1
|
Cawood GL, Ton J. Decoding resilience: ecology, regulation, and evolution of biosynthetic gene clusters. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00241-3. [PMID: 39393973 DOI: 10.1016/j.tplants.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 10/13/2024]
Abstract
Secondary metabolism is crucial for plant survival and can generate chemistry with nutritional, therapeutic, and industrial value. Biosynthetic genes of selected secondary metabolites cluster within localised chromosomal regions. The arrangement of these biosynthetic gene clusters (BGCs) challenges the long-held model of random gene order in eukaryotes, raising questions about their regulation, ecological significance, and evolution. In this review, we address these questions by exploring the contribution of BGCs to ecologically relevant plant-biotic interactions, while also evaluating the molecular-(epi)genetic mechanisms controlling their coordinated stress- and tissue-specific expression. Based on evidence that BGCs have distinct chromatin signatures and are enriched with transposable elements (TEs), we integrate emerging hypotheses into an updated evolutionary model emphasising how stress-induced epigenetic processes have shaped BGC formation.
Collapse
Affiliation(s)
- George Lister Cawood
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Jurriaan Ton
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
2
|
Bawin T, Krause K. Rising from the shadows: Selective foraging in model shoot parasitic plants. PLANT, CELL & ENVIRONMENT 2024; 47:1118-1127. [PMID: 38058242 DOI: 10.1111/pce.14781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Despite being sessile, plants nonetheless forage for resources by modulating their growth. Adaptative foraging in response to changes in resource availability and presence of neighbours has strong implications for performance and fitness. It is an even more pressing issue for parasitic plants, which draw resources directly from other plants. Indeed, parasitic plants were demonstrated over the years to direct their growth towards preferred hosts and invest resources in parasitism relative to host quality. In contrast to root parasites that rely mostly on chemical cues, some shoot parasites seem to profit from the ability to integrate different types of abiotic and biotic cues. While significant progress in this field has been made recently, there are still many open questions regarding the molecular perception and the integration of diverse signalling pathways under different ecological contexts. Addressing how different cues are integrated in parasitic plants will be important when unravelling variations in plant interaction pathways, and essential to predict the spread of parasites in natural and agricultural environments. In this review, we discuss this with a focus on Cuscuta species as an emerging parasitic model, and provide research perspectives based on the recent advances in the topic and plant-plant interactions in general.
Collapse
Affiliation(s)
- Thomas Bawin
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Touhami D, Mofikoya AO, Girling RD, Langford B, Misztal PK, Pfrang C. Atmospheric Degradation of Ecologically Important Biogenic Volatiles: Investigating the Ozonolysis of (E)-β-Ocimene, Isomers of α and β-Farnesene, α-Terpinene and 6-Methyl-5-Hepten-2-One, and Their Gas-Phase Products. J Chem Ecol 2024; 50:129-142. [PMID: 38195852 PMCID: PMC11043181 DOI: 10.1007/s10886-023-01467-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/18/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
Biogenic volatile organic compounds (bVOCs), synthesised by plants, are important mediators of ecological interactions that can also undergo a series of reactions in the atmosphere. Ground-level ozone is a secondary pollutant generated through sunlight-driven reactions between nitrogen oxides (NOx) and VOCs. Its levels have increased since the industrial revolution and reactions involving ozone drive many chemical processes in the troposphere. While ozone precursors often originate in urban areas, winds may carry these hundreds of kilometres, causing ozone formation to also occur in less populated rural regions. Under elevated ozone conditions, ozonolysis of bVOCs can result in quantitative and qualitative changes in the gas phase, reducing the concentrations of certain bVOCs and resulting in the formation of other compounds. Such changes can result in disruption of bVOC-mediated behavioural or ecological interactions. Through a series of gas-phase experiments using Gas Chromatography Mass Spectrometry (GC-MS) and Proton Transfer Reaction Mass Spectrometry (PTR-MS), we investigated the products and their yields from the ozonolysis of a range of ubiquitous bVOCs, which were selected because of their importance in mediating ecological interactions such as pollinator and natural enemy attraction and plant-to-plant communication, namely: (E)-β-ocimene, isomers of α and β-farnesene, α-terpinene and 6-methyl-5-hepten-2-one. New products from the ozonolysis of these compounds were identified, and the formation of these compounds is consistent with terpene-ozone oxidation mechanisms. We present the degradation mechanism of our model bVOCs and identify their reaction products. We discuss the potential ecological implications of the degradation of each bVOC and of the formation of reaction products.
Collapse
Affiliation(s)
- Dalila Touhami
- Department of Chemistry, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, Reading, RG6 6DX, UK
| | - Adedayo O Mofikoya
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Earley Gate, Reading, RG6 6EU, UK
| | - Robbie D Girling
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Earley Gate, Reading, RG6 6EU, UK.
- Centre for Sustainable Agricultural Systems, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, 4350, Australia.
| | - Ben Langford
- UK Centre for Ecology & Hydrology, Penicuik, Midlothian, EH26 0QB, UK
| | - Pawel K Misztal
- UK Centre for Ecology & Hydrology, Penicuik, Midlothian, EH26 0QB, UK
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX, USA
| | - Christian Pfrang
- Department of Chemistry, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, Reading, RG6 6DX, UK.
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
4
|
Meredith LK, Ledford SM, Riemer K, Geffre P, Graves K, Honeker LK, LeBauer D, Tfaily MM, Krechmer J. Automating methods for estimating metabolite volatility. Front Microbiol 2023; 14:1267234. [PMID: 38163064 PMCID: PMC10755872 DOI: 10.3389/fmicb.2023.1267234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
The volatility of metabolites can influence their biological roles and inform optimal methods for their detection. Yet, volatility information is not readily available for the large number of described metabolites, limiting the exploration of volatility as a fundamental trait of metabolites. Here, we adapted methods to estimate vapor pressure from the functional group composition of individual molecules (SIMPOL.1) to predict the gas-phase partitioning of compounds in different environments. We implemented these methods in a new open pipeline called volcalc that uses chemoinformatic tools to automate these volatility estimates for all metabolites in an extensive and continuously updated pathway database: the Kyoto Encyclopedia of Genes and Genomes (KEGG) that connects metabolites, organisms, and reactions. We first benchmark the automated pipeline against a manually curated data set and show that the same category of volatility (e.g., nonvolatile, low, moderate, high) is predicted for 93% of compounds. We then demonstrate how volcalc might be used to generate and test hypotheses about the role of volatility in biological systems and organisms. Specifically, we estimate that 3.4 and 26.6% of compounds in KEGG have high volatility depending on the environment (soil vs. clean atmosphere, respectively) and that a core set of volatiles is shared among all domains of life (30%) with the largest proportion of kingdom-specific volatiles identified in bacteria. With volcalc, we lay a foundation for uncovering the role of the volatilome using an approach that is easily integrated with other bioinformatic pipelines and can be continually refined to consider additional dimensions to volatility. The volcalc package is an accessible tool to help design and test hypotheses on volatile metabolites and their unique roles in biological systems.
Collapse
Affiliation(s)
- Laura K. Meredith
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, United States
- BIO5 Institute, University of Arizona, Tucson, AZ, United States
| | - S. Marshall Ledford
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, United States
| | - Kristina Riemer
- Arizona Experiment Station, University of Arizona, Tucson, AZ, United States
| | - Parker Geffre
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, United States
| | - Kelsey Graves
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Linnea K. Honeker
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, United States
- BIO5 Institute, University of Arizona, Tucson, AZ, United States
| | - David LeBauer
- Arizona Experiment Station, University of Arizona, Tucson, AZ, United States
| | - Malak M. Tfaily
- BIO5 Institute, University of Arizona, Tucson, AZ, United States
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | | |
Collapse
|
5
|
Bhargav P, Chaurasia S, Kumar A, Srivastava G, Pant Y, Chanotiya CS, Ghosh S. Unraveling the terpene synthase family and characterization of BsTPS2 contributing to (S)-( +)-linalool biosynthesis in Boswellia. PLANT MOLECULAR BIOLOGY 2023; 113:219-236. [PMID: 37898975 DOI: 10.1007/s11103-023-01384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023]
Abstract
Boswellia tree bark exudes oleo-gum resin in response to wounding, which is rich in terpene volatiles. But, the molecular and biochemical basis of wound-induced formation of resin volatiles remains poorly understood. Here, we combined RNA-sequencing (RNA-seq) and metabolite analysis to unravel the terpene synthase (TPS) family contributing to wound-induced biosynthesis of resin volatiles in B. serrata, an economically-important Boswellia species. The analysis of large-scale RNA-seq data of bark and leaf samples representing more than 600 million sequencing reads led to the identification of 32 TPSs, which were classified based on phylogenetic relationship into various TPSs families found in angiosperm species such as TPS-a, b, c, e/f, and g. Moreover, RNA-seq analysis of bark samples collected at 0-24 h post-wounding shortlisted 14 BsTPSs that showed wound-induced transcriptional upregulation in bark, suggesting their important role in wound-induced biosynthesis of resin volatiles. Biochemical characterization of a bark preferentially-expressed and wound-inducible TPS (BsTPS2) in vitro and in planta assays revealed its involvement in resin terpene biosynthesis. Bacterially-expressed recombinant BsTPS2 catalyzed the conversion of GPP and FPP into (S)-( +)-linalool and (E)-(-)-nerolidol, respectively, in vitro assays. However, BsTPS2 expression in Nicotiana benthamiana found that BsTPS2 is a plastidial linalool synthase. In contrast, cytosolic expression of BsTPS2 did not form any product. Overall, the present work unraveled a suite of TPSs that potentially contributed to the biosynthesis of resin volatiles in Boswellia and biochemically characterized BsTPS2, which is involved in wound-induced biosynthesis of (S)-( +)-linalool, a monoterpene resin volatile with a known role in plant defense.
Collapse
Affiliation(s)
- Pravesh Bhargav
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Seema Chaurasia
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Aashish Kumar
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Gaurav Srivastava
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Yatish Pant
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Phytochemistry Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Chandan Singh Chanotiya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Phytochemistry Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Sumit Ghosh
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Czékus Z, Martics A, Pollák B, Kukri A, Tari I, Ördög A, Poór P. The local and systemic accumulation of ethylene determines the rapid defence responses induced by flg22 in tomato (Solanum lycopersicum L.). JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154041. [PMID: 37339571 DOI: 10.1016/j.jplph.2023.154041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023]
Abstract
Plant defence responses induced by the bacterial elicitor flg22 are highly dependent on phytohormones, including gaseous ethylene (ET). While the regulatory role of ET in local defence responses to flg22 exposure has been demonstrated, its contribution to the induction of systemic responses is not clearly understood. For this consideration, we examined the effects of different ET modulators on the flg22-induced local and systemic defence progression. In our experiments, ET biosynthesis inhibitor aminoethoxyvinyl glycine (AVG) or ET receptor blocker silver thiosulphate (STS) were applied 1 h before flg22 treatments and 1 h later the rapid local and systemic responses were detected in the leaves of intact tomato plants (Solanum lycopersicum L.). Based on our results, AVG not only diminished the flg22-induced ET accumulation locally, but also in the younger leaves confirming the role of ET in the whole-plant expanding defence progression. This increase in ET emission was accompanied by increased local expression of SlACO1, which was reduced by AVG and STS. Local ET biosynthesis upon flg22 treatment was shown to positively regulate local and systemic superoxide (O2.-) and hydrogen peroxide (H2O2) production, which in turn could contribute to ET accumulation in younger leaves. Confirming the role of ET in flg22-induced rapid defence responses, application of AVG reduced local and systemic ET, O2.- and H2O2 production, whereas STS reduced it primarily in the younger leaves. Interestingly, in addition to flg22, AVG and STS induced stomatal closure alone at whole-plant level, however in the case of combined treatments together with flg22 both ET modulators reduced the rate of stomatal closure in the older- and younger leaves as well. These results demonstrate that both local and systemic ET production in sufficient amounts and active ET signalling are essential for the development of flg22-induced rapid local and systemic defence responses.
Collapse
Affiliation(s)
- Zalán Czékus
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726, Szeged, Hungary.
| | - Atina Martics
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726, Szeged, Hungary; Doctoral School of Biology, University of Szeged, Szeged, Hungary.
| | - Boglárka Pollák
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726, Szeged, Hungary.
| | - András Kukri
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726, Szeged, Hungary; Doctoral School of Biology, University of Szeged, Szeged, Hungary.
| | - Irma Tari
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726, Szeged, Hungary.
| | - Attila Ördög
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726, Szeged, Hungary.
| | - Péter Poór
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726, Szeged, Hungary.
| |
Collapse
|
7
|
Li C, Zha W, Li W, Wang J, You A. Advances in the Biosynthesis of Terpenoids and Their Ecological Functions in Plant Resistance. Int J Mol Sci 2023; 24:11561. [PMID: 37511319 PMCID: PMC10380271 DOI: 10.3390/ijms241411561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Secondary metabolism plays an important role in the adaptation of plants to their environments, particularly by mediating bio-interactions and protecting plants from herbivores, insects, and pathogens. Terpenoids form the largest group of plant secondary metabolites, and their biosynthesis and regulation are extremely complicated. Terpenoids are key players in the interactions and defense reactions between plants, microorganisms, and animals. Terpene compounds are of great significance both to plants themselves and the ecological environment. On the one hand, while protecting plants themselves, they can also have an impact on the environment, thereby affecting the evolution of plant communities and even ecosystems. On the other hand, their economic value is gradually becoming clear in various aspects of human life; their potential is enormous, and they have broad application prospects. Therefore, research on terpenoids is crucial for plants, especially crops. This review paper is mainly focused on the following six aspects: plant terpenes (especially terpene volatiles and plant defense); their ecological functions; their biosynthesis and transport; related synthesis genes and their regulation; terpene homologues; and research and application prospects. We will provide readers with a systematic introduction to terpenoids covering the above aspects.
Collapse
Affiliation(s)
- Changyan Li
- Food Crops Institute, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Wenjun Zha
- Food Crops Institute, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Wei Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianyu Wang
- Food Crops Institute, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Aiqing You
- Food Crops Institute, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
8
|
Eckert S, Eilers EJ, Jakobs R, Anaia RA, Aragam KS, Bloss T, Popp M, Sasidharan R, Schnitzler JP, Stein F, Steppuhn A, Unsicker SB, van Dam NM, Yepes S, Ziaja D, Müller C. Inter-laboratory comparison of plant volatile analyses in the light of intra-specific chemodiversity. Metabolomics 2023; 19:62. [PMID: 37351733 DOI: 10.1007/s11306-023-02026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
INTRODUCTION Assessing intraspecific variation in plant volatile organic compounds (VOCs) involves pitfalls that may bias biological interpretation, particularly when several laboratories collaborate on joint projects. Comparative, inter-laboratory ring trials can inform on the reproducibility of such analyses. OBJECTIVES In a ring trial involving five laboratories, we investigated the reproducibility of VOC collections with polydimethylsiloxane (PDMS) and analyses by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). As model plant we used Tanacetum vulgare, which shows a remarkable diversity in terpenoids, forming so-called chemotypes. We performed our ring-trial with two chemotypes to examine the sources of technical variation in plant VOC measurements during pre-analytical, analytical, and post-analytical steps. METHODS Monoclonal root cuttings were generated in one laboratory and distributed to five laboratories, in which plants were grown under laboratory-specific conditions. VOCs were collected on PDMS tubes from all plants before and after a jasmonic acid (JA) treatment. Thereafter, each laboratory (donors) sent a subset of tubes to four of the other laboratories (recipients), which performed TD-GC-MS with their own established procedures. RESULTS Chemotype-specific differences in VOC profiles were detected but with an overall high variation both across donor and recipient laboratories. JA-induced changes in VOC profiles were not reproducible. Laboratory-specific growth conditions led to phenotypic variation that affected the resulting VOC profiles. CONCLUSION Our ring trial shows that despite large efforts to standardise each VOC measurement step, the outcomes differed both qualitatively and quantitatively. Our results reveal sources of variation in plant VOC research and may help to avoid systematic errors in similar experiments.
Collapse
Affiliation(s)
- Silvia Eckert
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Elisabeth J Eilers
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Ruth Jakobs
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Redouan Adam Anaia
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | | - Tanja Bloss
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Moritz Popp
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Munich, Germany
| | - Rohit Sasidharan
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | | | - Florian Stein
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Anke Steppuhn
- Department of Molecular Botany, Hohenheim University, Stuttgart, Germany
| | - Sybille B Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Nicole M van Dam
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Sol Yepes
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Dominik Ziaja
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
9
|
Meijer D, van der Vleut J, Weldegergis BT, Costaz T, Duarte MVA, Pekas A, van Loon JJA, Dicke M. Effects of far-red light on tritrophic interactions between the two-spotted spider mite (Tetranychus urticae) and the predatory mite Phytoseiulus persimilis on tomato. PEST MANAGEMENT SCIENCE 2023; 79:1820-1828. [PMID: 36641545 DOI: 10.1002/ps.7358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND The use of light-emitting diode (LED) lights in horticulture allows growers to adjust the light spectrum to optimize crop production and quality. However, changes in light quality can also influence plant-arthropod interactions, with possible consequences for pest management. The addition of far-red light has been shown to interfere with plant immunity, thereby increasing plant susceptibility to biotic stress and increasing pest performance. Far-red light also influences plant emission of volatile organic compounds (VOCs) and might thus influence tritrophic interactions with biological control agents. We investigated how far-red light influences the VOC-mediated attraction of the predatory mite Phytoseiulus persimilis to tomato plants infested with Tetranychus urticae, and its ability to control T. urticae populations. RESULTS Far-red light significantly influences herbivore-induced VOC emissions of tomato plants, characterized by a change in relative abundance of terpenoids, but this did not influence the attraction of P. persimilis to herbivore-induced plants. Supplemental far-red light led to an increased population growth of T. urticae and increased numbers of P. persimilis. This resulted in a stronger suppression of T. urticae populations under supplemental far-red light, to similar T. urticae numbers as in control conditions without supplemental far-red light. CONCLUSION We conclude that supplemental far-red light can change herbivore-induced VOC emissions but does not interfere with the attraction of the predator P. persimilis. Moreover, far-red light stimulates biological control of spider mites in glasshouse tomatoes due to increased population build-up of the biocontrol agent. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Davy Meijer
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Jaimie van der Vleut
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
- Biobest Group N.V., R&D Department, Westerlo, Belgium
| | | | - Thibault Costaz
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | | | | | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
10
|
Chautá A, Kessler A. Metabolic Integration of Spectral and Chemical Cues Mediating Plant Responses to Competitors and Herbivores. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202768. [PMID: 36297792 PMCID: PMC9609625 DOI: 10.3390/plants11202768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 06/08/2023]
Abstract
Light quality and chemicals in a plant's environment can provide crucial information about the presence and nature of antagonists, such as competitors and herbivores. Here, we evaluate the roles of three sources of information-shifts in the red:far red (R:FR) ratio of light reflected off of potentially competing neighbors, induced metabolic changes to damage by insect herbivores, and induced changes to volatile organic compounds emitted from herbivore-damaged neighboring plants-to affect metabolic responses in the tall goldenrod, Solidago altissima. We address the hypothesis that plants integrate the information available about competitors and herbivory to optimize metabolic responses to interacting stressors by exposing plants to the different types of environmental information in isolation and combination. We found strong interactions between the exposure to decreased R:FR light ratios and damage on the induction of secondary metabolites (volatile and non-volatile) in plants. Similarly, the perception of VOCs emitted from neighboring plants was altered by the simultaneous exposure to spectral cues from neighbors. These results suggest that plants integrate spectral and chemical environmental cues to change the production and perception of volatile and non-volatile compounds and highlight the role of plant context-dependent metabolic responses in mediating population and community dynamics.
Collapse
|
11
|
Midzi J, Jeffery DW, Baumann U, Rogiers S, Tyerman SD, Pagay V. Stress-Induced Volatile Emissions and Signalling in Inter-Plant Communication. PLANTS (BASEL, SWITZERLAND) 2022; 11:2566. [PMID: 36235439 PMCID: PMC9573647 DOI: 10.3390/plants11192566] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
The sessile plant has developed mechanisms to survive the "rough and tumble" of its natural surroundings, aided by its evolved innate immune system. Precise perception and rapid response to stress stimuli confer a fitness edge to the plant against its competitors, guaranteeing greater chances of survival and productivity. Plants can "eavesdrop" on volatile chemical cues from their stressed neighbours and have adapted to use these airborne signals to prepare for impending danger without having to experience the actual stress themselves. The role of volatile organic compounds (VOCs) in plant-plant communication has gained significant attention over the past decade, particularly with regard to the potential of VOCs to prime non-stressed plants for more robust defence responses to future stress challenges. The ecological relevance of such interactions under various environmental stresses has been much debated, and there is a nascent understanding of the mechanisms involved. This review discusses the significance of VOC-mediated inter-plant interactions under both biotic and abiotic stresses and highlights the potential to manipulate outcomes in agricultural systems for sustainable crop protection via enhanced defence. The need to integrate physiological, biochemical, and molecular approaches in understanding the underlying mechanisms and signalling pathways involved in volatile signalling is emphasised.
Collapse
Affiliation(s)
- Joanah Midzi
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| | - David W. Jeffery
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| | - Ute Baumann
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Suzy Rogiers
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
- New South Wales Department of Primary Industries, Wollongbar, NSW 2477, Australia
| | - Stephen D. Tyerman
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| | - Vinay Pagay
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| |
Collapse
|
12
|
Soares F, Pimentel D, Erban A, Neves C, Reis P, Pereira M, Rego C, Gama-Carvalho M, Kopka J, Fortes AM. Virulence-related metabolism is activated in Botrytis cinerea mostly in the interaction with tolerant green grapes that remain largely unaffected in contrast with susceptible green grapes. HORTICULTURE RESEARCH 2022; 9:uhac217. [PMID: 36479580 PMCID: PMC9720446 DOI: 10.1093/hr/uhac217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
Botrytis cinerea is responsible for the gray mold disease, severely affecting Vitis vinifera grapevine and hundreds of other economically important crops. However, many mechanisms of this fruit-pathogen interaction remain unknown. The combined analysis of the transcriptome and metabolome of green fruits infected with B. cinerea from susceptible and tolerant genotypes was never performed in any fleshy fruit, mostly because green fruits are widely accepted to be resistant to this fungus. In this work, peppercorn-sized fruits were infected in the field or mock-treated, and berries were collected at green (EL32) stage from a susceptible (Trincadeira) and a tolerant (Syrah) variety. RNAseq and GC-MS data suggested that Syrah exhibited a pre-activated/basal defense relying on specific signaling pathways, hormonal regulation, namely jasmonate and ethylene metabolisms, and linked to phenylpropanoid metabolism. In addition, putative defensive metabolites such as shikimic, ursolic/ oleanolic, and trans-4-hydroxy cinnamic acids, and epigallocatechin were more abundant in Syrah than Trincadeira before infection. On the other hand, Trincadeira underwent relevant metabolic reprogramming upon infection but was unable to contain disease progression. RNA-seq analysis of the fungus in planta revealed an opposite scenario with higher gene expression activity within B. cinerea during infection of the tolerant cultivar and less activity in infected Trincadeira berries. The results suggested an activated virulence state during interaction with the tolerant cultivar without visible disease symptoms. Together, this study brings novel insights related to early infection strategies of B. cinerea and the green berry defense against necrotrophic fungi.
Collapse
Affiliation(s)
- Flávio Soares
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Diana Pimentel
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Alexander Erban
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Catarina Neves
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro Reis
- LEAF—Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Marcelo Pereira
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Cecilia Rego
- LEAF—Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Margarida Gama-Carvalho
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
13
|
Aphalo PJ, Sadras VO. Explaining pre-emptive acclimation by linking information to plant phenotype. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5213-5234. [PMID: 34915559 PMCID: PMC9440433 DOI: 10.1093/jxb/erab537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
We review mechanisms for pre-emptive acclimation in plants and propose a conceptual model linking developmental and evolutionary ecology with the acquisition of information through sensing of cues and signals. The idea is that plants acquire much of the information in the environment not from individual cues and signals but instead from their joint multivariate properties such as correlations. If molecular signalling has evolved to extract such information, the joint multivariate properties of the environment must be encoded in the genome, epigenome, and phenome. We contend that multivariate complexity explains why extrapolating from experiments done in artificial contexts into natural or agricultural systems almost never works for characters under complex environmental regulation: biased relationships among the state variables in both time and space create a mismatch between the evolutionary history reflected in the genotype and the artificial growing conditions in which the phenotype is expressed. Our model can generate testable hypotheses bridging levels of organization. We describe the model and its theoretical bases, and discuss its implications. We illustrate the hypotheses that can be derived from the model in two cases of pre-emptive acclimation based on correlations in the environment: the shade avoidance response and acclimation to drought.
Collapse
Affiliation(s)
| | - Victor O Sadras
- South Australian Research and Development Institute, and School of Agriculture, Food and Wine, The University of Adelaide, Australia
| |
Collapse
|
14
|
Perkovich CL, Addesso KM, Basham JP, Fare DC, Youssef NN, Oliver JB. Effects of Color Attributes on Trap Capture Rates of Chrysobothris femorata (Coleoptera: Buprestidae) and Related Species. ENVIRONMENTAL ENTOMOLOGY 2022; 51:737-746. [PMID: 35762287 PMCID: PMC9389425 DOI: 10.1093/ee/nvac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 06/15/2023]
Abstract
Chrysobothris spp. (Coleoptera: Buprestidae) and other closely related buprestids are common pests of fruit, shade, and nut trees in the United States. Many Chrysobothris spp., including Chrysobothris femorata, are polyphagous herbivores. Their wide host range leads to the destruction of numerous tree species in nurseries and orchards. Although problems caused by Chrysobothris are well known, there are no reliable monitoring methods to estimate local populations before substantial damage occurs. Other buprestid populations have been effectively estimated using colored sticky traps to capture beetles. However, the attraction of Chrysobothris to specific color attributes has not been directly assessed. A multi-color trapping system was utilized to determine color attraction of Chrysobothris spp. Specific color attributes (lightness [L*], red to green [a*], blue to yellow [b*], chroma [C*], hue [h*], and peak reflectance [PR]) were then evaluated to determine beetle responses. In initial experiments with mostly primary colors, Chrysobothris were most attracted to traps with red coloration. Thus, additional experiments were performed using a range of trap colors with red reflectance values. Among these red reflectance colors, it was determined that the violet range of the electromagnetic spectrum had greater attractance to Chrysobothris. Additionally, Chrysobothris attraction correlated with hue and b*, suggesting a preference for traps with hues between red to blue. However, males and females of some Chrysobothris species showed differentiated responses. These findings provide information on visual stimulants that can be used in Chrysobothris trapping and management. Furthermore, this information can be used in conjunction with ecological theory to understand host-location methods of Chrysobothris.
Collapse
Affiliation(s)
- Cynthia L Perkovich
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Otis L. Floyd Nursery Research Center (TSU-NRC), 472 Cadillac Lane, McMinnville, TN 37110, USA
| | - Karla M Addesso
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Otis L. Floyd Nursery Research Center (TSU-NRC), 472 Cadillac Lane, McMinnville, TN 37110, USA
| | - Joshua P Basham
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Otis L. Floyd Nursery Research Center (TSU-NRC), 472 Cadillac Lane, McMinnville, TN 37110, USA
| | - Donna C Fare
- USDA-ARS National Arboretum, Otis L. Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, TN, USA
| | - Nadeer N Youssef
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Otis L. Floyd Nursery Research Center (TSU-NRC), 472 Cadillac Lane, McMinnville, TN 37110, USA
| | | |
Collapse
|
15
|
New molecules in plant defence against pathogens. Essays Biochem 2022; 66:683-693. [PMID: 35642866 DOI: 10.1042/ebc20210076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Plants host a multipart immune signalling network to ward off pathogens. Pathogen attack upon plant tissues can often lead to an amplified state of (induced) defence against subsequent infections in distal tissues; this is known as systemic acquired resistance (SAR). The interaction of plants with beneficial microbes of the rhizosphere microbiome can also lead to an induced resistance in above-ground plant tissues, known as induced systemic resistance. Second messengers such as calcium (Ca2+), reactive oxygen species (ROS), and nitric oxide (NO) are necessary for cell-to-cell signal propagation during SAR and show emergent roles in the mediation of other SAR metabolites. These include the lysine-derived signals pipecolic acid (Pip) and N-hydroxypipecolic acid (NHP), which are key signalling metabolites in SAR. Emerging evidence additionally pinpoints plant volatiles as modulators of defence signalling within and between plants. Plant volatile organic compounds (VOCs) such as monoterpenes can promote SAR by functioning through ROS. Furthermore, plant-derived and additionally also microbial VOCs can target both salicylic acid and jasmonic acid signalling pathways in plants and modulate defence against pathogens. In this review, an overview of recent findings in induced defence signalling, with a particular focus on newer signalling molecules and how they integrate into these networks is discussed.
Collapse
|
16
|
Lazazzara V, Avesani S, Robatscher P, Oberhuber M, Pertot I, Schuhmacher R, Perazzolli M. Biogenic volatile organic compounds in the grapevine response to pathogens, beneficial microorganisms, resistance inducers, and abiotic factors. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:529-554. [PMID: 34409450 DOI: 10.1093/jxb/erab367] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The synthesis of volatile organic compounds (VOCs) in plants is triggered in response to external stimuli, and these compounds can migrate to distal tissues and neighbouring receivers. Although grapevine VOCs responsible for wine aroma and plant-insect communications are well characterized, functional properties of VOCs produced in response to phytopathogens, beneficial microorganisms, resistance inducers, and abiotic factors have been less studied. In this review, we focused on the emission patterns and potential biological functions of VOCs produced by grapevines in response to stimuli. Specific grapevine VOCs are emitted in response to the exogenous stimulus, suggesting their precise involvement in plant defence response. VOCs with inhibitory activities against pathogens and responsible for plant resistance induction are reported, and some of them can also be used as biomarkers of grapevine resistance. Likewise, VOCs produced in response to beneficial microorganisms and environmental factors are possible mediators of grapevine-microbe communications and abiotic stress tolerance. Although further functional studies may improve our knowledge, the existing literature suggests that VOCs have an underestimated potential application as pathogen inhibitors, resistance inducers against biotic or abiotic stresses, signalling molecules, membrane stabilizers, and modulators of reactive oxygen species. VOC patterns could also be used to screen for resistant traits or to monitor the plant physiological status.
Collapse
Affiliation(s)
- Valentina Lazazzara
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Sara Avesani
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy
- Center for Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all'Adige, Italy
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), 39040 Auer (Ora), Italy
| | - Peter Robatscher
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), 39040 Auer (Ora), Italy
| | - Michael Oberhuber
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), 39040 Auer (Ora), Italy
| | - Ilaria Pertot
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy
- Center for Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Rainer Schuhmacher
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Michele Perazzolli
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy
- Center for Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all'Adige, Italy
| |
Collapse
|
17
|
Jin J, Zhao M, Gao T, Jing T, Zhang N, Wang J, Zhang X, Huang J, Schwab W, Song C. Amplification of early drought responses caused by volatile cues emitted from neighboring plants. HORTICULTURE RESEARCH 2021; 8:243. [PMID: 34782598 PMCID: PMC8593122 DOI: 10.1038/s41438-021-00704-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 05/02/2023]
Abstract
Plants have developed sophisticated mechanisms to survive in dynamic environments. Plants can communicate via volatile organic compounds (VOCs) to warn neighboring plants of threats. In most cases, VOCs act as positive regulators of plant defense. However, the communication and role of volatiles in response to drought stress are poorly understood. Here, we showed that tea plants release numerous VOCs. Among them, methyl salicylate (MeSA), benzyl alcohol, and phenethyl alcohol markedly increased under drought stress. Interestingly, further experiments revealed that drought-induced MeSA lowered the abscisic acid (ABA) content in neighboring plants by reducing 9-cis-epoxycarotenoid dioxygenase (NCED) gene expression, resulting in inhibition of stomatal closure and ultimately decreasing early drought tolerance in neighboring plants. Exogenous application of ABA reduced the wilting of tea plants caused by MeSA exposure. Exposure of Nicotiana benthamiana to MeSA also led to severe wilting, indicating that the ability of drought-induced MeSA to reduce early drought tolerance in neighboring plants may be conserved in other plant species. Taken together, these results provide evidence that drought-induced volatiles can reduce early drought tolerance in neighboring plants and lay a novel theoretical foundation for optimizing plant density and spacing.
Collapse
Affiliation(s)
- Jieyang Jin
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, P. R. China
| | - Mingyue Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, P. R. China
| | - Ting Gao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, P. R. China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, P. R. China
| | - Na Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, P. R. China
| | - Jingming Wang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, P. R. China
| | - Xianchen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, P. R. China
| | - Jin Huang
- Biotechnology Institute, Chengdu Newsun Crop Science Co., Ltd, 610212, Chengdu, P. R. China
| | - Wilfried Schwab
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, P. R. China
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, P. R. China.
| |
Collapse
|
18
|
Schmidt A, Hines J, Türke M, Buscot F, Schädler M, Weigelt A, Gebler A, Klotz S, Liu T, Reth S, Trogisch S, Roy J, Wirth C, Eisenhauer N. The iDiv Ecotron-A flexible research platform for multitrophic biodiversity research. Ecol Evol 2021; 11:15174-15190. [PMID: 34765169 PMCID: PMC8571575 DOI: 10.1002/ece3.8198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
Across the globe, ecological communities are confronted with multiple global environmental change drivers, and they are responding in complex ways ranging from behavioral, physiological, and morphological changes within populations to changes in community composition and food web structure with consequences for ecosystem functioning. A better understanding of global change-induced alterations of multitrophic biodiversity and the ecosystem-level responses in terrestrial ecosystems requires holistic and integrative experimental approaches to manipulate and study complex communities and processes above and below the ground. We argue that mesocosm experiments fill a critical gap in this context, especially when based on ecological theory and coupled with microcosm experiments, field experiments, and observational studies of macroecological patterns. We describe the design and specifications of a novel terrestrial mesocosm facility, the iDiv Ecotron. It was developed to allow the setup and maintenance of complex communities and the manipulation of several abiotic factors in a near-natural way, while simultaneously measuring multiple ecosystem functions. To demonstrate the capabilities of the facility, we provide a case study. This study shows that changes in aboveground multitrophic interactions caused by decreased predator densities can have cascading effects on the composition of belowground communities. The iDiv Ecotrons technical features, which allow for the assembly of an endless spectrum of ecosystem components, create the opportunity for collaboration among researchers with an equally broad spectrum of expertise. In the last part, we outline some of such components that will be implemented in future ecological experiments to be realized in the iDiv Ecotron.
Collapse
Affiliation(s)
- Anja Schmidt
- Helmholtz Centre for Environmental Research – UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig UniversityLeipzigGermany
| | - Jes Hines
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig UniversityLeipzigGermany
| | - Manfred Türke
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig UniversityLeipzigGermany
| | - François Buscot
- Helmholtz Centre for Environmental Research – UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Martin Schädler
- Helmholtz Centre for Environmental Research – UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Alexandra Weigelt
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig UniversityLeipzigGermany
| | - Alban Gebler
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig UniversityLeipzigGermany
| | - Stefan Klotz
- Helmholtz Centre for Environmental Research – UFZHalle (Saale)Germany
| | - Tao Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded EcosystemsSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Sascha Reth
- Umwelt‐Geräte‐Technik GmbH – UGTMünchebergGermany
| | - Stefan Trogisch
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Martin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Jacques Roy
- French National Centre for Scientific Research – CNRSParisFrance
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig UniversityLeipzigGermany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig UniversityLeipzigGermany
| |
Collapse
|
19
|
Gonçalves B, Morais MC, Pereira S, Mosquera-Losada MR, Santos M. Tree–Crop Ecological and Physiological Interactions Within Climate Change Contexts: A Mini-Review. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.661978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effects of climate change are increasingly noticed worldwide, and crops are likely to be impacted in direct and indirect ways. Thus, it is urgent to adopt pliable strategies to reduce and/or mitigate possible adverse effects to meet the growing demand for sustainable and resilient food production. Monoculture cropping is globally the most common production system. However, adaptation to ongoing climate change, namely, to more extreme environmental conditions, has renewed the interest in other practices such as agroforestry, agroecology, and permaculture. This article provides an overview of ecological and physiological interactions between trees and crops in Mediterranean agroforestry systems and compares them with those from monocultures. The advantages and disadvantages of both systems are explored. The added value of modeling in understanding the complexity of interactions within agroforestry systems, supporting decision-making under current and future weather conditions, is also pinpointed. Several interactions between trees and crops might occur in agroforestry systems, leading to mutual positive and/or negative effects on growth, physiology, and yield. In this sense, selecting the most suitable combination of tree/crop species in mixtures may be best be indicated by complementary traits, which are crucial to maximizing trade-offs, improving productivity, ecosystem services, and environmental sustainability.
Collapse
|
20
|
Ling X, Gu S, Tian C, Guo H, Degen T, Turlings TCJ, Ge F, Sun Y. Differential Levels of Fatty Acid-Amino Acid Conjugates in the Oral Secretions of Lepidopteran Larvae Account for the Different Profiles of Volatiles. PEST MANAGEMENT SCIENCE 2021; 77:3970-3979. [PMID: 33866678 DOI: 10.1002/ps.6417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/23/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Plants have evolved sophisticated defense responses to insect herbivore attack, which often involve elicitors in the insects' oral secretions. The major eliciting compounds in insect oral secretions across different species and their potency in inducing volatile emissions have not yet been fully characterized and compared. RESULTS Seven lepidopteran insects with variable duration of association with maize were selected, five species known as pests for a long time (Ostrinia furnacalis, Spodoptera exigua, Spodoptera litura, Mythimna separata, and Helicoverpa armigera) and two newly emerging pests (Athetis lepigone and Athetis dissimilis). Oral secretions of the newly emerging pests have the highest total contents of Fatty Acid-Amino Acid Conjugates (FACs), and their relative composition was well separated from that of the other five species in principal compound analysis. Redundancy analyses suggested that higher quantity of FACs was mainly responsible for the increases in maize volatiles, of which (E)-3,8-dimethyl-1,4,7-nonatriene (DMNT) and (E, E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT) were the most strongly inducible compounds. Adding FACs to the oral secretion of S. litura larvae significantly increased the emissions of TMTT and DMNT, confirming the key role of FACs in inducing volatile emissions in maize plants. Additional experiments with artificial diet spiked with linolenic acid suggested that variation in FACs is due to differences in internal FAC degradation and fatty acid excretion. CONCLUSION Compared with two newly emerging pests A. lepigone and A. dissimilis, the long-term pests could diminish the volatile emission by maize through reducing the FAC content in their oral secretions, which may lower the risk of attracting natural enemies.
Collapse
Affiliation(s)
- Xiaoyu Ling
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Shimin Gu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Caihong Tian
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Thomas Degen
- Laboratory for Fundamental and Applied Research in Chemical Ecology (FARCE), University of Neuchâtel, Neuchâtel, Switzerland
| | - Ted C J Turlings
- Laboratory for Fundamental and Applied Research in Chemical Ecology (FARCE), University of Neuchâtel, Neuchâtel, Switzerland
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Torices R, DeSoto L, Narbona E, Gómez JM, Pannell JR. Effects of the Relatedness of Neighbours on Floral Colour. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.589781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The reproductive success of plants depends both on their phenotype and the local neighbourhood in which they grow. Animal-pollinated plants may benefit from increased visitation when surrounded by attractive conspecific individuals, via a “magnet effect.” Group attractiveness is thus potentially a public good that can be exploited by individuals, with selfish exploitation predicted to depend on genetic relatedness within the group. Petal colour is a potentially costly trait involved in floral signalling and advertising to pollinators. Here, we assessed whether petal colour was plastically sensitive to the relatedness of neighbours in the annual herb Moricandia moricandioides, which produces purple petals through anthocyanin pigment accumulation. We also tested whether petal colour intensity was related to nectar volume and sugar content in a context-dependent manner. Although both petal colour and petal anthocyanin concentration did not significantly vary with the neighbourhood configuration, plants growing with kin made a significantly higher investment in petal anthocyanin pigments as a result of the greater number and larger size of their flowers. Moreover the genetic relatedness of neighbours significantly modified the relationship between floral signalling and reward quantity: while focal plants growing with non-kin showed a positive relationship between petal colour and nectar production, plants growing with kin showed a positive relationship between number of flowers and nectar volume, and sugar content. The observed plastic response to group relatedness might have important effects on pollinator behaviour and visitation, with direct and indirect effects on plant reproductive success and mating patterns, at least in those plant species with patchy and genetically structured populations.
Collapse
|
22
|
Ninkovic V, Markovic D, Rensing M. Plant volatiles as cues and signals in plant communication. PLANT, CELL & ENVIRONMENT 2021; 44:1030-1043. [PMID: 33047347 PMCID: PMC8048923 DOI: 10.1111/pce.13910] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 05/05/2023]
Abstract
Volatile organic compounds are important mediators of mutualistic interactions between plants and their physical and biological surroundings. Volatiles rapidly indicate competition or potential threat before these can take place, and they regulate and coordinate adaptation responses in neighbouring plants, fine-tuning them to match the exact stress encountered. Ecological specificity and context-dependency of plant-plant communication mediated by volatiles represent important factors that determine plant performance in specific environments. In this review, we synthesise the recent progress made in understanding the role of plant volatiles as mediators of plant interactions at the individual and community levels, highlighting the complexity of the plant receiver response to diverse volatile cues and signals and addressing how specific responses shape plant growth and survival. Finally, we outline the knowledge gaps and provide directions for future research. The complex dialogue between the emitter and receiver based on either volatile cues or signals determines the outcome of information exchange, which shapes the communication pattern between individuals at the community level and determines their ecological implications at other trophic levels.
Collapse
Affiliation(s)
- Velemir Ninkovic
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Dimitrije Markovic
- Department of Crop Production EcologySwedish University of Agricultural SciencesUppsalaSweden
- Faculty of Agriculture, University of Banja LukaBanja LukaBosnia and Herzegovina
| | - Merlin Rensing
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
23
|
Oelmüller R. Threat at One End of the Plant: What Travels to Inform the Other Parts? Int J Mol Sci 2021; 22:3152. [PMID: 33808792 PMCID: PMC8003533 DOI: 10.3390/ijms22063152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Adaptation and response to environmental changes require dynamic and fast information distribution within the plant body. If one part of a plant is exposed to stress, attacked by other organisms or exposed to any other kind of threat, the information travels to neighboring organs and even neighboring plants and activates appropriate responses. The information flow is mediated by fast-traveling small metabolites, hormones, proteins/peptides, RNAs or volatiles. Electric and hydraulic waves also participate in signal propagation. The signaling molecules move from one cell to the neighboring cell, via the plasmodesmata, through the apoplast, within the vascular tissue or-as volatiles-through the air. A threat-specific response in a systemic tissue probably requires a combination of different traveling compounds. The propagating signals must travel over long distances and multiple barriers, and the signal intensity declines with increasing distance. This requires permanent amplification processes, feedback loops and cross-talks among the different traveling molecules and probably a short-term memory, to refresh the propagation process. Recent studies show that volatiles activate defense responses in systemic tissues but also play important roles in the maintenance of the propagation of traveling signals within the plant. The distal organs can respond immediately to the systemic signals or memorize the threat information and respond faster and stronger when they are exposed again to the same or even another threat. Transmission and storage of information is accompanied by loss of specificity about the threat that activated the process. I summarize our knowledge about the proposed long-distance traveling compounds and discuss their possible connections.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
24
|
Ojeda F, Carrera C, Paniw M, García-Moreno L, Barbero GF, Palma M. Volatile and Semi-Volatile Organic Compounds May Help Reduce Pollinator-Prey Overlap in the Carnivorous Plant Drosophyllum lusitanicum (Drosophyllaceae). J Chem Ecol 2021; 47:73-86. [PMID: 33417071 DOI: 10.1007/s10886-020-01235-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/02/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
Most carnivorous plants show a conspicuous separation between flowers and leaf-traps, which has been interpreted as an adaptive response to minimize pollinator-prey conflicts which will reduce fitness. Here, we used the carnivorous subshrub Drosophyllum lusitanicum (Drosophyllaceae) to explore if and how carnivorous plants with minimal physical separation of flower and trap avoid or reduce a likely conflict of pollinator and prey. We carried out an extensive field survey in the Aljibe Mountains, at the European side of the Strait of Gibraltar, of pollinating and prey insects of D. lusitanicum. We also performed a detailed analysis of flower and leaf volatile and semi-volatile organic compounds (VOCs and SVOCs, respectively) by direct thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) to ascertain whether this species shows different VOC/SVOC profiles in flowers and leaf-traps that might attract pollinators and prey, respectively. Our results show a low overlap between pollinator and prey groups as well as clear differences in the relative abundance of VOCs and SVOCs between flowers and leaf-traps. Coleopterans and hymenopterans were the most represented groups of floral visitors, whereas dipterans were the most diverse group of prey insects. Regarding VOCs and SVOCs, while aldehydes and carboxylic acids presented higher relative contents in leaf-traps, alkanes and plumbagin were the main VOC/SVOC compounds detected in flowers. We conclude that D. lusitanicum, despite its minimal flower-trap separation, does not seem to present a marked pollinator-prey conflict. Differences in the VOCs and SVOCs produced by flowers and leaf-traps may help explain the conspicuous differences between pollinator and prey guilds.
Collapse
Affiliation(s)
- Fernando Ojeda
- Departamento de Biología-IVAGRO, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Spain.
| | - Ceferino Carrera
- Departamento de Química Analítica-IVAGRO, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Spain
| | - Maria Paniw
- Ecological and Forestry Applications Research Centre (CREAF), Campus de Bellaterra (UAB) Edifici C, ES-08193, Cerdanyola del Vallès, Spain
| | - Luis García-Moreno
- Departamento de Química Analítica-IVAGRO, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Spain
| | - Gerardo F Barbero
- Departamento de Química Analítica-IVAGRO, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Spain
| | - Miguel Palma
- Departamento de Química Analítica-IVAGRO, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Spain
| |
Collapse
|
25
|
Chen Y, Shukurova MK, Asikin Y, Kusano M, Watanabe KN. Characterization of Volatile Organic Compounds in Mango Ginger ( Curcuma amada Roxb.) from Myanmar. Metabolites 2020; 11:21. [PMID: 33396947 PMCID: PMC7824228 DOI: 10.3390/metabo11010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 11/30/2022] Open
Abstract
Curcuma amada Roxb. (Zingiberaceae), commonly known as mango ginger because its rhizome and foliar parts have a similar aroma to mango. The rhizome has been widely used in food industries and alternative medicines to treat a variety of internal diseases such as cough, bronchitis, indigestion, colic, loss of appetite, hiccups, and constipation. The composition of the volatile constituents in a fresh rhizome of C. amada is not reported in detail. The present study aimed to screen and characterize the composition of volatile organic compound (VOC) in a fresh rhizome of three C. amada (ZO45, ZO89, and ZO114) and one C. longa (ZO138) accessions originated from Myanmar. The analysis was carried out by means of headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS). As a result, 122 VOCs were tentatively identified from the extracted 373 mass spectra. The following compounds were the ten most highly abundant and broadly present ones: ar-turmerone, α-zingiberene, α-santalene, (E)-γ-atlantone, cuparene, β-bisabolene, teresantalol, β-sesquiphellandrene, trans-α-bergamotene, γ-curcumene. The intensity of ar-turmerone, the sesquiterpene which is mainly characterized in C. longa essential oil (up to 15.5-27.5%), was significantly higher in C. amada accession ZO89 (15.707 ± 5.78a) compared to C. longa accession ZO138 (0.300 ± 0.08b). Cis-α-bergamotene was not detected in two C. amada accessions ZO45 and ZO89. The study revealed between-species variation regarding identified VOCs in the fresh rhizome of C. amada and C. longa.
Collapse
Affiliation(s)
- Yanhang Chen
- Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8572, Japan; (Y.C.); (M.K.S.)
| | - Musavvara Kh. Shukurova
- Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8572, Japan; (Y.C.); (M.K.S.)
| | - Yonathan Asikin
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0213, Japan;
| | - Miyako Kusano
- Faculty of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8572, Japan;
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuo N. Watanabe
- Faculty of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8572, Japan;
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
26
|
Sun Z, Lin Y, Wang R, Li Q, Shi Q, Baerson SR, Chen L, Zeng R, Song Y. Olfactory perception of herbivore‐induced plant volatiles elicits counter‐defences in larvae of the tobacco cutworm. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhongxiang Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops College of Agriculture Fujian Agriculture and Forestry University Fuzhou China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops College of Life Sciences Fujian Agriculture and Forestry University Fuzhou China
| | - Yibin Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops College of Life Sciences Fujian Agriculture and Forestry University Fuzhou China
| | - Rumeng Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops College of Agriculture Fujian Agriculture and Forestry University Fuzhou China
| | - Qilin Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops College of Agriculture Fujian Agriculture and Forestry University Fuzhou China
| | - Qi Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops College of Life Sciences Fujian Agriculture and Forestry University Fuzhou China
| | - Scott R. Baerson
- United States Department of Agriculture‐Agricultural Research Service Natural Products Utilization Research Unit, University Oxford MS USA
| | - Li Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology Chinese Academy of Sciences Beijing P. R. China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops College of Agriculture Fujian Agriculture and Forestry University Fuzhou China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops College of Life Sciences Fujian Agriculture and Forestry University Fuzhou China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops College of Agriculture Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
27
|
Clemensen AK, Provenza FD, Hendrickson JR, Grusak MA. Ecological Implications of Plant Secondary Metabolites - Phytochemical Diversity Can Enhance Agricultural Sustainability. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.547826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
28
|
Verdeguer M, Sánchez-Moreiras AM, Araniti F. Phytotoxic Effects and Mechanism of Action of Essential Oils and Terpenoids. PLANTS 2020; 9:plants9111571. [PMID: 33202993 PMCID: PMC7697004 DOI: 10.3390/plants9111571] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Weeds are one of the major constraints in crop production affecting both yield and quality. The excessive and exclusive use of synthetic herbicides for their management is increasing the development of herbicide-resistant weeds and is provoking risks for the environment and human health. Therefore, the development of new herbicides with multitarget-site activity, new modes of action and low impact on the environment and health are badly needed. The study of plant–plant interactions through the release of secondary metabolites could be a starting point for the identification of new molecules with herbicidal activity. Essential oils (EOs) and their components, mainly terpenoids, as pure natural compounds or in mixtures, because of their structural diversity and strong phytotoxic activity, could be good candidates for the development of new bioherbicides or could serve as a basis for the development of new natural-like low impact synthetic herbicides. EOs and terpenoids have been largely studied for their phytotoxicity and several evidences on their modes of action have been highlighted in the last decades through the use of integrated approaches. The review is focused on the knowledge concerning the phytotoxicity of these molecules, their putative target, as well as their potential mode of action.
Collapse
Affiliation(s)
- Mercedes Verdeguer
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Adela M. Sánchez-Moreiras
- Department of Plant Biology and Soil Science, Faculty of Biology, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310 Vigo, Spain
- CITACA, Agri-Food Research and Transfer Cluster, Campus da Auga, University of Vigo, 32004 Ourense, Spain
- Correspondence:
| | - Fabrizio Araniti
- Department AGRARIA, University Mediterranea of Reggio Calabria, Loc. Feo di Vito, 89100 Reggio Calabria, Italy;
| |
Collapse
|
29
|
Mujiono K, Tohi T, Sobhy IS, Hojo Y, Ho NT, Shinya T, Galis I. Ethylene functions as a suppressor of volatile production in rice. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6491-6511. [PMID: 32697299 DOI: 10.1093/jxb/eraa341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
We examined the role of ethylene in the production of rice (Oryza sativa) volatile organic compounds (VOCs), which act as indirect defense signals against herbivores in tritrophic interactions. Rice plants were exposed to exogenous ethylene (1 ppm) after simulated herbivory, which consisted of mechanical wounding supplemented with oral secretions (WOS) from the generalist herbivore larva Mythimna loreyi. Ethylene treatment highly suppressed VOCs in WOS-treated rice leaves, which was further corroborated by the reduced transcript levels of major VOC biosynthesis genes in ethylene-treated rice. In contrast, the accumulation of jasmonates (JA), known to control VOCs in higher plants, and transcript levels of primary JA response genes, including OsMYC2, were not largely affected by ethylene application. At the functional level, flooding is known to promote internode elongation in young rice via ethylene signaling. Consistent with the negative role of ethylene on VOC genes, the accumulation of VOCs in water-submerged rice leaves was suppressed. Furthermore, in mature rice plants, which naturally produce less volatiles, VOCs could be rescued by the application of the ethylene perception inhibitor 1-methylcyclopropene. Our data suggest that ethylene acts as an endogenous suppressor of VOCs in rice plants during development and under stress.
Collapse
Affiliation(s)
- Kadis Mujiono
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Faculty of Agriculture, Mulawarman University, Samarinda, Indonesia
| | - Tilisa Tohi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Islam S Sobhy
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Nhan Thanh Ho
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Cuu Long Delta Rice Research Institute, Can Tho, Vietnam
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|
30
|
Foti V, Araniti F, Manti F, Alicandri E, Giuffrè AM, Bonsignore CP, Castiglione E, Sorgonà A, Covino S, Paolacci AR, Ciaffi M, Badiani M. Profiling Volatile Terpenoids from Calabrian Pine Stands Infested by the Pine Processionary Moth. PLANTS 2020; 9:plants9101362. [PMID: 33066541 PMCID: PMC7602161 DOI: 10.3390/plants9101362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022]
Abstract
Terpenoids make up the biggest and most diversified class of chemical substances discovered in plants, encompassing over 40,000 individual compounds. In conifers, the production of terpenoids, either as oleoresin or emitted as volatile compounds, play an important role in the physical and chemical defence responses against pathogens and herbivores. In the present work, we examined, for the first time to the best of our knowledge, the terpenic defensive relations of Calabrian pine (Pinus nigra subsp. laricio (Poiret) Maire), facing the attack of the pine processionary moth (Thaumetopoea pityocampa (Denis and Schiffermüller, 1775)), brought about in the open on adult plant individuals growing at two distinct forest sites. Among the volatile terpenoids emitted from pine needles, bornyl acetate [(4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) acetate] was the most frequently and selectively associated with the infestation, increasing during the period of most intense trophic activity of the caterpillars (defoliation), and decreasing thereafter. Although further work is needed to clarify whether the observed response reflects defence reactions and/or they are involved in communication among the infested plants and their biotic environment, the present results boost the currently growing interest in the isolation and characterization of plant secondary metabolites that can be used to control pests, pathogens, and weeds.
Collapse
Affiliation(s)
- Vincenza Foti
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, I-89129 Reggio Calabria, Italy; (V.F.); (F.A.); (E.A.); (A.M.G.); (A.S.)
| | - Fabrizio Araniti
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, I-89129 Reggio Calabria, Italy; (V.F.); (F.A.); (E.A.); (A.M.G.); (A.S.)
| | - Francesco Manti
- Dipartimento di Patrimonio, Architettura e Urbanistica, Università Mediterranea di Reggio Calabria, Salita Melissari, I-89124 Reggio Calabria, Italy; (F.M.); (C.P.B.); (E.C.)
| | - Enrica Alicandri
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, I-89129 Reggio Calabria, Italy; (V.F.); (F.A.); (E.A.); (A.M.G.); (A.S.)
| | - Angelo Maria Giuffrè
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, I-89129 Reggio Calabria, Italy; (V.F.); (F.A.); (E.A.); (A.M.G.); (A.S.)
| | - Carmelo Peter Bonsignore
- Dipartimento di Patrimonio, Architettura e Urbanistica, Università Mediterranea di Reggio Calabria, Salita Melissari, I-89124 Reggio Calabria, Italy; (F.M.); (C.P.B.); (E.C.)
| | - Elvira Castiglione
- Dipartimento di Patrimonio, Architettura e Urbanistica, Università Mediterranea di Reggio Calabria, Salita Melissari, I-89124 Reggio Calabria, Italy; (F.M.); (C.P.B.); (E.C.)
| | - Agostino Sorgonà
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, I-89129 Reggio Calabria, Italy; (V.F.); (F.A.); (E.A.); (A.M.G.); (A.S.)
| | - Stefano Covino
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Via S. Camillo De Lellis, s.n.c, I-01100 Viterbo, Italy; (S.C.); (A.R.P.); (M.C.)
| | - Anna Rita Paolacci
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Via S. Camillo De Lellis, s.n.c, I-01100 Viterbo, Italy; (S.C.); (A.R.P.); (M.C.)
| | - Mario Ciaffi
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Via S. Camillo De Lellis, s.n.c, I-01100 Viterbo, Italy; (S.C.); (A.R.P.); (M.C.)
| | - Maurizio Badiani
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, I-89129 Reggio Calabria, Italy; (V.F.); (F.A.); (E.A.); (A.M.G.); (A.S.)
- Correspondence: ; Tel.: +39-0965-169-4352; Fax: +39-0965-169-4550
| |
Collapse
|
31
|
On the Evolution and Functional Diversity of Terpene Synthases in the Pinus Species: A Review. J Mol Evol 2020; 88:253-283. [PMID: 32036402 DOI: 10.1007/s00239-020-09930-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/17/2020] [Indexed: 02/02/2023]
Abstract
In the biosynthesis of terpenoids, the ample catalytic versatility of terpene synthases (TPS) allows the formation of thousands of different molecules. A steadily increasing number of sequenced plant genomes invariably show that the TPS gene family is medium to large in size, comprising from 30 to 100 functional members. In conifers, TPSs belonging to the gymnosperm-specific TPS-d subfamily produce a complex mixture of mono-, sesqui-, and diterpenoid specialized metabolites, which are found in volatile emissions and oleoresin secretions. Such substances are involved in the defence against pathogens and herbivores and can help to protect against abiotic stress. Oleoresin terpenoids can be also profitably used in a number of different fields, from traditional and modern medicine to fine chemicals, fragrances, and flavours, and, in the last years, in biorefinery too. In the present work, after summarizing the current views on the biosynthesis and biological functions of terpenoids, recent advances on the evolution and functional diversification of plant TPSs are reviewed, with a focus on gymnosperms. In such context, an extensive characterization and phylogeny of all the known TPSs from different Pinus species is reported, which, for such genus, can be seen as the first effort to explore the evolutionary history of the large family of TPS genes involved in specialized metabolism. Finally, an approach is described in which the phylogeny of TPSs in Pinus spp. has been exploited to isolate for the first time mono-TPS sequences from Pinus nigra subsp. laricio, an ecologically important endemic pine in the Mediterranean area.
Collapse
|
32
|
Vilela A, Bacelar E, Pinto T, Anjos R, Correia E, Gonçalves B, Cosme F. Beverage and Food Fragrance Biotechnology, Novel Applications, Sensory and Sensor Techniques: An Overview. Foods 2019; 8:E643. [PMID: 31817355 PMCID: PMC6963671 DOI: 10.3390/foods8120643] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022] Open
Abstract
Flavours and fragrances are especially important for the beverage and food industries. Biosynthesis or extraction are the two main ways to obtain these important compounds that have many different chemical structures. Consequently, the search for new compounds is challenging for academic and industrial investigation. This overview aims to present the current state of art of beverage fragrance biotechnology, including recent advances in sensory and sensor methodologies and statistical techniques for data analysis. An overview of all the recent findings in beverage and food fragrance biotechnology, including those obtained from natural sources by extraction processes (natural plants as an important source of flavours) or using enzymatic precursor (hydrolytic enzymes), and those obtained by de novo synthesis (microorganisms' respiration/fermentation of simple substrates such as glucose and sucrose), are reviewed. Recent advances have been made in what concerns "beverage fragrances construction" as also in their application products. Moreover, novel sensory and sensor methodologies, primarily used for fragrances quality evaluation, have been developed, as have statistical techniques for sensory and sensors data treatments, allowing a rapid and objective analysis.
Collapse
Affiliation(s)
- Alice Vilela
- CQ-VR, Chemistry Research Centre, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
| | - Eunice Bacelar
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (T.P.); (R.A.); (B.G.)
| | - Teresa Pinto
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (T.P.); (R.A.); (B.G.)
| | - Rosário Anjos
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (T.P.); (R.A.); (B.G.)
| | - Elisete Correia
- CQ-VR, Chemistry Research Centre, Department of Mathematics, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
- Center for Computational and Stochastic Mathematics (CEMAT), Department of Mathematics, IST-UL, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Berta Gonçalves
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (T.P.); (R.A.); (B.G.)
| | - Fernanda Cosme
- CQ-VR, Chemistry Research Centre, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
| |
Collapse
|
33
|
Rahnamaie-Tajadod R, Goh HH, Mohd Noor N. Methyl jasmonate-induced compositional changes of volatile organic compounds in Polygonum minus leaves. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:152994. [PMID: 31226543 DOI: 10.1016/j.jplph.2019.152994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 05/19/2023]
Abstract
Polygonum minus Huds. is a medicinal aromatic plant rich in terpenes, aldehydes, and phenolic compounds. Methyl jasmonate (MeJA) is a plant signaling molecule commonly applied to elicit stress responses to produce plant secondary metabolites. In this study, the effects of exogenous MeJA treatment on the composition of volatile organic compounds (VOCs) in P. minus leaves were investigated by using a metabolomic approach. Time-course changes in the leaf composition of VOCs on days 1, 3, and 5 after MeJA treatment were analyzed through solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS). The VOCs found in MeJA-elicited leaves were similar to those found in mock-treated leaves but varied in quantity at different time points. We focused our analysis on the content and composition of monoterpenes, sesquiterpenes, and green leaf volatiles (GLVs) within the leaf samples. Our results suggest that MeJA enhances the activity of biosynthetic pathways for aldehydes and terpenes in P. minus. Hence, the production of aromatic compounds in this medicinal herb can be increased by MeJA elicitation. Furthermore, the relationship between MeJA elicitation and terpene biosynthesis in P. minus was shown through SPME-GC-MS analysis of VOCs combined with transcriptomic analysis of MeJA-elicited P. minus leaves from our previous study.
Collapse
Affiliation(s)
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia.
| | - Normah Mohd Noor
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
34
|
Systemic acquired resistance networks amplify airborne defense cues. Nat Commun 2019; 10:3813. [PMID: 31444353 PMCID: PMC6707303 DOI: 10.1038/s41467-019-11798-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/02/2019] [Indexed: 12/16/2022] Open
Abstract
Salicylic acid (SA)-mediated innate immune responses are activated in plants perceiving volatile monoterpenes. Here, we show that monoterpene-associated responses are propagated in feed-forward loops involving the systemic acquired resistance (SAR) signaling components pipecolic acid, glycerol-3-phosphate, and LEGUME LECTIN-LIKE PROTEIN1 (LLP1). In this cascade, LLP1 forms a key regulatory unit in both within-plant and between-plant propagation of immunity. The data integrate molecular components of SAR into systemic signaling networks that are separate from conventional, SA-associated innate immune mechanisms. These networks are central to plant-to-plant propagation of immunity, potentially raising SAR to the population level. In this process, monoterpenes act as microbe-inducible plant volatiles, which as part of plant-derived volatile blends have the potential to promote the generation of a wave of innate immune signaling within canopies or plant stands. Hence, plant-to-plant propagation of SAR holds significant potential to fortify future durable crop protection strategies following a single volatile trigger. Plants immune responses are triggered upon perception of volatile monoterpenes. Here, Wenig et al. show that a feed-forward loop featuring LEGUME LECTIN-LIKE PROTEIN1 propagates monoterpene-associated cues both within and between plants, illustrating how systemic immunity could act at a population level.
Collapse
|
35
|
Pollier J, De Geyter N, Moses T, Boachon B, Franco-Zorrilla JM, Bai Y, Lacchini E, Gholami A, Vanden Bossche R, Werck-Reichhart D, Goormachtig S, Goossens A. The MYB transcription factor Emission of Methyl Anthranilate 1 stimulates emission of methyl anthranilate from Medicago truncatula hairy roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:637-654. [PMID: 31009122 DOI: 10.1111/tpj.14347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/13/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Plants respond to herbivore or pathogen attacks by activating specific defense programs that include the production of bioactive specialized metabolites to eliminate or deter the attackers. Volatiles play an important role in the interaction of a plant with its environment. Through transcript profiling of jasmonate-elicited Medicago truncatula cells, we identified Emission of Methyl Anthranilate (EMA) 1, a MYB transcription factor that is involved in the emission of the volatile compound methyl anthranilate when expressed in M. truncatula hairy roots, giving them a fruity scent. RNA sequencing (RNA-Seq) analysis of the fragrant roots revealed the upregulation of a methyltransferase that was subsequently characterized to catalyze the O-methylation of anthranilic acid and was hence named M. truncatula anthranilic acid methyl transferase (MtAAMT) 1. Given that direct activation of the MtAAMT1 promoter by EMA1 could not be unambiguously demonstrated, we further probed the RNA-Seq data and identified the repressor protein M. truncatula plant AT-rich sequence and zinc-binding (MtPLATZ) 1. Emission of Methyl Anthranilate 1 binds a tandem repeat of the ACCTAAC motif in the MtPLATZ1 promoter to transactivate gene expression. Overexpression of MtPLATZ1 in transgenic M. truncatula hairy roots led to transcriptional silencing of EMA1, indicating that MtPLATZ1 may be part of a negative feedback loop to control the expression of EMA1. Finally, application of exogenous methyl anthranilate boosted EMA1 and MtAAMT1 expression dramatically, thus also revealing a positive amplification loop. Such positive and negative feedback loops seem to be the norm rather than the exception in the regulation of plant specialized metabolism.
Collapse
Affiliation(s)
- Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Nathan De Geyter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Tessa Moses
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Benoît Boachon
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67000, Strasbourg, France
| | | | - Yuechen Bai
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Elia Lacchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Azra Gholami
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Robin Vanden Bossche
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Danièle Werck-Reichhart
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67000, Strasbourg, France
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| |
Collapse
|
36
|
Yip EC, Tooker JF, Mescher MC, De Moraes CM. Costs of plant defense priming: exposure to volatile cues from a specialist herbivore increases short-term growth but reduces rhizome production in tall goldenrod (Solidago altissima). BMC PLANT BIOLOGY 2019; 19:209. [PMID: 31113387 PMCID: PMC6528222 DOI: 10.1186/s12870-019-1820-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/07/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND By sensing environmental cues indicative of pathogens or herbivores, plants can "prime" appropriate defenses and deploy faster, stronger responses to subsequent attack. Such priming presumably entails costs-else the primed state should be constitutively expressed-yet those costs remain poorly documented, in part due to a lack of studies conducted under realistic ecological conditions. We explored how defence priming in goldenrod (Solidago altissima) influenced growth and reproduction under semi-natural field conditions by manipulating exposure to priming cues (volatile emissions of a specialist herbivore, Eurosta solidaginis), competition between neighbouring plants, and herbivory (via insecticide application). RESULTS We found that primed plants grew faster than unprimed plants, but produced fewer rhizomes, suggesting reduced capacity for clonal reproduction. Unexpectedly, this effect was apparent only in the absence of insecticide, prompting a follow-up experiment that revealed direct effects of the pesticide esfenvalerate on plant growth (contrary to previous reports from goldenrod). Meanwhile, even in the absence of pesticide, priming had little effect on herbivore damage levels, likely because herbivores susceptible to the primed defences were rare or absent due to seasonality. CONCLUSIONS Reduced clonal reproduction in primed plants suggest that priming can entail significant costs for plants. These costs, however, may only become apparent when priming cues fail to provide accurate information about prevailing threats, as was the case in this study. Additionally, our insecticide data indicate that pesticides or their carrier compounds can subtly, but significantly, affect plant physiology and may interact with plant defences.
Collapse
Affiliation(s)
- Eric C Yip
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - John F Tooker
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mark C Mescher
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - Consuelo M De Moraes
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland.
| |
Collapse
|
37
|
Aartsma Y, Cusumano A, Fernández de Bobadilla M, Rusman Q, Vosteen I, Poelman EH. Understanding insect foraging in complex habitats by comparing trophic levels: insights from specialist host-parasitoid-hyperparasitoid systems. CURRENT OPINION IN INSECT SCIENCE 2019; 32:54-60. [PMID: 31113632 DOI: 10.1016/j.cois.2018.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/09/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Insects typically forage in complex habitats in which their resources are surrounded by non-resources. For herbivores, pollinators, parasitoids, and higher level predators research has focused on how specific trophic levels filter and integrate information from cues in their habitat to locate resources. However, these insights frequently build specific theory per trophic level and seldom across trophic levels. Here, we synthesize advances in understanding of insect foraging behavior in complex habitats by comparing trophic levels in specialist host-parasitoid-hyperparasitoid systems. We argue that resources may become less apparent to foraging insects when they are member of higher trophic levels and hypothesize that higher trophic level organisms require a larger number of steps in their foraging decisions. We identify important knowledge gaps of information integration strategies by insects that belong to higher trophic levels.
Collapse
Affiliation(s)
- Yavanna Aartsma
- Wageningen University, Laboratory of Entomology, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Antonino Cusumano
- Wageningen University, Laboratory of Entomology, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | | | - Quint Rusman
- Wageningen University, Laboratory of Entomology, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Ilka Vosteen
- Wageningen University, Laboratory of Entomology, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Erik H Poelman
- Wageningen University, Laboratory of Entomology, P.O. Box 16, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
38
|
Kigathi RN, Weisser WW, Reichelt M, Gershenzon J, Unsicker SB. Plant volatile emission depends on the species composition of the neighboring plant community. BMC PLANT BIOLOGY 2019; 19:58. [PMID: 30727963 PMCID: PMC6366091 DOI: 10.1186/s12870-018-1541-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 11/20/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Plants grow in multi-species communities rather than monocultures. Yet most studies on the emission of volatile organic compounds (VOCs) from plants in response to insect herbivore feeding focus on one plant species. Whether the presence and identity of neighboring plants or plant community attributes, such as plant species richness and plant species composition, affect the herbivore-induced VOC emission of a focal plant is poorly understood. METHODS We established experimental plant communities in pots in the greenhouse where the focal plant species, red clover (Trifolium pratense), was grown in monoculture, in a two species mixture together with Geranium pratense or Dactylis glomerata, or in a mixture of all three species. We measured VOC emission of the focal plant and the entire plant community, with and without herbivory of Spodoptera littoralis caterpillars caged on one red clover individual within the communities. RESULTS Herbivory increased VOC emission from red clover, and increasing plant species richness changed emissions of red clover and also from the entire plant community. Neighbor identity strongly affected red clover emission, with highest emission rates for plants growing together with D. glomerata. CONCLUSION The results from this study indicate that the blend of VOCs perceived by host searching insects can be affected by plant-plant interactions.
Collapse
Affiliation(s)
- Rose N. Kigathi
- Institute of Ecology, Friedrich-Schiller-University of Jena, Dornburger Str. 159, 07743 Jena, Germany
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
- Present Address: Department of Biological Sciences, Pwani University, P.O Box 195-80108, Kilifi, Kenya
| | - Wolfgang W. Weisser
- Institute of Ecology, Friedrich-Schiller-University of Jena, Dornburger Str. 159, 07743 Jena, Germany
- Present Address: Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Sybille B. Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
| |
Collapse
|
39
|
Zhu S, Morel JB. Molecular Mechanisms Underlying Microbial Disease Control in Intercropping. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:20-24. [PMID: 29996677 DOI: 10.1094/mpmi-03-18-0058-cr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Many reports indicate that intercropping, which usually consists of growing two species next to each other, reduces the incidence of microbial diseases. Besides mechanisms operating at the field level, like inoculum dilution, there is recent evidence that plant-centered mechanisms with identified plant molecules and pathways are also involved. First, plants may trigger the induction of resistance in neighboring plants by the well-known mechanism of induced resistance. Second, molecules produced by one plant, either above- or belowground, can directly inhibit pathogens or indirectly trigger resistance through the induction of the plant immune system in neighboring plants. Third, competition for resources such as light or nutrients may indirectly modify the expression of the plant immune system. The conceptual frameworks of nonkin/stranger recognition and competition may be useful to further investigate the molecular mechanisms underlying crop protection in interspecific plant mixtures.
Collapse
Affiliation(s)
- Shusheng Zhu
- 1 State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- 2 Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University; and
| | - Jean-Benoît Morel
- 3 BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| |
Collapse
|
40
|
Kessler A. Introduction to a special feature issue - New insights into plant volatiles. THE NEW PHYTOLOGIST 2018; 220:655-658. [PMID: 30324737 DOI: 10.1111/nph.15494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
41
|
Cofer TM, Seidl-Adams I, Tumlinson JH. From Acetoin to ( Z)-3-Hexen-1-ol: The Diversity of Volatile Organic Compounds that Induce Plant Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11197-11208. [PMID: 30293420 DOI: 10.1021/acs.jafc.8b03010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Evidence that plants can respond to volatile organic compounds (VOCs) was first presented 35 years ago. Since then, over 40 VOCs have been found to induce plant responses. These include VOCs that are produced not only by plants but also by microbes and insects. Here, we summarize what is known about how these VOCs are produced and how plants detect and respond to them. In doing so, we highlight notable observations we believe are worth greater consideration. For example, the VOCs that induce plant responses appear to have little in common. They are derived from many different biosynthetic pathways and have few distinguishing chemical or structural features. Likewise, plants appear to use several mechanisms to detect VOCs rather than a single dedicated "olfactory" system. Considering these observations, we advocate for more discovery-oriented experiments and propose that future research take a fresh look at the ways plants detect and respond to VOCs.
Collapse
Affiliation(s)
- Tristan M Cofer
- Center for Chemical Ecology, Department of Entomology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Irmgard Seidl-Adams
- Center for Chemical Ecology, Department of Entomology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - James H Tumlinson
- Center for Chemical Ecology, Department of Entomology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
42
|
Ruiz-Hernández V, Roca MJ, Egea-Cortines M, Weiss J. A comparison of semi-quantitative methods suitable for establishing volatile profiles. PLANT METHODS 2018; 14:67. [PMID: 30100921 PMCID: PMC6083509 DOI: 10.1186/s13007-018-0335-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/01/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Full scent profiles emitted by living tissues can be screened by using total ion chromatograms generated in full scan mode and gas chromatography-mass spectrometry technique using Headspace Sorptive Extraction. This allows the identification of specific compounds and their absolute quantification or relative abundance. Quantifications ideally should be based on calibration curves using standards for each compound. However, the unpredictable composition of Volatile Organic Compounds (VOCs) and lack of standards make this approach difficult. Researchers studying scent profiles therefore concentrate on identifying specific scent footprints i.e. relative abundance rather than absolute quantities. We compared several semi-quantitative methods: external calibration curves generated in the sampling system and by liquid addition of standards to stir bars, total integrated peak area per fresh weight (FW), normalized peak area per FW, semi-quantification based on internal standard abundance, semi-quantification based on the nearest n-alkane and percentage of emission. Furthermore, we explored the usage of nearest components and single calibrators for semi-quantifications. RESULTS Any of the semi-quantification methods based on a standard produced similar or even identical results compared to quantification by a true-standard for a compound, except for the method based on standard addition. Each method beholds advantages and disadvantages regarding level of accuracy, experimental variability, acceptance and retrieved quantities. CONCLUSIONS Our data shows that, except for the method of standard addition to the biological sample, the rest of the semi-quantification methods studied give highly similar statistical results. Any of the methodologies presented here can therefore be considered as valid for scent profiling. Regarding relative proportions of VOCs, the generation of calibration curves for each compound analysed is not necessary.
Collapse
Affiliation(s)
- Victoria Ruiz-Hernández
- Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
- Departamento de Ciencia y Tecnología Agraria, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - María José Roca
- Servicio de Apoyo a la Investigación Tecnológica, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Marcos Egea-Cortines
- Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
- Departamento de Ciencia y Tecnología Agraria, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Julia Weiss
- Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
- Departamento de Ciencia y Tecnología Agraria, Universidad Politécnica de Cartagena, Cartagena, Spain
| |
Collapse
|
43
|
Kang ZW, Liu FH, Zhang ZF, Tian HG, Liu TX. Volatile β-Ocimene Can Regulate Developmental Performance of Peach Aphid Myzus persicae Through Activation of Defense Responses in Chinese Cabbage Brassica pekinensis. FRONTIERS IN PLANT SCIENCE 2018; 9:708. [PMID: 29892310 PMCID: PMC5985497 DOI: 10.3389/fpls.2018.00708] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/09/2018] [Indexed: 05/24/2023]
Abstract
In nature, plants have evolved sophisticated defense mechanisms against the attack of pathogens and insect herbivores. Plant volatile-mediated plant-to-plant communication has been assessed in multitrophic systems in different plant species and different pest species. β-ocimene is recognized as an herbivore-induced plant volatile that play an important role in the chemical communication between plants and pests. However, it is still unclear whether β-ocimene can active the defense mechanism of Chinese cabbage Brassica pekinensis against the peach aphid Myzus persicae. In this study, we found that treatment of Chinese cabbage with β-ocimene inhibited the growth of M. persicae in terms of weight gain and reproduction. Moreover, β-ocimene treatment negatively influenced the feeding behavior of M. persicae by shortening the total feeding period and phloem ingestion and increasing the frequency of stylet puncture. When given a choice, winged aphids preferred to settle on healthy Chinese cabbage compared with β-ocimene-treated plants. In addition, performance of the parasitoid Aphidius gifuensis in terms of Y-tube olfaction and landings was better on β-ocimene-treated Chinese cabbage than on healthy plants. Furthermore, β-ocimene significantly increased the expression levels of salicylic acid and jasmonic acid marker genes and the accumulation of glucosinolates. Surprisingly, the transcriptional levels of detoxifying enzymes (CYP6CY3, CYP4, and GST) in aphids reared on β-ocimene-treated Chinese cabbage were significantly higher than those of aphids reared on healthy plants. In summary, our results indicated that β-ocimene can activate the defense response of Chinese cabbage against M. persicae, and that M. persicae can also adjust its detoxifying enzymes machinery to counter the host plant defense reaction.
Collapse
Affiliation(s)
- Zhi-Wei Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Fang-Hua Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Xianyang, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhan-Feng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Hong-Gang Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Xianyang, China
| |
Collapse
|
44
|
Foliar Terpene Chemotypes and Herbivory Determine Variation in Plant Volatile Emissions. J Chem Ecol 2018; 44:51-61. [PMID: 29376212 DOI: 10.1007/s10886-017-0919-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/05/2017] [Accepted: 12/18/2017] [Indexed: 01/14/2023]
Abstract
Plants that synthesize and store terpenes in specialized cells accumulate large concentrations of these compounds while avoiding autotoxicity. Stored terpenes may influence the quantity and profile of volatile compounds that are emitted into the environment and the subsequent role of those volatiles in mediating the activity of herbivores. The Australian medicinal tea tree, Melaleuca alternifolia, occurs as several distinct terpene chemotypes. We studied the profile of its terpene emissions to understand how variations in stored foliar terpenes influenced emissions, both constitutive and when damaged either by herbivores or mechanically. We found that foliar chemistry influenced differences in the composition of terpene emissions, but those emissions were minimal in intact plants. When plants were damaged by herbivores or mechanically, the emissions were greatly increased and the composition corresponded to the constitutive terpenes and the volatility of each compound, suggesting the main origin of emissions is the stored terpenes and not de novo biosynthesized volatiles. However, herbivores modified the composition of the volatile emissions in only one chemotype, probably due to the oxidative metabolism of 1,8-cineole by the beetles. We also tested whether the foliar terpene blend acted as an attractant for the specialized leaf beetles Paropsisterna tigrina and Faex sp. and a parasitoid fly, Anagonia zentae. None of these species responded to extracts of young leaves in an olfactometer, so we found no evidence that these species use plant odor cues for host location in laboratory conditions.
Collapse
|
45
|
Downy mildew symptoms on grapevines can be reduced by volatile organic compounds of resistant genotypes. Sci Rep 2018; 8:1618. [PMID: 29374187 PMCID: PMC5786018 DOI: 10.1038/s41598-018-19776-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022] Open
Abstract
Volatile organic compounds (VOCs) play a crucial role in the communication of plants with other organisms and are possible mediators of plant defence against phytopathogens. Although the role of non-volatile secondary metabolites has been largely characterised in resistant genotypes, the contribution of VOCs to grapevine defence mechanisms against downy mildew (caused by Plasmopara viticola) has not yet been investigated. In this study, more than 50 VOCs from grapevine leaves were annotated/identified by headspace-solid-phase microextraction gas chromatography-mass spectrometry analysis. Following P. viticola inoculation, the abundance of most of these VOCs was higher in resistant (BC4, Kober 5BB, SO4 and Solaris) than in susceptible (Pinot noir) genotypes. The post-inoculation mechanism included the accumulation of 2-ethylfuran, 2-phenylethanol, β-caryophyllene, β-cyclocitral, β-selinene and trans-2-pentenal, which all demonstrated inhibitory activities against downy mildew infections in water suspensions. Moreover, the development of downy mildew symptoms was reduced on leaf disks of susceptible grapevines exposed to air treated with 2-ethylfuran, 2-phenylethanol, β-cyclocitral or trans-2-pentenal, indicating the efficacy of these VOCs against P. viticola in receiver plant tissues. Our data suggest that VOCs contribute to the defence mechanisms of resistant grapevines and that they may inhibit the development of downy mildew symptoms on both emitting and receiving tissues.
Collapse
|
46
|
Redeker KR, Cai LL, Dumbrell AJ, Bardill A, Chong JP, Helgason T. Noninvasive Analysis of the Soil Microbiome: Biomonitoring Strategies Using the Volatilome, Community Analysis, and Environmental Data. ADV ECOL RES 2018. [DOI: 10.1016/bs.aecr.2018.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Glaum P, Kessler A. Functional reduction in pollination through herbivore-induced pollinator limitation and its potential in mutualist communities. Nat Commun 2017; 8:2031. [PMID: 29229901 PMCID: PMC5725495 DOI: 10.1038/s41467-017-02072-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 11/06/2017] [Indexed: 12/03/2022] Open
Abstract
Plant-pollinator interactions are complex because they are affected by both interactors' phenotypes and external variables. Herbivory is one external variable that can have divergent effects on the individual and the population levels depending on specific phenotypic plastic responses of a plant to herbivory. In the wild tomato, Solanum peruvianum, herbivory limits pollinator visits, which reduces individual plant fitness due to herbivore-induced chemical defenses and signaling on pollinators (herbivore-induced pollinator limitation). We showed these herbivory-induced decreases in pollination to individual plants best match a Type II functional-response curve. We then developed a general model that shows these individual fitness reductions from herbivore-induced changes in plant metabolism can indirectly benefit overall populations and community resilience. These results introduce mechanisms of persistence in antagonized mutualistic communities that were previously found prone to extinction in theoretical models. Results also imply that emergent ecological dynamics of individual fitness reductions may be more complex than previously thought.
Collapse
Affiliation(s)
- Paul Glaum
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, MI, 48109, USA.
| | - André Kessler
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
48
|
Dong YJ, Hwang SY. Cucumber Plants Baited with Methyl Salicylate Accelerates Scymnus (Pullus) sodalis (Coleoptera: Coccinellidae) Visiting to Reduce Cotton Aphid (Hemiptera: Aphididae) Infestation. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:2092-2099. [PMID: 28961975 DOI: 10.1093/jee/tox240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Indexed: 06/07/2023]
Abstract
The cotton aphid, Aphis gossypii (Glover) (Hemiptera: Aphididae), is a major pest of many crops worldwide and a major cucumber plant pest in Taiwan. Because cotton aphids rapidly develop insecticide resistance and because of the insecticide residue problem, a safe and sustainable method is required to replace conventional chemical control methods. Methyl salicylate (MeSA), a herbivore-induced plant volatile, has been shown to affect aphids' behavior and attract the natural enemies of aphids for reducing their population. Therefore, this study examined the direct effects of MeSA on cotton aphids' settling preference, population development, and attractiveness to natural enemies. The efficiency of using MeSA and the commercial insecticide pymetrozine for reducing the cotton aphid population in laboratory and outdoor cucumber plant pot was also examined. The results showed no difference in winged aphids' settling preference and population development between the MeSA and blank treatments. Cucumber plants infested with cotton aphids and baited with 0.1% or 10% MeSA contained significantly higher numbers of the natural enemy of cotton aphids, namely Scymnus (Pullus) sodalis (Weise) (Coleoptera: Coccinellidae), and MeSA-treated cucumber plants contained a lower number of aphids. Significantly lower cotton aphid numbers were found on cucumber plants within a 10-m range of MeSA application. In addition, fruit yield showed no difference between the MeSA and pymetrozine treatments. According to our findings, 0.1% MeSA application can replace insecticides as a cotton aphid control tool. However, large-scale experiments are necessary to confirm its efficiency and related conservation biological control strategies before further use.
Collapse
Affiliation(s)
- Y J Dong
- Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, 189 Zhongzheng Road, Wufeng District, Taichung City 41362, Taiwan (R.O.C.)
| | - S Y Hwang
- Department of Entomology, National Chung Hsing University, 145 Xingda Road, South District, Taichung City 40227, Taiwan (R.O.C.)
| |
Collapse
|
49
|
Burkle LA, Runyon JB. The smell of environmental change: Using floral scent to explain shifts in pollinator attraction. APPLICATIONS IN PLANT SCIENCES 2017; 5:apps1600123. [PMID: 28690928 PMCID: PMC5499301 DOI: 10.3732/apps.1600123] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/03/2017] [Indexed: 05/18/2023]
Abstract
As diverse environmental changes continue to influence the structure and function of plant-pollinator interactions across spatial and temporal scales, we will need to enlist numerous approaches to understand these changes. Quantitative examination of floral volatile organic compounds (VOCs) is one approach that is gaining popularity, and recent work suggests that floral VOCs hold substantial promise for better understanding and predicting the effects of environmental change on plant-pollinator interactions. Until recently, few ecologists were employing chemical approaches to investigate mechanisms by which components of environmental change may disrupt these essential mutualisms. In an attempt to make these approaches more accessible, we summarize the main field, laboratory, and statistical methods involved in capturing, quantifying, and analyzing floral VOCs in the context of changing environments. We also highlight some outstanding questions that we consider to be highly relevant to making progress in this field.
Collapse
Affiliation(s)
- Laura A. Burkle
- Department of Ecology, Montana State University, Bozeman, Montana 59717 USA
- Author for correspondence:
| | - Justin B. Runyon
- Rocky Mountain Research Station, USDA Forest Service, 1648 S. 7th Avenue, Bozeman, Montana 59717 USA
| |
Collapse
|
50
|
Zakir A, Khallaf MA, Hansson BS, Witzgall P, Anderson P. Herbivore-Induced Changes in Cotton Modulates Reproductive Behavior in the Moth Spodoptera littoralis. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|