1
|
Zhao R, Han HZ, Li SH, Zhang LH, Wang F, Zhang N. Functional identification of AaMYB113 and AaMYB114 from Aeonium arboreum 'Halloween' in model plants. Gene 2024; 927:148699. [PMID: 38880185 DOI: 10.1016/j.gene.2024.148699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Aeonium arboreum 'Halloween', a popular indoor ornamental succulent in China, changes its leaf colour to red on light exposure. However, the underlying molecular mechanisms is still vague. Comparative analysis of transcriptome data from 'Halloween' leaves treated under dark and light conditions revealed two R2R3-MYB transcription factors, AaMYB113 and AaMYB114, that may mediate anthocyanin accumulation. In this study, we cloned the AaMYB113 and AaMYB114 genes, encoding proteins of 279 and 248 amino acids, respectively. Transcriptional activity analysis revealed that AaMYB113 exhibits strong transcriptional activity, in contrast to AaMYB114, which demonstrates minimal activity. Transient expression studies in tobacco leaves demonstrated that AaMYB113 induced red pigmentation, whereas AaMYB114 did not. Subsequent stable overexpression in Arabidopsis thaliana confirmed that AaMYB113, but not AaMYB114, could similarly turn Arabidopsis leaves red. Further stable transformation of AaMYB113 in tobacco affected multiple floral components, including leaves, petals, calyx, flower tubes, and filaments, turning them red. Quantitative real-time PCR (qRT-PCR) assay in leaves of AaMYB113 stably transformed tobacco and Arabidopsis revealed upregulation of anthocyanin biosynthesis-related structural genes and TT8-like transcription factors. Moreover, the dual luciferase analysis confirmed that AaMYB113 can activate the promoters of 'Halloween' anthocyanin synthesis structural genes, AaCHS, AaCHI, AaF3H, AaDFR and AaANS. The above results indicate that AaMYB113 can promote anthocyanin synthesis, while AaMYB114 does not have this function. This study contributes significantly to the limited body of research on the molecular mechanisms of anthocyanin synthesis in succulents, advancing our understanding of how these pathways are regulated in 'Halloween' succulents and potentially other species.
Collapse
Affiliation(s)
- Rong Zhao
- College of Materials and Biology, Suqian University, Suqian, Jiangsu 223800, China
| | - Hao-Zhang Han
- College of Materials and Biology, Suqian University, Suqian, Jiangsu 223800, China.
| | - Su-Hua Li
- College of Materials and Biology, Suqian University, Suqian, Jiangsu 223800, China
| | - Li-Hua Zhang
- College of Materials and Biology, Suqian University, Suqian, Jiangsu 223800, China
| | - Fang Wang
- College of Materials and Biology, Suqian University, Suqian, Jiangsu 223800, China
| | - Nan Zhang
- College of Materials and Biology, Suqian University, Suqian, Jiangsu 223800, China
| |
Collapse
|
2
|
Liu S, Yang H, Zhang H, Liu J, Ma S, Hui H, Wang L, Cheng Q, Shen H. Phenotypic, genetic, variation, and molecular function of CaMYB113 in pepper (Capsicum annuum L.). Int J Biol Macromol 2024; 281:136300. [PMID: 39389497 DOI: 10.1016/j.ijbiomac.2024.136300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/12/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Pepper (Capsicum annuum L.) is widely consumed vegetables worldwide, and F1 hybrids are highly sought after in the pepper seed industry. However, studies on gene mutations affecting the color of cotyledon are rare, and the same is true for peppers. In this study, a segregating population was developed by crossing the pepper accession 21C1344 with purple cotyledon and accession 21C912 with green cotyledon. Initially, a target genomic region was identified by screening polymorphic SSR markers distributed across 12 chromosomes. Subsequently, polymorphic markers were developed based on resequencing data from the two parental lines, and genetic linkage analysis was performed. This approach ultimately identified Capana10g001433 (CaMYB113) as the candidate gene responsible for the purple cotyledons. The gene mutation type in 21C912 represents a new mutation type distinct from the reported missense mutation types, and this mutation affects the biosynthesis of anthocyanins. Virus-induced gene silencing (VIGS) of CaMYB113 substantially decreased anthocyanin accumulation in the cotyledons. Subsequent overexpression of CaMYB113 resulted in purple callus and leaves of pepper, and changed the expression levels of downstream genes involved in anthocyanin synthesis. Yeast one-hybrid and dual-luciferase transient expression assays demonstrated the binding of CaMYB113 to anthocyanin biosynthesis-related genes, thereby regulating anthocyanin accumulation in pepper cotyledons.
Collapse
Affiliation(s)
- Sujun Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Hanyu Yang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Haizhou Zhang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Jiankun Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Shijie Ma
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Han Hui
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Liru Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Qing Cheng
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
| | - Huolin Shen
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Miao C, Song C, Ding N, Zuo X, Zhang Z, Zhang X, Mu J, Wang F. De novo transcriptome analysis identifies RpMYB1 as an activator of anthocyanin biosynthesis in Rehmannia piasezkii. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108964. [PMID: 39094477 DOI: 10.1016/j.plaphy.2024.108964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Rehmannia piasezkii is a kind of medicinal plants, of the Orobanchaceae family, and well known for its large pink or purple corolla. However, no research on the molecular mechanism of flower color formation in R. piasezkii has been conducted so far. In this study, we investigated the transcriptome of root, stem, leaf and corollas of R. piasezkii using transcriptome sequencing technology and assembled 144,582 unigenes. A total of 58 anthocyanin biosynthetic genes were identified in the R. piasezkii transcriptome, fourteen of which were highly correlated with anthocyanin content, especially RpF3H2, RpDFR2, RpANS1, RpANS2 and RpUFGT. Totally, 35 MYB genes with FPKM values greater than 5 were identified in the R. piasezkii transcriptome, including an R2R3 MYB transcriptional factor RpMYB1, which belongs to subgroup 6 of the R2R3 MYB family. Agrobacterium-mediated transient expression of Nicotiana benthamiana revealed that overexpression of RpMYB1 could activate the expression of structural genes in anthocyanin synthesis pathway and promote the accumulation of anthocyanins in N. benthamiana leaves, indicating that RpMYB1 is a positive regulator of anthocyanin synthesis. Furthermore, combined transient overexpression of RpMYB1 with RpANS1, RpMYB1+RpANS1 with other structural genes all could further enhance the accumulation of anthocyanins in N. benthamiana leaves. Permanent overexpression of RpMYB1 in R. glutinosa promoted anthocyanin accumulation and expression levels of RgCHS, RgF3H, RgDFR and RgANS. Further evidence from dual-luciferase assay suggested that RpMYB1 could bind to the promoter of RpDFR2 and hence activating its expression. These findings provide insight into the molecular regulation in anthocyanin biosynthesis in R. piasezkii and provide valuable genetic resources for the genetic improvement of flower color.
Collapse
Affiliation(s)
- Chunyan Miao
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ci Song
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ning Ding
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xin Zuo
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhongyi Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoquan Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Jing Mu
- National Resource Center for Chinese Meteria Medica, State Key Laboratory of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fengqing Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
4
|
Xu X, Zhu Y, Yuan Y, Sohail H, He S, Ye Y, Wang M, Lv M, Qi X, Yang X, Chen X. R2R3-MYB transcription factor CsMYB60 controls mature fruit skin color by regulating flavonoid accumulation in cucumber. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:796-813. [PMID: 38733630 DOI: 10.1111/tpj.16797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Skin color is an important trait that determines the cosmetic appearance and quality of fruits. In cucumber, the skin color ranges from white to brown in mature fruits. However, the genetic basis for this important trait remains unclear. We conducted a genome-wide association study of natural cucumber populations, along with map-based cloning techniques, on an F2 population resulting from a cross between Pepino (with yellow-brown fruit skin) and Zaoer-N (with creamy fruit skin). We identified CsMYB60 as a candidate gene responsible for skin coloration in mature cucumber fruits. In cucumber accessions with white to pale yellow skin color, a premature stop mutation (C to T) was found in the second exon region of CsMYB60, whereas light yellow cucumber accessions exhibited splicing premature termination caused by an intronic mutator-like element insertion in CsMYB60. Transgenic CsMYB60c cucumber plants displayed a yellow-brown skin color by promoting accumulation of flavonoids, especially hyperoside, a yellow-colored flavonol. CsMYB60c encodes a nuclear protein that primarily acts as a transcriptional activator through its C-terminal activation motif. RNA sequencing and DNA affinity purification sequencing assays revealed that CsMYB60c promotes skin coloration by directly binding to the YYTACCTAMYT motif in the promoter regions of flavonoid biosynthetic genes, including CsF3'H, which encodes flavonoid 3'-hydroxylase. The findings of our study not only offer insight into the function of CsMYB60 as dominantly controlling fruit coloration, but also highlight that intronic DNA mutations can have a similar phenotypic impact as exonic mutations, which may be valuable in future cucumber breeding programs.
Collapse
Affiliation(s)
- Xuewen Xu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yu Zhu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Ying Yuan
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Hamza Sohail
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Shuying He
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yi Ye
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Meixin Wang
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Mai Lv
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiaohua Qi
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiaodong Yang
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xuehao Chen
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| |
Collapse
|
5
|
Singh S, Pal L, Rajput R, Chhatwal H, Singh N, Chattopadhyay D, Pandey A. CaLAP1 and CaLAP2 orchestrate anthocyanin biosynthesis in the seed coat of Cicer arietinum. PLANTA 2024; 260:38. [PMID: 38951258 DOI: 10.1007/s00425-024-04470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION Our findings shed light on the regulation of anthocyanin and proanthocyanidin biosynthesis in chickpea seed coats. Expression of R2R3-MYB transcription factors CaLAP1 and CaLAP2 enhanced the anthocyanins and proanthocyanidins content in chickpea. The seed coat color is a major economic trait in leguminous crop chickpea (Cicer arietinum). Anthocyanins and proanthocyanidins (PAs) are two classes of flavonoids that mainly contribute to the flower, seed coat and color of Desi chickpea cultivars. Throughout the land plant lineage, the accumulation of anthocyanins and PAs is regulated by MYB and bHLH transcription factors (TFs), which form an MBW (MYB, bHLH, and WD40) complex. Here, we report two R2R3-MYB TFs in chickpea belonging to the anthocyanin-specific subgroup-6, CaLAP1 (Legume Anthocyanin Production 1), and CaLAP2 (Legume Anthocyanin Production 2), which are mainly expressed in the flowers and developmental stages of the seeds. CaLAP1 and CaLAP2 interact with TT8-like CabHLH1 and WD40, forming the MBW complex, and bind to the promoter sequences of anthocyanin- and PA biosynthetic genes CaCHS6, CaDFR2, CaANS, and CaANR, leading to anthocyanins and PA accumulation in the seed coat of chickpea. Moreover, these CaLAPs partially complement the anthocyanin-deficient phenotype in the Arabidopsis thaliana sextuple mutant seedlings. Overexpression of CaLAPs in chickpea resulted in significantly higher expression of anthocyanin and PA biosynthetic genes leading to a darker seed coat color with higher accumulation of anthocyanin and PA. Our findings show that CaLAPs positively modulate anthocyanin and PA content in seed coats, which might influence plant development and resistance to various biotic and abiotic stresses.
Collapse
Affiliation(s)
- Samar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Lalita Pal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ruchika Rajput
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Himani Chhatwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nidhi Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
6
|
Cammareri M, Frary A, Frary A, Grandillo S. Genetic and Biotechnological Approaches to Improve Fruit Bioactive Content: A Focus on Eggplant and Tomato Anthocyanins. Int J Mol Sci 2024; 25:6811. [PMID: 38928516 PMCID: PMC11204163 DOI: 10.3390/ijms25126811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Anthocyanins are a large group of water-soluble flavonoid pigments. These specialized metabolites are ubiquitous in the plant kingdom and play an essential role not only in plant reproduction and dispersal but also in responses to biotic and abiotic stresses. Anthocyanins are recognized as important health-promoting and chronic-disease-preventing components in the human diet. Therefore, interest in developing food crops with improved levels and compositions of these important nutraceuticals is growing. This review focuses on work conducted to elucidate the genetic control of the anthocyanin pathway and modulate anthocyanin content in eggplant (Solanum melongena L.) and tomato (Solanum lycopersicum L.), two solanaceous fruit vegetables of worldwide relevance. While anthocyanin levels in eggplant fruit have always been an important quality trait, anthocyanin-based, purple-fruited tomato cultivars are currently a novelty. As detailed in this review, this difference in the anthocyanin content of the cultivated germplasm has largely influenced genetic studies as well as breeding and transgenic approaches to improve the anthocyanin content/profile of these two important solanaceous crops. The information provided should be of help to researchers and breeders in devising strategies to address the increasing consumer demand for nutraceutical foods.
Collapse
Affiliation(s)
- Maria Cammareri
- Institute of Biosciences and BioResources (IBBR), Research Division Portici, National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy;
| | - Amy Frary
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA;
| | - Anne Frary
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir 35433, Turkey
| | - Silvana Grandillo
- Institute of Biosciences and BioResources (IBBR), Research Division Portici, National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy;
| |
Collapse
|
7
|
Martinez-Sanchez M, Hunter DA, Saei A, Andre CM, Varkonyi-Gasic E, Clark G, Barry E, Allan AC. SmuMYB113 is the determinant of fruit color in pepino ( Solanum muricatum). FRONTIERS IN PLANT SCIENCE 2024; 15:1408202. [PMID: 38966143 PMCID: PMC11222579 DOI: 10.3389/fpls.2024.1408202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
Pepino (Solanum muricatum) is an herbaceous crop phylogenetically related to tomato and potato. Pepino fruit vary in color, size and shape, and are eaten fresh. In this study, we use pepino as a fruit model to understand the transcriptional regulatory mechanisms controlling fruit quality. To identify the key genes involved in anthocyanin biosynthesis in pepino, two genotypes were studied that contrasted in foliar and fruit pigmentation. Anthocyanin profiles were analyzed, as well as the expression of genes that encode enzymes for anthocyanin biosynthesis and transcriptional regulators using both RNA-seq and quantitative PCR. The differential expression of the transcription factor genes R2R3 MYB SmuMYB113 and R3MYB SmuATV suggested their association with purple skin and foliage phenotype. Functional analysis of these genes in both tobacco and pepino showed that SmuMYB113 activates anthocyanins, while SmuATV suppresses anthocyanin accumulation. However, despite elevated expression in all tissues, SmuMYB113 does not significantly elevate flesh pigmentation, suggesting a strong repressive background in fruit flesh tissue. These results will aid understanding of the differential regulation controlling fruit quality aspects between skin and flesh in other fruiting species.
Collapse
Affiliation(s)
- Marcela Martinez-Sanchez
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Donald A. Hunter
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Palmerston North, New Zealand
| | - Ali Saei
- Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
| | - Christelle M. Andre
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
| | - Glen Clark
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
| | - Emma Barry
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Liu Q, Gao G, Shang C, Li T, Wang Y, Li L, Feng X. Screening and verification of proteins that interact with the anthocyanin-related transcription factor PbrMYB114 in 'Yuluxiang' pear. PeerJ 2024; 12:e17540. [PMID: 38887620 PMCID: PMC11182023 DOI: 10.7717/peerj.17540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/19/2024] [Indexed: 06/20/2024] Open
Abstract
Despite extensive research highlighting the pivotal role of MYB transcription factors in regulating anthocyanin biosynthesis, the interactive regulatory network involving these MYB factors in pear fruits remains inadequately characterized. In this study, the anthocyanin-regulatory gene PbrMYB114 was successfully cloned from 'Yuluxiang' pear (Pyrus bretschneideri) fruits, and its influence on anthocyanin accumulation was confirmed through transient expression assays. Specifically, the co-transformation of PbrMYB114 with its partner PbrbHLH3 in pears served to validate the functional role of PbrMYB114. Subsequently, PbrMYB114 was employed as bait in a yeast two-hybrid screening assay, using a 'Yuluxiang' pear protein library, which led to the identification of 25 interacting proteins. Further validation of the interactions between PbrMYB114 and PbrMT2/PbrMT3 was conducted. Investigations into the role of PbrMT2 and PbrMT3 in 'Duli' seedlings (Pyrus betulaefolia) revealed their potential to enhance anthocyanin accumulation. The outcomes of these studies provide novel insights into the protein network that regulates pear anthocyanin biosynthesis, particularly the functional interactions among PbrMYB114 and associated proteins.
Collapse
Affiliation(s)
- Qingwei Liu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Ge Gao
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Chen Shang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Tong Li
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Yadong Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Liulin Li
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Xinxin Feng
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| |
Collapse
|
9
|
Zhang X, Yu L, Zhang M, Wu T, Song T, Yao Y, Zhang J, Tian J. MdWER interacts with MdERF109 and MdJAZ2 to mediate methyl jasmonate- and light-induced anthocyanin biosynthesis in apple fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1327-1342. [PMID: 38319946 DOI: 10.1111/tpj.16671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/08/2024] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
Anthocyanin generation in apples (Malus domestica) and the pigmentation that results from it may be caused by irradiation and through administration of methyl jasmonate (MeJA). However, their regulatory interrelationships associated with fruit coloration are not well defined. To determine whether MdERF109, a transcription factor (TF) involved in light-mediated coloration and anthocyanin biosynthesis, has synergistic effects with other proteins, we performed a yeast two-hybrid assessment and identified another TF, MdWER. MdWER was induced by MeJA treatment, and although overexpression of MdWER alone did not promote anthocyanin accumulation co-overexpression with MdERF109 resulted in significantly increase in anthocyanin biosynthesis. MdWER may form a protein complex with MdERF109 to promote anthocyanin accumulation by enhancing combinations between the proteins and their corresponding genes. In addition, MdWER, as a MeJA responsive protein, interacts with the anthocyanin repressor MdJAZ2. Transient co-expression in apple fruit and protein interaction assays allowed us to conclude that MdERF109 and MdJAZ2 interact with MdWER and take part in the production of anthocyanins upon MeJA treatment and irradiation. Our findings validate a role for the MdERF109-MdWER-MdJAZ2 module in anthocyanin biosynthesis and uncover a novel mechanism for how light and MeJA signals are coordinated anthocyanin biosynthesis in apple fruit.
Collapse
Affiliation(s)
- Xi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Lujia Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Mengjiao Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Tingting Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yuncong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Ji Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
10
|
Menconi J, Perata P, Gonzali S. In pursuit of purple: anthocyanin biosynthesis in fruits of the tomato clade. TRENDS IN PLANT SCIENCE 2024; 29:589-604. [PMID: 38177013 DOI: 10.1016/j.tplants.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
Over the past decade, progress has been made in the characterization of anthocyanin synthesis in fruits of plants belonging to the tomato clade. The genomic elements underlying the activation of the process were identified, providing the basis for understanding how the pathway works in these species. In this review we explore the genetic mechanisms that have been characterized to date, and detail the various wild relatives of the tomato, which have been crucial for recovering ancestral traits that were probably lost during evolution from green-purple to yellow and red tomatoes. This knowledge should help developing strategies to further enhance the status of the commercial tomato lines on sale, based on both genome editing and breeding techniques.
Collapse
Affiliation(s)
- Jacopo Menconi
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 10, San Giuliano Terme, 56010, Pisa, Italy
| | - Pierdomenico Perata
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 10, San Giuliano Terme, 56010, Pisa, Italy.
| | - Silvia Gonzali
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 10, San Giuliano Terme, 56010, Pisa, Italy.
| |
Collapse
|
11
|
Liu H, Zhang JQ, Zhang RR, Zhao QZ, Su LY, Xu ZS, Cheng ZMM, Tan GF, Xiong AS. The high-quality genome of Cryptotaenia japonica and comparative genomics analysis reveals anthocyanin biosynthesis in Apiaceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:717-730. [PMID: 38213282 DOI: 10.1111/tpj.16628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 11/15/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024]
Abstract
Cryptotaenia japonica, a traditional medicinal and edible vegetable crops, is well-known for its attractive flavors and health care functions. As a member of the Apiaceae family, the evolutionary trajectory and biological properties of C. japonica are not clearly understood. Here, we first reported a high-quality genome of C. japonica with a total length of 427 Mb and N50 length 50.76 Mb, was anchored into 10 chromosomes, which confirmed by chromosome (cytogenetic) analysis. Comparative genomic analysis revealed C. japonica exhibited low genetic redundancy, contained a higher percentage of single-cope gene families. The homoeologous blocks, Ks, and collinearity were analyzed among Apiaceae species contributed to the evidence that C. japonica lacked recent species-specific WGD. Through comparative genomic and transcriptomic analyses of Apiaceae species, we revealed the genetic basis of the production of anthocyanins. Several structural genes encoding enzymes and transcription factor genes of the anthocyanin biosynthesis pathway in different species were also identified. The CjANSa, CjDFRb, and CjF3H gene might be the target of Cjaponica_2.2062 (bHLH) and Cjaponica_1.3743 (MYB). Our findings provided a high-quality reference genome of C. japonica and offered new insights into Apiaceae evolution and biology.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia-Qi Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rong-Rong Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qin-Zheng Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li-Yao Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zong-Ming Max Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guo-Fei Tan
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
12
|
Xue L, Liu X, Wang W, Huang D, Ren C, Huang X, Yin X, Lin-Wang K, Allan AC, Chen K, Xu C. MYB transcription factors encoded by diversified tandem gene clusters cause varied Morella rubra fruit color. PLANT PHYSIOLOGY 2024; 195:598-616. [PMID: 38319742 DOI: 10.1093/plphys/kiae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/08/2024]
Abstract
Chinese bayberry (Morella rubra) is a fruit tree with a remarkable variation in fruit color, ranging from white to dark red as determined by anthocyanin content. In dark red "Biqi" (BQ), red "Dongkui" (DK), pink "Fenhong" (FH), and white "Shuijing" (SJ), we identified an anthocyanin-related MYB transcription factor-encoding gene cluster of four members, i.e. MrMYB1.1, MrMYB1.2, MrMYB1.3, and MrMYB2. Collinear analysis revealed that the MYB tandem cluster may have occurred in a highly conserved region of many eudicot genomes. Two alleles of MrMYB1.1 were observed; MrMYB1.1-1 (MrMYB1.1n) was a full-length allele and homozygous in "BQ", MrMYB1.1-2 (MrMYB1.1d) was a nonfunctional allele with a single base deletion and homozygous in "SJ", and MrMYB1.1n/MrMYB1.1d were heterozygous in "DK" and "FH". In these four cultivars, expression of MrMYB1.1, MrMYB1.2, and MrMYB2 was enhanced during ripening. Both alleles were equally expressed in MrMYB1.1n/MrMYB1.1d heterozygous cultivars as revealed by a cleaved amplified polymorphic sequence marker. Expression of MrMYB1.3 was restricted to some dark red cultivars only. Functional characterization revealed that MrMYB1.1n and MrMYB1.3 can induce anthocyanin accumulation while MrMYB1.1d, MrMYB1.2, and MrMYB2 cannot. DNA-protein interaction assays indicated that MrMYB1.1n and MrMYB1.3 can directly bind to and activate the promoters of anthocyanin-related genes via interaction with a MYC-like basic helix-loop-helix protein MrbHLH1. We concluded that the specific genotype of MrMYB1.1 alleles, as well as the exclusive expression of MrMYB1.3 in some dark red cultivars, contributes to fruit color variation. The study provides insights into the mechanisms for regulation of plant anthocyanin accumulation by MYB tandem clusters.
Collapse
Affiliation(s)
- Lei Xue
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Xiaofen Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Wenli Wang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Dan Huang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Chuanhong Ren
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Xiaorong Huang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Xueren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Kui Lin-Wang
- New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Andrew C Allan
- New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kunsong Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Guo D, Jiang H, Xie L. An R2R3-MYB Transcriptional Factor LuMYB314 Associated with the Loss of Petal Pigmentation in Flax ( Linum usitatissimum L.). Genes (Basel) 2024; 15:511. [PMID: 38674445 PMCID: PMC11050253 DOI: 10.3390/genes15040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The loss of anthocyanin pigments is one of the most common evolutionary transitions in petal color, yet the genetic basis for these changes in flax remains largely unknown. In this study, we used crossing studies, a bulk segregant analysis, genome-wide association studies, a phylogenetic analysis, and transgenic testing to identify genes responsible for the transition from blue to white petals in flax. This study found no correspondence between the petal color and seed color, refuting the conclusion that a locus controlling the seed coat color is associated with the petal color, as reported in previous studies. The locus controlling the petal color was mapped using a BSA-seq analysis based on the F2 population. However, no significantly associated genomic regions were detected. Our genome-wide association study identified a highly significant QTL (BP4.1) on chromosome 4 associated with flax petal color in the natural population. The combination of a local Manhattan plot and an LD heat map identified LuMYB314, an R2R3-MYB transcription factor, as a potential gene responsible for the natural variations in petal color in flax. The overexpression of LuMYB314 in both Arabidopsis thaliana and Nicotiana tabacum resulted in anthocyanin deposition, indicating that LuMYB314 is a credible candidate gene for controlling the petal color in flax. Additionally, our study highlights the limitations of the BSA-seq method in low-linkage genomic regions, while also demonstrating the powerful detection capabilities of GWAS based on high-density genomic variation mapping. This study enhances our genetic insight into petal color variations and has potential breeding value for engineering LuMYB314 to develop colored petals, bast fibers, and seeds for multifunctional use in flax.
Collapse
Affiliation(s)
- Dongliang Guo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China;
| | - Haixia Jiang
- Key Laboratory of Plant Stress Biology in Arid Land, College of Life Science, Xinjiang Normal University, Urumqi 830017, China;
| | - Liqiong Xie
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China;
| |
Collapse
|
14
|
Liu Q, Wang L, He L, Lu Y, Wang L, Fu S, Luo X, Zhang Y. Metabolome and Transcriptome Reveal Chlorophyll, Carotenoid, and Anthocyanin Jointly Regulate the Color Formation of Triadica sebifera. PHYSIOLOGIA PLANTARUM 2024; 176:e14248. [PMID: 38488424 DOI: 10.1111/ppl.14248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Abstract
The Chinese tallow tree (Triadica sebifera) is an economically important plant on account of its ornamental value and oil-producing seeds. Leaf colour is a key characteristic of T. sebifera, with yellow-, red- and purple-leaved varieties providing visually impressive displays during autumn. In this study, we performed metabolomic and transcriptomic analyses to gain a better understanding of the mechanisms underlying leaf colour development in purple-leaved T. sebifera at three stages during the autumnal colour transition, namely, green, hemi-purple, and purple leaves. We accordingly detected 370 flavonoid metabolites and 10 anthocyanins, among the latter of which, cyanidin-3-xyloside and peonidin-3-O-glucoside were identified as the predominant compounds in hemi-purple and purple leaves. Transcriptomic analysis revealed that structural genes associated with the anthocyanin biosynthetic pathway, chlorophyll synthesis pathway and carotenoid synthesis pathway were significantly differential expressed at the three assessed colour stages. Additionally, transcription factors associated with the MYB-bHLH-WD40 complex, including 22 R2R3-MYBs, 79 bHLHs and 44 WD40 genes, were identified as candidate regulators of the anthocyanin biosynthetic pathway. Moreover, on the basis of the identified differentially accumulated anthocyanins and key genes, we generated genetic and metabolic regulatory networks for anthocyanin biosynthesis in T. sebifera. These findings provide comprehensive information on the leaf transcriptome and three pigments of T. sebifera, thereby shedding new light on the mechanisms underlying the autumnal colouring of the leaves of this tree.
Collapse
Affiliation(s)
- Qing Liu
- Anhui Province Key Laboratory of Forest Resources and Silviculture, School of Forestry and Landscape Architecture, AnHui Agricultural University, People's Republic of China
| | - Leijia Wang
- Anhui Province Key Laboratory of Forest Resources and Silviculture, School of Forestry and Landscape Architecture, AnHui Agricultural University, People's Republic of China
| | - Lina He
- Anhui Province Key Laboratory of Forest Resources and Silviculture, School of Forestry and Landscape Architecture, AnHui Agricultural University, People's Republic of China
| | - Yongkang Lu
- Anhui Province Key Laboratory of Forest Resources and Silviculture, School of Forestry and Landscape Architecture, AnHui Agricultural University, People's Republic of China
| | - Lin Wang
- Anhui Province Key Laboratory of Forest Resources and Silviculture, School of Forestry and Landscape Architecture, AnHui Agricultural University, People's Republic of China
| | - Songling Fu
- Anhui Province Key Laboratory of Forest Resources and Silviculture, School of Forestry and Landscape Architecture, AnHui Agricultural University, People's Republic of China
| | - Xumei Luo
- Anhui Academy of Forestry, People's Republic of China
| | - Yanping Zhang
- Anhui Province Key Laboratory of Forest Resources and Silviculture, School of Forestry and Landscape Architecture, AnHui Agricultural University, People's Republic of China
| |
Collapse
|
15
|
Ding P, Tang P, Li X, Haroon A, Nasreen S, Noor H, Attia KA, Abushady AM, Wang R, Cui K, Wu X, Sun M, Gao Z. Genome-wide identification, phylogeny and expression analysis of the R2R3-MYB gene family in quinoa ( Chenopodium quinoa) under abiotic stress. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23261. [PMID: 38417846 DOI: 10.1071/fp23261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/14/2024] [Indexed: 03/01/2024]
Abstract
The MYB transcription factor (TF) are among the largest gene families of plants being responsible for several biological processes. The R2R3-MYB gene family are integral player regulating plant primary and secondary metabolism, growth and development, and responses to hormones and stresses. The phylogenetic analysis combined with gene structure analysis and motif determination resulted in division of R2R3-MYB gene family into 27 subgroups. Evidence generated from synteny analyses indicated that CqR2R3-MYBs gene family is featured by tandem and segmental duplication events. On the basis of RNA-Seq data, the expression patterns of different tissues under salt treatment were investigated resulting CqR2R3-MYB genes high expression both in roots and stem of quinoa (Chenopodium quinoa ) plants. More than half of CqR2R3-MYB genes showed expression under salt stress. Based on this result, CqR2R3-MYB s may regulate quinoa plant growth development and resistance to abiotic stresses. These findings provided comprehensive insights on role of CqR2R3-MYBs gene family members in quinoa and candidate MYB gene family members can be further studies on their role for abiotic stress tolerance in crop plants.
Collapse
Affiliation(s)
- Pengcheng Ding
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Peng Tang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaofen Li
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Adeela Haroon
- Department of Botany, The Women University Multan, Multan 66000, Pakistan
| | - Saima Nasreen
- Department of Environmental Sciences, The Women University Multan, Multan 66000, Pakistan
| | - Hafeez Noor
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Asmaa M Abushady
- Biotechnology School, Nile University, 26th July Corridor, Sheikh Zayed City, Giza 12588, Egypt
| | - Rongzhen Wang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Kaiyuan Cui
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Xiangyun Wu
- Shanxi Jiaqi Agri-Tech Co., Ltd., Taiyuan 030006, China
| | - Min Sun
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Zhiqiang Gao
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
16
|
Shi S, Li D, Li S, Zhao N, Liao J, Ge H, Liu Y, Chen H. Genome-Wide Analysis of R2R3-MYB Genes and Functional Characterization of SmMYB75 in Eggplant Fruit Implications for Crop Improvement and Nutritional Enhancement. Int J Mol Sci 2024; 25:1163. [PMID: 38256237 PMCID: PMC10816229 DOI: 10.3390/ijms25021163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/13/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
R2R3-MYB represents a substantial gene family that plays diverse roles in plant development. In this study, 102 SmR2R3-MYB genes were identified from eggplant fruit and classified into 31 subfamilies. Analysis indicated that segmental duplication events played a pivotal role in the expansion of the SmR2R3-MYB gene family. Furthermore, the prediction of miRNAs targeting SmR2R3-MYB genes revealed that 60 SmR2R3-MYBs are targeted by 57 miRNAs, with specific miRNAs displaying varying numbers of target genes, providing valuable insights into the regulatory functions of miRNAs in plant growth, development, and responses to stress conditions. Through expression profile analysis under various treatment conditions, including low temperature (4 °C), plant hormone (ABA, Abscisic acid), and drought stress (PEG, Polyethylene glycol), diverse and complex regulatory mechanisms governing SmR2R3-MYB gene expression were elucidated. Notably, EGP21875.1 and EGP21874.1 exhibited upregulation in expression under all treatment conditions. Transcriptome and metabolome analyses demonstrated that, apart from anthocyanins (delphinidin-3-O-glucoside, cyanidin-3-O-(6-O-p-coumaroyl)-glucoside, and malvidin-3-O-(6-O-p-coumaroyl)-glucoside), overexpression of SmMYB75 could also elevate the content of various beneficial compounds, such as flavonoids, phenolic acids, and terpenes, in eggplant pulp. This comprehensive study enhances our understanding of SmR2R3-MYB gene functions and provides a strong basis for further research on their roles in regulating anthocyanin synthesis and improving eggplant fruit quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
17
|
Baranov D, Timerbaev V. Recent Advances in Studying the Regulation of Fruit Ripening in Tomato Using Genetic Engineering Approaches. Int J Mol Sci 2024; 25:760. [PMID: 38255834 PMCID: PMC10815249 DOI: 10.3390/ijms25020760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Tomato (Solanum lycopersicum L.) is one of the most commercially essential vegetable crops cultivated worldwide. In addition to the nutritional value, tomato is an excellent model for studying climacteric fruits' ripening processes. Despite this, the available natural pool of genes that allows expanding phenotypic diversity is limited, and the difficulties of crossing using classical selection methods when stacking traits increase proportionally with each additional feature. Modern methods of the genetic engineering of tomatoes have extensive potential applications, such as enhancing the expression of existing gene(s), integrating artificial and heterologous gene(s), pointing changes in target gene sequences while keeping allelic combinations characteristic of successful commercial varieties, and many others. However, it is necessary to understand the fundamental principles of the gene molecular regulation involved in tomato fruit ripening for its successful use in creating new varieties. Although the candidate genes mediate ripening have been identified, a complete picture of their relationship has yet to be formed. This review summarizes the latest (2017-2023) achievements related to studying the ripening processes of tomato fruits. This work attempts to systematize the results of various research articles and display the interaction pattern of genes regulating the process of tomato fruit ripening.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
18
|
Jiang W, Jiang Q, Shui Z, An P, Shi S, Liu T, Zhang H, Huang S, Jing B, Xiao E, Quan L, Liu J, Wang Z. HaMYBA-HabHLH1 regulatory complex and HaMYBF fine-tune red flower coloration in the corolla of sunflower (Helianthus annuus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111901. [PMID: 37865209 DOI: 10.1016/j.plantsci.2023.111901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Sunflowers are well-known ornamental plants, while sunflowers with red corolla are rare and the mechanisms underlying red coloration remain unclear. Here, a comprehensive analysis of metabolomics and transcriptomics on flavonoid pathway was performed to investigate the molecular mechanisms underlying the differential color formation between red sunflower Pc103 and two yellow sunflowers (Yr17 and Y35). Targeted metabolomic analysis revealed higher anthocyanin levels but lower flavonol content in Pc103 compared to the yellow cultivars. RNA-sequencing and phylogenetic analysis identified multiple genes involved in the flavonoid pathway, including series of structural genes and three MYB and bHLH genes. Specifically, HaMYBA and HabHLH1 were up-regulated in Pc103, whereas HaMYBF exhibited reduced expression. HaMYBA was found to interact with HabHLH1 in vivo and in vitro, while HaMYBF does not. Transient expression analysis further revealed that HabHLH1 and HaMYBA cooperatively regulate increased expression of dihydroflavonol 4-reductase (DFR), leading to anthocyanin accumulation. On the other hand, ectopic expression of HaMYBF independently modulates flavonol synthase (FLS) expression, but hindered anthocyanin production. Collectively, our findings suggest that the up-regulation of HaMYBA and HabHLH1, as well as the down-regulation of HaMYBF, contribute to the red coloration in Pc103. It offers a theoretical basis for improving sunflower color through genetic engineering.
Collapse
Affiliation(s)
- Wenhui Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China; Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (CAAS), Shenzhen 518120, China
| | - Qinqin Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zhijie Shui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Peipei An
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Shandang Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Tianxiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Hanbing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Shuyi Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Bing Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Enshi Xiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Li Quan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jixia Liu
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia 750002, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
19
|
Zhang L, Duan Z, Ma S, Sun S, Sun M, Xiao Y, Ni N, Irfan M, Chen L, Sun Y. SlMYB7, an AtMYB4-Like R2R3-MYB Transcription Factor, Inhibits Anthocyanin Accumulation in Solanum lycopersicum Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18758-18768. [PMID: 38012529 DOI: 10.1021/acs.jafc.3c05185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Tomato is a horticultural crop with an incomplete flavonoid metabolic pathway that does not typically accumulate anthocyanins in the fruit. In recent years, intensive studies of the loci Anthocyanin fruit (Aft) and atroviolacium (atv) have clarified the functions of positive regulators (R2R3-MYBs) and a negative regulator (CPC-MYB) in anthocyanin biosynthesis in the fruits. However, little is known about the R2R3-MYB repressors. Here, we used transient overexpression analysis to show that SlMYB7, a subgroup 4 AtMYB4-like R2R3-MYB, inhibited anthocyanin accumulation and reduced expression of anthocyanin synthase genes in the 'black pearl' tomato fruits, which usually accumulate high concentrations of anthocyanins. These findings revealed that SlMYB7 served as a repressor of anthocyanin production. Furthermore, SlMYB7 actively repressed SlANS expression by binding its promoter and passively inhibited anthocyanin synthesis by interacting with the basic helix-loop-helix (bHLH) proteins SlJAF13 and SlAN1, which are involved in the formation of MBW complexes. Thus, SlMYB7 and the MBW complex may coregulate the anthocyanin content of 'black pearl' tomato fruits via a negative feedback loop. These findings provide a theoretical basis for the future enhancement of tomato anthocyanin contents through genetic manipulation of the biosynthetic regulatory network.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning 110161, China
| | - Zedi Duan
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning 110161, China
| | - Shuang Ma
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning 110161, China
- College of Life Engineering, Shenyang Institute of Technology, Liaoning 110866, China
| | - Shaokun Sun
- Institute of Vegetable Research, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Minghui Sun
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning 110161, China
| | - Yunhong Xiao
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning 110161, China
| | - Na Ni
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning 110161, China
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha 40100, Pakistan
| | - Lijing Chen
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning 110161, China
| | - Yibo Sun
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning 110161, China
| |
Collapse
|
20
|
Rudenko NN, Vetoshkina DV, Marenkova TV, Borisova-Mubarakshina MM. Antioxidants of Non-Enzymatic Nature: Their Function in Higher Plant Cells and the Ways of Boosting Their Biosynthesis. Antioxidants (Basel) 2023; 12:2014. [PMID: 38001867 PMCID: PMC10669185 DOI: 10.3390/antiox12112014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Plants are exposed to a variety of abiotic and biotic stresses leading to increased formation of reactive oxygen species (ROS) in plant cells. ROS are capable of oxidizing proteins, pigments, lipids, nucleic acids, and other cell molecules, disrupting their functional activity. During the process of evolution, numerous antioxidant systems were formed in plants, including antioxidant enzymes and low molecular weight non-enzymatic antioxidants. Antioxidant systems perform neutralization of ROS and therefore prevent oxidative damage of cell components. In the present review, we focus on the biosynthesis of non-enzymatic antioxidants in higher plants cells such as ascorbic acid (vitamin C), glutathione, flavonoids, isoprenoids, carotenoids, tocopherol (vitamin E), ubiquinone, and plastoquinone. Their functioning and their reactivity with respect to individual ROS will be described. This review is also devoted to the modern genetic engineering methods, which are widely used to change the quantitative and qualitative content of the non-enzymatic antioxidants in cultivated plants. These methods allow various plant lines with given properties to be obtained in a rather short time. The most successful approaches for plant transgenesis and plant genome editing for the enhancement of biosynthesis and the content of these antioxidants are discussed.
Collapse
Affiliation(s)
- Natalia N. Rudenko
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| | - Daria V. Vetoshkina
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| | - Tatiana V. Marenkova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Maria M. Borisova-Mubarakshina
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| |
Collapse
|
21
|
Shi L, Li X, Fu Y, Li C. Environmental Stimuli and Phytohormones in Anthocyanin Biosynthesis: A Comprehensive Review. Int J Mol Sci 2023; 24:16415. [PMID: 38003605 PMCID: PMC10671836 DOI: 10.3390/ijms242216415] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Anthocyanin accumulation in plants plays important roles in plant growth and development, as well as the response to environmental stresses. Anthocyanins have antioxidant properties and play an important role in maintaining the reactive oxygen species (ROS) homeostasis in plant cells. Furthermore, anthocyanins also act as a "sunscreen", reducing the damage caused by ultraviolet radiation under high-light conditions. The biosynthesis of anthocyanin in plants is mainly regulated by an MYB-bHLH-WD40 (MBW) complex. In recent years, many new regulators in different signals involved in anthocyanin biosynthesis were identified. This review focuses on the regulation network mediated by different environmental factors (such as light, salinity, drought, and cold stresses) and phytohormones (such as jasmonate, abscisic acid, salicylic acid, ethylene, brassinosteroid, strigolactone, cytokinin, and auxin). We also discuss the potential application value of anthocyanin in agriculture, horticulture, and the food industry.
Collapse
Affiliation(s)
| | | | | | - Changjiang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (L.S.); (X.L.); (Y.F.)
| |
Collapse
|
22
|
Wang J, Chen C, Wu C, Meng Q, Zhuang K, Ma N. SlMYB41 positively regulates tomato thermotolerance by activating the expression of SlHSP90.3. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108106. [PMID: 37879127 DOI: 10.1016/j.plaphy.2023.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
High-temperature stress has become a major abiotic factor that dramatically limits plant growth and crop yield. Plants have evolved complex mechanisms to cope with high-temperature stress, but the factors that regulate plant thermotolerance remain to be discovered. Here, a high temperature-induced MYB transcription factor SlMYB41 was cloned from tomato (Solanum lycopersicum). Two individual SlMYB41-RNA interference (RNAi) lines (MR) and one CRISPR/Cas9 mediated myb41 mutant (MC) were obtained to investigate the function of SlMYB41 in tomato thermotolerance. Under high-temperature stress, we found that the MR and MC lines showed more wilting than the wild type (WT), with more ion leakage, more MDA accumulation, lower contents of osmotic adjustment substances, and more accumulation of reactive oxygen species (ROS) which was resulted from lower antioxidative enzyme activities. In addition, the photosynthetic capacity and complex of MR and MC lines were damaged more seriously than WT plants under high-temperature stress, mainly manifested in lower photosynthetic rate and Fv/Fm. Moreover, heat stress-related genes, such as SlHSP17.6, SlHSP17.7, and SlHSP90.3 were downregulated in MR and MC lines. Importantly, Y1H and LUC analysis indicated that SlMYB41 can directly activate the transcription of SlHSP90.3. Together, our study suggest that SlMYB41 positively regulates tomato thermotolerance by activating the expression of SlHSP90.3.
Collapse
Affiliation(s)
- Jieyu Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chong Chen
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, 274015, China
| | - Chuanzhao Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Kunyang Zhuang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Nana Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
23
|
Shelake RM, Jadhav AM, Bhosale PB, Kim JY. Unlocking secrets of nature's chemists: Potential of CRISPR/Cas-based tools in plant metabolic engineering for customized nutraceutical and medicinal profiles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108070. [PMID: 37816270 DOI: 10.1016/j.plaphy.2023.108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Plant species have evolved diverse metabolic pathways to effectively respond to internal and external signals throughout their life cycle, allowing adaptation to their sessile and phototropic nature. These pathways selectively activate specific metabolic processes, producing plant secondary metabolites (PSMs) governed by genetic and environmental factors. Humans have utilized PSM-enriched plant sources for millennia in medicine and nutraceuticals. Recent technological advances have significantly contributed to discovering metabolic pathways and related genes involved in the biosynthesis of specific PSM in different food crops and medicinal plants. Consequently, there is a growing demand for plant materials rich in nutrients and bioactive compounds, marketed as "superfoods". To meet the industrial demand for superfoods and therapeutic PSMs, modern methods such as system biology, omics, synthetic biology, and genome editing (GE) play a crucial role in identifying the molecular players, limiting steps, and regulatory circuitry involved in PSM production. Among these methods, clustered regularly interspaced short palindromic repeats-CRISPR associated protein (CRISPR/Cas) is the most widely used system for plant GE due to its simple design, flexibility, precision, and multiplexing capabilities. Utilizing the CRISPR-based toolbox for metabolic engineering (ME) offers an ideal solution for developing plants with tailored preventive (nutraceuticals) and curative (therapeutic) metabolic profiles in an ecofriendly way. This review discusses recent advances in understanding the multifactorial regulation of metabolic pathways, the application of CRISPR-based tools for plant ME, and the potential research areas for enhancing plant metabolic profiles.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Amol Maruti Jadhav
- Research Institute of Green Energy Convergence Technology (RIGET), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea; Nulla Bio Inc, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
24
|
He Y, Hao Q, Chen P, Qin Y, Peng M, Yao S, He X, Yu Q, Agassin RH, Ji K. Cloning of PmMYB6 in Pinus massoniana and an Analysis of Its Function. Int J Mol Sci 2023; 24:13766. [PMID: 37762069 PMCID: PMC10530544 DOI: 10.3390/ijms241813766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Phenylpropanoids are crucial for the growth and development of plants and their interaction with the environment. As key transcriptional regulators of plant growth and development, MYB-like transcription factors play a vital role in the biosynthesis of phenylpropanoid metabolites. In this study, we functionally characterized PmMYB6, a Pinus massoniana gene that encodes an R2R3-MYB transcription factor. It was confirmed by qPCR that PmMYB6 was highly expressed in the flowers, xylem, and phloem of P. massoniana. By overexpressing PmMYB6 in tobacco and poplar, we found that transgenic plants had enlarged xylem, increased content of lignin and flavonoids, and up-regulated expression of several enzyme genes of the phenylpropane metabolism pathway to different degrees. The above research results indicate that PmMYB6 is involved in the metabolic flux distribution of different branches of the phenylpropane metabolic pathway, and the results may provide clues for the regulation of metabolic fluxes between flavonoids and the lignin biosynthesis pathways of P. massoniana, as well as provide a basis for the molecular breeding of P. massoniana.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kongshu Ji
- State Key Laboratory of Tree Genetics and Breeding, Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry & Grassland Administration, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.H.); (Q.H.); (P.C.); (Y.Q.); (M.P.); (S.Y.); (X.H.); (Q.Y.); (R.H.A.)
| |
Collapse
|
25
|
Milech C, Auler PA, do Amaral MN, Lucho SR, da Silva Dos Santos J, Furlan VJM, Bianchi VJ, Braga EJB. Biosynthesis of Betalains Elicited by Methyl Jasmonate in Two Species of Alternanthera Genus: Antagonistic Regulations Result in Increase of Pigments. Appl Biochem Biotechnol 2023; 195:4965-4982. [PMID: 37119502 DOI: 10.1007/s12010-023-04535-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/01/2023]
Abstract
Natural pigments are components very important in the dye industry. The betalains are pigments found in plants from Caryophyllales order and are relevant in the food manufacturing. The main source of betalains is beetroot, which has unfavorable aftertaste. Therefore, the demand for alternative species producing betalains has increased. Elicitor molecules such as methyl jasmonate (MeJA) induce metabolic reprogramming acting in the biosynthesis of specialized metabolites and can enhance pigment concentrations. Here, we used this strategy to identify if treatment with MeJA at 100 µM can promote the accumulation of betalains and other bioactive compounds in Alternanthera philoxeroides and Alternanthera sessilis. We performed the gene expression, concentration of betalains, phenols, flavonoids, amino acids (phenylalanine and tyrosine), and antioxidant activity. The results showed that MeJA treatment increased betalains and other bioactive compounds in the two Alternanthera species but A. sessilis had a better performance. One key factor in this pathway is related to the phenylalanine and tyrosine concentration. However, the species have distinct metabolic regulation: in A. philoxeroides, high concentrations of betalain pigments increase the tyrosine concentration and gene expression (include ADH) under MeJA and in A. sessilis, high concentrations of betalain pigments reduce the gene expression and tyrosine concentration after 2 days under MeJA. This study brings new questions about betalain biosynthesis and sheds light on the evolution of this pathway in Caryophyllales.
Collapse
Affiliation(s)
- Cristini Milech
- Department of Botany, Biology Institute-Plant Physiology, Federal University of Pelotas, Pelotas, RS, Brazil.
| | - Priscila Ariane Auler
- Department of Botany, Biology Institute-Plant Physiology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Marcelo Nogueira do Amaral
- Department of Botany, Biology Institute-Plant Physiology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Simone Ribeiro Lucho
- Department of Botany, Biology Institute-Plant Physiology, Federal University of Pelotas, Pelotas, RS, Brazil
| | | | | | - Valmor João Bianchi
- Department of Botany, Biology Institute-Plant Physiology, Federal University of Pelotas, Pelotas, RS, Brazil
| | | |
Collapse
|
26
|
Sun H, Hu K, Wei S, Yao G, Zhang H. ETHYLENE RESPONSE FACTORS 4.1/4.2 with an EAR motif repress anthocyanin biosynthesis in red-skinned pears. PLANT PHYSIOLOGY 2023; 192:1892-1912. [PMID: 36732887 PMCID: PMC10315276 DOI: 10.1093/plphys/kiad068] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Red-skinned pears (Pyrus L.) are preferred to consumers for their attractive color and abundant anthocyanins. Pyrus ETHYLENE RESPONSE FACTOR 3 (PyERF3) positively regulates anthocyanin biosynthesis through interacting with Pyrus myeloblastosis family 114 (PyMYB114) and Pyrus basic helix-loop-helix 3 (PybHLH3) in red-skinned pears. However, the role of APETALA2/ethylene response factors (AP2/ERFs), which negatively regulate anthocyanin biosynthesis, remains unclear in red-skinned pears. Here, we validated that 2 AP2/ERFs, PyERF4.1 and PyERF4.2, screened from the transcriptome data of 'Starkrimson' pear (Pyrus communis L.) and its green mutant, inhibit anthocyanin biosynthesis in transgenic pear calli, as well as in overexpression and gene-edited tomato (Solanum lycopersicum) fruits. Meanwhile, the co-transformation of PyERF4.1/PyERF4.2 with PyERF3-PyMYB114-PybHLH3 inhibited anthocyanin biosynthesis in pear fruits and strawberry (Fragaria vesca) receptacles. Further assays showed that PyMYB114 activated the transcription of PyERF4.1/PyERF4.2; PyERF4.1/PyERF4.2 then interacted with PyERF3 to affect the stability of the PyERF3-PyMYB114-PybHLH3 complex, thereby inhibiting the transcription of the anthocyanin biosynthesis gene Pyrus anthocyanidin synthase (PyANS). Furthermore, deletion of the ERF-associated-amphiphilic repression (EAR) motif eliminated the inhibitory effect of PyERF4.1/PyERF4.2 on anthocyanin biosynthesis, and a mutation of the PyERF4.2-EAR motif (LxLxM to LxLxL) strengthened the inhibitory effect, demonstrating that the EAR motif is indispensable for the inhibitory effect of PyERF4.1/PyERF4.2 on anthocyanin biosynthesis in pears. Our study has shed light on a feedback regulatory loop mechanism that balances the excessive accumulation of anthocyanins in red-skinned pears, providing insights into the regulatory mechanism of anthocyanin biosynthesis and the regulatory network of coloration in red-skinned pears.
Collapse
Affiliation(s)
- Hongye Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kangdi Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shuwei Wei
- Shandong Institute of Pomology, Tai’an 271000, China
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
27
|
He K, Du J, Han X, Li H, Kui M, Zhang J, Huang Z, Fu Q, Jiang Y, Hu Y. PHOSPHATE STARVATION RESPONSE1 (PHR1) interacts with JASMONATE ZIM-DOMAIN (JAZ) and MYC2 to modulate phosphate deficiency-induced jasmonate signaling in Arabidopsis. THE PLANT CELL 2023; 35:2132-2156. [PMID: 36856677 PMCID: PMC10226604 DOI: 10.1093/plcell/koad057] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/21/2022] [Accepted: 02/03/2023] [Indexed: 05/30/2023]
Abstract
Phosphorus (P) is a macronutrient necessary for plant growth and development. Inorganic phosphate (Pi) deficiency modulates the signaling pathway of the phytohormone jasmonate in Arabidopsis thaliana, but the underlying molecular mechanism currently remains elusive. Here, we confirmed that jasmonate signaling was enhanced under low Pi conditions, and the CORONATINE INSENSITIVE1 (COI1)-mediated pathway is critical for this process. A mechanistic investigation revealed that several JASMONATE ZIM-DOMAIN (JAZ) repressors physically interacted with the Pi signaling-related core transcription factors PHOSPHATE STARVATION RESPONSE1 (PHR1), PHR1-LIKE2 (PHL2), and PHL3. Phenotypic analyses showed that PHR1 and its homologs positively regulated jasmonate-induced anthocyanin accumulation and root growth inhibition. PHR1 stimulated the expression of several jasmonate-responsive genes, whereas JAZ proteins interfered with its transcriptional function. Furthermore, PHR1 physically associated with the basic helix-loop-helix (bHLH) transcription factors MYC2, MYC3, and MYC4. Genetic analyses and biochemical assays indicated that PHR1 and MYC2 synergistically increased the transcription of downstream jasmonate-responsive genes and enhanced the responses to jasmonate. Collectively, our study reveals the crucial regulatory roles of PHR1 in modulating jasmonate responses and provides a mechanistic understanding of how PHR1 functions together with JAZ and MYC2 to maintain the appropriate level of jasmonate signaling under conditions of Pi deficiency.
Collapse
Affiliation(s)
- Kunrong He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiancan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Huiqiong Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Mengyi Kui
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juping Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhichong Huang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Qiantang Fu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
28
|
Wu X, Liu Z, Liu Y, Wang E, Zhang D, Huang S, Li C, Zhang Y, Chen Z, Zhang Y. SlPHL1 is involved in low phosphate stress promoting anthocyanin biosynthesis by directly upregulation of genes SlF3H, SlF3'H, and SlLDOX in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107801. [PMID: 37269822 DOI: 10.1016/j.plaphy.2023.107801] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Phosphate (Pi) deficiency is a common stress that limits plant growth and development. Plants exhibit a variety of Pi starvation responses (PSRs), including anthocyanin accumulation. The transcription factors of the PHOSPHATE STARVATION RESPONSE (PHR) family, such as AtPHR1 in Arabidopsis, play central roles in the regulation of Pi starvation signaling. Solanum lycopersicum PHR1-like 1 (SlPHL1) is a recently identified PHR involved in PSR regulation in tomato, but the detailed mechanism of its participation in Pi starvation-inducing anthocyanin accumulation remains unclear. Here we found that overexpression of SlPHL1 in tomato increases the expression of genes associated with anthocyanin biosynthesis, thereby promoting anthocyanin biosynthesis, but silencing SlPHL1 with Virus Induced Gene Silencing (VIGS) attenuated low phosphate (LP) stress-induced anthocyanin accumulation and expression of the biosynthesis-related genes. Notably, SlPHL1 is able to bind the promoters of genes Flavanone 3-Hydroxylase (SlF3H), Flavanone 3'-Hydroxylase (SlF3'H), and Leucoanthocyanidin Dioxygenase (SlLDOX) by yeast one-hybrid (Y1H) analysis. Furthermore, Electrophoretic Mobility Shift Assay (EMSA) and transient transcript expression assay showed that PHR1 binding t (sequence (P1BS) motifs located on the promoters of these three genes are critical for SlPHL1 binding and enhancing the gene transcription. Additionally, allogenic overexpression of SlPHL1 could promote anthocyanin biosynthesis in Arabidopsis under LP conditions through the similar mechanism to AtPHR1, suggesting that SlPHL1 might be functionally conserved with AtPHR1 in this process. Taken together, SlPHL1 positively regulates LP-induced anthocyanin accumulation by directly promoting the transcription of SlF3H, SlF3'H and SlLDOX. These findings will contribute to understanding the molecular mechanism of PSR in tomato.
Collapse
Affiliation(s)
- Xueqian Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhongjuan Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province Universities, Fuzhou, 350002, China
| | - Yanan Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Enhui Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Duanmei Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaoxuan Huang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chengquan Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yijing Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhongze Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongqiang Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province Universities, Fuzhou, 350002, China.
| |
Collapse
|
29
|
Mackon E, Mackon GCJDE, Guo Y, Ma Y, Yao Y, Liu P. Development and Application of CRISPR/Cas9 to Improve Anthocyanin Pigmentation in Plants: Opportunities and Perspectives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023:111746. [PMID: 37230190 DOI: 10.1016/j.plantsci.2023.111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/22/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
Since its discovery in 2012, the novel technology of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) has greatly contributed to revolutionizing molecular biology. It has been demonstrated to be an effective approach for identifying gene function and improving some important traits. Anthocyanins are secondary metabolites responsible for a wide spectrum of aesthetic coloration in various plant organs and are beneficial for health. As such, increasing anthocyanin content in plants, especially the edible tissue and organs, is always a main goal for plant breeding. Recently, CRISPR/Cas9 technology has been highly desired to enhance the amount of anthocyanin in vegetables, fruits, cereals, and other attractive plants with more precision. Here we reviewed the recent knowledge concerning CRISPR/Cas9-mediated anthocyanin enhancement in plants. In addition, we addressed the future avenues of promising potential target genes that could be helpful for achieving the same goal using CRISPR/Cas9 in several plants. Thus, molecular biologists, genetic engineers, agricultural scientists, plant geneticists, and physiologists may benefit from CRISPR technology to boost the biosynthesis and accumulation of anthocyanins in fresh fruits, vegetables, grains, roots, and ornamental plants.
Collapse
Affiliation(s)
- Enerand Mackon
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University.
| | | | - Yongqiang Guo
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, P.R. China.
| | - Yafei Ma
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, P.R. China.
| | - Yuhang Yao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, P.R. China.
| | - Piqing Liu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, P.R. China.
| |
Collapse
|
30
|
Lozoya-Gloria E, Cuéllar-González F, Ochoa-Alejo N. Anthocyanin metabolic engineering of Euphorbia pulcherrima: advances and perspectives. FRONTIERS IN PLANT SCIENCE 2023; 14:1176701. [PMID: 37255565 PMCID: PMC10225641 DOI: 10.3389/fpls.2023.1176701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023]
Abstract
The range of floral colors is determined by the type of plant pigment accumulated by the plant. Anthocyanins are the most common flavonoid pigments in angiosperms; they provide a wide range of visible colors from red-magenta to blue-purple, products of cyanidin and delphinidin biosynthesis, respectively. For the floriculture industry, floral color is one of the most important ornamental characteristics for the development of new commercial varieties; however, most plant species are restricted to a certain color spectrum, limited by their own genetics. In fact, many ornamental crops lack bluish varieties due to the lack of activity of essential biosynthetic enzymes for the accumulation of delphinidin. An example is the poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch), the ornamental plant symbol of Christmas and native to Mexico. Its popularity is the result of the variety of colors displayed by its bracts, a kind of modified leaves that accumulate reddish pigments based mainly on cyanidin and, to a lesser extent, on pelargonidin. The commercial success of this plant lies in the development of new varieties and, although consumers like the typical red color, they are also looking for poinsettias with new and innovative colors. Previous research has demonstrated the possibility of manipulating flower color through metabolic engineering of the anthocyanin biosynthesis pathway and plant tissue culture in different ornamental plant species. For example, transgenic cultivars of flowers such as roses, carnations or chrysanthemums owe their attractive bluish colors to a high and exclusive accumulation of delphinidin. Here, we discuss the possibilities of genetic engineering of the anthocyanin biosynthetic pathway in E. pulcherrima through the introduction of one or more foreign delphinidin biosynthetic genes under the transcriptional control of a pathway-specific promoter, and the genome editing possibilities as an alternative tool to modify the color of the bracts. In addition, some other approaches such as the appropriate selection of the cultivars that presented the most suitable intracellular conditions to accumulate delphinidin, as well as the incorporation of genes encoding anthocyanin-modifying enzymes or transcription factors to favor the bluish pigmentation of the flowers are also revised.
Collapse
|
31
|
Yang K, Hou Y, Wu M, Pan Q, Xie Y, Zhang Y, Sun F, Zhang Z, Wu J. DoMYB5 and DobHLH24, Transcription Factors Involved in Regulating Anthocyanin Accumulation in Dendrobium officinale. Int J Mol Sci 2023; 24:ijms24087552. [PMID: 37108715 PMCID: PMC10142772 DOI: 10.3390/ijms24087552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
As a kind of orchid plant with both medicinal and ornamental value, Dendrobium officinale has garnered increasing research attention in recent years. The MYB and bHLH transcription factors play important roles in the synthesis and accumulation of anthocyanin. However, how MYB and bHLH transcription factors work in the synthesis and accumulation of anthocyanin in D. officinale is still unclear. In this study, we cloned and characterized one MYB and one bHLH transcription factor, namely, D. officinale MYB5 (DoMYB5) and D. officinaleb bHLH24 (DobHLH24), respectively. Their expression levels were positively correlated with the anthocyanin content in the flowers, stems, and leaves of D. officinale varieties with different colors. The transient expression of DoMYB5 and DobHLH24 in D. officinale leaf and their stable expression in tobacco significantly promoted the accumulation of anthocyanin. Both DoMYB5 and DobHLH24 could directly bind to the promoters of D. officinale CHS (DoCHS) and D. officinale DFR (DoDFR) and regulate DoCHS and DoDFR expression. The co-transformation of the two transcription factors significantly enhanced the expression levels of DoCHS and DoDFR. DoMYB5 and DobHLH24 may enhance the regulatory effect by forming heterodimers. Drawing on the results of our experiments, we propose that DobHLH24 may function as a regulatory partner by interacting directly with DoMYB5 to stimulate anthocyanin accumulation in D. officinale.
Collapse
Affiliation(s)
- Kun Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yibin Hou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mei Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiuyu Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yilong Xie
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yusen Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fenghang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhizhong Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinghua Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
32
|
Xu Z, Wang J, Ma Y, Wang F, Wang J, Zhang Y, Hu X. The bZIP transcription factor SlAREB1 regulates anthocyanin biosynthesis in response to low temperature in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36999610 DOI: 10.1111/tpj.16224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Low temperature and abscisic acid (ABA) are the two main factors that induce anthocyanin synthesis; however, their potential relationships in governing anthocyanin biosynthesis in Solanum lycopersicum (tomato) seedlings remains unclear. Our study revealed the involvement of the transcription factor SlAREB1 in the low-temperature response of tomato seedlings via the ABA-dependent pathway, for a specific temperature range. The overexpression of SlAREB1 enhanced the expression of anthocyanin-related genes and the accumulation of anthocyanins, especially under low-temperature conditions, whereas silencing SlAREB1 dramatically reduced gene expression and anthocyanin accumulation. There is a direct interaction between SlAREB1 and the promoters of SlDFR and SlF3'5'H, which are structural genes that impact anthocyanin biosynthesis. SlAREB1 can regulate anthocyanins through controlling SlDFR and SlF3'5'H expression. Accordingly, SlAREB1 takes charge of regulating anthocyanin biosynthesis in tomato seedlings via the ABA-dependent pathway at low temperatures.
Collapse
Affiliation(s)
- Zijian Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Jiachun Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Yongbo Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Fan Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Jingrong Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Yong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| |
Collapse
|
33
|
Li N, Liu Y, Yin Y, Gao S, Wu F, Yu C, Wang F, Kang B, Xu K, Jiao C, Yao M. Identification of CaPs locus involving in purple stripe formation on unripe fruit, reveals allelic variation and alternative splicing of R2R3-MYB transcription factor in pepper ( Capsicum annuum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1140851. [PMID: 37056500 PMCID: PMC10089288 DOI: 10.3389/fpls.2023.1140851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
The purple color of unripe pepper fruit is attributed to the accumulation of anthocyanins. Only a few genes controlling the biosynthesis and regulation of anthocyanins have been cloned in Capsicum. In this study, we performed a bulked segregant analysis of the purple striped trait using an F2 population derived from a cross between the immature purple striped fruit line Chen12-4-1-1-1-1 and the normal green fruit line Zhongxian101-M-F9. We mapped the CaPs locus to an 841.39 kb region between markers M-CA690-Xba and MCA710-03 on chromosome 10. CA10g11690 encodes an R2R3-MYB transcription factor that is involved in the biosynthesis of anthocyanins as the best candidate gene. Overexpression and silencing in transformed tobacco (Nicotiana tabacum) lines indicated that CA10g11690 is involved in the formation of purple stripes in the exocarp. A comparison of parental sequences identified an insertion fragment of 1,926 bp in the second intron region of Chen12-4, and eight SNPs were detected between the two parents. Additionally, there were 49 single nucleotide polymorphic variations, two sequence deletions, and four sequence insertions in the promoter region. We found that CA10g11690 undergoes alternative splicing and generates different transcripts. Thus, the functional transcript of CA10g11690 appeared to be primarily involved in the development of purple phenotype in the exocarp. Our data provide new insight into the mechanism of anthocyanin biosynthesis and a theoretical basis for the future breeding of purple striped pepper varieties.
Collapse
Affiliation(s)
- Ning Li
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yabo Liu
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Yanxu Yin
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Shenghua Gao
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fangyuan Wu
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chuying Yu
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fei Wang
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Byoung−Cheorl Kang
- Department of Agriculture, Forestry, and Bioresources, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kai Xu
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chunhai Jiao
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Minghua Yao
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
34
|
Ravikiran KT, Thribhuvan R, Sheoran S, Kumar S, Kushwaha AK, Vineeth TV, Saini M. Tailoring crops with superior product quality through genome editing: an update. PLANTA 2023; 257:86. [PMID: 36949234 DOI: 10.1007/s00425-023-04112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
In this review, using genome editing, the quality trait alterations in important crops have been discussed, along with the challenges encountered to maintain the crop products' quality. The delivery of economic produce with superior quality is as important as high yield since it dictates consumer's acceptance and end use. Improving product quality of various agricultural and horticultural crops is one of the important targets of plant breeders across the globe. Significant achievements have been made in various crops using conventional plant breeding approaches, albeit, at a slower rate. To keep pace with ever-changing consumer tastes and preferences and industry demands, such efforts must be supplemented with biotechnological tools. Fortunately, many of the quality attributes are resultant of well-understood biochemical pathways with characterized genes encoding enzymes at each step. Targeted mutagenesis and transgene transfer have been instrumental in bringing out desired qualitative changes in crops but have suffered from various pitfalls. Genome editing, a technique for methodical and site-specific modification of genes, has revolutionized trait manipulation. With the evolution of versatile and cost effective CRISPR/Cas9 system, genome editing has gained significant traction and is being applied in several crops. The availability of whole genome sequences with the advent of next generation sequencing (NGS) technologies further enhanced the precision of these techniques. CRISPR/Cas9 system has also been utilized for desirable modifications in quality attributes of various crops such as rice, wheat, maize, barley, potato, tomato, etc. The present review summarizes salient findings and achievements of application of genome editing for improving product quality in various crops coupled with pointers for future research endeavors.
Collapse
Affiliation(s)
- K T Ravikiran
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, Uttar Pradesh, India
| | - R Thribhuvan
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, West Bengal, India
| | - Seema Sheoran
- ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, Haryana, India.
| | - Sandeep Kumar
- ICAR-Indian Institute of Natural Resins and Gums, Ranchi, Jharkhand, India
| | - Amar Kant Kushwaha
- ICAR-Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - T V Vineeth
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Bharuch, Gujarat, India
- Department of Plant Physiology, College of Agriculture, Kerala Agricultural University, Vellanikkara, Thrissur, Kerala, India
| | - Manisha Saini
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
35
|
Menconi J, Perata P, Gonzali S. Novel R2R3 MYB transcription factors regulate anthocyanin synthesis in Aubergine tomato plants. BMC PLANT BIOLOGY 2023; 23:148. [PMID: 36935480 PMCID: PMC10026432 DOI: 10.1186/s12870-023-04153-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND A high content in anthocyanins, for their health beneficial properties, represents an added value for fruits and vegetables. Tomato (Solanum lycopersicum) is one of the most consumed vegetables worldwide and is rich in vitamins and carotenoids. In recent years, purple-skinned tomatoes, enriched of anthocyanins, were produced recovering allelic variants from wild Solanum species. The molecular basis of the Anthocyanin fruit (Aft) locus, exploited by breeders to activate the anthocyanin synthesis in tomato epicarp, has been recently identified in the correct splicing of the R2R3 MYB gene AN2like. Aubergine (Abg) is a tomato accession which introgressed from Solanum lycopersicoides a locus activating the synthesis of anthocyanins in the fruit. The Abg locus was mapped in the region of chromosome 10 containing Aft and the possibility that Abg and Aft represented alleles of the same gene was hypothesized. RESULTS We dissected the R2R3 MYB gene cluster located in the Abg genomic introgression and demonstrated that AN2like is correctly spliced in Abg plants and is expressed in the fruit epicarp. Moreover, its silencing specifically inhibits the anthocyanin synthesis. The Abg allele of AN2like undergoes alternative splicing and produces two proteins with different activities. Furthermore, in Abg the master regulator of the anthocyanin synthesis in tomato vegetative tissues, AN2, is very poorly expressed. Finally, a novel R2R3 MYB gene was identified: it encodes another positive regulator of the pathway, whose activity was lost in tomato and in its closest relatives. CONCLUSION In this study, we propose that AN2like is responsible of the anthocyanin production in Abg fruits. Unlike wild type tomato, the Abg allele of AN2like is active and able to regulate its targets. Furthermore, in Abg alternative splicing leads to two forms of AN2like with different activities, likely representing a novel type of regulation of anthocyanin synthesis in tomato.
Collapse
Affiliation(s)
- Jacopo Menconi
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Pierdomenico Perata
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Silvia Gonzali
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy.
| |
Collapse
|
36
|
Chen N, Shao Q, Xiong Z. Isolation and characterization of a pathogenesis-related protein 1 (SlPR1) gene with induced expression in tomato (Solanum lycopersicum) during Ralstonia solanacearum infection. Gene 2023; 855:147105. [PMID: 36513189 DOI: 10.1016/j.gene.2022.147105] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
In order to explore the function of pathogenesis-related (PR) proteins in regulating tomato (Solanum lycopersicum) biological stress response, a PR protein gene (SlPR1) (Gen ID: Solyc01g106620.2) was isolated from tomato by RT-PCR. The full-length cDNA was 760 bp, which encoded a total of 179 amino acids. The cDNA contained a 42 bp 5' non-coding region, a 178 bp 3' non-coding region, and an open reading frame (ORF) of 540 bp. Homologous sequence alignment and phylogenetic analysis indicated that SlPR1 was highly homologous with a S. tuberosum PR1 protein, followed by S. pennellii. The predicted molecular weight of SlPR1 was 20,123.47 Da, the isoelectric point was 8.48, and the protein was found to be a secreted protein with a transmembrane structure. Quantitative real-time PCR (qRT-PCR) revealed that SlPR1 gene expression was highest in tomato stems, and could be induced by infection with Ralstonia solanacearum, and treatment with salicylic acid (SA) and methyl jasmonate acid (MeJA).Virus-induced gene silencing (VIGS) of SlPR1 decreased plant resistance to bacterial wilt, suggesting that SlPR1 positively regulates tomato resistance to this disease.This study provides a reference for the further exploration of the role of SlPR1 in the response of tomato to bacterial wilt and other stressors.
Collapse
Affiliation(s)
- Na Chen
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China.
| | - Qin Shao
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China
| | - Zili Xiong
- Wenzhou Vocational College of Science and Technology, Wenzhou 325000, China.
| |
Collapse
|
37
|
Sharma P, Pandey A, Malviya R, Dey S, Karmakar S, Gayen D. Genome editing for improving nutritional quality, post-harvest shelf life and stress tolerance of fruits, vegetables, and ornamentals. Front Genome Ed 2023; 5:1094965. [PMID: 36911238 PMCID: PMC9998953 DOI: 10.3389/fgeed.2023.1094965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
Agricultural production relies on horticultural crops, including vegetables, fruits, and ornamental plants, which sustain human life. With an alarming increase in human population and the consequential need for more food, it has become necessary for increased production to maintain food security. Conventional breeding has subsidized the development of improved verities but to enhance crop production, new breeding techniques need to be acquired. CRISPR-Cas9 system is a unique and powerful genome manipulation tool that can change the DNA in a precise way. Based on the bacterial adaptive immune system, this technique uses an endonuclease that creates double-stranded breaks (DSBs) at the target loci under the guidance of a single guide RNA. These DSBs can be repaired by a cellular repair mechanism that installs small insertion and deletion (indels) at the cut sites. When equated to alternate editing tools like ZFN, TALENs, and meganucleases, CRISPR- The cas-based editing tool has quickly gained fast-forward for its simplicity, ease to use, and low off-target effect. In numerous horticultural and industrial crops, the CRISPR technology has been successfully used to enhance stress tolerance, self-life, nutritional improvements, flavor, and metabolites. The CRISPR-based tool is the most appropriate one with the prospective goal of generating non-transgenic yields and avoiding the regulatory hurdles to release the modified crops into the market. Although several challenges for editing horticultural, industrial, and ornamental crops remain, this new novel nuclease, with its crop-specific application, makes it a dynamic tool for crop improvement.
Collapse
Affiliation(s)
- Punam Sharma
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Anuradha Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Rinku Malviya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Sharmistha Dey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | | | - Dipak Gayen
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
38
|
Tiwari JK, Singh AK, Behera TK. CRISPR/Cas genome editing in tomato improvement: Advances and applications. FRONTIERS IN PLANT SCIENCE 2023; 14:1121209. [PMID: 36909403 PMCID: PMC9995852 DOI: 10.3389/fpls.2023.1121209] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/02/2023] [Indexed: 06/12/2023]
Abstract
The narrow genetic base of tomato poses serious challenges in breeding. Hence, with the advent of clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein9 (CRISPR/Cas9) genome editing, fast and efficient breeding has become possible in tomato breeding. Many traits have been edited and functionally characterized using CRISPR/Cas9 in tomato such as plant architecture and flower characters (e.g. leaf, stem, flower, male sterility, fruit, parthenocarpy), fruit ripening, quality and nutrition (e.g., lycopene, carotenoid, GABA, TSS, anthocyanin, shelf-life), disease resistance (e.g. TYLCV, powdery mildew, late blight), abiotic stress tolerance (e.g. heat, drought, salinity), C-N metabolism, and herbicide resistance. CRISPR/Cas9 has been proven in introgression of de novo domestication of elite traits from wild relatives to the cultivated tomato and vice versa. Innovations in CRISPR/Cas allow the use of online tools for single guide RNA design and multiplexing, cloning (e.g. Golden Gate cloning, GoldenBraid, and BioBrick technology), robust CRISPR/Cas constructs, efficient transformation protocols such as Agrobacterium, and DNA-free protoplast method for Cas9-gRNAs ribonucleoproteins (RNPs) complex, Cas9 variants like PAM-free Cas12a, and Cas9-NG/XNG-Cas9, homologous recombination (HR)-based gene knock-in (HKI) by geminivirus replicon, and base/prime editing (Target-AID technology). This mini-review highlights the current research advances in CRISPR/Cas for fast and efficient breeding of tomato.
Collapse
Affiliation(s)
- Jagesh Kumar Tiwari
- Division of Vegetable Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Anand Kumar Singh
- Division of Horticulture, Indian Council of Agricultural Research, Krishi Anusandhan Bhawan - II, Pusa, New Delhi, India
| | - Tusar Kanti Behera
- Division of Vegetable Improvement, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| |
Collapse
|
39
|
Zhang P, Zhu H. Anthocyanins in Plant Food: Current Status, Genetic Modification, and Future Perspectives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020866. [PMID: 36677927 PMCID: PMC9863750 DOI: 10.3390/molecules28020866] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Anthocyanins are naturally occurring polyphenolic pigments that give food varied colors. Because of their high antioxidant activities, the consumption of anthocyanins has been associated with the benefit of preventing various chronic diseases. However, due to natural evolution or human selection, anthocyanins are found only in certain species. Additionally, the insufficient levels of anthocyanins in the most common foods also limit the optimal benefits. To solve this problem, considerable work has been done on germplasm improvement of common species using novel gene editing or transgenic techniques. This review summarized the recent advances in the molecular mechanism of anthocyanin biosynthesis and focused on the progress in using the CRISPR/Cas gene editing or multigene overexpression methods to improve plant food anthocyanins content. In response to the concerns of genome modified food, the future trends in developing anthocyanin-enriched plant food by using novel transgene or marker-free genome modified technologies are discussed. We hope to provide new insights and ideas for better using natural products like anthocyanins to promote human health.
Collapse
|
40
|
Chen N, Shao Q, Lu Q, Li X, Gao Y. Transcriptome analysis reveals differential transcription in tomato (Solanum lycopersicum) following inoculation with Ralstonia solanacearum. Sci Rep 2022; 12:22137. [PMID: 36550145 PMCID: PMC9780229 DOI: 10.1038/s41598-022-26693-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Tomato (Solanum lycopersicum L.) is a major Solanaceae crop worldwide and is vulnerable to bacterial wilt (BW) caused by Ralstonia solanacearum during the production process. BW has become a growing concern that could enormously deplete the tomato yield from 50 to 100% and decrease the quality. Research on the molecular mechanism of tomato regulating BW resistance is still limited. In this study, two tomato inbred lines (Hm 2-2, resistant to BW; and BY 1-2, susceptible to BW) were used to explore the molecular mechanism of tomato in response to R. solanacearum infection by RNA-sequencing (RNA-seq) technology. We identified 1923 differentially expressed genes (DEGs) between Hm 2-2 and BY 1-2 after R. solanacearum inoculation. Among these DEGs, 828 were up-regulated while 1095 were down-regulated in R-3dpi (Hm 2-2 at 3 days post-inoculation with R. solanacearum) vs. R-mock (mock-inoculated Hm 2-2); 1087 and 2187 were up- and down-regulated, respectively, in S-3dpi (BY 1-2 at 3 days post-inoculation with R. solanacearum) vs. S-mock (mock-inoculated BY 1-2). Moreover, Gene Ontology (GO) enrichment analysis revealed that the largest amount of DEGs were annotated with the Biological Process terms, followed by Cellular Component and Molecular Function terms. A total of 114, 124, 85, and 89 regulated (or altered) pathways were identified in R-3dpi vs. R-mock, S-3dpi vs. S-mock, R-mock vs. S-mock, and R-3dpi vs. S-3dpi comparisons, respectively, by Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis. These clarified the molecular function and resistance pathways of DEGs. Furthermore, quantitative RT-PCR (qRT-PCR) analysis confirmed the expression patterns of eight randomly selected DEGs, which suggested that the RNA-seq results were reliable. Subsequently, in order to further verify the reliability of the transcriptome data and the accuracy of qRT-PCR results, WRKY75, one of the eight DEGs was silenced by virus-induced gene silencing (VIGS) and the defense response of plants to R. solanacearum infection was analyzed. In conclusion, the findings of this study provide profound insight into the potential mechanism of tomato in response to R. solanacearum infection, which lays an important foundation for future studies on BW.
Collapse
Affiliation(s)
- Na Chen
- grid.449868.f0000 0000 9798 3808College of Life Science and Resources and Environment, Yichun University, Yichun, 336000 China
| | - Qin Shao
- grid.449868.f0000 0000 9798 3808College of Life Science and Resources and Environment, Yichun University, Yichun, 336000 China
| | - Qineng Lu
- grid.449868.f0000 0000 9798 3808College of Life Science and Resources and Environment, Yichun University, Yichun, 336000 China
| | - Xiaopeng Li
- grid.449868.f0000 0000 9798 3808College of Life Science and Resources and Environment, Yichun University, Yichun, 336000 China
| | - Yang Gao
- grid.449868.f0000 0000 9798 3808College of Life Science and Resources and Environment, Yichun University, Yichun, 336000 China
| |
Collapse
|
41
|
Luo B, Chen L, Chen G, Wang Y, Xie Q, Chen X, Hu Z. Transcription and Metabolism Pathways of Anthocyanin in Purple Shamrock ( Oxalis triangularis A.St.-Hil.). Metabolites 2022; 12:metabo12121290. [PMID: 36557327 PMCID: PMC9784199 DOI: 10.3390/metabo12121290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Anthocyanins are water-soluble pigments that can impart various colors to plants. Purple shamrock (Oxalis triangularis) possesses unique ornamental value due to its purple leaves. In this study, three anthocyanins, including malvidin 3-O-(4-O-(6-O-malonyl-glucopyranoside)-rhamnopyranosyl)-5-O-(6-O-malonyl-glucopyranoside), delphinidin-3-O-rutinoside and malvidin-3,5-di-O-glucoside, were characterized with ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) in purple shamrock. To investigate the molecular mechanism of anthocyanin biosynthesis in green shamrock (Oxalis corymbosa) and purple shamrock, RNA-seq and qRT-PCR were performed, and the results showed that most of the anthocyanin biosynthetic and regulatory genes were up-regulated in purple shamrock. Then, dark treatment and low temperature treatment experiments in purple shamrock showed that both light and low temperature can induce the biosynthesis of anthocyanins.
Collapse
Affiliation(s)
- Baobing Luo
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Liujun Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Yunshu Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Xuqing Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Correspondence: (X.C.); (Z.H.); Tel.: +86-1051503868 (X.C.); +86-13996265017 (Z.H.)
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China
- Correspondence: (X.C.); (Z.H.); Tel.: +86-1051503868 (X.C.); +86-13996265017 (Z.H.)
| |
Collapse
|
42
|
Tao H, Li L, He Y, Zhang X, Zhao Y, Wang Q, Hong G. Flavonoids in vegetables: improvement of dietary flavonoids by metabolic engineering to promote health. Crit Rev Food Sci Nutr 2022; 64:3220-3234. [PMID: 36218329 DOI: 10.1080/10408398.2022.2131726] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Flavonoids are the most abundant polyphenols in plants, and have antioxidant effects as well as other bioactivities (e.g., anti-inflammatory, anti-cancer, anti-allergic, and neuroprotective effects). Vegetables are rich in flavonoids and are indispensable in our daily diet. Moreover, the vegetables as chassis for producing natural products would emerge as a promising means for cost-effective and sustainable production of flavonoids. Understanding the metabolic engineering of flavonoids in vegetables allows us to improve their nutrient composition. In this review, a comprehensive overview of flavonoids in vegetables, including the characterized types and distribution, health-promoting effects, associated metabolic pathways, and applied metabolic engineering are provided. We also introduce breakthroughs in multi-omics approaches that pertain to the elucidation of flavonoids metabolism in vegetables, as well as prospective and potential genome-editing technologies. Based on the varied composition and content of flavonoids among vegetables, dietary suggestions are further provided for human health.
Collapse
Affiliation(s)
- Han Tao
- Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Linying Li
- Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yuqing He
- Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xueying Zhang
- Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yao Zhao
- Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Qiaomei Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, Zhejiang, China
| | - Gaojie Hong
- Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
43
|
Anthocyanin Biosynthesis Induced by MYB Transcription Factors in Plants. Int J Mol Sci 2022; 23:ijms231911701. [PMID: 36233003 PMCID: PMC9570290 DOI: 10.3390/ijms231911701] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Anthocyanins act as polyphenolic pigment that is ubiquitously found in plants. Anthocyanins play a role not only in health-promoting as an antioxidant, but also in protection against all kinds of abiotic and biotic stresses. Most recent studies have found that MYB transcription factors (MYB TFs) could positively or negatively regulate anthocyanin biosynthesis. Understanding the roles of MYB TFs is essential in elucidating how MYB TFs regulate the accumulation of anthocyanin. In the review, we summarized the signaling pathways medicated by MYB TFs during anthocyanin biosynthesis including jasmonic acid (JA) signaling pathway, cytokinins (CKs) signaling pathway, temperature-induced, light signal, 26S proteasome pathway, NAC TFs, and bHLH TFs. Moreover, structural and regulator genes induced by MYB TFs, target genes bound and activated or suppressed by MYB TFs, and crosstalk between MYB TFs and other proteins, were found to be vitally important in the regulation of anthocyanin biosynthesis. In this study, we focus on the recent knowledge concerning the regulator signaling and mechanism of MYB TFs on anthocyanin biosynthesis, covering the signaling pathway, genes expression, and target genes and protein expression.
Collapse
|
44
|
Zhao X, Zhang Y, Long T, Wang S, Yang J. Regulation Mechanism of Plant Pigments Biosynthesis: Anthocyanins, Carotenoids, and Betalains. Metabolites 2022; 12:871. [PMID: 36144275 PMCID: PMC9506007 DOI: 10.3390/metabo12090871] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/03/2022] Open
Abstract
Anthocyanins, carotenoids, and betalains are known as the three major pigments in the plant kingdom. Anthocyanins are flavonoids derived from the phenylpropanoid pathway. They undergo acylation and glycosylation in the cytoplasm to produce anthocyanin derivatives and deposits in the cytoplasm. Anthocyanin biosynthesis is regulated by the MBW (comprised by R2R3-MYB, basic helix-loop-helix (bHLH) and WD40) complex. Carotenoids are fat-soluble terpenoids whose synthetic genes also are regulated by the MBW complex. As precursors for the synthesis of hormones and nutrients, carotenoids are not only synthesized in plants, but also synthesized in some fungi and bacteria, and play an important role in photosynthesis. Betalains are special water-soluble pigments that exist only in Caryophyllaceae plants. Compared to anthocyanins and carotenoids, the synthesis and regulation mechanism of betalains is simpler, starting from tyrosine, and is only regulated by MYB (myeloblastosis). Recently, a considerable amount of novel information has been gathered on the regulation of plant pigment biosynthesis, specifically with respect to aspects. In this review, we summarize the knowledge and current gaps in our understanding with a view of highlighting opportunities for the development of pigment-rich plants.
Collapse
Affiliation(s)
- Xuecheng Zhao
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yueran Zhang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Tuan Long
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Shouchuang Wang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jun Yang
- College of Tropical Crops, Hainan University, Haikou 570228, China
| |
Collapse
|
45
|
Chen Y, Kim P, Kong L, Wang X, Tan W, Liu X, Chen Y, Yang J, Chen B, Song Y, An Z, Min Phyon J, Zhang Y, Ding B, Kawabata S, Li Y, Wang Y. A dual-function transcription factor, SlJAF13, promotes anthocyanin biosynthesis in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5559-5580. [PMID: 35552695 DOI: 10.1093/jxb/erac209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/09/2022] [Indexed: 05/27/2023]
Abstract
Unlike modern tomato (Solanum lycopersicum) cultivars, cv. LA1996 harbors the dominant Aft allele, which is associated with anthocyanin synthesis in tomato fruit peel. However, the control of Aft anthocyanin biosynthesis remains unclear. Here, we used ethyl methanesulfonate-induced and CRISPR/Cas9-mediated mutation of LA1996 to show, respectively, that two class IIIf basic helix-loop-helix (bHLH) transcription factors, SlJAF13 and SlAN1, are involved in the control of anthocyanin synthesis. These transcription factors are key components of the MYB-bHLH-WD40 (MBW) complex, which positively regulates anthocyanin synthesis. Molecular and genetic analyses showed that SlJAF13 functions as an upstream activation factor of SlAN1 by binding directly to the G-Box motif of its promoter region. On the other hand, SlJAZ2, a JA signaling repressor, interferes with formation of the MBW complex to suppress anthocyanin synthesis by directly binding these two bHLH components. Unexpectedly, the transcript level of SlJAZ2 was in turn repressed in a SlJAF13-dependent manner. Mechanistically, SlJAF13 interacts with SlMYC2, inhibiting SlMYC2 activation of SlJAZ2 transcription, thus constituting a negative feedback loop governing anthocyanin accumulation. Taken together, our findings support a sophisticated regulatory network, in which SlJAF13 acts as an upstream dual-function regulator that fine tunes anthocyanin biosynthesis in tomato.
Collapse
Affiliation(s)
- Yunzhu Chen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Pyol Kim
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Lingzhe Kong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xin Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Wei Tan
- Horticultural Sub-academy of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China
| | - Xin Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yuansen Chen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Jianfei Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Bowei Chen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yuxin Song
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Zeyu An
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Jong Min Phyon
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yang Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Bing Ding
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Saneyuki Kawabata
- Institute for Sustainable Agroecosystem Services, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Midoricho, Nishitokyo, Tokyo, 188-0002, Japan
| | - Yuhua Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
46
|
Regulation of Anthocyanin Biosynthesis by Drought and UV-B Radiation in Wild Tomato (Solanum peruvianum) Fruit. Antioxidants (Basel) 2022; 11:antiox11091639. [PMID: 36139713 PMCID: PMC9495367 DOI: 10.3390/antiox11091639] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Anthocyanins are plant pigments derived from the phenylpropanoid pathway which are produced in many different species, contributing to defense against stresses by their antioxidant properties. Cultivated tomatoes cannot synthesize flavonoids; however, wild tomatoes such as Solanum chilense and Solanum lycopersicoides have anthocyanin pigmented skin. Other wild tomato species such as Solanum peruvianum have been poorly studied concerning anthocyanin accumulation in the fruit. This research is the first to address the regulation of anthocyanin biosynthesis mediated by drought stress and light radiation in S. peruvianum fruit. Transcript accumulation of SpAN2, encoding for a key MYB type transcription factor for the regulation of anthocyanin biosynthesis, was induced in the fruit of plants exposed to drought treatment. In addition, fruit peel accumulates a greater anthocyanin content in water deficit-treated plants. The expression of SpAN2 was also regulated according to sunlight exposure, reaching a higher expression during maximal daily UV radiation and under controlled UV-B treatments. Similar results were observed for the expression of the late flavonoid biosynthetic gene dihydroflavonol 4-reductase (SpDFR). These results suggest that SpAN2 and SpDFR are involved in anthocyanin biosynthesis under drought stress and UV radiation in S. peruvianum.
Collapse
|
47
|
Liu W, Liu K, Chen D, Zhang Z, Li B, El-Mogy MM, Tian S, Chen T. Solanum lycopersicum, a Model Plant for the Studies in Developmental Biology, Stress Biology and Food Science. Foods 2022; 11:2402. [PMID: 36010400 PMCID: PMC9407197 DOI: 10.3390/foods11162402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022] Open
Abstract
Fruits, vegetables and other plant-derived foods contribute important ingredients for human diets, and are thus favored by consumers worldwide. Among these horticultural crops, tomato belongs to the Solanaceae family, ranks only secondary to potato (S. tuberosum L.) in yields and is widely cultivated for fresh fruit and processed foods owing to its abundant nutritional constituents (including vitamins, dietary fibers, antioxidants and pigments). Aside from its important economic and nutritional values, tomato is also well received as a model species for the studies on many fundamental biological events, including regulations on flowering, shoot apical meristem maintenance, fruit ripening, as well as responses to abiotic and biotic stresses (such as light, salinity, temperature and various pathogens). Moreover, tomato also provides abundant health-promoting secondary metabolites (flavonoids, phenolics, alkaloids, etc.), making it an excellent source and experimental system for investigating nutrient biosynthesis and availability in food science. Here, we summarize some latest results on these aspects, which may provide some references for further investigations on developmental biology, stress signaling and food science.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoguo Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mohamed M. El-Mogy
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Kumar D, Yadav A, Ahmad R, Dwivedi UN, Yadav K. CRISPR-Based Genome Editing for Nutrient Enrichment in Crops: A Promising Approach Toward Global Food Security. Front Genet 2022; 13:932859. [PMID: 35910203 PMCID: PMC9329789 DOI: 10.3389/fgene.2022.932859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/08/2022] [Indexed: 12/21/2022] Open
Abstract
The global malnutrition burden imparts long-term developmental, economic, social, and medical consequences to individuals, communities, and countries. The current developments in biotechnology have infused biofortification in several food crops to fight malnutrition. However, these methods are not sustainable and suffer from several limitations, which are being solved by the CRISPR-Cas-based system of genome editing. The pin-pointed approach of CRISPR-based genome editing has made it a top-notch method due to targeted gene editing, thus making it free from ethical issues faced by transgenic crops. The CRISPR-Cas genome-editing tool has been extensively used in crop improvement programs due to its more straightforward design, low methodology cost, high efficiency, good reproducibility, and quick cycle. The system is now being utilized in the biofortification of cereal crops such as rice, wheat, barley, and maize, including vegetable crops such as potato and tomato. The CRISPR-Cas-based crop genome editing has been utilized in imparting/producing qualitative enhancement in aroma, shelf life, sweetness, and quantitative improvement in starch, protein, gamma-aminobutyric acid (GABA), oleic acid, anthocyanin, phytic acid, gluten, and steroidal glycoalkaloid contents. Some varieties have even been modified to become disease and stress-resistant. Thus, the present review critically discusses CRISPR-Cas genome editing-based biofortification of crops for imparting nutraceutical properties.
Collapse
Affiliation(s)
- Dileep Kumar
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Anurag Yadav
- Department of Microbiology, College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agriculture University, Banaskantha, India
| | - Rumana Ahmad
- Department of Biochemistry, Era Medical University and Hospital, Lucknow, India
| | | | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, India
| |
Collapse
|
49
|
D'Amelia V, Staiti A, D'Orso F, Maisto M, Piccolo V, Aversano R, Carputo D. Targeted mutagenesis of StISAC stabilizes the production of anthocyanins in potato cell culture. PLANT DIRECT 2022; 6:e433. [PMID: 35949953 PMCID: PMC9352536 DOI: 10.1002/pld3.433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/15/2022] [Indexed: 05/31/2023]
Abstract
To increase the production of decorated anthocyanins in potato cell cultures, we knocked out a novel potato gene, named Inducer Silencing of Anthocyanins in Cell culture (StISAC), using CRISPR-Cas9 editing. Our results provided evidence that mutant cell lines doubled the accumulation level of anthocyanins biosynthesized. Moreover, the production of these important pigments was stabilized over time. Our study overcame important challenges in the efficient biotechnological production of these valuable pigments and reported the function of a novel anthocyanin biosynthesis repressor gene.
Collapse
Affiliation(s)
- Vincenzo D'Amelia
- Institute of Biosciences and Bioresources (IBBR)National Research Council of ItalyPorticiItaly
| | - Annalisa Staiti
- Department of Agricultural SciencesUniversity of Naples Federico IIPorticiItaly
| | - Fabio D'Orso
- Research Centre for Genomics and Bioinformatics (CREA‐GB)Council for Agricultural Research and EconomicsRomeItaly
| | - Maria Maisto
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Vincenzo Piccolo
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Riccardo Aversano
- Department of Agricultural SciencesUniversity of Naples Federico IIPorticiItaly
| | - Domenico Carputo
- Department of Agricultural SciencesUniversity of Naples Federico IIPorticiItaly
| |
Collapse
|
50
|
Liu Z, Wu X, Wang E, Liu Y, Wang Y, Zheng Q, Han Y, Chen Z, Zhang Y. PHR1 positively regulates phosphate starvation-induced anthocyanin accumulation through direct upregulation of genes F3'H and LDOX in Arabidopsis. PLANTA 2022; 256:42. [PMID: 35842503 DOI: 10.1007/s00425-022-03952-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Phosphate deficiency promotes anthocyanin accumulation in Arabidopsis through direct binding of PHR1 to the P1BS motifs on the promoters of F3'H and LDOX and thereby upregulating their expression. Phosphorus is one of the essential elements for plants, and plants mainly absorb inorganic phosphate (Pi) from soil. But Pi deficiency is a common factor limiting plant growth and development. Anthocyanin accumulation in green tissues (such as leaves) is one of the characteristics of many plants in response to Pi starvation. However, little is known about the mechanism by which Pi starvation induces anthocyanin accumulation. Here, we found that the mutation of the gene PHOSPHATE STARVATION RESPONSE1 (PHR1), which encodes a key factor involved in Pi starvation signaling in Arabidopsis, significantly attenuates anthocyanin accumulation under Pi-limiting conditions. Moreover, the expression of several Pi deficiency-upregulated genes that are involved in anthocyanin biosyntheses, such as flavanone 3'-hydroxylase (F3'H), dihydroflavonol 4-reductase (DFR), leucoanthocyanidin dioxygenase (LDOX), and production of anthocyanin pigment 1 (PAP1), was significantly lower in the phr1-1 mutant than in the wild type (WT). Both yeast one-hybrid (Y1H) analysis and chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) showed that PHR1 can interact with the promoters of F3'H and LDOX, but not DFR and PAP1. By electrophoretic mobility shift assay (EMSA), it was further confirmed that the PHR1-binding sequence (P1BS) motifs located on the F3'H and LDOX promoters are required for the PHR1 bindings. Also, in Arabidopsis protoplasts, PHR1 enhanced the transcriptional activity of the F3'H and LDOX promoters, but these effects were markedly impaired when the P1BS motifs were mutated. Taken together, these results indicate that PHR1 positively regulates Pi starvation-induced anthocyanin accumulation in Arabidopsis, at least in part, by directly binding the P1BS motifs located on the promoters to upregulate the transcription of anthocyanin biosynthetic genes F3'H and LDOX.
Collapse
Affiliation(s)
- Zhongjuan Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province Universities, Fuzhou, 350002, People's Republic of China
| | - Xueqian Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Enhui Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Yanan Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Yi Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Qinghua Zheng
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Yizhen Han
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Zhongze Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Yongqiang Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province Universities, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|