1
|
Josselsohn A, Zhao Y, Espinoza D, Hollander E. Oxytocin in neurodevelopmental disorders: Autism spectrum disorder and Prader-Willi syndrome. Pharmacol Ther 2024; 264:108734. [PMID: 39455012 DOI: 10.1016/j.pharmthera.2024.108734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
This manuscript reviews recent work on oxytocin and its use in neurodevelopmental disorders including spectrum disorder (ASD) and Prader-Willi syndrome (PWS). Oxytocin is involved in social recognition, bonding, maternal behaviors, anxiety, food motivation, and hyperphagia. While the pathophysiology of ASD and PWS involve abnormalities in the oxytocin system, clinical trials have shown discrepant results in the effectiveness of oxytocin as a treatment for core symptoms associated with these disorders. In this review, we outline oxytocin's clinical pharmacology, safety considerations, and results in recent clinical trials. We propose that oxytocin may be most beneficial in these populations if dosed in a dynamic regimen (PRN) and paired with social interventions.
Collapse
Affiliation(s)
- Alyssa Josselsohn
- Albert Einstein College of Medicine, Montefiore Medical Center, 1225 Morris Park Avenue Bronx, NY 10461, USA; Temple University, College of Education and Human Development, 1301 Cecil B. Moore Ave, Philadelphia, PA 19122, USA
| | - Yin Zhao
- Albert Einstein College of Medicine, Montefiore Medical Center, 1225 Morris Park Avenue Bronx, NY 10461, USA
| | - Danielle Espinoza
- Albert Einstein College of Medicine, Montefiore Medical Center, 1225 Morris Park Avenue Bronx, NY 10461, USA; SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA
| | - Eric Hollander
- Albert Einstein College of Medicine, Montefiore Medical Center, 1225 Morris Park Avenue Bronx, NY 10461, USA.
| |
Collapse
|
2
|
Xu X, Liu X, Liu L, Chen J, Guan J, Luo D. Metagenomic and transcriptomic profiling of the hypoglycemic and hypotriglyceridemic actions of Tremella fuciformis-derived polysaccharides in high-fat-diet- and streptozotocin-treated mice. Food Funct 2024; 15:11096-11114. [PMID: 39432083 DOI: 10.1039/d4fo01870b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Mushroom polysaccharides have great anti-diabetes potential. The fruiting body of Tremella fuciformis is rich in polysaccharides. However, few studies have been performed to date on T. fuciformis-derived polysaccharides (TPs) in terms of anti-diabetes potential. Our previous studies showed that novel TPs with medium molecular weights exhibited the highest anti-skin aging activities among the tested samples in D-galactose-treated mice. In the present study, the effects of these novel TPs, named TP, on high-fat-diet- and streptozotocin-treated mice were assessed, and their potential biological mechanisms were explored by metagenomic and transcriptomic analyses. Oral administration of TP markedly reduced blood glucose and TG levels, alleviated emaciation, improved anti-oxidant capacity, and protected the functions of β-cells at a dose of 100 mg kg-1 in diabetic mice. Meanwhile, the taxonomic compositions and functional properties of fecal microbiota were altered considerably by TP, as evidenced by partial restoration of the imbalanced gut microbiota and the higher abundances of Bacteroides, Phocaeicola, Bifidobacterium, and Alistipes compared to the model mice, corresponding to the upregulation of four enriched KEGG pathways of microbial communities such as the digestive system, cardiovascular disease, parasitic infectious disease, and cell growth and death. Further transcriptomic analysis of liver tissues identified 35 enriched KEGG pathways associated with metabolism and cellular signaling processes in response to TP. These results demonstrated the biological mechanisms underlying the hypoglycemic and hypotriglyceridemic activities of TP. The findings expanded our understanding of the anti-diabetic mechanisms for mushroom polysaccharides and provided new clues for future studies.
Collapse
Affiliation(s)
- Xiaofei Xu
- College of Food Science and Engineering, Guangdong Ocean University, 1# Luoqin Road, Yangjiang 529500, China.
| | - Xiaofei Liu
- College of Food Science and Engineering, Guangdong Ocean University, 1# Luoqin Road, Yangjiang 529500, China.
| | - Liyan Liu
- College of Food Science and Engineering, Guangdong Ocean University, 1# Luoqin Road, Yangjiang 529500, China.
| | - Jin Chen
- College of Food Science and Engineering, Guangdong Ocean University, 1# Luoqin Road, Yangjiang 529500, China.
| | - Jingjing Guan
- College of Food Science and Engineering, Guangdong Ocean University, 1# Luoqin Road, Yangjiang 529500, China.
| | - Donghui Luo
- College of Food Science and Engineering, Guangdong Ocean University, 1# Luoqin Road, Yangjiang 529500, China.
| |
Collapse
|
3
|
Goll N, Moszka N, Kantartzis K, Preissl H, Gruber T, Fritsche L, Jumpertz-von Schwarzenberg R, García-Cáceres C, Fritsche A, Hallschmid M. Oxytocin does not acutely improve glucose tolerance in men with type 2 diabetes. Diabetes Obes Metab 2024; 26:4562-4570. [PMID: 39118203 DOI: 10.1111/dom.15812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
AIM To assess oxytocin's acute glucoregulatory impact in men with type 2 diabetes in the context of our previous findings that oxytocin improves β-cell responsivity in healthy men. METHODS In a double-blind, crossover comparison, intranasal oxytocin (24 IU) and placebo, respectively, were administered to 25 fasted men with non-insulin-treated type 2 diabetes (age ± standard error of the mean, 63.40 ± 1.36 years; body mass index, 27.77 ± 0.66 kg/m2; HbA1c, 6.86% ± 0.08%; Homeostatic Model Assessment of Insulin Resistance (HOMA-IR, 3.44 ± 0.39) 60 minutes before an oral glucose tolerance test (oGTT). Key outcomes were compared with previous results in men with normal weight or obesity. RESULTS Oxytocin compared with placebo increased plasma oxytocin concentrations and reduced the heart rate, but did not alter glucose metabolism in the 3 hours after oGTT onset (area under the curve, glucose, 2240 ± 80.5 vs. 2190 ± 69.5 mmol/L × min; insulin, 45 663 ± 4538 vs. 44 343 ± 4269 pmol/L × min; C-peptide, 235 ± 5.1 vs. 231 ± 15.9 nmol/L × min). CONCLUSIONS This outcome contrasts with the oxytocin-induced attenuation of early postprandial glucose excursions in normal-weight individuals, but is in line with the absence of respective effects in men with obesity. We conclude that insulin resistance in type 2 diabetes is associated with decreased sensitivity to the acute glucoregulatory effect of oxytocin in male individuals.
Collapse
Affiliation(s)
- Nina Goll
- Department of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Nina Moszka
- Department of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
- Department of Periodontics, Preventive and Restorative Dentistry, Center for Dental and Oral Medicine, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Konstantinos Kantartzis
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Hubert Preissl
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| | - Tim Gruber
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Van Andel Institute, Grand Rapids, Michigan, USA
| | - Louise Fritsche
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Reiner Jumpertz-von Schwarzenberg
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Cristina García-Cáceres
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Fritsche
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Manfred Hallschmid
- Department of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| |
Collapse
|
4
|
Orihuela JC, Freitas-de-Melo A, Pinto-Santini L, Giriboni J, Viera MN, Santiago-Moreno J, Beracochea F, Silveira P, Ungerfeld R. A single administration of carbetocin before electroejaculation increases the insemination doses produced from each ejaculate in rams. Theriogenology 2024; 221:1-8. [PMID: 38518659 DOI: 10.1016/j.theriogenology.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/24/2024]
Abstract
The aim of the study was to determine the effect of carbetocin administration (a long-acting analog of oxytocin) 20 or 10 min before electroejaculation (EE) on the duration of semen collection procedure, quantitative and qualitative characteristics of the ejaculate, and stress biomarkers in rams. Semen was collected from 12 Corriedale rams (age, 2.5-5.5 years old) with EE, in a Latin-square design, administrating carbetocin (0.2 mg/100 kg of body weight i.v.) 20 or 10 min before EE, or without carbetocin administration (CB-20, CB-10, and CON treatments, respectively). Each treatment was applied to different rams every 3-4 days, allowing all the rams to receive all three treatments. Carbetocin administered 20 or 10 min before EE increased the number of sperm ejaculated (P = 0.01), the semen concentration (P = 0.02), the number of insemination doses collected in a single collection (P = 0.01), and the number of insemination doses collected/electrical pulses administered (P = 0.05) compared to control rams. Carbetocin administered 20 or 10 min before semen collection prolonged the time required for EE and the number of pulses administered during EE compared to CON rams (P < 0.03 for both). The CB-10 rams required the administration of more electrical pulses during ejaculation than CON rams (P = 0.001), and CB-20 treatment tended to require more electrical pulses than CON rams (P = 0.06). The volume of the ejaculate was greater in CB-10 than in CON rams (P = 0.01), and that of CB-20 treatment tended to be greater than CON rams (P = 0.08). The percentage of sperm with intact membrane was greater in CB-20 than in CON rams (P = 0.01). Total protein, albumin, and globulin concentrations were lower immediately after carbetocin administration 20 or 10 min before EE. The treatments did not affect cortisol concentration, glycemia, rectal and surface temperatures, heart rate, and facial expressions. Carbetocin administration before EE of rams improved the quantitative and qualitative characteristics of the ejaculate, duplicating the number of insemination doses collected. It can be a promising treatment to obtain a greater quantity of doses to inseminate with a lower frequency of semen collections, reducing the negative impacts of EE on animal welfare.
Collapse
Affiliation(s)
- J C Orihuela
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Ruta 8 km 18, Montevideo, 13000, Uruguay; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Zacatepec, Carretera Zacatepec-Galeana km 0.05, Zacatepec, Morelos, 62780, Mexico.
| | - A Freitas-de-Melo
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Ruta 8 km 18, Montevideo, 13000, Uruguay
| | - L Pinto-Santini
- Departamento de Producción Animal y Salud en los Sistemas Productivos, Facultad de Veterinaria, Universidad de la República, Ruta 1 km 42.5, San José, 80100, Uruguay
| | - J Giriboni
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Ruta 8 km 18, Montevideo, 13000, Uruguay
| | - M N Viera
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Ruta 8 km 18, Montevideo, 13000, Uruguay
| | - J Santiago-Moreno
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria. Consejo Superior de Investigaciones Científicas (INIA-CSIC), Avda. Puerta de Hierro km 5.9, Madrid, 28040, Spain
| | - F Beracochea
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Ruta 8 km 18, Montevideo, 13000, Uruguay
| | - P Silveira
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Ruta 8 km 18, Montevideo, 13000, Uruguay
| | - R Ungerfeld
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Ruta 8 km 18, Montevideo, 13000, Uruguay.
| |
Collapse
|
5
|
Huang X, Mulasihan M, Tudi M, Li S. A single-center clinical study of acute kidney injury associated with acute myocardial infarction. Int Urol Nephrol 2024; 56:325-334. [PMID: 37368084 DOI: 10.1007/s11255-023-03676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
OBJECTIVE To investigate the risk factors of acute kidney injury (AKI) patients with acute myocardial infarction (AMI) and establish potential microRNA (miRNA) biomarkers in the peripheral blood of AMI-AKI patients. METHODS Patients hospitalized from 2016 to 2020 and diagnosed with AMI (with AKI or without AKI groups) were recruited. The data of the two groups were compared and the risk factors of AMI-AKI were analyzed by logistic regression. The receiver operator characteristics (ROC) curve was drawn and the predictive value of risk factors in AMI-AKI was evaluated. Six AMI-AKI patients were selected and six healthy subjects were enrolled as the control. The peripheral blood samples of the two groups were collected for miRNA high-throughput sequencing. RESULTS A total of 300 AMI patients were collected, including 190 patients with AKI and 110 patients without AKI. Multivariate logistic regression analysis indicated that diastolic pressure (68-80 mmHg), urea nitrogen, creatinine, serum uric acid (SUA), aspartate aminotransferase (AST), and left ventricular ejection fraction were the dependent risk factors of AMI-AKI patients (P < 0.05). ROC curve showed that the incidence of AMI-AKI patients was most correlated with urea nitrogen, creatinine, and SUA. In addition, 60 differentially expressed miRNAs were identified between AMI-AKI and controls. Then, hsa-miR-2278, hsa-miR-1827, and hsa-miR-149-5p were more corrected with predictors. Twelve of them targeted 71 genes involved in phagosome, oxytocin signaling pathway, and microRNAs in cancer pathways. CONCLUSION Urea nitrogen, creatinine, and SUA were the dependent risk factors and important predictors for AMI-AKI patients. Three miRNAs may be considered as biomarkers for AMI-AKI.
Collapse
Affiliation(s)
- Xuan Huang
- Nephrology Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Xinshi Area, Urumqi, 830000, China
| | - Muhuyati Mulasihan
- Heart Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Xinshi Area, Urumqi, 830000, China
| | - Mireayi Tudi
- The First People's Hospital of Kashi Region, Yingbin Road, Kashi, 844099, China
| | - Suhua Li
- Nephrology Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Xinshi Area, Urumqi, 830000, China.
| |
Collapse
|
6
|
Li E, Wang L, Wang D, Chi J, Lin Z, Smith GI, Klein S, Cohen P, Rosen ED. Control of lipolysis by a population of oxytocinergic sympathetic neurons. Nature 2024; 625:175-180. [PMID: 38093006 PMCID: PMC10952125 DOI: 10.1038/s41586-023-06830-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 11/03/2023] [Indexed: 01/05/2024]
Abstract
Oxytocin (OXT), a nine-amino-acid peptide produced in the hypothalamus and released by the posterior pituitary, has well-known actions in parturition, lactation and social behaviour1, and has become an intriguing therapeutic target for conditions such as autism and schizophrenia2. Exogenous OXT has also been shown to have effects on body weight, lipid levels and glucose homeostasis1,3, suggesting that it may also have therapeutic potential for metabolic disease1,4. It is unclear, however, whether endogenous OXT participates in metabolic homeostasis. Here we show that OXT is a critical regulator of adipose tissue lipolysis in both mice and humans. In addition, OXT serves to facilitate the ability of β-adrenergic agonists to fully promote lipolysis. Most surprisingly, the relevant source of OXT in these metabolic actions is a previously unidentified subpopulation of tyrosine hydroxylase-positive sympathetic neurons. Our data reveal that OXT from the peripheral nervous system is an endogenous regulator of adipose and systemic metabolism.
Collapse
Affiliation(s)
- Erwei Li
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Luhong Wang
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daqing Wang
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jingyi Chi
- Harvard Medical School, Boston, MA, USA
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Zeran Lin
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Gordon I Smith
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
7
|
Danhof HA, Lee J, Thapa A, Britton RA, Di Rienzi SC. Microbial stimulation of oxytocin release from the intestinal epithelium via secretin signaling. Gut Microbes 2023; 15:2256043. [PMID: 37698879 PMCID: PMC10498800 DOI: 10.1080/19490976.2023.2256043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023] Open
Abstract
Intestinal microbes impact the health of the intestine and organs distal to the gut. Limosilactobacillus reuteri is a human intestinal microbe that promotes normal gut transit, the anti-inflammatory immune system, wound healing, normal social behavior in mice, and prevents bone reabsorption. Oxytocin impacts these functions and oxytocin signaling is required for L. reuteri-mediated wound healing and social behavior; however, the events in the gut leading to oxytocin stimulation and beneficial effects are unknown. Here we report evolutionarily conserved oxytocin production in the intestinal epithelium through analysis of single-cell RNA-Seq datasets and imaging of human and mouse intestinal tissues. Moreover, human intestinal organoids produce oxytocin, demonstrating that the intestinal epithelium is sufficient to produce oxytocin. We find that L. reuteri facilitates oxytocin secretion from human intestinal tissue and human intestinal organoids. Finally, we demonstrate that stimulation of oxytocin secretion by L. reuteri is dependent on the gut hormone secretin, which is produced in enteroendocrine cells, while oxytocin itself is produced in enterocytes. Altogether, this work demonstrates that oxytocin is produced and secreted from enterocytes in the intestinal epithelium in response to secretin stimulated by L. reuteri. This work thereby identifies oxytocin as an intestinal hormone and provides mechanistic insight into avenues by which gut microbes promote host health.
Collapse
Affiliation(s)
- Heather A. Danhof
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Jihwan Lee
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Aanchal Thapa
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Robert A. Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Sara C. Di Rienzi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
8
|
Cerrito P, Spear JK. Lack of evidence for coevolution between oxytocin receptor N-terminal variants and monogamy in placental mammals. Horm Behav 2023; 156:105437. [PMID: 37806189 DOI: 10.1016/j.yhbeh.2023.105437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
Oxytocin (OXT) is a neurohypophyseal hormone that influences a wide range of affiliative behaviors, such as pair-bonding and infant care, across mammals. The effects of OXT depend significantly on an adequate interaction with its receptor, OXTR. OXTR belongs to the G-protein coupled receptor family. The extracellular N-terminal domain of OXTR interacts with the linear C-terminal tail of OXT and is required for OXT binding. Across mammalian species there is a genetic diversity in OXTR terminal sequence. Previous work on primates has shown an association between OXTR phylogeny and monogamy. However, it is not clear whether this variation coevolved with either mating system (monogamy) or infant care behaviors (such as allomaternal care). Here, we take a phylogenetic comparative and evolutionary modeling approach across a wide range of placental mammals (n = 60) to test whether OXTR N-terminal variants co-evolved with either monogamy or allomaternal care behaviors. Our results indicate that the diversity in OXTR N-terminal region is unlikely to provide the underlying genetic bases for variation in mating system and/or allomaternal behavior as we find no evidence for co-evolution between protein sequence and affiliative behaviors. Hence, the role played by OXT in influencing affiliative behaviors is unlikely to be mediated by the genetic diversity of its receptor.
Collapse
Affiliation(s)
- Paola Cerrito
- Department of Anthropology, New York University, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA; Collegium Helveticum, ETH, Zürich, Switzerland; Department of Evolutionary Anthropology, University of Zürich, Zürich, Switzerland.
| | - Jeffrey K Spear
- Department of Anthropology, New York University, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA.
| |
Collapse
|
9
|
Lee H, Yoon S, Park YH, Lee JS, Rhyu DY, Kim KT. Microbiota dysbiosis associated with type 2 diabetes-like effects caused by chronic exposure to a mixture of chlorinated persistent organic pollutants in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122108. [PMID: 37422083 DOI: 10.1016/j.envpol.2023.122108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/10/2023]
Abstract
Mixtures of chlorinated persistent organic pollutants (C-POPs-Mix) are chemically related risk factors for type 2 diabetes mellitus (T2DM); however, the effects of chronic exposure to C-POPs-Mix on microbial dysbiosis remain poorly understood. Herein, male and female zebrafish were exposed to C-POPs-Mix at a 1:1 ratio of five organochlorine pesticides and Aroclor 1254 at concentrations of 0.02, 0.1, and 0.5 μg/L for 12 weeks. We measured T2DM indicators in blood and profiled microbial abundance and richness in the gut as well as transcriptomic and metabolomic alterations in the liver. Exposure to C-POPs-Mix significantly increased blood glucose levels while decreasing the abundance and alpha diversity of microbial communities only in females at concentrations of 0.02 and 0.1 μg/L. The majorly identified microbial contributors to microbial dysbiosis were Bosea minatitlanensis, Rhizobium tibeticum, Bifidobacterium catenulatum, Bifidobacterium adolescentis, and Collinsella aerofaciens. PICRUSt results suggested that altered pathways were associated with glucose and lipid production and inflammation, which are linked to changes in the transcriptome and metabolome of the zebrafish liver. Metagenomics outcomes revealed close relationships between intestinal and liver disruptions to T2DM-related molecular pathways. Thus, microbial dysbiosis in T2DM-triggered zebrafish occurred as a result of chronic exposure to C-POPs-Mix, indicating strong host-microbiome interactions.
Collapse
Affiliation(s)
- Hyojin Lee
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada; Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Sojeong Yoon
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Youngja Hwang Park
- Metabolomics Laboratory, College of Pharmacy, Korea University, Sejong City 30019, Republic of Korea
| | - Jeong-Soo Lee
- Microbiome Convergence Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Dong Young Rhyu
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
10
|
Cuesta-Marti C, Uhlig F, Muguerza B, Hyland N, Clarke G, Schellekens H. Microbes, oxytocin and stress: Converging players regulating eating behavior. J Neuroendocrinol 2023; 35:e13243. [PMID: 36872624 DOI: 10.1111/jne.13243] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
Oxytocin is a peptide-hormone extensively studied for its multifaceted biological functions and has recently gained attention for its role in eating behavior, through its action as an anorexigenic neuropeptide. Moreover, the gut microbiota is involved in oxytocinergic signaling through the brain-gut axis, specifically in the regulation of social behavior. The gut microbiota is also implicated in appetite regulation and is postulated to play a role in central regulation of hedonic eating. In this review, we provide an overview on oxytocin and its individual links with the microbiome, the homeostatic and non-homeostatic regulation of eating behavior as well as social behavior and stress.
Collapse
Affiliation(s)
- Cristina Cuesta-Marti
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Friederike Uhlig
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Ireland
| | - Begoña Muguerza
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
- Universitat Rovira i Virgili, Department of Biochemistry & Biotechnology, Nutrigenomics Research Group, Tarragona, Spain
| | - Niall Hyland
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
11
|
Balestrino R, Losa M, Albano L, Barzaghi LR, Mortini P. Intranasal oxytocin as a treatment for obesity: safety and efficacy. Expert Rev Endocrinol Metab 2023; 18:295-306. [PMID: 37232186 DOI: 10.1080/17446651.2023.2216794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Known for its effect on labor and lactation and on emotional and social functions, oxytocin has recently emerged as a key modulator of feeding behavior and indeed suggested as a potential treatment for obesity. The potential positive effect of oxytocin on both metabolic and psychological-behavioral complications of hypothalamic lesions makes it a promising tool in the management of these conditions. AREAS COVERED The aim of the present review article is to provide an overview of the mechanism of action and clinical experience of the use of oxytocin in different forms of obesity. EXPERT OPINION Current evidence suggests a potential role of oxytocin in the treatment of obesity with different causes. Several challenges remain: an improved understanding of the physiological regulation, mechanisms of action of oxytocin, and interplay with other endocrine axes is fundamental to clarify its role. Further clinical trials are needed to determine the safety and efficacy of oxytocin for the treatment of different forms of obesity. Understanding the mechanism(s) of action of oxytocin on body weight regulation might also improve our understanding of obesity and reveal possible new therapeutic targets - as well as promoting advances in other fields in which oxytocin might be used.
Collapse
Affiliation(s)
- Roberta Balestrino
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele, Milano, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Losa
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele, Milano, Italy
| | - Luigi Albano
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele, Milano, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele, Milan, Italy
| | - Lina R Barzaghi
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele, Milano, Italy
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele, Milano, Italy
| |
Collapse
|
12
|
Zhu T, Yang S, Mauro TM, Man MQ. Association of Epidermal Biophysical Properties with Obesity and Its Implications. Skin Pharmacol Physiol 2023; 36:165-173. [PMID: 37640014 DOI: 10.1159/000533587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Obesity is a condition defined by an excess amount of body fat, with body mass index (BMI) of 30 and higher. It is associated with a number of other medical conditions, including insulin resistance, diabetes mellitus, and cardiovascular diseases, as well as dyslipidemia, and it is also associated with several cutaneous disorders such as atopic dermatitis, psoriasis, intertriginous dermatitis, acanthosis nigricans and skin infections. SUMMARY Evidence suggests a link between obesity and epidermal dysfunction. Generally, individuals with obesity display higher transepidermal water loss rate and lower stratum corneum hydration levels, although no association of obesity with epidermal dysfunction has been documented. Results of skin surface pH are controversial. But study demonstrated a positive correlation of BMI with skin surface pH on both the forearm and the shin in males, suggesting that the changes in epidermal function vary with gender in individuals with obesity. KEY MESSAGES This review summarizes the association between obesity and epidermal function, and discusses possible underlying mechanisms. Individuals with obesity exhibit poor epidermal permeability barrier and lower stratum corneum hydration levels. Because of the pathogenic role of compromised epidermal function in inflammation, which is also linked to obesity, improvement in epidermal function could benefit individuals with obesity, particularly those with abnormalities in epidermal function.
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuyun Yang
- Department of Dermatology, The People's Hospital of Baoshan, Baoshan, China
| | - Theodora M Mauro
- Department of Dermatology, Veterans Affairs Medical Center San Francisco, University of California San Francisco, San Francisco, California, USA
| | - Mao-Qiang Man
- Department of Dermatology, Veterans Affairs Medical Center San Francisco, University of California San Francisco, San Francisco, California, USA
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Correa-da-Silva F, Kalsbeek MJ, Gadella FS, Oppersma J, Jiang W, Wolff SEC, Korpel NL, Swaab DF, Fliers E, Kalsbeek A, Yi CX. Reduction of oxytocin-containing neurons and enhanced glymphatic activity in the hypothalamic paraventricular nucleus of patients with type 2 diabetes mellitus. Acta Neuropathol Commun 2023; 11:107. [PMID: 37400893 DOI: 10.1186/s40478-023-01606-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023] Open
Abstract
Evidence from animal experiments has shown that the hypothalamic paraventricular nucleus (PVN) plays a key role in regulating body weight and blood glucose levels. However, it is unclear whether neuron populations in the human PVN are involved in the development of type 2 diabetes mellitus (T2DM). To address this, we investigated the neuronal and glial populations in the PVN of 26 T2DM patients and 20 matched controls. Our findings revealed a significant reduction in oxytocin (Oxt) neuron density in the PVN of T2DM patients compared to controls, while other neuronal populations remained unchanged. This suggests that Oxt neurons may play a specific role in the pathophysiology of T2DM. Interestingly, the reduction in Oxt neurons was accompanied by a decreased melanocortinergic input in to the PVN as reflected by a reduction in alpha-MSH immunoreactivity. We also analysed two glial cell populations, as they are important for maintaining a healthy neural microenvironment. We found that microglial density, phagocytic capacity, and their proximity to neurons were not altered in T2DM patients, indicating that the loss of Oxt neurons is independent of changes in microglial immunity. However, we did observe a reduction in the number of astrocytes, which are crucial for providing trophic support to local neurons. Moreover, a specific subpopulation of astrocytes characterized by aquaporin 4 expression was overrepresented in T2DM patients. Since this subset of astrocytes is linked to the glymphatic system, their overrepresentation might point to alterations in the hypothalamic waste clearance system in T2DM. Our study shows selective loss of Oxt neurons in the PVN of T2DM individuals in association with astrocytic reduction and gliovascular remodelling. Therefore, hypothalamic Oxt neurons may represent a potential target for T2DM treatment modalities.
Collapse
Affiliation(s)
- Felipe Correa-da-Silva
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Martin J Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Femke S Gadella
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jorn Oppersma
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wei Jiang
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Samantha E C Wolff
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Nikita L Korpel
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Dick F Swaab
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Becetti I, Singhal V, Nimmala S, Lee H, Lawson EA, Bredella MA, Misra M. Serum Oxytocin Levels Decrease 12 Months Following Sleeve Gastrectomy and Are Associated with Decreases in Lean Mass. Int J Mol Sci 2023; 24:10144. [PMID: 37373292 DOI: 10.3390/ijms241210144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Oxytocin (OXT), an anorexigenic hormone, is also bone anabolic. Further, OXT administration results in increases in lean mass (LM) in adults with sarcopenic obesity. We examine, for the first time, associations of OXT with body composition and bone endpoints in 25 youth 13-25 years old with severe obesity who underwent sleeve gastrectomy (SG) and 27 non-surgical controls (NS). Forty participants were female. Subjects underwent fasting blood tests for serum OXT and DXA for areal bone mineral density (aBMD) and body composition. At baseline, SG vs. NS had higher median body mass index (BMI) but did not differ for age or OXT levels. Over 12 months, SG vs. NS had greater reductions in BMI, LM, and fat mass (FM). OXT decreased in SG vs. NS 12 months post-SG. While baseline OXT predicted a 12-month BMI change in SG, decreases in OXT levels 12 months post-SG were not associated with decreases in weight or BMI. In SG, decreases in OXT were positively associated with decreases in LM but not with decreases in FM or aBMD. Loss of LM, a strong predictor of BMD, after bariatric surgery may reduce functional and muscular capacity. OXT pathways may be targeted to prevent LM loss following SG.
Collapse
Affiliation(s)
- Imen Becetti
- Division of Pediatric Endocrinology, Mass General for Children and Harvard Medical School, Boston, MA 02114, USA
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Vibha Singhal
- Division of Pediatric Endocrinology, Mass General for Children and Harvard Medical School, Boston, MA 02114, USA
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Pediatric Program, MGH Weight Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Supritha Nimmala
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Miriam A Bredella
- Department of Radiology, Musculoskeletal Imaging and Interventions, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Madhusmita Misra
- Division of Pediatric Endocrinology, Mass General for Children and Harvard Medical School, Boston, MA 02114, USA
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
15
|
Amin M, Wu R, Gragnoli C. Novel Risk Variants in the Oxytocin Receptor Gene (OXTR) Possibly Linked to and Associated with Familial Type 2 Diabetes. Int J Mol Sci 2023; 24:ijms24076282. [PMID: 37047255 PMCID: PMC10094736 DOI: 10.3390/ijms24076282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The oxytocin system is well-known for its role in social bonding and reproduction. Recently, the oxytocin system was found to play other metabolic roles such as regulation of food intake, peripheral glucose uptake, and insulin sensitivity. Variants in OXTR gene have been associated with overeating, increased cardiovascular risk, and type 2 diabetes (T2D). We tested 20 microarray-derived single nucleotide polymorphisms in the OXTR gene in 212 Italian families with rich family history for T2D and found four novel and one previously reported variant suggestively significant for linkage and association with the risk of T2D. Our study has shed some light into the genetics of susceptibility to T2D at least in Italian families.
Collapse
|
16
|
Danhof HA, Lee J, Thapa A, Britton RA, Di Rienzi SC. Microbial stimulation of oxytocin release from the intestinal epithelium via secretin signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531917. [PMID: 36945649 PMCID: PMC10028957 DOI: 10.1101/2023.03.09.531917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Intestinal microbes impact the health of the intestine and organs distal to the gut. Limosilactobacillus reuteri is a human intestinal microbe that promotes normal gut transit 1 , the anti-inflammatory immune system 2-4 , wound healing 5-7 , normal social behavior in mice 8-10 , and prevents bone reabsorption 11-17 . Each of these functions is impacted by oxytocin 18-22 , and oxytocin signaling is required for L. reuteri- mediated wound healing 5 and social behavior 9 ; however, the initiating events in the gut that lead to oxytocin stimulation and related beneficial functions remain unknown. Here we found evolutionarily conserved oxytocin production in the intestinal epithelium through analysis of single-cell RNA-Seq datasets and imaging of human and mouse intestinal tissues. Moreover, human intestinal organoids produce oxytocin, demonstrating that the intestinal epithelium is sufficient to produce oxytocin. We subsequently found that L. reuteri facilitates oxytocin secretion directly from human intestinal tissue and human intestinal organoids. Finally, we demonstrate that stimulation of oxytocin secretion by L. reuteri is dependent on the gut hormone secretin, which is produced in enteroendocrine cells 23 , while oxytocin itself is produced in enterocytes. Altogether, this work demonstrates that oxytocin is produced and secreted from enterocytes in the intestinal epithelium in response to secretin stimulated by L. reuteri . This work thereby identifies oxytocin as an intestinal hormone and provides mechanistic insight into avenues by which gut microbes promote host health.
Collapse
Affiliation(s)
- Heather A. Danhof
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Jihwan Lee
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Aanchal Thapa
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Rice University, Houston, Texas, USA
| | - Robert A. Britton
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Sara C. Di Rienzi
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
17
|
Highly Specific Detection of Oxytocin in Saliva. Int J Mol Sci 2023; 24:ijms24054832. [PMID: 36902261 PMCID: PMC10003004 DOI: 10.3390/ijms24054832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Oxytocin is a peptide neurophysin hormone made up of nine amino acids and is used in induction of one in four births worldwide (more than 13 percent in the United States). Herein, we have developed an antibody alternative aptamer-based electrochemical assay for real-time and point-of-care detection of oxytocin in non-invasive saliva samples. This assay approach is rapid, highly sensitive, specific, and cost-effective. Our aptamer-based electrochemical assay can detect as little as 1 pg/mL of oxytocin in less than 2 min in commercially available pooled saliva samples. Additionally, we did not observe any false positive or false negative signals. This electrochemical assay has the potential to be utilized as a point-of-care monitor for rapid and real-time oxytocin detection in various biological samples such as saliva, blood, and hair extracts.
Collapse
|
18
|
Yang ST, Chang WH, Chao WT, Lai TJ, Lin WL, Lim HC, Liu CH, Wang PH. The timing of intravenous oxytocin administration is crucial to minimize perioperative blood loss during first-trimester suction curettage for missed abortion. J Chin Med Assoc 2022; 85:1061-1067. [PMID: 36083636 DOI: 10.1097/jcma.0000000000000808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Oxytocin is commonly used to reduce blood loss during suction curettage for missed abortion. However, the potential of oxytocin to mitigate blood loss in early pregnancy remains controversial. Based on the hypothesis that the "timing" of oxytocin administration may be a critical factor, we investigated whether the timing of intravenous (IV) administration is associated with reduced perioperative blood loss during first-trimester suction curettage for missed abortion. METHODS The medical charts of 146 patients with ultrasound-confirmed first-trimester missed abortion who underwent suction curettage with IV oxytocin administration were retrospectively reviewed. RESULTS Among the patients, 67 received 10 IU of IV oxytocin before suction curettage (early-oxytocin administration group), while 79 patients received 10 IU of IV oxytocin after suction curettage (late-oxytocin administration group). The demographic features between the two groups did not significantly differ. However, there was a lower proportion of nulliparous patients in the early-oxytocin administration group than in the late-oxytocin administration group (38.8% vs 60.8%, p = 0.006). The perioperative blood loss amount was significantly lower in the early-oxytocin administration group than in the late-oxytocin administration group (60 [range: 50-100] vs 100 [range: 30-250] mL, p = 0.001). Moreover, the multivariate logistic regression analysis showed that the early-oxytocin administration group had a lower risk for a perioperative blood loss amount of ≥100 mL than the late-oxytocin administration group (0.23 [range: 0.10-0.55], p = 0.001); a gestational age of 9-12 weeks ( p = 0.009) was found to be associated with an increased risk for a perioperative blood loss amount of ≥100 mL. CONCLUSION Compared with late-oxytocin administration, early-oxytocin administration could reduce perioperative blood loss during first-trimester suction curettage for missed abortion. However, the results require further investigation.
Collapse
Affiliation(s)
- Szu-Ting Yang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Wen-Hsun Chang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Nursing, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Wei-Ting Chao
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Ting-Jung Lai
- Department of Obstetrics and Gynecology, Cardinal Tien Hospital, New Taipei City, Taiwan, ROC
| | - Wei-Lin Lin
- Department of Obstetrics and Gynecology, Wan Fang Hospital, Taipei Medical University, New Taipei City, Taiwan, ROC
| | - Hong-Ci Lim
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | - Chia-Hao Liu
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Peng-Hui Wang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC
- Female Cancer Foundation, Taipei, Taiwan, ROC
| |
Collapse
|
19
|
Tsingotjidou AS. Oxytocin: A Multi-Functional Biomolecule with Potential Actions in Dysfunctional Conditions; From Animal Studies and Beyond. Biomolecules 2022; 12:1603. [PMID: 36358953 PMCID: PMC9687803 DOI: 10.3390/biom12111603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 10/13/2023] Open
Abstract
Oxytocin is a hormone secreted from definite neuroendocrine neurons located in specific nuclei in the hypothalamus (mainly from paraventricular and supraoptic nuclei), and its main known function is the contraction of uterine and/or mammary gland cells responsible for parturition and breastfeeding. Among the actions of the peripherally secreted oxytocin is the prevention of different degenerative disorders. These actions have been proven in cell culture and in animal models or have been tested in humans based on hypotheses from previous studies. This review presents the knowledge gained from the previous studies, displays the results from oxytocin intervention and/or treatment and proposes that the well described actions of oxytocin might be connected to other numerous, diverse actions of the biomolecule.
Collapse
Affiliation(s)
- Anastasia S Tsingotjidou
- Laboratory of Anatomy, Histology and Embryology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece
| |
Collapse
|
20
|
Manjila SB, Betty R, Kim Y. Missing pieces in decoding the brain oxytocin puzzle: Functional insights from mouse brain wiring diagrams. Front Neurosci 2022; 16:1044736. [PMID: 36389241 PMCID: PMC9643707 DOI: 10.3389/fnins.2022.1044736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/06/2022] [Indexed: 10/24/2023] Open
Abstract
The hypothalamic neuropeptide, oxytocin (Oxt), has been the focus of research for decades due to its effects on body physiology, neural circuits, and various behaviors. Oxt elicits a multitude of actions mainly through its receptor, the Oxt receptor (OxtR). Despite past research to understand the central projections of Oxt neurons and OxtR- coupled signaling pathways in different brain areas, it remains unclear how this nonapeptide exhibits such pleiotropic effects while integrating external and internal information. Most reviews in the field either focus on neuroanatomy of the Oxt-OxtR system, or on the functional effects of Oxt in specific brain areas. Here, we provide a review by integrating brain wide connectivity of Oxt neurons and their downstream circuits with OxtR expression in mice. We categorize Oxt connected brain regions into three functional modules that regulate the internal state, somatic visceral, and cognitive response. Each module contains three neural circuits that process distinct behavioral effects. Broad innervations on functional circuits (e.g., basal ganglia for motor behavior) enable Oxt signaling to exert coordinated modulation in functionally inter-connected circuits. Moreover, Oxt acts as a neuromodulator of neuromodulations to broadly control the overall state of the brain. Lastly, we discuss the mismatch between Oxt projections and OxtR expression across various regions of the mouse brain. In summary, this review brings forth functional circuit-based analysis of Oxt connectivity across the whole brain in light of Oxt release and OxtR expression and provides a perspective guide to future studies.
Collapse
Affiliation(s)
| | | | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
21
|
Goh KK, Chen CYA, Wu TH, Chen CH, Lu ML. Crosstalk between Schizophrenia and Metabolic Syndrome: The Role of Oxytocinergic Dysfunction. Int J Mol Sci 2022; 23:ijms23137092. [PMID: 35806096 PMCID: PMC9266532 DOI: 10.3390/ijms23137092] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
The high prevalence of metabolic syndrome in persons with schizophrenia has spurred investigational efforts to study the mechanism beneath its pathophysiology. Early psychosis dysfunction is present across multiple organ systems. On this account, schizophrenia may be a multisystem disorder in which one organ system is predominantly affected and where other organ systems are also concurrently involved. Growing evidence of the overlapping neurobiological profiles of metabolic risk factors and psychiatric symptoms, such as an association with cognitive dysfunction, altered autonomic nervous system regulation, desynchrony in the resting-state default mode network, and shared genetic liability, suggest that metabolic syndrome and schizophrenia are connected via common pathways that are central to schizophrenia pathogenesis, which may be underpinned by oxytocin system dysfunction. Oxytocin, a hormone that involves in the mechanisms of food intake and metabolic homeostasis, may partly explain this piece of the puzzle in the mechanism underlying this association. Given its prosocial and anorexigenic properties, oxytocin has been administered intranasally to investigate its therapeutic potential in schizophrenia and obesity. Although the pathophysiology and mechanisms of oxytocinergic dysfunction in metabolic syndrome and schizophrenia are both complex and it is still too early to draw a conclusion upon, oxytocinergic dysfunction may yield a new mechanistic insight into schizophrenia pathogenesis and treatment.
Collapse
Affiliation(s)
- Kah Kheng Goh
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Cynthia Yi-An Chen
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
| | - Tzu-Hua Wu
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Chun-Hsin Chen
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Mong-Liang Lu
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence:
| |
Collapse
|
22
|
The newborn metabolome: associations with gestational diabetes, sex, gestation, birth mode, and birth weight. Pediatr Res 2022; 91:1864-1873. [PMID: 34526650 DOI: 10.1038/s41390-021-01672-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Pathways towards many adult-onset conditions begin early in life, even in utero. Maternal health in pregnancy influences this process, but little is known how it affects neonatal metabolism. We investigated associations between pregnancy and birth factors and cord blood metabolomic profile in a large, population-derived cohort. METHODS Metabolites were measured using nuclear magnetic resonance in maternal (28 weeks gestation) and cord serum from 912 mother-child pairs in the Barwon Infant Study pre-birth cohort. Associations between maternal (metabolites, age, BMI, smoking), pregnancy (pre-eclampsia, gestational diabetes (GDM)), and birth characteristics (delivery mode, gestational age, weight, infant sex) with 72 cord blood metabolites were examined by linear regression. RESULTS Delivery mode, sex, gestational age, and birth weight were associated with specific metabolite levels in cord blood, including amino acids, fatty acids, and cholesterols. GDM was associated with higher cord blood levels of acetoacetate and 3-hydroxybutyrate. CONCLUSIONS Neonatal factors, particularly delivery mode, were associated with many cord blood metabolite differences, including those implicated in later risk of cardiometabolic disease. Associations between GDM and higher offspring ketone levels at birth are consistent with maternal ketosis in diabetic pregnancies. Further work is needed to determine whether these neonatal metabolome differences associate with later health outcomes. IMPACT Variations in blood metabolomic profile have been linked to health status in adults and children, but corresponding data in neonates are scarce. We report evidence that pregnancy complications, mode of delivery, and offspring characteristics, including sex, are independently associated with a range of circulating metabolites at birth, including ketone bodies, amino acids, cholesterols, and inflammatory markers. Independent of birth weight, exposure to gestational diabetes is associated with higher cord blood ketone bodies and citrate. These findings suggest that pregnancy complications, mode of delivery, gestational age, and measures of growth influence metabolic pathways prior to birth, potentially impacting later health and development.
Collapse
|
23
|
Qian Y, Xia F, Zuo Y, Zhong M, Yang L, Jiang Y, Zou C. Do patients with Prader-Willi syndrome have favorable glucose metabolism? Orphanet J Rare Dis 2022; 17:187. [PMID: 35525976 PMCID: PMC9077846 DOI: 10.1186/s13023-022-02344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background In recent years, more studies have observed that patients with Prader–Willi syndrome have lower insulin levels and lower insulin resistance than body mass index-matched controls, which may suggest protected glucose metabolism. Method The PubMed and Web of Science online databases were searched to identify relevant studies published in the English language using the terms “Prader–Willi syndrome” with “glucose”, “insulin”, “diabetes mellitus”, “fat”, “adipo*”, “ghrelin”, “oxytocin”, “irisin” or “autonomic nervous system”. Results The prevalence of impaired glucose intolerance, type 2 diabetes mellitus and some other obesity-associated complications in patients with Prader–Willi syndrome tends to be lower when compared to that in general obesity, which is consistent with the hypothetically protected glucose metabolism. Factors including adipose tissue, adiponectin, ghrelin, oxytocin, irisin, growth hormone and the autonomic nervous system possibly modulate insulin sensitivity in patients with Prader–Willi syndrome. Conclusion Although lower insulin levels, lower IR and protected glucose metabolism are widely reported in PWS patients, the causes are still mysterious. Based on existing knowledge, we cannot determine which factor is of utmost importance and what are the underlying mechanisms, and further research is in urgent need.
Collapse
Affiliation(s)
- Yanjie Qian
- Department of Endocrinology, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No 3333 Binsheng Road, Hangzhou, 310051, China
| | - Fangling Xia
- Department of Endocrinology, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No 3333 Binsheng Road, Hangzhou, 310051, China
| | - Yiming Zuo
- Department of Endocrinology, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No 3333 Binsheng Road, Hangzhou, 310051, China
| | - Mianling Zhong
- Department of Endocrinology, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No 3333 Binsheng Road, Hangzhou, 310051, China
| | - Lili Yang
- Department of Endocrinology, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No 3333 Binsheng Road, Hangzhou, 310051, China
| | - Yonghui Jiang
- Department of Genetics, Yale University School of Medicine, New Haven, USA
| | - Chaochun Zou
- Department of Endocrinology, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No 3333 Binsheng Road, Hangzhou, 310051, China.
| |
Collapse
|
24
|
Dickson E, Soylu-Kucharz R, Petersén Å, Björkqvist M. Hypothalamic expression of huntingtin causes distinct metabolic changes in Huntington's disease mice. Mol Metab 2022; 57:101439. [PMID: 35007790 PMCID: PMC8814380 DOI: 10.1016/j.molmet.2022.101439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE In Huntington's disease (HD), the disease-causing huntingtin (HTT) protein is ubiquitously expressed and causes both central and peripheral pathology. In clinical HD, a higher body mass index has been associated with slower disease progression, indicating the role of metabolic changes in disease pathogenesis. Underlying mechanisms of metabolic changes in HD remain poorly understood, but recent studies suggest the involvement of hypothalamic dysfunction. The present study aimed to investigate whether modulation of hypothalamic HTT levels would affect metabolic phenotype and disease features in HD using mouse models. METHODS We used the R6/2 and BACHD mouse models that express different lengths of mutant HTT to develop lean- and obese phenotypes, respectively. We utilized adeno-associated viral vectors to overexpress either mutant or wild-type HTT in the hypothalamus of R6/2, BACHD, and their wild-type littermates. The metabolic phenotype was assessed by body weight measurements over time and body composition analysis using dual-energy x-ray absorptiometry at the endpoint. R6/2 mice were further characterized using behavioral analyses, including rotarod, nesting-, and hindlimb clasping tests during early- and late-time points of disease progression. Finally, gene expression analysis was performed in R6/2 mice and wild-type littermates in order to assess transcriptional changes in the hypothalamus and adipose tissue. RESULTS Hypothalamic overexpression of mutant HTT induced significant gender-affected body weight gain in all models, including wild-type mice. In R6/2 females, early weight gain shifted to weight loss during the corresponding late stage of disease despite increased fat accumulation. Body weight changes were accompanied by behavioral alterations. During the period of early weight gain, R6/2 mice displayed a comparable locomotor capacity to wild-type mice. When assessing behavior just prior to weight loss onset in R6/2 mice, decreased locomotor performance was observed in R6/2 females with hypothalamic overexpression of mutant HTT. Transcriptional downregulation of beta-3 adrenergic receptor (B3AR), adipose triglyceride lipase (ATGL), and peroxisome proliferator-activated receptor-gamma (PPARγ) in gonadal white adipose tissue was accompanied by distinct alterations in hypothalamic gene expression profiles in R6/2 females after mutant HTT overexpression. No significant effect on metabolic phenotype in R6/2 was seen in response to wild-type HTT overexpression. CONCLUSIONS Taken together, our findings provide further support for the role of HTT in metabolic control via hypothalamic neurocircuits. Understanding the specific central neurocircuits and their peripheral link underlying metabolic imbalance in HD may open up avenues for novel therapeutic interventions.
Collapse
Affiliation(s)
- Elna Dickson
- Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 221 84 Lund, Sweden.
| | - Rana Soylu-Kucharz
- Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 221 84 Lund, Sweden
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, BMC D11, 221 84 Lund, Sweden
| | - Maria Björkqvist
- Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 221 84 Lund, Sweden
| |
Collapse
|
25
|
Colleluori G, Galli C, Severi I, Perugini J, Giordano A. Early Life Stress, Brain Development, and Obesity Risk: Is Oxytocin the Missing Link? Cells 2022; 11:cells11040623. [PMID: 35203274 PMCID: PMC8870435 DOI: 10.3390/cells11040623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
Obesity disease results from a dysfunctional modulation of the energy balance whose master regulator is the central nervous system. The neural circuitries involved in such function complete their maturation during early postnatal periods, when the brain is highly plastic and profoundly influenced by the environment. This phenomenon is considered as an evolutionary strategy, whereby metabolic functions are adjusted to environmental cues, such as food availability and maternal care. In this timeframe, adverse stimuli may program the body metabolism to maximize energy storage abilities to cope with hostile conditions. Consistently, the prevalence of obesity is higher among individuals who experienced early life stress (ELS). Oxytocin, a hypothalamic neurohormone, regulates the energy balance and modulates social, emotional, and eating behaviors, exerting both central and peripheral actions. Oxytocin closely cooperates with leptin in regulating energy homeostasis. Both oxytocin and leptin impact the neurodevelopment during critical periods and are affected by ELS and obesity. In this review article, we report evidence from the literature describing the effect of postnatal ELS (specifically, disorganized/inconstant maternal care) on the vulnerability to obesity with a focus on the role of oxytocin. We emphasize the existing research gaps and highlight promising directions worthy of exploration. Based on the available data, alterations in the oxytocin system may in part mediate the ELS-induced susceptibility to obesity.
Collapse
Affiliation(s)
- Georgia Colleluori
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy; (G.C.); (C.G.); (I.S.); (J.P.)
| | - Chiara Galli
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy; (G.C.); (C.G.); (I.S.); (J.P.)
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy; (G.C.); (C.G.); (I.S.); (J.P.)
| | - Jessica Perugini
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy; (G.C.); (C.G.); (I.S.); (J.P.)
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy; (G.C.); (C.G.); (I.S.); (J.P.)
- Center of Obesity, Marche Polytechnic University-United Hospitals, 60020 Ancona, Italy
- Correspondence: ; Tel.: +39-071-220-6086; Fax: +39-071-220-6087
| |
Collapse
|
26
|
Abstract
Oxytocin and oxytocin receptors are synthesized in the periphery where paracrine/autocrine actions have been described alongside endocrine actions effected by central release of oxytocin from the posterior pituitary. In the female reproductive system, classical actions of uterine contraction and milk ejection from mammary glands are accompanied by actions in the ovaries where roles in steroidogenesis, follicle recruitment and ovulation have been described. Steroidogenesis, contractile activity, and gamete health are similarly affected by oxytocin in the male reproductive tract. In the cardiovascular system, a local oxytocinergic system appears to play an important cardio-protective role. This role is likely associated with emerging evidence that peripheral oxytocin is an important hormone in the endocrinology of glucose homeostasis due to its actions in adipose, the pancreas, and the largely ignored oxytocinergic systems of the adrenal glands and liver. Gene polymorphisms are shown to be associated with a number of reported traits, not least factors associated with metabolic syndrome.
Collapse
Affiliation(s)
- Stephen J Assinder
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
27
|
Pan X, Tao S, Tong N. Potential Therapeutic Targeting Neurotransmitter Receptors in Diabetes. Front Endocrinol (Lausanne) 2022; 13:884549. [PMID: 35669692 PMCID: PMC9163348 DOI: 10.3389/fendo.2022.884549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Neurotransmitters are signaling molecules secreted by neurons to coordinate communication and proper function among different sections in the central neural system (CNS) by binding with different receptors. Some neurotransmitters as well as their receptors are found in pancreatic islets and are involved in the regulation of glucose homeostasis. Neurotransmitters can act with their receptors in pancreatic islets to stimulate or inhibit the secretion of insulin (β cell), glucagon (α cell) or somatostatin (δ cell). Neurotransmitter receptors are either G-protein coupled receptors or ligand-gated channels, their effects on blood glucose are mainly decided by the number and location of them in islets. Dysfunction of neurotransmitters receptors in islets is involved in the development of β cell dysfunction and type 2 diabetes (T2D).Therapies targeting different transmitter systems have great potential in the prevention and treatment of T2D and other metabolic diseases.
Collapse
Affiliation(s)
- Xiaohui Pan
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Diabetes and Islet Transplantation, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Shibing Tao
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Department of Endocrinology, Ziyang First People’s Hospital, Ziyang, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Diabetes and Islet Transplantation, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Nanwei Tong,
| |
Collapse
|
28
|
Clerc A, Coupaye M, Mosbah H, Pinto G, Laurier V, Mourre F, Merrien C, Diene G, Poitou C, Tauber M. Diabetes Mellitus in Prader-Willi Syndrome: Natural History during the Transition from Childhood to Adulthood in a Cohort of 39 Patients. J Clin Med 2021; 10:jcm10225310. [PMID: 34830599 PMCID: PMC8625265 DOI: 10.3390/jcm10225310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) affects 20% of patients with Prader-Willi syndrome (PWS), with many cases diagnosed during the transition period. Our aim was to describe the natural history of T2DM in patients with PWS before the age of 25 years and to develop screening and preventive strategies. Thirty-nine patients followed in the French PWS Reference Center were included (median age 25.6 years [23.7; 31.7]). Twenty-one had been treated with growth hormone (GH), fifteen had not, and three had an unknown status. The median age at T2DM diagnosis was 16.8 years (11–24) and the median BMI was 39 kg/m2 [34.6; 45], with 34/35 patients living with obesity. The patients displayed frequent psychiatric (48.3% hospitalization,) and metabolic (56.4% hypertriglyceridemia,) comorbidities and a parental history of T2DM (35.7%) or overweight (53.6%) compared to the PWS general population. There was no difference in BMI and metabolic complications between the GH-treated and non-GH-treated groups at T2DM diagnosis. Patients with PWS who develop early T2DM have severe obesity, a high frequency of psychiatric and metabolic disorders, and a family history of T2DM and overweight. These results underline the need for early identification of patients at risk, prevention of obesity, and repeated blood glucose monitoring during the transition period.
Collapse
Affiliation(s)
- Alice Clerc
- Centre de Référence Maladies Rares (PRADORT, Syndrome de Prader-Willi et Autres Formes Rares d’Obésité avec Troubles du Comportement Alimentaire), Service d’Endocrinologie, Obésités, Maladies Osseuses, Génétique et Gynécologie Médicale, Hôpital des Enfants, 31059 Toulouse, France; (A.C.); (G.D.)
| | - Muriel Coupaye
- Assistance Publique-Hôpitaux de Paris, Centre de Référence Maladies Rares (PRADORT, Syndrome de Prader-Willi et Autres Formes Rares d’Obésité avec Troubles du Comportement Alimentaire), Service de Nutrition, Hôpital Pitié-Salpêtrière, 75013 Paris, France; (M.C.); (H.M.); (C.P.)
| | - Héléna Mosbah
- Assistance Publique-Hôpitaux de Paris, Centre de Référence Maladies Rares (PRADORT, Syndrome de Prader-Willi et Autres Formes Rares d’Obésité avec Troubles du Comportement Alimentaire), Service de Nutrition, Hôpital Pitié-Salpêtrière, 75013 Paris, France; (M.C.); (H.M.); (C.P.)
| | - Graziella Pinto
- Assistance Publique-Hôpitaux de Paris, Service d’Endocrinologie, Gynécologie et Diabétologie Pédiatrique, Hôpital Necker-Enfants Malades, 75743 Paris, France;
| | - Virginie Laurier
- Assistance Publique-Hôpitaux de Paris, Centre de Référence Maladies Rares (PRADORT, Syndrome de Prader-Willi et Autres Formes Rares d’Obésité avec Troubles du Comportement Alimentaire), Hôpital Marin d’Hendaye, 64701 Hendaye, France; (V.L.); (F.M.); (C.M.)
| | - Fabien Mourre
- Assistance Publique-Hôpitaux de Paris, Centre de Référence Maladies Rares (PRADORT, Syndrome de Prader-Willi et Autres Formes Rares d’Obésité avec Troubles du Comportement Alimentaire), Hôpital Marin d’Hendaye, 64701 Hendaye, France; (V.L.); (F.M.); (C.M.)
| | - Christine Merrien
- Assistance Publique-Hôpitaux de Paris, Centre de Référence Maladies Rares (PRADORT, Syndrome de Prader-Willi et Autres Formes Rares d’Obésité avec Troubles du Comportement Alimentaire), Hôpital Marin d’Hendaye, 64701 Hendaye, France; (V.L.); (F.M.); (C.M.)
| | - Gwenaëlle Diene
- Centre de Référence Maladies Rares (PRADORT, Syndrome de Prader-Willi et Autres Formes Rares d’Obésité avec Troubles du Comportement Alimentaire), Service d’Endocrinologie, Obésités, Maladies Osseuses, Génétique et Gynécologie Médicale, Hôpital des Enfants, 31059 Toulouse, France; (A.C.); (G.D.)
- Inserm UMR 1295—CERPOP (Centre d’Epidémiologie et de Recherche en Santé des POPulations), Équipe SPHERE (Santé Périnatale, Pédiatrique et des Adolescents: Approche Épidémiologique et Évaluative), Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Christine Poitou
- Assistance Publique-Hôpitaux de Paris, Centre de Référence Maladies Rares (PRADORT, Syndrome de Prader-Willi et Autres Formes Rares d’Obésité avec Troubles du Comportement Alimentaire), Service de Nutrition, Hôpital Pitié-Salpêtrière, 75013 Paris, France; (M.C.); (H.M.); (C.P.)
- UMRS 1269, Faculté de Médecine Sorbonne Université, INSERM, Nutrition et Obésité: Approches Systémiques «NutriOmics», 75006 Paris, France
| | - Maithé Tauber
- Centre de Référence Maladies Rares (PRADORT, Syndrome de Prader-Willi et Autres Formes Rares d’Obésité avec Troubles du Comportement Alimentaire), Service d’Endocrinologie, Obésités, Maladies Osseuses, Génétique et Gynécologie Médicale, Hôpital des Enfants, 31059 Toulouse, France; (A.C.); (G.D.)
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity) INSERM UMR1291—CNRS UMR5051—Université Toulouse III, 31062 Toulouse, France
- Correspondence:
| |
Collapse
|
29
|
Gnanadesikan GE, Hammock EAD, Tecot SR, Carter CS, MacLean EL. Specificity of plasma oxytocin immunoassays: A comparison of commercial assays and sample preparation techniques using oxytocin knockout and wildtype mice. Psychoneuroendocrinology 2021; 132:105368. [PMID: 34364024 PMCID: PMC8487999 DOI: 10.1016/j.psyneuen.2021.105368] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/06/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022]
Abstract
Oxytocin has garnered much interest due to its role in affective states, social behaviors, and diverse physiological functions. However, approaches for measuring endogenous oxytocin concentrations have generated considerable controversy and debate. Common procedures for measuring oxytocin often produce uncorrelated results, and the detected concentrations frequently vary across two orders of magnitude. These findings have led some researchers to argue that immunoassays of plasma oxytocin may be unreliable and nonspecific, particularly when samples are not first processed using an extraction procedure. Here, we assess the specificity of oxytocin immunoassays using plasma samples from wildtype (WT) and oxytocin knockout (KO) mice. Plasma samples from both genotypes were measured using immunoassay and were measured with or without a solid-phase extraction. Using a commercially available kit from Arbor Assays, we demonstrate that both techniques generate a clear contrast between genotypes, with wildtype samples containing high concentrations of oxytocin (unextracted mean = 468 pg/ml; extracted mean = 381 pg/ml), while knockout samples measured below the lower limit of detection. Analytical validations demonstrated good parallelism and spike recovery for both methods. Furthermore, the same wildtype samples measured with both procedures were highly correlated (r = 0.95), although unextracted samples measured at significantly higher concentrations (p = 2.0 ×10-7, Cohen's d = 2.65). To test the generalizability of these results across immunoassay kits, we performed additional assays with kits from Cayman Chemical and Enzo Life Sciences. The Cayman Chemical kit produced results similar to Arbor Assays with a clean signal differentiating WT and KO plasma, both with and without an extraction step. The Enzo kit also differentiated the genotypes, with correlation between extracted and unextracted samples, but was considerably more susceptible to interference without the extraction, as evidenced by false positive signal in KO plasma samples. The extent to which these results generalize to other species remains unknown and challenging to assess.
Collapse
Affiliation(s)
- Gitanjali E Gnanadesikan
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Cognitive Science Program, University of Arizona, Tucson, AZ 85721, USA.
| | - Elizabeth A D Hammock
- Department of Psychology and Program in Neuroscience, The Florida State University, Tallahassee, FL 32306, USA
| | - Stacey R Tecot
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Laboratory for the Evolutionary Endocrinology of Primates, University of Arizona, Tucson, AZ 85721, USA
| | - C Sue Carter
- Kinsey Institute, Indiana University, Bloomington, IN 47405, USA
| | - Evan L MacLean
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Cognitive Science Program, University of Arizona, Tucson, AZ 85721, USA; Psychology Department, University of Arizona, Tucson, AZ 85721, USA; College of Veterinary Medicine, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
30
|
Baldi E, Costa A, Rani B, Passani MB, Blandina P, Romano A, Provensi G. Oxytocin and Fear Memory Extinction: Possible Implications for the Therapy of Fear Disorders? Int J Mol Sci 2021; 22:10000. [PMID: 34576161 PMCID: PMC8467761 DOI: 10.3390/ijms221810000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Several psychiatric conditions such as phobias, generalized anxiety, and post-traumatic stress disorder (PTSD) are characterized by pathological fear and anxiety. The main therapeutic approach used in the management of these disorders is exposure-based therapy, which is conceptually based upon fear extinction with the formation of a new safe memory association, allowing the reduction in behavioral conditioned fear responses. Nevertheless, this approach is only partially resolutive, since many patients have difficulty following the demanding and long process, and relapses are frequently observed over time. One strategy to improve the efficacy of the cognitive therapy is the combination with pharmacological agents. Therefore, the identification of compounds able to strengthen the formation and persistence of the inhibitory associations is a key goal. Recently, growing interest has been aroused by the neuropeptide oxytocin (OXT), which has been shown to have anxiolytic effects. Furthermore, OXT receptors and binding sites have been found in the critical brain structures involved in fear extinction. In this review, the recent literature addressing the complex effects of OXT on fear extinction at preclinical and clinical levels is discussed. These studies suggest that the OXT roles in fear behavior are due to its local effects in several brain regions, most notably, distinct amygdaloid regions.
Collapse
Affiliation(s)
- Elisabetta Baldi
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
| | - Alessia Costa
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences (DSS), University of Florence, 50139 Florence, Italy; (A.C.); (B.R.); (M.B.P.)
| | - Barbara Rani
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences (DSS), University of Florence, 50139 Florence, Italy; (A.C.); (B.R.); (M.B.P.)
| | - Maria Beatrice Passani
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences (DSS), University of Florence, 50139 Florence, Italy; (A.C.); (B.R.); (M.B.P.)
| | - Patrizio Blandina
- Section of Pharmacology of Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy;
| | - Adele Romano
- Department of Physiology and Pharmacology ‘V. Erspamer’, Sapienza University of Rome, 00185 Rome, Italy;
| | - Gustavo Provensi
- Section of Pharmacology of Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy;
| |
Collapse
|
31
|
Jeong JK, Dow SA, Young CN. Sensory Circumventricular Organs, Neuroendocrine Control, and Metabolic Regulation. Metabolites 2021; 11:metabo11080494. [PMID: 34436435 PMCID: PMC8402088 DOI: 10.3390/metabo11080494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
The central nervous system is critical in metabolic regulation, and accumulating evidence points to a distributed network of brain regions involved in energy homeostasis. This is accomplished, in part, by integrating peripheral and central metabolic information and subsequently modulating neuroendocrine outputs through the paraventricular and supraoptic nucleus of the hypothalamus. However, these hypothalamic nuclei are generally protected by a blood-brain-barrier limiting their ability to directly sense circulating metabolic signals—pointing to possible involvement of upstream brain nuclei. In this regard, sensory circumventricular organs (CVOs), brain sites traditionally recognized in thirst/fluid and cardiovascular regulation, are emerging as potential sites through which circulating metabolic substances influence neuroendocrine control. The sensory CVOs, including the subfornical organ, organum vasculosum of the lamina terminalis, and area postrema, are located outside the blood-brain-barrier, possess cellular machinery to sense the metabolic interior milieu, and establish complex neural networks to hypothalamic neuroendocrine nuclei. Here, evidence for a potential role of sensory CVO-hypothalamic neuroendocrine networks in energy homeostasis is presented.
Collapse
Affiliation(s)
| | | | - Colin N. Young
- Correspondence: ; Tel.: +1-202-994-9575; Fax: +1-202-994-287
| |
Collapse
|
32
|
Kerem L, Lawson EA. The Effects of Oxytocin on Appetite Regulation, Food Intake and Metabolism in Humans. Int J Mol Sci 2021; 22:7737. [PMID: 34299356 PMCID: PMC8306733 DOI: 10.3390/ijms22147737] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022] Open
Abstract
The hypothalamic peptide oxytocin and its receptor are involved in a range of physiological processes, including parturition, lactation, cell growth, wound healing, and social behavior. More recently, increasing evidence has established the effects of oxytocin on food intake, energy expenditure, and peripheral metabolism. In this review, we provide a comprehensive description of the central oxytocinergic system in which oxytocin acts to shape eating behavior and metabolism. Next, we discuss the peripheral beneficial effects oxytocin exerts on key metabolic organs, including suppression of visceral adipose tissue inflammation, skeletal muscle regeneration, and bone tissue mineralization. A brief summary of oxytocin actions learned from animal models is presented, showing that weight loss induced by chronic oxytocin treatment is related not only to its anorexigenic effects, but also to the resulting increase in energy expenditure and lipolysis. Following an in-depth discussion on the technical challenges related to endogenous oxytocin measurements in humans, we synthesize data related to the association between endogenous oxytocin levels, weight status, metabolic syndrome, and bone health. We then review clinical trials showing that in humans, acute oxytocin administration reduces food intake, attenuates fMRI activation of food motivation brain areas, and increases activation of self-control brain regions. Further strengthening the role of oxytocin in appetite regulation, we review conditions of hypothalamic insult and certain genetic pathologies associated with oxytocin depletion that present with hyperphagia, extreme weight gain, and poor metabolic profile. Intranasal oxytocin is currently being evaluated in human clinical trials to learn whether oxytocin-based therapeutics can be used to treat obesity and its associated sequela. At the end of this review, we address the fundamental challenges that remain in translating this line of research to clinical care.
Collapse
Affiliation(s)
- Liya Kerem
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Elizabeth A. Lawson
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
| |
Collapse
|
33
|
Network Pharmacology Study to Interpret Signaling Pathways of Ilex cornuta Leaves against Obesity. Processes (Basel) 2021. [DOI: 10.3390/pr9071106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ilex cornuta Leaves (ICLs) are a representative and traditional prescription for controlling obesity. Nevertheless, the corresponding therapeutic compounds and related pharmacological mechanisms of such medication remain undocumented. The compounds from ICLs were identified by gas chromatography-mass spectrum (GC-MS), and SwissADME confirmed their physicochemical properties. Next, the target proteins related to compounds or obesity-associated proteins were retrieved from public databases. RPackage constructed the protein–protein interaction (PPI) network, a bubble chart, and signaling pathways–target proteins–compounds (STC) network. Lastly, a molecular docking test (MDT) was performed to evaluate the affinity between target proteins and ligands from ICLs. GC-MS detected a total of 51 compounds from ICLs. The public databases identified 219 target proteins associated with selective compounds, 3028 obesity-related target proteins, and 118 overlapping target proteins. Moreover, the STC network revealed 42 target proteins, 22 signaling pathways, and 39 compounds, which were viewed to be remedially significant. The NOD-like receptor (NLR) signaling pathway was considered a key signaling pathway from the bubble chart. In parallel, the MDT identified three target proteins (IL6, MAPK1, and CASP1) on the NLR signaling pathway and four compounds against obesity. Overall, four compounds from ICLs might show anti-obesity synergistic efficacy by inactivating the NLR signaling pathway.
Collapse
|
34
|
Harshaw C, Lanzkowsky J, Tran AQD, Bradley AR, Jaime M. Oxytocin and 'social hyperthermia': Interaction with β 3-adrenergic receptor-mediated thermogenesis and significance for the expression of social behavior in male and female mice. Horm Behav 2021; 131:104981. [PMID: 33878523 DOI: 10.1016/j.yhbeh.2021.104981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
Oxytocin (OT) is a critical regulator of multiple facets of energy homeostasis, including brown adipose tissue (BAT) thermogenesis. Nevertheless, it is unclear what, if any, consequence the thermoregulatory and metabolic effects of OT have for the display of social behavior in adult rodents. Here, we examine the contribution of the OT receptor (OTR) and β3 adrenergic receptor (β3AR) to the increase in body temperature that typically accompanies social interaction (i.e., social hyperthermia; SH) and whether SH relates to the expression of social behavior in adult mice. Specifically, we examined how OTR antagonism via peripheral injection of L-368,899 (10 mg/kg) affects the expression of social behavior in C57BL/6J mice, in the presence of active/agonized versus antagonized β3AR, the receptor known to mediate stress-induced BAT thermogenesis. After drug treatment and a 30 min delay, mice were provided a 10 min social interaction test with an unfamiliar, same-sex conspecific. We hypothesized that OTR and β3AR/BAT interact to influence behavior during social interaction, with at least some effects of OT on social behavior dependent upon OT's thermal effects via β3AR/BAT. We found that OTR-mediated temperature elevation is largely responsible for SH during social interaction in mice-albeit not substantially via β3AR-dependent BAT thermogenesis. Further, our results reveal a complex relationship between OTR, β3AR, social hyperthermia and the display of specific social behaviors, with SH most closely associated with anxiety and/or vigilance-related behaviors-that is, behaviors that antagonize or interfere with the initiation of close, non-agonistic social behavior.
Collapse
Affiliation(s)
- Christopher Harshaw
- Department of Psychology, University of New Orleans, New Orleans, LA, United States of America.
| | - Jessica Lanzkowsky
- Department of Psychology, University of New Orleans, New Orleans, LA, United States of America
| | | | - Alana Rose Bradley
- Department of Psychology, University of New Orleans, New Orleans, LA, United States of America
| | - Mark Jaime
- Division of Science, Indiana University-Purdue University, Columbus, Columbus, IN, United States of America
| |
Collapse
|
35
|
Dos Santos KM, Moraes DJDA, da Silva MP, Antunes VR. Exercise training rescues the electrical activity of liver-projecting DMNV neurones in response to oxytocin in spontaneously hypertensive rats. J Neuroendocrinol 2021; 33:e12977. [PMID: 33942389 DOI: 10.1111/jne.12977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/15/2022]
Abstract
A neural circuit between the paraventricular nucleus of the hypothalamus (PVN) and the dorsal motor nucleus of the vagus (DMNV) constitutes part of an important parasympathetic autonomic pathway that controls hepatic glucose production. Intracerebroventricular injection of insulin activates oxytocinergic neurones in the PVN and elicits the release of oxytocin into the circulation, which plays an important role in the metabolism of glucose. Moreover, the central action of insulin can reduce the concentration of glucose in blood taken from the hepatic vein of Wistar rats via activation of vagal efferent nerves to the liver. This mechanism is impaired in sedentary spontaneously hypertensive rats (SHR). Because aerobic exercise increases vagal tone, partly mediated by increasing the oxytocinergic connections between the PVN and DMNV, we hypothesised that oxytocin (OT) might alter the excitability of liver-projecting DMNV neurones. Thus, we investigated the effects of OT on electrical properties of the liver-projecting DMNV neurones from Wistar, SHR subjected to 4 weeks of exercise training, as well sedentary controls, using whole cell patch-clamping. The results show that OT increased the resting membrane potential of DMNV neurones in Wistar rats, as well as the firing frequency of these cells, but not in sedentary SHR. However, in SHR subjected to 4 weeks of exercise training, the effects of OT on liver-projecting DMNV neurones of were similar to those seen in Wistar rats. These findings show that OT elicits similar changes in the electrophysiological properties of liver-projecting DMNV neurones of Wistar and exercise-trained but not sedentary SHR. These results indicate that exercise training can restore the sensitivity of liver-projecting DMNV neurones of exercise-trained SHR to OT.
Collapse
Affiliation(s)
- Karoline Martins Dos Santos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Davi José de Almeida Moraes
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Melina Pires da Silva
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Vagner Roberto Antunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
36
|
Norholt H. Delivering Clinically on Our Knowledge of Oxytocin and Sensory Stimulation: The Potential of Infant Carrying in Primary Prevention. Front Psychol 2021; 11:590051. [PMID: 33995157 PMCID: PMC8116555 DOI: 10.3389/fpsyg.2020.590051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/16/2020] [Indexed: 11/18/2022] Open
Abstract
Oxytocin (OT) is one of the most intensively researched neuropeptides during the three past decades. In benign social contexts, OT exerts a range of desirable socioemotional, stress-reducing, and immunoregulatory effects in mammals and humans and influences mammalian parenting. Consequentially, research in potential pharmacological applications of OT toward human social deficits/disorders and physical illness has increased substantially. Regrettably, the results from the administration of exogenous OT are still relatively inconclusive. Research in rodent maternal developmental programming has demonstrated the susceptibility of offspring endogenous OT systems to maternal somatosensory stimulation, with consequences for behavioral, epigenetic, cognitive, and neurological outcomes. A translation of this animal research into practically feasible human parenting recommendations has yet to happen, despite the significant prevention potential implied by the maternal developmental programming research. Extended physical contact with full-term healthy infants in the months following birth (infant carrying) might constitute the human equivalent of those specific rodent maternal behaviors, found to positively influence emerging OT systems. Findings from both OT and maternal programming research parallel those found for infants exposed to such extended parental physical contact, whether through skin-to-skin contact or infant carrying. Clinical support of parents to engage in extended physical contact represents a feasible intervention to create optimum conditions for the development of infant OT systems, with potential beneficial long-term health effects.
Collapse
Affiliation(s)
- Henrik Norholt
- SomAffect - The Somatosensory & Affective Neuroscience Group, Liverpool, United Kingdom
| |
Collapse
|
37
|
Liu J, Liang Y, Jiang X, Xu J, Sun Y, Wang Z, Lin L, Niu Y, Song S, Zhang H, Xue Z, Lu J, Yao P. Maternal Diabetes-Induced Suppression of Oxytocin Receptor Contributes to Social Deficits in Offspring. Front Neurosci 2021; 15:634781. [PMID: 33633538 PMCID: PMC7900564 DOI: 10.3389/fnins.2021.634781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/18/2021] [Indexed: 01/15/2023] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by impaired skills in social interaction and communication in addition to restricted and repetitive behaviors. Many different factors may contribute to ASD development; in particular, oxytocin receptor (OXTR) deficiency has been reported to be associated with ASD, although the detailed mechanism has remained largely unknown. Epidemiological study has shown that maternal diabetes is associated with ASD development. In this study, we aim to investigate the potential role of OXTR on maternal diabetes-mediated social deficits in offspring. Our in vitro study of human neuron progenitor cells showed that hyperglycemia induces OXTR suppression and that this suppression remains during subsequent normoglycemia. Further investigation showed that OXTR suppression is due to hyperglycemia-induced persistent oxidative stress and epigenetic methylation in addition to the subsequent dissociation of estrogen receptor β (ERβ) from the OXTR promoter. Furthermore, our in vivo mouse study showed that maternal diabetes induces OXTR suppression; prenatal OXTR deficiency mimics and potentiates maternal diabetes-mediated anxiety-like behaviors, while there is less of an effect on autism-like behaviors. Additionally, postnatal infusion of OXTR partly, while infusion of ERβ completely, reverses maternal diabetes-induced social deficits. We conclude that OXTR may be an important factor for ASD development and that maternal diabetes-induced suppression of oxytocin receptor contributes to social deficits in offspring.
Collapse
Affiliation(s)
- Jianbo Liu
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Yujie Liang
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Xing Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jianchang Xu
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Yumeng Sun
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Zichen Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ling Lin
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Yanbin Niu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Shiqi Song
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Huawei Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Zhenpeng Xue
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Jianping Lu
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Paul Yao
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| |
Collapse
|
38
|
Prodam F, Caputo M, Mele C, Marzullo P, Aimaretti G. Insights into non-classic and emerging causes of hypopituitarism. Nat Rev Endocrinol 2021; 17:114-129. [PMID: 33247226 DOI: 10.1038/s41574-020-00437-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Hypopituitarism is defined as one or more partial or complete pituitary hormone deficiencies, which are related to the anterior and/or posterior gland and can have an onset in childhood or adulthood. The most common aetiology is a sellar or suprasellar lesion, often an adenoma, which causes hypopituitarism due to tumour mass effects, or the effects of surgery and/or radiation therapy. However, other clinical conditions, such as traumatic brain injury, and autoimmune and inflammatory diseases, can result in hypopituitarism, and there are also genetic causes of hypopituitarism. Furthermore, the use of immune checkpoint inhibitors to treat cancer is increasing the risk of hypopituitarism, with a pattern of hormone defects that is different from the classic patterns and depends on mechanisms that are specific for each drug. Moreover, autoantibody production against the pituitary and hypothalamus has been demonstrated in studies investigating the development or worsening of some cases of hypopituitarism. Finally, evidence suggests that posterior pituitary damage can affect oxytocin secretion. The aim of this Review is to summarize current knowledge on non-classic and emerging causes of hypopituitarism, so as to help clinicians improve early identification, avoid life-threatening events and improve the clinical care and quality of life of patients at risk of hypopituitarism.
Collapse
Affiliation(s)
- Flavia Prodam
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Marina Caputo
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Chiara Mele
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Paolo Marzullo
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Division of General Medicine, I.R.C.C.S. Istituto Auxologico Italiano, Ospedale San Giuseppe, Verbania, Italy
| | - Gianluca Aimaretti
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy.
| |
Collapse
|
39
|
Theilade S, Christensen MB, Vilsbøll T, Knop FK. An overview of obesity mechanisms in humans: Endocrine regulation of food intake, eating behaviour and common determinants of body weight. Diabetes Obes Metab 2021; 23 Suppl 1:17-35. [PMID: 33621414 DOI: 10.1111/dom.14270] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Obesity is one of the biggest health challenges of the 21st century, already affecting close to 700 million people worldwide, debilitating and shortening lives and costing billions of pounds in healthcare costs and loss of workability. Body weight homeostasis relies on complex biological mechanisms and the development of obesity occurs on a background of genetic susceptibility and an environment promoting increased caloric intake and reduced physical activity. The pathophysiology of common obesity links neuro-endocrine and metabolic disturbances with behavioural changes, genetics, epigenetics and cultural habits. Also, specific causes of obesity exist, including monogenetic diseases and iatrogenic causes. In this review, we provide an overview of obesity mechanisms in humans with a focus on energy homeostasis, endocrine regulation of food intake and eating behavior, as well as the most common specific causes of obesity.
Collapse
Affiliation(s)
- Simone Theilade
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Herlev-Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Herlev-Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Effect of eugenol treatment in hyperglycemic murine models: A meta-analysis. Pharmacol Res 2021; 165:105315. [PMID: 33497803 DOI: 10.1016/j.phrs.2020.105315] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/23/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Diabetes is a highly prevalent health condition affecting many people worldwide. In vitro studies have described the positive effects of cloves and its major compound, eugenol, in the treatment of diabetes. However, it is unclear whether the effects of this compound are negative, neutral, or positive, on hyperglycemic animals. Therefore, a meta-analytical review was conducted to determine the magnitude of effects of eugenol on variables directly and indirectly related to diabetes. This study revealed that eugenol treatment decreased the glucose levels and the activity of carbohydrate-metabolizing enzymes, ameliorated the lipid profile, and reduced the oxidative, renal, and hepatic damages in hyperglycemic rodents. Moreover, eugenol alleviated the weight loss and restored the activity of the antioxidant defense system. Insulin levels was not affected by eugenol treatment. Also, mixed model analyses revealed that the use of purified or non-purified eugenol and the concentrations administered significantly affected the treatment outcome. In conclusion, our findings indicate that eugenol may have potential therapeutic effects in the treatment of diabetes. Furthermore, this study can direct future preclinical and clinical trials, with important implications for human health.
Collapse
|
41
|
Neuroendocrine manifestations of Erdheim-Chester disease. HANDBOOK OF CLINICAL NEUROLOGY 2021; 181:137-147. [PMID: 34238453 DOI: 10.1016/b978-0-12-820683-6.00010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neuroendocrine manifestations are common in Erdheim-Chester disease (ECD) patients. ECD is a rare non-Langerhans form of histiocytosis with multisystemic infiltration. The involvement of the hypothalamo-pituitary axis is common and central diabetes insipidus (CDI) is one of the most common endocrine manifestations in ECD patients. CDI is the first manifestation of ECD in 25%-48% of the cases. Suprasellar region extension, due to the infiltration of ECD lesions, can cause neurologic manifestations by mass effects, such as headache, visual disturbance, and cranial nerve palsies. Recent studies have revealed that disorders affecting anterior pituitary hormones are common in ECD patients. Secondary adrenal insufficiency, secondary hypothyroidism, (adult) growth hormone deficiency, hypogonadotropic hypogonadism, hyperprolactinemia, and hypoprolactinemia can develop as the neuroendocrine manifestations of ECD. Since the symptoms of anterior pituitary hormone deficiencies tend to be nonspecific, the diagnosis of anterior pituitary hormone dysfunctions can be delayed. Some anterior pituitary dysfunctions such as adrenocorticotropic hormone and/or thyroid-stimulating hormone deficiencies can be life-threatening without adequate hormone supplementation therapies. An endocrinological evaluation of the function of the pituitary gland should be performed at the initial diagnosis of ECD. It is important to recognize that endocrine dysfunctions can develop later during the follow-up of ECD.
Collapse
|
42
|
Winterton A, Westlye LT, Steen NE, Andreassen OA, Quintana DS. Improving the precision of intranasal oxytocin research. Nat Hum Behav 2020; 5:9-18. [PMID: 33257880 DOI: 10.1038/s41562-020-00996-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/08/2020] [Indexed: 01/07/2023]
Abstract
The neuropeptide oxytocin has been popularized for its role in social behaviour and nominated as a candidate treatment for several psychiatric illnesses due to promising preclinical results. However, these results so far have failed to reliably translate from animal models to human research. In response, there have been justified calls to improve intranasal oxytocin delivery methodology in terms of verifying that intranasal administration increases central levels of oxytocin. Nonetheless, improved methodology needs to be coupled with a robust theory of the role of oxytocin in behaviour and physiology to ask meaningful research questions. Moreover, stringent methodology based on robust theory may yield interesting results, but such findings will have limited utility if they are not reproducible. We outline how the precision of intranasal oxytocin research can be improved by the complementary consideration of methodology, theory and reproducibility.
Collapse
Affiliation(s)
- Adriano Winterton
- NORMENT, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway.,KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway.,KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Daniel S Quintana
- NORMENT, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway. .,Department of Psychology, University of Oslo, Oslo, Norway. .,KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.
| |
Collapse
|
43
|
Kimura T, Pydi SP, Pham J, Tanaka N. Metabolic Functions of G Protein-Coupled Receptors in Hepatocytes-Potential Applications for Diabetes and NAFLD. Biomolecules 2020; 10:biom10101445. [PMID: 33076386 PMCID: PMC7602561 DOI: 10.3390/biom10101445] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are cell surface receptors that mediate the function of extracellular ligands. Understanding how GPCRs work at the molecular level has important therapeutic implications, as 30–40% of the drugs currently in clinical use mediate therapeutic effects by acting on GPCRs. Like many other cell types, liver function is regulated by GPCRs. More than 50 different GPCRs are predicted to be expressed in the mouse liver. However, knowledge of how GPCRs regulate liver metabolism is limited. A better understanding of the metabolic role of GPCRs in hepatocytes, the dominant constituent cells of the liver, could lead to the development of novel drugs that are clinically useful for the treatment of various metabolic diseases, including type 2 diabetes, nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). In this review, we describe the functions of multiple GPCRs expressed in hepatocytes and their role in metabolic processes.
Collapse
Affiliation(s)
- Takefumi Kimura
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20894, USA; (S.P.P.); (J.P.)
- Department of Internal Medicine, Division of Gastroenterology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Correspondence: or ; Tel.: +1-301-594-6980
| | - Sai P. Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20894, USA; (S.P.P.); (J.P.)
| | - Jonathan Pham
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20894, USA; (S.P.P.); (J.P.)
| | - Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
- Research Center for Social Systems, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
44
|
Lam S, Zeidan J, Miglior F, Suárez-Vega A, Gómez-Redondo I, Fonseca PAS, Guan LL, Waters S, Cánovas A. Development and comparison of RNA-sequencing pipelines for more accurate SNP identification: practical example of functional SNP detection associated with feed efficiency in Nellore beef cattle. BMC Genomics 2020; 21:703. [PMID: 33032519 PMCID: PMC7545862 DOI: 10.1186/s12864-020-07107-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Background Optimization of an RNA-Sequencing (RNA-Seq) pipeline is critical to maximize power and accuracy to identify genetic variants, including SNPs, which may serve as genetic markers to select for feed efficiency, leading to economic benefits for beef production. This study used RNA-Seq data (GEO Accession ID: PRJEB7696 and PRJEB15314) from muscle and liver tissue, respectively, from 12 Nellore beef steers selected from 585 steers with residual feed intake measures (RFI; n = 6 low-RFI, n = 6 high-RFI). Three RNA-Seq pipelines were compared including multi-sample calling from i) non-merged samples; ii) merged samples by RFI group, iii) merged samples by RFI and tissue group. The RNA-Seq reads were aligned against the UMD3.1 bovine reference genome (release 94) assembly using STAR aligner. Variants were called using BCFtools and variant effect prediction (VeP) and functional annotation (ToppGene) analyses were performed. Results On average, total reads detected for Approach i) non-merged samples for liver and muscle, were 18,362,086.3 and 35,645,898.7, respectively. For Approach ii), merging samples by RFI group, total reads detected for each merged group was 162,030,705, and for Approach iii), merging samples by RFI group and tissues, was 324,061,410, revealing the highest read depth for Approach iii). Additionally, Approach iii) merging samples by RFI group and tissues, revealed the highest read depth per variant coverage (572.59 ± 3993.11) and encompassed the majority of localized positional genes detected by each approach. This suggests Approach iii) had optimized detection power, read depth, and accuracy of SNP calling, therefore increasing confidence of variant detection and reducing false positive detection. Approach iii) was then used to detect unique SNPs fixed within low- (12,145) and high-RFI (14,663) groups. Functional annotation of SNPs revealed positional candidate genes, for each RFI group (2886 for low-RFI, 3075 for high-RFI), which were significantly (P < 0.05) associated with immune and metabolic pathways. Conclusion The most optimized RNA-Seq pipeline allowed for more accurate identification of SNPs, associated positional candidate genes, and significantly associated metabolic pathways in muscle and liver tissues, providing insight on the underlying genetic architecture of feed efficiency in beef cattle.
Collapse
Affiliation(s)
- S Lam
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G2W1, Canada
| | - J Zeidan
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G2W1, Canada
| | - F Miglior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G2W1, Canada
| | - A Suárez-Vega
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G2W1, Canada
| | - I Gómez-Redondo
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G2W1, Canada.,Spanish National Institute for Agriculture and Food Research and Technology, Carretera de La Coruña, 28040, Madrid, Spain
| | - P A S Fonseca
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G2W1, Canada
| | - L L Guan
- Department of Agriculture, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, T6H 2P5, Canada
| | - S Waters
- Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, C15 PW93, Ireland
| | - A Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G2W1, Canada.
| |
Collapse
|
45
|
Augoulea A, Armeni E, Paschou SA, Georgiopoulos G, Stamatelopoulos K, Lambrinoudaki I. Breastfeeding is associated with lower subclinical atherosclerosis in postmenopausal women. Gynecol Endocrinol 2020; 36:796-799. [PMID: 32584151 DOI: 10.1080/09513590.2020.1782374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Objective: To evaluate the association between a personal history of lactation and indices of subclinical atherosclerosis in postmenopausal women.Methods: We evaluated the association between a history of breastfeeding and indices of subclinical atherosclerosis (pulse wave velocity, PWV; intima-media thickness [IMT]; atherosclerotic plaque presence) in 197 parous postmenopausal women with history of breastfeeding.Results: Women who reported breastfeeding ≥6 months when compared with women who reported breastfeeding for 1-5 months exhibited significantly lower values of common carotid artery IMT (Model R2=15.7%, b-coefficient = -0.170, 95% CI: -0.208-0.001, p-value = .019) and lower odds of subclinical atherosclerosis (Model X2=28.127, OR = 0.491, 95% CI 0.318-0.999, p-value = .049), adjusting for traditional cardiovascular risk factors.Conclusions: Postmenopausal women with a history of breastfeeding for at least 6 months have a lower prevalence of subclinical atherosclerosis, independently of traditional cardiovascular risk factors. A longer duration of breastfeeding may have a beneficial effect on subclinical atherosclerosis later in life.
Collapse
Affiliation(s)
- Areti Augoulea
- 2nd Department of Obstetrics and Gynecology, Aretaieio Hospital, University of Athens, Athens, Greece
| | - Eleni Armeni
- 2nd Department of Obstetrics and Gynecology, Aretaieio Hospital, University of Athens, Athens, Greece
| | - Stavroula A Paschou
- 2nd Department of Obstetrics and Gynecology, Aretaieio Hospital, University of Athens, Athens, Greece
| | - Georgios Georgiopoulos
- Vascular Laboratory, Department of Clinical Therapeutics, Alexandra Hospital, University of Athens, Athens, Greece
| | - Kimon Stamatelopoulos
- Vascular Laboratory, Department of Clinical Therapeutics, Alexandra Hospital, University of Athens, Athens, Greece
| | - Irene Lambrinoudaki
- 2nd Department of Obstetrics and Gynecology, Aretaieio Hospital, University of Athens, Athens, Greece
| |
Collapse
|
46
|
Evaluation of the Relationship between Adipose Metabolism Patterns and Secretion of Appetite-Related Endocrines on Chicken. Animals (Basel) 2020; 10:ani10081282. [PMID: 32727133 PMCID: PMC7460314 DOI: 10.3390/ani10081282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The weight of an animal conforms to a certain growth pattern. Among others, feed, environment, and body composition, in addition to genetics, affect the animal’s feed consumption and body weight. Under normal circumstances, the body weight of an animal is mainly affected by feed intake, and body composition may significantly influence feed intake. Therefore, this report sets out the effects of fat accumulation on lipid metabolism and appetite, and finally introduces the effects of feeding patterns on animal feed intake. Abstract In addition to the influence of genes, the quality of poultry products is mainly controlled by the rearing environment or feed composition during rearing, and has to meet human use and economical needs. As the only source of energy for poultry, feed considerably affects the metabolic pattern of poultry and further affects the regulation of appetite-related endocrine secretion in poultry. Under normal circumstances, the accumulation of lipid in adipose reduces feed intake in poultry and increases the rate of adipose metabolism. When the adipose content in cells decreases, endocrines that promote food intake are secreted and increase nutrient concentrations in serum and cells. By regulating the balance between appetite and adipose metabolism, the poultry’s growth and posture can maintain a balanced state. In addition, increasing fiber composition in feed can effectively increase poultry welfare, body weight, lean composition and antioxidant levels in poultry. According to this, the concept that proper fiber content should be added to feed should be considered for better economic benefits, poultry welfare and meat productivity.
Collapse
|
47
|
Veronesi MC, Alhamami M, Miedema SB, Yun Y, Ruiz-Cardozo M, Vannier MW. Imaging of intranasal drug delivery to the brain. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2020; 10:1-31. [PMID: 32211216 PMCID: PMC7076302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Intranasal (IN) delivery is a rapidly developing area for therapies with great potential for the treatment of central nervous system (CNS) diseases. Moreover, in vivo imaging is becoming an important part of therapy assessment, both clinically in humans and translationally in animals. IN drug delivery is an alternative to systemic administration that uses the direct anatomic pathway between the olfactory/trigeminal neuroepithelium of the nasal mucosa and the brain. Several drugs have already been approved for IN application, while others are undergoing development and testing. To better understand which imaging modalities are being used to assess IN delivery of therapeutics, we performed a literature search with the key words "Intranasal delivery" and "Imaging" and summarized these findings in the current review. While this review does not attempt to be fully comprehensive, we intend for the examples provided to allow a well-rounded picture of the imaging tools available to assess IN delivery, with an emphasis on the nose-to-brain delivery route. Examples of in vivo imaging, for both humans and animals, include magnetic resonance imaging (MRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), gamma scintigraphy and computed tomography (CT). Additionally, some in vivo optical imaging modalities, including bioluminescence and fluorescence, have been used more in experimental testing in animals. In this review, we introduce each imaging modality, how it is being utilized and outline its strengths and weaknesses, specifically in the context of IN delivery of therapeutics to the brain.
Collapse
Affiliation(s)
- Michael C Veronesi
- Department of Radiology & Imaging Sciences, Indiana University School of MedicineUSA
| | - Mosa Alhamami
- Department of Radiology & Imaging Sciences, Indiana University School of MedicineUSA
| | - Shelby B Miedema
- Department of Radiology & Imaging Sciences, Indiana University School of MedicineUSA
- Department of Biomedical Engineering, Indiana University-Purdue University IndianapolisUSA
| | - Yeonhee Yun
- Department of Radiology & Imaging Sciences, Indiana University School of MedicineUSA
| | - Miguel Ruiz-Cardozo
- Clinical Research Institute, Universidad Nacional de Colombia School of MedicineUSA
| | - Michael W Vannier
- Department of Radiology, University of Chicago School of MedicineUSA
| |
Collapse
|
48
|
Caba M, Huerta C, Meza E, Hernández M, Rovirosa-Hernández MJ. Oxytocinergic Cells of the Hypothalamic Paraventricular Nucleus Are Involved in Food Entrainment. Front Neurosci 2020; 14:49. [PMID: 32082116 PMCID: PMC7005215 DOI: 10.3389/fnins.2020.00049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
When food is presented at a specific time of day subjects develop intense locomotor behavior before food presentation, termed food anticipatory activity (FAA). Metabolic and hormonal parameters, as well as neural structures also shift their rhythm according to mealtime. Food-entrained activity rhythms are thought to be driven by a distributed system of central and peripheral oscillators sensitive to food cues, but it is not well understood how they are organized for the expression of FAA. The hormone Oxytocin plays an important role in food intake, satiety and homeostatic glucose metabolism and although it is recognized that food is the main cue for food entrainment this hormone has not been implicated in FAA. Here we investigated the activity of oxytocinergic (OTergic) cells of the hypothalamus in relation to the timing of feeding in rabbit pups, a natural model of food entrainment. We found that OTergic cells of the supraoptic nucleus and the main body of the paraventricular nucleus (PVN) are activated after feeding which suggests that OT may be an entraining signal for food synchronization. Moreover, a detailed analysis of the PVN revealed that OTergic cells of the caudal PVN and a subpopulation in the dorsal part of the main body of this nucleus shows activation before the time of food but not 12 h later. Moreover this pattern persists in fasted subjects at the time of the previous scheduled time of nursing. The fact that those OTergic cells of the dorsal and caudal part of the PVN contain preautonomic cells that project to the adrenal, pancreas and liver perhaps may be related to the physiological changes in preparation for food ingestion, and synchronization of peripheral oscillators, which remains to be determined; perhaps they play a main role in the central oscillatory mechanism of FAA as their activity persists in fasted subjects at the time of the next feeding time.
Collapse
Affiliation(s)
- Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| | - César Huerta
- Doctorado en Ciencias Biomédicas, Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| | - Enrique Meza
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| | - Manuel Hernández
- Doctorado en Ciencias Biomédicas, Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| | | |
Collapse
|
49
|
Buemann B, Uvnäs-Moberg K. Oxytocin may have a therapeutical potential against cardiovascular disease. Possible pharmaceutical and behavioral approaches. Med Hypotheses 2020; 138:109597. [PMID: 32032912 DOI: 10.1016/j.mehy.2020.109597] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/11/2020] [Accepted: 01/22/2020] [Indexed: 12/22/2022]
Abstract
Based on the ancient role of oxytocin and its homologues as amplifiers of reproduction we argue for an evolutionary coupling of oxytocin to signaling pathway which support restorative mechanisms of cells and tissue. In particular, the survival and function of different categories of stem cells and primordial cells are enhanced by mitogen-activated protein kinase (MAPK) pathways. Furthermore, oxytocin stimulates the AMP-activated protein kinase pathway (AMPK) in numerous of cell types which promotes the maintenance of different cell structures. This involves autophagic processes and, in particular, may support the renewal of mitochondria. Mitochondrial fitness may protect against oxidative and inflammatory stress - a well-documented effect of oxytocin. The combined specific trophic and protective effects oxytocin may delay several degenerative phenomena including sarcopenia, type-2 diabetes and atherosclerosis. These effects may be exerted both on a central level supporting the function and integrity of the hypothalamus and peripherally acting directly on blood vessels, pancreas, heart, skeletal muscles and adipose tissue etc. Furthermore, in the capacity of being both a hormone and neuromodulator, oxytocin interacts with numerous of regulatory mechanisms particularly the autonomic nervous system and HPA-axis which may reduce blood pressure and affect the immune function. The potential of the oxytocin system as a behavioral and molecular target for the prevention and treatment of cardiovascular disease is discussed. Focus is put on the affiliative and sexual significance and the different options and limitations associated with a pharmaceutical approach. MeSH: Aging, Atherosclerosis, Heart, Hypothalamus, Inflammation, Love, Orgasm, Oxytocin.
Collapse
Affiliation(s)
| | - Kerstin Uvnäs-Moberg
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| |
Collapse
|
50
|
Pflimlin E, Zhou Z, Amso Z, Fu Q, Lee C, Muppiddi A, Joseph SB, Nguyen-Tran V, Shen W. Engineering a Potent, Long-Acting, and Periphery-Restricted Oxytocin Receptor Agonist with Anorexigenic and Body Weight Reducing Effects. J Med Chem 2019; 63:382-390. [PMID: 31850759 DOI: 10.1021/acs.jmedchem.9b01862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The effects of oxytocin on food intake and body weight reduction have been demonstrated in both animal models and human clinical studies. Despite being efficacious, oxytocin is enzymatically unstable and thus considered to be unsuitable for long-term use in patients with obesity. Herein, a series of oxytocin derivatives were engineered through conjugation with fatty acid moieties that are known to exhibit high binding affinities to serum albumin. One analog (OT-12) in particular was shown to be a potent full agonist at the oxytocin receptor (OTR) in vitro with good selectivity and long half-life (24 h) in mice. Furthermore, OT-12 is peripherally restricted, with very limited brain exposure (1/190 of the plasma level). In a diet-induced obesity mouse model, daily subcutaneous administration of OT-12 exhibited more potent anorexigenic and body weight reducing effects than carbetocin. Thus, our results suggest that the long-acting, peripherally restricted OTR agonist may offer potential therapeutic benefits for obesity.
Collapse
Affiliation(s)
- Elsa Pflimlin
- Calibr at The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Zhihong Zhou
- Calibr at The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Zaid Amso
- Calibr at The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Qiangwei Fu
- Calibr at The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Candy Lee
- Calibr at The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Avinash Muppiddi
- Calibr at The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Sean B Joseph
- Calibr at The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Vân Nguyen-Tran
- Calibr at The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Weijun Shen
- Calibr at The Scripps Research Institute , La Jolla , California 92037 , United States
| |
Collapse
|