1
|
Gao Z, Su Y, Jiao G, Lou Z, Chang L, Yu R, Xu C, Han X, Wang Z, Li J, Deng XW, He H. Cell-Type Specific miRNA Regulatory Network Responses to ABA Stress Revealed by Time Series Transcriptional Atlases in Arabidopsis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415083. [PMID: 39792694 DOI: 10.1002/advs.202415083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Indexed: 01/12/2025]
Abstract
In plants, microRNAs (miRNAs) participate in complex gene regulatory networks together with the transcription factors (TFs) in response to biotic and abiotic stresses. To date, analyses of miRNAs-induced transcriptome remodeling are at the whole plant or tissue levels. Here, Arabidopsis's ABA-induced single-cell RNA-seq (scRNA-seq) is performed at different stages of time points-early, middle, and late. Single-cell level primary miRNAs (pri-miRNAs) atlas supported the rapid, dynamic, and cell-type specific miRNA responses under ABA treatment. MiRNAs respond rapidly and prior to target gene expression dynamics, and these rapid response miRNAs are highly cell-type specific, especially in mesophyll and vascular cells. MiRNA-TF-mRNA regulation modules are identified by identifying miRNA-contained feed-forward loops (M-FFLs) in the regulatory network, and regulatory networks with M-FFLs have higher co-expression and clustering coefficient (CC) values than those without M-FFLs, suggesting the hub role of miRNAs in regulatory networks. The cell-type-specific M-FFLs are regulated by these hub miRNAs rather than TFs through sc-RNA-seq network analysis. MiR858a-FBH3-MYB module inhibited the expression of MYB63 and MYB20, which related to the formation of plant secondary wall and the production of lignin, through M-FFL specifically in vascular. These results can provide prominent insights into miRNAs' dynamic and cell-type-specific roles in plant development and stress responses.
Collapse
Affiliation(s)
- Zhaoxu Gao
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Yanning Su
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Guanzhong Jiao
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Zhiying Lou
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, 261325, China
| | - Le Chang
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Renbo Yu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Chao Xu
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Xue Han
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, 261325, China
| | - Zejia Wang
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Jian Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, 261325, China
| | - Xing Wang Deng
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, 261325, China
| | - Hang He
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, 261325, China
| |
Collapse
|
2
|
Huang J, Du J, Liu Y, Lu L, Xu Y, Shi J, Liu Q, Li Q, Liu Y, Chen Y, Du M, Zhao Y, Huo L, Wang W, Ding C, Wei L, Wu J, Yuan YW, Chen J, Li R, Cui F, Zhang X. RH3 enhances antiviral defense by facilitating small RNA loading into Argonaute 2 at endoplasmic reticulum-chloroplast membrane contact sites. Nat Commun 2025; 16:1953. [PMID: 40000658 PMCID: PMC11862194 DOI: 10.1038/s41467-025-57296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
While RNA silencing is crucial for plant resistance against viruses, the cellular connections between RNA silencing and antiviral responses in plants remain poorly understood. In this study, we aim to investigate this relationship by examining the subcellular localization of small RNA loading and viral replication in Arabidopsis. Our findings reveal that Argonaute 2 (AGO2), a key component of RNA silencing, loads small RNAs at the endoplasmic reticulum (ER)-chloroplast membrane contact sites (MCSs). We identify a chloroplast-localized protein, RNA helicase 3 (RH3), which interacts with AGO2 and facilitates the loading of small RNAs into AGO2 at these MCSs. Furthermore, we discover that MCSs serve as replication sites for certain plant viruses. RH3 also promotes the loading of viral-derived small RNAs into AGO2, thereby enhancing plant antiviral resistance. Overall, our study sheds light on the roles of RH3 in RNA silencing and plant antiviral defenses, providing valuable insights into the cytobiological connections between RNA silencing, viral replication, and antiviral immunity.
Collapse
Affiliation(s)
- Juan Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Du
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Lu Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanzhuo Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianfei Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqiu Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meng Du
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yiming Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangxiao Huo
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Weiran Wang
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Chenxi Ding
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Liya Wei
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Jianguo Wu
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043, Storrs, CT, 06269, USA
| | - Jinfeng Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruixi Li
- SUSTech-PKU Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hainan Seed Industry Laboratory, Sanya, 572025, China.
| |
Collapse
|
3
|
Ullah K, Hossain A, Cao M, Xue L, Wang Y. Target miRNA identification for the LPL gene in large yellow croaker (Larimichthys crocea). Sci Rep 2025; 15:4164. [PMID: 39905090 PMCID: PMC11794633 DOI: 10.1038/s41598-024-82988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/10/2024] [Indexed: 02/06/2025] Open
Abstract
MicroRNA (miRNA), a conservatively evolved single-stranded non-coding RNA, exerts pivotal control over the appearance of target genes and several biological processes. This study conducted a comprehensive screening of candidate microRNAs (miRNAs) associated with Lipoprotein Lipase (LPL) in the large yellow croaker (Larimichthys crocea), utilizing sophisticated bioinformatics techniques across the species' muscular and hepatic tissues. The bioinformatics analysis facilitated the compilation and examination of miRNA datasets specific to these tissues. The investigation culminated in the identification of miR-84a and miR-1231-5p as key miRNAs that modulate fat hydrolysis, highlighting their potential roles in lipid metabolism. Subsequent in-depth analysis further implicated these miRNAs, along with miR-891a, as prospective targets of LPL, suggesting their integral involvement in the regulation of this critical enzyme. Validation of these bioinformatics predictions was conducted through the construction of double luciferase reporters concealing the LPL 3' untranslated region (3'UTR), substantiating that miR-84a and miR-1231-5p can modulate LPL expression via the LPL 3'UTR. Conversely, miR-891a was not concerned with this regulatory mechanism. Site-directed mutagenesis experiments elucidated the specificity of the interaction sequences. Quantitative PCR assays suggested that miR-84a and miR-1231-5p might influence LPL expression during the starvation phase, intimating the regulatory role of miRNA in fatty acid metabolism within hepatic and muscular tissue under starvation. These findings offer a nuanced understanding of LPL's molecular functionality under stress conditions in fish, emphasizing the regulatory dynamics of miRNA during metabolic stress.
Collapse
Affiliation(s)
- Kalim Ullah
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Aslam Hossain
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Mingyue Cao
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Liangyi Xue
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China.
| | - Yajun Wang
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China.
| |
Collapse
|
4
|
Csicsely E, Oberender A, Georgiadou A, Alz J, Kiel S, Gutsche N, Zachgo S, Grünert J, Klingl A, Top O, Frank W. Identification and characterization of DICER-LIKE genes and their roles in Marchantia polymorpha development and salt stress response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17236. [PMID: 39910986 PMCID: PMC11799827 DOI: 10.1111/tpj.17236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/28/2024] [Accepted: 12/19/2024] [Indexed: 02/07/2025]
Abstract
DICER-LIKE (DCL) proteins play a central role in plant small RNA (sRNA) biogenesis. The genome of the early land plant Marchantia polymorpha encodes four DCL proteins: MpDCL1a, MpDCL1b, MpDCL3, and MpDCL4. While MpDCL1a, MpDCL3 and MpDCL4 show high similarities to their orthologs in Physcomitrium patens and Arabidopsis thaliana, MpDCL1b shares only a limited homology with PpDCL1b, but it is very similar, in terms of functional domains, to orthologs in other moss and fern species. We generated Mpdclge mutant lines for all MpDCL genes with the CRISPR/Cas9 system and conducted phenotypic analyses under control, salt stress, and phytohormone treatments to uncover specific MpDCL functions. The mutants displayed severe developmental aberrations, altered responses to salt and phytohormones, and disturbed sexual organ development. By combining mRNA and sRNA analyses, we demonstrate that MpDCLs and their associated sRNAs play pivotal roles in regulating development, abiotic stress tolerance and phytohormone response in M. polymorpha. We identified MpDCL1a in microRNA biogenesis, MpDCL4 in trans-acting small interfering RNA generation, and MpDCL3 in the regulation of pathogen-related genes. Notably, salt sensitivity in M. polymorpha is dependent on MpDCL1b and Mpdcl1bge mutants display enhanced tolerance and reduced miRNA expression in response to salt stress. We propose that M. polymorpha employs specific mechanisms for regulating MpDCL1b associated miRNAs under high salinity conditions, potentially shared with other species harboring MpDCL1b homologs.
Collapse
Affiliation(s)
- Erika Csicsely
- Plant Molecular Cell Biology, Faculty of BiologyLudwig‐Maximilians‐Universität München, LMU BiocenterGroßhaderner Str. 2‐4Planegg‐Martinsried82152Germany
| | - Anja Oberender
- Plant Molecular Cell Biology, Faculty of BiologyLudwig‐Maximilians‐Universität München, LMU BiocenterGroßhaderner Str. 2‐4Planegg‐Martinsried82152Germany
| | - Anastasia‐Styliani Georgiadou
- Plant Molecular Cell Biology, Faculty of BiologyLudwig‐Maximilians‐Universität München, LMU BiocenterGroßhaderner Str. 2‐4Planegg‐Martinsried82152Germany
| | - Johanna Alz
- Plant Molecular Cell Biology, Faculty of BiologyLudwig‐Maximilians‐Universität München, LMU BiocenterGroßhaderner Str. 2‐4Planegg‐Martinsried82152Germany
| | - Sebastian Kiel
- Plant Molecular Cell Biology, Faculty of BiologyLudwig‐Maximilians‐Universität München, LMU BiocenterGroßhaderner Str. 2‐4Planegg‐Martinsried82152Germany
| | - Nora Gutsche
- Division of Botany, School of Biology/ChemistryOsnabrück UniversityBarbarastrasse 11Osnabrück49076Germany
| | - Sabine Zachgo
- Division of Botany, School of Biology/ChemistryOsnabrück UniversityBarbarastrasse 11Osnabrück49076Germany
| | - Jennifer Grünert
- Plant Development, Faculty of BiologyLudwig‐Maximilians‐Universität München, LMU BiocenterGroßhaderner Str. 2‐4Planegg‐Martinsried82152Germany
| | - Andreas Klingl
- Plant Development, Faculty of BiologyLudwig‐Maximilians‐Universität München, LMU BiocenterGroßhaderner Str. 2‐4Planegg‐Martinsried82152Germany
| | - Oguz Top
- Plant Molecular Cell Biology, Faculty of BiologyLudwig‐Maximilians‐Universität München, LMU BiocenterGroßhaderner Str. 2‐4Planegg‐Martinsried82152Germany
| | - Wolfgang Frank
- Plant Molecular Cell Biology, Faculty of BiologyLudwig‐Maximilians‐Universität München, LMU BiocenterGroßhaderner Str. 2‐4Planegg‐Martinsried82152Germany
| |
Collapse
|
5
|
Liu S, Yang J, Zhang N, Si H. Genome-wide analysis of non-coding RNA reveals the role of a novel miR319c for tuber dormancy release process in potato. HORTICULTURE RESEARCH 2025; 12:uhae303. [PMID: 39949878 PMCID: PMC11822407 DOI: 10.1093/hr/uhae303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/21/2024] [Indexed: 02/16/2025]
Abstract
Tuber dormancy and sprouting are significant for potato cultivation, storage, and processing. Although the substantial role of microRNAs (miRNAs) in some biological processes has been recognized, the critical role of miRNA in breaking potato tuber dormancy is not well understood to date. In this investigation, we expand research on miRNA-mediated gene regulation in tuber dormancy release. In this work, 204 known and 192 novel miRNAs were identified. One hundred thirty-six differentially expressed miRNAs (DE-miRNAs) were also screened out, of which 56 DE-miRNAs were regulated by temperature during tuber dormancy release. Additionally, degradome sequencing revealed that 821 target genes for 202 miRNAs were discovered. Among them, 63 target genes and 48 miRNAs were predicted to be involved in plant hormone signaling pathways. This study used degradome sequencing, tobacco cotransformation system, and β-glucuronidase (GUS) staining technology to confirm that stu-miR319c can target StTCP26 and StTCP27 and effectively suppress their expression. The transgenic approach exhibited that stu-miR319c overexpressed tubers sprouted in advance, while silent expression of stu-miR319c showed delayed sprouting. Treatment of wild-type tubers with exogenous MeJA revealed that 1 mg/L MeJA significantly broke dormancy and enhanced potato sprouting ability. Furthermore, transgenic tubers revealed variance in jasmonic acid (JA) content and relative expression of genes associated with the JA synthesis pathway, including StAOC, StLOX2, and StLOX4, suggesting that the miR319c may participate in the JA pathway to regulate tuber dormancy release. In summary, our research offers evidence that miRNA regulates potato dormancy release and supports the idea that stu-miR319c is a unique epigenetic regulator for dormancy-sprouting transition in potatoes.
Collapse
Affiliation(s)
- Shengyan Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Yingmencun No.1, Anning District, Lanzhou 730070, China
- College of Agronomy, Gansu Agricultural University, Yingmencun No.1, Anning District, Lanzhou 730070, China
| | - Jiangwei Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Yingmencun No.1, Anning District, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Yingmencun No.1, Anning District, Lanzhou 730070, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Yingmencun No.1, Anning District, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Yingmencun No.1, Anning District, Lanzhou 730070, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Yingmencun No.1, Anning District, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Yingmencun No.1, Anning District, Lanzhou 730070, China
| |
Collapse
|
6
|
Dhandhanya UK, Afreen U, Jha SK, Mukhopadhyay K, Kumar M. Elucidating circRNA-miRNA-mRNA competing endogenous regulatory RNA network during leaf rust pathogenesis in wheat (Triticum aestivum L.). Funct Integr Genomics 2025; 25:15. [PMID: 39815073 DOI: 10.1007/s10142-024-01520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025]
Abstract
Advancements in bioinformatic tools and breakthroughs in high throughput RNA sequencing have unveiled the potential role of non-coding RNAs in influencing the overall expression of disease-responsive genes. Owing to the increasing need to develop resilient crop varieties against environmental constraints, our study explores the functional relationship of various non-coding RNAs in wheat during leaf rust pathogenesis. MicroRNAs (miRNAs) and circular RNAs (circRNAs) were retrieved from SAGE and RNA-Seq libraries, respectively, in the susceptible (HD2329) and resistant (HD2329 + Lr28) wheat Near-Isogenic Lines (NILs). Here we explored the previously published circRNAs for their differential expression and correlated the data with the differentially expressed miRNAs (DEMs) through various in silico methods to acquire the target miRNAs of circRNAs and the downstream target mRNAs of miRNAs. Finally, a competing endogenous RNA (ceRNAs) regulatory network was constructed and validated through RT-qPCR method. We have identified the ceRNA regulatory network of four differentially expressed circRNAs (DECs) and five DEMs to highlight their crucial roles in the robust enhancement of the temporal expression profiles of five defense responsive genes (mRNAs) in wheat NILs against leaf rust infection. The study confirms the synergistic expression of circRNAs and mRNAs with an antagonistic correlation with the expression profile of the corresponding miRNAs. The vital role of leaf rust-resistant gene Lr28 has also been highlighted for driving the efficiency of the circRNAs to upregulate target gene expression. Thus, understanding the circRNA-miRNA-target gene interaction during leaf rust pathogenesis can help to identify stress-specific regulatory biomarkers to enhance defense responses in wheat for improved resilience through multi-omics integration of transcriptomics, proteomics and metabolomics.
Collapse
Affiliation(s)
- Umang Kumar Dhandhanya
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Uzma Afreen
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Shailendra Kumar Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Kunal Mukhopadhyay
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Manish Kumar
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
| |
Collapse
|
7
|
Jia Y, Wei K, Qin J, Zhai W, Li Q, Li Y. The Roles of MicroRNAs in the Regulation of Rice-Pathogen Interactions. PLANTS (BASEL, SWITZERLAND) 2025; 14:136. [PMID: 39795396 PMCID: PMC11722856 DOI: 10.3390/plants14010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025]
Abstract
Rice is exposed to attacks by the three most destructive pathogens, Magnaporthe oryzae (M. oryzae), Xanthomonas oryzae pv. oryzae (Xoo), and Rhizoctonia solani (R. solani), which cause substantial yield losses and severely threaten food security. To cope with pathogenic infections, rice has evolved diverse molecular mechanisms to respond to a wide range of pathogens. Among these strategies, plant microRNAs (miRNAs), endogenous single-stranded short non-coding RNA molecules, have emerged as promising candidates in coordinating plant-pathogen interactions. MiRNAs can modulate target gene expression at the post-transcriptional level through mRNA cleavage and/or translational inhibition. In rare instances, they also influence gene expression at the transcriptional level through DNA methylation. In recent years, substantial advancements have been achieved in the investigation of microRNA-mediated molecular mechanisms in rice immunity. Therefore, we attempt to summarize the current advances of immune signaling mechanisms in rice-pathogen interactions that are regulated by osa-miRNAs, including their functions and molecular mechanisms. We also focus on recent findings concerning the role of osa-miRNAs that respond to M. oryzae, Xoo, and R. solani, respectively. These insights enhance our understanding of how the mechanisms of osa-miRNAs mediate rice immunity and may facilitate the development of improved strategies for breeding pathogen-resistant rice varieties.
Collapse
Affiliation(s)
- Yanfeng Jia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.J.); (K.W.); (J.Q.)
| | - Kai Wei
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.J.); (K.W.); (J.Q.)
| | - Jiawang Qin
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.J.); (K.W.); (J.Q.)
| | - Wenxue Zhai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Quanlin Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Yalan Li
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
8
|
Qi HY, Zhang DD, Liu B, Chen JY, Han D, Wang D. Leveraging RNA interference technology for selective and sustainable crop protection. FRONTIERS IN PLANT SCIENCE 2024; 15:1502015. [PMID: 39777080 PMCID: PMC11703868 DOI: 10.3389/fpls.2024.1502015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Double-stranded RNA (dsRNA) has emerged as key player in gene silencing for the past two decades. Tailor-made dsRNA is now recognized a versatile raw material, suitable for a wide range of applications in biopesticide formulations, including insect control to pesticide resistance management. The mechanism of RNA interference (RNAi) acts at the messenger RNA (mRNA) level, utilizing a sequence-dependent approach that makes it unique in term of effectiveness and specificity compared to conventional agrochemicals. Two primary categories of small RNAs, known as short interfering RNAs (siRNAs) and microRNAs (miRNAs), function in both somatic and germline lineages in a broad range of eukaryotic species to regulate endogenous genes and to defend the genome from invasive nucleic acids. Furthermore, the application of RNAi in crop protection can be achieved by employing plant-incorporated protectants through plant transformation, but also by non-transformative strategies such as the use of formulations of sprayable RNAs as direct control agents, resistance factor repressors or developmental disruptors. This review explores the agricultural applications of RNAi, delving into its successes in pest-insect control and considering its broader potential for managing plant pathogens, nematodes, and pests. Additionally, the use of RNAi as a tool for addressing pesticide-resistant weeds and insects is reviewed, along with an evaluation of production costs and environmental implications.
Collapse
Affiliation(s)
- Hong-Yue Qi
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan-Dan Zhang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Binhui Liu
- Key Laboratory of Crop Drought Resistance Research of Hebei Province/Institute of Dryland Farming, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, China
| | - Jie-Yin Chen
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Dongfei Han
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Dan Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
9
|
Ouyang W, Sun H, Wang Y. Unlocking the small RNAs: local and systemic modulators for advancing agronomic enhancement. J Genet Genomics 2024:S1673-8527(24)00364-3. [PMID: 39716571 DOI: 10.1016/j.jgg.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Small regulatory RNAs (sRNAs) are essential regulators of gene expression across a wide range of organisms to precisely modulate gene activity based on sequence-specific recognition. In model plants like Arabidopsis thaliana, extensive research has primarily concentrated on 21 to 24-nucleotide (nt) sRNAs, particularly microRNAs (miRNAs). Recent advancements in cell and tissue isolation techniques, coupled with advanced sequencing technologies, are revealing a diverse array of preciously uncharacterized sRNA species. These include previously novel structural RNA fragments as well as numerous cell- and tissue-specific sRNAs that are active during distinct developmental stages, thereby enhancing our understanding of the precise and dynamic regulatory roles of sRNAs in plant development regulation. Additionally, a notable feature of sRNAs is their capacity for amplification and movement between cells and tissues, which facilitates long-distance communication-an adaptation critical to plants due to their sessile nature. In this review, we will discuss the classification and mechanisms of action of sRNAs, using legumes as a primary example due to their essential engagement for the unique organ establishment of root nodules and long-distance signaling, and further illustrating the potential applications of sRNAs in modern agricultural breeding and environmentally sustainable plant protection strategies.
Collapse
Affiliation(s)
- Wenqi Ouyang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China
| | - Hongda Sun
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China.
| |
Collapse
|
10
|
Shi L, Guo C, Fang M, Yang Y, Yin F, Shen Y. Cross-kingdom regulation of plant microRNAs: potential application in crop improvement and human disease therapeutics. FRONTIERS IN PLANT SCIENCE 2024; 15:1512047. [PMID: 39741676 PMCID: PMC11685121 DOI: 10.3389/fpls.2024.1512047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025]
Abstract
Plant microRNAs (miRNAs) are small non-coding RNA molecules that usually negatively regulate gene expression at the post-transcriptional level. Recent data reveal that plant miRNAs are not limited to individual plants but can transfer across different species, allowing for communication with the plant, animal, and microbial worlds in a cross-kingdom approach. This review discusses the differences in miRNA biosynthesis between plants and animals and summarizes the current research on the cross-species regulatory effects of plant miRNAs on nearby plants, pathogenic fungi, and insects, which can be applied to crop disease and pest resistance. In particular, this review highlights the latest findings regarding the function of plant miRNAs in the transboundary regulation of human gene expression, which may greatly expand the clinical applicability of plant miRNAs as intriguing tools in natural plant-based medicinal products in the future.
Collapse
Affiliation(s)
- Lei Shi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chao Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Miaomiao Fang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yingmei Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Fei Yin
- National Demonstration Center for Experimental (Aquaculture) Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yuan Shen
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
11
|
Hong Z, Zhu L, Liu C, Wang K, Rao Y, Lu H. Genome-Wide Identification and Evolutionary Analysis of Functional BBM-like Genes in Plant Species. Genes (Basel) 2024; 15:1614. [PMID: 39766881 PMCID: PMC11675363 DOI: 10.3390/genes15121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: BABY BOOM (BBM), a transcription factor from the APETALA2 (AP2) protein family, plays a critical role in somatic embryo induction and apomixis. BBM has now been widely applied to induce apomixis or enhance plant transformation and regeneration efficiency through overexpression or ectopic expression. However, the structural and functional evolutionary history of BBM genes in plants is still not well understood. Methods: The protein sequences of 10 selected plant species were used to locate the branch of BBM-Like by key domain identification and phylogenetic tree construction. The identified BBML genes were used for further conserved motif identification, gene structural analysis, miRNA binding site prediction, cis-acting element prediction, collinear analysis, protein-protein interaction network construction, three-dimensional structure modeling, molecular docking, and expression pattern analysis. Results: A total of 24 BBML proteins were identified from 10 representative plant species. Phylogenetic relationship analysis displayed that BBML proteins from eudicots and monocots were divided into two clusters, with monocots exhibiting a higher number of BBMLs. Gene duplication events indicated that whole genome/segmental duplication were the primary drivers of BBML genes' evolution in the tested species, with purifying selection playing a key role during evolution processes. Comparative analysis of motif, domains, and gene structures revealed that most BBMLs were highly evolutionarily conserved. The expression patterns of BBML genes revealed significant tissue specificity, particularly in the root and embryo. We also constructed protein-protein interaction networks and molecular docking models to identify functional pathways and key amino acid residues of BBML proteins. The functions of BBMLs may differ between monocots and eudicots, as suggested by the functional enrichment of interacting proteins. Conclusions: Our research delved into the molecular mechanism, evolutionary relationships, functional differentiation, and expression patterns of BBML genes across plants, laying the groundwork for further investigations into the molecular properties and biological roles of BBMLs.
Collapse
Affiliation(s)
- Zhengyuan Hong
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Z.H.); (L.Z.)
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China; (C.L.); (K.W.)
| | - Linghong Zhu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Z.H.); (L.Z.)
| | - Chaolei Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China; (C.L.); (K.W.)
| | - Kejian Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China; (C.L.); (K.W.)
| | - Yuchun Rao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Z.H.); (L.Z.)
| | - Hongwei Lu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China; (C.L.); (K.W.)
| |
Collapse
|
12
|
Foix L, Pla M, Martín-Mur B, Esteve-Codina A, Nadal A. The PpPep2-Triggered PTI-like Response in Peach Trees Is Mediated by miRNAs. Int J Mol Sci 2024; 25:13099. [PMID: 39684809 DOI: 10.3390/ijms252313099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Plant diseases diminish crop yields and put the world's food supply at risk. Plant elicitor peptides (Peps) are innate danger signals inducing defense responses both naturally and after external application onto plants. Pep-triggered defense networks are compatible with pattern-triggered immunity (PTI). Nevertheless, in complex regulatory pathways, there is crosstalk among different signaling pathways, involving noncoding RNAs in the natural response to pathogen attack. Here, we used Prunus persica, PpPep2 and a miRNA-Seq approach to show for the first time that Peps regulate, in parallel with a set of protein-coding genes, a set of plant miRNAs (~15%). Some PpPep2-regulated miRNAs have been described to participate in the response to pathogens in various plant-pathogen systems. In addition, numerous predicted target mRNAs of PpPep2-regulated miRNAs are themselves regulated by PpPep2 in peach trees. As an example, peach miRNA156 and miRNA390 probably have a role in plant development regulation under stress conditions, while others, such as miRNA482 and miRNA395, would be involved in the regulation of resistance (R) genes and sulfate-mediated protection against oxygen free radicals, respectively. This adds to the established role of Peps in triggering plant defense systems by incorporating the miRNA regulatory network and to the possible use of Peps as sustainable phytosanitary products.
Collapse
Affiliation(s)
- Laura Foix
- BETA Technological Center (TECNIO Network), University of Vic-Central University of Catalonia (UVic-UCC), Carretera de Roda 70, 08500 Vic, Spain
- Institute for Agricultural and Food Technology, Universitat de Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Maria Pla
- Institute for Agricultural and Food Technology, Universitat de Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Beatriz Martín-Mur
- Centre Nacional d'Anàlisi Genòmica (CNAG), C/ Baldiri Reixac 4, 08028 Barcelona, Spain
- Parc Científic de Barcelona, Universitat de Barcelona, C/ Baldiri Reixac, 4, 08028 Barcelona, Spain
| | - Anna Esteve-Codina
- Centre Nacional d'Anàlisi Genòmica (CNAG), C/ Baldiri Reixac 4, 08028 Barcelona, Spain
- Parc Científic de Barcelona, Universitat de Barcelona, C/ Baldiri Reixac, 4, 08028 Barcelona, Spain
| | - Anna Nadal
- Institute for Agricultural and Food Technology, Universitat de Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| |
Collapse
|
13
|
Kong J, Xiong R, Qiu K, Lin X, Li D, Lu L, Zhou J, Zhu S, Liu M, Sun Q. Genome-Wide Identification and Characterization of the Laccase Gene Family in Fragaria vesca and Its Potential Roles in Response to Salt and Drought Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:3366. [PMID: 39683159 DOI: 10.3390/plants13233366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
Laccase (LAC, EC 1.10.3.2) is integral to the formation of lignin synthesis, flavonoid production, and responses to both biotic and abiotic stresses. While recent studies have characterized numerous LAC gene families and their functions across various plants, information regarding LAC genes in woodland strawberry (Fragaria vesca) remains limited. In this study, we identified a total of 57 FvLAC genes in the Fragaria vesca genome, which were phylogenetically categorized into five distinct groups. Analysis of the gene structures revealed a uniformity in the exon-intron structure among the subgroups, while conserved motifs identified unique motifs specific to certain subgroups, suggesting functional variations. Chromosomal localization studies indicated that FvLACs are distributed across seven chromosomes, and collinearity analysis demonstrated that FvLACs exhibit collinearity within the species. Additionally, cis-acting element analysis suggested that FvLAC genes are involved in stress responses, hormone responses, light responses, and the growth and development of plants. qRT-PCR demonstrated that FvLACs responded to salt, drought, and hormone stresses, with the expression levels of FvLAC24, FvLAC32, and FvLAC51 continuously increasing under these stress conditions. Furthermore, transgenic yeast experiments revealed that FvLAC51 enhanced yeast tolerance to both salt and drought stresses, while FvLAC24 and FvLAC32 negatively regulated yeast tolerance under these same conditions. These findings provide a theoretical foundation for further investigation into the functions of FvLAC genes in woodland strawberry.
Collapse
Affiliation(s)
- Jingjing Kong
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Rui Xiong
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Keli Qiu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Xinle Lin
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, Anhui Agricultural University, Hefei 230036, China
| | - Debao Li
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Lijuan Lu
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Junyong Zhou
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Shufang Zhu
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Mao Liu
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Qibao Sun
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| |
Collapse
|
14
|
Zhang L, Teng Y, Song Y, Li J, Zhang Z, Xu Y, Fan D, Wang L, Ren Y, He J, Song S, Xi X, Liu H, Ma C. Assessment of heat tolerance and identification of miRNAs during high-temperature response in grapevine. FRONTIERS IN PLANT SCIENCE 2024; 15:1484892. [PMID: 39502927 PMCID: PMC11534869 DOI: 10.3389/fpls.2024.1484892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
With global warming, heat stress has been recognized as a significant factor limiting grapevine development and fruit quality. MicroRNAs (miRNAs) are a class of small non-coding RNAs known to play crucial regulatory roles in stress resistance. Hence, there is an immediate requirement to cultivate and identify grapevine varieties that are resistant to heat and explore miRNA-mediated heat stress defense mechanisms. In this study, we assessed the thermal resistance of 38 grape germplasm resources and identified a series of miRNAs involved in heat stress resistance. The CK (25°C) and HS (45°C) groups of "Shenyue" cuttings of grapes were used as experimental materials for next-generation sequencing and construct libraries of small RNAs. A total of 177 known and 20 novel miRNAs were detected in the libraries. Differential expression analysis identified 65 differentially expressed miRNAs (DEMs) using the DE-Seq procedure. Furthermore, RT-qPCR validation confirmed complementary expression profiles of eight DEMs and their target genes between the HS and CK groups. Heterologous transformation further identified the function of Vvi-miR3633a downregulated under heat stress in Arabidopsis. In the heterologous expression lines, the survival rate was reduced by high temperature treatment indicating the ability of Vvi-miR3633a to regulate heat resistance. Assessing the heat resistance of grape species and the expression patterns of miRNA in response to high temperatures may reveal the molecular processes of heat resistance regulation mediated by miRNA in grapes under heat stress.
Collapse
Affiliation(s)
- Lipeng Zhang
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi, China
| | - Yuanxu Teng
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi, China
| | - Yue Song
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Junpeng Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Dongying Fan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lujia Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Ren
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, China
| | - Juan He
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiren Song
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojun Xi
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Huaifeng Liu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi, China
| | - Chao Ma
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Fang J, Doyle PS. Quantitative and spatially resolved detection of multiplexed microRNA from plant tissue via hybridization to hydrogel-bound DNA probes in nanoliter well arrays. MICROSYSTEMS & NANOENGINEERING 2024; 10:142. [PMID: 39375353 PMCID: PMC11458878 DOI: 10.1038/s41378-024-00785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 10/09/2024]
Abstract
Understanding complex regulatory networks in plant systems requires elucidating the roles of various gene regulators under a spatial landscape. MicroRNA are key regulators that impart high information value through their tissue specificity and stability when using expression patterns for evaluating network outcomes. However, current techniques that utilize spatial multiplexing and quantitation of microRNA are limited to primarily mammalian systems. Here, we present a method to spatially resolve and quantify multiple endogenous microRNA in situ using ethanol fixed, paraffin embedded model plant species. This method utilizes target-specific microRNA capture along with universal ligating and labelling, all within functionalized hydrogel posts containing DNA probes in nanoliter well arrays. We demonstrate the platform's multiplexing capabilities through analyzing three endogenous microRNA in Arabidopsis thaliana rosettes which provide useful answers to fundamental plant growth and development from the unique expression patterns. The spatial tissue technique is also validated using non-spatial small RNA assays to demonstrate the versatility of the well array platform. Our new platform expands the toolkit of spatial omics technologies for plants.
Collapse
Affiliation(s)
- Jennifer Fang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Patrick S Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
16
|
Pandey V, Srivastava A, Ali A, Gupta R, Shahid MS, Gaur RK. Predicting candidate miRNAs for targeting begomovirus to induce sequence-specific gene silencing in chilli plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1460540. [PMID: 39376242 PMCID: PMC11456425 DOI: 10.3389/fpls.2024.1460540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024]
Abstract
The begomoviruses are the most economically damaging pathogens that pose a serious risk to India's chilli crop and have been associated with the chilli leaf curl disease (ChiLCD). Chilli cultivars infected with begomovirus have suffered significant decreases in biomass output, negatively impacting their economic characteristics. We used the C-mii tool to predict twenty plant miRNA families from SRA chilli transcriptome data (retrieved from the NCBI and GenBank databases). Five target prediction algorithms, i.e., C-mii, miRanda, psRNATarget, RNAhybrid, and RNA22, were applied to identify and evaluate chilli miRNAs (microRNAs) as potential therapeutic targets against ten begomoviruses that cause ChiLCD. In this study, the top five chilli miRNAs which were identified by all five algorithms were thoroughly examined. Moreover, we also noted strong complementarities between these miRNAs and the AC1 (REP), AC2 (TrAP) and betaC1 genes. Three computational approaches (miRanda, RNA22, and psRNATarget) identified the consensus hybridization site for CA-miR838 at locus 2052. The top predicted targets within ORFs were indicated by CA-miR2673 (a and b). Through Circos algorithm, we identified novel targets and create the miRNA-mRNA interaction network using the R program. Furthermore, free energy calculation of the miRNA-target duplex revealed that thermodynamic stability was optimal for miR838 and miR2673 (a and b). To the best of our knowledge, this was the first instance of miRNA being predicted from chilli transcriptome information that had not been reported in miRbase previously. Consequently, the anticipated biological results substantially assist in developing chilli plants resistant to ChiLCD.
Collapse
Affiliation(s)
- Vineeta Pandey
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Aarshi Srivastava
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Akhtar Ali
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| | - Ramwant Gupta
- Department of Botany, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-khoud, Oman
| | - Rajarshi Kumar Gaur
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| |
Collapse
|
17
|
Li Q, Li D, Guo S, Yu X. Genome-Wide Identification of microRNAs Associated with Starch Biosynthesis and Endosperm Development in Foxtail Millet. Int J Mol Sci 2024; 25:9282. [PMID: 39273232 PMCID: PMC11395324 DOI: 10.3390/ijms25179282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/04/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Foxtail millet is one of the oldest crops, and its endosperm contains up to 70% of starch. Grain filling is an important starch accumulation process associated with foxtail millet yield and quality. However, the molecular mechanisms of grain filling in foxtail millet are relatively unclear. Here, we investigate the genes and regulated miRNAs associated with starch synthesis and metabolism in foxtail millet using high-throughput small RNA, mRNA and degradome sequencing. The regulation of starch synthesis and quality is carried out mainly at the 15 DAA to 35 DAA stage during grain filling. The DEGs between waxy and non-waxy foxtail millet were significant, especially for GBSS. Additionally, ptc-miR169i_R+2_1ss21GA, fve-miR396e_L-1R+1, mtr-miR162 and PC-5p-221_23413 regulate the expression of genes associated with the starch synthesis pathway in foxtail millet. This study provides new insights into the molecular mechanisms of starch synthesis and quality formation in foxtail millet.
Collapse
Affiliation(s)
- Qiang Li
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010000, China
- Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010000, China
- Inner Mongolia Autonomous Region College Crop Germplasm Resources Protection and Utilization Engineering Research Center, Inner Mongolia Agricultural University, Hohhot 010000, China
| | - Dongming Li
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Shihua Guo
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010000, China
- Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010000, China
- Inner Mongolia Autonomous Region College Crop Germplasm Resources Protection and Utilization Engineering Research Center, Inner Mongolia Agricultural University, Hohhot 010000, China
| | - Xiaofang Yu
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010000, China
- Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010000, China
- Inner Mongolia Autonomous Region College Crop Germplasm Resources Protection and Utilization Engineering Research Center, Inner Mongolia Agricultural University, Hohhot 010000, China
| |
Collapse
|
18
|
Marmisolle FE, Borniego MB, Cambiagno DA, Gonzalo L, García ML, Manavella PA, Hernández C, Reyes CA. Citrus psorosis virus 24K protein inhibits the processing of miRNA precursors by interacting with components of the biogenesis machinery. Microbiol Spectr 2024; 12:e0351323. [PMID: 38785434 PMCID: PMC11218507 DOI: 10.1128/spectrum.03513-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Sweet orange (Citrus sinensis) is one of the most important fruit crops worldwide. Virus infections in this crop can interfere with cellular processes, causing dramatic economic losses. By performing RT-qPCR analyses, we demonstrated that citrus psorosis virus (CPsV)-infected orange plants exhibited higher levels of unprocessed microRNA (miRNA) precursors than healthy plants. This result correlated with the reported reduction of mature miRNAs species. The protein 24K, the CPsV suppressor of RNA silencing (VSR), interacts with miRNA precursors in vivo. Thus, this protein becomes a candidate responsible for the increased accumulation of unprocessed miRNAs. We analyzed 24K RNA-binding and protein-protein interaction domains and described patterns of its subcellular localization. We also showed that 24K colocalizes within nuclear D-bodies with the miRNA biogenesis proteins DICER-LIKE 1 (DCL1), HYPONASTIC LEAVES 1 (HYL1), and SERRATE (SE). According to the results of bimolecular fluorescence complementation and co-immunoprecipitation assays, the 24K protein interacts with HYL1 and SE. Thus, 24K may inhibit miRNA processing in CPsV-infected citrus plants by direct interaction with the miRNA processing complex. This work contributes to the understanding of how a virus can alter the regulatory mechanisms of the host, particularly miRNA biogenesis and function.IMPORTANCESweet oranges can suffer from disease symptoms induced by virus infections, thus resulting in drastic economic losses. In sweet orange plants, CPsV alters the accumulation of some precursors from the regulatory molecules called miRNAs. This alteration leads to a decreased level of mature miRNA species. This misregulation may be due to a direct association of one of the viral proteins (24K) with miRNA precursors. On the other hand, 24K may act with components of the cell miRNA processing machinery through a series of predicted RNA-binding and protein-protein interaction domains.
Collapse
Affiliation(s)
- Facundo E. Marmisolle
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - María B. Borniego
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Damián A. Cambiagno
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Lucia Gonzalo
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María L. García
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Pablo A. Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Carmen Hernández
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
| | - Carina A. Reyes
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| |
Collapse
|
19
|
Wang WQ, Liu XF, Zhu YJ, Zhu JZ, Liu C, Wang ZY, Shen XX, Allan AC, Yin XR. Identification of miRNA858 long-loop precursors in seed plants. THE PLANT CELL 2024; 36:1637-1654. [PMID: 38114096 PMCID: PMC11062470 DOI: 10.1093/plcell/koad315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
MicroRNAs (miRNAs) are a class of nonprotein-coding short transcripts that provide a layer of post-transcriptional regulation essential to many plant biological processes. MiR858, which targets the transcripts of MYB transcription factors, can affect a range of secondary metabolic processes. Although miR858 and its 187-nt precursor have been well studied in Arabidopsis (Arabidopsis thaliana), a systematic investigation of miR858 precursors and their functions across plant species is lacking due to a problem in identifying the transcripts that generate this subclass. By re-evaluating the transcript of miR858 and relaxing the length cut-off for identifying hairpins, we found in kiwifruit (Actinidia chinensis) that miR858 has long-loop hairpins (1,100 to 2,100 nt), whose intervening sequences between miRNA generating complementary sites were longer than all previously reported miRNA hairpins. Importantly, these precursors of miR858 containing long-loop hairpins (termed MIR858L) are widespread in seed plants including Arabidopsis, varying between 350 and 5,500 nt. Moreover, we showed that MIR858L has a greater impact on proanthocyanidin and flavonol levels in both Arabidopsis and kiwifruit. We suggest that an active MIR858L-MYB regulatory module appeared in the transition of early land plants to large upright flowering plants, making a key contribution to plant secondary metabolism.
Collapse
Affiliation(s)
- Wen-qiu Wang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-fen Liu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yong-jing Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jia-zhen Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Chao Liu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Zhi-ye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xing-Xing Shen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Xue-ren Yin
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|
20
|
Wang X, Zhou Y, Chai X, Foster TM, Deng CH, Wu T, Zhang X, Han Z, Wang Y. miR164-MhNAC1 regulates apple root nitrogen uptake under low nitrogen stress. THE NEW PHYTOLOGIST 2024; 242:1218-1237. [PMID: 38481030 DOI: 10.1111/nph.19663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/22/2024] [Indexed: 04/12/2024]
Abstract
Nitrogen is an essential nutrient for plant growth and serves as a signaling molecule to regulate gene expression inducing physiological, growth and developmental responses. An excess or deficiency of nitrogen may have adverse effects on plants. Studying nitrogen uptake will help us understand the molecular mechanisms of utilization for targeted molecular breeding. Here, we identified and functionally validated an NAC (NAM-ATAF1/2-CUC2) transcription factor based on the transcriptomes of two apple rootstocks with different nitrogen uptake efficiency. NAC1, a target gene of miR164, directly regulates the expression of the high-affinity nitrate transporter (MhNRT2.4) and citric acid transporter (MhMATE), affecting root nitrogen uptake. To examine the role of MhNAC1 in nitrogen uptake, we produced transgenic lines that overexpressed or silenced MhNAC1. Silencing MhNAC1 promoted nitrogen uptake and citric acid secretion in roots, and enhanced plant tolerance to low nitrogen conditions, while overexpression of MhNAC1 or silencing miR164 had the opposite effect. This study not only revealed the role of the miR164-MhNAC1 module in nitrogen uptake in apple rootstocks but also confirmed that citric acid secretion in roots affected nitrogen uptake, which provides a research basis for efficient nitrogen utilization and molecular breeding in apple.
Collapse
Affiliation(s)
- Xiaona Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Yan Zhou
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Xiaofen Chai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Toshi M Foster
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Motueka, 7198, New Zealand
| | - Cecilia H Deng
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Auckland, 1025, New Zealand
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| |
Collapse
|
21
|
Gao C, Zhao B, Zhang J, Du X, Wang J, Guo Y, He Y, Feng H, Huang L. Adaptive regulation of miRNAs/milRNAs in tissue-specific interaction between apple and Valsa mali. HORTICULTURE RESEARCH 2024; 11:uhae094. [PMID: 38799130 PMCID: PMC11116833 DOI: 10.1093/hr/uhae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/25/2024] [Indexed: 05/29/2024]
Abstract
In plant-pathogen interactions, pathogens display tissue specificity, infecting and causing disease in particular tissues. However, the involvement of microRNAs/microRNA-like RNAs (miRNAs/milRNAs) in tissue-specific regulation during plant-pathogen interactions remains largely unexplored. This study investigates the differential expression of miRNAs/milRNAs, as well as their corresponding target genes, in interactions between Valsa mali (Vm) and different apple tissues. The results demonstrated that both apple miRNAs and Vm milRNAs exhibited distinct expression profiles when Vm infected bark and leaves, with functionally diverse corresponding target genes. Furthermore, one apple miRNA (Mdo-miR482a) and one Vm milRNA (Vm-milR57) were identified as exhibiting tissue-specific expression in interactions between Vm and apple bark or leaves. Mdo-miR482a was exclusively up-regulated in response to Vm infection in bark and target a nucleotide-binding leucine-rich repeat (NLR) gene of apple. When Mdo-miR482a was transiently over-expressed or silenced, the resistance was significantly reduced or improved. Similarly, transient expression of the NLR gene also showed an increase in resistance. Vm-milR57 could target two essential pathogenicity-related genes of Vm. During Vm infection in bark, the expression of Vm-milR57 was down-regulated to enhance the expression of the corresponding target gene to improve the pathogenicity. The study is the first to reveal tissue-specific characteristics of apple miRNAs and Vm milRNAs in interactions between Vm and different apple tissues, providing new insights into adaptive regulation in tissue-specific interactions between plants and fungi.
Collapse
Affiliation(s)
- Chengyu Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Binsen Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jian Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuan Du
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanting He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Feng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
22
|
Zhang Y, Zeng Z, Hu H, Zhao M, Chen C, Ma X, Li G, Li J, Liu Y, Hao Y, Xu J, Xia R. MicroRNA482/2118 is lineage-specifically involved in gibberellin signalling via the regulation of GID1 expression by targeting noncoding PHAS genes and subsequently instigated phasiRNAs. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:819-832. [PMID: 37966709 PMCID: PMC10955497 DOI: 10.1111/pbi.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/05/2023] [Accepted: 10/22/2023] [Indexed: 11/16/2023]
Abstract
MicroRNA482/2118 (miR482/2118) is a 22-nt miRNA superfamily, with conserved functions in disease resistance and plant development. It usually instigates the production of phased small interfering RNAs (phasiRNAs) from its targets to expand or reinforce its silencing effect. Using a new high-quality reference genome sequence and comprehensive small RNA profiling, we characterized a newly evolved regulatory pathway of miR482/2118 in litchi. In this pathway, miR482/2118 cleaved a novel noncoding trans-acting gene (LcTASL1) and triggered phasiRNAs to regulate the expression of gibberellin (GA) receptor gene GIBBERELLIN INSENSITIVE DWARF1 (GID1) in trans; another trans-acting gene LcTASL2, targeted by LcTASL1-derived phasiRNAs, produced phasiRNAs as well to target LcGID1 to reinforce the silencing effect of LcTASL1. We found this miR482/2118-TASL-GID1 pathway was likely involved in fruit development, especially the seed development in litchi. In vivo construction of the miR482a-TASL-GID1 pathway in Arabidopsis could lead to defects in flower and silique development, analogous to the phenotype of gid1 mutants. Finally, we found that a GA-responsive transcription factor, LcGAMYB33, could regulate LcMIR482/2118 as a feedback mechanism of the sRNA-silencing pathway. Our results deciphered a lineage-specifically evolved regulatory module of miR482/2118, demonstrating the high dynamics of miR482/2118 function in plants.
Collapse
Affiliation(s)
- Yanqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural AffairsSouth China Agricultural UniversityGuangzhouChina
| | - Zaohai Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural AffairsSouth China Agricultural UniversityGuangzhouChina
| | - Huimin Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural AffairsSouth China Agricultural UniversityGuangzhouChina
| | - Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural AffairsSouth China Agricultural UniversityGuangzhouChina
| | - Chengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural AffairsSouth China Agricultural UniversityGuangzhouChina
| | - Xingshuai Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural AffairsSouth China Agricultural UniversityGuangzhouChina
| | - Guanliang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural AffairsSouth China Agricultural UniversityGuangzhouChina
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural AffairsSouth China Agricultural UniversityGuangzhouChina
| | - Yuanlong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural AffairsSouth China Agricultural UniversityGuangzhouChina
| | - Yanwei Hao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Jing Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural AffairsSouth China Agricultural UniversityGuangzhouChina
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural AffairsSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
23
|
Sun X, Xu M, Luo M, Wu X, Li H, Nie J, Qi Y, Yang Z, Tian Z. Potato miR394 targets StA/N-INVE and StLCR to negatively regulate late blight resistance. PHYSIOLOGIA PLANTARUM 2024; 176:e14293. [PMID: 38641970 DOI: 10.1111/ppl.14293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/21/2024]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs in eukaryotes. Plant endogenous miRNAs play pivotal roles in regulating plant development and defense responses. MicroRNA394 (miR394) has been reported to regulate plant development, abiotic stresses and defense responses. Previous reports showed that miR394 responded to P. infestans inoculation in potato, indicating that miR394 may be involved in defense responses. In this study, we further investigated its role in potato defense against P. infestans. Stable expression of miR394 in tobacco and potato enhances the susceptibility to P. infestans, which is accompanied with the reduced accumulation of ROS and down-regulation of the PTI (pattern-triggered immunity) marker genes. Besides well-known target StLCR, miR394 also targets StA/N-INVE, which encodes a chloroplast Alkaline/Neutral Invertases (A/N-INVE). Both StLCR and StA/N-INVE positively regulate late blight resistance, while miR394 degrades them. Interestingly, StA/N-INVE is located in the chloroplast, indicating that miR394 may manipulate chloroplast immunity. Degradation of StA/N-INVE may affect the chloroplast function and hence lead to the compromised ROS (reactive oxygen species) burst and reduced retrograde signaling from the chloroplast to the nucleus and cytoplasm. In summary, this study provides new information that miR394 targets and degrades StA/N-INVE and StLCR, which are positive regulators, to enhance potato susceptibility to P. infestans.
Collapse
Affiliation(s)
- Xinyuan Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Meng Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Ming Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Xinya Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Hongjun Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Jiahui Nie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Yetong Qi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Zhu Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Zhendong Tian
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
- Hubei Hongshan Laboratory (HZAU), Wuhan, China
| |
Collapse
|
24
|
Wang C, Li X, Zhuang Y, Sun W, Cao H, Xu R, Kong F, Zhang D. A novel miR160a-GmARF16-GmMYC2 module determines soybean salt tolerance and adaptation. THE NEW PHYTOLOGIST 2024; 241:2176-2192. [PMID: 38135657 DOI: 10.1111/nph.19503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023]
Abstract
Salt stress is a major challenge that has a negative impact on soybean growth and productivity. Therefore, it is important to understand the regulatory mechanism of salt response to ensure soybean yield under such conditions. In this study, we identified and characterized a miR160a-GmARF16-GmMYC2 module and its regulation during the salt-stress response in soybean. miR160a promotes salt tolerance by cleaving GmARF16 transcripts, members of the Auxin Response Factor (ARF) family, which negatively regulates salt tolerance. In turn, GmARF16 activates GmMYC2, encoding a bHLH transcription factor that reduces salinity tolerance by down-regulating proline biosynthesis. Genomic analysis among wild and cultivated soybean accessions identified four distinct GmARF16 haplotypes. Among them, the GmARF16H3 haplotype is preferentially enriched in localities with relatively saline soils, suggesting GmARF16H3 was artificially selected to improve salt tolerance. Our findings therefore provide insights into the molecular mechanisms underlying salt response in soybean and provide valuable genetic targets for the molecular breeding of salt tolerance.
Collapse
Affiliation(s)
- Chaofan Wang
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiaoming Li
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yongbin Zhuang
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Wancai Sun
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Hongxiang Cao
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ran Xu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong, 250131, China
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Dajian Zhang
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
25
|
Cao W, Yang L, Zhuang M, Lv H, Wang Y, Zhang Y, Ji J. Plant non-coding RNAs: The new frontier for the regulation of plant development and adaptation to stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108435. [PMID: 38402798 DOI: 10.1016/j.plaphy.2024.108435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/27/2024]
Abstract
Most plant transcriptomes constitute functional non-coding RNAs (ncRNAs) that lack the ability to encode proteins. In recent years, more research has demonstrated that ncRNAs play important regulatory roles in almost all plant biological processes by modulating gene expression. Thus, it is important to study the biogenesis and function of ncRNAs, particularly in plant growth and development and stress tolerance. In this review, we systematically explore the process of formation and regulatory mechanisms of ncRNAs, particularly those of microRNAs (miRNAs), small interfering RNAs (siRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Additionally, we provide a comprehensive overview of the recent advancements in ncRNAs research, including their regulation of plant growth and development (seed germination, root growth, leaf morphogenesis, floral development, and fruit and seed development) and responses to abiotic and biotic stress (drought, heat, cold, salinity, pathogens and insects). We also discuss research challenges and provide recommendations to advance the understanding of the roles of ncRNAs in agronomic applications.
Collapse
Affiliation(s)
- Wenxue Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing 100081, China
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing 100081, China
| | - Mu Zhuang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing 100081, China
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing 100081, China
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing 100081, China
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing 100081, China.
| | - Jialei Ji
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing 100081, China.
| |
Collapse
|
26
|
Campa M, Miranda S, Licciardello C, Lashbrooke JG, Dalla Costa L, Guan Q, Spök A, Malnoy M. Application of new breeding techniques in fruit trees. PLANT PHYSIOLOGY 2024; 194:1304-1322. [PMID: 37394947 DOI: 10.1093/plphys/kiad374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023]
Abstract
Climate change and rapid adaption of invasive pathogens pose a constant pressure on the fruit industry to develop improved varieties. Aiming to accelerate the development of better-adapted cultivars, new breeding techniques have emerged as a promising alternative to meet the demand of a growing global population. Accelerated breeding, cisgenesis, and CRISPR/Cas genome editing hold significant potential for crop trait improvement and have proven to be useful in several plant species. This review focuses on the successful application of these technologies in fruit trees to confer pathogen resistance and tolerance to abiotic stress and improve quality traits. In addition, we review the optimization and diversification of CRISPR/Cas genome editing tools applied to fruit trees, such as multiplexing, CRISPR/Cas-mediated base editing and site-specific recombination systems. Advances in protoplast regeneration and delivery techniques, including the use of nanoparticles and viral-derived replicons, are described for the obtention of exogenous DNA-free fruit tree species. The regulatory landscape and broader social acceptability for cisgenesis and CRISPR/Cas genome editing are also discussed. Altogether, this review provides an overview of the versatility of applications for fruit crop improvement, as well as current challenges that deserve attention for further optimization and potential implementation of new breeding techniques.
Collapse
Affiliation(s)
- Manuela Campa
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
- Department of Genetics, Stellenbosch University, Matieland, South Africa
| | - Simón Miranda
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
| | - Concetta Licciardello
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 95024 Acireale, Italy
| | | | - Lorenza Dalla Costa
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Armin Spök
- Science, Technology and Society Unit, Graz University of Technology, Graz, Austria
| | - Mickael Malnoy
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
| |
Collapse
|
27
|
Lian C, Zhang F, Yang H, Zhang X, Lan J, Zhang B, Liu X, Yang J, Chen S. Multi-omics analysis of small RNA, transcriptome, and degradome to identify putative miRNAs linked to MeJA regulated and oridonin biosynthesis in Isodon rubescens. Int J Biol Macromol 2024; 258:129123. [PMID: 38163496 DOI: 10.1016/j.ijbiomac.2023.129123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Isodon rubescens has garnered much attention due to its anti-tumor or anti-cancer properties. However, little is known about the molecular mechanism of oridonin biosynthesis leveraging the regulatory network between small RNAs and mRNAs. In this study, the regulatory networks of miRNAs and targets were examined by combining mRNA, miRNA, and degradome. A total of 348 miRNAs, including 287 known miRNAs and 61 novel miRNAs, were identified. Among them, 51 miRNAs were significantly expressed, and 36 miRNAs responded to MeJA. A total of 3066 target genes were associated with 228 miRNAs via degradome sequencing. Multi-omics analysis demonstrated that 27 miRNA-mRNA pairs were speculated to be involved in MeJA regulation, and 36 miRNA-mRNA pairs were hypothesized to be involved in the genotype-dependence of I. rubescens. Furthermore, 151 and 7 miRNA-mRNA modules were likely engaged in oridonin biosynthesis as identified by psRNATarget and degradome sequencing, respectively. Some miRNA-mRNA modules were confirmed via RT-qPCR. Moreover, miRNAs targeting plant hormone signal transduction pathway genes were identified, such as miR156, miR167, miR393, and PC-3p-19822_242. Collectively, our results demonstrate for the first time that miRNAs are identified in I. rubescens, and laid a solid foundation for further research on the molecular mechanism of oridonin biosynthesis mediated by miRNA.
Collapse
Affiliation(s)
- Conglong Lian
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China; Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China
| | - Fei Zhang
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China; Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China
| | - Hao Yang
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China; Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China
| | - Xueyu Zhang
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China; Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China
| | - Jinxu Lan
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China; Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China
| | - Bao Zhang
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China; Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China
| | - Xiuyu Liu
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China; Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China
| | - Jingfan Yang
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China; Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China
| | - Suiqing Chen
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China; Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China.
| |
Collapse
|
28
|
Middleton H, Dozois JA, Monard C, Daburon V, Clostres E, Tremblay J, Combier JP, Yergeau É, El Amrani A. Rhizospheric miRNAs affect the plant microbiota. ISME COMMUNICATIONS 2024; 4:ycae120. [PMID: 39474459 PMCID: PMC11520407 DOI: 10.1093/ismeco/ycae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 12/31/2024]
Abstract
Small ribonucleic acids (RNAs) have been shown to play important roles in cross-kingdom communication, notably in plant-pathogen relationships. Plant micro RNAs (miRNAs)-one class of small RNAs-were even shown to regulate gene expression in the gut microbiota. Plant miRNAs could also affect the rhizosphere microbiota. Here we looked for plant miRNAs in the rhizosphere of model plants, and if these miRNAs could affect the rhizosphere microbiota. We first show that plant miRNAs were present in the rhizosphere of Arabidopsis thaliana and Brachypodium distachyon. These plant miRNAs were also found in or on bacteria extracted from the rhizosphere. We then looked at the effect these plants miRNAs could have on two typical rhizosphere bacteria, Variovorax paradoxus and Bacillus mycoides. The two bacteria took up a fluorescent synthetic miRNA but only V. paradoxus shifted its transcriptome when confronted to a mixture of six plant miRNAs. V. paradoxus also changed its transcriptome when it was grown in the rhizosphere of Arabidopsis that overexpressed a miRNA in its roots. As there were differences in the response of the two isolates used, we looked for shifts in the larger microbial community. We observed shifts in the rhizosphere bacterial communities of Arabidopsis mutants that were impaired in their small RNA pathways, or overexpressed specific miRNAs. We also found differences in the growth and community composition of a simplified soil microbial community when exposed in vitro to a mixture of plant miRNAs. Our results support the addition of miRNAs to the plant tools shaping rhizosphere microbial assembly.
Collapse
Affiliation(s)
- Harriet Middleton
- Écosystèmes, Biodiversité, Évolution (ECOBIO), Unité mixte de recherche (UMR) 6553, Centre national de la recherche scientifique (CNRS) - Université de Rennes, Campus Beaulieu, 263 Avenue du Général Leclerc, Rennes, 35042, France
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Jessica Ann Dozois
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Cécile Monard
- Écosystèmes, Biodiversité, Évolution (ECOBIO), Unité mixte de recherche (UMR) 6553, Centre national de la recherche scientifique (CNRS) - Université de Rennes, Campus Beaulieu, 263 Avenue du Général Leclerc, Rennes, 35042, France
| | - Virginie Daburon
- Écosystèmes, Biodiversité, Évolution (ECOBIO), Unité mixte de recherche (UMR) 6553, Centre national de la recherche scientifique (CNRS) - Université de Rennes, Campus Beaulieu, 263 Avenue du Général Leclerc, Rennes, 35042, France
| | - Emmanuel Clostres
- Écosystèmes, Biodiversité, Évolution (ECOBIO), Unité mixte de recherche (UMR) 6553, Centre national de la recherche scientifique (CNRS) - Université de Rennes, Campus Beaulieu, 263 Avenue du Général Leclerc, Rennes, 35042, France
| | - Julien Tremblay
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Jean-Philippe Combier
- Laboratoire de recherche en sciences végétales (LRSV), UMR 5546, Université Paul-Sabatier - CNRS -Institut national polytechnique, 24 chemin de Borde Rouge, Auzeville-Tolosane, 31320, France
| | - Étienne Yergeau
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Abdelhak El Amrani
- Écosystèmes, Biodiversité, Évolution (ECOBIO), Unité mixte de recherche (UMR) 6553, Centre national de la recherche scientifique (CNRS) - Université de Rennes, Campus Beaulieu, 263 Avenue du Général Leclerc, Rennes, 35042, France
| |
Collapse
|
29
|
Tao Y, Li C, Liu Y, Xu C, Okabe S, Matsushita N, Lian C. Identification of microRNAs involved in ectomycorrhizal formation in Populus tomentosa. TREE PHYSIOLOGY 2023; 43:2012-2030. [PMID: 37777191 DOI: 10.1093/treephys/tpad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/17/2023] [Indexed: 10/02/2023]
Abstract
The majority of woody plants are able to form ectomycorrhizal (ECM) symbioses with fungi. During symbiotic development, plants undergo a complex re-programming process involving a series of physiological and morphological changes. MicroRNAs (miRNAs) are important components of the regulatory network underlying symbiotic development. To elucidate the mechanisms of miRNAs and miRNA-mediated mRNA cleavage during symbiotic development, we conducted high-throughput sequencing of small RNAs and degradome tags from roots of Populus tomentosa inoculated with Cenococcum geophilum. This process led to the annotation of 51 differentially expressed miRNAs between non-mycorrhizal and mycorrhizal roots of P. tomentosa, including 13 novel miRNAs. Increased or decreased accumulation of several novel and conserved miRNAs in ECM roots, including miR162, miR164, miR319, miR396, miR397, miR398, novel-miR44 and novel-miR47, suggests essential roles for these miRNAs in ECM formation. The degradome analysis identified root transcripts as miRNA-mediated mRNA cleavage targets, which was confirmed using real-time quantitative PCR. Several of the identified miRNAs and corresponding targets are involved in arbuscular mycorrhizal symbioses. In summary, increased or decreased accumulation of specific miRNAs and miRNA-mediated cleavage of symbiosis-related genes indicate that miRNAs play important roles in the regulatory network underlying symbiotic development.
Collapse
Affiliation(s)
- Yuanxun Tao
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
| | - Chaofeng Li
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
- Maize Research Institute, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, No. 2, Tiansheng Road, Beibei District, Chongqing, 400715 China
| | - Ying Liu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing, 400715 China
| | - Shin Okabe
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
| | - Norihisa Matsushita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chunlan Lian
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
| |
Collapse
|
30
|
Zhang M, Zhang X, Wang R, Zang R, Guo L, Qi T, Tang H, Chen L, Wang H, Qiao X, Wu J, Xing C. Heat-responsive microRNAs participate in regulating the pollen fertility stability of CMS-D2 restorer line under high-temperature stress. Biol Res 2023; 56:58. [PMID: 37941013 PMCID: PMC10634144 DOI: 10.1186/s40659-023-00465-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
Anther development and pollen fertility of cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) restorer lines are susceptible to continuous high-temperature (HT) stress in summer, which seriously hinders the large-scale application of "three-line" hybrids in production. Here, integrated small RNA, transcriptome, degradome, and hormone profiling was performed to explore the roles of microRNAs (miRNAs) in regulating fertility stability in mature pollens of isonuclear alloplasmic near-isogenic restorer lines NH and SH under HT stress at two environments. A total of 211 known and 248 novel miRNAs were identified, of which 159 were differentially expressed miRNAs (DEMs). Additionally, 45 DEMs in 39 miRNA clusters (PmCs) were also identified, and most highly expressed miRNAs were significantly induced in SH under extreme HT, especially four MIR482 and six MIR6300 family miRNAs. PmC28 was located in the fine-mapped interval of the Rf1 gene and contained two DEMs, gra-miR482_L-2R + 2 and gma-miR2118a-3p_R + 1_1ss18TG. Transcriptome sequencing identified 6281 differentially expressed genes, of which heat shock protein (HSP)-related genes, such as HSP70, HSP22, HSP18.5-C, HSP18.2 and HSP17.3-B, presented significantly reduced expression levels in SH under HT stress. Through integrating multi-omics data, we constructed a comprehensive molecular network of miRNA-mRNA-gene-KEGG containing 35 pairs of miRNA/target genes involved in regulating the pollen development in response to HT, among which the mtr-miR167a_R + 1, tcc-miR167c and ghr-miR390a, tcc-miR396c_L-1 and ghr-MIR169b-p3_1ss6AG regulated the pollen fertility by influencing ARF8 responsible for the auxin signal transduction, ascorbate and aldarate metabolism, and the sugar and lipid metabolism and transport pathways, respectively. Further combination with hormone analysis revealed that HT-induced jasmonic acid signaling could activate the expression of downstream auxin synthesis-related genes and cause excessive auxin accumulation, followed by a cascade of auxin signal transduction, ultimately resulting in pollen abortion. The results provide a new understanding of how heat-responsive miRNAs regulate the stability of fertility restoration for CMS-D2 cotton under heat stress.
Collapse
Affiliation(s)
- Meng Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xuexian Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Ruijie Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Rong Zang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Liping Guo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Tingxiang Qi
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Huini Tang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Liangliang Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Hailin Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xiuqin Qiao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Jianyong Wu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| | - Chaozhu Xing
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| |
Collapse
|
31
|
Zhang Y, Huang D, Miao Y. Epigenetic control of plant senescence and cell death and its application in crop improvement. FRONTIERS IN PLANT SCIENCE 2023; 14:1258487. [PMID: 37965008 PMCID: PMC10642554 DOI: 10.3389/fpls.2023.1258487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023]
Abstract
Plant senescence is the last stage of plant development and a type of programmed cell death, occurring at a predictable time and cell. It involves the functional conversion from nutrient assimilation to nutrient remobilization, which substantially impacts plant architecture and plant biomass, crop quality, and horticultural ornamental traits. In past two decades, DNA damage was believed to be a main reason for cell senescence. Increasing evidence suggests that the alteration of epigenetic information is a contributing factor to cell senescence in organisms. In this review, we summarize the current research progresses of epigenetic and epitranscriptional mechanism involved in cell senescence of plant, at the regulatory level of DNA methylation, histone methylation and acetylation, chromatin remodeling, non-coding RNAs and RNA methylation. Furthermore, we discuss their molecular genetic manipulation and potential application in agriculture for crop improvement. Finally we point out the prospects of future research topics.
Collapse
Affiliation(s)
- Yu Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongmei Huang
- Department of Biochemistry and Molecular Biology, Xiamen Medical College, Xiamen, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
32
|
Cisneros AE, Martín-García T, Primc A, Kuziuta W, Sánchez-Vicente J, Aragonés V, Daròs JA, Carbonell A. Transgene-free, virus-based gene silencing in plants by artificial microRNAs derived from minimal precursors. Nucleic Acids Res 2023; 51:10719-10736. [PMID: 37713607 PMCID: PMC10602918 DOI: 10.1093/nar/gkad747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023] Open
Abstract
Artificial microRNAs (amiRNAs) are highly specific, 21-nucleotide (nt) small RNAs designed to silence target transcripts. In plants, their application as biotechnological tools for functional genomics or crop improvement is limited by the need of transgenically expressing long primary miRNA (pri-miRNA) precursors to produce the amiRNAs in vivo. Here, we analyzed the minimal structural and sequence requirements for producing effective amiRNAs from the widely used, 521-nt long AtMIR390a pri-miRNA from Arabidopsis thaliana. We functionally screened in Nicotiana benthamiana a large collection of constructs transiently expressing amiRNAs against endogenous genes and from artificially shortened MIR390-based precursors and concluded that highly effective and accurately processed amiRNAs can be produced from a chimeric precursor of only 89 nt. This minimal precursor was further validated in A. thaliana transgenic plants expressing amiRNAs against endogenous genes. Remarkably, minimal but not full-length precursors produce authentic amiRNAs and induce widespread gene silencing in N. benthamiana when expressed from an RNA virus, which can be applied into leaves by spraying infectious crude extracts. Our results reveal that the length of amiRNA precursors can be shortened without affecting silencing efficacy, and that viral vectors including minimal amiRNA precursors can be applied in a transgene-free manner to induce whole-plant gene silencing.
Collapse
Affiliation(s)
- Adriana E Cisneros
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Tamara Martín-García
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Anamarija Primc
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Wojtek Kuziuta
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Javier Sánchez-Vicente
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Verónica Aragonés
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Alberto Carbonell
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Av. de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
33
|
Chorostecki U, Bologna NG, Ariel F. The plant noncoding transcriptome: a versatile environmental sensor. EMBO J 2023; 42:e114400. [PMID: 37735935 PMCID: PMC10577639 DOI: 10.15252/embj.2023114400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Plant noncoding RNA transcripts have gained increasing attention in recent years due to growing evidence that they can regulate developmental plasticity. In this review article, we comprehensively analyze the relationship between noncoding RNA transcripts in plants and their response to environmental cues. We first provide an overview of the various noncoding transcript types, including long and small RNAs, and how the environment modulates their performance. We then highlight the importance of noncoding RNA secondary structure for their molecular and biological functions. Finally, we discuss recent studies that have unveiled the functional significance of specific long noncoding transcripts and their molecular partners within ribonucleoprotein complexes during development and in response to biotic and abiotic stress. Overall, this review sheds light on the fascinating and complex relationship between dynamic noncoding transcription and plant environmental responses, and highlights the need for further research to uncover the underlying molecular mechanisms and exploit the potential of noncoding transcripts for crop resilience in the context of global warming.
Collapse
Affiliation(s)
- Uciel Chorostecki
- Faculty of Medicine and Health SciencesUniversitat Internacional de CatalunyaBarcelonaSpain
| | - Nicolas G. Bologna
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBBarcelonaSpain
| | - Federico Ariel
- Instituto de Agrobiotecnologia del Litoral, CONICET, FBCBUniversidad Nacional del LitoralSanta FeArgentina
| |
Collapse
|
34
|
Xu WB, Zhao L, Liu P, Guo QH, Wu CA, Yang GD, Huang JG, Zhang SX, Guo XQ, Zhang SZ, Zheng CC, Yan K. Intronic microRNA-directed regulation of mitochondrial reactive oxygen species enhances plant stress tolerance in Arabidopsis. THE NEW PHYTOLOGIST 2023; 240:710-726. [PMID: 37547968 DOI: 10.1111/nph.19168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
MicroRNAs (miRNAs) play crucial roles in regulating plant development and stress responses. However, the functions and mechanism of intronic miRNAs in plants are poorly understood. This study reports a stress-responsive RNA splicing mechanism for intronic miR400 production, whereby miR400 modulates reactive oxygen species (ROS) accumulation and improves plant tolerance by downregulating its target expression. To monitor the intron splicing events, we used an intronic miR400 splicing-dependent luciferase transgenic line. Luciferase activity was observed to decrease after high cadmium concentration treatment due to the retention of the miR400-containing intron, which inhibited the production of mature miR400. Furthermore, we demonstrated that under Cd treatments, Pentatricopeptide Repeat Protein 1 (PPR1), the target of miR400, acts as a positive regulator by inducing ROS accumulation. Ppr1 mutation affected the Complex III activity in the electron transport chain and RNA editing of the mitochondrial gene ccmB. This study illustrates intron splicing as a key step in intronic miR400 production and highlights the function of intronic miRNAs as a 'signal transducer' in enhancing plant stress tolerance.
Collapse
Affiliation(s)
- Wei-Bo Xu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Lei Zhao
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Peng Liu
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Qian-Huan Guo
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chang-Ai Wu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Guo-Dong Yang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jin-Guang Huang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Shu-Xin Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xing-Qi Guo
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Shi-Zhong Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Cheng-Chao Zheng
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Kang Yan
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| |
Collapse
|
35
|
Chen X, Chen H, Shen T, Luo Q, Xu M, Yang Z. The miRNA-mRNA Regulatory Modules of Pinus massoniana Lamb. in Response to Drought Stress. Int J Mol Sci 2023; 24:14655. [PMID: 37834103 PMCID: PMC10572226 DOI: 10.3390/ijms241914655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Masson pine (Pinus massoniana Lamb.) is a major fast-growing woody tree species and pioneer species for afforestation in barren sites in southern China. However, the regulatory mechanism of gene expression in P. massoniana under drought remains unclear. To uncover candidate microRNAs, their expression profiles, and microRNA-mRNA interactions, small RNA-seq was used to investigate the transcriptome from seedling roots under drought and rewatering in P. massoniana. A total of 421 plant microRNAs were identified. Pairwise differential expression analysis between treatment and control groups unveiled 134, 156, and 96 differential expressed microRNAs at three stages. These constitute 248 unique microRNAs, which were subsequently categorized into six clusters based on their expression profiles. Degradome sequencing revealed that these 248 differentially expressed microRNAs targeted 2069 genes. Gene Ontology enrichment analysis suggested that these target genes were related to translational and posttranslational regulation, cell wall modification, and reactive oxygen species scavenging. miRNAs such as miR482, miR398, miR11571, miR396, miR166, miRN88, and miRN74, along with their target genes annotated as F-box/kelch-repeat protein, 60S ribosomal protein, copper-zinc superoxide dismutase, luminal-binding protein, S-adenosylmethionine synthase, and Early Responsive to Dehydration Stress may play critical roles in drought response. This study provides insights into microRNA responsive to drought and rewatering in Masson pine and advances the understanding of drought tolerance mechanisms in Pinus.
Collapse
Affiliation(s)
- Xinhua Chen
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, 682 Guangshan Road 1, Guangzhou 510520, China;
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China;
- Engineering Research Center of Masson Pine of State Forestry Administration, Engineering Research Center of Masson Pine of Guangxi, Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China; (H.C.); (Q.L.)
| | - Hu Chen
- Engineering Research Center of Masson Pine of State Forestry Administration, Engineering Research Center of Masson Pine of Guangxi, Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China; (H.C.); (Q.L.)
| | - Tengfei Shen
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China;
| | - Qunfeng Luo
- Engineering Research Center of Masson Pine of State Forestry Administration, Engineering Research Center of Masson Pine of Guangxi, Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China; (H.C.); (Q.L.)
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China;
| | - Zhangqi Yang
- Engineering Research Center of Masson Pine of State Forestry Administration, Engineering Research Center of Masson Pine of Guangxi, Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China; (H.C.); (Q.L.)
| |
Collapse
|
36
|
Wang W, Liu H, Wang F, Liu X, Sun Y, Zhao J, Zhu C, Gan L, Yu J, Witte CP, Chen M. N4-acetylation of cytidine in mRNA plays essential roles in plants. THE PLANT CELL 2023; 35:3739-3756. [PMID: 37367221 PMCID: PMC10533332 DOI: 10.1093/plcell/koad189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
The biological function of RNA can be modulated by base modifications. Here, we unveiled the occurrence of N4-acetylation of cytidine in plant RNA, including mRNA, by employing LC-MS/MS and acRIP-seq. We identified 325 acetylated transcripts from the leaves of 4-week-old Arabidopsis (Arabidopsis thaliana) plants and determined that 2 partially redundant N-ACETYLTRANSFERASEs FOR CYTIDINE IN RNA (ACYR1 and ACYR2), which are homologous to mammalian NAT10, are required for acetylating RNA in vivo. A double-null mutant was embryo lethal, while eliminating 3 of the 4 ACYR alleles led to defects in leaf development. These phenotypes could be traced back to the reduced acetylation and concomitant destabilization of the transcript of TOUGH, which is required for miRNA processing. These findings indicate that N4-acetylation of cytidine is a modulator of RNA function with a critical role in plant development and likely many other processes.
Collapse
Affiliation(s)
- Wenlei Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Huijie Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Feifei Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiaoye Liu
- Department of Criminal Science and Technology, Nanjing Forest Police College, Nanjing 210023, P.R. China
| | - Yu Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jie Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Changhua Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Lijun Gan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jinping Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, P.R. China
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Hannover 30419, Germany
| | - Mingjia Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
37
|
Wang S, Ren C, Zhang Y, Li Y, Pang S, Song T. Identifying potential small molecule-miRNA associations via Robust PCA based on γ-norm regularization. Brief Bioinform 2023; 24:bbad312. [PMID: 37670501 DOI: 10.1093/bib/bbad312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Dysregulation of microRNAs (miRNAs) is closely associated with refractory human diseases, and the identification of potential associations between small molecule (SM) drugs and miRNAs can provide valuable insights for clinical treatment. Existing computational techniques for inferring potential associations suffer from limitations in terms of accuracy and efficiency. To address these challenges, we devise a novel predictive model called RPCA$\Gamma $NR, in which we propose a new Robust principal component analysis (PCA) framework based on $\gamma $-norm and $l_{2,1}$-norm regularization and design an Augmented Lagrange Multiplier method to optimize it, thereby deriving the association scores. The Gaussian Interaction Profile Kernel Similarity is calculated to capture the similarity information of SMs and miRNAs in known associations. Through extensive evaluation, including Cross Validation Experiments, Independent Validation Experiment, Efficiency Analysis, Ablation Experiment, Matrix Sparsity Analysis, and Case Studies, RPCA$\Gamma $NR outperforms state-of-the-art models concerning accuracy, efficiency and robustness. In conclusion, RPCA$\Gamma $NR can significantly streamline the process of determining SM-miRNA associations, thus contributing to advancements in drug development and disease treatment.
Collapse
Affiliation(s)
- Shudong Wang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), 66 Changjiang Xi Lu, 266580 Shandong, China
| | - Chuanru Ren
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), 66 Changjiang Xi Lu, 266580 Shandong, China
| | - Yulin Zhang
- College of Mathematics and Systems Science, Shandong University of Science and Technology, Xin An Street, 266590 Shandong, China
| | - Yunyin Li
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), 66 Changjiang Xi Lu, 266580 Shandong, China
| | - Shanchen Pang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), 66 Changjiang Xi Lu, 266580 Shandong, China
| | - Tao Song
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), 66 Changjiang Xi Lu, 266580 Shandong, China
| |
Collapse
|
38
|
Teng C, Zhang C, Guo F, Song L, Fang Y. Advances in the Study of the Transcriptional Regulation Mechanism of Plant miRNAs. Life (Basel) 2023; 13:1917. [PMID: 37763320 PMCID: PMC10533097 DOI: 10.3390/life13091917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
MicroRNAs (miRNA) are a class of endogenous, non-coding, small RNAs with about 22 nucleotides (nt), that are widespread in plants and are involved in various biological processes, such as development, flowering phase transition, hormone signal transduction, and stress response. The transcriptional regulation of miRNAs is an important process of miRNA gene regulation, and it is essential for miRNA biosynthesis and function. Like mRNAs, miRNAs are transcribed by RNA polymerase II, and these transcription processes are regulated by various transcription factors and other proteins. Consequently, the upstream genes regulating miRNA transcription, their specific expression, and the regulating mechanism were reviewed to provide more information for further research on the miRNA regulatory mechanism and help to further understand the regulatory networks of plant miRNAs.
Collapse
Affiliation(s)
| | | | | | | | - Yanni Fang
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (C.T.); (C.Z.); (F.G.)
| |
Collapse
|
39
|
Zhao G, Niu J, Hai Z, Li T, Xie D, Li Y, Qi Y. Peptidyl-prolyl isomerase Cyclophilin71 promotes SERRATE phase separation and miRNA processing in Arabidopsis. Proc Natl Acad Sci U S A 2023; 120:e2305244120. [PMID: 37639607 PMCID: PMC10483624 DOI: 10.1073/pnas.2305244120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023] Open
Abstract
MicroRNAs (miRNAs) play an important role in gene regulation. In Arabidopsis, mature miRNAs are processed from primary miRNA transcripts by the Dicing complex that contains Dicer-like 1 (DCL1), SERRATE (SE), and Hyponastic Leaves 1 (HYL1). The Dicing complex can form nuclear dicing bodies (D-bodies) through SE phase separation. Here, we report that Cyclophilin71 (CYP71), a peptidyl-prolyl isomerase (PPIase), positively regulates miRNA processing. We show that CYP71 directly interacts with SE and enhances its phase separation, thereby promoting the formation of D-body and increasing the activity of the Dicing complex. We further show that the PPIase activity is important for the function of CYP71 in miRNA production. Our findings reveal orchestration of miRNA processing by a cyclophilin protein and suggest the involvement of peptidyl-prolyl cis-trans isomerization, a structural mechanism, in SE phase separation and miRNA processing.
Collapse
Affiliation(s)
- Gaozhan Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing100084, China
| | - Jinrong Niu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing100084, China
| | - Zhuoyan Hai
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing100084, China
| | - Tengfei Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing100084, China
| | - Dongqi Xie
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing100084, China
| | - Yan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing100084, China
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing100084, China
| |
Collapse
|
40
|
Zhao S, Tan M, Zhu Y, Zhang Y, Zhang C, Jiao J, Wu P, Feng K, Li L. Combined analysis of microRNA and mRNA profiles provides insights into the pathogenic resistant mechanisms of the lotus rhizome rot. PHYSIOLOGIA PLANTARUM 2023; 175:e14045. [PMID: 37882296 DOI: 10.1111/ppl.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/21/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
Lotus rhizome rot caused by Fusarium oxysporum is a common vascular fungal disease in plants that significantly impacts the yield. However, only a few studies have studied the mechanism of Nelumbo nucifera responding to lotus rhizome rot. Here, we investigated the pathogenic genes and miRNAs in lotus rhizome rot to uncover the pathogenic resistant mechanisms by transcriptome and small RNA sequencing of lotus roots after inoculation with Fusarium oxysporum. GO and KEGG functional enrichment analysis showed that differential miRNAs were mostly enriched in starch and sucrose metabolism, biosynthesis of secondary metabolites, glutathione metabolism, brassinosteroid biosynthesis and flavonoid biosynthesis pathways. Twenty-seven upregulated miRNAs, 19 downregulated miRNAs and their target genes were identified. Correlation analysis found that miRNAs negatively regulate target genes, which were also enriched in starch and sucrose metabolism and glutathione metabolism pathways. Their expression was measured by reverse transcription quantitative PCR (qRT-PCR), and the results were consistent with the transcriptome analysis, thus verifying the reliability of transcriptome data. We selected three miRNAs (miRNA858-y, miRNA171-z and a novel miRNA novel-m0005-5p) to test the relationship between miRNAs and their target genes. The activity of the GUS testing assay indicated that miRNA could decrease the GUS activity by inhibiting the expression of their target genes. Collectively, this study provides a comprehensive analysis of transcriptome and small RNA sequencing of lotus root after inoculation with Fusarium oxysporum, and we identified candidate miRNAs and their target genes for breeding strategies of Nelumbo nucifera.
Collapse
Affiliation(s)
- Shuping Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Mengying Tan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Yamei Zhu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Yao Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Chuyan Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Jiao Jiao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Peng Wu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Kai Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Liangjun Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
41
|
Das P, Grover M, Mishra DC, Guha Majumdar S, Shree B, Kumar S, Mir ZA, Chaturvedi KK, Bhardwaj SC, Singh AK, Rai A. Genome-wide identification and characterization of Puccinia striiformis-responsive lncRNAs in Triticum aestivum. FRONTIERS IN PLANT SCIENCE 2023; 14:1120898. [PMID: 37650000 PMCID: PMC10465180 DOI: 10.3389/fpls.2023.1120898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/10/2023] [Indexed: 09/01/2023]
Abstract
Wheat stripe rust (yellow rust) caused by Puccinia striiformis f. sp. tritici (Pst) is a serious biotic stress factor limiting wheat production worldwide. Emerging evidence demonstrates that long non-coding RNAs (lncRNAs) participate in various developmental processes in plants via post-transcription regulation. In this study, RNA sequencing (RNA-seq) was performed on a pair of near-isogenic lines-rust resistance line FLW29 and rust susceptible line PBW343-which differed only in the rust susceptibility trait. A total of 6,807 lncRNA transcripts were identified using bioinformatics analyses, among which 10 lncRNAs were found to be differentially expressed between resistance and susceptible lines. In order to find the target genes of the identified lncRNAs, their interactions with wheat microRNA (miRNAs) were predicted. A total of 199 lncRNAs showed interactions with 65 miRNAs, which further target 757 distinct mRNA transcripts. Moreover, detailed functional annotations of the target genes were used to identify the candidate genes, pathways, domains, families, and transcription factors that may be related to stripe rust resistance response in wheat plants. The NAC domain protein, disease resistance proteins RPP13 and RPM1, At1g58400, monodehydroascorbate reductase, NBS-LRR-like protein, rust resistance kinase Lr10-like, LRR receptor, serine/threonine-protein kinase, and cysteine proteinase are among the identified targets that are crucial for wheat stripe rust resistance. Semiquantitative PCR analysis of some of the differentially expressed lncRNAs revealed variations in expression profiles of two lncRNAs between the Pst-resistant and Pst-susceptible genotypes at least under one condition. Additionally, simple sequence repeats (SSRs) were also identified from wheat lncRNA sequences, which may be very useful for conducting targeted gene mapping studies of stripe rust resistance in wheat. These findings improved our understanding of the molecular mechanism responsible for the stripe rust disease that can be further utilized to develop wheat varieties with durable resistance to this disease.
Collapse
Affiliation(s)
- Parinita Das
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Monendra Grover
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | | | - Bharti Shree
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Zahoor Ahmad Mir
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | | | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
42
|
Zeeshan Ul Haq M, Yu J, Yao G, Yang H, Iqbal HA, Tahir H, Cui H, Liu Y, Wu Y. A Systematic Review on the Continuous Cropping Obstacles and Control Strategies in Medicinal Plants. Int J Mol Sci 2023; 24:12470. [PMID: 37569843 PMCID: PMC10419402 DOI: 10.3390/ijms241512470] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Continuous cropping (CC) is a common practice in agriculture, and usually causes serious economic losses due to soil degeneration, decreased crop yield and quality, and increased disease incidence, especially in medicinal plants. Continuous cropping obstacles (CCOs) are mainly due to changes in soil microbial communities, nutrient availability, and allelopathic effects. Recently, progressive studies have illustrated the molecular mechanisms of CCOs, and valid strategies to overcome them. Transcriptomic and metabolomics analyses revealed that identified DEGs (differently expressed genes) and metabolites involved in the response to CCOs are involved in various biological processes, including photosynthesis, carbon metabolism, secondary metabolite biosynthesis, and bioactive compounds. Soil improvement is an effective strategy to overcome this problem. Soil amendments can improve the microbial community by increasing the abundance of beneficial microorganisms, soil fertility, and nutrient availability. In this review, we sum up the recent status of the research on CCOs in medicinal plants, the combination of transcriptomic and metabolomics studies, and related control strategies, including uses of soil amendments, crop rotation, and intercropping. Finally, we propose future research trends for understanding CCOs, and strategies to overcome these obstacles and promote sustainable agriculture practices in medicinal plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ya Liu
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Yougen Wu
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| |
Collapse
|
43
|
Raza A, Charagh S, Karikari B, Sharif R, Yadav V, Mubarik MS, Habib M, Zhuang Y, Zhang C, Chen H, Varshney RK, Zhuang W. miRNAs for crop improvement. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107857. [PMID: 37437345 DOI: 10.1016/j.plaphy.2023.107857] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
Climate change significantly impacts crop production by inducing several abiotic and biotic stresses. The increasing world population, and their food and industrial demands require focused efforts to improve crop plants to ensure sustainable food production. Among various modern biotechnological tools, microRNAs (miRNAs) are one of the fascinating tools available for crop improvement. miRNAs belong to a class of small non-coding RNAs playing crucial roles in numerous biological processes. miRNAs regulate gene expression by post-transcriptional target mRNA degradation or by translation repression. Plant miRNAs have essential roles in plant development and various biotic and abiotic stress tolerance. In this review, we provide propelling evidence from previous studies conducted around miRNAs and provide a one-stop review of progress made for breeding stress-smart future crop plants. Specifically, we provide a summary of reported miRNAs and their target genes for improvement of plant growth and development, and abiotic and biotic stress tolerance. We also highlight miRNA-mediated engineering for crop improvement and sequence-based technologies available for the identification of miRNAs associated with stress tolerance and plant developmental events.
Collapse
Affiliation(s)
- Ali Raza
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Benjamin Karikari
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Rahat Sharif
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| | - Vivek Yadav
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shanxi, 712100, China
| | | | - Madiha Habib
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Rd., Islamabad 45500, Pakistan
| | - Yuhui Zhuang
- College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Chong Zhang
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China
| | - Hua Chen
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China
| | - Rajeev K Varshney
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China; WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Weijian Zhuang
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China.
| |
Collapse
|
44
|
Liu Y, Yu Y, Fei S, Chen Y, Xu Y, Zhu Z, He Y. Overexpression of Sly-miR398b Compromises Disease Resistance against Botrytis cinerea through Regulating ROS Homeostasis and JA-Related Defense Genes in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2572. [PMID: 37447133 DOI: 10.3390/plants12132572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
MicroRNAs (miRNAs) have been shown to be critical components in plant immunity. MicroRNA398 (miR398) is a highly conserved miRNA in all land plants and plays crucial roles in diverse biotic stress responses. However, the role of miR398 has not yet been characterized in tomato resistance against Botrytis cinerea. In this report, the transcript levels of sly-miR398b were strongly decreased in B. cinerea-infected leaves and the overexpression of sly-miR398b resulted in enhanced susceptibility. The attenuated expression of cytosol Cu/Zn-SOD (CSD1), chloroplast Cu/Zn-SOD (CSD2), and guaiacol peroxidase (GPOD), as well as the decreased activities of superoxide dismutase (SOD) and GPOD, collectively led to increased hydrogen peroxide (H2O2) accumulation in sly-miR398b overexpressing plants. Furthermore, sly-miR398b was induced by methyl jasmonate (MeJA) treatment. The overexpression of sly-miR398b suppressed the expression of TomLoxD, LapA, and PR-STH2 in response to B. cinerea and MeJA treatment. Our data demonstrate that sly-miR398b overexpression negatively regulates the resistance to B. cinerea in tomato by inducing the accumulation of reactive oxygen species (ROS) and downregulating the expression of MeJA-responsive defense genes.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yiren Yu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Shihong Fei
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuxin Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yunmin Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhujun Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yong He
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
45
|
Liu X, Gao T, Liu C, Mao K, Gong X, Li C, Ma F. Fruit crops combating drought: Physiological responses and regulatory pathways. PLANT PHYSIOLOGY 2023; 192:1768-1784. [PMID: 37002821 PMCID: PMC10315311 DOI: 10.1093/plphys/kiad202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Drought is a common stress in agricultural production. Thus, it is imperative to understand how fruit crops respond to drought and to develop drought-tolerant varieties. This paper provides an overview of the effects of drought on the vegetative and reproductive growth of fruits. We summarize the empirical studies that have assessed the physiological and molecular mechanisms of the drought response in fruit crops. This review focuses on the roles of calcium (Ca2+) signaling, abscisic acid (ABA), reactive oxygen species signaling, and protein phosphorylation underlying the early drought response in plants. We review the resulting downstream ABA-dependent and ABA-independent transcriptional regulation in fruit crops under drought stress. Moreover, we highlight the positive and negative regulatory mechanisms of microRNAs in the drought response of fruit crops. Lastly, strategies (including breeding and agricultural practices) to improve the drought resistance of fruit crops are outlined.
Collapse
Affiliation(s)
- Xiaomin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tengteng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
46
|
Zhang X, Du M, Yang Z, Wang Z, Lim KJ. Biogenesis, Mode of Action and the Interactions of Plant Non-Coding RNAs. Int J Mol Sci 2023; 24:10664. [PMID: 37445841 DOI: 10.3390/ijms241310664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The central dogma of genetics, which outlines the flow of genetic information from DNA to RNA to protein, has long been the guiding principle in molecular biology. In fact, more than three-quarters of the RNAs produced by transcription of the plant genome are not translated into proteins, and these RNAs directly serve as non-coding RNAs in the regulation of plant life activities at the molecular level. The breakthroughs in high-throughput transcriptome sequencing technology and the establishment and improvement of non-coding RNA experiments have now led to the discovery and confirmation of the biogenesis, mechanisms, and synergistic effects of non-coding RNAs. These non-coding RNAs are now predicted to play important roles in the regulation of gene expression and responses to stress and evolution. In this review, we focus on the synthesis, and mechanisms of non-coding RNAs, and we discuss their impact on gene regulation in plants.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Mingjun Du
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhengfu Yang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Kean-Jin Lim
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
47
|
Li Y, Kim EJ, Voshall A, Moriyama EN, Cerutti H. Small RNAs >26 nt in length associate with AGO1 and are upregulated by nutrient deprivation in the alga Chlamydomonas. THE PLANT CELL 2023; 35:1868-1887. [PMID: 36945744 DOI: 10.1093/plcell/koad093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 05/30/2023]
Abstract
Small RNAs (sRNAs) associate with ARGONAUTE (AGO) proteins forming effector complexes with key roles in gene regulation and defense responses against molecular parasites. In multicellular eukaryotes, extensive duplication and diversification of RNA interference (RNAi) components have resulted in intricate pathways for epigenetic control of gene expression. The unicellular alga Chlamydomonas reinhardtii also has a complex RNAi machinery, including 3 AGOs and 3 DICER-like proteins. However, little is known about the biogenesis and function of most endogenous sRNAs. We demonstrate here that Chlamydomonas contains uncommonly long (>26 nt) sRNAs that associate preferentially with AGO1. Somewhat reminiscent of animal PIWI-interacting RNAs, these >26 nt sRNAs are derived from moderately repetitive genomic clusters and their biogenesis is DICER-independent. Interestingly, the sequences generating these >26-nt sRNAs have been conserved and amplified in several Chlamydomonas species. Moreover, expression of these longer sRNAs increases substantially under nitrogen or sulfur deprivation, concurrently with the downregulation of predicted target transcripts. We hypothesize that the transposon-like sequences from which >26-nt sRNAs are produced might have been ancestrally targeted for silencing by the RNAi machinery but, during evolution, certain sRNAs might have fortuitously acquired endogenous target genes and become integrated into gene regulatory networks.
Collapse
Affiliation(s)
- Yingshan Li
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Nebraska-Lincoln, NE 68588-0666, USA
| | - Eun-Jeong Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Adam Voshall
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Nebraska-Lincoln, NE 68588-0666, USA
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Etsuko N Moriyama
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Nebraska-Lincoln, NE 68588-0666, USA
| | - Heriberto Cerutti
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Nebraska-Lincoln, NE 68588-0666, USA
| |
Collapse
|
48
|
Yamasaki T, Tokutsu R, Sawa H, Razali NN, Hayashi M, Minagawa J. Small RNA-mediated silencing of phototropin suppresses the induction of photoprotection in the green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2023; 120:e2302185120. [PMID: 37098057 PMCID: PMC10160981 DOI: 10.1073/pnas.2302185120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/30/2023] [Indexed: 04/26/2023] Open
Abstract
Small RNAs (sRNAs) form complexes with Argonaute proteins and bind to transcripts with complementary sequences to repress gene expression. sRNA-mediated regulation is conserved in a diverse range of eukaryotes and is involved in the control of various physiological functions. sRNAs are present in the unicellular green alga Chlamydomonas reinhardtii, and genetic analyses revealed that the core sRNA biogenesis and action mechanisms are conserved with those of multicellular organisms. However, the roles of sRNAs in this organism remain largely unknown. Here, we report that Chlamydomonas sRNAs contribute to the induction of photoprotection. In this alga, photoprotection is mediated by LIGHT HARVESTING COMPLEX STRESS-RELATED 3 (LHCSR3), whose expression is induced by light signals through the blue-light receptor phototropin (PHOT). We demonstrate here that sRNA-defective mutants showed increased PHOT abundance leading to greater LHCSR3 expression. Disruption of the precursor for two sRNAs predicted to bind to the PHOT transcript also increased PHOT accumulation and LHCSR3 expression. The induction of LHCSR3 in the mutants was enhanced by light containing blue wavelengths, but not by red light, indicating that the sRNAs regulate the degree of photoprotection via regulation of PHOT expression. Our results suggest that sRNAs are involved not only in the regulation of photoprotection but also in biological phenomena regulated by PHOT signaling.
Collapse
Affiliation(s)
- Tomohito Yamasaki
- Science and Technology Department, Natural Science Cluster, Kochi University, Kochi780-8520, Japan
| | - Ryutaro Tokutsu
- Division of Environmental Photobiology, National Institute for Basic Biology, Myodaiji, Okazaki444-8585, Japan
| | - Haruhi Sawa
- Department of Chemistry and Biotechnology, Faculty of Science and Technology, Kochi University, Kochi780-8520, Japan
| | - Nazifa Naziha Razali
- Department of Chemistry and Biotechnology, Faculty of Science and Technology, Kochi University, Kochi780-8520, Japan
| | - Momoka Hayashi
- Department of Chemistry and Biotechnology, Faculty of Science and Technology, Kochi University, Kochi780-8520, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Myodaiji, Okazaki444-8585, Japan
| |
Collapse
|
49
|
Tripathi AM, Singh R, Verma AK, Singh A, Mishra P, Dwivedi V, Narayan S, Gandhivel VHS, Shirke PA, Shivaprasad PV, Roy S. Indian Himalayan natural Arabidopsis thaliana accessions with abolished miR158 levels exhibit robust miR173-initiated trans-acting cascade silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:855-874. [PMID: 36883862 DOI: 10.1111/tpj.16175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/13/2023] [Accepted: 03/03/2023] [Indexed: 05/27/2023]
Abstract
Small RNAs (sRNAs) such as microRNAs (miRNAs) and small interfering RNAs (siRNAs) are short 20-24-nucleotide non-coding RNAs. They are key regulators of gene expression in plants and other organisms. Several 22-nucleotide miRNAs trigger biogenesis cascades of trans-acting secondary siRNAs, which are involved in various developmental and stress responses. Here we show that Himalayan Arabidopsis thaliana accessions having natural mutations in the miR158 locus exhibit robust cascade silencing of the pentatricopeptide repeat (PPR)-like locus. Furthermore, we show that these cascade sRNAs trigger tertiary silencing of a gene involved in transpiration and stomatal opening. The natural deletions or insertions in MIR158 led to improper processing of miR158 precursors, thereby blocking synthesis of mature miR158. Reduced miR158 levels led to increased levels of its target, a pseudo-PPR gene that is targeted by tasiRNAs generated by the miR173 cascade in other accessions. Using sRNA datasets derived from Indian Himalayan accessions, as well as overexpression and knockout lines of miR158, we show that absence of miR158 led to buildup of pseudo-PPR-derived tertiary sRNAs. These tertiary sRNAs mediated robust silencing of a gene involved in stomatal closure in Himalayan accessions lacking miR158 expression. We functionally validated the tertiary phasiRNA that targets NHX2, which encodes a Na+ -K+ /H+ antiporter protein, thereby regulating transpiration and stomatal conductance. Overall, we report the role of the miRNA-TAS-siRNA-pseudogene-tertiary phasiRNA-NHX2 pathway in plant adaptation.
Collapse
Affiliation(s)
- Abhinandan Mani Tripathi
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajneesh Singh
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashwani Kumar Verma
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Akanksha Singh
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Parneeta Mishra
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Varun Dwivedi
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Shiv Narayan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Vivek Hari Sundar Gandhivel
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Pramod Arvind Shirke
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Padubidri V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Sribash Roy
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
50
|
Teng L, Zhang X, Wang R, Lin K, Zeng M, Chen H, Cao F. miRNA transcriptome reveals key miRNAs and their targets contributing to the difference in Cd tolerance of two contrasting maize genotypes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114881. [PMID: 37030049 DOI: 10.1016/j.ecoenv.2023.114881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/06/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Soil cadmium (Cd) contamination is a global environmental and food safety production issue. microRNAs (miRNAs) are proven to be involved in plant growth and development, and abiotic/biotic stress response, but their role in Cd tolerance is largely unknown in maize. To understand the genetic basis of Cd tolerance, two maize genotypes differing in Cd tolerance (L42, a sensitive genotype and L63, a tolerant genotype) were selected, and miRNA sequencing was carried out at nine-day-old seedlings exposed to 24 h Cd stress (5 μM CdCl2). A total of 151 differentially expressed miRNAs were identified, including 20 known miRNAs and 131 novel miRNAs. The results revealed that 90 and 22 miRNAs were up-regulated and down-regulated by Cd in Cd-tolerant genotype L63, and there were 23 and 43 miRNAs in Cd-sensitive genotype L42, respectively. Twenty-six miRNAs were up-regulated in L42 and unchanged or down-regulated in L63, or unchanged in L42 and down-regulated in L63. There were 108 miRNAs that were up-regulated in L63 and unchanged or down-regulated in L42, or unchanged in L63 and down-regulated in L42. Their target genes were enriched mainly in peroxisomes, glutathione (GSH) metabolism, ABC transporter, and ubiquitin-protease system. Among them, target genes involved in the peroxisome pathway and GSH metabolism might play key roles in Cd tolerance in L63. Besides, several ABC transporters which might involve in Cd uptake and transport were identified. The differentially expressed miRNAs or target genes could be used for breeding low grain Cd accumulation and high Cd tolerance cultivars in maize.
Collapse
Affiliation(s)
- Lidong Teng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Xueqing Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Runfeng Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Kaina Lin
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Meng Zeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Hao Chen
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|