1
|
Suranjika S, Barla P, Sharma N, Dey N. A review on ubiquitin ligases: Orchestrators of plant resilience in adversity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112180. [PMID: 38964613 DOI: 10.1016/j.plantsci.2024.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Ubiquitin- proteasome system (UPS) is universally present in plants and animals, mediating many cellular processes needed for growth and development. Plants constantly defend themselves against endogenous and exogenous stimuli such as hormonal signaling, biotic stresses such as viruses, fungi, nematodes, and abiotic stresses like drought, heat, and salinity by developing complex regulatory mechanisms. Ubiquitination is a regulatory mechanism involving selective elimination and stabilization of regulatory proteins through the UPS system where E3 ligases play a central role; they can bind to the targets in a substrate-specific manner, followed by poly-ubiquitylation, and subsequent protein degradation by 26 S proteasome. Increasing evidence suggests different types of E3 ligases play important roles in plant development and stress adaptation. Herein, we summarize recent advances in understanding the regulatory roles of different E3 ligases and primarily focus on protein ubiquitination in plant-environment interactions. It also highlights the diversity and complexity of these metabolic pathways that enable plant to survive under challenging conditions. This reader-friendly review provides a comprehensive overview of E3 ligases and their substrates associated with abiotic and biotic stresses that could be utilized for future crop improvement.
Collapse
Affiliation(s)
- Sandhya Suranjika
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India; Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), KIIT Road, Patia, Bhubaneswar, Odisha, India
| | - Preeti Barla
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India
| | - Namisha Sharma
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India
| | - Nrisingha Dey
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India.
| |
Collapse
|
2
|
Carey-Fung O, Beasley JT, Broad RC, Hellens RP, Johnson AAT. Discovery of a conserved translationally repressive upstream open reading frame within the iron-deficiency response regulator IDEF2. BMC PLANT BIOLOGY 2024; 24:891. [PMID: 39343926 PMCID: PMC11440899 DOI: 10.1186/s12870-024-05473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/31/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Iron (Fe) deficiency affects 30-50% of the world's population. Genetic biofortification of staple crops is a promising strategy for improving human nutrition, but the number of effective precision breeding targets for Fe biofortification is small. Upstream open reading frames (uORFs) are cis-regulatory elements within the 5' leader sequence (LS) of genes that generally repress translation of the main open reading frame (mORF). RESULTS We aligned publicly available rice (Oryza sativa L.) ribo-seq datasets and transcriptomes to identify putative uORFs within important Fe homeostasis genes. A dual luciferase assay (DLA) was used to determine whether these uORFs cause repression of mORF translation and pinpoint LS regions that can be mutated for mORF derepression. A translationally repressive uORF region was identified in two positive regulators of the Fe-deficiency response: IDEF1 and IDEF2. The IDEF2-uORF peptide was highly conserved among monocots and a mutation series in the 5' LS of the wheat (Triticum aestivum L.) TaIDEF2-A1 gene demonstrated variable mORF derepression. CONCLUSIONS Together these results reveal a possible regulatory mechanism by which IDEF2 transcription factors modulate the Fe deficiency response in monocots, and highlight novel precision breeding targets to improve crop nutrition and abiotic stress tolerance.
Collapse
Affiliation(s)
- Oscar Carey-Fung
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jesse T Beasley
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ronan C Broad
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | | | - Alexander A T Johnson
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
3
|
Ning M, Li Q, Wang Y, Li Q, Tao Y, Zhang F, Hu F, Huang L. Alternative splicing drives the functional diversification of a bHLH transcription factor in the control of growth and drought tolerance in rice. Sci Bull (Beijing) 2024:S2095-9273(24)00397-9. [PMID: 38880686 DOI: 10.1016/j.scib.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Affiliation(s)
- Min Ning
- Key Laboratory of Biology and Germplasm Innovation of Perennial Rice from Ministry of Agriculture and Rural Affairs, School of Agriculture, Yunnan University, Kunming 650091, China
| | - Qinyan Li
- Key Laboratory of Biology and Germplasm Innovation of Perennial Rice from Ministry of Agriculture and Rural Affairs, School of Agriculture, Yunnan University, Kunming 650091, China
| | - Ya Wang
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qingmao Li
- Key Laboratory of Biology and Germplasm Innovation of Perennial Rice from Ministry of Agriculture and Rural Affairs, School of Agriculture, Yunnan University, Kunming 650091, China
| | - Yonghong Tao
- Wenshan Academy of Agricultural Sciences, Wenshan 663000, China
| | - Fan Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
| | - Fengyi Hu
- Key Laboratory of Biology and Germplasm Innovation of Perennial Rice from Ministry of Agriculture and Rural Affairs, School of Agriculture, Yunnan University, Kunming 650091, China.
| | - Liyu Huang
- Key Laboratory of Biology and Germplasm Innovation of Perennial Rice from Ministry of Agriculture and Rural Affairs, School of Agriculture, Yunnan University, Kunming 650091, China.
| |
Collapse
|
4
|
Lei P, Jiang Y, Zhao Y, Jiang M, Ji X, Ma L, Jin G, Li J, Zhang S, Kong D, Zhao X, Meng F. Functions of Basic Helix-Loop-Helix (bHLH) Proteins in the Regulation of Plant Responses to Cold, Drought, Salt, and Iron Deficiency: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10692-10709. [PMID: 38712500 DOI: 10.1021/acs.jafc.3c09665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Abiotic stresses including cold, drought, salt, and iron deficiency severely impair plant development, crop productivity, and geographic distribution. Several bodies of research have shed light on the pleiotropic functions of BASIC HELIX-LOOP-HELIX (bHLH) proteins in plant responses to these abiotic stresses. In this review, we mention the regulatory roles of bHLH TFs in response to stresses such as cold, drought, salt resistance, and iron deficiency, as well as in enhancing grain yield in plants, especially crops. The bHLH proteins bind to E/G-box motifs in the target promoter and interact with various other factors to form a complex regulatory network. Through this network, they cooperatively activate or repress the transcription of downstream genes, thereby regulating various stress responses. Finally, we present some perspectives for future research focusing on the molecular mechanisms that integrate and coordinate these abiotic stresses. Understanding these molecular mechanisms is crucial for the development of stress-tolerant crops.
Collapse
Affiliation(s)
- Pei Lei
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Yaxuan Jiang
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Yong Zhao
- College of Life Sciences, Baicheng Normal University, Baicheng 137099, China
| | - Mingquan Jiang
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130022, China
| | - Ximei Ji
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Le Ma
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Guangze Jin
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Jianxin Li
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Subin Zhang
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Dexin Kong
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Fanjuan Meng
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
5
|
DeLoose M, Clúa J, Cho H, Zheng L, Masmoudi K, Desnos T, Krouk G, Nussaume L, Poirier Y, Rouached H. Recent advances in unraveling the mystery of combined nutrient stress in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1764-1780. [PMID: 37921230 DOI: 10.1111/tpj.16511] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
Efficiently regulating growth to adapt to varying resource availability is crucial for organisms, including plants. In particular, the acquisition of essential nutrients is vital for plant development, as a shortage of just one nutrient can significantly decrease crop yield. However, plants constantly experience fluctuations in the presence of multiple essential mineral nutrients, leading to combined nutrient stress conditions. Unfortunately, our understanding of how plants perceive and respond to these multiple stresses remains limited. Unlocking this mystery could provide valuable insights and help enhance plant nutrition strategies. This review focuses specifically on the regulation of phosphorous homeostasis in plants, with a primary emphasis on recent studies that have shed light on the intricate interactions between phosphorous and other essential elements, such as nitrogen, iron, and zinc, as well as non-essential elements like aluminum and sodium. By summarizing and consolidating these findings, this review aims to contribute to a better understanding of how plants respond to and cope with combined nutrient stress.
Collapse
Affiliation(s)
- Megan DeLoose
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Joaquin Clúa
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Huikyong Cho
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Khaled Masmoudi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, Abu Dhabi, United Arab Emirates
| | - Thierry Desnos
- Aix Marseille Univ, CEA, CNRS, BIAM, EBMP, UMR7265, Cité des énergies, 13115, Saint-Paul-lez-Durance, France
| | - Gabriel Krouk
- IPSiM, Univ. Montpellier, CNRS, INRAE, Montpellier, France
| | - Laurent Nussaume
- Aix Marseille Univ, CEA, CNRS, BIAM, EBMP, UMR7265, Cité des énergies, 13115, Saint-Paul-lez-Durance, France
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Hatem Rouached
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
6
|
Clúa J, Montpetit J, Jimenez-Sandoval P, Naumann C, Santiago J, Poirier Y. A CYBDOM protein impacts iron homeostasis and primary root growth under phosphate deficiency in Arabidopsis. Nat Commun 2024; 15:423. [PMID: 38212368 PMCID: PMC10784552 DOI: 10.1038/s41467-023-43911-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 11/23/2023] [Indexed: 01/13/2024] Open
Abstract
Arabidopsis primary root growth response to phosphate (Pi) deficiency is mainly controlled by changes in apoplastic iron (Fe). Upon Pi deficiency, apoplastic Fe deposition in the root apical meristem activates pathways leading to the arrest of meristem maintenance and inhibition of cell elongation. Here, we report that a member of the uncharacterized cytochrome b561 and DOMON domain (CYBDOM) protein family, named CRR, promotes iron reduction in an ascorbate-dependent manner and controls apoplastic iron deposition. Under low Pi, the crr mutant shows an enhanced reduction of primary root growth associated with increased apoplastic Fe in the root meristem and a reduction in meristematic cell division. Conversely, CRR overexpression abolishes apoplastic Fe deposition rendering primary root growth insensitive to low Pi. The crr single mutant and crr hyp1 double mutant, harboring a null allele in another member of the CYDOM family, shows increased tolerance to high-Fe stress upon germination and seedling growth. Conversely, CRR overexpression is associated with increased uptake and translocation of Fe to the shoot and results in plants highly sensitive to Fe excess. Our results identify a ferric reductase implicated in Fe homeostasis and developmental responses to abiotic stress, and reveal a biological role for CYBDOM proteins in plants.
Collapse
Affiliation(s)
- Joaquín Clúa
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland
| | - Jonatan Montpetit
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland
| | - Pedro Jimenez-Sandoval
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland
| | - Christin Naumann
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Germany
| | - Julia Santiago
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland
| | - Yves Poirier
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
7
|
Zhang Z, Cheng J, Wang W, Gao Y, Xian X, Li C, Wang Y. Transcription factors dealing with Iron-deficiency stress in plants: focus on the bHLH transcription factor family. PHYSIOLOGIA PLANTARUM 2023; 175:e14091. [PMID: 38148182 DOI: 10.1111/ppl.14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 12/28/2023]
Abstract
Iron (Fe), as an important micronutrient element necessary for plant growth and development, not only participates in multiple physiological and biochemical reactions in cells but also exerts a crucial role in respiration and photosynthetic electron transport. Since Fe is mainly present in the soil in the form of iron hydroxide, Fe deficiency exists universally in plants and has become an important factor triggering crop yield reduction and quality decline. It has been shown that transcription factors (TFs), as an important part of plant signaling pathways, not only coordinate the internal signals of different interaction partners during plant development, but also participate in plant responses to biological and abiotic stresses, such as Fe deficiency stress. Here, the role of bHLH transcription factors in the regulation of Fe homeostasis (mainly Fe uptake) is discussed with emphasis on the functions of MYB, WRKY and other TFs in the maintenance of Fe homeostasis. This review provides a theoretical basis for further studies on the regulation of TFs in Fe deficiency stress response.
Collapse
Affiliation(s)
- Zhongxing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jiao Cheng
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Wanxia Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yanlong Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xulin Xian
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Cailong Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yanxiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
8
|
Li X, Cao H, Yu D, Xu K, Zhang Y, Shangguan X, Zheng X, Yang Z, Li C, Pan X, Cui Y, Zhang Z, Han M, Zhang Y, Sun Q, Guo H, Zhao J, Li L, Li C. SlbHLH152, a bHLH transcription factor positively regulates iron homeostasis in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111821. [PMID: 37558055 DOI: 10.1016/j.plantsci.2023.111821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
The maintain of iron (Fe) homeostasis is essential for plant survival. In tomato, few transcription factors have been identified as regulators of Fe homeostasis, among which SlbHLH068 induced by iron deficiency, plays an important role. However, the upstream regulator(s) responsible for activating the expression of SlbHLH068 remain(s) unknown. In this study, the bHLH (basic helix-loop-helix) transcription factor SlbHLH152 was identified as an upstream regulator of SlbHLH068 using yeast one-hybrid screening. Deletion of SlbHLH152 led to a significant decline in Fe concentration, which was accompanied by reduced expression of Fe-deficiency-responsive genes. In contrast, SlbHLH152 overexpression plants displayed tolerance to iron deficiency, increased Fe accumulation, and elevated expression of Fe-deficiency-responsive genes. Further analysis indicated that SlbHLH152 directly activates the transcription of SlbHLH068. Taken together, our results suggest that SlbHLH152 may be involved in the regulation of iron homeostasis by directly activating the transcription of SlbHLH068 in tomato.
Collapse
Affiliation(s)
- Xiaoli Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Haohao Cao
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Deshui Yu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Kedong Xu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Yi Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Xinxin Shangguan
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Xiaohong Zheng
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Zhongzhou Yang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Chaoqiong Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Xingchen Pan
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Yiming Cui
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Zhiqing Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Mengru Han
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Yiqing Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Qimeng Sun
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Huiling Guo
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Jingyi Zhao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Lili Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China; College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| | - Chengwei Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China; College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
9
|
Radani Y, Li R, Korboe HM, Ma H, Yang L. Transcriptional and Post-Translational Regulation of Plant bHLH Transcription Factors during the Response to Environmental Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112113. [PMID: 37299095 DOI: 10.3390/plants12112113] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
Over the past decades, extensive research has been conducted to identify and characterize various plant transcription factors involved in abiotic stress responses. Therefore, numerous efforts have been made to improve plant stress tolerance by engineering these transcription factor genes. The plant basic Helix-Loop-Helix (bHLH) transcription factor family represents one of the most prominent gene families and contains a bHLH motif that is highly conserved in eukaryotic organisms. By binding to specific positions in promoters, they activate or repress the transcription of specific response genes and thus affect multiple variables in plant physiology such as the response to abiotic stresses, which include drought, climatic variations, mineral deficiencies, excessive salinity, and water stress. The regulation of bHLH transcription factors is crucial to better control their activity. On the one hand, they are regulated at the transcriptional level by other upstream components; on the other hand, they undergo various modifications such as ubiquitination, phosphorylation, and glycosylation at the post-translational level. Modified bHLH transcription factors can form a complex regulatory network to regulate the expression of stress response genes and thus determine the activation of physiological and metabolic reactions. This review article focuses on the structural characteristics, classification, function, and regulatory mechanism of bHLH transcription factor expression at the transcriptional and post-translational levels during their responses to various abiotic stress conditions.
Collapse
Affiliation(s)
- Yasmina Radani
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Rongxue Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Harriet Mateko Korboe
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Liming Yang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
10
|
Gong XR, Zhang SN, Ye LN, Luo JJ, Zhang C. Cross talk between Cu excess and Fe deficiency in the roots of rice. Gene 2023; 874:147491. [PMID: 37207827 DOI: 10.1016/j.gene.2023.147491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Copper (Cu) and iron (Fe) share similar characteristics and participate as coenzymes in several physiological processes. Both Cu excess and Fe deficiency result in chlorosis, however, the crosstalk between the two is not clear in rice. In this study, we performed transcriptome analysis for Cu excess and Fe deficiency in rice. Some WRKY family members (such as WRKY26) and some bHLH family members (such as late flowering) were selected as novel potential transcription factors involved in the regulation of Cu detoxification and Fe utilization, respectively. These genes were induced under corresponding stress conditions. Many Fe uptake-related genes were induced by Cu excess, while Cu detoxification-related genes were not induced by Fe deficiency. Meanwhile, some genes, such as metallothionein 3a, gibberellin 3beta-dioxygenase 2 and WRKY11, were induced by Cu excess but repressed by Fe deficiency. Concisely, our results highlight the crosstalk between Cu excess and Fe deficiency in rice. Cu excess caused Fe deficiency response, while Fe deficiency did not lead to Cu toxicity response. Metallothionein 3a might be responsible for Cu toxicity-induced chlorosis in rice. The crosstalk between Cu excess and Fe deficiency might be regulated by gibberellic acid.
Collapse
Affiliation(s)
- Xiao-Ran Gong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Shi-Nan Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Li-Na Ye
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Jia-Jun Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Chang Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China.
| |
Collapse
|
11
|
Zhao J, Meng X, Zhang Z, Wang M, Nie F, Liu Q. OsLPR5 Encoding Ferroxidase Positively Regulates the Tolerance to Salt Stress in Rice. Int J Mol Sci 2023; 24:ijms24098115. [PMID: 37175822 PMCID: PMC10179522 DOI: 10.3390/ijms24098115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/14/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Salinity is a major abiotic stress that harms rice growth and productivity. Low phosphate roots (LPRs) play a central role in Pi deficiency-mediated inhibition of primary root growth and have ferroxidase activity. However, the function of LPRs in salt stress response and tolerance in plants remains largely unknown. Here, we reported that the OsLPR5 was induced by NaCl stress and positively regulates the tolerance to salt stress in rice. Under NaCl stress, overexpression of OsLPR5 led to increased ferroxidase activity, more green leaves, higher levels of chlorophyll and lower MDA contents compared with the WT. In addition, OsLPR5 could promote the accumulation of cell osmotic adjustment substances and promote ROS-scavenging enzyme activities. Conversely, the mutant lpr5 had a lower ferroxidase activity and suffered severe damage under salt stress. Moreover, knock out of OsLPR5 caused excessive Na+ levels and Na+/K+ ratios. Taken together, our results exemplify a new molecular link between ferroxidase and salt stress tolerance in rice.
Collapse
Affiliation(s)
- Juan Zhao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Xin Meng
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhaonian Zhang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Mei Wang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fanhao Nie
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Qingpo Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
12
|
Li M, Watanabe S, Gao F, Dubos C. Iron Nutrition in Plants: Towards a New Paradigm? PLANTS (BASEL, SWITZERLAND) 2023; 12:384. [PMID: 36679097 PMCID: PMC9862363 DOI: 10.3390/plants12020384] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Iron (Fe) is an essential micronutrient for plant growth and development. Fe availability affects crops' productivity and the quality of their derived products and thus human nutrition. Fe is poorly available for plant use since it is mostly present in soils in the form of insoluble oxides/hydroxides, especially at neutral to alkaline pH. How plants cope with low-Fe conditions and acquire Fe from soil has been investigated for decades. Pioneering work highlighted that plants have evolved two different strategies to mine Fe from soils, the so-called Strategy I (Fe reduction strategy) and Strategy II (Fe chelation strategy). Strategy I is employed by non-grass species whereas graminaceous plants utilize Strategy II. Recently, it has emerged that these two strategies are not fully exclusive and that the mechanism used by plants for Fe uptake is directly shaped by the characteristics of the soil on which they grow (e.g., pH, oxygen concentration). In this review, recent findings on plant Fe uptake and the regulation of this process will be summarized and their impact on our understanding of plant Fe nutrition will be discussed.
Collapse
Affiliation(s)
- Meijie Li
- IPSiM, University Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Shunsuke Watanabe
- IPSiM, University Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Fei Gao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Christian Dubos
- IPSiM, University Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
13
|
Kermeur N, Pédrot M, Cabello-Hurtado F. Iron Availability and Homeostasis in Plants: A Review of Responses, Adaptive Mechanisms, and Signaling. Methods Mol Biol 2023; 2642:49-81. [PMID: 36944872 DOI: 10.1007/978-1-0716-3044-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Iron is an essential element for all living organisms, playing a major role in plant biochemistry as a redox catalyst based on iron redox properties. Iron is the fourth most abundant element of the Earth's crust, but its uptake by plants is complex because it is often in insoluble forms that are not easily accessible for plants to use. The physical and chemical speciation of iron, as well as rhizosphere activity, are key factors controlling the bioavailability of Fe. Iron can be under reduced (Fe2+) or oxidized (Fe3+) ionic forms, adsorbed onto mineral surfaces, forming complexes with organic molecules, precipitated to form poorly crystalline hydroxides to highly crystalline iron oxides, or included in crystalline Fe-rich mineral phases. Plants must thus adapt to a complex and changing iron environment, and their response is finely regulated by multiple signaling pathways initiated by a diversity of stimulus perceptions. Higher plants possess two separate strategies to uptake iron from rhizosphere soil: the chelation strategy and the reduction strategy in grass and non-grass plants, respectively. Molecular actors involved in iron uptake and mobilization through the plant have been characterized for both strategies. All these processes that contribute to iron homeostasis in plants are highly regulated in response to iron availability by downstream signaling responses, some of which are characteristic signaling signatures of iron dynamics, while others are shared with other environmental stimuli. Recent research has thus revealed key transcription factors, cis-acting elements, post-translational regulators, and other molecular mechanisms controlling these genes or their encoded proteins in response to iron availability. In addition, the most recent research is increasingly highlighting the crosstalk between iron homeostasis and nutrient response regulation. These regulatory processes help to avoid plant iron concentrations building up to potential cell functioning disruptions that could adversely affect plant fitness. Indeed, when iron is in excess in the plant, it can lead to the production and accumulation of dangerous reactive oxygen species and free radicals (H2O2, HO•, O2•-, HO•2) that can cause considerable damages to most cellular components. To cope with iron oxidative stress, plants have developed defense systems involving the complementary action of antioxidant enzymes and molecular antioxidants, safe iron-storage mechanisms, and appropriate morphological adaptations.
Collapse
Affiliation(s)
- Nolenn Kermeur
- University of Rennes, CNRS, Ecobio, UMR 6553, Rennes, France
- University of Rennes, CNRS, Géosciences Rennes, UMR 6118, Rennes, France
| | - Mathieu Pédrot
- University of Rennes, CNRS, Géosciences Rennes, UMR 6118, Rennes, France
| | | |
Collapse
|
14
|
Wang W, Shinwari KI, Zhang H, Zhang H, Dong L, He F, Zheng L. The bHLH Transcription Factor OsbHLH057 Regulates Iron Homeostasis in Rice. Int J Mol Sci 2022; 23:ijms232314869. [PMID: 36499202 PMCID: PMC9739582 DOI: 10.3390/ijms232314869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Many basic Helix-Loop-Helix (bHLH) transcription factors precisely regulate the expression of Fe uptake and translocation genes to control iron (Fe) homeostasis, as both Fe deficiency and toxicity impair plant growth and development. In rice, three clade IVc bHLH transcription factors have been characterised as positively regulating Fe-deficiency response genes. However, the function of OsbHLH057, another clade IVc bHLH transcription factor, in regulating Fe homeostasis is unknown. Here, we report that OsbHLH057 is involved in regulating Fe homeostasis in rice. OsbHLH057 was highly expressed in the leaf blades and lowly expressed in the roots; it was mainly expressed in the stele and highly expressed in the lateral roots. In addition, OsbHLH057 was slightly induced by Fe deficiency in the shoots on the first day but was not affected by Fe availability in the roots. OsbHLH057 localised in the nucleus exhibited transcriptional activation activity. Under Fe-sufficient conditions, OsbHLH057 knockout or overexpression lines increased or decreased the shoot Fe concentration and the expression of several Fe homeostasis-related genes, respectively. Under Fe-deficient conditions, plants with an OsbHLH057 mutation showed susceptibility to Fe deficiency and accumulated lower Fe concentrations in the shoot compared with the wild type. Unexpectedly, the OsbHLH057-overexpressing lines had reduced tolerance to Fe deficiency. These results indicate that OsbHLH057 plays a positive role in regulating Fe homeostasis, at least under Fe-sufficient conditions.
Collapse
|
15
|
Weng X, Zhu L, Yu S, Liu Y, Ru Y, Zhang Z, He Z, Zhou L, Chen X. Carbon monoxide promotes stomatal initiation by regulating the expression of two EPF genes in Arabidopsis cotyledons. FRONTIERS IN PLANT SCIENCE 2022; 13:1029703. [PMID: 36438138 PMCID: PMC9691970 DOI: 10.3389/fpls.2022.1029703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The gaseous molecule carbon monoxide (CO) can freely pass through the cell membrane and participate in signal transduction in the cell to regulate physiological activities in plants. Here, we report that CO has a positive regulatory role in stomatal development. Exogenous CO donor CORM-2 [Tricarbonyldichlororuthenium (II) dimer] treatment resulted in an increase of stomatal index (SI) on the abaxial epidermis of cotyledons in wild-type, which can be reversed by the addition of the CO biosynthesis inhibitor ZnPPIX [Protoporphyrin IX zinc (II)]. Consistent with this result, mutation of the CO biosynthesis gene HY1 resulted in a decrease of SI in hy1-100 plants, while overexpression of HY1 led to an increase of SI. Further investigation revealed that CO acts upstream of SPCH and YDA in the stomatal development pathway, since the loss of function mutants spch-1 and yda-2 were insensitive to CORM-2. The expression of EPF2 was inhibited by CORM-2 treatment in wild type and is lower in hy1 than in wild-type plants. In contrast, the expression of STOMAGEN was promoted by CORM-2 treatment and is higher in HY1-overexpression lines. Loss of function mutants of both epf2 and stomagen are insensitive to CORM-2 treatment. These results indicated that CO positively regulates stomatal initiation and distribution by modulating the expression of EPF2 and STOMAGEN.
Collapse
Affiliation(s)
- Xianjie Weng
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Lingyan Zhu
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Shuangshuang Yu
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Yue Liu
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Yanyu Ru
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Zijing Zhang
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Zhaorong He
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Lijuan Zhou
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
- School of Agriculture and Life Sciences, Kunming University, Yunnan, China
| | - Xiaolan Chen
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
16
|
Peng F, Li C, Lu C, Li Y, Xu P, Liang G. IRONMAN peptide interacts with OsHRZ1 and OsHRZ2 to maintain Fe homeostasis in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6463-6474. [PMID: 35789265 DOI: 10.1093/jxb/erac299] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
IRONMAN (IMA) is a family of small peptides which positively regulate plant responses under Fe deficiency. However, the molecular mechanism by which OsIMA1 and OsIMA2 regulate Fe homeostasis in rice is unclear. Here, we reveal that OsIMA1 and OsIMA2 interact with the potential Fe sensors, OsHRZ1 (HAEMERYTHRIN MOTIF-CONTAINING REALLY INTERESTING NEW GENE (RING) AND ZINC-FINGER PROTEIN 1) and OsHRZ2. OsIMA1 and OsIMA2 contain a conserved 17 amino acid C-terminal region which is responsible for the interactions with OsHRZ1 and OsHRZ2. Plants overexpressing OsIMA1 (OsIMA1ox) show increased Fe concentration in seeds and reduced fertility, as observed in the hrz1-2 loss-of-function mutant plants. Moreover, the expression patterns of Fe deficiency inducible genes in the OsIMA1ox plants are the same as those in hrz1-2. Co-expression assays suggest that OsHRZ1 and OsHRZ2 promote the degradation of OsIMA1 proteins. As the interaction partners of OsHRZ1, the OsPRI (POSITIVE REGULATOR OF IRON HOMEOSTASIS) proteins also interact with OsHRZ2. The conserved C-terminal region of four OsPRIs contributes to the interactions with OsHRZ1 and OsHRZ2. An artificial IMA (aIMA) derived from the C-terminal of OsPRI1 can be also degraded by OsHRZ1. Moreover, aIMA overexpressing rice plants accumulate more Fe without reduction of fertility. This work establishes the link between OsIMAs and OsHRZs, and develops a new strategy for Fe fortification in rice.
Collapse
Affiliation(s)
- Feng Peng
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chenyang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengkai Lu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Liang G. Iron uptake, signaling, and sensing in plants. PLANT COMMUNICATIONS 2022; 3:100349. [PMID: 35706354 PMCID: PMC9483112 DOI: 10.1016/j.xplc.2022.100349] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 05/10/2023]
Abstract
Iron (Fe) is an essential micronutrient that affects the growth and development of plants because it participates as a cofactor in numerous physiological and biochemical reactions. As a transition metal, Fe is redox active. Fe often exists in soil in the form of insoluble ferric hydroxides that are not bioavailable to plants. Plants have developed sophisticated mechanisms to ensure an adequate supply of Fe in a fluctuating environment. Plants can sense Fe status and modulate the transcription of Fe uptake-associated genes, finally controlling Fe uptake from soil to root. There is a critical need to understand the molecular mechanisms by which plants maintain Fe homeostasis in response to Fe fluctuations. This review focuses on recent advances in elucidating the functions of Fe signaling components. Taking Arabidopsis thaliana and Oryza sativa as examples, this review begins by discussing the Fe acquisition systems that control Fe uptake from soil, the major components that regulate Fe uptake systems, and the perception of Fe status. Future explorations of Fe signal transduction will pave the way for understanding the regulatory mechanisms that underlie the maintenance of plant Fe homeostasis.
Collapse
Affiliation(s)
- Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan 650223, China.
| |
Collapse
|
18
|
Panthri M, Gupta M. An insight into the act of iron to impede arsenic toxicity in paddy agro-system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115289. [PMID: 35598452 DOI: 10.1016/j.jenvman.2022.115289] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Surplus research on the widespread arsenic (As) revealed its disturbing role in obstructing the metabolic function of plants. Also, the predilection of As towards rice has been an interesting topic. Contrary to As, iron (Fe) is an essential micronutrient for all life forms. Past findings propound about the enhanced As-resistance in rice plants during Fe supplementation. Thus, considering the severity of As contamination and resulting exposure through rice crops, as well as the studied cross-talks between As and Fe, we found this topic of relevance. Keeping these in view, we bring this review discussing the presence of As-Fe in the paddy environment, the criticality of Fe plaque in As sequestration, and the effectiveness of various Fe forms to overcome As toxicity in rice. This type of interactive analysis for As and Fe is also crucial in the context of the involvement of Fe in cellular redox activities such as oxidative stress. Also, this piece of work highlights Fe biofortification approaches for better rice varieties with optimum intrinsic Fe and limited As. Though elaborated by others, we lastly present the acquisition and transport mechanisms of both As and Fe in rice tissues. Altogether we suggest that Fe supply and Fe plaque might be a prospective agronomical tool against As poisoning and for phytostabilization, respectively.
Collapse
Affiliation(s)
- Medha Panthri
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
19
|
Li C, Li Y, Xu P, Liang G. OsIRO3 negatively regulates Fe homeostasis by repressing the expression of OsIRO2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:966-978. [PMID: 35689518 DOI: 10.1111/tpj.15864] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/27/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Iron (Fe) is crucial for crop productivity and quality. However, Fe deficiency is prevalent worldwide, particularly in alkaline soil. Plants have evolved sophisticated mechanisms to withstand Fe-deficient conditions. Oryza sativa IRON-RELATED BHLH TRANSCRIPTION FACTOR 3 (OsIRO3/OsbHLH63) has been identified as a negative regulator of Fe deficiency response signaling; however, the underlying mechanism remains unclear. In the present study, we constructed two iro3 mutants, which developed leaves with necrotic lesions under Fe-deficient conditions. Loss-of-function of OsIRO3 caused upregulation of Fe deficiency-associated genes in the root. Fe concentration measurements showed that the iro3 mutants had increased shoot Fe concentration only under Fe-deficient conditions. Further analysis revealed that OsIRO3 directly regulated the expression of IRON-RELATED BHLH TRANSCRIPTION FACTOR 2 (OsIRO2), which encodes a positive regulator of the Fe uptake system. Further investigation demonstrated that OsIRO3 interacted with POSITIVE REGULATOR OF IRON HOMEOSTASIS 1(OsPRI1) and OsPRI2, and. OsIRO3 repressed their transcription activation towards OsIRO2. OsIRO3 contains an EAR motif, which recruits the TOPLESS/TOPLESS-RELATED (OsTPL/OsTPRs) corepressors. Mutation of the EAR motif attenuated the repression ability of OsIRO3. This work sheds light on the molecular mechanism by which OsIRO3 modulates Fe homeostasis in rice.
Collapse
Affiliation(s)
- Chenyang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
20
|
CITF1 Functions Downstream of SPL7 to Specifically Regulate Cu Uptake in Arabidopsis. Int J Mol Sci 2022; 23:ijms23137239. [PMID: 35806241 PMCID: PMC9266912 DOI: 10.3390/ijms23137239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Copper (Cu) is one of the most indispensable micronutrients, and proper Cu homeostasis is required for plants to maintain essential cellular functions. Plants activate the Cu uptake system during Cu limitation. Although SPL7 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 7) and CITF1 (Cu-DEFICIENCY INDUCED TRANSCRIPTION FACTOR 1) are two transcription factors in Cu homeostasis, it remains unclear how SPL7 and CITF1 control the Cu uptake system. Here, we reveal that overexpression of CITF1 causes the enhanced tolerance to Cu deficiency and the elevated expression of Cu uptake genes COPT2, FRO4 and FRO5. Electrophoretic mobility shift assays (EMSA) and transient expression assays indicate that SPL7 directly binds to and activates the promoter of CITF1. The overexpression of CITF1 partially rescues the sensitivity of spl7-1 to Cu deficiency. Transcriptome data suggest that SPL7 and CITF1 coregulate the Cu-homeostasis-signaling network, and CITF1 has its own independent functions. Moreover, both SPL7 and CITF1 can directly bind to and activate the promoters of three Cu uptake genes COPT2, FRO4 and FRO5. This work shows the functions of CITF1 in the Cu-homeostasis-signaling network, providing insights into the complicated molecular mechanism underlying Cu homeostasis.
Collapse
|
21
|
Wang W, Ye J, Xu H, Liu X, Fu Y, Zhang H, Rouached H, Whelan J, Shen Z, Zheng L. OsbHLH061 links TOPLESS/TOPLESS-RELATED repressor proteins with POSITIVE REGULATOR OF IRON HOMEOSTASIS 1 to maintain iron homeostasis in rice. THE NEW PHYTOLOGIST 2022; 234:1753-1769. [PMID: 35288933 DOI: 10.1111/nph.18096] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/28/2022] [Indexed: 05/16/2023]
Abstract
As excess iron (Fe) is toxic, uptake of this essential micronutrient must be tightly controlled. Previous studies have shown that Oryza sativa (rice) POSITIVE REGULATOR OF IRON HOMEOSTASIS1 (OsPRI1) acts upstream of the iron-related transcription factor 2 (OsIRO2) and OsIRO3 to positively regulate root-to-shoot Fe translocation. However, as expression of OsPRI1 is constitutive it is unclear how the Fe-deficiency response is turned off to prevent toxicity when Fe is sufficient. The bHLH transcription factor OsbHLH061 interacts with OsPRI1, and this study used molecular, genetics, biochemical and physiological approaches to functionally characterise OsbHLH061 and how it affects Fe homeostasis. OsbHLH061 knockout or overexpression lines increase or decrease Fe accumulation in shoots respectively. Mechanistically, OsbHLH061 expression is upregulated by high Fe, and physically interacts with OsPRI1, the OsbHLH061-OsPRI1 complex recruits TOPLESS/TOPLESS-RELATED (OsTPL/TPR) co-repressors to repress OsIRO2 and OsIRO3 expression. The OsbHLH061 ethylene-responsive element-binding factor-associated amphiphilic repression (EAR) motif is required for this transcriptional repression activity. These results define a functional OsTPL/TPR-OsbHLH061-OsPRI1-OsIRO2/3 module that negatively controls long-distance transport of Fe in plants for adaptation to changing Fe environments and maintain Fe homeostasis in rice.
Collapse
Affiliation(s)
- Wujian Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jun Ye
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Heng Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xi Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yue Fu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hui Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hatem Rouached
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, ARC Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Vic., 3086, Australia
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
22
|
Kong D, Khan SA, Wu H, Liu Y, Ling HQ. Biofortification of iron and zinc in rice and wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1157-1167. [PMID: 35396901 DOI: 10.1111/jipb.13262] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Iron and zinc are critical micronutrients for human health. Approximately two billion people suffer from iron and zinc deficiencies worldwide, most of whom rely on rice (Oryza sativa) and wheat (Triticum aestivum) as staple foods. Therefore, biofortifying rice and wheat with iron and zinc is an important and economical approach to ameliorate these nutritional deficiencies. In this review, we provide a brief introduction to iron and zinc uptake, translocation, storage, and signaling pathways in rice and wheat. We then discuss current progress in efforts to biofortify rice and wheat with iron and zinc. Finally, we provide future perspectives for the biofortification of rice and wheat with iron and zinc.
Collapse
Affiliation(s)
- Danyu Kong
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, 332900, Jiangxi, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Sabaz Ali Khan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
- Department of Biotechnology, COMSATS University Islamabad-Abbottabad Campus, University Road, Abbottabad, 22060, Pakistan
| | - Huilan Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, 332900, Jiangxi, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Kobayashi T, Shinkawa H, Nagano AJ, Nishizawa NK. The basic leucine zipper transcription factor OsbZIP83 and the glutaredoxins OsGRX6 and OsGRX9 facilitate rice iron utilization under the control of OsHRZ ubiquitin ligases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1731-1750. [PMID: 35411594 DOI: 10.1111/tpj.15767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 05/16/2023]
Abstract
Under low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice (Oryza sativa) ubiquitin ligases OsHRZ1 and OsHRZ2 cause overall repression of these iron-related genes at the transcript level, but their protein-level regulation is unclear. We conducted a proteome analysis to identify key regulators whose abundance was regulated by OsHRZs at the protein level. In response to iron deficiency or OsHRZ knockdown, many genes showed differential regulation between the transcript and protein levels, including the TGA-type basic leucine zipper transcription factor OsbZIP83. We also identified two glutaredoxins, OsGRX6 and OsGRX9, as OsHRZ-interacting proteins in yeast and plant cells. OsGRX6 also interacted with OsbZIP83. Our in vitro degradation assay suggested that OsbZIP83, OsGRX6 and OsGRX9 proteins are subjected to 26S proteasome- and OsHRZ-dependent degradation. Proteome analysis and our in vitro degradation assay also suggested that OsbZIP83 protein was preferentially degraded under iron-deficient conditions in rice roots. Transgenic rice lines overexpressing OsGRX9 and OsbZIP83 showed improved tolerance to iron deficiency. Expression of iron-related genes was affected in the OsGRX9 and OsGRX6 knockdown lines, suggesting disturbed iron utilization and signaling. OsbZIP83 overexpression lines showed enhanced expression of OsYSL2 and OsNAS3, which are involved in internal iron translocation, in addition to OsGRX9 and genes related to phytoalexin biosynthesis and the salicylic acid pathway. The results suggest that OsbZIP83, OsGRX6 and OsGRX9 facilitate iron utilization downstream of the OsHRZ pathway.
Collapse
Affiliation(s)
- Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Haruka Shinkawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
| | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| |
Collapse
|
24
|
Kumar A, Kaur G, Singh P, Meena V, Sharma S, Tiwari M, Bauer P, Pandey AK. Strategies and Bottlenecks in Hexaploid Wheat to Mobilize Soil Iron to Grains. FRONTIERS IN PLANT SCIENCE 2022; 13:863849. [PMID: 35574143 PMCID: PMC9100831 DOI: 10.3389/fpls.2022.863849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
Our knowledge of iron (Fe) uptake and mobilization in plants is mainly based on Arabidopsis and rice. Although multiple players of Fe homeostasis have been elucidated, there is a significant gap in our understanding of crop species, such as wheat. It is, therefore, imperative not only to understand the different hurdles for Fe enrichment in tissues but also to address specifically the knowns/unknowns involved in the plausible mechanism of Fe sensing, signaling, transport, and subsequent storage in plants. In the present review, a unique perspective has been described in light of recent knowledge generated in wheat, an economically important crop. The strategies to boost efficient Fe uptake, transcriptional regulation, and long-distance mobilization in grains have been discussed, emphasizing recent biotechnological routes to load Fe in grains. This article also highlights the new elements of physiological and molecular genetics that underpin the mechanistic insight for the identified Fe-related genes and discusses the bottlenecks in unloading the Fe in grains. The information presented here will provide much-needed resources and directions to overcome challenges and design efficient strategies to enhance the Fe density in wheat grains.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India
| | - Gazaldeep Kaur
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India
| | - Palvinder Singh
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India
| | - Varsha Meena
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India
| | - Shivani Sharma
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India
| | - Manish Tiwari
- CSIR-National Botanical Research Institute, Lucknow, India
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ajay Kumar Pandey
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India
| |
Collapse
|
25
|
Darma A, Yang J, Zandi P, Liu J, Możdżeń K, Xia X, Sani A, Wang Y, Schnug E. Significance of Shewanella Species for the Phytoavailability and Toxicity of Arsenic-A Review. BIOLOGY 2022; 11:biology11030472. [PMID: 35336844 PMCID: PMC8944983 DOI: 10.3390/biology11030472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary The availability of some toxic heavy metals, such as arsenic (As), is related to increased human and natural activities. This type of metal availability in the environment is associated with various health and environmental issues. Such problems may arise due to direct contact with or consumption of plant products containing this metal in some of their parts. A microbial approach that employs a group of bacteria (Shewanella species) is proposed to reduce the negative consequences of the availability of this metal (As) in the environment. This innovative strategy can reduce As mobility, its spread, and uptake by plants in the environment. The benefits of this approach include its low cost and the possibility of not exposing other components of the environment to unfavourable consequences. Abstract The distribution of arsenic continues due to natural and anthropogenic activities, with varying degrees of impact on plants, animals, and the entire ecosystem. Interactions between iron (Fe) oxides, bacteria, and arsenic are significantly linked to changes in the mobility, toxicity, and availability of arsenic species in aquatic and terrestrial habitats. As a result of these changes, toxic As species become available, posing a range of threats to the entire ecosystem. This review elaborates on arsenic toxicity, the mechanisms of its bioavailability, and selected remediation strategies. The article further describes how the detoxification and methylation mechanisms used by Shewanella species could serve as a potential tool for decreasing phytoavailable As and lessening its contamination in the environment. If taken into account, this approach will provide a globally sustainable and cost-effective strategy for As remediation and more information to the literature on the unique role of this bacterial species in As remediation as opposed to conventional perception of its role as a mobiliser of As.
Collapse
Affiliation(s)
- Aminu Darma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.D.); (X.X.); (Y.W.)
- Department of Biological Sciences, Faculty of Life Science, Bayero University, Kano 700006, Nigeria;
| | - Jianjun Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.D.); (X.X.); (Y.W.)
- Correspondence: (J.Y.); (E.S.); Tel.: +86-010-82105996 (J.Y.)
| | - Peiman Zandi
- International Faculty of Applied Technology, Yibin University, Yibin 644600, China;
| | - Jin Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, China;
| | - Katarzyna Możdżeń
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2 St., 30-084 Krakow, Poland;
| | - Xing Xia
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.D.); (X.X.); (Y.W.)
| | - Ali Sani
- Department of Biological Sciences, Faculty of Life Science, Bayero University, Kano 700006, Nigeria;
| | - Yihao Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.D.); (X.X.); (Y.W.)
| | - Ewald Schnug
- Department of Life Sciences, Institute for Plant Biology, Technical University of Braunschweig, 38106 Braunschweig, Germany
- Correspondence: (J.Y.); (E.S.); Tel.: +86-010-82105996 (J.Y.)
| |
Collapse
|
26
|
Li Y, Lei R, Pu M, Cai Y, Lu C, Li Z, Liang G. bHLH11 inhibits bHLH IVc proteins by recruiting the TOPLESS/TOPLESS-RELATED corepressors. PLANT PHYSIOLOGY 2022; 188:1335-1349. [PMID: 34894263 PMCID: PMC8825326 DOI: 10.1093/plphys/kiab540] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 05/24/2023]
Abstract
Iron (Fe) homeostasis is essential for plant growth and development. Many transcription factors (TFs) play pivotal roles in the maintenance of Fe homeostasis. bHLH11 is a negative TF that regulates Fe homeostasis. However, the underlying molecular mechanism remains elusive. Here, we generated two loss-of-function bhlh11 mutants in Arabidopsis (Arabidopsis thaliana), which display enhanced sensitivity to excess Fe, increased Fe accumulation, and elevated expression of Fe deficiency responsive genes. Levels of bHLH11 protein, localized in both the cytoplasm and nucleus, decreased in response to Fe deficiency. Co-expression assays indicated that bHLH IVc TFs (bHLH34, bHLH104, bHLH105, and bHLH115) facilitate the nuclear accumulation of bHLH11. Further analysis indicated that bHLH11 represses the transactivity of bHLH IVc TFs toward bHLH Ib genes (bHLH38, bHLH39, bHLH100, and bHLH101). The two ethylene response factor-associated amphiphilic repression motifs of bHLH11 provided the repression function by recruiting the TOPLESS/TOPLESS-RELATED (TPL/TPRs) corepressors. Correspondingly, the expression of Fe uptake genes increased in the tpr1 tpr4 tpl mutant. Moreover, genetic analysis revealed that bHLH11 has functions independent of FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR. This study provides insights into the complicated Fe homeostasis signaling network.
Collapse
Affiliation(s)
- Yang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Rihua Lei
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Mengna Pu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuerong Cai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengkai Lu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Zhifang Li
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan 475001, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Carey-Fung O, O’Brien M, Beasley JT, Johnson AAT. A Model to Incorporate the bHLH Transcription Factor OsIRO3 within the Rice Iron Homeostasis Regulatory Network. Int J Mol Sci 2022; 23:ijms23031635. [PMID: 35163555 PMCID: PMC8835859 DOI: 10.3390/ijms23031635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Iron (Fe) homeostasis in plants is governed by a complex network of regulatory elements and transcription factors (TFs), as both Fe toxicity and deficiency negatively impact plant growth and physiology. The Fe homeostasis network is well characterized in Arabidopsis thaliana and remains poorly understood in monocotyledon species such as rice (Oryza sativa L.). Recent investigation of the rice Fe homeostasis network revealed OsIRO3, a basic Helix–Loop–Helix (bHLH) TF as a putative negative regulator of genes involved in Fe uptake, transport, and storage. We employed CRISPR-Cas9 gene editing to target the OsIRO3 coding sequence and generate two independent T-DNA-free, loss-of-function iro3 mutants in rice cv. Nipponbare. The iro3 mutant plants had similar phenotype under nutrient-sufficient conditions and had stunted growth under Fe-deficient conditions, relative to a T-DNA free, wild-type control (WT). Under Fe deficiency, iro3 mutant shoots had reduced expression of Fe chelator biosynthetic genes (OsNAS1, OsNAS2, and OsNAAT1) and upregulated expression of an Fe transporter gene (OsYSL15), relative to WT shoots. We place our results in the context of the existing literature and generate a model describing the role of OsIRO3 in rice Fe homeostasis and reinforce the essential function of OsIRO3 in the rice Fe deficiency response.
Collapse
Affiliation(s)
- Oscar Carey-Fung
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia; (O.C.-F.); (J.T.B.)
| | - Martin O’Brien
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC 3086, Australia;
| | - Jesse T. Beasley
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia; (O.C.-F.); (J.T.B.)
| | - Alexander A. T. Johnson
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia; (O.C.-F.); (J.T.B.)
- Correspondence: ; Tel.: +61-3-8344-3969
| |
Collapse
|
28
|
Guo M, Ruan W, Zhang Y, Zhang Y, Wang X, Guo Z, Wang L, Zhou T, Paz-Ares J, Yi K. A reciprocal inhibitory module for Pi and iron signaling. MOLECULAR PLANT 2022; 15:138-150. [PMID: 34562666 DOI: 10.1016/j.molp.2021.09.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/15/2021] [Accepted: 09/19/2021] [Indexed: 05/16/2023]
Abstract
Phosphorous (P) and iron (Fe), two essential nutrients for plant growth and development, are highly abundant elements in the earth's crust but often display low availability to plants. Due to the ability to form insoluble complexes, the antagonistic interaction between P and Fe nutrition in plants has been noticed for decades. However, the underlying molecular mechanism modulating the signaling and homeostasis between them remains obscure. Here, we show that the possible iron sensors HRZs, the iron deficiency-induced E3 ligases, could interact with the central regulator of phosphate (Pi) signaling, PHR2, and prompt its ubiquitination at lysine residues K319 and K328, leading to its degradation in rice. Consistent with this, the hrzs mutants displayed a high Pi accumulation phenotype. Furthermore, we found that iron deficiency could attenuate Pi starvation signaling by inducing the expression of HRZs, which in turn trigger PHR2 protein degradation. Interestingly, on the other hand, rice PHRs could negatively regulate the expression of HRZs to modulate iron deficiency responses. Therefore, PHR2 and HRZs form a reciprocal inhibitory module to coordinate Pi and iron signaling and homeostasis in rice. Taken together, our results uncover a molecular link between Pi and iron master regulators, which fine-tunes plant adaptation to Pi and iron availability in rice.
Collapse
Affiliation(s)
- Meina Guo
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenyuan Ruan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yibo Zhang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuxin Zhang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xueqing Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenhui Guo
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tian Zhou
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Javier Paz-Ares
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
29
|
Yuan J, Li D, Shen C, Wu C, Khan N, Pan F, Yang H, Li X, Guo W, Chen B, Li X. Transcriptome Analysis Revealed the Molecular Response Mechanism of Non-heading Chinese Cabbage to Iron Deficiency Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:848424. [PMID: 35371147 PMCID: PMC8964371 DOI: 10.3389/fpls.2022.848424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/22/2022] [Indexed: 05/10/2023]
Abstract
Iron is a trace metal that is found in animals, plants, and the human body. Human iron absorption is hampered by plant iron shortage, which leads to anemia. Leafy vegetables are one of the most direct and efficient sources of iron for humans. Despite the fact that ferrotrophic disorder is common in calcareous soil, however, non-heading Chinese cabbage performs a series of reactions in response to iron deficiency stress that help to preserve iron homeostasis in vivo. In this study, we discovered that iron deficiency stress caused leaf yellowing and impeded plant development in both iron-deficient and control treatments by viewing or measuring phenotypic, chlorophyll content, and Fe2+ content in both iron-deficient and control treatments. We found a total of 9213 differentially expressed genes (DEGs) in non-heading Chinese cabbage by comparing root and leaf transcriptome data with iron deficiency and control treatments. For instance, 1927 DEGs co-expressed in root and leaf, including 897 up-regulated and 1030 down-regulated genes, respectively. We selected some key antioxidant genes, hormone signal transduction, iron absorption and transport, chlorophyll metabolism, and transcription factors involved in the regulation of iron deficiency stress utilizing GO enrichment, KEGG enrichment, multiple types of functional annotation, and Weighted Gene Co-expression Network Analysis (WGCNA). This study identifies prospective genes for maintaining iron homeostasis under iron-deficient stress, offering a theoretical foundation for further research into the molecular mechanisms of greater adaptation to iron-deficient stress, and perhaps guiding the development of iron-tolerant varieties.
Collapse
Affiliation(s)
- Jingping Yuan
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
- *Correspondence: Jingping Yuan,
| | - Daohan Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| | - Changwei Shen
- School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, China
| | - Chunhui Wu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| | - Nadeem Khan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Feifei Pan
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| | - Helian Yang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| | - Xin Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| | - Weili Guo
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| | - Bihua Chen
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| | - Xinzheng Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| |
Collapse
|
30
|
Cai Y, Li Y, Liang G. FIT and bHLH Ib transcription factors modulate iron and copper crosstalk in Arabidopsis. PLANT, CELL & ENVIRONMENT 2021; 44:1679-1691. [PMID: 33464620 DOI: 10.1111/pce.14000] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 05/22/2023]
Abstract
Although the crosstalk between iron (Fe) and copper (Cu) homeostasis signalling networks exists in plants, the underlined molecular mechanism remains unclear. FIT (FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) and four bHLH Ib members (bHLH38, bHLH39, bHLH100 and bHLH101) are the key regulators of Fe homeostasis. Here, we reveal that FIT and bHLH Ib control the up-regulation of Cu-uptake genes (COPT2, FRO4 and FRO5) by Fe deficiency, and Cu is required for improving plant growth under Fe-deficiency conditions. The induction of Cu-uptake gene expression and the elevation of Cu concentration are inhibited in the fit-2 or bhlh4x (the quadruple mutant of four bHLH Ib genes) under Fe-deficiency conditions. The dual overexpression of both bHLH38 (or bHLH39) and FIT activates the expression of COPT2, FRO4 and FRO5 and increases Cu accumulation. Furthermore, bHLH Ib proteins directly bind to the promoters of COPT2, FRO4 and FRO5. Either Cu supplement or overexpression of COPT2 or FRO4 improves the growth of fit-2 under Fe-deficiency conditions. Moreover, the induction of COPT2, FRO4 and FRO5 by Fe deficiency is independent of SPL7, a central regulator of Cu-deficiency responses. This work through the link between bHLH Ib/FIT and COPT2/FRO4/FRO5 under Fe-deficiency conditions establishes a new relationship between Cu and Fe homeostasis.
Collapse
Affiliation(s)
- Yuerong Cai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China
| |
Collapse
|
31
|
Annotation and Molecular Characterisation of the TaIRO3 and TaHRZ Iron Homeostasis Genes in Bread Wheat ( Triticum aestivum L.). Genes (Basel) 2021; 12:genes12050653. [PMID: 33925484 PMCID: PMC8146704 DOI: 10.3390/genes12050653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 01/30/2023] Open
Abstract
Effective maintenance of plant iron (Fe) homoeostasis relies on a network of transcription factors (TFs) that respond to environmental conditions and regulate Fe uptake, translocation, and storage. The iron-related transcription factor 3 (IRO3), as well as haemerythrin motif-containing really interesting new gene (RING) protein and zinc finger protein (HRZ), are major regulators of Fe homeostasis in diploid species like Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa L.), but remain uncharacterised in hexaploid bread wheat (Triticum aestivum L.). In this study, we have identified, annotated, and characterised three TaIRO3 homoeologs and six TaHRZ1 and TaHRZ2 homoeologs in the bread wheat genome. Protein analysis revealed that TaIRO3 and TaHRZ proteins contain functionally conserved domains for DNA-binding, dimerisation, Fe binding, or polyubiquitination, and phylogenetic analysis revealed clustering of TaIRO3 and TaHRZ proteins with other monocot IRO3 and HRZ proteins, respectively. Quantitative reverse-transcription PCR analysis revealed that all TaIRO3 and TaHRZ homoeologs have unique tissue expression profiles and are upregulated in shoot tissues in response to Fe deficiency. After 24 h of Fe deficiency, the expression of TaHRZ homoeologs was upregulated, while the expression of TaIRO3 homoeologs was unchanged, suggesting that TaHRZ functions upstream of TaIRO3 in the wheat Fe homeostasis TF network.
Collapse
|
32
|
Spielmann J, Vert G. The many facets of protein ubiquitination and degradation in plant root iron-deficiency responses. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2071-2082. [PMID: 32945865 DOI: 10.1093/jxb/eraa441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Organisms need to deal with the absolute requirement for metals and also their possible toxicity. This is achieved through an intricate network of signaling pathways that are integrated to ultimately fine-tune iron uptake and metabolism. The mechanisms by which plants cope with iron limitation and the associated genomic responses are well characterized. On top of this transcriptional cascade is another level of regulation involving the post-translational protein modification and degradation. The ubiquitination and/or degradation of several transcription factors in the iron-deficiency signaling pathways and metal transporters has recently come to light. In this review we discuss the mechanisms and possible roles of protein modification and turnover in the regulation of root iron-deficiency responses. We also highlight the tight coupling between metal sensing by E3 ubiquitin ligases or bifunctional transporters and protein degradation.
Collapse
Affiliation(s)
- Julien Spielmann
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, 24 chemin de Borde Rouge, Auzeville-Tolosane, France
| | - Grégory Vert
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, 24 chemin de Borde Rouge, Auzeville-Tolosane, France
| |
Collapse
|
33
|
Kobayashi T, Nagano AJ, Nishizawa NK. Iron deficiency-inducible peptide-coding genes OsIMA1 and OsIMA2 positively regulate a major pathway of iron uptake and translocation in rice. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2196-2211. [PMID: 33206982 DOI: 10.1093/jxb/eraa546] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/12/2020] [Indexed: 05/16/2023]
Abstract
Under low iron (Fe) availability, plants transcriptionally induce various genes responsible for Fe uptake and translocation to obtain adequate amounts of Fe. Although transcription factors and ubiquitin ligases involved in these Fe deficiency responses have been identified, the mechanisms coordinating these pathways have not been clarified in rice. Recently identified Fe-deficiency-inducible IRON MAN (IMA)/FE UPTAKE-INDUCING PEPTIDE (FEP) positively regulates many Fe-deficiency-inducible genes for Fe uptake in Arabidopsis. Here, we report that the expression of two IMA/FEP genes in rice, OsIMA1 and OsIMA2, is strongly induced under Fe deficiency, positively regulated by the transcription factors IDEF1, OsbHLH058, and OsbHLH059, as well as OsIMA1 and OsIMA2 themselves, and negatively regulated by HRZ ubiquitin ligases. Overexpression of OsIMA1 or OsIMA2 in rice conferred tolerance to Fe deficiency and accumulation of Fe in leaves and seeds. These OsIMA-overexpressing rice exhibited enhanced expression of all of the known Fe-deficiency-inducible genes involved in Fe uptake and translocation, except for OsYSL2, a Fe-nicotianamine transporter gene, in roots but not in leaves. Knockdown of OsIMA1 or OsIMA2 caused minor effects, including repression of some Fe uptake- and translocation-related genes in OsIMA1 knockdown roots. These results indicate that OsIMA1 and OsIMA2 play key roles in enhancing the major pathway of the Fe deficiency response in rice.
Collapse
Affiliation(s)
- Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Suematsu, Nonoichi, Ishikawa, Japan
| | | | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Suematsu, Nonoichi, Ishikawa, Japan
| |
Collapse
|
34
|
Gao F, Dubos C. Transcriptional integration of plant responses to iron availability. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2056-2070. [PMID: 33246334 DOI: 10.1093/jxb/eraa556] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 05/16/2023]
Abstract
Iron is one of the most important micronutrients for plant growth and development. It functions as the enzyme cofactor or component of electron transport chains in various vital metabolic processes, including photosynthesis, respiration, and amino acid biosynthesis. To maintain iron homeostasis, and therefore prevent any deficiency or excess that could be detrimental, plants have evolved complex transcriptional regulatory networks to tightly control iron uptake, translocation, assimilation, and storage. These regulatory networks are composed of various transcription factors; among them, members of the basic helix-loop-helix (bHLH) family play an essential role. Here, we first review recent advances in understanding the roles of bHLH transcription factors involved in the regulatory cascade controlling iron homeostasis in the model plant Arabidopsis, and extend this understanding to rice and other plant species. The importance of other classes of transcription factors will also be discussed. Second, we elaborate on the post-translational mechanisms involved in the regulation of these regulatory networks. Finally, we provide some perspectives on future research that should be conducted in order to precisely understand how plants control the homeostasis of this micronutrient.
Collapse
Affiliation(s)
- Fei Gao
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Christian Dubos
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
35
|
Liu Y, Kong D, Wu HL, Ling HQ. Iron in plant-pathogen interactions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2114-2124. [PMID: 33161430 DOI: 10.1093/jxb/eraa516] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Iron is an essential element for most organisms. As an indispensable co-factor of many enzymes, iron is involved in various crucial metabolic processes that are required for the survival of plants and pathogens. Conversely, excessive iron produces highly active reactive oxygen species, which are toxic to the cells of plants and pathogens. Therefore, plants and pathogens have evolved sophisticated mechanisms to modulate iron status at a moderate level for maintaining their fitness. Over the past decades, many efforts have been made to reveal these mechanisms, and some progress has been made. In this review, we describe recent advances in understanding the roles of iron in plant-pathogen interactions and propose prospects for future studies.
Collapse
Affiliation(s)
- Yi Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Danyu Kong
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Hui-Lan Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Nakib D, Slatni T, Di Foggia M, Rombolà AD, Abdelly C. Changes in organic compounds secreted by roots in two Poaceae species (Hordeum vulgare and Polypogon monspenliensis) subjected to iron deficiency. JOURNAL OF PLANT RESEARCH 2021; 134:151-163. [PMID: 33411147 DOI: 10.1007/s10265-020-01237-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
Despite their economic and ecological interests, Poaceae are affected by the low availability of iron in calcareous soils. Several studies focused on the capacity of this family to secrete phytosiderophores and organic acids as a mechanism of tolerance to iron deficiency. This work aimed at studying the physiological responses of two Poaceae species; Hordeum vulgare (cultivated barley) and Polypogon monspenliensis (spontaneous species) to iron deficiency, and evaluate especially the release of phytosiderophores and organic acids. For this purpose, seedlings of these two species were cultivated in complete nutrient solution with or without iron. The biomass production, iron status, phytosiderophores and organic acids release by roots were studied. The results demonstrated that Polypogon monspenliensis was relatively more tolerant to iron deficiency than Hordeum vulgare. Polypogon monspenliensis had the ability to secrete a higher amount of phytosiderophores and organic acids, especially citric, acetic, oxalic and malic acids, compared to Hordeum vulgare. We propose this spontaneous species as a forage plant in calcareous soils and in intercropping systems with fruit trees to prevent iron chlorosis.
Collapse
Affiliation(s)
- Dorsaf Nakib
- Laboratoire Des Plantes Extrêmophiles (LPE), Centre de Biotechnologie de Borj Cedria (CBBC), BP 901, 2050, Hammam Lif, Tunisie
- Department of Agricultural and Food Science, University of Bologne, Viale Fanin 44, 40127, Bologne, Italy
- Faculté Des Sciences de Bizerte (FSB), Département de Biologie, Université de Carthage (UCAR), Avenue de la République, BP 77-1054, Amilcar, Tunisie
| | - Tarek Slatni
- Laboratoire Des Plantes Extrêmophiles (LPE), Centre de Biotechnologie de Borj Cedria (CBBC), BP 901, 2050, Hammam Lif, Tunisie.
- Faculté Des Sciences de Tunis (FST), Département de Biologie, Université de Tunis El Manar (UTM), 1060, Tunis, Tunisie.
| | - Michele Di Foggia
- Faculté Des Sciences de Bizerte (FSB), Département de Biologie, Université de Carthage (UCAR), Avenue de la République, BP 77-1054, Amilcar, Tunisie
| | - Adamo Domenico Rombolà
- Faculté Des Sciences de Bizerte (FSB), Département de Biologie, Université de Carthage (UCAR), Avenue de la République, BP 77-1054, Amilcar, Tunisie
| | - Chedly Abdelly
- Laboratoire Des Plantes Extrêmophiles (LPE), Centre de Biotechnologie de Borj Cedria (CBBC), BP 901, 2050, Hammam Lif, Tunisie
| |
Collapse
|
37
|
Tong J, Sun M, Wang Y, Zhang Y, Rasheed A, Li M, Xia X, He Z, Hao Y. Dissection of Molecular Processes and Genetic Architecture Underlying Iron and Zinc Homeostasis for Biofortification: From Model Plants to Common Wheat. Int J Mol Sci 2020; 21:E9280. [PMID: 33291360 PMCID: PMC7730113 DOI: 10.3390/ijms21239280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
The micronutrients iron (Fe) and zinc (Zn) are not only essential for plant survival and proliferation but are crucial for human health. Increasing Fe and Zn levels in edible parts of plants, known as biofortification, is seen a sustainable approach to alleviate micronutrient deficiency in humans. Wheat, as one of the leading staple foods worldwide, is recognized as a prioritized choice for Fe and Zn biofortification. However, to date, limited molecular and physiological mechanisms have been elucidated for Fe and Zn homeostasis in wheat. The expanding molecular understanding of Fe and Zn homeostasis in model plants is providing invaluable resources to biofortify wheat. Recent advancements in NGS (next generation sequencing) technologies coupled with improved wheat genome assembly and high-throughput genotyping platforms have initiated a revolution in resources and approaches for wheat genetic investigations and breeding. Here, we summarize molecular processes and genes involved in Fe and Zn homeostasis in the model plants Arabidopsis and rice, identify their orthologs in the wheat genome, and relate them to known wheat Fe/Zn QTL (quantitative trait locus/loci) based on physical positions. The current study provides the first inventory of the genes regulating grain Fe and Zn homeostasis in wheat, which will benefit gene discovery and breeding, and thereby accelerate the release of Fe- and Zn-enriched wheats.
Collapse
Affiliation(s)
- Jingyang Tong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Mengjing Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Yue Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Yong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Awais Rasheed
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing 100081, China;
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ming Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Xianchun Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing 100081, China;
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| |
Collapse
|
38
|
Senoura T, Kobayashi T, An G, Nakanishi H, Nishizawa NK. Defects in the rice aconitase-encoding OsACO1 gene alter iron homeostasis. PLANT MOLECULAR BIOLOGY 2020; 104:629-645. [PMID: 32909184 DOI: 10.1007/s11103-020-01065-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/30/2020] [Indexed: 05/16/2023]
Abstract
Rice aconitase gene OsACO1 is involved in the iron deficiency-signaling pathway for the expression of iron deficiency-inducible genes, either thorough enzyme activity or possible specific RNA binding for post-transcriptional regulation. Iron (Fe) is an essential element for virtually all living organisms. When plants are deficient in Fe, Fe acquisition systems are activated to maintain Fe homeostasis, and this regulation is mainly executed at the gene transcription level. Many molecules responsible for Fe uptake, translocation, and storage in plants have been identified and characterized. However, how plants sense Fe status within cells and then induce a transcriptional response is still unclear. In the present study, we found that knockdown of the OsACO1 gene, which encodes an aconitase in rice, leads to the down-regulation of selected Fe deficiency-inducible genes involved in Fe uptake and translocation in roots, and a decrease in Fe concentration in leaves, even when grown under Fe-sufficient conditions. OsACO1 knockdown plants showed a delayed transcriptional response to Fe deficiency compared to wild-type plants. In contrast, overexpression of OsACO1 resulted in the opposite effects. These results suggest that OsACO1 is situated upstream of the Fe deficiency-signaling pathway. Furthermore, we found that the OsACO1 protein potentially has RNA-binding activity. In vitro screening of RNA interactions with OsACO1 revealed that RNA potentially forms a unique stem-loop structure that interacts with OsACO1 via a conserved GGUGG motif within the loop structure. These results suggest that OsACO1 regulate Fe deficiency response either thorough enzyme activity catalyzing isomerization of citrate, or specific RNA binding for post-transcriptional regulation.
Collapse
Affiliation(s)
- Takeshi Senoura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan.
| | - Gynheung An
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Hiromi Nakanishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan.
| |
Collapse
|
39
|
Wang M, Gong J, Bhullar NK. Iron deficiency triggered transcriptome changes in bread wheat. Comput Struct Biotechnol J 2020; 18:2709-2722. [PMID: 33101609 PMCID: PMC7550799 DOI: 10.1016/j.csbj.2020.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022] Open
Abstract
A series of complex transport, storage and regulation mechanisms control iron metabolism and thereby maintain iron homeostasis in plants. Despite several studies on iron deficiency responses in different plant species, these mechanisms remain unclear in the allohexaploid wheat, which is the most widely cultivated commercial crop. We used RNA sequencing to reveal transcriptomic changes in the wheat flag leaves and roots, when subjected to iron limited conditions. We identified 5969 and 2591 differentially expressed genes (DEGs) in the flag leaves and roots, respectively. Genes involved in the synthesis of iron ligands i.e., nicotianamine (NA) and deoxymugineic acid (DMA) were significantly up-regulated during iron deficiency. In total, 337 and 635 genes encoding transporters exhibited altered expression in roots and flag leaves, respectively. Several genes related to MAJOR FACILITATOR SUPERFAMILY (MFS), ATP-BINDING CASSETTE (ABC) transporter superfamily, NATURAL RESISTANCE ASSOCIATED MACROPHAGE PROTEIN (NRAMP) family and OLIGOPEPTIDE TRANSPORTER (OPT) family were regulated, indicating their important roles in combating iron deficiency stress. Among the regulatory factors, the genes encoding for transcription factors of BASIC HELIX-LOOP-HELIX (bHLH) family were highly up-regulated in both roots and the flag leaves. The jasmonate biosynthesis pathway was significantly altered but with notable expression differences between roots and flag leaves. Homoeologs expression and induction bias analysis revealed subgenome specific differential expression. Our findings provide an integrated overview on regulated molecular processes in response to iron deficiency stress in wheat. This information could potentially serve as a guideline for breeding iron deficiency stress tolerant crops as well as for designing appropriate wheat iron biofortification strategies.
Collapse
Key Words
- 3-HMA, 3-hydroxymugineic acid
- ABC, ATP-BINDING CASSETTE
- ACC, 1-aminocyclopropane-1-carboxylate
- AEC, AUXIN EFFLUX CARRIER
- AOC, ALLENE OXIDE CYCLASE
- AOS, ALLENE OXIDE SYNTHASE
- AQP, AQUAPORIN
- AVA, avenic acid
- DEGs, differentially expressed genes
- DMA, deoxymugineic acid
- DMAS, DEOXYMUGINEIC ACID SYNTHASE
- DPA, days post anthesis
- ERF, ETHYLENE-RESPONSIVE FACTOR
- FAD, FATTY ACID DESATURASE
- FDR, false discovery rate
- FIT, FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR
- FRO, FERRIC REDUCTASE OXIDASE
- GCN, gene co-expression network
- GO, Gene ontology
- GSH, GLUTATHIONE
- HC, high confidence
- HMA, HEAVY METAL-ASSOCIATED
- IDE, iron deficiency-responsive cis-acting element
- IDEF, IDE BINDING FACTOR
- IHW, independent hypothesis weighting
- ILR3, IAA‐LEUCINE RESISTANT3
- IREG/FPN, IRON REGULATED PROTEIN/FERROPORTIN
- IRT1, IRON-REGULATED TRANSPORTER
- Iron deficiency
- Iron, Fe
- JAs, jasmonates
- JMT, JASMONATE O-METHYLTRANSFERASE
- KAT, 3-KETOACYL-COA THIOLASE
- LOX, LIPOXYGENASE
- MA, mugineic acid
- MATE, MULTI ANTIMICROBIAL EXTRUSION PROTEIN
- MFS, MAJOR FACILITATOR SUPERFAMILY
- MRP, MULTIDRUG RESISTANCE PROTEIN
- MT, METALLOTHIONEIN
- NA, nicotianamine
- NAAT, NICOTIANAMINE AMINOTRANSFERASE
- NAC, NO APICAL MERISTEM (NAM)/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR (ATAF)/CUP-SHAPED COTYLEDON (CUC)
- NAS, NICOTIANAMINE SYNTHASE
- NRAMP, NATURAL RESISTANCE ASSOCIATED MACROPHAGE PROTEIN
- NRT1/PTR, NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER
- OPCL, 4-COUMARATE COA LIGASE
- OPR, 12-OXOPHYTODIENOATE REDUCTASE
- OPT, OLIGOPEPTIDE TRANSPORTER
- PDR, PLEIOTROPIC DRUG RESISTANCE
- PLA, PHOSPHOLIPASE A1
- PRI, POSITIVE REGULATOR OF IRON DEFICIENCY RESPONSE
- PSs, phytosiderophores
- PT, peptide transport
- PYE, POPEYE
- RNA sequencing
- SAM, S-adenosyl-L-methionine
- SAMS, S-ADENOSYL-L-METHIONINE SYNTHETASE
- SLC40A1, SOLUTE CARRIER FAMILY 40 MEMBER 1
- SWEET, SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTERS
- TOM, TRANSPORTER OF MUGINEIC ACID
- Transcriptomic profiles
- VIT, VACUOLAR IRON TRANSPORTER
- Wheat
- YSL, YELLOW STRIPE LIKE
- ZIFL, ZINC INDUCED FACILITATOR-LIKE
- ZIP, ZINC/IRON PERMEASE
- bHLH, BASIC HELIX-LOOP-HELIX
- bZIP, BASIC LEUCINE ZIPPER
- epiHDMA, 3-epihydroxy-2′-deoxymugineic acid
- epiHMA, 3-epihydroxymugineic acid
Collapse
Affiliation(s)
- Meng Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Jiazhen Gong
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Navreet K. Bhullar
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| |
Collapse
|
40
|
OsIRO3 Plays an Essential Role in Iron Deficiency Responses and Regulates Iron Homeostasis in Rice. PLANTS 2020; 9:plants9091095. [PMID: 32854449 PMCID: PMC7570094 DOI: 10.3390/plants9091095] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
Iron (Fe) homeostasis is essential for plant growth and development, and it is strictly regulated by a group of transcriptional factors. Iron-related transcription factor 3 (OsIRO3) was previously identified as a negative regulator for Fe deficiency response in rice. However, the molecular mechanisms by which OsIRO3 regulate Fe homeostasis is unclear. Here, we report that OsIRO3 is essential for responding to Fe deficiency and maintaining Fe homeostasis in rice. OsIRO3 is expressed in the roots, leaves, and base nodes, with a higher level in leaf blades at the vegetative growth stage. Knockout of OsIRO3 resulted in a hypersensitivity to Fe deficiency, with severe necrosis on young leaves and defective root development. The iro3 mutants accumulated higher levels of Fe in the shoot under Fe-deficient conditions, associated with upregulating the expression of OsNAS3, which lead to increased accumulation of nicotianamine (NA) in the roots. Further analysis indicated that OsIRO3 can directly bind to the E-box in the promoter of OsNAS3. Moreover, the expression of typical Fe-related genes was significantly up-regulated in iro3 mutants under Fe-sufficient conditions. Thus, we conclude that OsIRO3 plays a key role in responding to Fe deficiency and regulates NA levels by directly, negatively regulating the OsNAS3 expression.
Collapse
|
41
|
Liang G, Zhang H, Li Y, Pu M, Yang Y, Li C, Lu C, Xu P, Yu D. Oryza sativa FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (OsFIT/OsbHLH156) interacts with OsIRO2 to regulate iron homeostasis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:668-689. [PMID: 32237201 DOI: 10.1111/jipb.12933] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 05/16/2023]
Abstract
Iron (Fe) is indispensable for the growth and development of plants. It is well known that FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) is a key regulator of Fe uptake in Arabidopsis. Here, we identify the Oryza sativa FIT (also known as OsbHLH156) as the interacting partner of IRON-RELATED BHLH TRANSCRIPTION FACTOR 2 (OsIRO2) that is critical for regulating Fe uptake. The OsIRO2 protein is localized in the cytoplasm and nucleus, but OsFIT facilitates the accumulation of OsIRO2 in the nucleus. Loss-of-function mutations of OsFIT result in decreased Fe accumulation, severe Fe-deficiency symptoms, and disrupted expression of Fe-uptake genes. In contrast, OsFIT overexpression promotes Fe accumulation and the expression of Fe-uptake genes. Genetic analyses indicate that OsFIT and OsIRO2 function in the same genetic node. Further analyses suggest that OsFIT and OsIRO2 form a functional transcription activation complex to initiate the expression of Fe-uptake genes. Our findings provide a mechanism understanding of how rice maintains Fe homeostasis.
Collapse
Affiliation(s)
- Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, China
| | - Huimin Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, China
| | - Mengna Pu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, China
| | - Yujie Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenyang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengkai Lu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Diqiu Yu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| |
Collapse
|
42
|
Kawakami Y, Bhullar NK. Potential Implications of Interactions between Fe and S on Cereal Fe Biofortification. Int J Mol Sci 2020; 21:E2827. [PMID: 32325653 PMCID: PMC7216021 DOI: 10.3390/ijms21082827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 01/17/2023] Open
Abstract
Iron (Fe) and sulfur (S) are two essential elements for plants, whose interrelation is indispensable for numerous physiological processes. In particular, Fe homeostasis in cereal species is profoundly connected to S nutrition because phytosiderophores, which are the metal chelators required for Fe uptake and translocation in cereals, are derived from a S-containing amino acid, methionine. To date, various biotechnological cereal Fe biofortification strategies involving modulation of genes underlying Fe homeostasis have been reported. Meanwhile, the resultant Fe-biofortified crops have been minimally characterized from the perspective of interaction between Fe and S, in spite of the significance of the crosstalk between the two elements in cereals. Here, we intend to highlight the relevance of Fe and S interrelation in cereal Fe homeostasis and illustrate the potential implications it has to offer for future cereal Fe biofortification studies.
Collapse
Affiliation(s)
| | - Navreet K. Bhullar
- Plant Biotechnology, Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland;
| |
Collapse
|
43
|
Schwarz B, Bauer P. FIT, a regulatory hub for iron deficiency and stress signaling in roots, and FIT-dependent and -independent gene signatures. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1694-1705. [PMID: 31922570 PMCID: PMC7067300 DOI: 10.1093/jxb/eraa012] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/08/2020] [Indexed: 05/05/2023]
Abstract
Iron (Fe) is vital for plant growth. Plants balance the beneficial and toxic effects of this micronutrient, and tightly control Fe uptake and allocation. Here, we review the role of the basic helix-loop-helix (bHLH) transcription factor FIT (FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) in Fe acquisition. FIT is not only essential, it is also a central regulatory hub in root cells to steer and adjust the rate of Fe uptake by the root in a changing environment. FIT regulates a subset of root Fe deficiency (-Fe) response genes. Based on a combination of co-expression network and FIT-dependent transcriptome analyses, we defined a set of FIT-dependent and FIT-independent gene expression signatures and co-expression clusters that encode specific functions in Fe regulation and Fe homeostasis. These gene signatures serve as markers to integrate novel regulatory factors and signals into the -Fe response cascade. FIT forms a complex with bHLH subgroup Ib transcription factors. Furthermore, it interacts with key regulators from different signaling pathways that either activate or inhibit FIT function to adjust Fe acquisition to growth and environmental constraints. Co-expression clusters and FIT protein interactions suggest a connection of -Fe with ABA responses and root cell elongation processes that can be explored in future studies.
Collapse
Affiliation(s)
- Birte Schwarz
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
44
|
Li Q, Chen L, Yang A. The Molecular Mechanisms Underlying Iron Deficiency Responses in Rice. Int J Mol Sci 2019; 21:E43. [PMID: 31861687 PMCID: PMC6981701 DOI: 10.3390/ijms21010043] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 01/27/2023] Open
Abstract
Iron (Fe) is an essential element required for plant growth and development. Under Fe-deficientconditions, plants have developed two distinct strategies (designated as strategy I and II) to acquire Fe from soil. As a graminaceous species, rice is not a typical strategy II plant, as it not only synthesizes DMA (2'-deoxymugineic acid) in roots to chelate Fe3+ but also acquires Fe2+ through transporters OsIRT1 and OsIRT2. During the synthesis of DMA in rice, there are three sequential enzymatic reactions catalyzed by enzymes NAS (nicotianamine synthase), NAAT (nicotianamine aminotransferase), and DMAS (deoxymugineic acid synthase). Many transporters required for Fe uptake from the rhizosphere and internal translocation have also been identified in rice. In addition, the signaling networks composed of various transcription factors (such as IDEF1, IDEF2, and members of the bHLH (basic helix-loop-helix) family), phytohormones, and signaling molecules are demonstrated to regulate Fe uptake and translocation. This knowledge greatly contributes to our understanding of the molecular mechanisms underlying iron deficiency responses in rice.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China;
| | - Lei Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China;
| | - An Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China;
| |
Collapse
|