a rat's diet each day for four weeks, this method has received broad approval as a model for evaluating kidney damage. Throughout the test, blood pressure was checked weekly and at the beginning. Additionally, oxidative stress factors, urine sample examination, histological modifications, and immunohistochemical adjustments of caspase-3 and interleukin-1 beta (IL-1) levels in renal tissues were carried out. RESULTS Results revealed that MCC950, an inhibitor of the NLRP3 inflammasome, had a renopreventive effect, which was demonstrated by a reduction in blood pressure readings and an improvement in urine, serum, and renal tissue indicators that indicate organ damage. This was also demonstrated by the decrease in neutrophil gelatinase-associated lipocalin tubular expression (NGAL). The NLRP3 inflammasome inhibitor MCC950 was found to significantly alleviate the worsening renal cellular alterations evidenced by increased expression of caspase-3 and IL-1, according to immunohistochemical tests. CONCLUSION The NLRP3 inflammasome inhibitor MCC950 demonstrated renopreventive effects in the CRF rat model, suggesting that it might be used as a treatment strategy to stop the progression of CRF.
Collapse
Affiliation(s)
- Mahmoud S Sabra
- Pharmacology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Fahmy K Hemida
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Essmat A H Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
36
|
Krehl K, Hahndorf J, Stolzenburg N, Taupitz M, Braun J, Sack I, Schnorr J, Guo J. Characterization of renal fibrosis in rats with chronic kidney disease by in vivo tomoelastography. NMR IN BIOMEDICINE 2023; 36:e5003. [PMID: 37455558 DOI: 10.1002/nbm.5003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Chronic kidney disease (CKD) is characterized by structural changes, such as tubular atrophy, renal fibrosis, and glomerulosclerosis, all of which affect the viscoelastic properties of biological tissues. However, detection of renal viscoelasticity changes because diagnostic markers by in vivo elastography lack histopathological validation through animal models. Therefore, we investigated in vivo multiparametric magnetic resonance imaging (mp-MRI), including multifrequency magnetic resonance elastography-based tomoelastography, in the kidneys of 10 rats with adenine-induced CKD and eight healthy controls. Kidney volume (in mm3 ), water diffusivity (apparent diffusion coefficient [ADC] in mm2 /s), shear wave speed (SWS; in m/s; related to stiffness), and wave penetration rate (PR; in m/s; related to inverse viscosity) were quantified by mp-MRI and correlated with histopathologically determined renal fibrosis (collagen area fraction [CAF]; in %). Kidney volume (40% ± 29%, p = 0.009), SWS (11% ± 12%, p = 0.016), and PR (20% ± 15%, p = 0.004) were significantly increased in CKD, which was accompanied by ADC (-24% ± 27%, p = 0.02). SWS, PR, and ADC were correlated with CAF with R = 0.63, 0.75, and -0.5 (all p < 0.05), respectively. In the CKD rats, histopathology showed tubule dilation due to adenine crystal deposition. Collectively, our results suggest that collagen accumulation during CKD progression transforms soft-compliant renal tissue into a more rigid-solid state with reduced water mobility. We hypothesized that tubule dilation-a specific feature of our model-might lead to higher intraluminal pressure, which could also contribute to elevated renal stiffness. Tomoelastography is a promising tool for noninvasively assessing disease progression, detecting biomechanical properties that are sensitive to different pathologic features of CKD.
Collapse
Affiliation(s)
- Karolina Krehl
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Veterinary Pathology, College of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Julia Hahndorf
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nicola Stolzenburg
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Matthias Taupitz
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jörg Schnorr
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jing Guo
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
37
|
Junho CVC, Frisch J, Soppert J, Wollenhaupt J, Noels H. Cardiomyopathy in chronic kidney disease: clinical features, biomarkers and the contribution of murine models in understanding pathophysiology. Clin Kidney J 2023; 16:1786-1803. [PMID: 37915935 PMCID: PMC10616472 DOI: 10.1093/ckj/sfad085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 11/03/2023] Open
Abstract
The cardiorenal syndrome (CRS) is described as a multi-organ disease encompassing bidirectionally heart and kidney. In CRS type 4, chronic kidney disease (CKD) leads to cardiac injury. Different pathological mechanisms have been identified to contribute to the establishment of CKD-induced cardiomyopathy, including a neurohormonal dysregulation, disturbances in the mineral metabolism and an accumulation of uremic toxins, playing an important role in the development of inflammation and oxidative stress. Combined, this leads to cardiac dysfunction and cardiac pathophysiological and morphological changes, like left ventricular hypertrophy, myocardial fibrosis and cardiac electrical changes. Given that around 80% of dialysis patients suffer from uremic cardiomyopathy, the study of cardiac outcomes in CKD is clinically highly relevant. The present review summarizes clinical features and biomarkers of CKD-induced cardiomyopathy and discusses underlying pathophysiological mechanisms recently uncovered in the literature. It discloses how animal models have contributed to the understanding of pathological kidney-heart crosstalk, but also provides insights into the variability in observed effects of CKD on the heart in different CKD mouse models, covering both "single hit" as well as "multifactorial hit" models. Overall, this review aims to support research progress in the field of CKD-induced cardiomyopathy.
Collapse
Affiliation(s)
| | - Janina Frisch
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, Center for Human and Molecular Biology, Homburg/Saar, Germany
| | - Josefin Soppert
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
- Department of Anesthesiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Julia Wollenhaupt
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
38
|
Tain YL, Chang-Chien GP, Lin S, Hou CY, Hsu CN. Renoprotective Effects of Solid-State Cultivated Antrodia cinnamomea in Juvenile Rats with Chronic Kidney Disease. Nutrients 2023; 15:4626. [PMID: 37960279 PMCID: PMC10650666 DOI: 10.3390/nu15214626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Antrodia cinnamomea (AC), a medicinal mushroom, has multiple beneficial actions, such as acting as a prebiotic. The incidence of chronic kidney disease (CKD) in children has steadily increased year by year, and CKD is related to gut microbiota dysbiosis. Herein, we investigated the renoprotection of solid-state cultivated AC in adenine-induced CKD juvenile rats. CKD was induced in 3-week-old male rats by feeding with adenine (0.5%) for three weeks. Treated groups received oral administration of AC extracts at either a low (10 mg/kg/day) or high dose (100 mg/kg/day) for six weeks. At nine weeks of age, the rats were sacrificed. Renal outcomes, blood pressure, and gut microbiome composition were examined. Our results revealed that AC treatment, either low- or high-dose, improved kidney function, proteinuria, and hypertension in CKD rats. Low-dose AC treatment increased plasma concentrations of short-chain fatty acids (SCFAs). Additionally, we observed that AC acts like a prebiotic by enriching beneficial bacteria in the gut, such as Akkermansia and Turicibacter. Moreover, the beneficial action of AC against CKD-related hypertension might also be linked to the inhibition of the renin-angiotensin system. This study brings new insights into the potential application of AC as a prebiotic dietary supplement in the prevention and treatment of pediatric CKD.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 330, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Guo-Ping Chang-Chien
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.L.)
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Sufan Lin
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.L.)
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
39
|
Ishikawa M, Kanzaki H, Kodera R, Sekimizu T, Wada S, Tohyama S, Ida T, Shimoyama M, Manase S, Tomonari H, Kuroda N. Early diagnosis of aortic calcification through dental X-ray examination for dental pulp stones. Sci Rep 2023; 13:18576. [PMID: 37903847 PMCID: PMC10616172 DOI: 10.1038/s41598-023-45902-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/25/2023] [Indexed: 11/01/2023] Open
Abstract
Vascular calcification, an ectopic calcification exacerbated by aging and renal dysfunction, is closely associated with cardiovascular disease. However, early detection indicators are limited. This study focused on dental pulp stones, ectopic calcifications found in oral tissues that are easily identifiable on dental radiographs. Our investigation explored the frequency and timing of these calcifications in different locations and their relationship to aortic calcification. In cadavers, we examined the association between the frequency of dental pulp stones and aortic calcification, revealing a significant association. Notably, dental pulp stones appeared prior to aortic calcification. Using a rat model of hyperphosphatemia, we confirmed that dental pulp stones formed earlier than calcification in the aortic arch. Interestingly, there were very few instances of aortic calcification without dental pulp stones. Additionally, we conducted cell culture experiments with vascular smooth muscle cells (SMCs) and dental pulp cells (DPCs) to explore the regulatory mechanism underlying high phosphate-mediated calcification. We found that DPCs produced calcification deposits more rapidly and exhibited a stronger augmentation of osteoblast differentiation markers compared with SMCs. In conclusion, the observation of dental pulp stones through X-ray examination during dental checkups could be a valuable method for early diagnosis of aortic calcification risk.
Collapse
Affiliation(s)
- Misao Ishikawa
- Department of Anatomy, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa Pref., 230-8501, Japan.
| | - Hiroyuki Kanzaki
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Ryo Kodera
- Department of Anatomy, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa Pref., 230-8501, Japan
| | - Takehiro Sekimizu
- Department of Anatomy, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa Pref., 230-8501, Japan
| | - Satoshi Wada
- Department of Oral and Maxillofacial Surgery, Kanazawa Medical University, Kanazawa, Japan
| | - Syunnosuke Tohyama
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Tomomi Ida
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Miho Shimoyama
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Shugo Manase
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Hiroshi Tomonari
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Noriyuki Kuroda
- Department of Anatomy, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa Pref., 230-8501, Japan
| |
Collapse
|
40
|
Tsai LT, Weng TI, Chang TY, Lan KC, Chiang CK, Liu SH. Inhibition of Indoxyl Sulfate-Induced Reactive Oxygen Species-Related Ferroptosis Alleviates Renal Cell Injury In Vitro and Chronic Kidney Disease Progression In Vivo. Antioxidants (Basel) 2023; 12:1931. [PMID: 38001784 PMCID: PMC10669521 DOI: 10.3390/antiox12111931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
The accumulation of the uremic toxin indoxyl sulfate (IS) is a key pathological feature of chronic kidney disease (CKD). The effect of IS on ferroptosis and the role of IS-related ferroptosis in CKD are not well understood. We used a renal tubular cell model and an adenine-induced CKD mouse model to explore whether IS induces ferroptosis and injury and affects iron metabolism in the renal cells and the kidneys. Our results showed that exposure to IS induced several characteristics for ferroptosis, including iron accumulation, an impaired antioxidant system, elevated reactive oxygen species (ROS) levels, and lipid peroxidation. Exposure to IS triggered intracellular iron accumulation by upregulating transferrin and transferrin receptors, which are involved in cellular iron uptake. We also observed increased levels of the iron storage protein ferritin. The effects of IS-induced ROS generation, lipid peroxidation, ferroptosis, senescence, ER stress, and injury/fibrosis were effectively alleviated by treatments with an iron chelator deferoxamine (DFO) in vitro and the adsorbent charcoal AST-120 (scavenging the IS precursor) in vivo. Our findings suggest that IS triggers intracellular iron accumulation and ROS generation, leading to the induction of ferroptosis, senescence, ER stress, and injury/fibrosis in CKD kidneys. AST-120 administration may serve as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Li-Ting Tsai
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; (L.-T.T.); (T.-Y.C.); (C.-K.C.)
| | - Te-I Weng
- Department of Forensic Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Ting-Yu Chang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; (L.-T.T.); (T.-Y.C.); (C.-K.C.)
| | - Kuo-Cheng Lan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chih-Kang Chiang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; (L.-T.T.); (T.-Y.C.); (C.-K.C.)
- Departments of Integrated Diagnostics & Therapeutics and Internal Medicine, College of Medicine and Hospital, National Taiwan University, Taipei 100, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; (L.-T.T.); (T.-Y.C.); (C.-K.C.)
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan University & Hospital, Taipei 100, Taiwan
| |
Collapse
|
41
|
Drexler Y, Fornoni A. Adenine crosses the biomarker bridge: from 'omics to treatment in diabetic kidney disease. J Clin Invest 2023; 133:e174015. [PMID: 37843281 PMCID: PMC10575719 DOI: 10.1172/jci174015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Enabling the early detection and prevention of diabetic kidney damage has potential to substantially reduce the global burden of kidney failure. There is a critical need for identification of mechanistic biomarkers that can predict progression and serve as therapeutic targets. In this issue of the JCI, Sharma and colleagues used an integrated multiomics approach to identify the metabolite adenine as a noninvasive biomarker of progression in early diabetic kidney disease (DKD). The highest tertile of urine adenine/creatinine ratio (UAdCR) was associated with higher risk for end-stage kidney disease and mortality across independent cohorts, including participants with early DKD without macroalbuminuria. Spatial metabolomics, single-cell transcriptomics, and experimental studies localized adenine to regions of tubular pathology and implicated the mTOR pathway in adenine-mediated tissue fibrosis. Inhibition of endogenous adenine production was protective in a diabetic model. These findings exemplify the potential for multiomics to uncover mechanistic biomarkers and targeted therapies in DKD.
Collapse
|
42
|
Sharma K, Zhang G, Hansen J, Bjornstad P, Lee HJ, Menon R, Hejazi L, Liu JJ, Franzone A, Looker HC, Choi BY, Fernandez R, Venkatachalam MA, Kugathasan L, Sridhar VS, Natarajan L, Zhang J, Sharma VS, Kwan B, Waikar SS, Himmelfarb J, Tuttle KR, Kestenbaum B, Fuhrer T, Feldman HI, de Boer IH, Tucci FC, Sedor J, Heerspink HL, Schaub J, Otto EA, Hodgin JB, Kretzler M, Anderton CR, Alexandrov T, Cherney D, Lim SC, Nelson RG, Gelfond J, Iyengar R. Endogenous adenine mediates kidney injury in diabetic models and predicts diabetic kidney disease in patients. J Clin Invest 2023; 133:e170341. [PMID: 37616058 PMCID: PMC10575723 DOI: 10.1172/jci170341] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023] Open
Abstract
Diabetic kidney disease (DKD) can lead to end-stage kidney disease (ESKD) and mortality; however, few mechanistic biomarkers are available for high-risk patients, especially those without macroalbuminuria. Urine from participants with diabetes from the Chronic Renal Insufficiency Cohort (CRIC) study, the Singapore Study of Macro-angiopathy and Micro-vascular Reactivity in Type 2 Diabetes (SMART2D), and the American Indian Study determined whether urine adenine/creatinine ratio (UAdCR) could be a mechanistic biomarker for ESKD. ESKD and mortality were associated with the highest UAdCR tertile in the CRIC study and SMART2D. ESKD was associated with the highest UAdCR tertile in patients without macroalbuminuria in the CRIC study, SMART2D, and the American Indian study. Empagliflozin lowered UAdCR in nonmacroalbuminuric participants. Spatial metabolomics localized adenine to kidney pathology, and single-cell transcriptomics identified ribonucleoprotein biogenesis as a top pathway in proximal tubules of patients without macroalbuminuria, implicating mTOR. Adenine stimulated matrix in tubular cells via mTOR and stimulated mTOR in mouse kidneys. A specific inhibitor of adenine production was found to reduce kidney hypertrophy and kidney injury in diabetic mice. We propose that endogenous adenine may be a causative factor in DKD.
Collapse
Affiliation(s)
- Kumar Sharma
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Guanshi Zhang
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Jens Hansen
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Petter Bjornstad
- Division of Nephrology, Department of Medicine and Section of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hak Joo Lee
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Rajasree Menon
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Leila Hejazi
- Center for Precision Medicine and
- SygnaMap Inc., San Antonio, Texas, USA
| | - Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | | | - Helen C. Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Byeong Yeob Choi
- Center for Precision Medicine and
- Department of Population Health Sciences and
| | | | - Manjeri A. Venkatachalam
- Center for Precision Medicine and
- Department of Pathology, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Luxcia Kugathasan
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, Ontario, Canada. Department of Physiology and Cardiovascular Sciences Collaborative Specialization, University of Toronto, Toronto, Canada
| | - Vikas S. Sridhar
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, Ontario, Canada. Department of Physiology and Cardiovascular Sciences Collaborative Specialization, University of Toronto, Toronto, Canada
| | - Loki Natarajan
- Herbert Wertheim School of Public Health and
- Moores Cancer Center, University of California, San Diego, La Jolla, California, USA
| | - Jing Zhang
- Moores Cancer Center, University of California, San Diego, La Jolla, California, USA
| | - Varun S. Sharma
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Brian Kwan
- Department of Health Science, California State University, Long Beach, Long Beach, California, USA
| | - Sushrut S. Waikar
- Section of Nephrology, Department of Medicine, Boston Medical Center and Boston University, Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Jonathan Himmelfarb
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Katherine R. Tuttle
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Bryan Kestenbaum
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Tobias Fuhrer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Harold I. Feldman
- Center for Clinical Epidemiology and Biostatistics and Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
- Patient-Centered Outcomes Research Institute, Washington, DC, USA
| | - Ian H. de Boer
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | | | | | - Hiddo Lambers Heerspink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, Netherlands
- The George Institute for Global Health, Sydney, Australia
| | - Jennifer Schaub
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Edgar A. Otto
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey B. Hodgin
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthias Kretzler
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher R. Anderton
- Center for Precision Medicine and
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - David Cherney
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, Ontario, Canada. Department of Physiology and Cardiovascular Sciences Collaborative Specialization, University of Toronto, Toronto, Canada
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
- Diabetes Center, Admiralty Medical Center, Khoo Teck Puat Hospital, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Robert G. Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Jonathan Gelfond
- Center for Precision Medicine and
- Department of Population Health Sciences and
| | - Ravi Iyengar
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | |
Collapse
|
43
|
Adelnia H, Moonshi SS, Wu Y, Bulmer AC, Mckinnon R, Fastier-Wooller JW, Blakey I, Ta HT. A Bioactive Disintegrable Polymer Nanoparticle for Synergistic Vascular Anticalcification. ACS NANO 2023; 17:18775-18791. [PMID: 37650798 DOI: 10.1021/acsnano.3c03041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Although poly(aspartic acid) (PASP), a strong calcium chelating agent, may be potentially effective in inhibition of vascular calcification, its direct administration may lead to side effects. In this study, we employed polysuccinimide, a precursor of PASP, to prepare targeted polysuccinimide-based nanoparticles (PSI NPs) that not only acted as a prodrug but also functioned as a carrier of additional therapeutics to provide powerful synergistic vascular anticalcification effect. This paper shows that chemically modified PSI-NPs can serve as effective nanocarriers for loading of hydrophobic drugs, in addition to anticalcification and antireactive oxygen species (anti-ROS) activities. Curcumin (Cur), with high loading efficiency, was encapsulated into the NPs. The NPs were stable for 16 h in physiological conditions and then slowly dissolved/hydrolyzed to release the therapeutic PASP and the encapsulated drug. The drug release profile was found to be in good agreement with the NP dissolution profile such that complete release occurred after 48 h at physiological conditions. However, under acidic conditions, the NPs were stable, and Cur cumulative release reached only 30% after 1 week. Though highly effective in the prevention of calcium deposition, PSI NPs could not prevent the osteogenic trans-differentiation of vascular smooth muscle cells (VSMCs). The presence of Cur addressed this problem. It not only further reduced ROS level in macrophages but also prevented osteogenic differentiation of VSMCs in vitro. The NPs were examined in vivo in a rat model of vascular calcification induced by kidney failure through an adenine diet. The inclusion of Cur and PSI NPs combined the therapeutic effects of both. Cur-loaded NPs significantly reduced calcium deposition in the aorta without adversely affecting bone integrity or noticeable side effects/toxicity as examined by organ histological and serum biochemistry analyses.
Collapse
Affiliation(s)
- Hossein Adelnia
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | | | - Yuao Wu
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
| | - Andrew C Bulmer
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland 4222, Australia
| | - Ryan Mckinnon
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland 4222, Australia
| | | | - Idriss Blakey
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
- Bioscience Discipline, School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
44
|
Calderón-Garcidueñas AL, Barradas-Dermitz DM, Nolasco-Hipolito C, López-Amador N, Ajibola OO, Carvajal-Zarrabal O. Functional and histological effects of Anthurium schlechtendalii Kunth extracts on adenine-induced kidney damage of adult Wistar rats. Toxicon 2023; 233:107272. [PMID: 37652102 DOI: 10.1016/j.toxicon.2023.107272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Anthurium schlechtendalii Kunth is used by the Zoque group in southeastern Mexico for kidney and urinary diseases, but its safety and effectiveness are unproven, therefore a model of adenine-induced renal failure in rats was performed. The rats were fed with solid and aqueous plant extracts for 4 weeks to study its effects on kidney histological morphology. Kidneys were examined, and statistical analysis was performed. The adenine-containing diet caused renal failure, characterized by crystal deposits, cystic dilatation of tubules, and micro-abscesses. Both extracts caused tubular damage and collagen increase without inflammation. However, when combined with adenine, the extracts showed some protective effects, although cystic dilatation and granulomatous inflammation were observed. The extracts at the tested doses resulted in glomerular and tubular damage, aggravating cystic degeneration, therefore, its indiscriminate use in Humans is not safe. Additionally, the extracts can serve as a model for studying renal damage without crystal deposits.
Collapse
Affiliation(s)
- Ana Laura Calderón-Garcidueñas
- National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez. Neuropathology Department, Av. Insurgentes Sur 3877, La Fama, Tlalpan, 14269, México City, Mexico.
| | - Dulce María Barradas-Dermitz
- Biological-Chemistry Area. Technological Institute of Veracruz. Calzada Miguel Angel de Quevedo 2779, 91860, Veracruz, Ver., Mexico.
| | - Cirilo Nolasco-Hipolito
- Scientific Research Institute. University of Papaloapan Campus Tuxtepec. Circuito Central No. 200, Col. Parque Industrial, C.P. 68301, Tuxtepec Oaxaca, Mexico.
| | - Noé López-Amador
- Forensic Medicine Institute, Clinical and Forensic Neuroscience Department. Veracruz University, Juan Pablo II S/n, 94294, Boca Del Río, Ver., Mexico.
| | - Olaide Olawunmi Ajibola
- Department of Biology, Faculty of Science, Western University, 2025E Biological & Geological Sciences Building, 1151 Richmond Street, London, N6A 5B7, Canada.
| | - Octavio Carvajal-Zarrabal
- Biochemistry and Nutrition Chemistry Area, Veracruz University. Juan Pablo II S/n, 94294, Boca Del Río, Ver., Mexico.
| |
Collapse
|
45
|
Ahmed S, de Vries JC, Lu J, Stuart MHV, Mihăilă SM, Vernooij RWM, Masereeuw R, Gerritsen KGF. Animal Models for Studying Protein-Bound Uremic Toxin Removal-A Systematic Review. Int J Mol Sci 2023; 24:13197. [PMID: 37686004 PMCID: PMC10487432 DOI: 10.3390/ijms241713197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Protein-bound uremic toxins (PBUTs) are associated with the progression of chronic kidney disease (CKD) and its associated morbidity and mortality. The conventional dialysis techniques are unable to efficiently remove PBUTs due to their plasma protein binding. Therefore, novel approaches are being developed, but these require validation in animals before clinical trials can begin. We conducted a systematic review to document PBUT concentrations in various models and species. The search strategy returned 1163 results for which abstracts were screened, resulting in 65 full-text papers for data extraction (rats (n = 41), mice (n = 17), dogs (n = 3), cats (n = 4), goats (n = 1), and pigs (n = 1)). We performed descriptive and comparative analyses on indoxyl sulfate (IS) concentrations in rats and mice. The data on large animals and on other PBUTs were too heterogeneous for pooled analysis. Most rodent studies reported mean uremic concentrations of plasma IS close to or within the range of those during kidney failure in humans, with the highest in tubular injury models in rats. Compared to nephron loss models in rats, a greater rise in plasma IS compared to creatinine was found in tubular injury models, suggesting tubular secretion was more affected than glomerular filtration. In summary, tubular injury rat models may be most relevant for the in vivo validation of novel PBUT-lowering strategies for kidney failure in humans.
Collapse
Affiliation(s)
- Sabbir Ahmed
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (S.A.); (J.L.); (S.M.M.); (R.M.)
| | - Joost C. de Vries
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.C.d.V.); (M.H.V.S.); (R.W.M.V.)
| | - Jingyi Lu
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (S.A.); (J.L.); (S.M.M.); (R.M.)
| | - Milan H. Verrijn Stuart
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.C.d.V.); (M.H.V.S.); (R.W.M.V.)
| | - Silvia M. Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (S.A.); (J.L.); (S.M.M.); (R.M.)
| | - Robin W. M. Vernooij
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.C.d.V.); (M.H.V.S.); (R.W.M.V.)
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (S.A.); (J.L.); (S.M.M.); (R.M.)
| | - Karin G. F. Gerritsen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.C.d.V.); (M.H.V.S.); (R.W.M.V.)
| |
Collapse
|
46
|
Li D, Liu Y, Zhan Q, Zeng Y, Peng Z, He Q, Tan Q, Cao W, Wang S, Wang J. Astragaloside IV Blunts Epithelial-Mesenchymal Transition and G2/M Arrest to Alleviate Renal Fibrosis via Regulating ALDH2-Mediated Autophagy. Cells 2023; 12:1777. [PMID: 37443810 PMCID: PMC10340704 DOI: 10.3390/cells12131777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Previous studies show that astragaloside IV (ASIV) has anti-renal fibrosis effects. However, its mechanism remains elusive. In this study, we investigated the anti-fibrosis mechanisms of ASIV on chronic kidney disease (CKD) in vivo and in vitro. A CKD model was induced in rats with adenine (200 mg/kg/d, i.g.), and an in vitro renal fibrosis model was induced in human kidney-2 (HK-2) cells treated with TGF-β1. We revealed that ASIV significantly alleviated renal fibrosis by suppressing the expressions of epithelial-mesenchymal transition (EMT)-related proteins, including fibronectin, vimentin, and alpha-smooth muscle actin (α-SMA), and G2/M arrest-related proteins, including phosphorylated p53 (p-p53), p21, phosphorylated histone H3 (p-H3), and Ki67 in both of the in vivo and in vitro models. Transcriptomic analysis and subsequent validation showed that ASIV rescued ALDH2 expression and inhibited AKT/mTOR-mediated autophagy. Furthermore, in ALDH2-knockdown HK-2 cells, ASIV failed to inhibit AKT/mTOR-mediated autophagy and could not blunt EMT and G2/M arrest. In addition, we further demonstrated that rapamycin, an autophagy inducer, reversed the treatment of ASIV by promoting autophagy in TGF-β1-treated HK-2 cells. A dual-luciferase report assay indicated that ASIV enhanced the transcriptional activity of the ALDH2 promoter. In addition, a further molecular docking analysis showed the potential interaction of ALDH2 and ASIV. Collectively, our data indicate that ALDH2-mediated autophagy may be a novel target in treating renal fibrosis in CKD models, and ASIV may be an effective targeted drug for ALDH2, which illuminate a new insight into the treatment of renal fibrosis and provide new evidence of pharmacology to elucidate the anti-fibrosis mechanism of ASIV in treating renal fibrosis.
Collapse
Affiliation(s)
- Dong Li
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yuzhe Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Quancao Zhan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yan Zeng
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Ze Peng
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qifeng He
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Qi Tan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Wenfu Cao
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Shang Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
47
|
Kuo YW, Huang YY, Tsai SY, Wang JY, Lin JH, Syu ZJ, Wang HS, Hsu YC, Chen JF, Hsia KC, Ho HH. Probiotic Formula Ameliorates Renal Dysfunction Indicators, Glycemic Levels, and Blood Pressure in a Diabetic Nephropathy Mouse Model. Nutrients 2023; 15:2803. [PMID: 37375705 DOI: 10.3390/nu15122803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
One-third of patients with end-stage chronic kidney disease (CKD) experience diabetic nephropathy (DN), which worsens the progression of renal dysfunction. However, preventive measures for DN are lacking. Lactobacillus acidophilus TYCA06, Bifidobacterium longum subsp. infantis BLI-02, and Bifidobacterium bifidum VDD088 probiotic strains have been demonstrated to delay CKD progression. This study evaluated their biological functions to stabilize blood-glucose fluctuations and delay the deterioration of renal function. The db/db mice were used to establish a DN animal model. This was supplemented with 5.125 × 109 CFU/kg/day (high dose) or 1.025 × 109 CFU/kg/day (low dose) mixed with probiotics containing TYCA06, BLI-02, and VDD088 for 8 weeks. Blood urea nitrogen (BUN), serum creatinine, blood glucose, and urine protein were analyzed. Possible mechanisms underlying the alleviation of DN symptoms by probiotic strains were evaluated through in vitro tests. Animal experiments revealed that BUN, serum creatinine, and blood glucose upon probiotic administration were significantly lower than in the control group. The rate of change of urine protein decreased significantly, and blood pressure, glucose tolerance, and renal fibrosis were improved. In vitro testing indicated that TYCA06 and BLI-02 significantly increased acetic acid concentration. TYCA06, BLI-02, and VDD088 were associated with better antioxidation, anti-inflammation, and glucose consumption activities relative to the control. A combination of the probiotics TYCA06, BLI-02, and VDD088 attenuated renal function deterioration and improved blood-glucose fluctuation in a diabetes-induced CKD mouse model.
Collapse
Affiliation(s)
- Yi-Wei Kuo
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan 744, Taiwan
| | - Yen-Yu Huang
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan 744, Taiwan
| | - Shin-Yu Tsai
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan 744, Taiwan
| | - Jiu-Yao Wang
- Center of Allergy, Immunology, and Microbiome (AIM), China Medical University Children's Hospital, Taichung 404, Taiwan
- Allergy and Clinical Immunology Research (ACIR) Center, National Cheng Kung University, Tainan 701, Taiwan
- Department of Allergy and Immunology, China Medical University Children's Hospital, Taichung 404, Taiwan
| | - Jia-Hung Lin
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan 744, Taiwan
| | - Zun-Jie Syu
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan 744, Taiwan
| | - Hui-Shan Wang
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan 744, Taiwan
| | - Yu-Chieh Hsu
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan 744, Taiwan
| | - Jui-Fen Chen
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan 744, Taiwan
| | - Ko-Chiang Hsia
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan 744, Taiwan
| | - Hsieh-Hsun Ho
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan 744, Taiwan
| |
Collapse
|
48
|
Sharma K, Zhang G, Hansen J, Bjornstad P, Lee HJ, Menon R, Hejazi L, Liu JJ, Franzone A, Looker HC, Choi BY, Fernandez R, Venkatachalam MA, Kugathasan L, Sridhar VS, Natarajan L, Zhang J, Sharma V, Kwan B, Waikar S, Himmelfarb J, Tuttle K, Kestenbaum B, Fuhrer T, Feldman H, de Boer IH, Tucci FC, Sedor J, Heerspink HL, Schaub J, Otto E, Hodgin JB, Kretzler M, Anderton C, Alexandrov T, Cherney D, Lim SC, Nelson RG, Gelfond J, Iyengar R. Role of endogenous adenine in kidney failure and mortality with diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.31.23290681. [PMID: 37398187 PMCID: PMC10312877 DOI: 10.1101/2023.05.31.23290681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Diabetic kidney disease (DKD) can lead to end-stage kidney disease (ESKD) and mortality, however, few mechanistic biomarkers are available for high risk patients, especially those without macroalbuminuria. Urine from participants with diabetes from Chronic Renal Insufficiency Cohort (CRIC), Singapore Study of Macro-Angiopathy and Reactivity in Type 2 Diabetes (SMART2D), and the Pima Indian Study determined if urine adenine/creatinine ratio (UAdCR) could be a mechanistic biomarker for ESKD. ESKD and mortality were associated with the highest UAdCR tertile in CRIC (HR 1.57, 1.18, 2.10) and SMART2D (HR 1.77, 1.00, 3.12). ESKD was associated with the highest UAdCR tertile in patients without macroalbuminuria in CRIC (HR 2.36, 1.26, 4.39), SMART2D (HR 2.39, 1.08, 5.29), and Pima Indian study (HR 4.57, CI 1.37-13.34). Empagliflozin lowered UAdCR in non-macroalbuminuric participants. Spatial metabolomics localized adenine to kidney pathology and transcriptomics identified ribonucleoprotein biogenesis as a top pathway in proximal tubules of patients without macroalbuminuria, implicating mammalian target of rapamycin (mTOR). Adenine stimulated matrix in tubular cells via mTOR and stimulated mTOR in mouse kidneys. A specific inhibitor of adenine production was found to reduce kidney hypertrophy and kidney injury in diabetic mice. We propose that endogenous adenine may be a causative factor in DKD.
Collapse
|
49
|
Hayeeawaema F, Muangnil P, Jiangsakul J, Tipbunjong C, Huipao N, Khuituan P. A novel model of adenine-induced chronic kidney disease-associated gastrointestinal dysfunction in mice: The gut-kidney axis. Saudi J Biol Sci 2023; 30:103660. [PMID: 37213695 PMCID: PMC10193294 DOI: 10.1016/j.sjbs.2023.103660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/31/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023] Open
Abstract
Although constipation is a common complication of chronic kidney disease (CKD), there is no animal model that can be used to study the association between renal impairment and gastrointestinal function without interfering with the gastrointestinal tract of the model. Therefore, we determined whether adenine could induce CKD in association with gastrointestinal dysfunction. Six-week-old ICR mice were intraperitoneally injected with saline, 25, 50, or 75 mg adenine/kg body weight for 21 days. Blood urea nitrogen (BUN), plasma creatinine, and renal histopathology were evaluated. Defecation status was evaluated from defecation frequency and fecal water content. Colonic smooth muscle contraction was measured by the organ bath technique, and transepithelial electrical resistance (TEER) was measured using an Ussing chamber. In the 50 mg/kg treatment group, BUN and creatinine were significantly increased compared with control, and inflammatory cell infiltration, glomerular necrosis, tubular dilatation, and interstitial fibrosis were observed in renal tissues. Mice in this group also showed a significant decrease in defecation frequency, fecal water content, colonic motility index, and TEER. Overall, 50 mg/kg of adenine was the best dose to induce CKD with associated constipation and intestinal barrier impairment. Therefore, this adenine administration model can be recommended for CKD-associated gastrointestinal dysfunction research.
Collapse
Affiliation(s)
- Fittree Hayeeawaema
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Gut Biology and Microbiota Research Unit, Prince of Songkla University, Songkhla, Thailand
| | - Paradorn Muangnil
- Gut Biology and Microbiota Research Unit, Prince of Songkla University, Songkhla, Thailand
- Faculty of Veterinary Science, Prince of Songkla University, Thailand
| | | | - Chittipong Tipbunjong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Gut Biology and Microbiota Research Unit, Prince of Songkla University, Songkhla, Thailand
| | - Nawiya Huipao
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Gut Biology and Microbiota Research Unit, Prince of Songkla University, Songkhla, Thailand
| | - Pissared Khuituan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Gut Biology and Microbiota Research Unit, Prince of Songkla University, Songkhla, Thailand
- Corresponding author at: Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, 15 Karnjanavanich Rd., Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
50
|
Lu L, Lu J, Chen J, Wang B, Peng H, Peng J, Liu X, Lin F, Xiong G. Biomarker identification and pathway analysis of Astragalus membranaceus and Curcuma zedoaria couplet medicines on adenine-induced chronic kidney disease in rats based on metabolomics. Front Pharmacol 2023; 14:1103527. [PMID: 37089928 PMCID: PMC10116179 DOI: 10.3389/fphar.2023.1103527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
Background: Chronic kidney disease (CKD) is usually insidious, and most affected individuals are asymptomatic until the disease becomes advanced. The effective treatment of CKD would rely on the incorporation of multidisciplinary approaches. Astragalus membranaceus (AM) and Curcuma zedoaria (CZ) have been widely used in the treatment of CKD. However, the mechanism of AM and CZ in the treatment of CKD is still unclear.Methods: This study was designed to evaluate the effects of AM and CZ on adenine-induced rats and to investigate the underlying mechanism by using metabolomic analysis. Addition of 0.75% adenine to the diet of rats for 3 weeks induced the animal model of CKD. The rats in the treatment group were treated with AM and CZ (2.1 g/kg/day) for 4 weeks. Blood and kidney samples were collected for biochemical and histological examination. Ultra-high-performance liquid chromatography/Q Exactive HFX mass spectrometer (UHPLC-QE-MS) was applied to analyze metabolic profiling variations in the kidney.Results: The results showed that AM and CZ could significantly reduce serum creatinine (Scr) and blood urea nitrogen (BUN) levels in CKD rats and alleviate renal pathological injury. By comparing the endogenous components of the normal group and the model group in positive ion mode and negative ion mode, a total of 365 and 155 different metabolites were screened, respectively. A total of 117 and 73 metabolites with significantly different expressions were identified between model group and AM and CZ group in positive ion mode and negative ion mode, respectively. The pivotal pathways affected by AM and CZ included nicotinate and nicotinamide metabolism, and glycine, serine and threonine metabolism. Furthermore, significant changes in metabolites in CKD rats after AM and CZ therapies were observed, including L-Threonine, D-pantothenic acid, and nicotinamide. Moreover, we found that AM and CZ significantly reduced renal fibrosis and inflammation in CKD rats, which may be related to the regulation of SIRT1/JNK signaling pathway.Conclusion: In conclusion, AM and CZ significantly reduced renal fibrosis and inflammation in CKD rats, which may be related to the regulation of SIRT1/JNK signaling pathway. Furthermore, L-Threonine, D-pantothenic acid, and nicotinamide may be potential biomarkers for the progression and treatment of CKD.
Collapse
Affiliation(s)
- Lingfei Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital Nanjing University of Chinese Medicine, Shenzhen, China
| | - Jiwei Chen
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Bing Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital Nanjing University of Chinese Medicine, Shenzhen, China
| | - Hongcheng Peng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jinting Peng
- Department of Gynecology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xinhui Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Feng Lin
- Department of Urology, Shenzhen Traditional Chinese Medicine Hospital Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- *Correspondence: Feng Lin, ; Guoliang Xiong,
| | - Guoliang Xiong
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- *Correspondence: Feng Lin, ; Guoliang Xiong,
| |
Collapse
|