1
|
Wieckowski A, Vestin P, Ardö J, Roupsard O, Ndiaye O, Diatta O, Ba S, Agbohessou Y, Fensholt R, Verbruggen W, Gebremedhn HH, Tagesson T. Eddy covariance measurements reveal a decreased carbon sequestration strength 2010-2022 in an African semiarid savanna. GLOBAL CHANGE BIOLOGY 2024; 30:e17509. [PMID: 39323398 DOI: 10.1111/gcb.17509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024]
Abstract
Monitoring the changes of ecosystem functioning is pivotal for understanding the global carbon cycle. Despite its size and contribution to the global carbon cycle, Africa is largely understudied in regard to ongoing changes of its ecosystem functioning and their responses to climate change. One of the reasons is the lack of long-term in situ data. Here, we use eddy covariance to quantify the net ecosystem exchange (NEE) and its components-gross primary production (GPP) and ecosystem respiration (Reco) for years 2010-2022 for a Sahelian semiarid savanna to study trends in the fluxes. Significant negative trends were found for NEE (12.7 ± 2.8 g C m2 year-1), GPP (39.6 ± 7.9 g C m2 year-1), and Reco (32.2 ± 8.9 g C m2 year-1). We found that NEE decreased by 60% over the study period, and this decrease was mainly caused by stronger negative trends in rainy season GPP than in Reco. Additionally, we observed strong increasing trends in vapor pressure deficit, but no trends in rainfall or soil water content. Thus, a proposed explanation for the decrease in carbon sink strength is increasing atmospheric dryness. The warming climate in the Sahel, coupled with increasing evaporative demand, may thus lead to decreased GPP levels across this biome, and lowering its CO2 sequestration.
Collapse
Affiliation(s)
- Aleksander Wieckowski
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Patrik Vestin
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Jonas Ardö
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Olivier Roupsard
- CIRAD, UMR Eco&Sols, Dakar, Senegal
- Eco&Sols, CIRAD, INRAE, Institut Agro, IRD, Univ Montpellier, Montpellier, France
- LMI IESOL, Centre IRD-ISRA de Bel Air, Dakar, Senegal
| | - Ousmane Ndiaye
- Institut Sénégalais de Recherches Agricoles, Dakar, Senegal
| | - Ousmane Diatta
- Institut Sénégalais de Recherches Agricoles, Dakar, Senegal
| | - Seydina Ba
- LMI IESOL, Centre IRD-ISRA de Bel Air, Dakar, Senegal
- Faculté Des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Yélognissè Agbohessou
- CIRAD, UMR Eco&Sols, Dakar, Senegal
- Eco&Sols, CIRAD, INRAE, Institut Agro, IRD, Univ Montpellier, Montpellier, France
| | - Rasmus Fensholt
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Wim Verbruggen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Haftay Hailu Gebremedhn
- African Center of Excellence for Climate-Smart Agriculture and Biodiversity, Haramaya University, Dire Dawa, Ethiopia
| | - Torbern Tagesson
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Gauthey A, Bachofen C, Chin A, Cochard H, Gisler J, Mas E, Meusburger K, Peters RL, Schaub M, Tunas A, Zweifel R, Grossiord C. Twenty years of irrigation acclimation is driven by denser canopies and not by plasticity in twig- and needle-level hydraulics in a Pinus sylvestris forest. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3141-3152. [PMID: 38375924 PMCID: PMC11103111 DOI: 10.1093/jxb/erae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Climate change is predicted to increase atmospheric vapor pressure deficit, exacerbating soil drought, and thus enhancing tree evaporative demand and mortality. Yet, few studies have addressed the longer-term drought acclimation strategy of trees, particularly the importance of morphological versus hydraulic plasticity. Using a long-term (20 years) irrigation experiment in a natural forest, we investigated the acclimation of Scots pine (Pinus sylvestris) morpho-anatomical traits (stomatal anatomy and crown density) and hydraulic traits (leaf water potential, vulnerability to cavitation (Ψ50), specific hydraulic conductivity (Ks), and tree water deficit) to prolonged changes in soil moisture. We found that low water availability reduced twig water potential and increased tree water deficit during the growing season. Still, the trees showed limited adjustments in most branch-level hydraulic traits (Ψ50 and Ks) and needle anatomy. In contrast, trees acclimated to prolonged irrigation by increasing their crown density and hence the canopy water demand. This study demonstrates that despite substantial canopy adjustments, P. sylvestris may be vulnerable to extreme droughts because of limited adjustment potential in its hydraulic system. While sparser canopies reduce water demand, such shifts take decades to occur under chronic water deficits and might not mitigate short-term extreme drought events.
Collapse
Affiliation(s)
- Alice Gauthey
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Christoph Bachofen
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Alana Chin
- Plant Ecology Group, Institute for Integrative Biology, ETH-Zürich, Zürich, Switzerland
| | - Hervé Cochard
- INRAE, PIAF, Université Clermont-Auvergne, Clermont-Ferrand, France
| | - Jonas Gisler
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-8903, Birmensdorf, Switzerland
| | - Eugénie Mas
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Katrin Meusburger
- Forest Soils and Biochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Richard L Peters
- Physiological Plant Ecology, Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| | - Marcus Schaub
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-8903, Birmensdorf, Switzerland
| | - Alex Tunas
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
- Department of Ecology, University of Innsbruck, Sternwartestrasse 15, A-6020, Innsbruck, Austria
| | - Roman Zweifel
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-8903, Birmensdorf, Switzerland
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| |
Collapse
|
3
|
Mencuccini M, Anderegg WRL, Binks O, Knipfer T, Konings AG, Novick K, Poyatos R, Martínez-Vilalta J. A new empirical framework to quantify the hydraulic effects of soil and atmospheric drivers on plant water status. GLOBAL CHANGE BIOLOGY 2024; 30:e17222. [PMID: 38450813 DOI: 10.1111/gcb.17222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 03/08/2024]
Abstract
Metrics to quantify regulation of plant water status at the daily as opposed to the seasonal scale do not presently exist. This gap is significant since plants are hypothesised to regulate their water potential not only with respect to slowly changing soil drought but also with respect to faster changes in air vapour pressure deficit (VPD), a variable whose importance for plant physiology is expected to grow because of higher temperatures in the coming decades. We present a metric, the stringency of water potential regulation, that can be employed at the daily scale and quantifies the effects exerted on plants by the separate and combined effect of soil and atmospheric drought. We test our theory using datasets from two experiments where air temperature and VPD were experimentally manipulated. In contrast to existing metrics based on soil drought that can only be applied at the seasonal scale, our metric successfully detects the impact of atmospheric warming on the regulation of plant water status. We show that the thermodynamic effect of VPD on plant water status can be isolated and compared against that exerted by soil drought and the covariation between VPD and soil drought. Furthermore, in three of three cases, VPD accounted for more than 5 MPa of potential effect on leaf water potential. We explore the significance of our findings in the context of potential future applications of this metric from plant to ecosystem scale.
Collapse
Affiliation(s)
| | - William R L Anderegg
- Wilkes Center for Climate Science and Policy, University of Utah, Salt Lake City, Utah, USA
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | - Thorsten Knipfer
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Kim Novick
- University of Indiana, Bloomington, Indiana, USA
| | | | | |
Collapse
|
4
|
Preisler Y, Grünzweig JM, Ahiman O, Amer M, Oz I, Feng X, Muller JD, Ruehr N, Rotenberg E, Birami B, Yakir D. Vapour pressure deficit was not a primary limiting factor for gas exchange in an irrigated, mature dryland Aleppo pine forest. PLANT, CELL & ENVIRONMENT 2023; 46:3775-3790. [PMID: 37680062 DOI: 10.1111/pce.14712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Climate change is often associated with increasing vapour pressure deficit (VPD) and changes in soil moisture (SM). While atmospheric and soil drying often co-occur, their differential effects on plant functioning and productivity remain uncertain. We investigated the divergent effects and underlying mechanisms of soil and atmospheric drought based on continuous, in situ measurements of branch gas exchange with automated chambers in a mature semiarid Aleppo pine forest. We investigated the response of control trees exposed to combined soil-atmospheric drought (low SM, high VPD) during the rainless Mediterranean summer and that of trees experimentally unconstrained by soil dryness (high SM; using supplementary dry season water supply) but subjected to atmospheric drought (high VPD). During the seasonal dry period, branch conductance (gbr ), transpiration rate (E) and net photosynthesis (Anet ) decreased in low-SM trees but greatly increased in high-SM trees. The response of E and gbr to the massive rise in VPD (to 7 kPa) was negative in low-SM trees and positive in high-SM trees. These observations were consistent with predictions based on a simple plant hydraulic model showing the importance of plant water potential in the gbr and E response to VPD. These results demonstrate that avoiding drought on the supply side (SM) and relying on plant hydraulic regulation constrains the effects of atmospheric drought (VPD) as a stressor on canopy gas exchange in mature pine trees under field conditions.
Collapse
Affiliation(s)
- Yakir Preisler
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - José M Grünzweig
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ori Ahiman
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Beit Dagan, Israel
| | - Madi Amer
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
| | - Itai Oz
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Xue Feng
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jonathan D Muller
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
- School for Climate Studies, Stellenbosch University, Stellenbosch, South Africa
| | - Nadine Ruehr
- Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Eyal Rotenberg
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Birami
- Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Dan Yakir
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Sevanto S, Gehring CA, Ryan MG, Patterson A, Losko AS, Vogel SC, Carter KR, Dickman LT, Espy MA, Kuske CR. Benefits of symbiotic ectomycorrhizal fungi to plant water relations depend on plant genotype in pinyon pine. Sci Rep 2023; 13:14424. [PMID: 37660169 PMCID: PMC10475095 DOI: 10.1038/s41598-023-41191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023] Open
Abstract
Rhizosphere microbes, such as root-associated fungi, can improve plant access to soil resources, affecting plant health, productivity, and stress tolerance. While mycorrhizal associations are ubiquitous, plant-microbe interactions can be species specific. Here we show that the specificity of the effects of microbial symbionts on plant function can go beyond species level: colonization of roots by ectomycorrhizal fungi (EMF) of the genus Geopora has opposite effects on water uptake, and stomatal control of desiccation in drought tolerant and intolerant genotypes of pinyon pine (Pinus edulis Engelm.). These results demonstrate, for the first time, that microorganisms can have significant and opposite effects on important plant functional traits like stomatal control of desiccation that are associated with differential mortality and growth in nature. They also highlight that appropriate pairing of plant genotypes and microbial associates will be important for mitigating climate change impacts on vegetation.
Collapse
Affiliation(s)
- Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, MS J495, PO Box 1663, Los Alamos, NM, 87545, USA.
| | - Catherine A Gehring
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Max G Ryan
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, MS J495, PO Box 1663, Los Alamos, NM, 87545, USA
- Integral Ecology Group, Duncan, BC, V9L 6H1, Canada
| | - Adair Patterson
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Adrian S Losko
- Material Sciences and Technology Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Forschungs-Neutronenquelle Heinz Maier-Leibnitz, 85748, Garching, Germany
| | - Sven C Vogel
- Material Sciences and Technology Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Kelsey R Carter
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, MS J495, PO Box 1663, Los Alamos, NM, 87545, USA
| | - L Turin Dickman
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, MS J495, PO Box 1663, Los Alamos, NM, 87545, USA
| | - Michelle A Espy
- Engineering Technology and Design Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Cheryl R Kuske
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
6
|
Shekhar A, Hörtnagl L, Buchmann N, Gharun M. Long-term changes in forest response to extreme atmospheric dryness. GLOBAL CHANGE BIOLOGY 2023; 29:5379-5396. [PMID: 37381105 DOI: 10.1111/gcb.16846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/01/2023] [Indexed: 06/30/2023]
Abstract
Atmospheric dryness, as indicated by vapor pressure deficit (VPD), has a strong influence on forest greenhouse gas exchange with the atmosphere. In this study, we used long-term (10-30 years) net ecosystem productivity (NEP) measurements from 60 forest sites across the world (1003 site-years) to quantify long-term changes in forest NEP resistance and NEP recovery in response to extreme atmospheric dryness. We tested two hypotheses: first, across sites differences in NEP resistance and NEP recovery of forests will depend on both the biophysical characteristics (i.e., leaf area index [LAI] and forest type) of the forest as well as on the local meteorological conditions of the site (i.e., mean VPD of the site), and second, forests experiencing an increasing trend in frequency and intensity of extreme dryness will show an increasing trend in NEP resistance and NEP recovery over time due to emergence of long-term ecological stress memory. We used a data-driven statistical learning approach to quantify NEP resistance and NEP recovery over multiple years. Our results showed that forest types, LAI, and median local VPD conditions explained over 50% of variance in both NEP resistance and NEP recovery, with drier sites showing higher NEP resistance and NEP recovery compared to sites with less atmospheric dryness. The impact of extreme atmospheric dryness events on NEP lasted for up to 3 days following most severe extreme events in most forests, indicated by an NEP recovery of less than 100%. We rejected our second hypothesis as we found no consistent relationship between trends of extreme VPD with trends in NEP resistance and NEP recovery across different forest sites, thus an increase in atmospheric dryness as it is predicted might not increase the resistance or recovery of forests in terms of NEP.
Collapse
Affiliation(s)
- Ankit Shekhar
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Lukas Hörtnagl
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Nina Buchmann
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Mana Gharun
- Institute of Landscape Ecology, Faculty of Geosciences, University of Münster, Münster, Germany
| |
Collapse
|
7
|
Hernandez-Santana V, Rodriguez-Dominguez CM, Sebastian-Azcona J, Perez-Romero LF, Diaz-Espejo A. Role of hydraulic traits in stomatal regulation of transpiration under different vapour pressure deficits across five Mediterranean tree crops. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4597-4612. [PMID: 37115664 PMCID: PMC10433928 DOI: 10.1093/jxb/erad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/27/2023] [Indexed: 06/19/2023]
Abstract
The differential stomatal regulation of transpiration among plant species in response to water deficit is not fully understood, although several hydraulic traits have been reported to influence it. This knowledge gap is partly due to a lack of direct and concomitant experimental data on transpiration, stomatal conductance, and hydraulic traits. We measured sap flux density (Js), stomatal conductance (gs), and different hydraulic traits in five crop species. Our aim was to contribute to establishing the causal relationship between water consumption and its regulation using a hydraulic trait-based approach. The results showed that the species-specific regulation of Js by gs was overall coordinated with the functional hydraulic traits analysed. Particularly relevant was the negative and significant relationship found between the Huber value (Hv) and its functional analogue ratio between maximum Js and gs (Jsmax/gsmax) which can be understood as a compensation to maintain the hydraulic supply to the leaves. The Hv was also significantly related to the slope of the relationship between gs and Js response to vapour pressure deficit and explained most of its variability, adding up to evidence recognizing Hv as a major trait in plant water relations. Thus, a hydraulic basis for regulation of tree water use should be considered.
Collapse
Affiliation(s)
- Virginia Hernandez-Santana
- Irrigation and Ecophysiology Group. Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Avda Reina Mercedes, 41012 Seville, Spain
- Laboratory of Plant Molecular Ecophysiology, Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Avda Reina Mercedes, 41012 Seville, Spain
| | - Celia M Rodriguez-Dominguez
- Irrigation and Ecophysiology Group. Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Avda Reina Mercedes, 41012 Seville, Spain
- Laboratory of Plant Molecular Ecophysiology, Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Avda Reina Mercedes, 41012 Seville, Spain
| | - Jaime Sebastian-Azcona
- Irrigation and Ecophysiology Group. Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Avda Reina Mercedes, 41012 Seville, Spain
| | - Luis Felipe Perez-Romero
- Escuela Técnica Superior de Ingeniería, Universidad de Huelva, Avenida del Ejercito s/n. 21007 Huelva, Spain
| | - Antonio Diaz-Espejo
- Irrigation and Ecophysiology Group. Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Avda Reina Mercedes, 41012 Seville, Spain
- Laboratory of Plant Molecular Ecophysiology, Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Avda Reina Mercedes, 41012 Seville, Spain
| |
Collapse
|
8
|
Zhao J, Zhao X, Wu D, Meili N, Fatichi S. Satellite-based evidence highlights a considerable increase of urban tree cooling benefits from 2000 to 2015. GLOBAL CHANGE BIOLOGY 2023; 29:3085-3097. [PMID: 36876991 DOI: 10.1111/gcb.16667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 05/03/2023]
Abstract
Tree planting is a prevalent strategy to mitigate urban heat. Tree cooling efficiency (TCE), defined as the temperature reduction for a 1% tree cover increase, plays an important role in urban climate as it regulates the capacity of trees to alter the surface energy and water budget. However, the spatial variation and more importantly, temporal heterogeneity of TCE in global cities are not fully explored. Here, we used Landsat-based tree cover and land surface temperature (LST) to compare TCEs at a reference air temperature and tree cover level across 806 global cities and to explore their potential drivers with a boosted regression tree (BRT) machine learning model. From the results, we found that TCE is spatially regulated by not only leaf area index (LAI) but climate variables and anthropogenic factors especially city albedo, without a specific variable dominating the others. However, such spatial difference is attenuated by the decrease of TCE with tree cover, most pronounced in midlatitude cities. During the period 2000-2015, more than 90% of analyzed cities showed an increasing trend in TCE, which is likely explained by a combined result of the increase in LAI, intensified solar radiation due to decreased aerosol content, increase in urban vapor pressure deficit (VPD) and decrease of city albedo. Concurrently, significant urban afforestation occurred across many cities showing a global city-scale mean tree cover increase of 5.3 ± 3.8% from 2000 to 2015. Over the growing season, such increases combined with an increasing TCE were estimated to on average yield a midday surface cooling of 1.5 ± 1.3°C in tree-covered urban areas. These results are offering new insights into the use of urban afforestation as an adaptation to global warming and urban planners may leverage them to provide more cooling benefits if trees are primarily planted for this purpose.
Collapse
Affiliation(s)
- Jiacheng Zhao
- State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- Beijing Engineering Research Center for Global Land Remote Sensing Products, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Xiang Zhao
- State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- Beijing Engineering Research Center for Global Land Remote Sensing Products, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Donghai Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Naika Meili
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Simone Fatichi
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Peters RL, Steppe K, Pappas C, Zweifel R, Babst F, Dietrich L, von Arx G, Poyatos R, Fonti M, Fonti P, Grossiord C, Gharun M, Buchmann N, Steger DN, Kahmen A. Daytime stomatal regulation in mature temperate trees prioritizes stem rehydration at night. THE NEW PHYTOLOGIST 2023. [PMID: 37235688 DOI: 10.1111/nph.18964] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/16/2023] [Indexed: 05/28/2023]
Abstract
Trees remain sufficiently hydrated during drought by closing stomata and reducing canopy conductance (Gc ) in response to variations in atmospheric water demand and soil water availability. Thresholds that control the reduction of Gc are proposed to optimize hydraulic safety against carbon assimilation efficiency. However, the link between Gc and the ability of stem tissues to rehydrate at night remains unclear. We investigated whether species-specific Gc responses aim to prevent branch embolisms, or enable night-time stem rehydration, which is critical for turgor-dependent growth. For this, we used a unique combination of concurrent dendrometer, sap flow and leaf water potential measurements and collected branch-vulnerability curves of six common European tree species. Species-specific Gc reduction was weakly related to the water potentials at which 50% of branch xylem conductivity is lost (P50 ). Instead, we found a stronger relationship with stem rehydration. Species with a stronger Gc control were less effective at refilling stem-water storage as the soil dries, which appeared related to their xylem architecture. Our findings highlight the importance of stem rehydration for water-use regulation in mature trees, which likely relates to the maintenance of adequate stem turgor. We thus conclude that stem rehydration must complement the widely accepted safety-efficiency stomatal control paradigm.
Collapse
Affiliation(s)
- Richard L Peters
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
- Forest is Life, TERRA Teaching and Research Centre, Gembloux Agro Bio-Tech, University of Liège, Passage des Déportés 2, 5030, Gembloux, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Christoforos Pappas
- Department of Civil Engineering, University of Patras, Rio, Patras, 26504, Greece
| | - Roman Zweifel
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Flurin Babst
- School of Natural Resources and the Environment, University of Arizona, East Lowell Street 1064, Tucson, AZ, 85721, USA
- Laboratory of Tree-Ring Research, University of Arizona, East Lowell Street 1215, Tucson, AZ, 857121, USA
| | - Lars Dietrich
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| | - Georg von Arx
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, 3012, Bern, Switzerland
| | - Rafael Poyatos
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Marina Fonti
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Patrick Fonti
- Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School for Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanna, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-1015, Lausanne, Switzerland
| | - Mana Gharun
- Department of Environmental Systems Science, ETH Zurich, Universitatstrasse 2, CH-8092, Zurich, Switzerland
- Department of Geosciences, University of Münster, Heisenbergstrasse 2, 48149, Münster, Germany
| | - Nina Buchmann
- Department of Environmental Systems Science, ETH Zurich, Universitatstrasse 2, CH-8092, Zurich, Switzerland
| | - David N Steger
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| | - Ansgar Kahmen
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| |
Collapse
|
10
|
Wang Z, Wang C. Interactive effects of elevated temperature and drought on plant carbon metabolism: A meta-analysis. GLOBAL CHANGE BIOLOGY 2023; 29:2824-2835. [PMID: 36794475 DOI: 10.1111/gcb.16639] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/18/2023] [Indexed: 05/31/2023]
Abstract
Elevated temperature (Te ) and drought often co-occur and interactively affect plant carbon (C) metabolism and thus the ecosystem C cycling; however, the magnitude of their interaction is unclear, making the projection of global change impacts challenging. Here, we compiled 107 journal articles in which temperature and water availability were jointly manipulated, and we performed a meta-analysis of interactive effects of Te and drought on leaf photosynthesis (Agrowth ) and respiration (Rgrowth ) at growth temperature, nonstructural carbohydrates and biomass of plants, and their dependencies on experimental and biological moderators (e.g., treatment intensity, plant functional type). Our results showed that, overall, there was no significant interaction of Te and drought on Agrowth . Te accelerated Rgrowth under well-watered conditions rather than under drought conditions. The Te × drought interaction on leaf soluble sugar and starch concentrations were neutral and negative, respectively. The effect of Te and drought on plant biomass displayed a negative interaction, with Te deteriorating the drought impacts. Drought induced an increase in root to shoot ratio at ambient temperature but not at Te . The magnitudes of Te and drought negatively modulated the Te × drought interactions on Agrowth . Root biomass of woody plants was more vulnerable to drought than that of herbaceous plants at ambient temperature, but this difference diminished at Te . Perennial herbs exhibited a stronger amplifying effect of Te on plant biomass in response to drought than did annual herbs. Te exacerbated the responses of Agrowth and stomatal conductance to drought for evergreen broadleaf trees rather than for deciduous broadleaf and evergreen coniferous trees. A negative Te × drought interaction on plant biomass was observed on species-level rather than on community-level. Collectively, our findings provide a mechanistic understanding of the interactive effects of Te and drought on plant C metabolism, which would improve the prediction of climate change impacts.
Collapse
Affiliation(s)
- Zhaoguo Wang
- Center for Ecological Research, Northeast Forestry University, Harbin, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Chuankuan Wang
- Center for Ecological Research, Northeast Forestry University, Harbin, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| |
Collapse
|
11
|
Thompson RA, Adams HD, Breshears DD, Collins AD, Dickman LT, Grossiord C, Manrique-Alba À, Peltier DM, Ryan MG, Trowbridge AM, McDowell NG. No carbon storage in growth-limited trees in a semi-arid woodland. Nat Commun 2023; 14:1959. [PMID: 37029120 PMCID: PMC10081995 DOI: 10.1038/s41467-023-37577-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
Plant survival depends on a balance between carbon supply and demand. When carbon supply becomes limited, plants buffer demand by using stored carbohydrates (sugar and starch). During drought, NSCs (non-structural carbohydrates) may accumulate if growth stops before photosynthesis. This expectation is pervasive, yet few studies have combined simultaneous measurements of drought, photosynthesis, growth, and carbon storage to test this. Using a field experiment with mature trees in a semi-arid woodland, we show that growth and photosynthesis slow in parallel as [Formula: see text] declines, preventing carbon storage in two species of conifer (J. monosperma and P. edulis). During experimental drought, growth and photosynthesis were frequently co-limited. Our results point to an alternative perspective on how plants use carbon that views growth and photosynthesis as independent processes both regulated by water availability.
Collapse
Affiliation(s)
- R Alexander Thompson
- School of the Environment, Washington State University, Pullman, WA, 99164, USA.
| | - Henry D Adams
- School of the Environment, Washington State University, Pullman, WA, 99164, USA
| | - David D Breshears
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, 85719, USA
| | - Adam D Collins
- Los Alamos National Laboratory, Earth & Environmental Sciences Division, Los Alamos, NM, USA
| | - L Turin Dickman
- Los Alamos National Laboratory, Earth & Environmental Sciences Division, Los Alamos, NM, USA
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-1015, Lausanne, Switzerland
| | | | - Drew M Peltier
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Michael G Ryan
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, 80523, USA
- USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, 80526, USA
| | - Amy M Trowbridge
- Department of Entomology, University of Wisconsin, Madison, WI, 53706, USA
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Lab, PO Box 999, Richland, WA, 99352, USA
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164-4236, USA
| |
Collapse
|
12
|
Arslan AM, Wang X, Liu BY, Xu YN, Li L, Gong XY. Photosynthetic resource-use efficiency trade-offs triggered by vapour pressure deficit and nitrogen supply in a C 4 species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107666. [PMID: 37001304 DOI: 10.1016/j.plaphy.2023.107666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/19/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Trade-offs in resource-use efficiency (including water-, nitrogen-, and light-use efficiency, i.e., WUE, NUE, and LUE) are an important acclimation strategy of plants to environmental stresses. C4 photosynthesis, featured by a CO2 concentrating mechanism, is believed to be more efficient in using resources compared to C3 photosynthesis. However, response of photosynthetic resource-use efficiency trade-offs in C4 plants to vapour pressure deficit (VPD) and N supply has rarely been studied. Here, we studied the photosynthetic acclimation of Cleistogenes squarrosa, a perennial C4 grass, to controlled growth conditions with high or low VPD and N supply. High VPD increased WUE by 12% and decreased NUE by 16%, the ratio of net photosynthetic rate (A) to electron transport rate (J) (A/J) by 7% and the apparent quantum yield by 6%. High N supply tended to reduce NUE and increased maximum phosphoenol pyruvate carboxylation rate by 71% and slightly increased WUE. Stomatal conductance showed acclimation to VPD according to the Ball-Berry model, while a balanced cost of carboxylation and transpiration capacity was found across VPD and N treatments based on the least-cost model. WUE correlated negatively with NUE and LUE indicating that there was a trade-off between them, which is likely associated with acclimations in stomatal conductance and CO2 concentrating mechanisms.
Collapse
Affiliation(s)
- Ashraf Muhammad Arslan
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Xuming Wang
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China; Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fuzhou, 350007, China.
| | - Bo Ya Liu
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Yi Ning Xu
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Lei Li
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Xiao Ying Gong
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China; Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fuzhou, 350007, China.
| |
Collapse
|
13
|
Barotto AJ, Martínez-Meier A, Segura V, Monteoliva S, Charpentier JP, Gyenge J, Sergent AS, Millier F, Rozenberg P, Fernández ME. Use of near-infrared spectroscopy to estimate physical, anatomical and hydraulic properties of Eucalyptus wood. TREE PHYSIOLOGY 2023; 43:501-514. [PMID: 36383394 DOI: 10.1093/treephys/tpac132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/26/2022] [Accepted: 11/11/2022] [Indexed: 05/03/2023]
Abstract
Tree breeding programs and wood industries require simple, time- and cost-effective techniques to process large volumes of samples. In recent decades, near-infrared spectroscopy (NIRS) has been acknowledged as one of the most powerful techniques for wood analysis, making it the most used tool for high-throughput phenotyping. Previous studies have shown that a significant number of anatomical, physical, chemical and mechanical wood properties can be estimated through NIRS, both for angiosperm and gymnosperm species. However, the ability of this technique to predict functional traits related to drought resistance has been poorly explored, especially in angiosperm species. This is particularly relevant since determining xylem hydraulic properties by conventional techniques is complex and time-consuming, clearly limiting its use in studies and applications that demand large amounts of samples. In this study, we measured several wood anatomical and hydraulic traits and collected NIR spectra in branches of two Eucalyptus L'Hér species. We developed NIRS calibration models and discussed their ability to accurately predict the studied traits. The models generated allowed us to adequately calibrate the reference traits, with high R2 (≥0.75) for traits such as P12, P88, the slope of the vulnerability curves to xylem embolism or the fiber wall fraction, and with lower R2 (0.39-0.52) for P50, maximum hydraulic conductivity or frequency of ray parenchyma. We found that certain wavenumbers improve models' calibration, with those in the range of 4000-5500 cm-1 predicting the highest number of both anatomical and functional traits. We concluded that the use of NIRS allows calibrating models with potential predictive value not only for wood structural and chemical variables but also for anatomical and functional traits related to drought resistance in wood types with complex structure as eucalypts. These results are promising in light of the required knowledge about species and genotypes adaptability to global climatic change.
Collapse
Affiliation(s)
- Antonio José Barotto
- Cátedra de Dendrología, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, CC 31 (1900) La Plata, Argentina
| | - Alejandro Martínez-Meier
- INTA EEA Bariloche, Grupo de Ecología Forestal, UEDD IFAB INTA-CONICET - Laboratorio de Ecología, Ecofisiología y Madera (LEEMA), Modesta Victoria 4450 (8400), Río Negro, Argentina
- Laboratorio Internacional Asociado LIA-Forestia (INTA - INRAE - UNAH)
| | - Vincent Segura
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | | | - Jean-Paul Charpentier
- UMR 0588 BioForA, INRAE, ONF, Orléans, France, 2163 Avenue de la Pomme de Pin, CS 40001 Ardon, 45075 Orléans Cedex 2, France
| | - Javier Gyenge
- Laboratorio Internacional Asociado LIA-Forestia (INTA - INRAE - UNAH)
- Grupo Forestal, UEDD IPADS INTA-CONICET-Oficina Tandil, Rodríguez 370 (7000), Tandil, Argentina
| | - Anne Sophie Sergent
- Laboratorio Internacional Asociado LIA-Forestia (INTA - INRAE - UNAH)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina UEDD IFAB INTA-CONICET - Laboratorio de Ecología, Ecofisiología y Madera (LEEMA), Modesta Victoria 4450 (8400), RíoNegro, Argentina
| | - Frédéric Millier
- UMR 0588 BioForA, INRAE, ONF, Orléans, France, 2163 Avenue de la Pomme de Pin, CS 40001 Ardon, 45075 Orléans Cedex 2, France
| | - Philippe Rozenberg
- Laboratorio Internacional Asociado LIA-Forestia (INTA - INRAE - UNAH)
- UMR 0588 BioForA, INRAE, ONF, Orléans, France, 2163 Avenue de la Pomme de Pin, CS 40001 Ardon, 45075 Orléans Cedex 2, France
| | - María Elena Fernández
- Laboratorio Internacional Asociado LIA-Forestia (INTA - INRAE - UNAH)
- Grupo Forestal, UEDD IPADS INTA-CONICET-Oficina Tandil, Rodríguez 370 (7000), Tandil, Argentina
| |
Collapse
|
14
|
McCalmont J, Kho LK, Teh YA, Chocholek M, Rumpang E, Rowland L, Basri MHA, Hill T. Oil palm (Elaeis guineensis) plantation on tropical peatland in South East Asia: Photosynthetic response to soil drainage level for mitigation of soil carbon emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159356. [PMID: 36270353 DOI: 10.1016/j.scitotenv.2022.159356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
While existing moratoria in Indonesia and Malaysia should preclude continued large-scale expansion of palm oil production into new areas of South-East Asian tropical peatland, existing plantations in the region remain a globally significant source of atmospheric carbon due to drainage driven decomposition of peatland soils. Previous studies have made clear the direct link between drainage depth and peat carbon decomposition and significant reductions in the emission rate of CO2 can be made by raising water tables nearer to the soil surface. However, the impact of such changes on palm fruit yield is not well understood and will be a critical consideration for plantation managers. Here we take advantage of very high frequency, long-term monitoring of canopy-scale carbon exchange at a mature oil palm plantation in Malaysian Borneo to investigate the relationship between drainage level and photosynthetic uptake and consider the confounding effects of light quality and atmospheric vapour pressure deficit. Canopy modelling from our dataset demonstrated that palms were exerting significantly greater stomatal control at deeper water table depths (WTD) and the optimum WTD for photosynthesis was found to be between 0.3 and 0.4 m below the soil surface. Raising WTD to this level, from the industry typical drainage level of 0.6 m, could increase photosynthetic uptake by 3.6 % and reduce soil surface emission of CO2 by 11 %. Our study site further showed that despite being poorly drained compared to other planting blocks at the same plantation, monthly fruit bunch yield was, on average, 14 % greater. While these results are encouraging, and at least suggest that raising WTD closer to the soil surface to reduce emissions is unlikely to produce significant yield penalties, our results are limited to a single study site and more work is urgently needed to confirm these results at other plantations.
Collapse
Affiliation(s)
- Jon McCalmont
- College of Life and Environmental Science, University of Exeter, Streatham Campus, Rennes Drive, Exeter EX4 4RJ, UK; School of Biological Sciences, University of Aberdeen, King's College, Aberdeen AB24 3FX, UK.
| | - Lip Khoon Kho
- Peat Ecosystem and Biodiversity Unit, Biology and Sustainability Research Division, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia; Economic Planning Unit, Sarawak Chief Minister's Dept., 93502 Kuching, Sarawak, Malaysia
| | - Yit Arn Teh
- School of Natural and Environmental Science, Newcastle University, Drummond Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Melanie Chocholek
- Dept. Earth and Environmental Science, University of St. Andrews, Irvine Building, North Street, St. Andrews KY16 9AL, UK
| | - Elisa Rumpang
- Peat Ecosystem and Biodiversity Unit, Biology and Sustainability Research Division, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Lucy Rowland
- College of Life and Environmental Science, University of Exeter, Streatham Campus, Rennes Drive, Exeter EX4 4RJ, UK
| | - Mohd Hadi Akbar Basri
- College of Life and Environmental Science, University of Exeter, Streatham Campus, Rennes Drive, Exeter EX4 4RJ, UK; Dept. of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Tim Hill
- College of Life and Environmental Science, University of Exeter, Streatham Campus, Rennes Drive, Exeter EX4 4RJ, UK
| |
Collapse
|
15
|
Saeed F, Chaudhry UK, Raza A, Charagh S, Bakhsh A, Bohra A, Ali S, Chitikineni A, Saeed Y, Visser RGF, Siddique KHM, Varshney RK. Developing future heat-resilient vegetable crops. Funct Integr Genomics 2023; 23:47. [PMID: 36692535 PMCID: PMC9873721 DOI: 10.1007/s10142-023-00967-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/25/2023]
Abstract
Climate change seriously impacts global agriculture, with rising temperatures directly affecting the yield. Vegetables are an essential part of daily human consumption and thus have importance among all agricultural crops. The human population is increasing daily, so there is a need for alternative ways which can be helpful in maximizing the harvestable yield of vegetables. The increase in temperature directly affects the plants' biochemical and molecular processes; having a significant impact on quality and yield. Breeding for climate-resilient crops with good yields takes a long time and lots of breeding efforts. However, with the advent of new omics technologies, such as genomics, transcriptomics, proteomics, and metabolomics, the efficiency and efficacy of unearthing information on pathways associated with high-temperature stress resilience has improved in many of the vegetable crops. Besides omics, the use of genomics-assisted breeding and new breeding approaches such as gene editing and speed breeding allow creation of modern vegetable cultivars that are more resilient to high temperatures. Collectively, these approaches will shorten the time to create and release novel vegetable varieties to meet growing demands for productivity and quality. This review discusses the effects of heat stress on vegetables and highlights recent research with a focus on how omics and genome editing can produce temperature-resilient vegetables more efficiently and faster.
Collapse
Affiliation(s)
- Faisal Saeed
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240, Nigde, Turkey
| | - Usman Khalid Chaudhry
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240, Nigde, Turkey
| | - Ali Raza
- College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Allah Bakhsh
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Abhishek Bohra
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, 6150, Australia
| | - Sumbul Ali
- Akhuwat Faisalabad Institute of Research Science and Technology, Faisalabad, Pakistan
| | - Annapurna Chitikineni
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, 6150, Australia
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Yasir Saeed
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, 15, Wageningen, The Netherlands
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, 6001, Australia
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, 6150, Australia.
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
| |
Collapse
|
16
|
Canopy Transpiration and Stomatal Conductance Dynamics of Ulmus pumila L. and Caragana korshinskii Kom. Plantations on the Bashang Plateau, China. FORESTS 2022. [DOI: 10.3390/f13071081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Constructing protective forests to control water and soil erosion is an effective measure to address land degradation in the Bashang Plateau of North China, but forest dieback has occurred frequently due to severe water deficits in recent decades. However, transpiration dynamics and their biophysical control factors under various soil water contents for different forest functional types are still unknown. Here, canopy transpiration and stomatal conductance of a 38-year-old Ulmus pumila L. and a 20-year-old Caragana korshinskii Kom. were quantified using the sap flow method, while simultaneously monitoring the meteorological and soil water content. The results showed that canopy transpiration averaged 0.55 ± 0.34 mm d−1 and 0.66 ± 0.32 mm d−1 for U. pumila, and was 0.74 ± 0.26 mm d−1 and 0.77 ± 0.24 mm d−1 for C. korshinskii in 2020 and 2021, respectively. The sensitivity of canopy transpiration to vapor pressure deficit (VPD) decreased as soil water stress increased for both species, indicating that the transpiration process is significantly affected by soil drought. Additionally, canopy stomatal conductance averaged 1.03 ± 0.91 mm s−1 and 1.34 ± 1.22 mm s−1 for U. pumila, and was 1.46 ± 0.90 mm s−1 and 1.51 ± 1.06 mm s−1 for C. korshinskii in 2020 and 2021, respectively. The low values of the decoupling coefficient (Ω) showed that canopy and atmosphere were well coupled for both species. Stomatal sensitivity to VPD decreased with decreasing soil water content, indicating that both U. pumila and C. korshinskii maintained a water-saving strategy under the stressed water conditions. Our results enable better understanding of transpiration dynamics and water-use strategies of different forest functional types in the Bashang Plateau, which will provide important insights for planted forests management and ecosystem stability under future climate changes.
Collapse
|
17
|
Liu F, You Q, Xue X, Peng F, Huang C, Ma S, Pan J, Shi Y, Chen X. The Stem Sap Flow and Water Sources for Tamarix ramosissima in an Artificial Shelterbelt With a Deep Groundwater Table in Northwest China. FRONTIERS IN PLANT SCIENCE 2022; 13:794084. [PMID: 35310678 PMCID: PMC8931467 DOI: 10.3389/fpls.2022.794084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The shelterbelt forest between oases and the desert plays a vital role in preventing aeolian disasters and desertification in arid regions of northwest China. Tamarix ramosissima (T. ramosissima), a typical perennial and native xerophyte shrub in Northwest China, grows naturally and is widely used in building artificial shelterbelt forests. The balance between water consumption and the availability of water determines the survival and growth of T. ramosissima. How T. ramosissima copes with extremely low rainfall and a deep groundwater table remains unknown. To answer this, the transpiration and the water sources of T. ramosissima were investigated by the heat balance and oxygen isotopic analysis method, respectively. Our results show that the daily T. ramosissima stem sap flow (SSF) was positively correlated with air temperature (Ta), photosynthetically active radiation (PAR), and the vapor pressure deficit (VPD). We found no significant relationship between the daily SSF and soil moisture in shallow (0-40 cm) and middle (40-160 cm) soil layers. Oxygen isotope results showed that T. ramosissima mainly sources (>90%) water from deep soil moisture (160-400 cm) and groundwater (910 cm). Diurnally, T. ramosissima SSF showed a hysteresis response to variations in PAR, Ta, and VPD, which suggests that transpiration suffers increasingly from water stress with increasing PAR, Ta, and VPD. Our results indicate that PAR, Ta, and VPD are the dominant factors that control T. ramosissima SSF, not precipitation and shallow soil moisture. Deep soil water and groundwater are the primary sources for T. ramosissima in this extremely water-limited environment. These results provide information that is essential for proper water resource management during vegetation restoration and ecological reafforestation in water-limited regions.
Collapse
Affiliation(s)
- Feiyao Liu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Drylands Salinization Research Station, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Quangang You
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Drylands Salinization Research Station, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xian Xue
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Drylands Salinization Research Station, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Fei Peng
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Drylands Salinization Research Station, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Arid Land Research Center, Tottori University, Tottori, Japan
| | - Cuihua Huang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Drylands Salinization Research Station, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Shaoxiu Ma
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Drylands Salinization Research Station, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Jing Pan
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Drylands Salinization Research Station, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Yaofang Shi
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Drylands Salinization Research Station, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xiaojie Chen
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Drylands Salinization Research Station, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
18
|
Rivero RM, Mittler R, Blumwald E, Zandalinas SI. Developing climate-resilient crops: improving plant tolerance to stress combination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:373-389. [PMID: 34482588 DOI: 10.1111/tpj.15483] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/31/2021] [Indexed: 05/21/2023]
Abstract
Global warming and climate change are driving an alarming increase in the frequency and intensity of different abiotic stresses, such as droughts, heat waves, cold snaps, and flooding, negatively affecting crop yields and causing food shortages. Climate change is also altering the composition and behavior of different insect and pathogen populations adding to yield losses worldwide. Additional constraints to agriculture are caused by the increasing amounts of human-generated pollutants, as well as the negative impact of climate change on soil microbiomes. Although in the laboratory, we are trained to study the impact of individual stress conditions on plants, in the field many stresses, pollutants, and pests could simultaneously or sequentially affect plants, causing conditions of stress combination. Because climate change is expected to increase the frequency and intensity of such stress combination events (e.g., heat waves combined with drought, flooding, or other abiotic stresses, pollutants, and/or pathogens), a concentrated effort is needed to study how stress combination is affecting crops. This need is particularly critical, as many studies have shown that the response of plants to stress combination is unique and cannot be predicted from simply studying each of the different stresses that are part of the stress combination. Strategies to enhance crop tolerance to a particular stress may therefore fail to enhance tolerance to this specific stress, when combined with other factors. Here we review recent studies of stress combinations in different plants and propose new approaches and avenues for the development of stress combination- and climate change-resilient crops.
Collapse
Affiliation(s)
- Rosa M Rivero
- Department of Plant Nutrition, Campus Universitario de Espinardo, CEBAS-CSIC, Ed 25, Espinardo, Murcia, 30100, Spain
| | - Ron Mittler
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65201, USA
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Sara I Zandalinas
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65201, USA
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| |
Collapse
|
19
|
Collins AD, Ryan MG, Adams HD, Dickman LT, Garcia-Forner N, Grossiord C, Powers HH, Sevanto S, McDowell NG. Foliar respiration is related to photosynthetic, growth and carbohydrate response to experimental drought and elevated temperature. PLANT, CELL & ENVIRONMENT 2021; 44:3623-3635. [PMID: 34506038 DOI: 10.1111/pce.14183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/12/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Short-term plant respiration (R) increases exponentially with rising temperature, but drought could reduce respiration by reducing growth and metabolism. Acclimation may alter these responses. We examined if species with different drought responses would differ in foliar R response to +4.8°C temperature and -45% precipitation in a field experiment with mature piñon and juniper trees, and if any differences between species were related to differences in photosynthesis rates, shoot growth and nonstructural carbohydrates (NSCs). Short-term foliar R had a Q10 of 1.6 for piñon and 2.6 for juniper. Piñon foliar R did not respond to the +4.8°C temperatures, but R increased 1.4× for juniper. Across treatments, piñon foliage had higher growth, lower NSC content, 29% lower photosynthesis rates, and 44% lower R than juniper. Removing 45% precipitation had little impact on R for either species. Species differences in the response of R under elevated temperature were related to substrate availability and stomatal response to leaf water potential. Despite not acclimating to the higher temperature and having higher R than piñon, greater substrate availability in juniper suggests it could supply respiratory demand for much longer than piñon. Species responses will be critical in ecosystem response to a warmer climate.
Collapse
Affiliation(s)
- Adam D Collins
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Michael G Ryan
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado, USA
- USDA Forest Service, Rocky Mountain Experiment Station, Fort Collins, Colorado, USA
| | - Henry D Adams
- School of the Environment, Washington State University, Pullman, Washington, USA
| | - Lee Turin Dickman
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Núria Garcia-Forner
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Charlotte Grossiord
- Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
- Plant Ecology Research Laboratory (PERL), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Heath H Powers
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Nate G McDowell
- Division of Atmospheric Sciences & Global Change, Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
20
|
De Kauwe MG, Medlyn BE, Tissue DT. To what extent can rising [CO 2 ] ameliorate plant drought stress? THE NEW PHYTOLOGIST 2021; 231:2118-2124. [PMID: 34101183 DOI: 10.1111/nph.17540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Plant responses to elevated atmospheric carbon dioxide (eCO2 ) have been hypothesized as a key mechanism that may ameliorate the impact of future drought. Yet, despite decades of experiments, the question of whether eCO2 reduces plant water use, yielding 'water savings' that can be used to maintain plant function during periods of water stress, remains unresolved. In this Viewpoint, we identify the experimental challenges and limitations to our understanding of plant responses to drought under eCO2 . In particular, we argue that future studies need to move beyond exploring whether eCO2 played 'a role' or 'no role' in responses to drought, but instead more carefully consider the timescales and conditions that would induce an influence. We also argue that considering emergent differences in soil water content may be an insufficient means of assessing the impact of eCO2 . We identify eCO2 impact during severe drought (e.g. to the point of mortality), interactions with future changes in vapour pressure deficit and uncertainty about changes in leaf area as key gaps in our current understanding. New insights into CO2 × drought interactions are essential to better constrain model theory that governs future climate model projections of land-atmosphere interactions during periods of water stress.
Collapse
Affiliation(s)
- Martin G De Kauwe
- ARC Centre of Excellence for Climate Extremes, Sydney, NSW, 2052, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
21
|
Xu X, Konings AG, Longo M, Feldman A, Xu L, Saatchi S, Wu D, Wu J, Moorcroft P. Leaf surface water, not plant water stress, drives diurnal variation in tropical forest canopy water content. THE NEW PHYTOLOGIST 2021; 231:122-136. [PMID: 33539544 DOI: 10.1111/nph.17254] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/27/2021] [Indexed: 05/25/2023]
Abstract
Variation in canopy water content (CWC) that can be detected from microwave remote sensing of vegetation optical depth (VOD) has been proposed as an important measure of vegetation water stress. However, the contribution of leaf surface water (LWs ), arising from dew formation and rainfall interception, to CWC is largely unknown, particularly in tropical forests and other high-humidity ecosystems. We compared VOD data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and CWC predicted by a plant hydrodynamics model at four tropical sites in Brazil spanning a rainfall gradient. We assessed how LWs influenced the relationship between VOD and CWC. The analysis indicates that while CWC is strongly correlated with VOD (R2 = 0.62 across all sites), LWs accounts for 61-76% of the diurnal variation in CWC despite being < 10% of CWC. Ignoring LWs weakens the near-linear relationship between CWC and VOD and reduces the consistency in diurnal variation. The contribution of LWs to CWC variation, however, decreases at longer, seasonal to inter-annual, time scales. Our results demonstrate that diurnal patterns of dew formation and rainfall interception can be an important driver of diurnal variation in CWC and VOD over tropical ecosystems and therefore should be accounted for when inferring plant diurnal water stress from VOD measurements.
Collapse
Affiliation(s)
- Xiangtao Xu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Alexandra G Konings
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Marcos Longo
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Andrew Feldman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Liang Xu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Sassan Saatchi
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
- Institute of Environment and Sustainability, University of California, Los Angeles, CA, 90024, USA
| | - Donghai Wu
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Jin Wu
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Paul Moorcroft
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
22
|
Gehring C, Sevanto S, Patterson A, Ulrich DEM, Kuske CR. Ectomycorrhizal and Dark Septate Fungal Associations of Pinyon Pine Are Differentially Affected by Experimental Drought and Warming. FRONTIERS IN PLANT SCIENCE 2020; 11:582574. [PMID: 33193530 PMCID: PMC7606852 DOI: 10.3389/fpls.2020.582574] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Changing climates can cause shifts in temperature and precipitation, resulting in warming and drought in some regions. Although each of these factors has been shown to detrimentally affect forest ecosystems worldwide, information on the impacts of the combined effects of warming and drought is lacking. Forest trees rely on mutualistic root-associated fungi that contribute significantly to plant health and protection against climate stresses. We used a six-year, ecosystem-scale temperature and precipitation manipulation experiment targeted to simulate the climate in 2100 in the Southwestern United States to quantify the effects of drought, warming and combined drought and warming on the root colonization (abundance), species composition and diversity of ectomycorrhizal fungi (EMF), and dark septate fungal endophytes in a widespread woodland tree, pinyon pine (Pinus edulis E.). Our results show that pinyon shoot growth after 6 years of these treatments was reduced more by drought than warming. The combined drought and warming treatment reduced the abundance and diversity of EMF more than either treatment alone. Individual ectomycorrhizal fungal taxa, including the drought tolerant Cenococcum geophilum, were present in all treatments but the combined drought and warming treatment. The combined drought and warming treatment also reduced the abundance of dark septate endophytes (DSE), but did not affect their diversity or species composition. The current year shoot growth of the trees correlated positively with ectomycorrhizal fungal diversity, highlighting the importance of diversity in mutualistic relationships to plant growth. Our results suggest that EMF may be more important than DSE to aboveground growth in P. edulis, but also more susceptible to the negative effects of combined climate stressors.
Collapse
Affiliation(s)
- Catherine Gehring
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, United States
| | - Sanna Sevanto
- Earth and Environmental Science Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Adair Patterson
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, United States
| | | | - Cheryl R. Kuske
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
23
|
Liu X, Biondi F. Transpiration drivers of high-elevation five-needle pines (Pinus longaeva and Pinus flexilis) in sky-island ecosystems of the North American Great Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139861. [PMID: 32544678 DOI: 10.1016/j.scitotenv.2020.139861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/24/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
We investigated the interaction between soil water supply and atmospheric evaporative demand for driving the seasonal pattern of transpiration in sky-island high-elevation forest ecosystems. Sap flow measurements were collected at 10-minute intervals for five consecutive years (2013-2017) on two co-occurring subalpine conifers, i.e. limber pine (Pinus flexilis) and bristlecone pine (Pinus longaeva). Our study site is part of the Nevada Climate-ecohydrological Assessment Network (NevCAN), and is located at 3355 m a.s.l. within an undisturbed mixed-conifer stand. We found that seasonal changes in soil moisture regulated transpiration sensitivity to atmospheric conditions. Sap flow density was mainly limited by evaporative demands under non-water limiting conditions, but was influenced only by soil moisture when water availability decreased. Daily sap flow density increased with radiation and soil moisture in June and July when soil moisture was generally above 10%, but correlated only with soil moisture in August and September when soil drought occurred. Sap flow sensitivity to vapor pressure deficit and solar radiation was therefore reduced under decreasing soil moisture conditions. Transpiration peaked in mid-to-late June during both dry and wet years, with a lower peak in late summer during wet years. Normalized mean daily canopy conductance of both species declined with decreasing soil moisture (i.e., increasing soil drought). Severe soil drying (i.e., soil moisture <7% at 20 cm depth), which was rarely detected in wet summers (2013-2014) but occurred more frequently in dry summers (2015-2017), induced a minimum in crown conductance with unchanged low-level sap flow, which might potentially trigger hydraulic failure. The minimum sap flow level under severe soil drought was higher for limber pine than bristlecone pine, possibly because of wider tracheids in limber compared to bristlecone pine. Our findings provide insights into physiological mechanisms of drought-induced stress for iconic sky-island five-needle pines located at high elevation in xeric environments.
Collapse
Affiliation(s)
- Xinsheng Liu
- College of Tourism and Geography, Jiujiang University, East Qianjin Road No. 551, Jiujiang 332005, China; DendroLab, Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV 89557, USA
| | - Franco Biondi
- DendroLab, Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
24
|
Liu J, Zhang R, Xu X, Fowler JC, Miller TEX, Dong T. Effect of summer warming on growth, photosynthesis and water status in female and male Populus cathayana: implications for sex-specific drought and heat tolerances. TREE PHYSIOLOGY 2020; 40:1178-1191. [PMID: 32478381 DOI: 10.1093/treephys/tpaa069] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Effects of climate warming on tree growth and physiology may be driven by direct thermal effects and/or by changes in soil moisture. Dioecious tree species usually show sexual spatial segregation along abiotic gradients; however, few studies have assessed the sex-specific responses to warming in dioecious trees. We investigated the sex-specific responses in growth, photosynthesis, nonstructural carbohydrate (NSC), water-use efficiency and whole-plant hydraulic conductance (KP) of the dioecious tree species Populus cathayana Rehd. under +4 °C elevated temperature with and without supplemental water. For both sexes, high-temperature treatments significantly decreased growth (height and biomass), photosynthetic rate (A), the ratio of A to dark respiration rate, stomatal conductance (gs), transpiration rate, NSC, leaf water potential and KP, but increased water-use efficiency (estimated from carbon isotope composition). Under warming with supplemental water, most traits of females did not change relative to ambient conditions, but traits of males decreased, resulting in greater sexual differences. Females showed a lower KP, and their gs and A responded more steeply with water-related traits than males. These results show that the effect of summer warming on growth and photosynthesis was driven mainly by soil moisture in female P. cathayana, while male performance was mainly related to temperature. Females may experience less thermal stress than males due to flexible water balance strategy via stomata regulation and water use.
Collapse
Affiliation(s)
- Junyan Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China
- Key Laboratory of Environmental Science and Biodiversity Conservation (Sichuan Province), and Institute of Plant Adaptation and Utilization in Southwest Mountains, China West Normal University, Nanchong, Sichuan 637009, China
| | - Rong Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xiao Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China
| | - Joshua C Fowler
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, Houston, TX 77005, USA
| | - Tom E X Miller
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, Houston, TX 77005, USA
| | - Tingfa Dong
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China
- Key Laboratory of Environmental Science and Biodiversity Conservation (Sichuan Province), and Institute of Plant Adaptation and Utilization in Southwest Mountains, China West Normal University, Nanchong, Sichuan 637009, China
| |
Collapse
|
25
|
Du Q, Jiao X, Song X, Zhang J, Bai P, Ding J, Li J. The Response of Water Dynamics to Long-Term High Vapor Pressure Deficit Is Mediated by Anatomical Adaptations in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:758. [PMID: 32582267 PMCID: PMC7289962 DOI: 10.3389/fpls.2020.00758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Vapor pressure deficit (VPD) is the driver of water movement in plants. However, little is known about how anatomical adaptations determine the acclimation of plant water dynamics to elevated VPD, especially at the whole plant level. Here, we examined the responses of transpiration, stomatal conductance (gs), hydraulic partitioning, and anatomical traits in two tomato cultivars (Jinpeng and Zhongza) to long-term high (2.2-2.6 kPa) and low (1.1-1.5 kPa) VPD. Compared to plants growing under low VPD, no variation in gs was found for Jinpeng under high VPD conditions; however, high VPD induced an increase in whole plant hydraulic conductance (Kplant), which was responsible for the maintenance of high transpiration. In contrast, transpiration was not influenced by high VPD in Zhongza, which was primarily attributed to a coordinated decline in gs and Kplant. The changes in gs were closely related to stomatal density and size. Furthermore, high VPD altered hydraulic partitioning among the leaf, stem, and root for both cultivars via adjustments in anatomy. The increase in lumen area of vessels in veins and large roots in Jinpeng under high VPD conditions improved water transport efficiency in the leaf and root, thus resulting in a high Kplant. However, the decreased Kplant for Zhongza under high VPD was the result of a decline of water transport efficiency in the leaf that was caused by a reduction in vein density. Overall, we concluded that the tradeoff in anatomical acclimations among plant tissues results in different water relations in plants under high VPD conditions.
Collapse
Affiliation(s)
- Qingjie Du
- College of Horticulture, Northwest A&F University, Yangling, China
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Xiaocong Jiao
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Xiaoming Song
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Jiayu Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Ping Bai
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Juping Ding
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Jianming Li
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
26
|
Grossiord C, Buckley TN, Cernusak LA, Novick KA, Poulter B, Siegwolf RTW, Sperry JS, McDowell NG. Plant responses to rising vapor pressure deficit. THE NEW PHYTOLOGIST 2020; 226:1550-1566. [PMID: 32064613 DOI: 10.1111/nph.16485] [Citation(s) in RCA: 375] [Impact Index Per Article: 93.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 02/04/2020] [Indexed: 05/24/2023]
Abstract
Recent decades have been characterized by increasing temperatures worldwide, resulting in an exponential climb in vapor pressure deficit (VPD). VPD has been identified as an increasingly important driver of plant functioning in terrestrial biomes and has been established as a major contributor in recent drought-induced plant mortality independent of other drivers associated with climate change. Despite this, few studies have isolated the physiological response of plant functioning to high VPD, thus limiting our understanding and ability to predict future impacts on terrestrial ecosystems. An abundance of evidence suggests that stomatal conductance declines under high VPD and transpiration increases in most species up until a given VPD threshold, leading to a cascade of subsequent impacts including reduced photosynthesis and growth, and higher risks of carbon starvation and hydraulic failure. Incorporation of photosynthetic and hydraulic traits in 'next-generation' land-surface models has the greatest potential for improved prediction of VPD responses at the plant- and global-scale, and will yield more mechanistic simulations of plant responses to a changing climate. By providing a fully integrated framework and evaluation of the impacts of high VPD on plant function, improvements in forecasting and long-term projections of climate impacts can be made.
Collapse
Affiliation(s)
- Charlotte Grossiord
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- École Polytechnique Fédérale de Lausanne EPFL, School of Architecture, Civil and Environmental Engineering ENAC, 1015, Lausanne, Switzerland
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Qld, 4814, Australia
| | - Kimberly A Novick
- School of Public and Environmental Affairs, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Benjamin Poulter
- Biospheric Sciences Lab, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Rolf T W Siegwolf
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - John S Sperry
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Nate G McDowell
- Earth Systems Science Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| |
Collapse
|
27
|
Eisenach C, Meinzer FC. Hydraulics of woody plants. PLANT, CELL & ENVIRONMENT 2020; 43:529-531. [PMID: 31916589 DOI: 10.1111/pce.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|
28
|
Mackay DS, Savoy PR, Grossiord C, Tai X, Pleban JR, Wang DR, McDowell NG, Adams HD, Sperry JS. Conifers depend on established roots during drought: results from a coupled model of carbon allocation and hydraulics. THE NEW PHYTOLOGIST 2020; 225:679-692. [PMID: 31276231 DOI: 10.1111/nph.16043] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/01/2019] [Indexed: 06/09/2023]
Abstract
Trees may survive prolonged droughts by shifting water uptake to reliable water sources, but it is unknown if the dominant mechanism involves activating existing roots or growing new roots during drought, or some combination of the two. To gain mechanistic insights on this unknown, a dynamic root-hydraulic modeling framework was developed that set up a feedback between hydraulic controls over carbon allocation and the role of root growth on soil-plant hydraulics. The new model was tested using a 5 yr drought/heat field experiment on an established piñon-juniper stand with root access to bedrock groundwater. Owing to the high carbon cost per unit root area, modeled trees initialized without adequate bedrock groundwater access experienced potentially lethal declines in water potential, while all of the experimental trees maintained nonlethal water potentials. Simulated trees were unable to grow roots rapidly enough to mediate the hydraulic stress, particularly during warm droughts. Alternatively, modeled trees initiated with root access to bedrock groundwater matched the hydraulics of the experimental trees by increasing their water uptake from bedrock groundwater when soil layers dried out. Therefore, the modeling framework identified a critical mechanism for drought response that required trees to shift water uptake among existing roots rather than growing new roots.
Collapse
Affiliation(s)
- D Scott Mackay
- Department of Geography, University at Buffalo, Buffalo, NY, 14261, USA
| | - Philip R Savoy
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Charlotte Grossiord
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Xiaonan Tai
- Department of Geography, University at Buffalo, Buffalo, NY, 14261, USA
| | - Jonathan R Pleban
- Department of Geography, University at Buffalo, Buffalo, NY, 14261, USA
| | - Diane R Wang
- Department of Geography, University at Buffalo, Buffalo, NY, 14261, USA
| | | | - Henry D Adams
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, 74078, USA
| | - John S Sperry
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
29
|
Maseyk K, Lin T, Cochavi A, Schwartz A, Yakir D. Quantification of leaf-scale light energy allocation and photoprotection processes in a Mediterranean pine forest under extensive seasonal drought. TREE PHYSIOLOGY 2019; 39:1767-1782. [PMID: 31274163 DOI: 10.1093/treephys/tpz079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/16/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
Photoprotection strategies in a Pinus halepensis Mill. forest at the dry timberline that shows sustained photosynthetic activity during 6-7 month summer drought were characterized and quantified under field conditions. Measurements of chlorophyll fluorescence, leaf-level gas exchange and pigment concentrations were made in both control and summer-irrigated plots, providing the opportunity to separate the effects of atmospheric from soil water stress on the photoprotection responses. The proportion of light energy incident on the leaf surface ultimately being used for carbon assimilation was 18% under stress-free conditions (irrigated, winter), declining to 4% under maximal stress (control, summer). Allocation of absorbed light energy to photochemistry decreased from 25 to 15% (control) and from 50% to 30% (irrigated) between winter and summer, highlighting the important role of pigment-mediated energy dissipation processes. Photorespiration or other non-assimilatory electron flow accounted for 15-20% and ~10% of incident light energy during periods of high and low carbon fixation, respectively, representing a proportional increase in photochemical energy going to photorespiration in summer but a decrease in the absolute amount of photorespiratory CO2 loss. Resilience of the leaf photochemical apparatus was expressed in the complete recovery of photosystem II (PSII) efficiency (ΦPSII) and relaxation of the xanthophyll de-epoxidation state on the diurnal cycle throughout the year, and no seasonal decrease in pre-dawn maximal PSII efficiency (Fv/Fm). The response of CO2 assimilation and photoprotection strategies to stomatal conductance and leaf water potential appeared independent of whether stress was due to atmospheric or soil water deficits across seasons and treatments. The range of protection characteristics identified provides insights into the relatively high carbon economy under these dry conditions, conditions that are predicted for extended areas in the Mediterranean and other regions due to global climate change.
Collapse
Affiliation(s)
- Kadmiel Maseyk
- Department of Earth and Planetary Science, Weizmann Institute of Science, Herzl St, Rehovot 76100, Israel
- School of Environment, Earth and Ecosystem Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Tongbao Lin
- Department of Earth and Planetary Science, Weizmann Institute of Science, Herzl St, Rehovot 76100, Israel
- College of Agronomy, Henan Agricultural University, Nongye Road, Zhengzhou 450002, Henan, P.R. China
| | - Amnon Cochavi
- Department of Earth and Planetary Science, Weizmann Institute of Science, Herzl St, Rehovot 76100, Israel
| | - Amnon Schwartz
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agricultural, Food and Environmental Quality Sciences, the Hebrew University of Jerusalem, Herzl St, Rehovot 76100, Israel
| | - Dan Yakir
- Department of Earth and Planetary Science, Weizmann Institute of Science, Herzl St, Rehovot 76100, Israel
| |
Collapse
|
30
|
Grossiord C, Christoffersen B, Alonso-Rodríguez AM, Anderson-Teixeira K, Asbjornsen H, Aparecido LMT, Carter Berry Z, Baraloto C, Bonal D, Borrego I, Burban B, Chambers JQ, Christianson DS, Detto M, Faybishenko B, Fontes CG, Fortunel C, Gimenez BO, Jardine KJ, Kueppers L, Miller GR, Moore GW, Negron-Juarez R, Stahl C, Swenson NG, Trotsiuk V, Varadharajan C, Warren JM, Wolfe BT, Wei L, Wood TE, Xu C, McDowell NG. Precipitation mediates sap flux sensitivity to evaporative demand in the neotropics. Oecologia 2019; 191:519-530. [DOI: 10.1007/s00442-019-04513-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/16/2019] [Indexed: 01/16/2023]
|
31
|
Environmental Controls of Diurnal and Seasonal Variations in the Stem Radius of Platycladus orientalis in Northern China. FORESTS 2019. [DOI: 10.3390/f10090784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fine-resolution studies of stem radial variation over short timescales throughout the year can provide insight into intra-annual stem dynamics and improve our understanding of climate impacts on tree physiology and growth processes. Using data from high-resolution point dendrometers collected from Platycladus orientalis (Linn.) trees between September 2013 and December 2014, this study investigated the daily and seasonal patterns of stem radial variation in addition to the relationships between daily stem radial variation and environmental factors over the growing season. Two contrasting daily cycle patterns were observed for warm and cold seasons. A daily mean air temperature of 0 °C was a critical threshold that was related to seasonal shifts in stem diurnal cycle patterns, indicating that air temperature critically influences diurnal stem cycles. The annual variation in P. orientalis stem radius variation can be divided into four distinct periods including (1) spring rehydration, (2) the summer growing season, (3) autumn stagnation, and (4) winter contraction. These periods reflect seasonal changes in tree water status that are especially pronounced in spring and winter. During the growing season, the maximum daily shrinkage (MDS) of P. orientalis was positively correlated with air temperature (Ta) and negatively correlated with soil water content (SWC) and precipitation (P). The vapor pressure deficit (VPD) also exhibited a threshold-based control on MDS at values below or above 0.8 kPa. Daily radial changes (DRC) were negatively correlated with Ta and VPD but positively correlated with relative air humidity (RH) and P. These results suggest that the above environmental factors are associated with tree water status via their influence on moisture availability to trees, which in turn affects the metrics of daily stem variation including MDS and DRC.
Collapse
|
32
|
Eisenach C. How plants respond to climate change: A new Virtual Special Issue of Plant, Cell & Environment. PLANT, CELL & ENVIRONMENT 2019; 42:2537-2539. [PMID: 31256418 DOI: 10.1111/pce.13604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
|
33
|
Wang MH, Wang JR, Zhang XW, Zhang AP, Sun S, Zhao CM. Phenotypic plasticity of stomatal and photosynthetic features of four Picea species in two contrasting common gardens. AOB PLANTS 2019; 11:plz034. [PMID: 31308925 PMCID: PMC6621916 DOI: 10.1093/aobpla/plz034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/28/2019] [Indexed: 05/15/2023]
Abstract
Global climate change is expected to affect mountain ecosystems significantly. Phenotypic plasticity, the ability of any genotype to produce a variety of phenotypes under different environmental conditions, is critical in determining the ability of species to acclimate to current climatic changes. Here, to simulate the impact of climate change, we compared the physiology of species of the genus Picea from different provenances and climatic conditions and quantified their phenotypic plasticity index (PPI) in two contrasting common gardens (dry vs. wet), and then considered phenotypic plastic effects on their future adaptation. The mean PPI of the photosynthetic features studied was higher than that of the stomatal features. Species grown in the arid and humid common gardens were differentiated: the stomatal length (SL) and width (SW) on the adaxial surface, the transpiration rate (Tr) and leaf mass per area (LMA) were more highly correlated with rainfall than other traits. There were no significant relationships between the observed plasticity and the species' original habitat, except in P. crassifolia (from an arid habitat) and P. asperata (from a humid habitat). Picea crassifolia exhibited enhanced instantaneous efficiency of water use (PPI = 0.52) and the ratio of photosynthesis to respiration (PPI = 0.10) remained constant; this species was, therefore, considered to the one best able to acclimate when faced with the effects of climate change. The other three species exhibited reduced physiological activity when exposed to water limitation. These findings indicate how climate change affects the potential roles of plasticity in determining plant physiology, and provide a basis for future reforestation efforts in China.
Collapse
Affiliation(s)
- Ming Hao Wang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- Yuzhong Mountain Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou, Gansu, China
| | - Jing Ru Wang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- Yuzhong Mountain Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou, Gansu, China
| | - Xiao Wei Zhang
- Forestry College, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Ai Ping Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- Yuzhong Mountain Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou, Gansu, China
| | - Shan Sun
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- Yuzhong Mountain Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou, Gansu, China
| | - Chang Ming Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- Yuzhong Mountain Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou, Gansu, China
- Corresponding author’s e-mail address:
| |
Collapse
|
34
|
Forest Decline Triggered by Phloem Parasitism-Related Biotic Factors in Aleppo Pine (Pinus halepensis). FORESTS 2019. [DOI: 10.3390/f10080608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate models predict increasing mean temperatures and reduced precipitation for Mediterranean ecosystems already subjected to major hydrological fluctuations. Forest decline phenomena relate extreme droughts or heat waves with other organisms, e.g., insects or microorganisms acting as pests, but their role needs to be elucidated. A biotic factor responsible for forest diseases is Candidatus Phytoplasma pini which is a phloem-parasitism that negatively affects Spanish pine forests in drought-prone areas. In several healthy and declining Aleppo pine stands, we monitored pine infection by PCR (Polimerase Chain Reation), determined the tree phloem tissue terpene composition, carbohydrate content, measured several relevant morpho-physiological variables and examined trees affected by bark beetles. PCR confirmed C. P. pini infection was widespread in all stands, regardless of to the presence of symptomatically affected trees. However, visible symptomatic decline only occurred in trees living under more stressful conditions. The terpene composition of pines in declining stands differed from those in healthy ones, and could be related with bark beetle attacks when pines were previously weakened by the phytoplasma disease. Our results indicate that biotic factors, such as C. P. pini, affecting phloem tissue may be triggering factors for drought-mediated forest decline and suggest that phloem diseases can play a key role in forest declining processes during extreme drought.
Collapse
|
35
|
Gimenez BO, Jardine KJ, Higuchi N, Negrón-Juárez RI, Sampaio-Filho IDJ, Cobello LO, Fontes CG, Dawson TE, Varadharajan C, Christianson DS, Spanner GC, Araújo AC, Warren JM, Newman BD, Holm JA, Koven CD, McDowell NG, Chambers JQ. Species-Specific Shifts in Diurnal Sap Velocity Dynamics and Hysteretic Behavior of Ecophysiological Variables During the 2015-2016 El Niño Event in the Amazon Forest. FRONTIERS IN PLANT SCIENCE 2019; 10:830. [PMID: 31316536 PMCID: PMC6611341 DOI: 10.3389/fpls.2019.00830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 06/07/2019] [Indexed: 05/11/2023]
Abstract
Current climate change scenarios indicate warmer temperatures and the potential for more extreme droughts in the tropics, such that a mechanistic understanding of the water cycle from individual trees to landscapes is needed to adequately predict future changes in forest structure and function. In this study, we contrasted physiological responses of tropical trees during a normal dry season with the extreme dry season due to the 2015-2016 El Niño-Southern Oscillation (ENSO) event. We quantified high resolution temporal dynamics of sap velocity (Vs), stomatal conductance (gs) and leaf water potential (ΨL) of multiple canopy trees, and their correlations with leaf temperature (Tleaf) and environmental conditions [direct solar radiation, air temperature (Tair) and vapor pressure deficit (VPD)]. The experiment leveraged canopy access towers to measure adjacent trees at the ZF2 and Tapajós tropical forest research (near the cities of Manaus and Santarém). The temporal difference between the peak of gs (late morning) and the peak of VPD (early afternoon) is one of the major regulators of sap velocity hysteresis patterns. Sap velocity displayed species-specific diurnal hysteresis patterns reflected by changes in Tleaf. In the morning, Tleaf and sap velocity displayed a sigmoidal relationship. In the afternoon, stomatal conductance declined as Tleaf approached a daily peak, allowing ΨL to begin recovery, while sap velocity declined with an exponential relationship with Tleaf. In Manaus, hysteresis indices of the variables Tleaf-Tair and ΨL-Tleaf were calculated for different species and a significant difference (p < 0.01, α = 0.05) was observed when the 2015 dry season (ENSO period) was compared with the 2017 dry season ("control scenario"). In some days during the 2015 ENSO event, Tleaf approached 40°C for all studied species and the differences between Tleaf and Tair reached as high at 8°C (average difference: 1.65 ± 1.07°C). Generally, Tleaf was higher than Tair during the middle morning to early afternoon, and lower than Tair during the early morning, late afternoon and night. Our results support the hypothesis that partial stomatal closure allows for a recovery in ΨL during the afternoon period giving an observed counterclockwise hysteresis pattern between ΨL and Tleaf.
Collapse
Affiliation(s)
| | - Kolby J. Jardine
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Niro Higuchi
- National Institute of Amazonian Research (INPA), Manaus, Brazil
| | - Robinson I. Negrón-Juárez
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | | | | | - Clarissa G. Fontes
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Todd E. Dawson
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Charuleka Varadharajan
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Danielle S. Christianson
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | | | | | - Jeffrey M. Warren
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Brent D. Newman
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Jennifer A. Holm
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Charles D. Koven
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Nate G. McDowell
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Jeffrey Q. Chambers
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Geography, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
36
|
Peters RL, Speich M, Pappas C, Kahmen A, von Arx G, Graf Pannatier E, Steppe K, Treydte K, Stritih A, Fonti P. Contrasting stomatal sensitivity to temperature and soil drought in mature alpine conifers. PLANT, CELL & ENVIRONMENT 2019; 42:1674-1689. [PMID: 30536787 DOI: 10.1111/pce.13500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
Conifers growing at high elevations need to optimize their stomatal conductance (gs ) for maximizing photosynthetic yield while minimizing water loss under less favourable thermal conditions. Yet the ability of high-elevation conifers to adjust their gs sensitivity to environmental drivers remains largely unexplored. We used 4 years of sap flow measurements to elucidate intraspecific and interspecific variability of gs in Larix decidua Mill. and Picea abies (L.) Karst along an elevational gradient and contrasting soil moisture conditions. Site- and species-specific gs response to main environmental drivers were examined, including vapour pressure deficit, air temperature, solar irradiance, and soil water potential. Our results indicate that maximum gs of L. decidua is >2 times higher, shows a more plastic response to temperature, and down-regulates gs stronger during atmospheric drought compared to P. abies. These differences allow L. decidua to exert more efficient water use, adjust to site-specific thermal conditions, and reduce water loss during drought episodes. The stronger plasticity of gs sensitivity to temperature and higher conductance of L. decidua compared to P. abies provide new insights into species-specific water use strategies, which affect species' performance and should be considered when predicting terrestrial water dynamics under future climatic change.
Collapse
Affiliation(s)
- Richard L Peters
- Forest Dynamics, Landscape Dynamics and Forest Soils and Biogeochemistry, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
- Department of Environmental Sciences-Botany, Basel University, Basel, CH-4056, Switzerland
| | - Matthias Speich
- Forest Dynamics, Landscape Dynamics and Forest Soils and Biogeochemistry, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
- Department of Environmental Systems Science, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Christoforos Pappas
- Département de géographie and Centre d'études nordiques, Université de Montréal, Montréal, Quebec, Canada
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ansgar Kahmen
- Department of Environmental Sciences-Botany, Basel University, Basel, CH-4056, Switzerland
| | - Georg von Arx
- Forest Dynamics, Landscape Dynamics and Forest Soils and Biogeochemistry, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Elisabeth Graf Pannatier
- Forest Dynamics, Landscape Dynamics and Forest Soils and Biogeochemistry, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, B-9000, Belgium
| | - Kerstin Treydte
- Forest Dynamics, Landscape Dynamics and Forest Soils and Biogeochemistry, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Ana Stritih
- Institute for Landscape and Spatial Development, Planning of Landscape and Urban Systems (PLUS), ETH Zurich, Zürich, CH-8093, Switzerland
| | - Patrick Fonti
- Forest Dynamics, Landscape Dynamics and Forest Soils and Biogeochemistry, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| |
Collapse
|
37
|
Grossiord C, Sevanto S, Bonal D, Borrego I, Dawson TE, Ryan M, Wang W, McDowell NG. Prolonged warming and drought modify belowground interactions for water among coexisting plants. TREE PHYSIOLOGY 2019; 39:55-63. [PMID: 30215810 DOI: 10.1093/treephys/tpy080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/19/2018] [Indexed: 05/16/2023]
Abstract
Understanding how climate alters plant-soil water dynamics, and its impact on physiological functions, is critical to improved predictions of vegetation responses to climate change. Here we analyzed how belowground interactions for water shift under warming and drought, and associated impacts on plant functions. In a semi-arid woodland, adult trees (piñon and juniper) and perennial grasses (blue grama) were exposed to warming and precipitation reduction. After 6 years of continuous treatment exposure, soil and plant water isotopic composition was measured to assess plant water uptake depths and community-level water source partitioning. Warming and drought modified plant water uptake depths. Under warming, contrasting changes in water sources between grasses and trees reduced belowground water source partitioning, resulting in higher interspecific competition for water. Under drought, shifts in trees and grass water sources to deeper soil layers resulted in the maintenance of the naturally occurring water source partitioning among species. Trees showed higher water stress, and reduced water use and photosynthesis in response to warming and drought. This case study demonstrates that neighboring plants shift their competitive interactions for water under prolonged warming and drought, but regardless of whether changes in moisture sources will result in increased competition among species or maintained partitioning of water resources, these competitive adaptations may easily be overridden by climate extremes.
Collapse
Affiliation(s)
- Charlotte Grossiord
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Damien Bonal
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Nancy, France
| | - Isaac Borrego
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Todd E Dawson
- Center for Stable Isotope Biogeochemistry and the Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Max Ryan
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Wenzhi Wang
- The Key Laboratory of Mountain Environment Evolution and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
- Earth Systems Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nate G McDowell
- Earth Systems Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
38
|
McBranch NA, Grossiord C, Adams H, Borrego I, Collins AD, Dickman T, Ryan M, Sevanto S, McDowell NG. Lack of acclimation of leaf area:sapwood area ratios in piñon pine and juniper in response to precipitation reduction and warming. TREE PHYSIOLOGY 2019; 39:135-142. [PMID: 30272223 DOI: 10.1093/treephys/tpy066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Indexed: 05/16/2023]
Abstract
The leaf area to sapwood area ratios of trees (Al:AS) can shift to maintain homeostatic gas exchange per unit leaf area in response to climate variability. We tested the hypothesis that trees alter their Al:AS ratios in response to long-term warming and reduced precipitation in order to maintain leaf-specific gas exchange rates under more stressful conditions. Whole-tree Al:AS was measured on mature piñon pine (Pinus edulis Engelm.) and one-seed juniper (Juniperus monosperma (Engelm.) Sarg.) trees after 5 years (2012-16) of chronic exposure to increased temperature (+4.8 °C), precipitation reduction (-45%), or both simultaneously. No difference was found in Al:As among treatments for either species. Associated with this lack of shift in Al:As were large changes in pre-dawn leaf water potential and stomatal conductance, consistent with theoretical expectations of interactions between leaf and whole-tree hydraulic supply. Our results suggest that a lack of whole-tree acclimation in Al:As results in the reductions in plant gas exchange and water status associated with long-term warming and reduced precipitation in semi-arid woodlands.
Collapse
Affiliation(s)
- Natalie A McBranch
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM , USA
| | - Charlotte Grossiord
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM , USA
| | - Henry Adams
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, USA
| | - Isaac Borrego
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM , USA
| | - Adam D Collins
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM , USA
| | - Turin Dickman
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM , USA
| | - Max Ryan
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM , USA
| | - Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM , USA
| | - Nate G McDowell
- Earth Systems Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
39
|
Szota C, McCarthy MJ, Sanders GJ, Farrell C, Fletcher TD, Arndt SK, Livesley SJ. Tree water-use strategies to improve stormwater retention performance of biofiltration systems. WATER RESEARCH 2018; 144:285-295. [PMID: 30048867 DOI: 10.1016/j.watres.2018.07.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/21/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Biofiltration systems are highly valued in urban landscapes as they remove pollutants from stormwater runoff whilst contributing to a reduction in runoff volumes. Integrating trees in biofilters may improve their runoff retention performance, as trees have greater transpiration than commonly used sedge or herb species. High transpiration rates will rapidly deplete retained water, creating storage capacity prior to the next runoff event. However, a tree with high transpiration rates in a biofilter system will likely be frequently exposed to drought stress. Selecting appropriate tree species therefore requires an understanding of how different trees use water and how they respond to substrate drying. We selected 20 tree species and quantified evapotranspiration (ET) and drought stress (leaf water potential; Ψ) in relation to substrate water content. To compare species, we developed metrics which describe: (i) maximum rates of ET under well-watered conditions, (ii) the sensitivity of ET and (iii) the response of Ψ to declining substrate water content. Using these three metrics, we classified species into three groups: risky, balanced or conservative. Risky and balanced species showed high maximum ET, whereas conservative species always had low ET. As substrates dried, the balanced species down-regulated ET to delay the onset of drought stress; whereas risky species did not. Therefore, balanced species with high ET are more likely to improve the retention performance of biofiltration systems without introducing significant drought risk. This classification of tree water use strategies can be easily integrated into water balance models and improve tree species selection for biofiltration systems.
Collapse
Affiliation(s)
- C Szota
- School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria, 3121, Australia.
| | - M J McCarthy
- School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria, 3121, Australia
| | - G J Sanders
- School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria, 3121, Australia
| | - C Farrell
- School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria, 3121, Australia
| | - T D Fletcher
- School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria, 3121, Australia
| | - S K Arndt
- School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria, 3121, Australia
| | - S J Livesley
- School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria, 3121, Australia
| |
Collapse
|
40
|
Grossiord C, Gessler A, Reed SC, Borrego I, Collins AD, Dickman LT, Ryan M, Schönbeck L, Sevanto S, Vilagrosa A, McDowell NG. Reductions in tree performance during hotter droughts are mitigated by shifts in nitrogen cycling. PLANT, CELL & ENVIRONMENT 2018; 41:2627-2637. [PMID: 29974965 DOI: 10.1111/pce.13389] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 05/16/2023]
Abstract
Climate warming should result in hotter droughts of unprecedented severity in this century. Such droughts have been linked with massive tree mortality, and data suggest that warming interacts with drought to aggravate plant performance. Yet how forests will respond to hotter droughts remains unclear, as does the suite of mechanisms trees use to deal with hot droughts. We used an ecosystem-scale manipulation of precipitation and temperature on piñon pine (Pinus edulis) and juniper (Juniperus monosperma) trees to investigate nitrogen (N) cycling-induced mitigation processes related to hotter droughts. We found that while negative impacts on plant carbon and water balance are manifest after prolonged drought, performance reductions were not amplified by warmer temperatures. Rather, increased temperatures for 5 years stimulated soil N cycling under piñon trees and modified tree N allocation for both species, resulting in mitigation of hotter drought impacts on tree water and carbon functions. These findings suggest that adjustments in N cycling are likely after multi-year warming conditions and that such changes may buffer reductions in tree performance during hotter droughts. The results highlight our incomplete understanding of trees' ability to acclimate to climate change, raising fundamental questions about the resistance potential of forests to long-term, compound climatic stresses.
Collapse
Affiliation(s)
- Charlotte Grossiord
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Arthur Gessler
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Sasha C Reed
- US Geological Survey, Southwest Biological Science Center, Moab, UT
| | - Isaac Borrego
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
- US Geological Survey, Southwest Biological Science Center, Moab, UT
| | - Adam D Collins
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Lee T Dickman
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Max Ryan
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | - Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Alberto Vilagrosa
- Fundación CEAM, Joint Research Unit University of Alicante - CEAM, University of Alicante, Alicante, Spain
| | - Nate G McDowell
- Earth Systems Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
41
|
Water Balance of Mediterranean Quercus ilex L. and Pinus halepensis Mill. Forests in Semiarid Climates: A Review in A Climate Change Context. FORESTS 2018. [DOI: 10.3390/f9070426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Forests provide many environmental services, especially those related to the water cycle. In semiarid areas where water is a limiting factor for ecosystem functioning, forested areas can have a strong impact on ground water recharge. In these areas, proper knowledge of forests’ water balance is necessary to promote management practices that may ensure ecosystem properties and environmental services like water or carbon fixation. In this article, we review several ecohydrology topics within the framework of Mediterranean water-limited environments in two representative ecosystems: Kermes oak (Quercus ilex L.) and Aleppo pine (Pinus halepensis Mill.) forests. Both are the commonest species in countries that surround the Western Mediterranean Basin. We analysed the Blue and Green water components, i.e., green water is the water demand of forests, represented by evapotranspiration and interception; while blue water is the part of the balance involving runoff and deep percolation, which can be regarded as water directly usable by society. In general, different studies conducted in Mediterranean areas have pointed out that the water balances of Q. ilex and P. halepensis forests have low values for the Blue to Green water (B/G) ratios. Adaptive forest management like forest thinning can compensate for these ratios. Thinning has demonstrated to reduce losses by interception, but at same time, it can also increase individual tree transpiration and evaporation rates. However, these practices lead to higher B/G ratios when considering the whole stand. In future global change scenarios, in which drought conditions are expected to intensify, management practices can improve the water balance in these ecosystems by minimizing the risk of plant mortality and species replacement due to intense competence by water resources.
Collapse
|
42
|
Shekede MD, Murwira A, Masocha M, Gwitira I. Spatial distribution of Vachellia karroo in Zimbabwean savannas (southern Africa) under a changing climate. Ecol Res 2018. [DOI: 10.1007/s11284-018-1636-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Stem Circadian Phenology of Four Pine Species in Naturally Contrasting Climates from Sky-Island Forests of the Western USA. FORESTS 2018. [DOI: 10.3390/f9070396] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Guérin M, Martin‐Benito D, von Arx G, Andreu‐Hayles L, Griffin KL, Hamdan R, McDowell NG, Muscarella R, Pockman W, Gentine P. Interannual variations in needle and sapwood traits of Pinus edulis branches under an experimental drought. Ecol Evol 2018; 8:1655-1672. [PMID: 29435241 PMCID: PMC5792598 DOI: 10.1002/ece3.3743] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 10/05/2017] [Accepted: 11/20/2017] [Indexed: 01/02/2023] Open
Abstract
In the southwestern USA, recent large-scale die-offs of conifers raise the question of their resilience and mortality under droughts. To date, little is known about the interannual structural response to droughts. We hypothesized that piñon pines (Pinus edulis) respond to drought by reducing the drop of leaf water potential in branches from year to year through needle morphological adjustments. We tested our hypothesis using a 7-year experiment in central New Mexico with three watering treatments (irrigated, normal, and rain exclusion). We analyzed how variation in "evaporative structure" (needle length, stomatal diameter, stomatal density, stomatal conductance) responded to watering treatment and interannual climate variability. We further analyzed annual functional adjustments by comparing yearly addition of needle area (LA) with yearly addition of sapwood area (SA) and distance to tip (d), defining the yearly ratios SA:LA and SA:LA/d. Needle length (l) increased with increasing winter and monsoon water supply, and showed more interannual variability when the soil was drier. Stomatal density increased with dryness, while stomatal diameter was reduced. As a result, anatomical maximal stomatal conductance was relatively invariant across treatments. SA:LA and SA:LA/d showed significant differences across treatments and contrary to our expectation were lower with reduced water input. Within average precipitation ranges, the response of these ratios to soil moisture was similar across treatments. However, when extreme soil drought was combined with high VPD, needle length, SA:LA and SA:LA/d became highly nonlinear, emphasizing the existence of a response threshold of combined high VPD and dry soil conditions. In new branch tissues, the response of annual functional ratios to water stress was immediate (same year) and does not attempt to reduce the drop of water potential. We suggest that unfavorable evaporative structural response to drought is compensated by dynamic stomatal control to maximize photosynthesis rates.
Collapse
Affiliation(s)
- Marceau Guérin
- Department of Earth and Environmental EngineeringColumbia UniversityNew YorkNYUSA
| | - Dario Martin‐Benito
- Forest EcologyDepartment of Environmental SciencesSwiss Federal Institute of TechnologyETH ZurichZürichSwitzerland
- Forest Research Center (INIA‐CIFOR)MadridSpain
- Tree‐ring LaboratoryLamont‐Doherty Earth Observatory of Columbia UniversityPalisadesNYUSA
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Climatic Change and Climate ImpactsInstitute for Environmental SciencesGenevaSwitzerland
| | - Laia Andreu‐Hayles
- Tree‐ring LaboratoryLamont‐Doherty Earth Observatory of Columbia UniversityPalisadesNYUSA
| | - Kevin L. Griffin
- Department of Earth and Environmental SciencesLamont‐Doherty Earth Observatory of Columbia UniversityPalisadesNYUSA
| | | | - Nate G. McDowell
- Atmospheric Sciences and Global Change DivisionPacific Northwest National LaboratoryRichlandWAUSA
| | - Robert Muscarella
- Ecoinformatics & BiodiversityDepartment of BioscienceAarhus UniversityAarhusDenmark
| | - William Pockman
- Department of BiologyUniversity of New MexicoAlbuquerqueNMUSA
| | - Pierre Gentine
- Department of Earth and Environmental EngineeringEarth InstituteColumbia UniversityNew YorkNYUSA
| |
Collapse
|