1
|
Augustine SP, McCulloh KA. Physiological trait coordination and variability across and within three Pinus species. THE NEW PHYTOLOGIST 2024; 244:451-463. [PMID: 39205436 DOI: 10.1111/nph.19859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/21/2024] [Indexed: 09/04/2024]
Abstract
Studies have explored how traits separate plants ecologically and the trade-offs that underpin this separation. However, uncertainty remains as to the taxonomic scale at which traits can predictably separate species. We studied how physiological traits separated three Pinus (Pinus banksiana, Pinus resinosa, and Pinus strobus) species across three sites. We collected traits from four common leaf and branch measurements (light-response curves, CO2-response curves, pressure-volume curves, and hydraulic vulnerability curves) across each species and site. While common, these measurements are not typically measured together due to logistical constraints. Few traits varied across species and sites as expected given the ecological preferences of the species and environmental site characteristics. Some trait trade-offs present at broad taxonomic scales were observed across the three species, but most were absent within species. Certain trade-offs contrasted expectations observed at broader scales but followed expectations given the species' ecological preferences. We emphasize the need to both clarify why certain traits are being studied, as variation in unexpected but ecologically meaningful ways often occurs and certain traits might not vary substantially within a given lineage (e.g. hydraulic vulnerability in Pinus), highlighting the role a trait selection in trait ecology.
Collapse
Affiliation(s)
- Steven P Augustine
- Department of Botany, University of Wisconsin - Madison, Madison, WI, 53706, USA
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Katherine A McCulloh
- Department of Botany, University of Wisconsin - Madison, Madison, WI, 53706, USA
| |
Collapse
|
2
|
Rodríguez-Ramírez EC, Frei J, Ames-Martínez FN, Guerra A, Andrés-Hernández AR. Ecological stress memory in wood architecture of two Neotropical hickory species from central-eastern Mexico. BMC PLANT BIOLOGY 2024; 24:638. [PMID: 38971728 PMCID: PMC11227188 DOI: 10.1186/s12870-024-05348-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Drought periods are major evolutionary triggers of wood anatomical adaptive variation in Lower Tropical Montane Cloud Forests tree species. We tested the influence of historical drought events on the effects of ecological stress memory on latewood width and xylem vessel traits in two relict hickory species (Carya palmeri and Carya myristiciformis) from central-eastern Mexico. We hypothesized that latewood width would decrease during historical drought years, establishing correlations between growth and water stress conditions, and that moisture deficit during past tree growth between successive drought events, would impact on wood anatomical features. We analyzed latewood anatomical traits that developed during historical drought and pre- and post-drought years in both species. RESULTS We found that repeated periods of hydric stress left climatic signatures for annual latewood growth and xylem vessel traits that are essential for hydric adaptation in tropical montane hickory species. CONCLUSIONS Our results demonstrate the existence of cause‒effect relationships in wood anatomical architecture and highlight the ecological stress memory linked with historical drought events. Thus, combined time-series analysis of latewood width and xylem vessel traits is a powerful tool for understanding the ecological behavior of hickory species.
Collapse
Affiliation(s)
- Ernesto C Rodríguez-Ramírez
- Laboratorio de Dendrocronología, Universidad Continental, Urbanización San Antonio, Avenida San Carlos 1980, Huancayo, Junín, Peru.
| | - Jonas Frei
- Atelier foifacht, Juglandaceae expert, Schaffhausen, Switzerland
| | - Fressia N Ames-Martínez
- Laboratorio de Biotecnología y Biología Molecular, Universidad Continental, Urbanización San Antonio, Huancayo, Peru
- Programa de Investigación de Ecología y Biodiversidad, Asociación ANDINUS, Calle Miguel Grau 370, Sicaya, Junín, Huancayo, Peru
| | - Anthony Guerra
- Programa de Pós-Graduação em Agronomia/Fisiologia Vegetal, Departamento de Biologia- Instituto de Ciências Naturais, Universidade Federal de Lavras, Lavras, Minas Gerais, 7203-202, Brazil
| | | |
Collapse
|
3
|
Manrique-Ascencio A, Prieto-Torres DA, Villalobos F, Mercado Gómez J, Guevara R. Limited drought tolerance in the neotropical seasonally dry forest plants impairs future species richness. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 38967240 DOI: 10.1111/plb.13683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
Neotropical seasonal dry forest (NSDF) is one of the most threatened ecosystems according to global climate change predictions. Nonetheless, few studies have evaluated the global climate change impacts on diversity patterns of NSDF plants. The lack of whole biome-scale approaches restricts our understanding of global climate change consequences in the high beta-diverse NSDF. We analysed the impact of global climate change on species distribution ranges, species richness, and assemblage composition (beta diversity) for 1,178 NSDF species. We used five representative plant families (in terms of abundance, dominance, and endemism) within the NSDF: Cactaceae, Capparaceae, Fabaceae, Malvaceae, and Zygophyllaceae. We reconstructed potential species distributions in the present and future (2040-2080), considering an intermediate Shared Socioeconomic Pathway and two dispersal ability assumptions on the taxa. Using a resource use scores index, we related climate-induced range contractions with species' water stress tolerance. Even under a favourable dispersal scenario, species distribution and richness showed future significant declines across those sites where mean temperature and precipitation seasonality are expected to increase. Further, changes in species range distribution in the future correlated positively with potential use of resources in Fabaceae. Results suggest that biotic heterogenization will likely be the short-term outcome at biome scale under dispersal limitations. Nonetheless, by 2080, the prevailing effect under both dispersal assumptions will be homogenization, even within floristic nuclei. This information is critical for further defining new areas worth protecting and future planning of mitigation actions for both species and the whole biome.
Collapse
Affiliation(s)
- A Manrique-Ascencio
- Red Biología Evolutiva, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
| | - D A Prieto-Torres
- Laboratorio de Biodiversidad y Cambio Global (LABIOCG), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
- Laboratorio Nacional CONAHCyT de Biología del Cambio Climático, CONAHCYT, INECOL, Ciudad de México, 91070, Veracruz, Mexico
| | - F Villalobos
- Red Biología Evolutiva, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
- Laboratorio Nacional CONAHCyT de Biología del Cambio Climático, CONAHCYT, INECOL, Ciudad de México, 91070, Veracruz, Mexico
| | - J Mercado Gómez
- Departamento de Biología y Química, Universidad de Sucre, Sincelejo, Sucre, Colombia
| | - R Guevara
- Red Biología Evolutiva, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
| |
Collapse
|
4
|
Konings AG, Rao K, McCormick EL, Trugman AT, Williams AP, Diffenbaugh NS, Yebra M, Zhao M. Tree species explain only half of explained spatial variability in plant water sensitivity. GLOBAL CHANGE BIOLOGY 2024; 30:e17425. [PMID: 39005206 DOI: 10.1111/gcb.17425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024]
Abstract
Spatiotemporal patterns of plant water uptake, loss, and storage exert a first-order control on photosynthesis and evapotranspiration. Many studies of plant responses to water stress have focused on differences between species because of their different stomatal closure, xylem conductance, and root traits. However, several other ecohydrological factors are also relevant, including soil hydraulics, topographically driven redistribution of water, plant adaptation to local climatic variations, and changes in vegetation density. Here, we seek to understand the relative importance of the dominant species for regional-scale variations in woody plant responses to water stress. We map plant water sensitivity (PWS) based on the response of remotely sensed live fuel moisture content to variations in hydrometeorology using an auto-regressive model. Live fuel moisture content dynamics are informative of PWS because they directly reflect vegetation water content and therefore patterns of plant water uptake and evapotranspiration. The PWS is studied using 21,455 wooded locations containing U.S. Forest Service Forest Inventory and Analysis plots across the western United States, where species cover is known and where a single species is locally dominant. Using a species-specific mean PWS value explains 23% of observed PWS variability. By contrast, a random forest driven by mean vegetation density, mean climate, soil properties, and topographic descriptors explains 43% of observed PWS variability. Thus, the dominant species explains only 53% (23% compared to 43%) of explainable variations in PWS. Mean climate and mean NDVI also exert significant influence on PWS. Our results suggest that studies of differences between species should explicitly consider the environments (climate, soil, topography) in which observations for each species are made, and whether those environments are representative of the entire species range.
Collapse
Affiliation(s)
- Alexandra G Konings
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Krishna Rao
- Department of Earth System Science, Stanford University, Stanford, California, USA
- Watershed, Inc., San Francisco, California, USA
| | - Erica L McCormick
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Anna T Trugman
- Department of Geography, University of California, Santa Barbara, California, USA
| | - A Park Williams
- Department of Geography, University of California, Los Angeles, California, USA
| | - Noah S Diffenbaugh
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Marta Yebra
- Fenner School of Environment & Society, The Australian National University, Canberra, Australian Capital Territory, Australia
- School of Engineering, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Meng Zhao
- Department of Earth and Spatial Science, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
5
|
Zhao Y, Xiong L, Yin J, Zha X, Li W, Han Y. Understanding the effects of flash drought on vegetation photosynthesis and potential drivers over China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172926. [PMID: 38697519 DOI: 10.1016/j.scitotenv.2024.172926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Flash droughts characterized by rapid onset and intensification are expected to be a new normal under climate change and potentially affect vegetation photosynthesis and terrestrial carbon sink. However, the effects of flash drought on vegetation photosynthesis and their potential dominant driving factors remain uncertain. Here, we quantify the susceptibility and response magnitude of vegetation photosynthesis to flash drought across different ecosystems (i.e., forest, shrubland, grassland, and cropland) in China based on reanalysis and satellite observations. By employing the extreme gradient boosting model, we also identify the dominant factors that influence these flash drought-photosynthesis relationships. We show that over 51.46 % of ecosystems across China are susceptible to flash drought, and grasslands are substantially suppressed, as reflected in both sensitivity and response magnitude (with median gross primary productivity anomalies of -0.13). We further demonstrate that background climate differences (e.g., mean annual temperature and aridity) predominantly regulate the response variation in forest and shrubland, with hotter/colder or drier ecosystems being more severely suppressed by flash drought. However, in grasslands and croplands, the differential vegetation responses are attributed to the intensity of abnormal hydro-meteorological conditions during flash drought (e.g., vapor pressure deficit (VPD) and temperature anomalies). The effects of flash droughts intensify with increasing VPD and nonmonotonically relate to temperature, with colder or hotter temperatures leading to more severe vegetation loss. Our results identify the vulnerable ecological regions under flash drought and enable a better understanding of vegetation photosynthesis response to climate extremes, which may be useful for developing effective management strategies.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, PR China.
| | - Lihua Xiong
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, PR China.
| | - Jiabo Yin
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, PR China.
| | - Xini Zha
- Changjiang Water Resources Protection Institute, Wuhan 430051, PR China; Key Laboratory of Ecological Regulation of Non-point Source Pollution in Lake and Reservoir Water Sources, Changjiang Water Resources Commission, Wuhan 430051, PR China.
| | - Wenbin Li
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, PR China.
| | - Yajing Han
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
6
|
Wittemann M, Mujawamariya M, Ntirugulirwa B, Uwizeye FK, Zibera E, Manzi OJL, Nsabimana D, Wallin G, Uddling J. Plasticity and implications of water-use traits in contrasting tropical tree species under climate change. PHYSIOLOGIA PLANTARUM 2024; 176:e14326. [PMID: 38708565 DOI: 10.1111/ppl.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/12/2024] [Indexed: 05/07/2024]
Abstract
Plants face a trade-off between hydraulic safety and growth, leading to a range of water-use strategies in different species. However, little is known about such strategies in tropical trees and whether different water-use traits can acclimate to warming. We studied five water-use traits in 20 tropical tree species grown at three different altitudes in Rwanda (RwandaTREE): stomatal conductance (gs), leaf minimum conductance (gmin), plant hydraulic conductance (Kplant), leaf osmotic potential (ψo) and net defoliation during drought. We also explored the links between these traits and growth and mortality data. Late successional (LS) species had low Kplant, gs and gmin and, thus, low water loss, while low ψo helped improve leaf water status during drought. Early successional (ES) species, on the contrary, used more water during both moist and dry conditions and exhibited pronounced drought defoliation. The ES strategy was associated with lower mortality and more pronounced growth enhancement at the warmer sites compared to LS species. While Kplant and gmin showed downward acclimation in warmer climates, ψo did not acclimate and gs measured at prevailing temperature did not change. Due to distinctly different water use strategies between successional groups, ES species may be better equipped for a warmer climate as long as defoliation can bridge drought periods.
Collapse
Affiliation(s)
- Maria Wittemann
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Myriam Mujawamariya
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, College of Science and Technology, University of Rwanda, Kigali, Rwanda
| | - Bonaventure Ntirugulirwa
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, College of Science and Technology, University of Rwanda, Kigali, Rwanda
- Rwanda Agriculture and Animal Resources Development Board (RAB), Kigali, Rwanda
- Rwanda Forestry Authority, Muhanga, Rwanda
| | - Felicien K Uwizeye
- School of Forestry and Biodiversity and Biological Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze, Rwanda
| | - Etienne Zibera
- School of Forestry and Biodiversity and Biological Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze, Rwanda
| | - Olivier Jean Leonce Manzi
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Integrated Polytechnic Regional College-Kitabi, Rwanda Polytechnic, Huye, Rwanda
| | - Donat Nsabimana
- School of Forestry and Biodiversity and Biological Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze, Rwanda
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Power CC, Normand S, von Arx G, Elberling B, Corcoran D, Krog AB, Bouvin NK, Treier UA, Westergaard-Nielsen A, Liu Y, Prendin AL. No effect of snow on shrub xylem traits: Insights from a snow-manipulation experiment on Disko Island, Greenland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:169896. [PMID: 38185160 DOI: 10.1016/j.scitotenv.2024.169896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Widespread shrubification across the Arctic has been generally attributed to increasing air temperatures, but responses vary across species and sites. Wood structures related to the plant hydraulic architecture may respond to local environmental conditions and potentially impact shrub growth, but these relationships remain understudied. Using methods of dendroanatomy, we analysed shrub ring width (RW) and xylem anatomical traits of 80 individuals of Salix glauca L. and Betula nana L. at a snow manipulation experiment in Western Greenland. We assessed how their responses differed between treatments (increased versus ambient snow depth) and soil moisture regimes (wet and dry). Despite an increase in snow depth due to snow fences (28-39 %), neither RW nor anatomical traits in either species showed significant responses to this increase. In contrast, irrespective of the snow treatment, the xylem specific hydraulic conductivity (Ks) and earlywood vessel size (LA95) for the study period were larger in S. glauca (p < 0.1, p < 0.01) and B. nana (p < 0.01, p < 0.001) at the wet than the dry site, while both species had larger vessel groups at the dry than the wet site (p < 0.01). RW of B. nana was higher at the wet site (p < 0.01), but no differences were observed for S. glauca. Additionally, B. nana Ks and LA95 showed different trends over the study period, with decreases observed at the dry site (p < 0.001), while for other responses no difference was observed. Our results indicate that, taking into account ontogenetic and allometric trends, hydraulic related xylem traits of both species, along with B. nana growth, were influenced by soil moisture. These findings suggest that soil moisture regime, but not snow cover, may determine xylem responses to future climate change and thus add to the heterogeneity of Arctic shrub dynamics, though more long-term species- and site- specific studies are needed.
Collapse
Affiliation(s)
- Candice C Power
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Denmark.
| | - Signe Normand
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Denmark; SustainScapes - Center for Sustainable Landscapes under Global Change, Aarhus University, Denmark
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Bo Elberling
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark; Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark
| | - Derek Corcoran
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Denmark; SustainScapes - Center for Sustainable Landscapes under Global Change, Aarhus University, Denmark
| | - Amanda B Krog
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Denmark
| | | | - Urs Albert Treier
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Denmark; SustainScapes - Center for Sustainable Landscapes under Global Change, Aarhus University, Denmark
| | - Andreas Westergaard-Nielsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark; Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark
| | - Yijing Liu
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark
| | - Angela L Prendin
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Denmark; Department of Land Environment Agriculture and Forestry (TeSAF), University of Padova, Legnaro, Italy
| |
Collapse
|
8
|
Vitali V, Schuler P, Holloway-Phillips M, D'Odorico P, Guidi C, Klesse S, Lehmann MM, Meusburger K, Schaub M, Zweifel R, Gessler A, Saurer M. Finding balance: Tree-ring isotopes differentiate between acclimation and stress-induced imbalance in a long-term irrigation experiment. GLOBAL CHANGE BIOLOGY 2024; 30:e17237. [PMID: 38488024 DOI: 10.1111/gcb.17237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
Scots pine (Pinus sylvestris L.) is a common European tree species, and understanding its acclimation to the rapidly changing climate through physiological, biochemical or structural adjustments is vital for predicting future growth. We investigated a long-term irrigation experiment at a naturally dry forest in Switzerland, comparing Scots pine trees that have been continuously irrigated for 17 years (irrigated) with those for which irrigation was interrupted after 10 years (stop) and non-irrigated trees (control), using tree growth, xylogenesis, wood anatomy, and carbon, oxygen and hydrogen stable isotope measurements in the water, sugars and cellulose of plant tissues. The dendrochronological analyses highlighted three distinct acclimation phases to the treatments: irrigated trees experienced (i) a significant growth increase in the first 4 years of treatment, (ii) high growth rates but with a declining trend in the following 8 years and finally (iii) a regression to pre-irrigation growth rates, suggesting the development of a new growth limitation (i.e. acclimation). The introduction of the stop treatment resulted in further growth reductions to below-control levels during the third phase. Irrigated trees showed longer growth periods and lower tree-ring δ13 C values, reflecting lower stomatal restrictions than control trees. Their strong tree-ring δ18 O and δ2 H (O-H) relationship reflected the hydrological signature similarly to the control. On the contrary, the stop trees had lower growth rates, conservative wood anatomical traits, and a weak O-H relationship, indicating a physiological imbalance. Tree vitality (identified by crown transparency) significantly modulated growth, wood anatomical traits and tree-ring δ13 C, with low-vitality trees of all treatments performing similarly regardless of water availability. We thus provide quantitative indicators for assessing physiological imbalance and tree acclimation after environmental stresses. We also show that tree vitality is crucial in shaping such responses. These findings are fundamental for the early assessment of ecosystem imbalances and decline under climate change.
Collapse
Affiliation(s)
- Valentina Vitali
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Philipp Schuler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | | | - Petra D'Odorico
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Claudia Guidi
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Stefan Klesse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Marco M Lehmann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Katrin Meusburger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Roman Zweifel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
9
|
Hightower AT, Chitwood DH, Josephs EB. Herbarium specimens reveal links between Capsella bursa-pastoris leaf shape and climate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580180. [PMID: 38405842 PMCID: PMC10888959 DOI: 10.1101/2024.02.13.580180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Studies into the evolution and development of leaf shape have connected variation in plant form, function, and fitness. For species with consistent leaf margin features, patterns in leaf architecture are related to both biotic and abiotic factors. However, for species with inconsistent leaf margin features, quantifying leaf shape variation and the effects of environmental factors on leaf shape has proven challenging. To investigate leaf shape variation in species with inconsistent shapes, we analyzed approximately 500 digitized Capsella bursa-pastoris specimens collected throughout the continental U.S. over a 100-year period with geometric morphometric modeling and deterministic techniques. We generated a morphospace of C. bursa-pastoris leaf shapes and modeled leaf shape as a function of environment and time. Our results suggest C. bursa-pastoris leaf shape variation is strongly associated with temperature over the C. bursa-pastoris growing season, with lobing decreasing as temperature increases. While we expected to see changes in variation over time, our results show that level of leaf shape variation is consistent over the 100-year period. Our findings showed that species with inconsistent leaf shape variation can be quantified using geometric morphometric modeling techniques and that temperature is the main environmental factor influencing leaf shape variation.
Collapse
Affiliation(s)
- Asia T Hightower
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI, 48824-1226
- Ecology, Evolution, & Behavior Program, Michigan State University, 567 Wilson Rd, East Lansing, MI 48824-1226
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824-1226
| | - Daniel H Chitwood
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824-1226
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, 428 S Shaw Ln, East Lansing, MI 48824-1226
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI, 48824-1226
- Ecology, Evolution, & Behavior Program, Michigan State University, 567 Wilson Rd, East Lansing, MI 48824-1226
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824-1226
| |
Collapse
|
10
|
Dobor L, Baldo M, Bílek L, Barka I, Máliš F, Štěpánek P, Hlásny T. The interacting effect of climate change and herbivory can trigger large-scale transformations of European temperate forests. GLOBAL CHANGE BIOLOGY 2024; 30:e17194. [PMID: 38385958 DOI: 10.1111/gcb.17194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
In many regions of Europe, large wild herbivores alter forest community composition through their foraging preferences, hinder the forest's natural adaptive responses to climate change, and reduce ecosystem resilience. We investigated a widespread European forest type, a mixed forest dominated by Picea abies, which has recently experienced an unprecedented level of disturbance across the continent. Using the forest landscape model iLand, we investigated the combined effect of climate change and herbivory on forest structure, composition, and carbon and identified conditions leading to ecosystem transitions on a 300-year timescale. Eight climate change scenarios, driven by Representative Concentration Pathways 4.5 and 8.5, combined with three levels of regeneration browsing, were tested. We found that the persistence of the current level of browsing pressure impedes adaptive changes in community composition and sustains the presence of the vulnerable yet less palatable P. abies. These development trajectories were tortuous, characterized by a high disturbance intensity. On the contrary, reduced herbivory initiated a transformation towards the naturally dominant broadleaved species that was associated with an increased forest carbon and a considerably reduced disturbance. The conditions of RCP4.5 combined with high and moderate browsing levels preserved the forest within its reference range of variability, defining the actual boundaries of resilience. The remaining combinations of browsing and climate change led to ecosystem transitions. Under RCP4.5 with browsing effects excluded, the new equilibrium conditions were achieved within 120 years, whereas the stabilization was delayed by 50-100 years under RCP8.5 with higher browsing intensities. We conclude that forests dominated by P. abies are prone to transitions driven by climate change. However, reducing herbivory can set the forest on a stable and predictable trajectory, whereas sustaining the current browsing levels can lead to heightened disturbance activity, extended transition times, and high variability in the target conditions.
Collapse
Affiliation(s)
- Laura Dobor
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Prague 6, Suchdol, Czech Republic
| | - Marco Baldo
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Prague 6, Suchdol, Czech Republic
| | - Lukáš Bílek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Prague 6, Suchdol, Czech Republic
| | - Ivan Barka
- National Forest Centre - Forest Research Institute Zvolen, Zvolen, Slovakia
| | - František Máliš
- National Forest Centre - Forest Research Institute Zvolen, Zvolen, Slovakia
- Faculty of Forestry, Technical University Zvolen, Zvolen, Slovakia
| | - Petr Štěpánek
- Global Change Research Institute, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Hlásny
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Prague 6, Suchdol, Czech Republic
| |
Collapse
|
11
|
Torres-Ruiz JM, Cochard H, Delzon S, Boivin T, Burlett R, Cailleret M, Corso D, Delmas CEL, De Caceres M, Diaz-Espejo A, Fernández-Conradi P, Guillemot J, Lamarque LJ, Limousin JM, Mantova M, Mencuccini M, Morin X, Pimont F, De Dios VR, Ruffault J, Trueba S, Martin-StPaul NK. Plant hydraulics at the heart of plant, crops and ecosystem functions in the face of climate change. THE NEW PHYTOLOGIST 2024; 241:984-999. [PMID: 38098153 DOI: 10.1111/nph.19463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/05/2023] [Indexed: 01/12/2024]
Abstract
Plant hydraulics is crucial for assessing the plants' capacity to extract and transport water from the soil up to their aerial organs. Along with their capacity to exchange water between plant compartments and regulate evaporation, hydraulic properties determine plant water relations, water status and susceptibility to pathogen attacks. Consequently, any variation in the hydraulic characteristics of plants is likely to significantly impact various mechanisms and processes related to plant growth, survival and production, as well as the risk of biotic attacks and forest fire behaviour. However, the integration of hydraulic traits into disciplines such as plant pathology, entomology, fire ecology or agriculture can be significantly improved. This review examines how plant hydraulics can provide new insights into our understanding of these processes, including modelling processes of vegetation dynamics, illuminating numerous perspectives for assessing the consequences of climate change on forest and agronomic systems, and addressing unanswered questions across multiple areas of knowledge.
Collapse
Affiliation(s)
- José M Torres-Ruiz
- Université Clermont-Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Sylvain Delzon
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | | | - Regis Burlett
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | - Maxime Cailleret
- INRAE, Aix-Marseille Université, UMR RECOVER, Aix-en-Provence, 13100, France
| | - Déborah Corso
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | - Chloé E L Delmas
- INRAE, Bordeaux Sciences Agro, ISVV, SAVE, F-33140, Villenave d'Ornon, France
| | | | - Antonio Diaz-Espejo
- Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Seville, 41012, Spain
| | | | - Joannes Guillemot
- CIRAD, UMR Eco&Sols, Montpellier, 34394, France
- Eco&Sols, Univ. Montpellier, CIRAD, INRAe, Institut Agro, IRD, Montpellier, 34394, France
- Department of Forest Sciences, ESALQ, University of São Paulo, Piracicaba, 05508-060, São Paulo, Brazil
| | - Laurent J Lamarque
- Département des sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, G9A 5H7, Québec, Canada
| | | | - Marylou Mantova
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Maurizio Mencuccini
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
- ICREA, Barcelona, 08010, Spain
| | - Xavier Morin
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34394, France
| | | | - Victor Resco De Dios
- Department of Forest and Agricultural Science and Engineering, University of Lleida, Lleida, 25198, Spain
- JRU CTFC-AGROTECNIO-CERCA Center, Lleida, 25198, Spain
| | | | - Santiago Trueba
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | | |
Collapse
|
12
|
Coe K, Carter B, Slate M, Stanton D. Moss functional trait ecology: Trends, gaps, and biases in the current literature. AMERICAN JOURNAL OF BOTANY 2024; 111:e16288. [PMID: 38366744 DOI: 10.1002/ajb2.16288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 02/18/2024]
Abstract
Functional traits are critical tools in plant ecology for capturing organism-environment interactions based on trade-offs and making links between organismal and ecosystem processes. While broad frameworks for functional traits have been developed for vascular plants, we lack the same for bryophytes, despite an escalation in the number of studies on bryophyte functional trait in the last 45 years and an increased recognition of the ecological roles bryophytes play across ecosystems. In this review, we compiled data from 282 published articles (10,005 records) that focused on functional traits measured in mosses and sought to examine trends in types of traits measured, capture taxonomic and geographic breadth of trait coverage, reveal biases in coverage in the current literature, and develop a bryophyte-function index (BFI) to describe the completeness of current trait coverage and identify global gaps to focus research efforts. The most commonly measured response traits (those related to growth/reproduction in individual organisms) and effect traits (those that directly affect community/ecosystem scale processes) fell into the categories of morphology (e.g., leaf area, shoot height) and nutrient storage/cycling, and our BFI revealed that these data were most commonly collected from temperate and boreal regions of Europe, North America, and East Asia. However, fewer than 10% of known moss species have available functional trait information. Our synthesis revealed a need for research on traits related to ontogeny, sex, and intraspecific plasticity and on co-measurement of traits related to water relations and bryophyte-mediated soil processes.
Collapse
Affiliation(s)
- Kirsten Coe
- Department of Biology, Middlebury, VT, 05753, USA
| | - Benjamin Carter
- Department of Biological Sciences, San Jose State University, San Jose, CA, 95192, USA
| | - Mandy Slate
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
- Present address: Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Daniel Stanton
- Department of Ecology Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| |
Collapse
|
13
|
Paschalis A, De Kauwe MG, Sabot M, Fatichi S. When do plant hydraulics matter in terrestrial biosphere modelling? GLOBAL CHANGE BIOLOGY 2024; 30:e17022. [PMID: 37962234 PMCID: PMC10952296 DOI: 10.1111/gcb.17022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The ascent of water from the soil to the leaves of vascular plants, described by the study of plant hydraulics, regulates ecosystem responses to environmental forcing and recovery from stress periods. Several approaches to model plant hydraulics have been proposed. In this study, we introduce four different versions of plant hydraulics representations in the terrestrial biosphere model T&C to understand the significance of plant hydraulics to ecosystem functioning. We tested representations of plant hydraulics, investigating plant water capacitance, and long-term xylem damages following drought. The four models we tested were a combination of representations including or neglecting capacitance and including or neglecting xylem damage legacies. Using the models at six case studies spanning semiarid to tropical ecosystems, we quantify how plant xylem flow, plant water storage and long-term xylem damage can modulate overall water and carbon dynamics across multiple time scales. We show that as drought develops, models with plant hydraulics predict a slower onset of plant water stress, and a diurnal variability of water and carbon fluxes closer to observations. Plant water storage was found to be particularly important for the diurnal dynamics of water and carbon fluxes, with models that include plant water capacitance yielding better results. Models including permanent damage to conducting plant tissues show an additional significant drought legacy effect, limiting plant productivity during the recovery phase following major droughts. However, when considering ecosystem responses to the observed climate variability, plant hydraulic modules alone cannot significantly improve the overall model performance, even though they reproduce more realistic water and carbon dynamics. This opens new avenues for model development, explicitly linking plant hydraulics with additional ecosystem processes, such as plant phenology and improved carbon allocation algorithms.
Collapse
Affiliation(s)
- Athanasios Paschalis
- Department of Civil and Environmental EngineeringImperial College LondonLondonUK
| | | | - Manon Sabot
- ARC Centre of Excellence for Climate Extremes and Climate Change Research CentreUniversity of New South WalesSydneyNew South WalesAustralia
| | - Simone Fatichi
- Department of Civil and Environmental EngineeringNational University of SingaporeSingaporeSingapore
| |
Collapse
|
14
|
Binks O, Cernusak LA, Liddell M, Bradford M, Coughlin I, Bryant C, Palma AC, Hoffmann L, Alam I, Carle HJ, Rowland L, Oliveira RS, Laurance SGW, Mencuccini M, Meir P. Vapour pressure deficit modulates hydraulic function and structure of tropical rainforests under nonlimiting soil water supply. THE NEW PHYTOLOGIST 2023; 240:1405-1420. [PMID: 37705460 DOI: 10.1111/nph.19257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023]
Abstract
Atmospheric conditions are expected to become warmer and drier in the future, but little is known about how evaporative demand influences forest structure and function independently from soil moisture availability, and how fast-response variables (such as canopy water potential and stomatal conductance) may mediate longer-term changes in forest structure and function in response to climate change. We used two tropical rainforest sites with different temperatures and vapour pressure deficits (VPD), but nonlimiting soil water supply, to assess the impact of evaporative demand on ecophysiological function and forest structure. Common species between sites allowed us to test the extent to which species composition, relative abundance and intraspecific variability contributed to site-level differences. The highest VPD site had lower midday canopy water potentials, canopy conductance (gc ), annual transpiration, forest stature, and biomass, while the transpiration rate was less sensitive to changes in VPD; it also had different height-diameter allometry (accounting for 51% of the difference in biomass between sites) and higher plot-level wood density. Our findings suggest that increases in VPD, even in the absence of soil water limitation, influence fast-response variables, such as canopy water potentials and gc , potentially leading to longer-term changes in forest stature resulting in reductions in biomass.
Collapse
Affiliation(s)
- Oliver Binks
- CREAF, Cerdanyola del Vallès, Barcelona, 08193, Spain
- Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
| | - Lucas A Cernusak
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, 4878, Qld, Australia
| | - Michael Liddell
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, 4878, Qld, Australia
| | - Matt Bradford
- CSIRO Land and Water, Atherton, 4883, Qld, Australia
| | - Ingrid Coughlin
- Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
| | - Callum Bryant
- Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
| | - Ana C Palma
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, 4878, Qld, Australia
| | - Luke Hoffmann
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, 4878, Qld, Australia
| | - Iftakharul Alam
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, 4878, Qld, Australia
| | - Hannah J Carle
- Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
| | - Lucy Rowland
- Geography, Faculty of Environment Science and Economy, University of Exeter, Laver Building, Exeter, EX4 4QE, UK
| | - Rafael S Oliveira
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, 13083-970, SP, Brazil
| | - Susan G W Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, 4878, Qld, Australia
| | | | - Patrick Meir
- Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| |
Collapse
|
15
|
Sanchez-Martinez P, Mencuccini M, García-Valdés R, Hammond WM, Serra-Diaz JM, Guo WY, Segovia RA, Dexter KG, Svenning JC, Allen C, Martínez-Vilalta J. Increased hydraulic risk in assemblages of woody plant species predicts spatial patterns of drought-induced mortality. Nat Ecol Evol 2023; 7:1620-1632. [PMID: 37640766 PMCID: PMC10555820 DOI: 10.1038/s41559-023-02180-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/26/2023] [Indexed: 08/31/2023]
Abstract
Predicting drought-induced mortality (DIM) of woody plants remains a key research challenge under climate change. Here, we integrate information on the edaphoclimatic niches, phylogeny and hydraulic traits of species to model the hydraulic risk of woody plants globally. We combine these models with species distribution records to estimate the hydraulic risk faced by local woody plant species assemblages. Thus, we produce global maps of hydraulic risk and test for its relationship with observed DIM. Our results show that local assemblages modelled as having higher hydraulic risk present a higher probability of DIM. Metrics characterizing this hydraulic risk improve DIM predictions globally, relative to models accounting only for edaphoclimatic predictors or broad functional groupings. The methodology we present here allows mapping of functional trait distributions and elucidation of global macro-evolutionary and biogeographical patterns, improving our ability to predict potential global change impacts on vegetation.
Collapse
Affiliation(s)
- Pablo Sanchez-Martinez
- Universitat Autònoma de Barcelona, Cerdanyola del Valles, Barcelona, Spain.
- CREAF, Cerdanyola del Valles, Barcelona, Spain.
- School of GeoSciences, University of Edinburgh, Edinburgh, UK.
| | | | - Raúl García-Valdés
- CREAF, Cerdanyola del Valles, Barcelona, Spain
- Department of Biology and Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, Móstoles, Madrid, Spain
| | | | - Josep M Serra-Diaz
- Université de Lorraine, AgroParisTech, INRAE, Nancy, France
- Eversource Energy Center, University of Connecticut, Storrs, CT, USA
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Wen-Yong Guo
- Research Center for Global Change and Complex Ecosystems & Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, P. R. China
- Department of Biology, Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, Aarhus C, Denmark
| | - Ricardo A Segovia
- Institute of Ecology and Biodiversity (IEB), Santiago, Chile
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Kyle G Dexter
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | - Jens-Christian Svenning
- Department of Biology, Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, Aarhus C, Denmark
| | - Craig Allen
- Department of Geography and Environmental Studies, University of New Mexico, Albuquerque, NM, USA
| | - Jordi Martínez-Vilalta
- Universitat Autònoma de Barcelona, Cerdanyola del Valles, Barcelona, Spain
- CREAF, Cerdanyola del Valles, Barcelona, Spain
| |
Collapse
|
16
|
Xia H, Hao Z, Shen Y, Tu Z, Yang L, Zong Y, Li H. Genome-wide association study of multiyear dynamic growth traits in hybrid Liriodendron identifies robust genetic loci associated with growth trajectories. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1544-1563. [PMID: 37272730 DOI: 10.1111/tpj.16337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/30/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
The genetic factors underlying growth traits differ over time points or stages. However, most current studies of phenotypes at single time points do not capture all loci or explain the genetic differences underlying growth trajectories. Hybrid Liriodendron exhibits obvious heterosis and is widely cultivated, although its complex genetic mechanism underlying growth traits remains unknown. A genome-wide association study (GWAS) is an effective method for elucidating the genetic architecture by identifying genetic loci underlying complex quantitative traits. In the present study, using a GWAS, we identified robust loci associated with growth trajectories in hybrid Liriodendron populations. We selected 233 hybrid progenies derived from 25 crosses for resequencing, and measured their tree height (H) and diameter at breast height (DBH) for 11 consecutive years; 192 972 high-quality single nucleotide polymorphisms (SNPs) were obtained. The dynamics of the multiyear single-trait GWAS showed that year-specific SNPs predominated, and only five robust SNPs for DBH were identified in at least three different years. Multitrait GWAS analysis with model parameters as latent variables also revealed 62 SNPs for H and 52 for DBH associated with the growth trajectory, displaying different biomass accumulation patterns, among which four SNPs exerted pleiotropic effects. All identified SNPs also exhibited temporal variations in effect sizes and inheritance patterns potentially related to different growth and developmental stages. The haplotypes resulting from these significant SNPs might pyramid favorable loci, benefitting the selection of superior genotypes. The present study provides insights into the genetic architecture of dynamic growth traits and lays a basis for future molecular-assisted breeding.
Collapse
Affiliation(s)
- Hui Xia
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Ziyuan Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yufang Shen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhonghua Tu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Lichun Yang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yaxian Zong
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Huogen Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
17
|
O’Keefe K, Smith DD, McCulloh KA. Linking stem rehydration kinetics to hydraulic traits using a novel method and mechanistic model. ANNALS OF BOTANY 2023; 131:1121-1131. [PMID: 37232478 PMCID: PMC10457032 DOI: 10.1093/aob/mcad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Despite the recognized importance of hydraulic capacitance as a mechanism used by plants to maintain hydraulic functioning during high transpiration, characterizing the dynamics of capacitance remains a challenge. METHODS We used a novel 'two-balance method' to investigate relationships between stem rehydration kinetics and other hydraulic traits in multiple tree species, and we developed a model to explore stem rehydration kinetics further. KEY RESULTS We found that: (1) rehydration time constants and the amount of water uptake occurring during rehydration differed significantly across species; (2) time constants did not change with declining water potential (Ψ), while water uptake increased at lower Ψ in some species; (3) longer time constants were associated with lower wood density, higher capacitance and less negative stem pressures causing 50 % loss of hydraulic conductivity (P50); (4) greater water uptake occurred in stems with lower wood density and less negative P50 values; and (5) the model could estimate the total hydraulic resistance of the rehydration path, which cannot be measured directly. CONCLUSIONS Overall, the two-balance method can be used to examine rehydration dynamics quickly and thoroughly in detached woody stems. This method has the potential to improve our understanding of how capacitance functions across tree species, which is an often-overlooked component of whole-plant hydraulics.
Collapse
Affiliation(s)
- Kimberly O’Keefe
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Division of Biological Sciences, St. Edward’s University, Austin, TX 78704, USA
| | - Duncan D Smith
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
18
|
Kou J, Yan D, Qin B, Zhou Q, Liu C, Zhang L. Physiological response mechanism of European birch ( Betula pendula Roth) to PEG-induced drought stress and hydration. FRONTIERS IN PLANT SCIENCE 2023; 14:1226456. [PMID: 37655222 PMCID: PMC10466415 DOI: 10.3389/fpls.2023.1226456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023]
Abstract
Drought stress is also one of the important abiotic factors limiting plant growth and development, and the global temperature is rising year by year, resulting in a dry environment in most terrestrial forests, which will continue to affect the growth, development and reproduction of tree species in forests. European birch(Betula pendula Roth.) native to Europe, introduced to the mountains of eastern Liaoning in 1981 (annual precipitation of about 800mm), European birch relative to downy birch (B. pubescens)has strong adaptability and drought tolerance and cold tolerance, can grow normally in eastern Liaoning, but it is easy to be affected by drought at the seedling stage and cause death, many arid and semi-arid areas have no introduction and practical application of European birch, and there is less research on the drought resistance of European birch. This study used different concentrations of PEG-6000 treatment to simulate drought stress and clarify the changes of various growth physiological parameters and photosynthetic characteristics of European birch seedlings under drought stress, in order to investigate the physiological response mechanism of European birch under drought stress . This study used different concentrations of PEG-6000 treatment to simulate drought stress and clarify the changes of various growth physiological parameters and photosynthetic characteristics of European birch seedlings under drought stress, in order to investigate the physiological response mechanism of European birch under drought stress. The findings demonstrated that stress duration and increasing PEG concentration had a highly significant impact on the growth traits of European birch seedlings (p<0.01); With increasing stress concentration and stress time, antioxidant enzyme activity, membrane lipid peroxidation, and osmoregulatory substance concentrations increased significantly (p<0.01); With increasing stress concentration and duration, photosynthetic parameters and pigments decreased highly significantly (p<0.01); Under different PEG concentration treatments, the anatomical structure of seedling leaves changed more noticeably; there was a significant effect (p <0.05) on the change in mean stomatal length and a highly significant effect (p<0.01) on the change in mean stomatal structure. The study's findings serve as a foundation for the selection and breeding of new drought-tolerant European birch species, as well as a theoretical underpinning for the use of this species in landscaping and the promotion of new drought-tolerant species in China.
Collapse
Affiliation(s)
- Jing Kou
- Key Laboratory of Forest Tree Genetics and Breeding of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Donghan Yan
- Key Laboratory of Forest Tree Genetics and Breeding of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Baiting Qin
- College of Life Engineering, Shenyang Institute of Technology, Shenyang, China
| | - Qiang Zhou
- Liaoning Forestry and Grassland Administration, Shenyang, China
| | - Chunping Liu
- Key Laboratory of Forest Tree Genetics and Breeding of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Lijie Zhang
- Key Laboratory of Forest Tree Genetics and Breeding of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
19
|
Martín-Gómez P, Rodríguez-Robles U, Ogée J, Wingate L, Sancho-Knapik D, Peguero-Pina J, Dos Santos Silva JV, Gil-Pelegrín E, Pemán J, Ferrio JP. Contrasting stem water uptake and storage dynamics of water-saver and water-spender species during drought and recovery. TREE PHYSIOLOGY 2023; 43:1290-1306. [PMID: 36930058 DOI: 10.1093/treephys/tpad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Drought is projected to occur more frequently and intensely in the coming decades, and the extent to which it will affect forest functioning will depend on species-specific responses to water stress. Aiming to understand the hydraulic traits and water dynamics behind water-saver and water-spender strategies in response to drought and recovery, we conducted a pot experiment with two species with contrasting physiological strategies, Scots pine (Pinus sylvestris L.) and Portuguese oak (Quercus faginea L.). We applied two cycles of soil drying and recovery and irrigated with isotopically different water to track fast changes in soil and stem water pools, while continuously measuring physiological status and xylem water content from twigs. Our results provide evidence for a tight link between the leaf-level response and the water uptake and storage patterns in the stem. The water-saver strategy of pines prevented stem dehydration by rapidly closing stomata which limited their water uptake during the early stages of drought and recovery. Conversely, oaks showed a less conservative strategy, maintaining transpiration and physiological activity under dry soil conditions, and consequently becoming more dehydrated at the stem level. We interpreted this dehydration as the release of water from elastic storage tissues as no major loss of hydraulic conductance occurred for this species. After soil rewetting, pines recovered pre-drought leaf water potential rapidly, but it took longer to replace the water from conductive tissues (slower labeling speed). In contrast, water-spender oaks were able to quickly replace xylem water during recovery (fast labeling speed), but it took longer to refill stem storage tissues, and hence to recover pre-drought leaf water potential. These different patterns in sap flow rates, speed and duration of the labeling reflected a combination of water-use and storage traits, linked to the leaf-level strategies in response to drought and recovery.
Collapse
Affiliation(s)
- Paula Martín-Gómez
- Joint Research Unit CTFC - AGROTECNIO - CERCA, Ctra de Sant Llorenç de Morunys, km 2, E-25280 Solsona, Lleida, Spain
| | - Ulises Rodríguez-Robles
- Departamento de Ecología y Recursos Naturales, Centro Universitario de la Costa Sur, Universidad de Guadalajara, Av. Independencia Nacional 151, Autlán de Navarro, 48900 Jalisco, México
| | - Jérôme Ogée
- Atmosphere Plant Soil Interactions Research Unit (UMR ISPA), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), 71 Av. Edouard Bourlaux, F-33140 Villenave d'Ornon, France
| | - Lisa Wingate
- Atmosphere Plant Soil Interactions Research Unit (UMR ISPA), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), 71 Av. Edouard Bourlaux, F-33140 Villenave d'Ornon, France
| | - Domingo Sancho-Knapik
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, E-50059 Zaragoza, Spain
| | - José Peguero-Pina
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, E-50059 Zaragoza, Spain
| | - José Victor Dos Santos Silva
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, E-50059 Zaragoza, Spain
| | - Eustaquio Gil-Pelegrín
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, E-50059 Zaragoza, Spain
| | - Jesús Pemán
- Department of Crop and Forest Sciences, Universitat de Lleida (UdL), Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Juan Pedro Ferrio
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, E-50059 Zaragoza, Spain
- Aragon Agency for Research and Development (ARAID), E-50018 Zaragoza, Spain
| |
Collapse
|
20
|
Fickle JC, Pratt RB, Jacobsen AL. Xylem structure and hydraulic function in roots and stems of chaparral shrub species from high and low elevation in the Sierra Nevada, California. PHYSIOLOGIA PLANTARUM 2023; 175:e13970. [PMID: 37401910 DOI: 10.1111/ppl.13970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/16/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
Xylem structure and hydraulics were compared between individuals at lower and upper elevation distribution limits for five chaparral shrub species along a steep transect in the southern Sierra Nevada, California, USA. Higher-elevation plants experienced frequent winter freeze-thaw events and increased precipitation. We hypothesized that environmental differences would lead to xylem trait differences between high and low elevations, but predictions were complicated because both water stress (low elevation) and freeze-thaw events (high elevation) may select for similar traits, such as narrow vessel diameter. We found significant changes in the ratio of stem xylem area to leaf area (Huber value) between elevations, with more xylem area required to support leaves at low elevations. Co-occurring species significantly differed in their xylem traits, suggesting diverse strategies to cope with the highly seasonal environment of this Mediterranean-type climate region. Roots were more hydraulically efficient and more vulnerable to embolism relative to stems, potentially due to roots being buffered from freeze-thaw stress, which allows them to maintain wider diameter vessels. Knowledge of the structure and function of both roots and stems is likely important in understanding whole-plant response to environmental gradients.
Collapse
Affiliation(s)
- Jaycie C Fickle
- Department of Biology, California State University, Bakersfield, California, USA
- University of Utah, Salt Lake City, Utah, USA
| | - R Brandon Pratt
- Department of Biology, California State University, Bakersfield, California, USA
| | - Anna L Jacobsen
- Department of Biology, California State University, Bakersfield, California, USA
| |
Collapse
|
21
|
Feng F, Wagner Y, Klein T, Hochberg U. Xylem resistance to cavitation increases during summer in Pinus halepensis. PLANT, CELL & ENVIRONMENT 2023; 46:1849-1859. [PMID: 36793149 DOI: 10.1111/pce.14573] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 05/04/2023]
Abstract
Cavitation resistance has often been viewed as a relatively static trait, especially for stems of forest trees. Meanwhile, other hydraulic traits, such as turgor loss point (Ψtlp ) and xylem anatomy, change during the season. In this study, we hypothesized that cavitation resistance is also dynamic, changing in coordination with Ψtlp . We began with a comparison of optical vulnerability (OV), microcomputed tomography (µCT) and cavitron methods. All three methods significantly differed in the slope of the curve,Ψ12 and Ψ88 , but not in Ψ50 (xylem pressures that cause 12%, 88%, 50% cavitation, respectively). Thus, we followed the seasonal dynamics (across 2 years) of Ψ50 in Pinus halepensis under Mediterranean climate using the OV method. We found that Ψ50 is a plastic trait with a reduction of approximately 1 MPa from the end of the wet season to the end of the dry season, in coordination with the dynamics of the midday xylem water potential (Ψmidday ) and the Ψtlp . The observed plasticity enabled the trees to maintain a stable positive hydraulic safety margin and avoid cavitation during the long dry season. Seasonal plasticity is vital for understanding the actual risk of cavitation to plants and for modeling species' ability to tolerate harsh environments.
Collapse
Affiliation(s)
- Feng Feng
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Yael Wagner
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tamir Klein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Uri Hochberg
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| |
Collapse
|
22
|
Kerr KL, Fickle JC, Anderegg WRL. Decoupling of functional traits from intraspecific patterns of growth and drought stress resistance. THE NEW PHYTOLOGIST 2023. [PMID: 37129078 DOI: 10.1111/nph.18937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/07/2023] [Indexed: 05/03/2023]
Abstract
Intraspecific variation in functional traits may mediate tree species' drought resistance, yet whether trait variation is due to genotype (G), environment (E), or G×E interactions remains unknown. Understanding the drivers of intraspecific trait variation and whether variation mediates drought response can improve predictions of species' response to future drought. Using populations of quaking aspen spanning a climate gradient, we investigated intraspecific variation in functional traits in the field as well as the influence of G and E among propagules in a common garden. We also tested for trait-mediated trade-offs in growth and drought stress tolerance. We observed intraspecific trait variation among the populations, yet this variation did not necessarily translate to higher drought stress tolerance in hotter/drier populations. Additionally, plasticity in the common garden was low, especially in propagules derived from the hottest/driest population. We found no growth-drought stress tolerance trade-offs and few traits exhibited significant relationships with mortality in the natural populations, suggesting that intraspecific trait variation among the traits measured did not strongly mediate responses to drought stress. Our results highlight the limits of trait-mediated responses to drought stress and the complex G×E interactions that may underlie drought stress tolerance variation in forests in dry environments.
Collapse
Affiliation(s)
- Kelly L Kerr
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jaycie C Fickle
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - William R L Anderegg
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
- Wilkes Center for Climate Science and Policy, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
23
|
Tonet V, Carins-Murphy M, Deans R, Brodribb TJ. Deadly acceleration in dehydration of Eucalyptus viminalis leaves coincides with high-order vein cavitation. PLANT PHYSIOLOGY 2023; 191:1648-1661. [PMID: 36690460 PMCID: PMC10022613 DOI: 10.1093/plphys/kiad016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 05/17/2023]
Abstract
Xylem cavitation during drought is proposed as a major driver of canopy collapse, but the mechanistic link between hydraulic failure and leaf damage in trees is still uncertain. Here, we used the tree species manna gum (Eucalyptus viminalis) to explore the connection between xylem dysfunction and lethal desiccation in leaves. Cavitation damage to leaf xylem could theoretically trigger lethal desiccation of tissues by severing water supply under scenarios such as runaway xylem cavitation, or the local failure of terminal parts of the leaf vein network. To investigate the role of xylem failure in leaf death, we compared the timing of damage to the photosynthetic machinery (Fv/Fm decline) with changes in plant hydration and xylem cavitation during imposed water stress. The water potential at which Fv/Fm was observed to decline corresponded to the water potential marking a transition from slow to very rapid tissue dehydration. Both events also occurred simultaneously with the initiation of cavitation in leaf high-order veins (HOV, veins from the third order above) and the analytically derived point of leaf runaway hydraulic failure. The close synchrony between xylem dysfunction and the photosynthetic damage strongly points to water supply disruption as the trigger for desiccation of leaves in this hardy evergreen tree. These results indicate that runaway cavitation, possibly triggered by HOV network failure, is the tipping agent determining the vulnerability of E. viminalis leaves to damage during drought and suggest that HOV cavitation and runaway hydraulic failure may play a general role in determining canopy damage in plants.
Collapse
Affiliation(s)
- Vanessa Tonet
- School of Biological Sciences, University of Tasmania, Sandy Bay, Tasmania 7001, Australia
| | - Madeline Carins-Murphy
- School of Biological Sciences, University of Tasmania, Sandy Bay, Tasmania 7001, Australia
| | - Ross Deans
- ARC Centre of Excellence in Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | | |
Collapse
|
24
|
Grossman JJ. Phenological physiology: seasonal patterns of plant stress tolerance in a changing climate. THE NEW PHYTOLOGIST 2023; 237:1508-1524. [PMID: 36372992 DOI: 10.1111/nph.18617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The physiological challenges posed by climate change for seasonal, perennial plants include increased risk of heat waves, postbudbreak freezing ('false springs'), and droughts. Although considerable physiological work has shown that the traits conferring tolerance to these stressors - thermotolerance, cold hardiness, and water deficit stress, respectively - are not static in time, they are frequently treated as such. In this review, I synthesize the recent literature on predictable seasonal - and therefore, phenological - patterns of acclimation and deacclimation to heat, cold, and water-deficit stress in perennials, focusing on woody plants native to temperate climates. I highlight promising, high-throughput techniques for quantifying thermotolerance, cold hardiness, and drought tolerance. For each of these forms of stress tolerance, I summarize the current balance of evidence regarding temporal patterns over the course of a year and suggest a characteristic temporal scale in these responses to environmental stress. In doing so, I offer a synthetic framework of 'phenological physiology', in which understanding and leveraging seasonally recurring (phenological) patterns of physiological stress acclimation can facilitate climate change adaptation and mitigation.
Collapse
Affiliation(s)
- Jake J Grossman
- Department of Biology, St. Olaf College, 1520 St Olaf Ave., St Olaf, MN, 55057, USA
- Department of Environmental Studies, St Olaf College, 1520 St Olaf Ave., St Olaf, MN, 55057, USA
- Arnold Arboretum of Harvard University, 1300 Centre St., Boston, MA, 02131, USA
| |
Collapse
|
25
|
Zhu LW, Zhao P. Climate-driven sapwood-specific hydraulic conductivity and the Huber value but not leaf-specific hydraulic conductivity on a global scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159334. [PMID: 36220474 DOI: 10.1016/j.scitotenv.2022.159334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Efficient water transport is crucial for plant growth and survival. Plant hydraulic conductivity varies between functional groups and biomes and is strongly influenced by changing environmental conditions. However, correlations of conductivity-related hydraulic traits with climatic variables are not fully understood, preventing clarification of plant form and function under climate change scenarios. By compiling leaf-specific hydraulic conductivity (KL), sapwood-specific hydraulic conductivity (Ks), and Huber values (Hv, sapwood area to leaf area ratio) along with climatic variables including mean annual temperature (MAT), mean annual precipitation (MAP) and aridity index (AI) for 428 species across a wide range of plant functional types (PFTs) and biomes at a global scale, we found greater variability of KL within PFTs and biomes than across PFTs and biomes. Interaction effects between PFTs and biomes on KL and Ks were found. The interaction between MAT and MAP played a significant role in Ks and Hv (t = 3.89, P < 0.001 for Ks and t = -5.77, P < 0.001 for Hv). With increasing AI, Ks increased and Hv decreased. KL was not influenced by the investigated climatic variables. Our study provides a better understanding of the dynamics of hydraulic structure and function across functional groups and biomes and of the abiotic drivers of their large-scale variations.
Collapse
Affiliation(s)
- Li-Wei Zhu
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ping Zhao
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
26
|
He N, Yan P, Liu C, Xu L, Li M, Van Meerbeek K, Zhou G, Zhou G, Liu S, Zhou X, Li S, Niu S, Han X, Buckley TN, Sack L, Yu G. Predicting ecosystem productivity based on plant community traits. TRENDS IN PLANT SCIENCE 2023; 28:43-53. [PMID: 36115777 DOI: 10.1016/j.tplants.2022.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
With the rapid accumulation of plant trait data, major opportunities have arisen for the integration of these data into predicting ecosystem primary productivity across a range of spatial extents. Traditionally, traits have been used to explain physiological productivity at cell, organ, or plant scales, but scaling up to the ecosystem scale has remained challenging. Here, we show the need to combine measures of community-level traits and environmental factors to predict ecosystem productivity at landscape or biogeographic scales. We show how theory can extend the production ecology equation to enormous potential for integrating traits into ecological models that estimate productivity-related ecosystem functions across ecological scales and to anticipate the response of terrestrial ecosystems to global change.
Collapse
Affiliation(s)
- Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ecological Research, Northeast Forestry University, Harbin 150040, China.
| | - Pu Yan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Congcong Liu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingxu Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Koenraad Van Meerbeek
- Division of Forest, Nature and Landscape, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium; KU Leuven Plant Institute, KU Leuven, Leuven, Belgium
| | - Guangsheng Zhou
- Chinese Academy of Meteorological Sciences, Haidian District, Beijing, China
| | - Guoyi Zhou
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment, China's State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Xuhui Zhou
- School of Ecological and Environmental Science, East China Normal University, Shanghai, China
| | - Shenggong Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
27
|
Liu X, Xu Q. Hydropeaking impacts on riverine plants downstream from the world's largest hydropower dam, the Three Gorges Dam. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157137. [PMID: 35803426 DOI: 10.1016/j.scitotenv.2022.157137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Hydropeaking has become a global issue because of extensive hydropower dam construction worldwide. Yet, its ecological impacts on riverine ecosystems are not well studied. We explored the effects of hydropeaking on riverine plants, based on data from a ~300 km reach downstream of the world's largest hydropower dam, the Three Gorges Dam. We tested three hypotheses relating to hydropeaking impacts on species elevational distributions, assemblage structure and species-specific biomass patterns by generalized linear mixed modelling and joint species distribution modelling. We found that, first, hydropeaking greatly shaped species elevational ranges, leading to expansions of herbs to high elevations and shifting species dominance at low elevations. Secondly, we detected contrasting effects of hydropeaking on assemblage-level characteristics of herbs. The inundation induced by hydropeaking had strong effects on assemblage composition and biomass allocation, where more biomass was allocated to belowground part. Hydropeaking blurred the species richness-biomass relationship, although it had little effect on species richness or plot-level biomass. Thirdly, hydropeaking induced inundation was the most important covariate driving species biomass patterns of riverine plants, although complex species-specific effects were identified, and random effects were often large in fitted models. We concluded that hydropeaking likely acted as a major driver of plant community assembly in rivers with a hydropower dam. Conservation and restoration of riverine plants can benefit from the inclusion of water level management in operational schemes of hydropower dams, especially during the early life history stages.
Collapse
Affiliation(s)
- Xueqin Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China.
| | - Qiangqiang Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| |
Collapse
|
28
|
Dayer S, Lamarque LJ, Burlett R, Bortolami G, Delzon S, Herrera JC, Cochard H, Gambetta GA. Model-assisted ideotyping reveals trait syndromes to adapt viticulture to a drier climate. PLANT PHYSIOLOGY 2022; 190:1673-1686. [PMID: 35946780 PMCID: PMC9614441 DOI: 10.1093/plphys/kiac361] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/02/2022] [Indexed: 05/27/2023]
Abstract
Climate change is challenging the resilience of grapevine (Vitis), one of the most important crops worldwide. Adapting viticulture to a hotter and drier future will require a multifaceted approach including the breeding of more drought-tolerant genotypes. In this study, we focused on plant hydraulics as a multi-trait system that allows the plant to maintain hydraulic integrity and gas exchange rates longer under drought. We quantified a broad range of drought-related traits within and across Vitis species, created in silico libraries of trait combinations, and then identified drought tolerant trait syndromes. By modeling the maintenance of hydraulic integrity of current cultivars and the drought tolerant trait syndromes, we identified elite ideotypes that increased the amount of time they could experience drought without leaf hydraulic failure. Generally, elites exhibited a trait syndrome with lower stomatal conductance, earlier stomatal closure, and a larger hydraulic safety margin. We demonstrated that, when compared with current cultivars, elite ideotypes have the potential to decrease the risk of hydraulic failure across wine regions under future climate scenarios. This study reveals the syndrome of traits that can be leveraged to protect grapevine from experiencing hydraulic failure under drought and increase drought tolerance.
Collapse
Affiliation(s)
| | - Laurent J Lamarque
- Département des Sciences de l’Environnement, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada G9A 5H7
- Univ. Bordeaux, INRAE, BIOGECO, Cestas 33610, France
| | - Régis Burlett
- Univ. Bordeaux, INRAE, BIOGECO, Cestas 33610, France
| | | | | | - José C Herrera
- Institute of Viticulture and Pomology, University of Natural Resources and Life Sciences (BOKU), Tulln 3430, Austria
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63000, France
| | - Gregory A Gambetta
- EGFV, Bordeaux-Sciences Agro, INRAE, Université de Bordeaux, ISVV, Villenave d’Ornon 33882, France
| |
Collapse
|
29
|
Chen Z, Li S, Wan X, Liu S. Strategies of tree species to adapt to drought from leaf stomatal regulation and stem embolism resistance to root properties. FRONTIERS IN PLANT SCIENCE 2022; 13:926535. [PMID: 36237513 PMCID: PMC9552884 DOI: 10.3389/fpls.2022.926535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Considerable evidences highlight the occurrence of increasing widespread tree mortality as a result of global climate change-associated droughts. However, knowledge about the mechanisms underlying divergent strategies of various tree species to adapt to drought has remained remarkably insufficient. Leaf stomatal regulation and embolism resistance of stem xylem serves as two important strategies for tree species to prevent hydraulic failure and carbon starvation, as comprising interconnected physiological mechanisms underlying drought-induced tree mortality. Hence, the physiological and anatomical determinants of leaf stomatal regulation and stems xylem embolism resistance are evaluated and discussed. In addition, root properties related to drought tolerance are also reviewed. Species with greater investment in leaves and stems tend to maintain stomatal opening and resist stem embolism under drought conditions. The coordination between stomatal regulation and stem embolism resistance are summarized and discussed. Previous studies showed that hydraulic safety margin (HSM, the difference between minimum water potential and that causing xylem dysfunction) is a significant predictor of tree species mortality under drought conditions. Compared with HSM, stomatal safety margin (the difference between water potential at stomatal closure and that causing xylem dysfunction) more directly merge stomatal regulation strategies with xylem hydraulic strategies, illustrating a comprehensive framework to characterize plant response to drought. A combination of plant traits reflecting species' response and adaptation to drought should be established in the future, and we propose four specific urgent issues as future research priorities.
Collapse
Affiliation(s)
- Zhicheng Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Shan Li
- Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Xianchong Wan
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
30
|
Vicente E, Didion-Gency M, Morcillo L, Morin X, Vilagrosa A, Grossiord C. Aridity and cold temperatures drive divergent adjustments of European beech xylem anatomy, hydraulics and leaf physiological traits. TREE PHYSIOLOGY 2022; 42:1720-1735. [PMID: 35285500 DOI: 10.1093/treephys/tpac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Understanding plant trait coordination and variance across climatic gradients is critical for assessing forests' adaptive potential to climate change. We measured 11 hydraulic, anatomical and leaf-level physiological traits in European beech (Fagus sylvatica L.) along a moisture and temperature gradient in the French Alps. We assessed how traits covaried, and how their population-level variances shifted along the gradient. The intrapopulation variances of vessel size and xylem-specific conductivity reduced in colder locations as narrow vessels were observed in response to low temperature. This decreased individual-level water transport capacity compared with the warmer and more xeric sites. Conversely, the maximum stomatal conductance and Huber value variances were constrained in the arid and warm locations, where trees showed restricted gas exchange and higher xylem-specific conductivity. The populations growing under drier and warmer conditions presented wide variance for the xylem anatomical and hydraulic traits. Our results suggest that short-term physiological acclimation to raising aridity and heat in southern beech populations may occur mainly at the leaf level. Furthermore, the wide variance of the xylem anatomical and hydraulic traits at these sites may be advantageous since more heterogeneous hydraulic conductivity could imply populations' greater tree-tree complementarity and resilience against climatic variability. Our study highlights that both intrapopulation trait variance and trait network analysis are key approaches for understanding species adaptation and the acclimation potential to a shifting environment.
Collapse
Affiliation(s)
- Eduardo Vicente
- Department of Ecology, Faculty of Sciences, IMEM Ramón Margalef, University of Alicante, C. San Vicente del Raspeig, s/n, Alicante 03080, Spain
- CEAM Foundation, Joint Research Unit University of Alicante-CEAM, Department of Ecology, University of Alicante, PO Box 99, C. San Vicente del Raspeig, s/n, Alicante 03080, Spain
| | - Margaux Didion-Gency
- Ecosystem Ecology, Forest Dynamics Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Zürcherstrasse 111, Birmensdorf 8903, Switzerland
| | - Luna Morcillo
- CEAM Foundation, Joint Research Unit University of Alicante-CEAM, Department of Ecology, University of Alicante, PO Box 99, C. San Vicente del Raspeig, s/n, Alicante 03080, Spain
| | - Xavier Morin
- CEFE UMR 5175 (CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, IRD), 1919 Route de Mende, Montpellier Cedex 5 F-34293, France
| | - Alberto Vilagrosa
- CEAM Foundation, Joint Research Unit University of Alicante-CEAM, Department of Ecology, University of Alicante, PO Box 99, C. San Vicente del Raspeig, s/n, Alicante 03080, Spain
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, PO box 96, Lausanne CH-1015, Switzerland
- Functional Plant Ecology, Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, PO box 96, Lausanne CH-1015, Switzerland
| |
Collapse
|
31
|
Yang G, Huang L, Shi Y. Magnitude and determinants of plant root hydraulic redistribution: A global synthesis analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:918585. [PMID: 35937319 PMCID: PMC9355616 DOI: 10.3389/fpls.2022.918585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Plant root hydraulic redistribution (HR) has been widely recognized as a phenomenon that helps alleviate vegetation drought stress. However, a systematic assessment of the magnitude of HR and its drivers at the global scale are lacking. We collected 37 peer-reviewed papers (comprising 47 research sites) published in 1900-2018 and comprehensively analyzed the magnitude of HR and its underlying factors. We used a weighting method to analyze HR magnitude and its effect on plant transpiration. Machine learning algorithms (boosted regression trees) and structural equation modeling were used to determine the influence of each factor on HR magnitude. We found that the magnitude of HR was 0.249 mm H2O d-1 (95% CI, 0.113-0.384) and its contribution to plant transpiration was 27.4% (3-79%). HR varied significantly among different terrestrial biomes and mainly occurred in forests with drier conditions, such as temperate forest ecosystems (HR = 0.502 mm H2O d-1), where HR was significantly higher than in other ecosystems (p < 0.01). The magnitude of HR in angiosperms was significantly higher than that in gymnosperms (p < 0.05). The mean magnitude of HR first increased and then decreased with an increase in humidity index; conversely, the mean magnitude of HR decreased with an increase in water table depth. HR was significantly positively correlated with root length and transpiration. Plant characteristics and environmental factors jointly accounted for 61.0% of the variation in HR, and plant transpiration was the major factor that directly influenced HR (43.1% relative importance; p < 0.001), and soil texture was an important indirect driver of HR. Our synthesis offers a comprehensive perspective of how plant characteristics and environmental factors influence HR magnitude.
Collapse
Affiliation(s)
- Guisen Yang
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environmental Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Huang
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environmental Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Yafei Shi
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environmental Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Thakur MP, Risch AC, van der Putten WH. Biotic responses to climate extremes in terrestrial ecosystems. iScience 2022; 25:104559. [PMID: 35784794 PMCID: PMC9240802 DOI: 10.1016/j.isci.2022.104559] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Anthropogenic climate change is increasing the incidence of climate extremes. Consequences of climate extremes on biodiversity can be highly detrimental, yet few studies also suggest beneficial effects of climate extremes on certain organisms. To obtain a general understanding of ecological responses to climate extremes, we present a review of how 16 major taxonomic/functional groups (including microorganisms, plants, invertebrates, and vertebrates) respond during extreme drought, precipitation, and temperature. Most taxonomic/functional groups respond negatively to extreme events, whereas groups such as mosses, legumes, trees, and vertebrate predators respond most negatively to climate extremes. We further highlight that ecological recovery after climate extremes is challenging to predict purely based on ecological responses during or immediately after climate extremes. By accounting for the characteristics of the recovering species, resource availability, and species interactions with neighboring competitors or facilitators, mutualists, and enemies, we outline a conceptual framework to better predict ecological recovery in terrestrial ecosystems.
Collapse
Affiliation(s)
- Madhav P. Thakur
- Institute of Ecology and Evolution and Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO- KNAW), Wageningen, the Netherlands
- Corresponding author
| | - Anita C. Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Switzerland
| | - Wim H. van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO- KNAW), Wageningen, the Netherlands
- Laboratory of Nematology, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
33
|
Kerr KL, Anderegg LDL, Zenes N, Anderegg WRL. Quantifying within‐species trait variation in space and time reveals limits to trait‐mediated drought response. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kelly L. Kerr
- School of Biological Sciences University of Utah Salt Lake City UT USA
| | - Leander D. L. Anderegg
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara Santa Barbara CA USA
| | - Nicole Zenes
- School of Biological Sciences University of Utah Salt Lake City UT USA
| | | |
Collapse
|
34
|
Rodríguez‐Alarcón S, Tamme R, P.Carmona C. Intraspecific trait changes in response to drought lead to trait convergence between‐ but not within species. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Riin Tamme
- Institute of Ecology and Earth Sciences University of Tartu, J. Liivi 2 Tartu Estonia
| | - Carlos P.Carmona
- Institute of Ecology and Earth Sciences University of Tartu, J. Liivi 2 Tartu Estonia
| |
Collapse
|
35
|
Trugman AT. Integrating plant physiology and community ecology across scales through trait-based models to predict drought mortality. THE NEW PHYTOLOGIST 2022; 234:21-27. [PMID: 34679225 DOI: 10.1111/nph.17821] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Forests are a critical carbon sink and widespread tree mortality resulting from climate-induced drought stress has the potential to alter forests from a carbon sink to a source, causing a positive feedback on climate change. Process-based vegetation models aim to represent the current understanding of the underlying mechanisms governing plant physiological and ecological responses to climate. Yet model accuracy varies across scales, and regional-scale model predictive skill is frequently poor when compared with observations of drought-driven mortality. I propose a framework that leverages differences in model predictive skill across spatial scales, mismatches between model predictions and observations, and differences in the mechanisms included and absent across models to advance the understanding of the physiological and ecological processes driving observed patterns drought-driven mortality.
Collapse
Affiliation(s)
- Anna T Trugman
- Department of Geography, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
36
|
Rao K, Williams AP, Diffenbaugh NS, Yebra M, Konings AG. Plant-water sensitivity regulates wildfire vulnerability. Nat Ecol Evol 2022; 6:332-339. [PMID: 35132185 PMCID: PMC8913365 DOI: 10.1038/s41559-021-01654-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022]
Abstract
Extreme wildfires extensively impact human health and the environment. Increasing vapour pressure deficit (VPD) has led to a chronic increase in wildfire area in the western United States, yet some regions have been more affected than others. Here we show that for the same increase in VPD, burned area increases more in regions where vegetation moisture shows greater sensitivity to water limitation (plant-water sensitivity; R2 = 0.71). This has led to rapid increases in human exposure to wildfire risk, both because the population living in areas with high plant-water sensitivity grew 50% faster during 1990-2010 than in other wildland-urban interfaces and because VPD has risen most rapidly in these vulnerable areas. As plant-water sensitivity is strongly linked to wildfire vulnerability, accounting for ecophysiological controls should improve wildfire forecasts. If recent trends in VPD and demographic shifts continue, human wildfire risk will probably continue to increase.
Collapse
Affiliation(s)
- Krishna Rao
- Department of Earth System Science, Stanford University, Stanford, CA, USA.
| | - A Park Williams
- Department of Geography, University of California, Los Angeles, CA, USA
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Noah S Diffenbaugh
- Department of Earth System Science, Stanford University, Stanford, CA, USA
- Woods Institute for the Environment, Stanford University, Stanford, CA, USA
| | - Marta Yebra
- Fenner School of Environment & Society, The Australian National University, Acton, Australian Capital Territory, Australia
- School of Engineering, The Australian National University, Acton, Australian Capital Territory, Australia
| | | |
Collapse
|
37
|
Benson MC, Miniat CF, Oishi AC, Denham SO, Domec JC, Johnson DM, Missik JE, Phillips RP, Wood JD, Novick KA. The xylem of anisohydric Quercus alba L. is more vulnerable to embolism than isohydric codominants. PLANT, CELL & ENVIRONMENT 2022; 45:329-346. [PMID: 34902165 DOI: 10.1111/pce.14244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The coordination of plant leaf water potential (ΨL ) regulation and xylem vulnerability to embolism is fundamental for understanding the tradeoffs between carbon uptake and risk of hydraulic damage. There is a general consensus that trees with vulnerable xylem more conservatively regulate ΨL than plants with resistant xylem. We evaluated if this paradigm applied to three important eastern US temperate tree species, Quercus alba L., Acer saccharum Marsh. and Liriodendron tulipifera L., by synthesizing 1600 ΨL observations, 122 xylem embolism curves and xylem anatomical measurements across 10 forests spanning pronounced hydroclimatological gradients and ages. We found that, unexpectedly, the species with the most vulnerable xylem (Q. alba) regulated ΨL less strictly than the other species. This relationship was found across all sites, such that coordination among traits was largely unaffected by climate and stand age. Quercus species are perceived to be among the most drought tolerant temperate US forest species; however, our results suggest their relatively loose ΨL regulation in response to hydrologic stress occurs with a substantial hydraulic cost that may expose them to novel risks in a more drought-prone future.
Collapse
Affiliation(s)
- Michael C Benson
- O'Neill School of Public and Environmental Affairs, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Chelcy F Miniat
- USDA Forest Service, Southern Research Station, Coweeta Hydrologic Laboratory, Otto, North Carolina, USA
| | - Andrew C Oishi
- USDA Forest Service, Southern Research Station, Coweeta Hydrologic Laboratory, Otto, North Carolina, USA
| | - Sander O Denham
- O'Neill School of Public and Environmental Affairs, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Jean-Christophe Domec
- Bordeaux Sciences Agro, INRA UMR 1391 ISPA, Gradignan, France
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Daniel M Johnson
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
| | - Justine E Missik
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Richard P Phillips
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Jeffrey D Wood
- University of Missouri, School of Natural Resources, Columbia, Missouri, USA
| | - Kimberly A Novick
- O'Neill School of Public and Environmental Affairs, Indiana University Bloomington, Bloomington, Indiana, USA
| |
Collapse
|
38
|
Novick K, Jo I, D'Orangeville L, Benson M, Au TF, Barnes M, Denham S, Fei S, Heilman K, Hwang T, Keyser T, Maxwell J, Miniat C, McLachlan J, Pederson N, Wang L, Wood JD, Phillips RP. The Drought Response of Eastern US Oaks in the Context of Their Declining Abundance. Bioscience 2022. [DOI: 10.1093/biosci/biab135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
The oak (Quercus) species of eastern North America are declining in abundance, threatening the many socioecological benefits they provide. We discuss the mechanisms responsible for their loss, many of which are rooted in the prevailing view that oaks are drought tolerant. We then synthesize previously published data to comprehensively review the drought response strategies of eastern US oaks, concluding that whether or not eastern oaks are drought tolerant depends firmly on the metric of success. Although the anisohydric strategy of oaks sometimes confers a gas exchange and growth advantage, it exposes oaks to damaging hydraulic failure, such that oaks are just as or more likely to perish during drought than neighboring species. Consequently, drought frequency is not a strong predictor of historic patterns of oak abundance, although long-term climate and fire frequency are strongly correlated with declines in oak dominance. The oaks’ ability to survive drought may become increasingly difficult in a drier future.
Collapse
|
39
|
Boursiac Y, Protto V, Rishmawi L, Maurel C. Experimental and conceptual approaches to root water transport. PLANT AND SOIL 2022; 478:349-370. [PMID: 36277078 PMCID: PMC9579117 DOI: 10.1007/s11104-022-05427-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/03/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Root water transport, which critically contributes to the plant water status and thereby plant productivity, has been the object of extensive experimental and theoretical studies. However, root systems represent an intricate assembly of cells in complex architectures, including many tissues at distinct developmental stages. Our comprehension of where and how molecular actors integrate their function in order to provide the root with its hydraulic properties is therefore still limited. SCOPE Based on current literature and prospective discussions, this review addresses how root water transport can be experimentally measured, what is known about the underlying molecular actors, and how elementary water transport processes are scaled up in numerical/mathematical models. CONCLUSIONS The theoretical framework and experimental procedures on root water transport that are in use today have been established a few decades ago. However, recent years have seen the appearance of new techniques and models with enhanced resolution, down to a portion of root or to the tissue level. These advances pave the way for a better comprehension of the dynamics of water uptake by roots in the soil.
Collapse
Affiliation(s)
- Yann Boursiac
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Virginia Protto
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Louai Rishmawi
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Christophe Maurel
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| |
Collapse
|
40
|
Johnson KM, Lucani C, Brodribb TJ. In vivo monitoring of drought-induced embolism in Callitris rhomboidea trees reveals wide variation in branchlet vulnerability and high resistance to tissue death. THE NEW PHYTOLOGIST 2022; 233:207-218. [PMID: 34625973 DOI: 10.1111/nph.17786] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Damage to the plant water transport system through xylem cavitation is known to be a driver of plant death in drought conditions. However, a lack of techniques to continuously monitor xylem embolism in whole plants in vivo has hampered our ability to investigate both how this damage propagates and the possible mechanistic link between xylem damage and tissue death. Using optical and fluorescence sensors, we monitored drought-induced xylem embolism accumulation and photosynthetic damage in vivo throughout the canopy of a drought-resistant conifer, Callitris rhomboidea, during drought treatments of c. 1 month duration. We show that drought-induced damage to the xylem can be monitored in vivo in whole trees during extended periods of water stress. Under these conditions, vulnerability of the xylem to cavitation varied widely among branchlets, with photosynthetic damage only recorded once > 90% of the xylem was cavitated. The variation in branchlet vulnerability has important implications for understanding how trees like C. rhomboidea survive drought, and the high resistance of branchlets to tissue damage points to runaway cavitation as a likely driver of tissue death in C. rhomboidea branch tips.
Collapse
Affiliation(s)
- Kate M Johnson
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Christopher Lucani
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Timothy J Brodribb
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| |
Collapse
|
41
|
SilvAdapt.Net: A Site-Based Network of Adaptive Forest Management Related to Climate Change in Spain. FORESTS 2021. [DOI: 10.3390/f12121807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Adaptive forest management (AFM) is an urgent need because of the uncertainty regarding how changes in the climate will affect the structure, composition and function of forests during the next decades. Current research initiatives for the long-term monitoring of impacts of silviculture are scattered and not integrated into research networks, with the consequent losses of opportunities and capacity for action. To increase the scientific and practical impacts of these experiences, it is necessary to establish logical frameworks that harmonize the information and help us to define the most appropriate treatments. In this context, a number of research groups in Spain have produced research achievements and know-how during the last decades that can allow for the improvement in AFM. These groups address the issue of AFM from different fields, such as ecophysiology, ecohydrology and forest ecology, thus resulting in valuable but dispersed expertise. The main objective of this work is to introduce a comprehensive strategy aimed to study the implementation of AFM in Spain. As a first step, a network of 34 experimental sites managed by 14 different research groups is proposed and justified. As a second step, the most important AFM impacts on Mediterranean pines, as one of the most extended natural and planted forest types in Spain, are presented. Finally, open questions dealing with key aspects when attempting to implement an AFM framework are discussed. This study is expected to contribute to better outlining the procedures and steps needed to implement regional frameworks for AFM.
Collapse
|
42
|
Konings AG, Saatchi SS, Frankenberg C, Keller M, Leshyk V, Anderegg WRL, Humphrey V, Matheny AM, Trugman A, Sack L, Agee E, Barnes ML, Binks O, Cawse‐Nicholson K, Christoffersen BO, Entekhabi D, Gentine P, Holtzman NM, Katul GG, Liu Y, Longo M, Martinez‐Vilalta J, McDowell N, Meir P, Mencuccini M, Mrad A, Novick KA, Oliveira RS, Siqueira P, Steele‐Dunne SC, Thompson DR, Wang Y, Wehr R, Wood JD, Xu X, Zuidema PA. Detecting forest response to droughts with global observations of vegetation water content. GLOBAL CHANGE BIOLOGY 2021; 27:6005-6024. [PMID: 34478589 PMCID: PMC9293345 DOI: 10.1111/gcb.15872] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/23/2021] [Indexed: 05/11/2023]
Abstract
Droughts in a warming climate have become more common and more extreme, making understanding forest responses to water stress increasingly pressing. Analysis of water stress in trees has long focused on water potential in xylem and leaves, which influences stomatal closure and water flow through the soil-plant-atmosphere continuum. At the same time, changes of vegetation water content (VWC) are linked to a range of tree responses, including fluxes of water and carbon, mortality, flammability, and more. Unlike water potential, which requires demanding in situ measurements, VWC can be retrieved from remote sensing measurements, particularly at microwave frequencies using radar and radiometry. Here, we highlight key frontiers through which VWC has the potential to significantly increase our understanding of forest responses to water stress. To validate remote sensing observations of VWC at landscape scale and to better relate them to data assimilation model parameters, we introduce an ecosystem-scale analog of the pressure-volume curve, the non-linear relationship between average leaf or branch water potential and water content commonly used in plant hydraulics. The sources of variability in these ecosystem-scale pressure-volume curves and their relationship to forest response to water stress are discussed. We further show to what extent diel, seasonal, and decadal dynamics of VWC reflect variations in different processes relating the tree response to water stress. VWC can also be used for inferring belowground conditions-which are difficult to impossible to observe directly. Lastly, we discuss how a dedicated geostationary spaceborne observational system for VWC, when combined with existing datasets, can capture diel and seasonal water dynamics to advance the science and applications of global forest vulnerability to future droughts.
Collapse
Affiliation(s)
| | - Sassan S. Saatchi
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | | - Michael Keller
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
- United States Forest ServiceWashingtonDCUSA
| | | | | | | | | | - Anna Trugman
- University of California ‐ Santa BarbaraSanta BarbaraCAUSA
| | - Lawren Sack
- University of California ‐ Los AngelesLos AngelesCAUSA
| | | | | | - Oliver Binks
- The Australian National UniversityCanberraACTAustralia
| | | | | | | | | | | | | | | | - Marcos Longo
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Jordi Martinez‐Vilalta
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF)BarcelonaSpain
- Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Nate McDowell
- Pacific Northwest National LaboratoryRichlandWAUSA
- Washington State UniversityPullmanWAUSA
| | - Patrick Meir
- The Australian National UniversityCanberraACTAustralia
- University of EdinburghEdinburghUK
| | - Maurizio Mencuccini
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF)BarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Assaad Mrad
- University of California ‐ IrvineIrvineCAUSA
| | | | | | | | | | - David R. Thompson
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Yujie Wang
- California Institute of TechnologyPasadenaCAUSA
| | | | | | | | | |
Collapse
|
43
|
Osone Y, Hashimoto S, Kenzo T. Verification of our empirical understanding of the physiology and ecology of two contrasting plantation species using a trait database. PLoS One 2021; 16:e0254599. [PMID: 34843472 PMCID: PMC8629320 DOI: 10.1371/journal.pone.0254599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
The effects of climate change on forest ecosystems take on increasing importance more than ever. Information on plant traits is a powerful predictor of ecosystem dynamics and functioning. We reviewed the major ecological traits, such as foliar gas exchange and nutrients, xylem morphology and drought tolerance, of Cryptomeria japonica and Chamaecyparis obtusa, which are major timber species in East Asia, especially in Japan, by using a recently developed functional trait database for both species (SugiHinokiDB). Empirically, C. obtusa has been planted under drier conditions, whereas C. japonica, which grows faster but thought to be less drought tolerant, has been planted under wetter conditions. Our analysis generally support the empirical knowledge: The maximum photosynthetic rate, stomatal conductance, foliar nutrient content and soil-to-foliage hydraulic conductance were higher in C. japonica than in C. obtusa. In contrast, the foliar turgor loss point and xylem pressure corresponding to 50% conductivity, which indicate drought tolerance, were lower in C. obtusa and are consistent with the drier habitat of C. obtusa. Ontogenetic shifts were also observed; as the age and height of the trees increased, foliar nutrient concentrations, foliar minimum midday water potential and specific leaf area decreased in C. japonica, suggesting that nutrient and water limitation occurs with the growth. In C. obtusa, the ontogenetic shits of these foliar traits were less pronounced. Among the Cupressaceae worldwide, the drought tolerance of C. obtusa, as well as C. japonica, was not as high. This may be related to the fact that the Japanese archipelago has historically not been subjected to strong dryness. The maximum photosynthetic rate showed intermediate values within the family, indicating that C. japonica and C. obtusa exhibit relatively high growth rates in the Cupressaceae family, and this is thought to be the reason why they have been selected as economically suitable timber species in Japanese forestry. This study clearly demonstrated that the plant trait database provides us a promising opportunity to verify out empirical knowledge of plantation management and helps us to understand effect of climate change on plantation forests by using trait-based modelling.
Collapse
Affiliation(s)
- Yoko Osone
- Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Shoji Hashimoto
- Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Tanaka Kenzo
- Forestry and Forest Products Research Institute, Tsukuba, Japan
- Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
| |
Collapse
|
44
|
Lemaire C, Blackman CJ, Cochard H, Menezes-Silva PE, Torres-Ruiz JM, Herbette S. Acclimation of hydraulic and morphological traits to water deficit delays hydraulic failure during simulated drought in poplar. TREE PHYSIOLOGY 2021; 41:2008-2021. [PMID: 34259313 DOI: 10.1093/treephys/tpab086] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 07/07/2021] [Indexed: 05/27/2023]
Abstract
The capacity of trees to tolerate and survive increasing drought conditions in situ will depend in part on their ability to acclimate (via phenotypic plasticity) key hydraulic and morphological traits that increase drought tolerance and delay the onset of drought-induced hydraulic failure. However, the effect of water-deficit acclimation in key traits that determine time to hydraulic failure (THF) during extreme drought remains largely untested. We measured key hydraulic and morphological traits in saplings of a hybrid poplar grown under well-watered and water-limited conditions. The time for plants to dry-down to critical levels of water stress (90% loss of stem hydraulic conductance), as well as the relative contribution of drought acclimation in each trait to THF, was simulated using a soil-plant hydraulic model (SurEau). Compared with controls, water-limited plants exhibited significantly lower stem hydraulic vulnerability (P50stem), stomatal conductance and total canopy leaf area (LA). Taken together, adjustments in these and other traits resulted in longer modelled THF in water-limited (~160 h) compared with well-watered plants (~50 h), representing an increase of more than 200%. Sensitivity analysis revealed that adjustment in P50stem and LA contributed the most to longer THF in water-limited plants. We observed a high degree of trait plasticity in poplar saplings in response to water-deficit growth conditions, with decreases in stem hydraulic vulnerability and leaf area playing a key role in delaying the onset of hydraulic failure during a simulated drought event. These findings suggest that understanding the capacity of plants to acclimate to antecedent growth conditions will enable better predictions of plant survivorship during future drought.
Collapse
Affiliation(s)
- Cédric Lemaire
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
| | - Chris J Blackman
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
| | - Paulo Eduardo Menezes-Silva
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
- Department of Biology, Goiano Federal Institute of Education, Science and Technology-IF Goiano, Rio Verde, Goiás, Brazil
| | - José M Torres-Ruiz
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
| | - Stéphane Herbette
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
| |
Collapse
|
45
|
Beikircher B, Sack L, Ganthaler A, Losso A, Mayr S. Hydraulic-stomatal coordination in tree seedlings: tight correlation across environments and ontogeny in Acer pseudoplatanus. THE NEW PHYTOLOGIST 2021; 232:1297-1310. [PMID: 34176137 DOI: 10.1111/nph.17585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Hydraulic conductance is recognized as a major determinant of gas exchange and productivity. However, whether this also applies to seedlings, a critically important stage for vegetation regeneration, has been largely unknown. We analyzed the hydraulic and stomatal conductance of leaves and shoots for 6-wk-old Acer pseudoplatanus seedlings emerging in different lowland and treeline habitats and under glasshouse conditions, respectively, as well as on 9-, 15- and 18-wk-old plants, and related findings to leaf and xylem anatomical traits. Treeline seedlings had higher leaf area-specific shoot hydraulic conductance (Kshoot-L ), and stomatal conductance (gs ), associated with wider xylem conduits, lower leaf area and higher stomatal density than lowland and glasshouse-grown plants. Across the first 18 wk of development, seedlings increased four-fold in absolute shoot hydraulic conductance (Kshoot ) and declined by half in Kshoot-L , with correlated shifts in xylem and leaf anatomy. Distal leaves had higher leaf hydraulic conductance (Kleaf ) and gs compared to basal leaves. Seedlings show strong variation across growth environments and ontogenetic shifts in hydraulic and anatomical parameters. Across growth sites, ontogenetic stages and leaf orders, gs was tightly correlated with Kshoot-L and Kleaf , balancing hydraulic supply with demand for the earliest stages of seedling establishment.
Collapse
Affiliation(s)
- Barbara Beikircher
- Department of Botany, University of Innsbruck, Sternwartestr. 15, Innsbruck, 6020, Austria
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California (UCLA), 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Andrea Ganthaler
- Department of Botany, University of Innsbruck, Sternwartestr. 15, Innsbruck, 6020, Austria
| | - Adriano Losso
- Department of Botany, University of Innsbruck, Sternwartestr. 15, Innsbruck, 6020, Austria
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Sternwartestr. 15, Innsbruck, 6020, Austria
| |
Collapse
|
46
|
Nolan RH, Collins L, Leigh A, Ooi MKJ, Curran TJ, Fairman TA, Resco de Dios V, Bradstock R. Limits to post-fire vegetation recovery under climate change. PLANT, CELL & ENVIRONMENT 2021; 44:3471-3489. [PMID: 34453442 DOI: 10.1111/pce.14176] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Record-breaking fire seasons in many regions across the globe raise important questions about plant community responses to shifting fire regimes (i.e., changing fire frequency, severity and seasonality). Here, we examine the impacts of climate-driven shifts in fire regimes on vegetation communities, and likely responses to fire coinciding with severe drought, heatwaves and/or insect outbreaks. We present scenario-based conceptual models on how overlapping disturbance events and shifting fire regimes interact differently to limit post-fire resprouting and recruitment capacity. We demonstrate that, although many communities will remain resilient to changing fire regimes in the short-term, longer-term changes to vegetation structure, demography and species composition are likely, with a range of subsequent effects on ecosystem function. Resprouting species are likely to be most resilient to changing fire regimes. However, even these species are susceptible if exposed to repeated short-interval fire in combination with other stressors. Post-fire recruitment is highly vulnerable to increased fire frequency, particularly as climatic limitations on propagule availability intensify. Prediction of community responses to fire under climate change will be greatly improved by addressing knowledge gaps on how overlapping disturbances and climate change-induced shifts in fire regime affect post-fire resprouting, recruitment, growth rates, and species-level adaptation capacity.
Collapse
Affiliation(s)
- Rachael H Nolan
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- NSW Bushfire Risk Management Research Hub, Wollongong, New South Wales, Australia
| | - Luke Collins
- School of Ecosystem and Forest Sciences, University of Melbourne, Creswick, Victoria, Australia
- Department of Ecology, Environment & Evolution, La Trobe University, Bundoora, Victoria, Australia
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Canada
| | - Andy Leigh
- School of Life Sciences, University of Technology Sydney, Broadway, New South Wales, Australia
| | - Mark K J Ooi
- NSW Bushfire Risk Management Research Hub, Wollongong, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales UNSW, Sydney, New South Wales, Australia
| | - Timothy J Curran
- Department of Pest-management and Conservation, Lincoln University, Lincoln, New Zealand
| | - Thomas A Fairman
- School of Ecosystem and Forest Sciences, University of Melbourne, Creswick, Victoria, Australia
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- Joint Research Unit CTFC-AGROTECNIO, University of Lleida, Lleida, Spain
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
| | - Ross Bradstock
- NSW Bushfire Risk Management Research Hub, Wollongong, New South Wales, Australia
- Centre for Environmental Risk Management of Bushfires, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
47
|
Kannenberg SA, Guo JS, Novick KA, Anderegg WRL, Feng X, Kennedy D, Konings AG, Martínez‐Vilalta J, Matheny AM. Opportunities, challenges and pitfalls in characterizing plant water‐use strategies. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13945] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | - Jessica S. Guo
- Department of Geology and Geophysics University of Utah Salt Lake City UT USA
- Arizona Experiment Station, College of Agriculture and Life Sciences University of Arizona Tucson AZ USA
| | - Kimberly A. Novick
- O’Neill School of Public and Environmental Affairs Indiana University Bloomington IN USA
| | | | - Xue Feng
- Department of Civil, Environmental, and Geo‐Engineering University of Minnesota Minneapolis MN USA
- Saint Anthony Falls Laboratory University of Minnesota Minneapolis MN USA
| | | | | | - Jordi Martínez‐Vilalta
- CREAF, Bellaterra (Cerdanyola del Vallès) Catalonia Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès) Catalonia Spain
| | - Ashley M. Matheny
- Department of Geological Sciences Jackson School of Geosciences University of Texas Austin TX USA
| |
Collapse
|
48
|
Sun Q, Gilgen AK, Signarbieux C, Klaus VH, Buchmann N. Cropping systems alter hydraulic traits of barley but not pea grown in mixture. PLANT, CELL & ENVIRONMENT 2021; 44:2912-2924. [PMID: 33763869 DOI: 10.1111/pce.14054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Extreme events such as drought and heatwaves are among the biggest challenges to agricultural production and food security. However, the effects of cropping systems on drought resistance of arable crops via their hydraulic behaviour remain unclear. We investigated how hydraulic traits of a field-grown pea-barley (Pisum sativum L. and Hordeum vulgare L.) mixture were affected by different cropping systems, that is, organic and conventional farming with intensive or conservation tillage. Xylem vulnerability to cavitation of both species was estimated by measuring the pressure inducing 50% loss of hydraulic conductivity (P50 ), while the water stress plants experienced in the field were assessed using native percentage loss of hydraulic conductivity (nPLC). Pea and barley showed contrasting hydraulic behaviours: pea was less vulnerable to xylem cavitation and less stressed than barley; cropping systems affected the xylem vulnerability of barley, but not of pea. Barley grown under conventional farming with no tillage was more vulnerable and stressed than under organic farming with intensive tillage. nPLC proved to be a valuable indicator for plant water stress. Our results highlight the impact of cropping systems on crop xylem vulnerability and drought resistance, thus plant hydraulic traits, for protecting food security under future climate.
Collapse
Affiliation(s)
- Qing Sun
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Anna K Gilgen
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Constant Signarbieux
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Ecological Systems Laboratory (ECOS), Lausanne, Switzerland
| | - Valentin H Klaus
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
49
|
Continent-wide synthesis of the long-term population dynamics of quaking aspen in the face of accelerating human impacts. Oecologia 2021; 197:25-42. [PMID: 34365517 DOI: 10.1007/s00442-021-05013-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
In recent decades, climate change has disrupted forest functioning by promoting large-scale mortality events, declines in productivity and reduced regeneration. Understanding the temporal dynamics and spatial extent of these changes is critical given the essential ecosystem services provided by forests. As the most widespread tree species in North America, quaking aspen (Populus tremuloides) is well suited for studying the dynamics of tree populations during a period of unprecedented climate change. Synthesizing continent-wide data, we show that mortality rates of mature aspen stems have increased over the past two-to-three decades, while relative gains in aspen basal area have decreased during the same period. Patterns were pervasive across multiple stand size classes and composition types in western North America biomes, suggesting that trends in demographic rates were not simply a reflection of stand development and succession. Our review of the literature revealed that increased aspen mortality and reduced growth rates were most often associated with hotter, drier conditions, whereas reduced recruitment was most often associated with herbivory. Furthermore, interactions between climate and competition, as well as climate and insect herbivory, had important, context-dependent effects on mortality and growth, respectively. Our analyses of aspen across its entire geographic range indicate that this important tree species is experiencing substantial increases in mortality and decreases in population growth rates across multiple biomes. If such trends are not accompanied by increased recruitment, we expect that the reduced dominance of aspen in forests will lead to major declines in the many essential ecosystem services it provides.
Collapse
|
50
|
Fuchs S, Leuschner C, Mathias Link R, Schuldt B. Hydraulic variability of three temperate broadleaf tree species along a water availability gradient in central Europe. THE NEW PHYTOLOGIST 2021; 231:1387-1400. [PMID: 33964029 DOI: 10.1111/nph.17448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Plant hydraulic traits are key for understanding and predicting tree drought responses. Information about the degree of the traits' intra-specific variability may guide the selection of drought-resistant genotypes and is crucial for trait-based modelling approaches. For the three temperate minor broadleaf tree species Acer platanoides, Carpinus betulus and Tilia cordata, we measured xylem embolism resistance (P50 ), leaf turgor loss point (PTLP ), specific hydraulic conductivity (KS ), Huber values (HVs), and hydraulic safety margins in adult trees across a precipitation gradient. We further quantified trait variability on different organizational levels (inter-specific to within-canopy variation), and analysed its relationship to climatic and soil water availability. Although we observed a certain intra-specific trait variability (ITV) in safety-related traits (P50 , PTLP ) with higher within-tree and between-tree than between populations variability, the magnitude was small compared to inter-specific differences, which explained 78.4% and 58.3% of the variance in P50 and PTLP , respectively. In contrast, efficiency-related traits (KS , HV) showed a high ITV both within populations and within the crowns of single trees. Surprisingly, the observed ITV of all traits was neither driven by climatic nor soil water availability. In conclusion, the high degree of conservatism in safety-related traits highlights their potential for trait-based modelling approaches.
Collapse
Affiliation(s)
- Sebastian Fuchs
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, Goettingen, 37073, Germany
| | - Christoph Leuschner
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, Goettingen, 37073, Germany
- Centre for Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Goettingen, 37075, Germany
| | - Roman Mathias Link
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, Goettingen, 37073, Germany
| | - Bernhard Schuldt
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, Goettingen, 37073, Germany
| |
Collapse
|