1
|
Li M, Duan Z, Zhang S, Zhang J, Chen J, Song H. The physiological and molecular mechanisms of WRKY transcription factors regulating drought tolerance: A review. Gene 2025; 938:149176. [PMID: 39694344 DOI: 10.1016/j.gene.2024.149176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/13/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
WRKY transcription factors (TFs) play crucial roles in responses to abiotic and biotic stresses that significantly impact plant growth and development. Advancements in molecular biology and sequencing technologies have elevated WRKY TF studies from merely determining expression patterns and functional characterization to uncovering molecular regulatory networks. Numerous WRKY TFs regulate drought tolerance in plants through various regulatory networks. This review details the physiological and molecular mechanisms of WRKY TFs regulating drought tolerance. The review focuses on the WRKY TFs involved in the phytohormone and metabolic pathways associated with the drought stress response and the multiple functions of these WRKY TFs, including biotic and abiotic stress responses and their participation in plant growth and development.
Collapse
Affiliation(s)
- Meiran Li
- Key Laboratory of Biology and Genetic Improvement of Peanut, Ministry of Agriculture and Rural Affairs, Shandong Peanut Research Institute, Qingdao 266000, China; Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhenquan Duan
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Shengzhong Zhang
- Key Laboratory of Biology and Genetic Improvement of Peanut, Ministry of Agriculture and Rural Affairs, Shandong Peanut Research Institute, Qingdao 266000, China
| | - Jiancheng Zhang
- Key Laboratory of Biology and Genetic Improvement of Peanut, Ministry of Agriculture and Rural Affairs, Shandong Peanut Research Institute, Qingdao 266000, China.
| | - Jing Chen
- Key Laboratory of Biology and Genetic Improvement of Peanut, Ministry of Agriculture and Rural Affairs, Shandong Peanut Research Institute, Qingdao 266000, China.
| | - Hui Song
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
2
|
Lei X, Fang J, Zhang Z, Li Z, Xu Y, Xie Q, Wang Y, Liu Z, Wang Y, Gao C. PdbCRF5 Overexpression Negatively Regulates Salt Tolerance by Downregulating PdbbZIP61 to Mediate Reactive Oxygen Species Scavenging and ABA Synthesis in Populus davidiana × P. bolleana. PLANT, CELL & ENVIRONMENT 2025; 48:1088-1106. [PMID: 39403882 DOI: 10.1111/pce.15199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 01/04/2025]
Abstract
Salt stress is the main factor limiting the large-scale cultivation of Shanxin poplar; therefore, improving its salt tolerance is crucial. In this study, we identified and characterized a CRF gene (PdbCRF5) in Shanxin poplar. Compared with the wild-type poplar, the Shanxin poplar overexpressing PdbCRF5 were more sensitive to salt stress. The PdbCRF5-silenced plants exhibited improved salt tolerance. ChIP‒PCR, EMSA, and Y1H confirmed that PdbCRF5 can regulate the expression of the PdbbZIP61 by binding to ABRE element. Further analysis revealed that the overexpression of PdbbZIP61 can reduce cell damage by increasing ROS scavenging, and on the other hand, overexpression of PdbbZIP61 can improve the salt tolerance of Shanxin poplar by regulating the expression of the PdbNCED genes to increase the ABA content. In addition, we also demonstrated that PdbCRF5 can inhibit the expression of the PdbbZIP61 in combination with PdbCRF6. The overexpression of PdbCRF6 also reduced the salt tolerance of Shanxin poplar. Therefore, we found that PdbCRF5 negatively regulates the salt tolerance of Shanxin poplar by inhibiting the PdbbZIP61, indicating that PdbCRF5 plays an important role in the tolerance of Shanxin poplar to salt stress and is an important candidate gene for gene editing and breeding in forest trees.
Collapse
Affiliation(s)
- Xiaojin Lei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Jiaru Fang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Ziqian Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zhengyang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yumeng Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qingjun Xie
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yuanyuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zhongyuan Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yanmin Wang
- Forestry Research Institute of Heilongjiang Province, Harbin, China
- Key Laboratory of Fast-Growing Tree Cultivation of Heilongjiang Province, Harbin, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
3
|
Luo S, Liu J, Shi K, Zhang J, Wang Z. Integrated transcriptomic and metabolomic analyses reveal that MsSPHK1 - A sphingosine kinase gene negatively regulates drought tolerance in alfalfa (Medicago sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109302. [PMID: 39579717 DOI: 10.1016/j.plaphy.2024.109302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
Alfalfa is a valuable forage crop but voluntarily affected by drought. Understanding the mechanisms of drought resistance in alfalfa is crucial for improving resilient cultivars. In our study, we used four distinct alfalfa accessions two drought-tolerance (DT) and two drought-sensitive (DS) and identified transcriptional modules and candidate genes associated with the drought tolerance in the DS from transcriptomic analyses. Our metabolic profiling of 520 metabolites revealed significant variations between the DS and DT groups, particularly in the levels of flavonoids and nucleotides and their derivatives. The integrated analysis of transcriptome and metabolome analysis revealed that the glycine, serine, and threonine metabolism and the sphingolipid metabolism are associated with the drought resistance. When drought stress occurs, MsSRR (MsG 0180002649.01) and MsSPHK1 (MsG 0280006618.01) are significantly up-regulated, L-serine and dihydrosphingosine (DHS) significantly down-regulated in DS. By silencing the MsSPHK1 gene we found the drought resistance was significantly improved. This was evidenced by a significant increase in the activity of antioxidant enzymes such as SOD, POD, and CAT, compared to the control group. Additionally, the photosynthetic rate, stomatal conductance, and efficiency of photosystem II measured by Fv/Fm, phi2 and qL, were significantly higher in the silenced plants than in the control group. In conclusion, our results suggest that the increased level of dihydrosphingosine improves alfalfa resistance to drought stress. Moreover, the negative regulatory role of MsSPHK1 in drought tolerance provides a promising target for genetic manipulation to enhance the resilience of alfalfa to drought stress.
Collapse
Affiliation(s)
- Shengze Luo
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jia Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kun Shi
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinli Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zan Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Yu B, Deng Y, Ding M, Deng B. Effects of exogenous calcium pretreatment on the cold resistance of Phoebe zhennan seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 220:109448. [PMID: 39787815 DOI: 10.1016/j.plaphy.2024.109448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/13/2024] [Accepted: 12/22/2024] [Indexed: 01/12/2025]
Abstract
Phoebe zhennan is a high-quality timber tree species mainly distributed in the subtropical regions of China. It is very important to study and improve the cold resistance of P. zhennan from the mechanism and practice for expanding its introduction and cultivation range. However, there is a lack of research on the cold resistance mechanisms of Zhennan seedlings. The present study investigated the effects of exogenous Ca2+ on the cold resistance in Zhennan. The results showed that Ca2+ pretreatment increased the levels of abscisic acid, peroxidase, catalase, proline, and soluble sugar and decreased the levels of malondialdehyde and relative electrical conductivity. In addition, RNA sequencing was used to investigate the global transcriptome response to cold stress. Gene set enrichment analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and gene ontology analysis were used to compare the differentially expressed genes before and after calcium treatment and before and after cold stress. These analyses together with the short time sequence clustering analysis of transcriptome data and predictive protein interaction analysis showed that the transcription factors PzWRKY71, PzTAF, and PzMYB7 play key roles in the regulation of and balance between cold resistance and growth in immune system. Moreover, it was found that the mechanisms of protein phosphorylation and ubiquitin-mediated protein degradation significantly affected the calcium ion-mediated cold resistance mechanism, and there was a complex regulatory relationship between them. The results provide valuable insights into the Ca2+-mediated cold resistance mechanism and have potential applications for improving cold stress tolerance in Zhennan seedlings.
Collapse
Affiliation(s)
- Bangyou Yu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, PR China
| | - Yimin Deng
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, PR China
| | - Manping Ding
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, PR China; Jixi County Forestry Bureau of Anhui Province, 245300, PR China
| | - Bo Deng
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, PR China.
| |
Collapse
|
5
|
da Costa WG, Bandeira e Souza M, Azevedo CF, Nascimento M, Morgante CV, Borel JC, de Oliveira EJ. Optimizing drought tolerance in cassava through genomic selection. FRONTIERS IN PLANT SCIENCE 2024; 15:1483340. [PMID: 39737377 PMCID: PMC11683140 DOI: 10.3389/fpls.2024.1483340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025]
Abstract
The complexity of selecting for drought tolerance in cassava, influenced by multiple factors, demands innovative approaches to plant selection. This study aimed to identify cassava clones with tolerance to water stress by employing truncated selection and selection based on genomic values for population improvement and genotype evaluation per se. The Best Linear Unbiased Predictions (BLUPs), Genomic Estimated Breeding Values (GEBVs), and Genomic Estimated Genotypic Values (GETGVs) were obtained based on different prediction models via genomic selection. The selection intensity ranged from 10 to 30%. A wide range of BLUPs for agronomic traits indicate desirable genetic variability for initiating genomic selection cycles to improve cassava's drought tolerance. SNP-based heritability (h 2) and broad-sense heritabilities (H 2) under water deficit were low magnitude (<0.40) for 8 to 12 agronomic traits evaluated. Genomic predictive abilities were below the levels of phenotypic heritability, varying by trait and prediction model, with the lowest and highest predictive abilities observed for starch content (0.15 - 0.22) and root length (0.34 - 0.36). Some agronomic traits of greater importance, such as fresh root yield (0.29 - 0.31) and shoot yield (0.31 - 0.32), showed good predictive ability, while dry matter content had lower predictive ability (0.16 - 0.22). The G-BLUP and RKHS methods presented higher predictive abilities, suggesting that incorporating kinship effects can be beneficial, especially in challenging environments. The selection differential based on a 15% selection intensity (62 genotypes) was higher for economically significant traits, such as starch content, shoot yield, and fresh root yield, both for population improvement (GEBVs) and for evaluating genotype's performance per (GETGVs). The lower costs of genotyping offer advantages over conventional phenotyping, making genomic selection a promising approach to increasing genetic gains for drought tolerance in cassava and reducing the breeding cycle to at least half the conventional time.
Collapse
Affiliation(s)
- Weverton Gomes da Costa
- Laboratório de Inteligência Computacional e Aprendizado Estatístico - LICAE, Departamento de Estatística, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Camila Ferreira Azevedo
- Laboratório de Inteligência Computacional e Aprendizado Estatístico - LICAE, Departamento de Estatística, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Moyses Nascimento
- Laboratório de Inteligência Computacional e Aprendizado Estatístico - LICAE, Departamento de Estatística, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
6
|
Shen H, Fu Y, Liu F, Zhang W, Yuan Y, Yang G, Yang M, Li L. AuCePt porous hollow cascade nanozymes targeted delivery of disulfiram for alleviating hepatic insulin resistance. J Nanobiotechnology 2024; 22:660. [PMID: 39456019 PMCID: PMC11515139 DOI: 10.1186/s12951-024-02880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
As the pathophysiological basis of type 2 diabetes mellitus (T2DM), insulin resistance (IR) is closely related to oxidative stress (OS) and inflammation, while nanozymes have a good therapeutic effect on inflammation and OS by scavenging reactive oxygen species (ROS). Hence, AuCePt porous hollow cascade nanozymes (AuCePt PHNs) are designed by integrating the dominant enzymatic activities of three metallic materials, which exhibit superior superoxide dismutase/catalase-like activities, and high drug loading capacity. In vitro experiments proved that AuCePt PHNs can ultra-efficiently scavenge endogenous and exogenous ROS. Moreover, AuCePt PHNs modified with lactobionic acid (LA) and loaded with disulfiram (DSF), named as AuCePt PHNs-LA@DSF, can significantly improve glucose uptake and glycogen synthesis in IR hepatocytes by regulating the insulin signaling pathways (IRS-1/AKT) and gluconeogenesis signaling pathways (FOXO-1/PEPCK). Intravenous administration of AuCePt PHNs-LA@DSF not only showed high liver targeting efficiency, but also reduced body weight and blood glucose and improved IR and lipid accumulation in high-fat diet-induced obese mice and diabetic ob/ob mice. This research elucidates the intrinsic activity of AuCePt PHNs for cascade scavenging of ROS, and reveals the potential effect of AuCePt PHNs-LA@DSF in T2DM treatment.
Collapse
Affiliation(s)
- Huawei Shen
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Sichuan-Chongqing Coconstruction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Yafei Fu
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Feifei Liu
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Wanliang Zhang
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yin Yuan
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Mengliu Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Ling Li
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Zheng L, Gao S, Bai Y, Zeng H, Shi H. NF-YC15 transcription factor activates ethylene biosynthesis and improves cassava disease resistance. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2424-2434. [PMID: 38600705 PMCID: PMC11331790 DOI: 10.1111/pbi.14355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/04/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
The nuclear factor Y (NF-Y) transcription factors play important roles in plant development and physiological responses. However, the relationship between NF-Y, plant hormone and plant stress resistance in tropical crops remains unclear. In this study, we identified MeNF-YC15 gene in the NF-Y family that significantly responded to Xanthomonas axonopodis pv. manihotis (Xam) treatment. Using MeNF-YC15-silenced and -overexpressed cassava plants, we elucidated that MeNF-YC15 positively regulated disease resistance to cassava bacterial blight (CBB). Notably, we illustrated MeNF-YC15 downstream genes and revealed the direct genetic relationship between MeNF-YC15 and 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (MeACO1)-ethylene module in disease resistance, as evidenced by the rescued disease susceptibility of MeNF-YC15 silenced cassava plants with ethylene treatment or overexpressing MeACO1. In addition, the physical interaction between 2C-type protein phosphatase 1 (MePP2C1) and MeNF-YC15 inhibited the transcriptional activation of MeACO1 by MeNF-YC15. In summary, MePP2C1-MeNF-YC15 interaction modulates ethylene biosynthesis and cassava disease resistance, providing gene network for cassava genetic improvement.
Collapse
Affiliation(s)
- Liyan Zheng
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and ForestryHainan UniversitySanya and HaikouHainan provinceChina
| | - Shuai Gao
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and ForestryHainan UniversitySanya and HaikouHainan provinceChina
| | - Yujing Bai
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and ForestryHainan UniversitySanya and HaikouHainan provinceChina
| | - Hongqiu Zeng
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and ForestryHainan UniversitySanya and HaikouHainan provinceChina
| | - Haitao Shi
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and ForestryHainan UniversitySanya and HaikouHainan provinceChina
| |
Collapse
|
8
|
Su Y, Chen YL, Wu YL, Fan XW, Li YZ. Three cassava A20/AN1 family genes, Metip3 (5, and 7), can bestow on tolerance of plants to multiple abiotic stresses but show functional convergence and divergence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112163. [PMID: 38880339 DOI: 10.1016/j.plantsci.2024.112163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
A20/AN1 zinc-finger domain-containing genes are very promising candidates in improving plant tolerance to abiotic stresses, but considerably less is known about functions and mechanisms for many of them. In this study, Metip3 (5, and 7), cassava (Manihot esculenta) A20/AN1 genes carrying one A20 domain and one AN1 domain, were functionally characterized at different layers. Metip3 (5, and 7) proteins were all located in the nucleus. No interactions were found between these three proteins. Metip3 (5, and 7)-expressing Arabidopsis was more tolerant to multiple abiotic stresses by Na, Cd, Mn, Al, drought, high temperature, and low temperature. Metip3- and Metip5-expressing Arabidopsis was sensitive to Cu stress, while Metip7-expressing Arabidopsis was insensitive. The H2O2 production significantly decreased in all transgenic Arabidopsis, however, O2·- production significantly decreased in Metip3- and Metip5-expressing Arabidopsis but did not significantly changed in Metip7-expressing Arabidopsis under drought. Metip3 (5, and 7) expression-silenced cassava showed the decreased tolerance to drought and NaCl, presented significant decreases in superoxide dismutase and catalase activities and proline content, and displayed a significant increase in malondialdehyde content under drought. Taken together with transcriptome sequencing analysis, it is suggested that Metip5 gene can not only affect signal transduction related to plant hormone, mitogen activated protein kinases, and starch and sucrose metabolism, DRE-binding transcription factors, and antioxidants, conferring the drought tolerance, but also might deliver the signals from DREB2A INTERACTING PROTEIN1, E3 ubiquitin-protein ligases to proteasome, leading to the drought intolerance. The results are informative not only for further study on evolution of A20/AN1 genes but also for development of climate resilient crops.
Collapse
Affiliation(s)
- Ying Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Research Center for Microbial and Enzyme Engineering Technology/College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yu-Lan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Research Center for Microbial and Enzyme Engineering Technology/College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yan-Liu Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Research Center for Microbial and Enzyme Engineering Technology/College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Research Center for Microbial and Enzyme Engineering Technology/College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Research Center for Microbial and Enzyme Engineering Technology/College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
9
|
Xu J, Liu S, Ren Y, You Y, Wang Z, Zhang Y, Zhu X, Hu P. Genome-wide identification of HSP90 gene family in Rosa chinensis and its response to salt and drought stresses. 3 Biotech 2024; 14:204. [PMID: 39161880 PMCID: PMC11330952 DOI: 10.1007/s13205-024-04052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024] Open
Abstract
Heat shock protein 90 (HSP90) is important for many organisms, including plants. Based on the whole genome information, the gene number, gene structure, evolutionary relationship, protein structure, and active site of the HSP90 gene family in Rosa chinensis and Rubus idaeus were determined, and the expression of the HSP90 gene under salt, and drought stresses in two rose varieties Wangxifeng and Sweet Avalanche were analyzed. Six and eight HSP90 genes were identified from R. chinensis and Ru. idaeus, respectively. Phylogenetic analysis revealed that the analyzed genes were divided into two Groups and four subgroups (Classes 1a, 1b, 2a, and 2b). Although members within the same classes displayed highly similar gene structures, while the gene structures and conserved domains of Group 1 (Class 1a and 1b) and the Group 2 (Class 2a and 2b) are different. Tandem and segmental duplication genes were found in Ru. idaeus, but not in R. chinensis, perhaps explaining the difference in HSP90 gene quantity in the two analyzed species. Analysis of cis-acting elements revealed abundant abiotic stress, photolight-response, and hormone-response elements in R. chinensis HSP90s. qRT-PCR analysis suggested that RcHSP90-1-1, RcHSP90-5-1 and RcHSP90-6-1 in Sweet Avalanche and Wangxifeng varieties played important regulatory roles under salt and drought stress. The analysis of protein structure and active sites indicate that the potential different roles of RcHSP90-1-1, RcHSP90-5-1, and RcHSP90-6-1 in salt and drought stresses may come from the differences of corresponding protein structures and activation sites. These data will provide information for the breeding of rose varieties with high stress resistance. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04052-0.
Collapse
Affiliation(s)
- Jun Xu
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan Province China
| | - Shuangwei Liu
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan Province China
| | - Yueming Ren
- College of Agricultural, Henan Institute of Science and Technology/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang, 453003 Henan Province China
| | - Yang You
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan Province China
| | - Zhifang Wang
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan Province China
| | - Yongqiang Zhang
- Xuchang Academy of Agricultural Sciences, Xuchang, Henan Province China
| | - Xinjie Zhu
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan Province China
| | - Ping Hu
- College of Agricultural, Henan Institute of Science and Technology/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang, 453003 Henan Province China
| |
Collapse
|
10
|
Li Z, Wang W, Yu X, Zhao P, Li W, Zhang X, Peng M, Li S, Ruan M. Integrated analysis of DNA methylome and transcriptome revealing epigenetic regulation of CRIR1-promoted cold tolerance. BMC PLANT BIOLOGY 2024; 24:631. [PMID: 38965467 PMCID: PMC11225538 DOI: 10.1186/s12870-024-05285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND DNA methylation contributes to the epigenetic regulation of nuclear gene expression, and is associated with plant growth, development, and stress responses. Compelling evidence has emerged that long non-coding RNA (lncRNA) regulates DNA methylation. Previous genetic and physiological evidence indicates that lncRNA-CRIR1 plays a positive role in the responses of cassava plants to cold stress. However, it is unclear whether global DNA methylation changes with CRIR1-promoted cold tolerance. RESULTS In this study, a comprehensive comparative analysis of DNA methylation and transcriptome profiles was performed to reveal the gene expression and epigenetic dynamics after CRIR1 overexpression. Compared with the wild-type plants, CRIR1-overexpressing plants present gained DNA methylation in over 37,000 genomic regions and lost DNA methylation in about 16,000 genomic regions, indicating a global decrease in DNA methylation after CRIR1 overexpression. Declining DNA methylation is not correlated with decreased/increased expression of the DNA methylase/demethylase genes, but is associated with increased transcripts of a few transcription factors, chlorophyll metabolism and photosynthesis-related genes, which could contribute to the CRIR1-promoted cold tolerance. CONCLUSIONS In summary, a first set of transcriptome and epigenome data was integrated in this study to reveal the gene expression and epigenetic dynamics after CRIR1 overexpression, with the identification of several TFs, chlorophyll metabolism and photosynthesis-related genes that may be involved in CRIR1-promoted cold tolerance. Therefore, our study has provided valuable data for the systematic study of molecular insights for plant cold stress response.
Collapse
Affiliation(s)
- Zhibo Li
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Wenjuan Wang
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
- College of Tropical Crops, Hainan University, Haikou, 570228, P.R. China
| | - Xiaoling Yu
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Pingjuan Zhao
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Wenbin Li
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Xiuchun Zhang
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Ming Peng
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Shuxia Li
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China.
| | - Mengbin Ruan
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China.
| |
Collapse
|
11
|
Wei Y, Zhu B, Zhang Y, Ma G, Wu J, Tang L, Shi H. CPK1-HSP90 phosphorylation and effector XopC2-HSP90 interaction underpin the antagonism during cassava defense-pathogen infection. THE NEW PHYTOLOGIST 2024; 242:2734-2745. [PMID: 38581188 DOI: 10.1111/nph.19739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
Cassava is one of the most important tropical crops, but it is seriously affected by cassava bacteria blight (CBB) caused by the bacterial pathogen Xanthomonas phaseoli pv manihotis (Xam). So far, how pathogen Xam infects and how host cassava defends during pathogen-host interaction remains elusive, restricting the prevention and control of CBB. Here, the illustration of HEAT SHOCK PROTEIN 90 kDa (MeHSP90.9) interacting proteins in both cassava and bacterial pathogen revealed the dual roles of MeHSP90.9 in cassava-Xam interaction. On the one hand, calmodulin-domain protein kinase 1 (MeCPK1) directly interacted with MeHSP90.9 to promote its protein phosphorylation at serine 175 residue. The protein phosphorylation of MeHSP90.9 improved the transcriptional activation of MeHSP90.9 clients (SHI-RELATED SEQUENCE 1 (MeSRS1) and MeWRKY20) to the downstream target genes (avrPphB Susceptible 3 (MePBS3) and N-aceylserotonin O-methyltransferase 2 (MeASMT2)) and immune responses. On the other hand, Xanthomonas outer protein C2 (XopC2) physically associated with MeHSP90.9 to inhibit its interaction with MeCPK1 and the corresponding protein phosphorylation by MeCPK1, so as to repress host immune responses and promote bacterial pathogen infection. In summary, these results provide new insights into genetic improvement of cassava disease resistance and extend our understanding of cassava-bacterial pathogen interaction.
Collapse
Affiliation(s)
- Yunxie Wei
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| | - Binbin Zhu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| | - Ye Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| | - Guowen Ma
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| | - Jingyuan Wu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| | - Luzhi Tang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| | - Haitao Shi
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| |
Collapse
|
12
|
Bai Y, Dong Y, Zheng L, Zeng H, Wei Y, Shi H. Cassava phosphatase PP2C1 modulates thermotolerance via fine-tuning dephosphorylation of antioxidant enzymes. PLANT PHYSIOLOGY 2024; 194:2724-2738. [PMID: 38198213 DOI: 10.1093/plphys/kiae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 01/12/2024]
Abstract
Global warming is an adverse environmental factor that threatens crop yields and food security. 2C-type protein phosphatases (PP2Cs), as core protein phosphatase components, play important roles in plant hormone signaling to cope with various environmental stresses. However, the function and underlying mechanism of PP2Cs in the heat stress response remain elusive in tropical crops. Here, we report that MePP2C1 negatively regulated thermotolerance in cassava (Manihot esculenta Crantz), accompanied by the modulation of reactive oxygen species (ROS) accumulation and the underlying antioxidant enzyme activities of catalase (CAT) and ascorbate peroxidase (APX). Further investigation found that MePP2C1 directly interacted with and dephosphorylated MeCAT1 and MeAPX2 at serine (S) 112 and S160 residues, respectively. Moreover, in vitro and in vivo assays showed that protein phosphorylation of MeCAT1S112 and MeAPX2S160 was essential for their enzyme activities, and MePP2C1 negatively regulated thermotolerance and redox homeostasis by dephosphorylating MeCAT1S112 and MeAPX2S160. Taken together, this study illustrates the direct relationship between MePP2C1-mediated protein dephosphorylation of MeCAT1 and MeAPX2 and ROS accumulation in thermotolerance to provide insights for adapting to global warming via fine-tuning thermotolerance of the tropical crop cassava.
Collapse
Affiliation(s)
- Yujing Bai
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Yabin Dong
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Liyan Zheng
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Hongqiu Zeng
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Yunxie Wei
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Haitao Shi
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| |
Collapse
|
13
|
Wang S, Hao X, Liu Y, Chen Y, Qu Y, Wang Z, Shen Y. AnWRKY29 and AnHSP90 synergistically modulate trehalose levels in a desert shrub leaves during osmotic stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14237. [PMID: 38433182 DOI: 10.1111/ppl.14237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
Trehalose, a biological macromolecule with osmotic adjustment properties, plays a crucial role during osmotic stress. As a psammophyte, Ammopiptanthus nanus relies on the accumulation of organic solutes to respond to osmotic stress. We utilized virus-induced gene silencing technology for the first time in the desert shrub A. nanus to confirm the central regulatory role of AnWRKY29 in osmotic stress, as it controls the transcription of AnTPS11 (trehalose-6-phosphate synthase 11). Further investigation has shown that AnHSP90 may interact with AnWRKY29. The AnHSP90 gene is sensitive to osmotic stress, underscoring its pivotal role in orchestrating the response to such adverse conditions. By directly targeting the W-box element within the AnTPS11 promoter, AnWRKY29 effectively enhances the transcriptional activity of AnTPS11, which is facilitated by AnHSP90. This discovery highlights the critical role of AnWRKY29 and AnHSP90 in enabling organisms to adapt to and cope effectively with osmotic stress, which can be a crucial factor in A. nanus survival and overall ecological resilience. Collectively, uncovering the molecular mechanisms underlying the osmotic responses of A. nanus is paramount for comprehending and augmenting the osmotic tolerance mechanisms of psammophyte shrub plants.
Collapse
Affiliation(s)
- Shuyao Wang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xin Hao
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yahui Liu
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yingying Chen
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yue Qu
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhaoyuan Wang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yingbai Shen
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
14
|
Sato H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. Complex plant responses to drought and heat stress under climate change. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1873-1892. [PMID: 38168757 DOI: 10.1111/tpj.16612] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Global climate change is predicted to result in increased yield losses of agricultural crops caused by environmental conditions. In particular, heat and drought stress are major factors that negatively affect plant development and reproduction, and previous studies have revealed how these stresses induce plant responses at physiological and molecular levels. Here, we provide a comprehensive overview of current knowledge concerning how drought, heat, and combinations of these stress conditions affect the status of plants, including crops, by affecting factors such as stomatal conductance, photosynthetic activity, cellular oxidative conditions, metabolomic profiles, and molecular signaling mechanisms. We further discuss stress-responsive regulatory factors such as transcription factors and signaling factors, which play critical roles in adaptation to both drought and heat stress conditions and potentially function as 'hubs' in drought and/or heat stress responses. Additionally, we present recent findings based on forward genetic approaches that reveal natural variations in agricultural crops that play critical roles in agricultural traits under drought and/or heat conditions. Finally, we provide an overview of the application of decades of study results to actual agricultural fields as a strategy to increase drought and/or heat stress tolerance. This review summarizes our current understanding of plant responses to drought, heat, and combinations of these stress conditions.
Collapse
Affiliation(s)
- Hikaru Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Junya Mizoi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuraoka, Setagara-ku, Tokyo, 156-8502, Japan
| |
Collapse
|
15
|
Wang H, Chen Z, Luo R, Lei C, Zhang M, Gao A, Pu J, Zhang H. Caffeic Acid O-Methyltransferase Gene Family in Mango ( Mangifera indica L.) with Transcriptional Analysis under Biotic and Abiotic Stresses and the Role of MiCOMT1 in Salt Tolerance. Int J Mol Sci 2024; 25:2639. [PMID: 38473886 DOI: 10.3390/ijms25052639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Caffeic acid O-methyltransferase (COMT) participates in various physiological activities in plants, such as positive responses to abiotic stresses and the signal transduction of phytohormones. In this study, 18 COMT genes were identified in the chromosome-level reference genome of mango, named MiCOMTs. A phylogenetic tree containing nine groups (I-IX) was constructed based on the amino acid sequences of the 71 COMT proteins from seven species. The phylogenetic tree indicated that the members of the MiCOMTs could be divided into four groups. Quantitative real-time PCR showed that all MiCOMT genes have particularly high expression levels during flowering. The expression levels of MiCOMTs were different under abiotic and biotic stresses, including salt and stimulated drought stresses, ABA and SA treatment, as well as Xanthomonas campestris pv. mangiferaeindicae and Colletotrichum gloeosporioides infection, respectively. Among them, the expression level of MiCOMT1 was significantly up-regulated at 6-72 h after salt and stimulated drought stresses. The results of gene function analysis via the transient overexpression of the MiCOMT1 gene in Nicotiana benthamiana showed that the MiCOMT1 gene can promote the accumulation of ABA and MeJA, and improve the salt tolerance of mango. These results are beneficial to future researchers aiming to understand the biological functions and molecular mechanisms of MiCOMT genes.
Collapse
Affiliation(s)
- Huiliang Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan University, Haikou 570228, China
- National Key Laboratory for Tropica1 Crop Breeding, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Chinese Academy of Tropical Agricultural Sciences Environment and Plant Protection Institute, Haikou 571101, China
| | - Zhuoli Chen
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan University, Haikou 570228, China
- National Key Laboratory for Tropica1 Crop Breeding, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Chinese Academy of Tropical Agricultural Sciences Environment and Plant Protection Institute, Haikou 571101, China
- Chinese Academy of Tropical Agricultural Sciences Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
| | - Ruixiong Luo
- Chinese Academy of Tropical Agricultural Sciences Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
| | - Chen Lei
- National Key Laboratory for Tropica1 Crop Breeding, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Chinese Academy of Tropical Agricultural Sciences Environment and Plant Protection Institute, Haikou 571101, China
| | - Mengting Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan University, Haikou 570228, China
- National Key Laboratory for Tropica1 Crop Breeding, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Chinese Academy of Tropical Agricultural Sciences Environment and Plant Protection Institute, Haikou 571101, China
| | - Aiping Gao
- Chinese Academy of Tropical Agricultural Sciences Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
| | - Jinji Pu
- National Key Laboratory for Tropica1 Crop Breeding, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Chinese Academy of Tropical Agricultural Sciences Environment and Plant Protection Institute, Haikou 571101, China
| | - He Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan University, Haikou 570228, China
- National Key Laboratory for Tropica1 Crop Breeding, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Chinese Academy of Tropical Agricultural Sciences Environment and Plant Protection Institute, Haikou 571101, China
| |
Collapse
|
16
|
Wei Y, Xie H, Xu L, Cheng X, Zhu B, Zeng H, Shi H. Coat protein of cassava common mosaic virus targets RAV1 and RAV2 transcription factors to subvert immunity in cassava. PLANT PHYSIOLOGY 2024; 194:1218-1232. [PMID: 37874769 DOI: 10.1093/plphys/kiad569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023]
Abstract
Cassava common mosaic virus (CsCMV, genus Potexvirus) is a prevalent virus associated with cassava mosaic disease, so it is essential to elucidate the underlying molecular mechanisms of the coevolutionary arms race between viral pathogenesis and the cassava (Manihot esculenta Crantz) defense response. However, the molecular mechanism underlying CsCMV infection is largely unclear. Here, we revealed that coat protein (CP) acts as a major pathogenicity determinant of CsCMV via a mutant infectious clone. Moreover, we identified the target proteins of CP-related to abscisic acid insensitive3 (ABI3)/viviparous1 (VP1) (MeRAV1) and MeRAV2 transcription factors, which positively regulated disease resistance against CsCMV via transcriptional activation of melatonin biosynthetic genes (tryptophan decarboxylase 2 (MeTDC2), tryptamine 5-hydroxylase (MeT5H), N-aceylserotonin O-methyltransferase 1 (MeASMT1)) and MeCatalase6 (MeCAT6) and MeCAT7. Notably, the interaction between CP, MeRAV1, and MeRAV2 interfered with the protein phosphorylation of MeRAV1 and MeRAV2 individually at Ser45 and Ser44 by the protein kinase, thereby weakening the transcriptional activation activity of MeRAV1 and MeRAV2 on melatonin biosynthetic genes, MeCAT6 and MeCAT7 dependent on the protein phosphorylation of MeRAV1 and MeRAV2. Taken together, the identification of the CP-MeRAV1 and CP-MeRAV2 interaction module not only illustrates a molecular mechanism by which CsCMV orchestrates the host defense system to benefit its infection and development but also provides a gene network with potential value for the genetic improvement of cassava disease resistance.
Collapse
Affiliation(s)
- Yunxie Wei
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Haoqi Xie
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Lulu Xu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Xiao Cheng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Binbin Zhu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Hongqiu Zeng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Haitao Shi
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| |
Collapse
|
17
|
Ren W, Ding B, Dong W, Yue Y, Long X, Zhou Z. Unveiling HSP40/60/70/90/100 gene families and abiotic stress response in Jerusalem artichoke. Gene 2024; 893:147912. [PMID: 37863300 DOI: 10.1016/j.gene.2023.147912] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Heat shock proteins (HSPs) are essential for plant growth, development, and stress adaptation. However, their roles in Jerusalem artichoke are largely unexplored. Using bioinformatics, we classified 143 HSP genes into distinct families: HSP40 (82 genes), HSP60 (22 genes), HSP70 (29 genes), HSP90 (6 genes), and HSP100 (4 genes). Our analysis covered their traits, evolution, and structures. Using RNA-seq data, we uncovered unique expression patterns of these HSP genes across growth stages and tissues. Notably, HSP40, HSP60, HSP70, HSP90, and HSP100 families each had specific roles. We also studied how these gene families responded to various stresses, from extreme temperatures to drought and salinity, revealing intricate expression dynamics. Remarkably, HSP40 showed remarkable flexibility, while HSP60, HSP70, HSP90, and HSP100 responded specifically to stress types. Moreover, our analysis unveiled significant correlations between gene pairs under stress, implying cooperative interactions. qRT-PCR validation underscored the significance of particular genes such as HtHSP60-7, HtHSP90-5, HtHSP100-2, and HtHSP100-3 in responding to stress. In summary, our study advances the understanding of how HSP gene families collectively manage stresses in Jerusalem artichoke. This provides insights into specific gene functions and broader plant stress responses.
Collapse
Affiliation(s)
- Wencai Ren
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Baishui Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenhan Dong
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Yue
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohua Long
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaosheng Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
18
|
Dang Z, Zhu M, Chen H, Zhang Y, Gao A, Ma W, Chen Y, Wei Y, Zhang H. MiMYB10 transcription factor regulates biosynthesis and accumulation of carotenoid involved genes in mango fruit. Int J Biol Macromol 2023; 253:127665. [PMID: 37884236 DOI: 10.1016/j.ijbiomac.2023.127665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/23/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Carotenoids are essential and beneficial substances for both plant and human health. Identifying the regulatory network of these pigments is necessary for improving fruit quality and commodity value. In this study, we performed integrative analyses of transcriptome data from two different type fruits, ripening peel color at green ('Neelum' mango) and red ('Irwin' mango). Specifically, we found that MiMYB10 transcription level was highly associated with mango peel color. Further, silencing MiMYB10 homologous gene in tomato fruits resulted in lower carotenoid and anthocyanin content. Electrophoretic mobility shift assays and dual-luciferase clarified that MiMYB10 regulates the carotenoid biosynthesis gene MiPDS (phytoene desaturase gene) in a direct manner. On the other hand, MiMYB10 activates the expression of carotenoid biosynthesis genes (PSY, Z-ISO, CRTISO, LCYE) and chlorophyll degradation gene (SGR1), promoting the accumulation of carotenoid, accelerating chlorophyll degradation, and controlling peel color. In summary, this study identified important roles of MiMYB10 in pigment regulatory and provided new options for breeding strategies aiming to improve fruit quality.
Collapse
Affiliation(s)
- Zhiguo Dang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Integrated Pest Management on Tropical Grops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Min Zhu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Huarui Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ye Zhang
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 570228, China
| | - Aiping Gao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Weihong Ma
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yeyuan Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China.
| | - Yunxie Wei
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 570228, China.
| | - He Zhang
- Key Laboratory of Integrated Pest Management on Tropical Grops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
19
|
Wang C, Ran F, Zang Y, Liu L, Wang D, Min Y. Genome-wide identification and expression analysis of heat shock protein gene family in cassava. THE PLANT GENOME 2023; 16:e20407. [PMID: 37899677 DOI: 10.1002/tpg2.20407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023]
Abstract
Heat shock proteins are important molecular chaperones that are involved in plant growth and stress responses. However, members of the Hsp family have been poorly studied in cassava. In this study, 225 MeHsp genes were identified in the cassava genome, and their genetic structures exhibited relatively conserved features within each subfamily. The 225 MeHsp genes showed random chromosomal distribution, and at least 74 pairs of segmentally duplicated MeHsp genes. Eleven tandemly duplicated MeHsp genes were identified. Cis-element analysis revealed the importance of MeHsps in plant adaptations to the environment. The prediction of protein interactions suggested that MeHsp70-20 may play a critical regulatory role in the interactive network. Furthermore, the expression profiles of MeHsps in different tissues and cell subsets were analyzed using bulk transcriptomics and single-cell transcriptomic data. Several subfamily genes exhibited unique expression patterns in the transcriptome and were selected for detailed analysis of the single-cell transcriptome. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed the expression patterns of these genes under temperature stress, further supporting the prediction of cis-acting elements. This study provides valuable information for understanding the functional characteristics of MeHsp genes and the evolutionary relationships between MeHsps.
Collapse
Affiliation(s)
- Changyi Wang
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, China
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Fangfang Ran
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, China
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Yuwei Zang
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, China
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Liangwang Liu
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, China
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Dayong Wang
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- Key Laboratory of Tropical Biological Resources, Hainan University, Haikou, China
- One Health Cooperative Innovation Center, Hainan University, Haikou, China
| | - Yi Min
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, China
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- One Health Cooperative Innovation Center, Hainan University, Haikou, China
| |
Collapse
|
20
|
Wang S, Liu Y, Hao X, Wang Z, Chen Y, Qu Y, Yao H, Shen Y. AnWRKY29 from the desert xerophytic evergreen Ammopiptanthus nanus improves drought tolerance through osmoregulation in transgenic plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111851. [PMID: 37648116 DOI: 10.1016/j.plantsci.2023.111851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
As a significant transcription factor family in plants, WRKYs have a crucial role in responding to different adverse environments. They have been repeatedly demonstrated to contribute to drought resistance. However, no systematic exploration of the WRKY family has been reported in the evergreen shrub Ammopiptanthus nanus under drought conditions. Here, we showed that AnWRKY29 expression is strongly induced under drought stress. AnWRKY29 belongs to the group IIe of WRKY gene family. To characterize the function of AnWRKY29, we generated transgenic plants overexpressing this gene in Arabidopsis thaliana. We determined that AnWRKY29 overexpression of mainly improves the drought resistance of transgenic plants to water stress by reducing water loss, preventing electrolyte leakage, and increasing the absorption of inorganic ions. In addition, the AnWRKY29 transgenic plants synthesized more trehalose under water stress. The overexpression of AnWRKY29 also enhanced the antioxidant and osmoregulation capacity of transgenic plants by increasing the activities of catalase, peroxidase and superoxide dismutase, thus increasing the scavenging of reactive oxygen species and propylene glycol synthesis aldehyde oxidase. In summary, our study shows that AnWRKY29 plays an important role in the drought tolerance pathway in plants.
Collapse
Affiliation(s)
- Shuyao Wang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yahui Liu
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xin Hao
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhaoyuan Wang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yingying Chen
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yue Qu
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongjun Yao
- National Engineering Research Center of Tree breeding and Ecological restoration, Beijing Forestry University, Beijing, China.
| | - Yingbai Shen
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
21
|
Luan Y, Chen Z, Fang Z, Huang X, Zhao D, Tao J. PoWRKY71 is involved in Paeonia ostii resistance to drought stress by directly regulating light-harvesting chlorophyll a/b-binding 151 gene. HORTICULTURE RESEARCH 2023; 10:uhad194. [PMID: 38023485 PMCID: PMC10673652 DOI: 10.1093/hr/uhad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/17/2023] [Indexed: 12/01/2023]
Abstract
Although the functions of WRKY transcription factors in drought resistance are well known, their regulatory mechanisms in response to drought by stabilising photosynthesis remain unclear. Here, a differentially expressed PoWRKY71 gene that was highly expressed in drought-treated Paeonia ostii leaves was identified through transcriptome analysis. PoWRKY71 positively responded to drought stress with significantly enhanced expression patterns and overexpressing PoWRKY71 in tobacco greatly improved plant tolerance to drought stress, whereas silencing PoWRKY71 in P. ostii resulted in a drought-intolerant phenotype. Furthermore, lower chlorophyll contents, photosynthesis, and inhibited expression of photosynthesis-related light-harvesting chlorophyll a/b-binding 151 (CAB151) gene were found in PoWRKY71-silenced P. ostii. Meanwhile, a homologous system indicated that drought treatment increased PoCAB151 promoter activity. Interactive assays revealed that PoWRKY71 directly bound on the W-box element of PoCAB151 promoter and activated its transcription. In addition, PoCAB151 overexpressing plants demonstrated increased drought tolerance, together with significantly higher chlorophyll contents and photosynthesis, whereas these indices were dramatically lower in PoCAB151-silenced P. ostii. The above results indicated that PoWRKY71 activated the expression of PoCAB151, thus stabilising photosynthesis via regulating chloroplast homeostasis and chlorophyll content in P. ostii under drought stress. This study reveals a novel drought-resistance mechanism in plants and provides a feasible strategy for improving plant drought resistance via stabilising photosynthesis.
Collapse
Affiliation(s)
- Yuting Luan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Zijie Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Ziwen Fang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xingqi Huang
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Daqiu Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
22
|
Wang J, Chen C, Wu C, Meng Q, Zhuang K, Ma N. SlMYB41 positively regulates tomato thermotolerance by activating the expression of SlHSP90.3. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108106. [PMID: 37879127 DOI: 10.1016/j.plaphy.2023.108106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
High-temperature stress has become a major abiotic factor that dramatically limits plant growth and crop yield. Plants have evolved complex mechanisms to cope with high-temperature stress, but the factors that regulate plant thermotolerance remain to be discovered. Here, a high temperature-induced MYB transcription factor SlMYB41 was cloned from tomato (Solanum lycopersicum). Two individual SlMYB41-RNA interference (RNAi) lines (MR) and one CRISPR/Cas9 mediated myb41 mutant (MC) were obtained to investigate the function of SlMYB41 in tomato thermotolerance. Under high-temperature stress, we found that the MR and MC lines showed more wilting than the wild type (WT), with more ion leakage, more MDA accumulation, lower contents of osmotic adjustment substances, and more accumulation of reactive oxygen species (ROS) which was resulted from lower antioxidative enzyme activities. In addition, the photosynthetic capacity and complex of MR and MC lines were damaged more seriously than WT plants under high-temperature stress, mainly manifested in lower photosynthetic rate and Fv/Fm. Moreover, heat stress-related genes, such as SlHSP17.6, SlHSP17.7, and SlHSP90.3 were downregulated in MR and MC lines. Importantly, Y1H and LUC analysis indicated that SlMYB41 can directly activate the transcription of SlHSP90.3. Together, our study suggest that SlMYB41 positively regulates tomato thermotolerance by activating the expression of SlHSP90.3.
Collapse
Affiliation(s)
- Jieyu Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chong Chen
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, 274015, China
| | - Chuanzhao Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Kunyang Zhuang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Nana Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
23
|
Zeng H, Xu H, Tan M, Zhang B, Shi H. LESION SIMULATING DISEASE 3 regulates disease resistance via fine-tuning histone acetylation in cassava. PLANT PHYSIOLOGY 2023; 193:2232-2247. [PMID: 37534747 DOI: 10.1093/plphys/kiad441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023]
Abstract
Bacterial blight seriously affects the growth and production of cassava (Manihot esculenta Crantz), but disease resistance genes and the underlying molecular mechanism remain unknown. In this study, we found that LESION SIMULATING DISEASE 3 (MeLSD3) is essential for disease resistance in cassava. MeLSD3 physically interacts with SIRTUIN 1 (MeSRT1), inhibiting MeSRT1-mediated deacetylation modification at the acetylation of histone 3 at K9 (H3K9Ac). This leads to increased H3K9Ac levels and transcriptional activation of SUPPRESSOR OF BIR1 (SOBIR1) and FLAGELLIN-SENSITIVE2 (FLS2) in pattern-triggered immunity, resulting in immune responses in cassava. When MeLSD3 was silenced, the release of MeSRT1 directly decreased H3K9Ac levels and inhibited the transcription of SOBIR1 and FLS2, leading to decreased disease resistance. Notably, DELLA protein GIBBERELLIC ACID INSENSITIVE 1 (MeGAI1) also interacted with MeLSD3, which enhanced the interaction between MeLSD3 and MeSRT1 and further strengthened the inhibition of MeSRT1-mediated deacetylation modification at H3K9Ac of defense genes. In summary, this study illustrates the mechanism by which MeLSD3 interacts with MeSRT1 and MeGAI1, thereby mediating the level of H3K9Ac and the transcription of defense genes and immune responses in cassava.
Collapse
Affiliation(s)
- Hongqiu Zeng
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
- National Key Laboratory for Tropical Crop Breeding, Hainan University, 572025, Sanya, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, Hainan Province, China
| | - Haoran Xu
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
| | - Mengting Tan
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
| | - Bowen Zhang
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
| | - Haitao Shi
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
- National Key Laboratory for Tropical Crop Breeding, Hainan University, 572025, Sanya, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, Hainan Province, China
| |
Collapse
|
24
|
Liu J, Shi K, Wang S, Zhu J, Wang X, Hong J, Wang Z. MsCYP71 is a positive regulator for drought resistance in alfalfa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107999. [PMID: 37678089 DOI: 10.1016/j.plaphy.2023.107999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/03/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Cytochrome P450 (CYP450) family proteins play key roles in plant growth, development, stress responses, and other physiological processes. Here, we cloned the cytochrome P450 gene MsCYP71 in alfalfa and found that the expression of MsCYP71 was induced by drought stress. Silencing the MsCYP71 gene using virus-induced gene silencing technology significantly decreased the drought resistance of alfalfa, as indicated by their lower relative water content, net photosynthetic rate, and chlorophyll fluorescence maximum (Fm); further, the heterologous overexpression of MsCYP71 in tobacco significantly enhanced the drought resistance and Fm of transgenic tobacco. Furthermore, the expression of MsCYP71 across 45 alfalfa accessions under drought stress was investigated. A significant positive correlation between drought resistance and MsCYP71 expression was observed. The 45 alfalfa accessions were clustered into four groups, and drought resistance, Fm, and MsCYP71 were higher in group I than in the other groups, indicating that group I accessions can be used as candidate germplasm resources for the breeding of drought-resistant alfalfa varieties. Overall, our findings indicated that MsCYP71 is a positive regulator of drought resistance in alfalfa, and its expression can be used to evaluate the drought resistance of alfalfa.
Collapse
Affiliation(s)
- Jia Liu
- College of Grass Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kun Shi
- College of Grass Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shaopeng Wang
- College of Grass Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiahao Zhu
- College of Grass Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xijuan Wang
- College of Grass Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jun Hong
- National Animal Husbandry Services, Beijing, 100125, China
| | - Zan Wang
- College of Grass Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
25
|
Zhang Y, Zhang Y, Gao C, Zhang Z, Yuan Y, Zeng X, Hu W, Yang L, Li F, Yang Z. Uncovering genomic and transcriptional variations facilitates utilization of wild resources in cotton disease resistance improvement. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:204. [PMID: 37668681 DOI: 10.1007/s00122-023-04451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Upland cotton wild/landraces represent a valuable resource for disease resistance alleles. Genetic differentiation between genotypes, as well as variation in Verticillium wilt (VW) resistance, has been poorly characterized for upland cotton accessions on the domestication spectrum (from wild/landraces to elite lines). RESULTS To illustrate the effects of modern breeding on VW resistance in upland cotton, 37 wild/landraces were resequenced and phenotyped for VW resistance. Genomic patterns of differentiation were identified between wild/landraces and improved upland cotton, and a significant decline in VW resistance was observed in association with improvement. Four genotypes representing different degrees of improvement were used in a full-length transcriptome analysis to study the genetic basis of VW resistance. ROS signaling was highly conserved at the transcriptional level, likely providing the basis for VW resistance in upland cotton. ASN biosynthesis and HSP90-mediated resistance moderated the response to VW in wild/landraces, and loss of induction activity of these genes resulted in VW susceptibility. The observed genomic differentiation contributed to the loss of induction of some important VW resistance genes such as HSP90.4 and PR16. CONCLUSIONS Besides providing new insights into the evolution of upland cotton VW resistance, this study also identifies important resistance pathways and genes for both fundamental research and cotton breeding.
Collapse
Affiliation(s)
- Yihao Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yaning Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China
| | - Chenxu Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China
| | - Zhibin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuan Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaolin Zeng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wei Hu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China
| | - Lan Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China.
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Zhaoen Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China.
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
26
|
Song H, Cao Y, Zhao L, Zhang J, Li S. Review: WRKY transcription factors: Understanding the functional divergence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111770. [PMID: 37321304 DOI: 10.1016/j.plantsci.2023.111770] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/10/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
WRKY transcription factors (TFs) play crucial roles in the growth and development of plants and their response to environmental changes. WRKY TFs have been detected in sequenced plant genomes. The functions and regulatory networks of many WRKY TFs, especially from Arabidopsis thaliana (AtWRKY TFs), have been revealed, and the origin of WRKY TFs in plants is clear. Nonetheless, the relationship between WRKY TFs function and classification is unclear. Furthermore, the functional divergence of homologous WRKY TFs in plants is unclear. In this review, WRKY TFs were explored based on WRKY-related literature published from 1994 to 2022. WRKY TFs were identified in 234 species at the genome and transcriptome levels. The biological functions of ∼ 71 % of AtWRKY TFs were uncovered. Although functional divergence occurred in homologous WRKY TFs, different WRKY TF groups had no preferential function.
Collapse
Affiliation(s)
- Hui Song
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Longgang Zhao
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; High-efficiency Agricultural Technology Industry Research Institute of Saline and Alkaline Land of Dongying, Qingdao Agricultural University, Qingdao 266109, China
| | | | - Shuai Li
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
27
|
Wang Y, Yi Y, Liu C, Zheng H, Huang J, Tian Y, Zhang H, Gao Q, Tang D, Lin J, Liu X. Dephosphorylation of CatC at Ser-18 improves salt and oxidative tolerance via promoting its tetramerization in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111597. [PMID: 36649757 DOI: 10.1016/j.plantsci.2023.111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Catalase (CAT) is a vital antioxidant enzyme, while phosphorylation pivotally regulates its function. Many phosphosites have been identified in CAT, but their functions remained largely elusive. We functionally studied five phosphoserines (Ser-9, -10, -11, -18, and -205) of CatC in rice (Oryza sativa L.). Phospho-Ser-9 and - 11 and dephospho-Ser-18 promoted the enzymatic activity of CatC and enhanced oxidative and salt tolerance in yeast. Phosphorylation status of Ser-18 did not affect CatC peroxisomal targeting and stability, but dephospho-Ser-18 promoted CatC tetramerization to enhance its activity. Moreover, overexpression of dephospho-mimic form CatCS18A in rice significantly improved the tolerance to salt and oxidative stresses by inhibiting the H2O2 accumulation. Together, these results elucidate the mechanism underlying dephosphorylation at Ser-18 promotes CatC activity and salt tolerance in rice. Ser-18 is a promising candidate phosphosite of CatC for breeding highly salt-tolerant rice.
Collapse
Affiliation(s)
- Yan Wang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China; College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Yuting Yi
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Cong Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Heping Zheng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Jian Huang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Ye Tian
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Huihui Zhang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Qiang Gao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Dongying Tang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Jianzhong Lin
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China.
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China.
| |
Collapse
|
28
|
Zhao H, Ge Z, Zhou M, Zeng H, Wei Y, Liu G, Yan Y, Reiter RJ, He C, Shi H. Histone deacetylase 9 regulates disease resistance through fine-tuning histone deacetylation of melatonin biosynthetic genes and melatonin accumulation in cassava. J Pineal Res 2023; 74:e12861. [PMID: 36750349 DOI: 10.1111/jpi.12861] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/05/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Melatonin participates in plant growth and development and biotic and abiotic stress responses. Histone acetylation regulates many plant biological processes via transcriptional reprogramming. However, the direct relationship between melatonin and histone acetylation in plant disease resistance remains unclear. In this study, we identified cassava bacterial blight (CBB) responsive histone deacetylase 9 (HDA9), which negatively regulated disease resistance to CBB by reducing melatonin content. In addition, exogenous melatonin alleviated disease sensitivity of MeHDA9 overexpressed plants to CBB. Importantly, MeHDA9 inhibited the expression of melatonin biosynthetic genes through decreasing lysine 5 of histone 4 (H4K5) acetylation at the promoter regions of melatonin biosynthetic genes, thereby modulating melatonin accumulation in cassava. Furthermore, protein phosphatase 2C 12 (MePP2C12) interacted with MeHDA9 in vivo and in vitro, and it was involved in MeHDA9-mediated disease resistance via melatonin biosynthetic pathway. In summary, this study highlights the direct interaction between histone deacetylation and melatonin biosynthetic genes in cassava disease resistance via histone deacetylation, providing new insights into the genetic improvement of disease resistance via epigenetic regulation of melatonin level in tropical crops.
Collapse
Affiliation(s)
- Huiping Zhao
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
| | - Zhongyuan Ge
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
| | - Mengmeng Zhou
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
| | - Hongqiu Zeng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province, China
| | - Yunxie Wei
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province, China
| | - Guoyin Liu
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province, China
| | - Yu Yan
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, Long School of Medicine, San Antonio, Texas, USA
| | - Chaozu He
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province, China
| | - Haitao Shi
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province, China
| |
Collapse
|
29
|
Sandalio LM, Collado-Arenal AM, Romero-Puertas MC. Deciphering peroxisomal reactive species interactome and redox signalling networks. Free Radic Biol Med 2023; 197:58-70. [PMID: 36642282 DOI: 10.1016/j.freeradbiomed.2023.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/19/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Plant peroxisomes are highly dynamic organelles with regard to metabolic pathways, number and morphology and participate in different metabolic processes and cell responses to their environment. Peroxisomes from animal and plant cells house a complex system of reactive oxygen species (ROS) production associated to different metabolic pathways which are under control of an important set of enzymatic and non enzymatic antioxidative defenses. Nitric oxide (NO) and its derivate reactive nitrogen species (RNS) are also produced in these organelles. Peroxisomes can regulate ROS and NO/RNS levels to allow their role as signalling molecules. The metabolism of other reactive species such as carbonyl reactive species (CRS) and sulfur reactive species (SRS) in peroxisomes and their relationship with ROS and NO have not been explored in depth. In this review, we define a peroxisomal reactive species interactome (PRSI), including all reactive species ROS, RNS, CRS and SRS, their interaction and effect on target molecules contributing to the dynamic redox/ROS homeostasis and plasticity of peroxisomes, enabling fine-tuned regulation of signalling networks associated with peroxisome-dependent H2O2. Particular attention will be paid to update the information available on H2O2-dependent peroxisomal retrograde signalling and to discuss a specific peroxisomal footprint.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas (CSIC), C/ Profesor Albareda 1, 18008, Granada, Spain.
| | - Aurelio M Collado-Arenal
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas (CSIC), C/ Profesor Albareda 1, 18008, Granada, Spain
| | - María C Romero-Puertas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas (CSIC), C/ Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
30
|
Zhao H, Ge Z, Zhou M, Bai R, Zeng H, Wei Y, He C, Shi H. Histone acetyltransferase HAM1 interacts with molecular chaperone DNAJA2 and confers immune responses through salicylic acid biosynthetic genes in cassava. PLANT, CELL & ENVIRONMENT 2023; 46:635-649. [PMID: 36451539 DOI: 10.1111/pce.14501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Cassava bacterial blight (CBB) is one of the most serious diseases in cassava production, so it is essential to explore the underlying mechanism of immune responses. Histone acetylation is an important epigenetic modification, however, its relationship with cassava disease resistance remains unclear. Here, we identified 10 histone acetyltransferases in cassava and found that the transcript of MeHAM1 showed the highest induction to CBB. Functional analysis showed that MeHAM1 positively regulated disease resistance to CBB through modulation of salicylic acid (SA) accumulation. Further investigation revealed that MeHAM1 directly activated SA biosynthetic genes' expression via promoting lysine 9 of histone 3 (H3K9) acetylation and lysine 5 of histone 4 (H4K5) acetylation of these genes. In addition, molecular chaperone MeDNAJA2 physically interacted with MeHAM1, and MeDNAJA2 also regulated plant immune responses and SA biosynthetic genes. In conclusion, this study illustrates that MeHAM1 and MeDNAJA2 confer immune responses through transcriptional programming of SA biosynthetic genes via histone acetylation. The MeHAM1 & MeDNAJA2-SA biosynthesis module not only constructs the direct relationship between histone acetylation and cassava disease resistance, but also provides gene network with potential value for genetic improvement of cassava disease resistance.
Collapse
Affiliation(s)
- Huiping Zhao
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, Hainan, China
| | - Zhongyuan Ge
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, Hainan, China
| | - Mengmeng Zhou
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, Hainan, China
| | - Ruoyu Bai
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, Hainan, China
| | - Hongqiu Zeng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Yunxie Wei
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Chaozu He
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Haitao Shi
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| |
Collapse
|
31
|
Xu L, Tian S, Hu Y, Zhao J, Ge J, Lu L. Cadmium contributes to heat tolerance of a hyperaccumulator plant species Sedum alfredii. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129840. [PMID: 36088879 DOI: 10.1016/j.jhazmat.2022.129840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Hyperaccumulators are plant species that tolerate and accumulate very high concentrations of toxic metals, including Cd. Hyperaccumulation of heavy metals is reported to benefit plant biotic resistance; however, no prior study has examined the possible role of toxic metals on abiotic stress resistance in hyperaccumulators. A preliminary experiment found that Cd significantly improved plant growth of a hyperaccumulator, Sedum alfredii Hance, under heat stress. This study investigated the possible role of Cd in S. alfredii's heat resistance, using infrared thermography, transmission electron microscopy (TEM), real-time quantitative polymerase chain reaction (RTqPCR), and high-throughput sequencing. The results showed that high temperatures irreversibly damaged stomatal function, chloroplast structure, photosynthesis in S. alfredii, and lowered survival rates to 25%. However, Cd application significantly decreased the leaf temperature of S. alfredii and increased the survival rate to 75%. Cd penetrated the guard cells, restored stomatal function, and mitigated excessive water loss from S. alfredii under heat stress. Moreover, it activated antioxidant enzymes, promoted phytohormone biosynthesis, and upregulated a series of unigenes, thereby augmenting heat resistance in S. alfredii. These results indicate that Cd effectively improved thermotolerance in S. alfredii by regulating stomatal movement and antioxidant systems via upregulation of phytohormones and heat shock proteins.
Collapse
Affiliation(s)
- Lingling Xu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shengke Tian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Hu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Cultivated Land Quality Monitoring and Protection Center, Ministry of Agriculture and Rural Affairs, Beijing 100125, PR China
| | - Jianqi Zhao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Ge
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
32
|
Melicher P, Dvořák P, Šamaj J, Takáč T. Protein-protein interactions in plant antioxidant defense. FRONTIERS IN PLANT SCIENCE 2022; 13:1035573. [PMID: 36589041 PMCID: PMC9795235 DOI: 10.3389/fpls.2022.1035573] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The regulation of reactive oxygen species (ROS) levels in plants is ensured by mechanisms preventing their over accumulation, and by diverse antioxidants, including enzymes and nonenzymatic compounds. These are affected by redox conditions, posttranslational modifications, transcriptional and posttranscriptional modifications, Ca2+, nitric oxide (NO) and mitogen-activated protein kinase signaling pathways. Recent knowledge about protein-protein interactions (PPIs) of antioxidant enzymes advanced during last decade. The best-known examples are interactions mediated by redox buffering proteins such as thioredoxins and glutaredoxins. This review summarizes interactions of major antioxidant enzymes with regulatory and signaling proteins and their diverse functions. Such interactions are important for stability, degradation and activation of interacting partners. Moreover, PPIs of antioxidant enzymes may connect diverse metabolic processes with ROS scavenging. Proteins like receptor for activated C kinase 1 may ensure coordination of antioxidant enzymes to ensure efficient ROS regulation. Nevertheless, PPIs in antioxidant defense are understudied, and intensive research is required to define their role in complex regulation of ROS scavenging.
Collapse
|
33
|
Guo X, Yu X, Xu Z, Zhao P, Zou L, Li W, Geng M, Zhang P, Peng M, Ruan M. CC-type glutaredoxin, MeGRXC3, associates with catalases and negatively regulates drought tolerance in cassava (Manihot esculenta Crantz). PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2389-2405. [PMID: 36053917 PMCID: PMC9674314 DOI: 10.1111/pbi.13920] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/05/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Glutaredoxins (GRXs) are essential for reactive oxygen species (ROS) homeostasis in responses of plants to environment changes. We previously identified several drought-responsive CC-type GRXs in cassava, an important tropical crop. However, how CC-type GRX regulates ROS homeostasis of cassava under drought stress remained largely unknown. Here, we report that a drought-responsive CC-type GRX, namely MeGRXC3, was associated with activity of catalase in the leaves of 100 cultivars (or unique unnamed genotypes) of cassava under drought stress. MeGRXC3 negatively regulated drought tolerance by modulating drought- and abscisic acid-induced stomatal closure in transgenic cassava. It antagonistically regulated hydrogen peroxide (H2 O2 ) accumulation in epidermal cells and guard cells. Moreover, MeGRXC3 interacted with two catalases of cassava, MeCAT1 and MeCAT2, and regulated their activity in vivo. Additionally, MeGRXC3 interacts with a cassava TGA transcription factor, MeTGA2, in the nucleus, and regulates the expression of MeCAT7 through a MeTGA2-MeMYB63 pathway. Overall, we demonstrated the roles of MeGRXC3 in regulating activity of catalase at both transcriptional and post-translational levels, therefore involving in ROS homeostasis and stomatal movement in responses of cassava to drought stress. Our study provides the first insights into how MeGRXC3 may be used in molecular breeding of cassava crops.
Collapse
Affiliation(s)
- Xin Guo
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| | - Xiaoling Yu
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| | - Ziyin Xu
- College of Tropical CropsHainan UniversityHaikouChina
| | - Pingjuan Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| | - Liangping Zou
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| | - Wenbin Li
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| | - Mengting Geng
- College of Tropical CropsHainan UniversityHaikouChina
| | - Peng Zhang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| | - Mengbin Ruan
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| |
Collapse
|
34
|
Yin H, Yan Y, Hu W, Liu G, Zeng H, Wei Y, Shi H. Genome-wide association studies reveal genetic basis of ionomic variation in cassava. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1212-1223. [PMID: 36239073 DOI: 10.1111/tpj.16006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
As one of the most important food crops, cassava (Manihot esculenta) is the main dietary source of micronutrients for about 1 billion people. However, the ionomic variation in cassava and the underlying genetic mechanisms remain unclear so far. Herein, genome-wide association studies were performed to reveal the specific single nucleotide polymorphisms (SNPs) that affect the ionomic variation in cassava. We identified 164 SNPs with P-values lower than the threshold located in 88 loci associated with divergent ionomic variations. Among them, 13 SNPs are related to both calcium (Ca) and magnesium (Mg), and many loci for different ionomic traits seem to be clustered on specific chromosome regions. Moreover, we identified the peak SNPs in the promoter regions of Sc10g003170 (encoding methionyl-tRNA synthetase [MetRS]) and Sc18g015190 (encoding the transcriptional regulatory protein AlgP) for nitrogen (N) and phosphorus (P) accumulation, respectively. Notably, these two SNPs (chr10_32807962 and chr18_31343738) were directly correlated with the transcript levels of Sc10g003170 (MetRS) and Sc18g015190 (AlgP), which positively modulated N accumulation and P concentration in cassava, respectively. Taken together, this study provides important insight into the genetic basis of cassava natural ionomic variation, which will promote genetic breeding to improve nutrient use and accumulation of elements in cassava.
Collapse
Affiliation(s)
- Hongyan Yin
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute, College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Hainan Province, Sanya and Haikou, China
| | - Yu Yan
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute, College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Hainan Province, Sanya and Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Hainan Province, Sanya, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 571101, Hainan Province, Haikou, Xueyuan Road 4, China
| | - Guoyin Liu
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute, College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Hainan Province, Sanya and Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Hainan Province, Sanya, China
| | - Hongqiu Zeng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute, College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Hainan Province, Sanya and Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Hainan Province, Sanya, China
| | - Yunxie Wei
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute, College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Hainan Province, Sanya and Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Hainan Province, Sanya, China
| | - Haitao Shi
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute, College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Hainan Province, Sanya and Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Hainan Province, Sanya, China
| |
Collapse
|
35
|
Li N, Wen L, Wang F, Wang T, Li T, Qiao M, Song L, Bukyei E, Huang X. Mechanism of mitigating effect of wheat germ peptides on lead-induced oxidative damage in PC12 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114190. [PMID: 36252511 DOI: 10.1016/j.ecoenv.2022.114190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
It is well known that lead-induced neurotoxicity is closely related to oxidative stress. According to previous reports, wheat germ peptides (WGPs) isolated from wheat germ have been shown to have potent antioxidant capacity. This study hypothesized that WGPs could protect PC12 cells from lead-induced oxidative stress. Here, the protecting-efficacies of WGPs were investigated in PC12 cells that were pretreated with WGPs (200 μM, 4 h) and exposed to lead (10 μM, 24 h). The antioxidant capacity was assessed by cell viability, ROS, MDA, SOD, CAT, GR, GPx, GSH, and GSSG. The experimental results showed that WGP3, WGP8, and WGP9 could reverse the reduction of cell viability caused by lead exposure. Lead exposure causes oxidative stress by increasing the levels of ROS and MDA. Moreover, the decrease in the levels of SOD, CAT, GPx, GR, and GSH/GSSG could be observed. However, WGP3, WGP8, and WGP9 can protect PC12 cells against lead-induced oxidative stress by reversing these phenomena. The protein expression of TXNIP, Keap1, and Nrf2 was characterized by western blotting, and the results illustrated that lead exposure up-regulated the expression of TXNIP and Keap1 and down-regulated the expression of Nrf2, and WGP3, WGP8, and WGP9 could improve the antioxidant capacity of PC12 cells by reversing this phenomenon. Therefore, the present study demonstrated that WGP3, WGP8, and WGP9 may protect against lead-induced oxidative stress in PC12 cells by regulating the TXNIP/Keap1/Nrf2 pathway.
Collapse
Affiliation(s)
- Ning Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63# Agricultural Road, 450000 Zhengzhou, China.
| | - Liuding Wen
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63# Agricultural Road, 450000 Zhengzhou, China
| | - Fangyu Wang
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, 116# Huayuan Road, 450002 Zhengzhou, China
| | - Tianlin Wang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63# Agricultural Road, 450000 Zhengzhou, China
| | - Tiange Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63# Agricultural Road, 450000 Zhengzhou, China
| | - Mingwu Qiao
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63# Agricultural Road, 450000 Zhengzhou, China
| | - Lianjun Song
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63# Agricultural Road, 450000 Zhengzhou, China
| | - Erkigul Bukyei
- Department for Food Engineering and Hydromechanics, School of Engineering and Technology, Mongolian State University of Life Sciences, Zaisan-53, Ulaanbaatar 17024, Mongolia
| | - Xianqing Huang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63# Agricultural Road, 450000 Zhengzhou, China.
| |
Collapse
|
36
|
Ding F, Li F, Zhang B. A plastid-targeted heat shock cognate 70-kDa protein confers osmotic stress tolerance by enhancing ROS scavenging capability. FRONTIERS IN PLANT SCIENCE 2022; 13:1012145. [PMID: 36275553 PMCID: PMC9581120 DOI: 10.3389/fpls.2022.1012145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/12/2022] [Indexed: 06/12/2023]
Abstract
Osmotic stress severely affects plant growth and development, resulting in massive loss of crop quality and quantity worldwide. The 70-kDa heat shock proteins (HSP70s) are highly conserved molecular chaperones that play essential roles in cellular processes including abiotic stress responses. However, whether and how plastid-targeted heat shock cognate 70 kDa protein (cpHSC70-1) participates in plant osmotic stress response remain elusive. Here, we report that the expression of cpHSC70-1 is significantly induced upon osmotic stress treatment. Phenotypic analyses reveal that the plants with cpHSC70-1 deficiency are sensitive to osmotic stress and the plants overexpressing cpHSC70-1 exhibit enhanced tolerance to osmotic stress. Consistently, the expression of the stress-responsive genes is lower in cphsc70-1 mutant but higher in 35S:: cpHSC70-1 lines than that in wild-type plants when challenged with osmotic stress. Further, the cphsc70-1 plants have less APX and SOD activity, and thus more ROS accumulation than the wild type when treated with mannitol, but the opposite is observed in the overexpression lines. Overall, our data reveal that cpHSC70-1 is induced and functions positively in plant response to osmotic stress by promoting the expression of the stress-responsive genes and reducing ROS accumulation.
Collapse
Affiliation(s)
- Feng Ding
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Fan Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Binglei Zhang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
37
|
Wei Y, Zhu B, Ma G, Shao X, Xie H, Cheng X, Zeng H, Shi H. The coordination of melatonin and anti-bacterial activity by EIL5 underlies ethylene-induced disease resistance in cassava. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:683-697. [PMID: 35608142 DOI: 10.1111/tpj.15843] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/14/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Ethylene and melatonin are widely involved in plant development and environmental stress responses. However, the role of their direct relationship in the immune response and the underlying molecular mechanisms in plants remain elusive. Here, we found that Xanthomonas axonopodis pv. manihotis (Xam) infection increased endogenous ethylene levels, which positively modulated plant disease resistance through activating melatonin accumulation in cassava. In addition, the ethylene-responsive transcription factor ETHYLENE INSENSITIVE LIKE5 (MeEIL5), a positive regulator of disease resistance, was essential for ethylene-induced melatonin accumulation and disease resistance in cassava. Notably, the identification of heat stress transcription factor 20 (MeHsf20) as an interacting protein of MeEIL5 indicated the association between ethylene and melatonin in plant disease resistance. MeEIL5 physically interacted with MeHsf20 to promote the transcriptional activation of the gene encoding N-acetylserotonin O-methyltransferase 2 (MeASMT2), thereby improving melatonin accumulation. Moreover, MeEIL5 promoted the physical interaction of MeHsf20 and pathogen-related gene 3 (MePR3), resulting in improved anti-bacterial activity of MePR3. This study illustrates the dual roles of MeEIL5 in fine-tuning MeHsf20-mediated coordination of melatonin biosynthesis and anti-bacterial activity, highlighting the ethylene-responsive MeEIL5 as the integrator of ethylene and melatonin signals in the immune response in cassava.
Collapse
Affiliation(s)
- Yunxie Wei
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, China
| | - Binbin Zhu
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Guowen Ma
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Xiaodie Shao
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Haoqi Xie
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Xiao Cheng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Hongqiu Zeng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, China
| | - Haitao Shi
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, China
| |
Collapse
|
38
|
Hu Y, Chen X, Shen X. Regulatory network established by transcription factors transmits drought stress signals in plant. STRESS BIOLOGY 2022; 2:26. [PMID: 37676542 PMCID: PMC10442052 DOI: 10.1007/s44154-022-00048-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 09/08/2023]
Abstract
Plants are sessile organisms that evolve with a flexible signal transduction system in order to rapidly respond to environmental changes. Drought, a common abiotic stress, affects multiple plant developmental processes especially growth. In response to drought stress, an intricate hierarchical regulatory network is established in plant to survive from the extreme environment. The transcriptional regulation carried out by transcription factors (TFs) is the most important step for the establishment of the network. In this review, we summarized almost all the TFs that have been reported to participate in drought tolerance (DT) in plant. Totally 466 TFs from 86 plant species that mostly belong to 11 families are collected here. This demonstrates that TFs in these 11 families are the main transcriptional regulators of plant DT. The regulatory network is built by direct protein-protein interaction or mutual regulation of TFs. TFs receive upstream signals possibly via post-transcriptional regulation and output signals to downstream targets via direct binding to their promoters to regulate gene expression.
Collapse
Affiliation(s)
- Yongfeng Hu
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei China
| | - Xiaoliang Chen
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei China
| | - Xiangling Shen
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei China
| |
Collapse
|
39
|
Liu M, Wang L, Ke Y, Xian X, Wang J, Wang M, Zhang Y. Identification of HbHSP90 gene family and characterization HbHSP90.1 as a candidate gene for stress response in rubber tree. Gene 2022; 827:146475. [PMID: 35378248 DOI: 10.1016/j.gene.2022.146475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/16/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022]
Abstract
Heat shock protein 90 (HSP90), an essential molecular chaperone, is triggered in response to stress situations in plants. However, the roles of HSP90 gene family members in rubber tree have not been totally specified. In this study, 7 HbHSP90 genes were identified from rubber tree genome. Classification of HbHSP90 family genes into three groups, namely A, B, and C was based on phylogenetic analysis. The structural and motif analyses showed similar structural features in the same group of HbHSP90 members, but differences between groups. Analysis of cis-regulatory element sequences of HbHSP90 genes indicates that the HbHSP90 gene promoter is rich in drought, temperature, and hormone elements. qRT-PCR analysis showed that the 7 HbHSP90 genes responded in different degrees to temperature, drought and powdery mildew infection, and in particularly, HbHSP90.1 was differentially expressed under both abiotic and biotic stresses. Meanwhile, HbHSP90.1 gene was significantly expressed under the treatment of different phytohormone and H2O2 (Hydrogen Peroxide) treatments, which means that HbHSP90.1 gene performs an essential part in the growth and development of rubber trees. Furthermore, the protein interaction results showed that HbHSP90.1 interacted with HbSGT1b. Subcellular localization showed that both HbHSP90.1 and HbSGT1b located in the nucleus. Taken together, we speculate that HbHSP90.1 interacts with HbSGT1b in the nucleus to respond to rubber tree stress processes. The results of this study provide a solid foundation for further studies on the mechanism of HbHSP90 family genes in the stress resistance response of rubber tree.
Collapse
Affiliation(s)
- Mingyang Liu
- Collaborative Innovation Center of Natural Rubber, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, School of Plant Protection, Hainan University Haikou, 570228, PR China; Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Ministry of Agriculture and Rural Affairs, PR China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, PR China
| | - Lifeng Wang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Ministry of Agriculture and Rural Affairs, PR China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, PR China
| | - Yuhang Ke
- Collaborative Innovation Center of Natural Rubber, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, School of Plant Protection, Hainan University Haikou, 570228, PR China
| | - Xuemei Xian
- Collaborative Innovation Center of Natural Rubber, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, School of Plant Protection, Hainan University Haikou, 570228, PR China
| | - Jiali Wang
- Collaborative Innovation Center of Natural Rubber, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, School of Plant Protection, Hainan University Haikou, 570228, PR China
| | - Meng Wang
- Collaborative Innovation Center of Natural Rubber, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, School of Plant Protection, Hainan University Haikou, 570228, PR China.
| | - Yu Zhang
- Collaborative Innovation Center of Natural Rubber, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, School of Plant Protection, Hainan University Haikou, 570228, PR China.
| |
Collapse
|
40
|
Wang Y, Zhang X, Wang T, Zhou S, Liang X, Xie C, Kang Z, Chen D, Zheng L. The Small Secreted Protein FoSsp1 Elicits Plant Defenses and Negatively Regulates Pathogenesis in Fusarium oxysporum f. sp. cubense (Foc4). FRONTIERS IN PLANT SCIENCE 2022; 13:873451. [PMID: 35620677 PMCID: PMC9129915 DOI: 10.3389/fpls.2022.873451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/30/2022] [Indexed: 05/13/2023]
Abstract
Fusarium wilt of banana (Musa spp.), a typical vascular wilt disease caused by the soil-borne fungus, Fusarium oxysporum f. sp. cubense race 4 (Foc4), seriously threatens banana production worldwide. Pathogens, including vascular wilt fungi, secrete small cysteine-rich proteins during colonization. Some of these proteins are required for pathogenicity. In this study, 106 small secretory proteins that contain a classic N-terminal signal peptide were identified using bioinformatic methods in Foc4. Among them, 11 proteins were selected to show transient expressions in tobacco. Interestingly, transient expression of FoSsp1 in tobacco, an uncharacterized protein (of 145 aa), induced necrotic cell death reactive oxygen burst, and callous deposition. Furthermore, the expression of FoSSP1 in Foc4 wild type (WT) was up-regulated during the stage of banana roots colonization. A split-marker approach was used to knock out FoSSP1 in the Foc4 WT strain. Compared with the WT, the deletion mutant Fossp1 was normal in growth rate but increased in conidiation and virulence. RT-qPCR analysis showed that the expression of four conidiation regulator genes in the Fossp1 deletion mutant was significantly decreased compared to the WT strain. In addition, the expression of four pathogenesis-related genes of bananas infected with Fossp1 deletion mutant was down-regulated in comparison with that of the WT. In summary, these results suggested that FoSSP1 is a putative elicitor that negatively regulates conidiation and pathogenicity in Foc4.
Collapse
Affiliation(s)
- Yuhua Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and School of Plant Protection, Hainan University, Haikou, China
| | - Xinchun Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Tian Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and School of Plant Protection, Hainan University, Haikou, China
| | - Siyu Zhou
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and School of Plant Protection, Hainan University, Haikou, China
| | - Xiaofei Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Changping Xie
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and School of Plant Protection, Hainan University, Haikou, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Daipeng Chen
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and School of Plant Protection, Hainan University, Haikou, China
| | - Li Zheng
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and School of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
41
|
Sen A, Puthur J, Challabathula D, Brestič M. Transgenerational effect of UV-B priming on photochemistry and associated metabolism in rice seedlings subjected to PEG-induced osmotic stress. PHOTOSYNTHETICA 2022; 60:219-229. [PMID: 39650764 PMCID: PMC11558515 DOI: 10.32615/ps.2022.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/08/2022] [Indexed: 12/11/2024]
Abstract
Rice being the major food crop for more than half of the world population is severely affected by drought stress starting from the establishment of the seedling. We focused on the UV-B priming mediated transgenerational drought tolerance of a drought-tolerant rice variety (Vaisakh) towards polyethylene glycol (PEG) 6,000 (20%)-induced drought. Results showed that priming in F0 generation and re-priming in F1 generation with UV-B enhanced the PEG stress tolerance potential of rice seedlings with increased expression of genes encoding antioxidant enzymes and stress-related proteins offering better protection to primed plants. UV-B priming maintained oxidative homeostasis of the plant cell thus ensuring uninterrupted mitochondrial and photosynthetic activities. Cumulatively, our results suggest that the transgenerational priming memory retained in the seeds is transferred to offspring without any loss. Moreover, re-priming in F1 generation further boosted the innate tolerance potential of a tolerant variety resulting in stable cellular redox homeostasis.
Collapse
Affiliation(s)
- A. Sen
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., 673635 Kerala, India
| | - J.T. Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., 673635 Kerala, India
| | - D. Challabathula
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610004 Tamil Nadu, India
| | - M. Brestič
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic
| |
Collapse
|
42
|
Li S, Cheng Z, Li Z, Dong S, Yu X, Zhao P, Liao W, Yu X, Peng M. MeSPL9 attenuates drought resistance by regulating JA signaling and protectant metabolite contents in cassava. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:817-832. [PMID: 34837123 DOI: 10.1007/s00122-021-04000-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Analysis of drought-related genes in cassava shows the involvement of MeSPL9 in drought stress tolerance and overexpression of a dominant-negative form of this gene demonstrates its negative roles in drought stress resistance. Drought stress severely impairs crop yield and is considered a primary threat to food security worldwide. Although the SQUAMOSA promoter binding protein-like 9 (SPL9) gene participates extensively in numerous developmental processes and in plant response to abiotic stimuli, its role and regulatory pathway in cassava (Manihot esculenta) response to the drought condition remain elusive. In the current study, we show that cassava SPL9 (MeSPL9) plays negative roles in drought stress resistance. MeSPL9 expression was strongly repressed by drought treatment. Overexpression of a dominant-negative form of miR156-resistant MeSPL9, rMeSPL9-SRDX, in which a 12-amino acid repressor sequence was fused to rMeSPL9 at the C terminus, conferred drought tolerance without penalizing overall growth. rMeSPL9-SRDX-overexpressing lines not only exhibited increased osmoprotectant metabolites including proline and anthocyanin, but also accumulated more endogenous jasmonic acid (JA) and soluble sugars. Transcriptomic and real-time PCR analysis suggested that differentially expressed genes were involved in sugar or JA biosynthesis, signaling, and metabolism in transgenic cassava under drought conditions. Exogenous application of JA further confirmed that JA conferred improved drought resistance and promoted stomatal closure in cassava leaves. Taken together, our findings suggest that MeSPL9 affects drought resistance by modulating protectant metabolite levels and JA signaling, which have substantial implications for engineering drought tolerant crops.
Collapse
Affiliation(s)
- Shuxia Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China.
| | - Zhihao Cheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China
| | - Zhibo Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China
| | - Shiman Dong
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China
| | - Xiaoling Yu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China
| | - Pingjuan Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China
| | - Wenbin Liao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China
| | - Xiang Yu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China.
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China.
| |
Collapse
|
43
|
Senanayake IC, Pem D, Rathnayaka AR, Wijesinghe SN, Tibpromma S, Wanasinghe DN, Phookamsak R, Kularathnage ND, Gomdola D, Harishchandra D, Dissanayake LS, Xiang MM, Ekanayaka AH, McKenzie EHC, Hyde KD, Zhang HX, Xie N. Predicting global numbers of teleomorphic ascomycetes. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00498-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractSexual reproduction is the basic way to form high genetic diversity and it is beneficial in evolution and speciation of fungi. The global diversity of teleomorphic species in Ascomycota has not been estimated. This paper estimates the species number for sexual ascomycetes based on five different estimation approaches, viz. by numbers of described fungi, by fungus:substrate ratio, by ecological distribution, by meta-DNA barcoding or culture-independent studies and by previous estimates of species in Ascomycota. The assumptions were made with the currently most accepted, “2.2–3.8 million” species estimate and results of previous studies concluding that 90% of the described ascomycetes reproduce sexually. The Catalogue of Life, Species Fungorum and published research were used for data procurement. The average value of teleomorphic species in Ascomycota from all methods is 1.86 million, ranging from 1.37 to 2.56 million. However, only around 83,000 teleomorphic species have been described in Ascomycota and deposited in data repositories. The ratio between described teleomorphic ascomycetes to predicted teleomorphic ascomycetes is 1:22. Therefore, where are the undiscovered teleomorphic ascomycetes? The undescribed species are no doubt to be found in biodiversity hot spots, poorly-studied areas and species complexes. Other poorly studied niches include extremophiles, lichenicolous fungi, human pathogens, marine fungi, and fungicolous fungi. Undescribed species are present in unexamined collections in specimen repositories or incompletely described earlier species. Nomenclatural issues, such as the use of separate names for teleomorph and anamorphs, synonyms, conspecific names, illegitimate and invalid names also affect the number of described species. Interspecies introgression results in new species, while species numbers are reduced by extinctions.
Collapse
|
44
|
Han H, Zou J, Zhou J, Zeng M, Zheng D, Yuan X, Xi D. The small GTPase NtRHO1 negatively regulates tobacco defense response to tobacco mosaic virus by interacting with NtWRKY50. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:366-381. [PMID: 34487168 DOI: 10.1093/jxb/erab408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Small GTPases play critical roles in the regulation of plant growth and development. However, the mechanism of action of small GTPases in plant response to virus infection remains largely unknown. Here, the gene encoding a Rho-type GTPase, NtRHO1, was identified as one of the genes up-regulated after tobacco mosaic virus (TMV) infection. Subcellular localization of NtRHO1 showed that it was located in the cytoplasm, plasma membrane, and nucleus. Transient overexpression of NtRHO1 in Nicotiana benthamiana accelerated TMV reproduction and led to the production of reactive oxygen species. By contrast, silencing of NtRHO1 reduced the sensitivity of N. benthamiana to TMV-GFP. Further exploration revealed a direct interaction between NtRHO1 and NtWRKY50, a positive regulator of the N. benthamiana response to virus infection. Yeast one-hybrid and electrophoretic mobility shift assays showed that this regulation was related to the capacity of NtWRKY50 to bind to the WK-box of the PR1 promoter, which was weakened by the interaction between NtRHO1 and NtWRKY50. Thus, our results indicate that the small GTPase NtRHO1 plays a negative role in tobacco response to TMV infection by interacting with transcription factor NtWRKY50, resulting in reduced plant immunity.
Collapse
Affiliation(s)
- Hongyan Han
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jialing Zou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jingya Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Mengyuan Zeng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Dongchao Zheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Xuefeng Yuan
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an, Shandong, China
| | - Dehui Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
45
|
Sun Y, Liu L, Sun S, Han W, Irfan M, Zhang X, Zhang L, Chen L. AnDHN, a Dehydrin Protein From Ammopiptanthus nanus, Mitigates the Negative Effects of Drought Stress in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:788938. [PMID: 35003177 PMCID: PMC8739915 DOI: 10.3389/fpls.2021.788938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/30/2021] [Indexed: 06/01/2023]
Abstract
Dehydrins (DHNs) play crucial roles in a broad spectrum of abiotic stresses in model plants. However, the evolutionary role of DHNs has not been explored, and the function of DHN proteins is largely unknown in Ammopiptanthus nanus (A. nanus), an ancient and endangered legume species from the deserts of northwestern China. In this study, we isolated a drought-response gene (c195333_g1_i1) from a drought-induced RNA-seq library of A. nanus. Evolutionary bioinformatics showed that c195333_g1_i1 is an ortholog of Arabidopsis DHN, and we renamed it AnDHN. Moreover, DHN proteins may define a class of proteins that are evolutionarily conserved in all angiosperms that have experienced a contraction during the evolution of legumes. Arabidopsis plants overexpressing AnDHN exhibited morpho-physiological changes, such as an increased germination rate, higher relative water content (RWC), higher proline (PRO) content, increased peroxidase (POD) and catalase (CAT) activities, lower contents of malondialdehyde (MDA), H2O2 and O2 -, and longer root length. Our results showed that the transgenic lines had improved drought resistance with deep root system architecture, excellent water retention, increased osmotic adjustment, and enhanced reactive oxygen species (ROS) scavenging. Furthermore, the transgenic lines also had enhanced salt and cold tolerance. Our findings demonstrate that AnDHN may be a good candidate gene for improving abiotic stress tolerance in crops. Key Message: Using transcriptome analysis in Ammopiptanthus nanus, we isolated a drought-responsive gene, AnDHN, that plays a key role in enhancing abiotic stress tolerance in plants, with strong functional diversification in legumes.
Collapse
Affiliation(s)
- Yibo Sun
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Linghao Liu
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shaokun Sun
- Key Laboratory of Protected Horticulture (Ministry of Education), College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Wangzhen Han
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Muhammad Irfan
- Department of Biotechnology, Faculty of Sciences, University of Sargodha, Sargodha, Pakistan
| | - Xiaojia Zhang
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Li Zhang
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Lijing Chen
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
46
|
Wang P, Yan Y, Bai Y, Dong Y, Wei Y, Zeng H, Shi H. Phosphorylation of RAV1/2 by KIN10 is essential for transcriptional activation of CAT6/7, which underlies oxidative stress response in cassava. Cell Rep 2021; 37:110119. [PMID: 34910906 DOI: 10.1016/j.celrep.2021.110119] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/11/2021] [Accepted: 11/18/2021] [Indexed: 01/17/2023] Open
Abstract
Related to ABI3/VP1 (RAV) transcription factors have important roles in plant stress responses; however, it is unclear whether RAVs regulates oxidative stress response in cassava (Manihot esculenta). In this study, we report that MeRAV1/2 positively regulate oxidative stress resistance and catalase (CAT) activity in cassava. Consistently, RNA sequencing (RNA-seq) identifies three MeCATs that are differentially expressed in MeRAV1/2-silenced cassava leaves. Interestingly, MeCAT6 and MeCAT7 are identified as direct transcriptional targets of MeRAV1/2 via binding to their promoters. In addition, protein kinase MeKIN10 directly interacts with MeRAV1/2 to phosphorylate them at Ser45 and Ser44 residues, respectively, to promote their direct transcriptional activation on MeCAT6 and MeCAT7. Site mutation of MeRAV1S45A or MeRAV2S44A has no significant effect on the activities of MeCAT6 and MeCAT7 promoters or on oxidative stress resistance. In summary, this study demonstrates that the phosphorylation of MeRAV1/2 by MeKIN10 is essential for its direct transcriptional activation of MeCAT6/7 in response to oxidative stress.
Collapse
Affiliation(s)
- Peng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Yu Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Yujing Bai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Yabin Dong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
47
|
Hu W, Ji C, Liang Z, Ye J, Ou W, Ding Z, Zhou G, Tie W, Yan Y, Yang J, Ma L, Yang X, Wei Y, Jin Z, Xie J, Peng M, Wang W, Guo A, Xu B, Guo J, Chen S, Wang M, Zhou Y, Li X, Li R, Xiao X, Wan Z, An F, Zhang J, Leng Q, Li Y, Shi H, Ming R, Li K. Resequencing of 388 cassava accessions identifies valuable loci and selection for variation in heterozygosity. Genome Biol 2021; 22:316. [PMID: 34784936 PMCID: PMC8594203 DOI: 10.1186/s13059-021-02524-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 10/24/2021] [Indexed: 01/30/2023] Open
Abstract
Background Heterozygous genomes are widespread in outcrossing and clonally propagated crops. However, the variation in heterozygosity underlying key agronomic traits and crop domestication remains largely unknown. Cassava is a staple crop in Africa and other tropical regions and has a highly heterozygous genome. Results We describe a genomic variation map from 388 resequenced genomes of cassava cultivars and wild accessions. We identify 52 loci for 23 agronomic traits through a genome-wide association study. Eighteen allelic variations in heterozygosity for nine candidate genes are significantly associated with seven key agronomic traits. We detect 81 selective sweeps with decreasing heterozygosity and nucleotide diversity, harboring 548 genes, which are enriched in multiple biological processes including growth, development, hormone metabolisms and responses, and immune-related processes. Artificial selection for decreased heterozygosity has contributed to the domestication of the large starchy storage root of cassava. Selection for homozygous GG allele in MeTIR1 during domestication contributes to increased starch content. Selection of homozygous AA allele in MeAHL17 is associated with increased storage root weight and cassava bacterial blight (CBB) susceptibility. We have verified the positive roles of MeTIR1 in increasing starch content and MeAHL17 in resistance to CBB by transient overexpression and silencing analysis. The allelic combinations in MeTIR1 and MeAHL17 may result in high starch content and resistance to CBB. Conclusions This study provides insights into allelic variation in heterozygosity associated with key agronomic traits and cassava domestication. It also offers valuable resources for the improvement of cassava and other highly heterozygous crops. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02524-7.
Collapse
Affiliation(s)
- Wei Hu
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China. .,Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China. .,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.
| | - Changmian Ji
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China.,Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Zhe Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianqiu Ye
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Wenjun Ou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Zehong Ding
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China.,Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Gang Zhou
- Biomarker Technologies Corporation, Beijing, China
| | - Weiwei Tie
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China.,Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Yan Yan
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China.,Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Jinghao Yang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Liming Ma
- Biomarker Technologies Corporation, Beijing, China
| | - Xiaoying Yang
- College of Food Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, China
| | - Zhiqiang Jin
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Jianghui Xie
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Ming Peng
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Wenquan Wang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Anping Guo
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China.,Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Biyu Xu
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Jianchun Guo
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Songbi Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | | | - Yang Zhou
- Biomarker Technologies Corporation, Beijing, China
| | - Xiaolong Li
- Biomarker Technologies Corporation, Beijing, China
| | - Ruoxi Li
- Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY, 10027, USA
| | - Xinhui Xiao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Zhongqing Wan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Feifei An
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Jie Zhang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Qingyun Leng
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Yin Li
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, China.
| | - Ray Ming
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China. .,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Kaimian Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.
| |
Collapse
|
48
|
Ren J, Hu J, Zhang A, Ren S, Jing T, Wang X, Sun M, Huang L, Zeng B. The whole-genome and expression profile analysis of WRKY and RGAs in Dactylis glomerata showed that DG6C02319.1 and Dg WRKYs may cooperate in the immunity against rust. PeerJ 2021; 9:e11919. [PMID: 34466285 PMCID: PMC8380429 DOI: 10.7717/peerj.11919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/16/2021] [Indexed: 02/01/2023] Open
Abstract
Orchardgrass (Dactylis glomerata) is one of the top four perennial forages worldwide and, despite its large economic advantages, often threatened by various environmental stresses. WRKY transcription factors (TFs) can regulate a variety of plant processes, widely participate in plant responses to biotic and abiotic stresses, and are one of the largest gene families in plants. WRKYs can usually bind W-box elements specifically. In this study, we identified a total of 93 DgWRKY genes and 281 RGAs, including 65, 169 and 47 nucleotide-binding site-leucine-rich repeats (NBS-LRRs), leucine-rich repeats receptor-like protein kinases (LRR-RLKs), and leucine-rich repeats receptor-like proteins (LRR-RLPs), respectively. Through analyzing the expression of DgWRKY genes in orchardgrass under different environmental stresses, it was found that many DgWRKY genes were differentially expressed under heat, drought, submergence, and rust stress. In particular, it was found that the greatest number of genes were differentially expressed under rust infection. Consistently, GO and KEGG enrichment analysis of all genes showed that 78 DgWRKY TFs were identified in the plant–pathogen interaction pathway, with 59 of them differentially expressed. Through cis-acting element prediction, 154 RGAs were found to contain W-box elements. Among them, DG6C02319.1 (a member of the LRR-RLK family) was identified as likely to interact with 14 DGWRKYs. Moreover, their expression levels in susceptible plants after rust inoculation were first up-regulated and then down-regulated, while those in the resistant plants were always up-regulated. In general, DgWRKYs responded to both biotic stress and abiotic stress. DgWRKYs and RGAs may synergistically respond to the response of orchardgrass to rust. This study provides meaningful insight into the molecular mechanisms of WRKY proteins in orchardgrass.
Collapse
Affiliation(s)
- Juncai Ren
- College of Animal Science and Technology, Southwest University, Chongqing, Chongqing, China
| | - Jialing Hu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ailing Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shuping Ren
- College of Animal Science and Technology, Southwest University, Chongqing, Chongqing, China
| | - Tingting Jing
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoshan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Min Sun
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bing Zeng
- College of Animal Science and Technology, Southwest University, Chongqing, Chongqing, China
| |
Collapse
|
49
|
Yan Y, Wang P, Lu Y, Bai Y, Wei Y, Liu G, Shi H. MeRAV5 promotes drought stress resistance in cassava by modulating hydrogen peroxide and lignin accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:847-860. [PMID: 34022096 DOI: 10.1111/tpj.15350] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 05/20/2023]
Abstract
Cassava, an important food and energy crop, is relatively more resistant to drought stress than other crops. However, the molecular mechanism underlying this resistance remains elusive. Herein, we report that silencing a drought stress-responsive transcription factor MeRAV5 significantly reduced drought stress resistance, with higher levels of hydrogen peroxide (H2 O2 ) and less lignin during drought stress. Yeast two-hybrid, pull down and bimolecular fluorescence complementation (BiFC) showed that MeRAV5 physically interacted with peroxidase (MePOD) and lignin-related cinnamyl alcohol dehydrogenase 15 (MeCAD15) in vitro and in vivo. MeRAV5 promoted the activities of both MePOD and MeCAD15 to affect H2 O2 and endogenous lignin accumulation respectively, which are important in drought stress resistance in cassava. When either MeCAD15 or MeRAV5 was silenced, or both were co-silenced, cassava showed lower lignin content and drought-sensitive phenotype, whereas exogenous lignin alkali treatment increased drought stress resistance and alleviated the drought-sensitive phenotype of these silenced cassava plants. This study documents that the modulation of H2 O2 and lignin by MeRAV5 is essential for drought stress resistance in cassava.
Collapse
Affiliation(s)
- Yu Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Peng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Yi Lu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Yujing Bai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| |
Collapse
|
50
|
Wei Y, Zeng H, Liu W, Cheng X, Zhu B, Guo J, Shi H. Autophagy-related genes serve as heat shock protein 90 co-chaperones in disease resistance against cassava bacterial blight. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:925-937. [PMID: 34037995 DOI: 10.1111/tpj.15355] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/10/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Heat shock protein 90 (HSP90) is involved in plant growth and various stress responses via regulating protein homeostasis. Autophagy keeps cellular homeostasis by recycling the components of cellular cytoplasmic constituents. Although they have similar effects on cellular protein homeostasis, the direct association between HSP90 and autophagy signaling remains unclear in plants, especially in tropical crops. In this study, the correlation between HSP90 and autophagy signaling was systematically analyzed by protein-protein interaction in cassava, one of the most important economy fruit in tropic. In addition, their effects on plant disease response and underlying mechanisms in cassava were investigated by functional genomics and genetic phenotype assay. The potential MeHSP90.9-MeSGT1-MeRAR1 chaperone complex interacts with MeATGs and subsequently triggers autophagy signaling, conferring improved disease resistance to cassava bacterial blight (CBB). On the contrary, HSP90 inhibitor and autophagy inhibitor decreased disease resistance against CBB in cassava, and autophagy may be involved in the potential MeHSP90.9-MeSGT1-MeRAR1 chaperone complex-mediated multiple immune responses. This study highlights the precise modulation of autophagy signaling by potential MeHSP90.9-MeSGT1-MeRAR1 chaperone complex in autophagy-mediated disease resistance to CBB.
Collapse
Affiliation(s)
- Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Wen Liu
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Xiao Cheng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Binbin Zhu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Jingru Guo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|