1
|
Zhang H, Jiang X, Zhu L, Liu L, Liao Z, Du B. A Preliminary Study on the Whole-Plant Regulations of the Shrub Campylotropis polyantha in Response to Hostile Dryland Conditions. Metabolites 2024; 14:495. [PMID: 39330502 PMCID: PMC11433755 DOI: 10.3390/metabo14090495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Drylands cover more than 40% of global land surface and will continue to expand by 10% at the end of this century. Understanding the resistance mechanisms of native species is of particular importance for vegetation restoration and management in drylands. In the present study, metabolome of a dominant shrub Campylotropis polyantha in a dry-hot valley were investigated. Compared to plants grown at the wetter site, C. polyantha tended to slow down carbon (C) assimilation to prevent water loss concurrent with low foliar reactive oxygen species and sugar concentrations at the drier and hotter site. Nitrogen (N) assimilation and turn over were stimulated under stressful conditions and higher leaf N content was kept at the expense of root N pools. At the drier site, roots contained more water but less N compounds derived from the citric acid cycle. The site had little effect on metabolites partitioning between leaves and roots. Generally, roots contained more C but less N. Aromatic compounds were differently impacted by site conditions. The present study, for the first time, uncovers the apparent metabolic adaptations of C. polyantha to hostile dryland conditions. However, due to the limited number of samples, we are cautious about drawing general conclusions regarding the resistance mechanisms. Further studies with a broader spatial range and larger time scale are therefore recommended to provide more robust information for vegetation restoration and management in dryland areas under a changing climate.
Collapse
Affiliation(s)
- Hua Zhang
- College of Urban and Rural Development and Planning, Mianyang Normal University, Xianren Road 30, Mianyang 621000, China;
| | - Xue Jiang
- Engineering Research Center for Forest and Grassland Disaster Prevention and Reduction, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China;
| | - Lijun Zhu
- College of Life Science and Biotechnology, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China; (L.Z.); (L.L.)
| | - Lei Liu
- College of Life Science and Biotechnology, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China; (L.Z.); (L.L.)
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China
| | - Zhengqiao Liao
- College of Life Science and Biotechnology, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China; (L.Z.); (L.L.)
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China
| | - Baoguo Du
- College of Life Science and Biotechnology, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China; (L.Z.); (L.L.)
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China
- Chair of Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges-Köhler-Allee 53, 79110 Freiburg, Germany
| |
Collapse
|
2
|
Guo Z, Li C, Li X, Shao S, Rogers KM, Li Q, Li D, Guo H, Huang T, Yuan Y. Fertilizer Effects on the Nitrogen Isotope Composition of Soil and Different Leaf Locations of Potted Camellia sinensis over a Growing Season. PLANTS (BASEL, SWITZERLAND) 2024; 13:1628. [PMID: 38931060 PMCID: PMC11207308 DOI: 10.3390/plants13121628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The nitrogen-stable isotopes of plants can be used to verify the source of fertilizers, but the fertilizer uptake patterns in tea (Camellia sinensis) plants are unclear. In this study, potted tea plants were treated with three types of organic fertilizers (OFs), urea, and a control. The tea leaves were sampled over seven months from the top, middle, and base of the plants and analyzed for the δ15N and nitrogen content, along with the corresponding soil samples. The top tea leaves treated with the rapeseed cake OF had the highest δ15N values (up to 6.6‱), followed by the chicken manure, the cow manure, the control, and the urea fertilizer (6.5‱, 4.1‱, 2.2‱, and 0.6‱, respectively). The soil treated with cow manure had the highest δ15N values (6.0‱), followed by the chicken manure, rapeseed cake, control, and urea fertilizer (4.8‱, 4.0‱, 2.5‱, and 1.9‱, respectively). The tea leaves fertilized with rapeseed cake showed only slight δ15N value changes in autumn but increased significantly in early spring and then decreased in late spring, consistent with the delivery of a slow-release fertilizer. Meanwhile, the δ15N values of the top, middle, and basal leaves from the tea plants treated with the rapeseed cake treatment were consistently higher in early spring and lower in autumn and late spring, respectively. The urea and control samples had lower tea leaf δ15N values than the rapeseed cake-treated tea and showed a generalized decrease in the tea leaf δ15N values over time. The results clarify the temporal nitrogen patterns and isotope compositions of tea leaves treated with different fertilizer types and ensure that the δ15N tea leaf values can be used to authenticate the organic fertilizer methods across different harvest periods and leaf locations. The present results based on a pot experiment require further exploration in open agricultural soils in terms of the various potential fertilizer effects on the different variations of nitrogen isotope ratios in tea plants.
Collapse
Affiliation(s)
- Zuchuang Guo
- College of Food Sciences and Engineering, Ningbo University, Ningbo 315211, China;
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.L.); (K.M.R.)
| | - Chunlin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.L.); (K.M.R.)
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China;
| | - Shengzhi Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.L.); (K.M.R.)
| | - Karyne M. Rogers
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.L.); (K.M.R.)
- National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt 5040, New Zealand
| | - Qingsheng Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Q.L.)
| | - Da Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Q.L.)
| | - Haowei Guo
- Tea Research Institute, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Tao Huang
- College of Food Sciences and Engineering, Ningbo University, Ningbo 315211, China;
| | - Yuwei Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.L.); (K.M.R.)
| |
Collapse
|
3
|
Pausch J, Holz M, Zhu B, Cheng W. Rhizosphere priming promotes plant nitrogen acquisition by microbial necromass recycling. PLANT, CELL & ENVIRONMENT 2024; 47:1987-1996. [PMID: 38369964 DOI: 10.1111/pce.14858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/20/2024]
Abstract
Nitrogen availability in the rhizosphere relies on root-microorganism interactions, where root exudates trigger soil organic matter (SOM) decomposition through the rhizosphere priming effect (RPE). Though microbial necromass contribute significantly to organically bound soil nitrogen (N), the role of RPEs in regulating necromass recycling and plant nitrogen acquisition has received limited attention. We used 15N natural abundance as a proxy for necromass-N since necromass is enriched in 15N compared to other soil-N forms. We combined studies using the same experimental design for continuous 13CO2 labelling of various plant species and the same soil type, but considering top- and subsoil. RPE were quantified as difference in SOM-decomposition between planted and unplanted soils. Results showed higher plant N uptake as RPEs increased. The positive relationship between 15N-enrichment of shoots and roots and RPEs indicated an enhanced necromass-N turnover by RPE. Moreover, our data revealed that RPEs were saturated with increasing carbon (C) input via rhizodeposition in topsoil. In subsoil, RPEs increased linearly within a small range of C input indicating a strong effect of root-released C on decomposition rates in deeper soil horizons. Overall, this study confirmed the functional importance of rhizosphere C input for plant N acquisition through enhanced necromass turnover by RPEs.
Collapse
Affiliation(s)
- Johanna Pausch
- Agroecology, BayCEER, University of Bayreuth, Bayreuth, Bayern, Germany
| | - Maire Holz
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Weixin Cheng
- Department of Environmental Studies, University of California, Santa Cruz, California, USA
| |
Collapse
|
4
|
Biasuz EC, Kalcsits L. Rootstock effects on leaf function and isotope composition in apple occurred on both scion grafted and ungrafted rootstocks under hydroponic conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1274195. [PMID: 38155849 PMCID: PMC10753837 DOI: 10.3389/fpls.2023.1274195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023]
Abstract
Rootstocks are used in modern apple production to increase productivity, abiotic and biotic stress tolerance, and fruit quality. While dwarfing for apple rootstocks has been well characterized, the physiological mechanisms controlling dwarfing have not. Previous research has reported rootstock effects on scion water relations. Root architecture and variability in soil moisture across rooting depths can also contribute to these differences among rootstocks in the field. To exclude these effects on rootstock behavior, scions were grafted onto four different rootstocks with varying effects on scion vigor (B.9, M.9, G.41 and G.890). Non-grafted rootstocks were also grown to examine whether the effects of rootstock occurred independently from scion grafting. Plants were grown in a greenhouse under near steady-state hydroponic conditions. Carbon (δ13C), oxygen (δ18O) and nitrogen (δ15N) isotope composition were evaluated and relationships with carbon assimilation, water relations, and shoot growth were tested. Rootstocks affected scion shoot growth, aligning with known levels of vigor for these four rootstocks, and were consistent between the two scion cultivars. Furthermore, changes in water relations influenced by rootstock genotype significantly affected leaf, stem, and root δ13C, δ18O, and δ15N. Lower δ13C and δ18O were inconsistently associated with rootstock genotypes with higher vigor in leaves, stems, and roots. G.41 had lower δ15N in roots, stems, and leaves in both grafted and ungrafted trees. The effects of rootstock on aboveground water relations were also similar for leaves of ungrafted rootstocks. This study provides further evidence that dwarfing for apple rootstocks is linked with physiological limitations to water delivery to the developing scion.
Collapse
Affiliation(s)
- Erica Casagrande Biasuz
- Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA, United States
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Lee Kalcsits
- Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA, United States
- Department of Horticulture, Washington State University, Pullman, WA, United States
| |
Collapse
|
5
|
García-López JV, Redondo-Gómez S, Flores-Duarte NJ, Zunzunegui M, Rodríguez-Llorente ID, Pajuelo E, Mateos-Naranjo E. Exploring through the use of physiological and isotopic techniques the potential of a PGPR-based biofertilizer to improve nitrogen fertilization practices efficiency in strawberry cultivation. FRONTIERS IN PLANT SCIENCE 2023; 14:1243509. [PMID: 37780506 PMCID: PMC10540466 DOI: 10.3389/fpls.2023.1243509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
The use of microorganisms as a biofertilizer in strawberry has focused mainly on pathogen biocontrol, which has led to the underestimation of the potential of microorganisms for the improvement of nutritional efficiency in this crop. A study was established to investigate the impact of a plant growth-promoting rhizobacteria (PGPR) based biofertilizer integrated by self-compatible stress tolerant strains with multiple PGP properties, including atmospheric nitrogen fixation, on strawberry (Fragaria × ananassa cv. Rociera) tolerance to N deficiency in terms of growth and physiological performance. After 40 days of nitrogen fertilization shortage, inoculated plants were able to maintain root development and fertility structures (i.e. fruits and flowers) at a level similar to plants properly fertilized. In addition, inoculation lessened the negative impact of nitrogen deficiency on leaves' dry weight and relative water content. This effect was mediated by a higher root/shoot ratio, which would have allowed them to explore larger volumes of soil for the acquisition of water. Moreover, inoculation was able to buffer up to 50% of the reduction in carbon assimilation capacity, due to its positive effect on the diffusion efficiency of CO2 and the biochemical capacity of photosynthesis, as well as on the activity of photosystem II light harvesting. Furthermore, the higher leaf C/N ratio and the maintained δ15N values close to control plants were related to positive bacterial effects at the level of the plant nutritional balance. Despite these positive effects, the application of the bacterial inoculum was unable to completely counteract the restriction of fertilization, being necessary to apply a certain amount of synthetic fertilizer for the strawberry nutrition. However, according to our results, the complementary effect of this PGPR-based biofertilizer could provide a higher efficiency in environmental and economic yields on this crop.
Collapse
Affiliation(s)
- Jesús V. García-López
- Servicio General de Invernadero, Centro de Investigación, Tecnología e Innovación de la Universidad de Sevilla (CITIUS), Seville, Spain
| | - Susana Redondo-Gómez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Noris J. Flores-Duarte
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - María Zunzunegui
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | | - Eloísa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Enrique Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
6
|
Hoshika Y, Cotrozzi L, Gavrichkova O, Nali C, Pellegrini E, Scartazza A, Paoletti E. Functional responses of two Mediterranean pine species in an ozone Free-Air Controlled Exposure (FACE) experiment. TREE PHYSIOLOGY 2023; 43:1548-1561. [PMID: 37209141 DOI: 10.1093/treephys/tpad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/18/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Effects of the phytotoxic and widespread ozone (O3) pollution may be species specific, but knowledge on Mediterranean conifer responses to long-term realistic exposure is still limited. We examined responses regarding to photosynthesis, needle biochemical stress markers and carbon and nitrogen (N) isotopes of two Mediterranean pine species (Pinus halepensis Mill. and Pinus pinea L.). Seedlings were grown in a Free-Air Controlled Exposure experiment with three levels of O3 (ambient air, AA [38.7 p.p.b. as daily average]; 1.5 × AA and 2.0 × AA) during the growing season (May-October 2019). In P. halepensis, O3 caused a significant decrease in the photosynthetic rate, which was mainly due to a reduction of both stomatal and mesophyll diffusion conductance to CO2. Isotopic analyses indicated a cumulative or memory effect of O3 exposure on this species, as the negative effects were highlighted only in the late growing season in association with a reduced biochemical defense capacity. On the other hand, there was no clear effect of O3 on photosynthesis in P. pinea. However, this species showed enhanced N allocation to leaves to compensate for reduced photosynthetic N- use efficiency. We conclude that functional responses to O3 are different between the two species determining that P. halepensis with thin needles was relatively sensitive to O3, while P. pinea with thicker needles was more resistant due to a potentially low O3 load per unit mass of mesophyll cells, which may affect species-specific resilience in O3-polluted Mediterranean pine forests.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Firenze Unit, Via Madonna del Piano, Sesto Fiorentino I-50019, Italy
- Italian Integrated Environmental Research Infrastructures System (ITINERIS), Tito Scalo, Potenza 85050, Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa I-56124, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy
| | - Olga Gavrichkova
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Headquarters Porano, Via G. Marconi 2, Porano 05010, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa I-56124, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa I-56124, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy
| | - Andrea Scartazza
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Pisa Unit, Via Moruzzi 1, Pisa 56124, Italy
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Firenze Unit, Via Madonna del Piano, Sesto Fiorentino I-50019, Italy
- Italian Integrated Environmental Research Infrastructures System (ITINERIS), Tito Scalo, Potenza 85050, Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
7
|
Miszalski Z, Kaszycki P, Śliwa-Cebula M, Kaczmarczyk A, Gieniec M, Supel P, Kornaś A. Plasticity of Plantago lanceolata L. in Adaptation to Extreme Environmental Conditions. Int J Mol Sci 2023; 24:13605. [PMID: 37686411 PMCID: PMC10487448 DOI: 10.3390/ijms241713605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
This study aimed at characterizing some adaptive changes in Plantago lanceolata L. exposed to harsh conditions of a desert-like environment generating physiological stress of limited water availability and exposure to strong light. It was clearly shown that the plants were capable of adapting their root system and vascular tissues to enable efficient vegetative performance. Soil analyses, as well as nitrogen isotope discrimination data show that P. lanceolata leaves in a desert-like environment had better access to nitrogen (nitrite/nitrate) and were able to fix it efficiently, as compared to the plants growing in the surrounding forest. The arbuscular mycorrhiza was also shown to be well-developed, and this was accompanied by higher bacterial frequency in the root zone, which might further stimulate plant growth. A closer look at the nitrogen content and leaf veins with a higher number of vessels and a greater vessel diameter made it possible to define the changes developed by the plants populating sandy habitats as compared with the vegetation sites located in the nearby forest. A determination of the photosynthesis parameters indicates that the photochemical apparatus in P. lanceolata inhabiting the desert areas adapted slightly to the desert-like environment and the time of day, with some changes of the reaction center (RC) size (photosystem II, PSII), while the plants' photochemical activity was at a similar level. No differences between the two groups of plants were observed in the dissipation of light energy. The exposure of plants to harsh conditions of a desert-like environment increased the water use efficiency (WUE) value in parallel with possible stimulation of the β-carboxylation pathway.
Collapse
Affiliation(s)
- Zbigniew Miszalski
- The W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; (Z.M.); (A.K.); (M.G.)
| | - Paweł Kaszycki
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland; (P.K.); (M.Ś.-C.); (P.S.)
| | - Marta Śliwa-Cebula
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland; (P.K.); (M.Ś.-C.); (P.S.)
| | - Adriana Kaczmarczyk
- The W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; (Z.M.); (A.K.); (M.G.)
| | - Miron Gieniec
- The W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; (Z.M.); (A.K.); (M.G.)
| | - Paulina Supel
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland; (P.K.); (M.Ś.-C.); (P.S.)
| | - Andrzej Kornaś
- Institute of Biology and Earth Sciences, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland
| |
Collapse
|
8
|
Wadood SA, Jiang Y, Nie J, Li C, Rogers KM, Liu H, Zhang Y, Zhang W, Yuan Y. Effects of Light Shading, Fertilization, and Cultivar Type on the Stable Isotope Distribution of Hybrid Rice. Foods 2023; 12:foods12091832. [PMID: 37174370 PMCID: PMC10178473 DOI: 10.3390/foods12091832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The effect of fertilizer supply and light intensity on the distribution of elemental contents (%C and %N) and light stable isotopes (C, N, H, and O) in different rice fractions (rice husk, brown rice, and polished rice) of two hybrid rice cultivars (maintainer lines You-1B and Zhong-9B) were investigated. Significant variations were observed for δ13C (-31.3 to -28.3‱), δ15N (2.4 to 2.7‱), δ2H (-125.7 to -84.7‱), and δ18O (15.1‱ to 23.7‱) values in different rice fractions among different cultivars. Fertilizer treatments showed a strong association with %N, δ15N, δ2H, and δ18O values while it did not impart any significant variation for the %C and δ13C values. Light intensity levels also showed a significant influence on the isotopic values of different rice fractions. The δ13C values showed a positive correlation with irradiance. The δ2H and δ15N values decreased with an increase in the irradiance. The light intensity levels did not show any significant change for δ18O values in rice fractions. Multivariate ANOVA showed a significant interaction effect of different factors (light intensity, fertilizer concentration, and rice variety) on the isotopic composition of rice fractions. It is concluded that all environmental and cultivation factors mentioned above significantly influenced the isotopic values and should be considered when addressing the authenticity and origin of rice. Furthermore, care should be taken when selecting rice fractions for traceability and authenticity studies since isotopic signatures vary considerably among different rice fractions.
Collapse
Affiliation(s)
- Syed Abdul Wadood
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou 310021, China
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
- Department of Food Science, University of Home Economics Lahore, Lahore 54700, Pakistan
| | - Yunzhu Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou 310021, China
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Jing Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou 310021, China
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Chunlin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou 310021, China
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Karyne M Rogers
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou 310021, China
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
- National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt 5040, New Zealand
| | - Hongyan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Yongzhi Zhang
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Weixing Zhang
- China National Rice Research Institute, Hangzhou 310006, China
| | - Yuwei Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou 310021, China
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| |
Collapse
|
9
|
Hu Y, Guy RD, Soolanayakanahally RY. Nitrogen isotope discrimination in open-pollinated and hybrid canola suggests indirect selection for enhanced ammonium utilization. FRONTIERS IN PLANT SCIENCE 2022; 13:1024080. [PMID: 36438099 PMCID: PMC9691982 DOI: 10.3389/fpls.2022.1024080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen isotope discrimination (Δ15N) may have utility as an indicator of nitrogen use in plants. A simple Δ15N-based isotope mass balance (IMB) model has been proposed to provide estimates of efflux/influx (E/I) ratios across root plasma membranes, the proportion of inorganic nitrogen assimilation in roots (P root) and translocation of inorganic nitrogen to shoots (Ti/Tt) under steady-state conditions. We used the IMB model to investigate whether direct selection for yield in canola (Brassica napus L.) has resulted in indirect selection in traits related to nitrogen use. We selected 23 canola lines developed from 1942 to 2017, including open-pollinated (OP) lines developed prior to 2005 as well as more recent commercial hybrids (CH), and in three separate experiments grew them under hydroponic conditions in a greenhouse with either 0.5 mM ammonium, 0.5 mM nitrate, or 5 mM nitrate. Across all lines, E/I, Proot and Ti/Tt averaged 0.09±0.03, 0.82±0.05 and 0.23±0.06 in the low nitrate experiment, and 0.31±0.06, 0.71±0.07 and 0.42±0.12 in the high nitrate experiment, respectively. In contrast, in the ammonium experiment average E/I was 0.40±0.05 while Ti/Tt averaged 0.07±0.04 and Proot averaged 0.97±0.02. Although there were few consistent differences between OP and CH under nitrate nutrition, commercial hybrids were collectively better able to utilize ammonium as their sole nitrogen source, demonstrating significantly greater overall biomass and a lower Proot and a higher Ti/Tt, suggesting a somewhat greater flux of ammonium to the shoot. Average root and whole-plant Δ15N were also slightly higher in CH lines, suggesting a small increase in E/I. An increased ability to tolerate and/or utilize ammonium in modern canola hybrids may have arisen under intensive mono-cropping.
Collapse
Affiliation(s)
- Yi Hu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Robert D. Guy
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
10
|
Wang WB, Gao FF, Feng WW, Wu QY, Feng YL. The native stem holoparasitic Cuscuta japonica suppresses the invasive plant Ambrosia trifida and related mechanisms in different light conditions in northeast China. FRONTIERS IN PLANT SCIENCE 2022; 13:904326. [PMID: 36212307 PMCID: PMC9539100 DOI: 10.3389/fpls.2022.904326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Increasing evidence from low-latitude ranges has demonstrated that native parasitic plants are promising biocontrol agents for some major invasive weeds. However, related mechanisms and the effect of environments on the control effect of the parasite are still unclear. In addition, few related studies have been conducted in high latitude (>40°), where the exotic plant richness is the highest in the globe, but natural enemies are relatively scarce. During field surveys, a Cuscuta species was found on the cosmopolitan invasive weed Ambrosia trifida L. in Shenyang, northeast China. Here, we first studied the impacts of the parasite on the invader at three sites with different light regimes and related mechanisms, then the haustorial connections between the parasite and the invader using anatomy and measurement of carbon (C) and nitrogen (N) stable isotope compositions (δ13C, δ15N), and finally identified the parasite using two molecular marks. The parasite was identified as C. japonica Choisy. This native holoparasitic vine posed serious C rather than N limitation to the invader, explaining its greatly inhibitory effects on the invader. Its negative effects were stronger on reproductive relative to vegetative growth, and at high relative to low light habitats, which indicated that the higher the vigor of the host is, the higher the impact of the parasite pose. The parasite could establish haustorial connections with phloem, xylem, and pith of the invader and thus obtain resources from both leaves and roots, which was confirmed by difference of δ13C and δ15N between the two species. The parasite had significantly higher leaf C concentrations and δ13C than its invasive host, being a strong C sink of the parasitic association. Our results indicate that C. japonica may be a promising biological control agent for the noxious invader in China.
Collapse
Affiliation(s)
- Wei-Bin Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory for Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Fan-Fan Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Wei-Wei Feng
- Liaoning Key Laboratory for Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Qi-Ye Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yu-Long Feng
- Liaoning Key Laboratory for Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
11
|
Wang Z, Liu J, Hamoud YA, Wang Y, Qiu R, Agathokleous E, Hong C, Shaghaleh H. Natural 15N abundance as an indicator of nitrogen utilization efficiency in rice under alternate wetting and drying irrigation in soils with high clay contents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156528. [PMID: 35688244 DOI: 10.1016/j.scitotenv.2022.156528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
The 15N natural abundance is an effective indicator of nitrogen dynamics in plants. The impact of different irrigation regimes as a function of varied soil clay contents on stable nitrogen isotope abundance (δ15N) in rice remains unknown. Therefore, the response of δ15N and nitrogen utilization efficiency (NUE) of rice to different combinations of alternate wetting and drying irrigation (AWD) and clay contents were investigated. The study included three AWD regimes, viz. I100, (100 % saturation, 30 mm flooded), I90 (90 % saturation, 30 mm flooded) and I70 (70 % saturation, 30 mm flooded), and three soil clay content treatments, viz. 40 % (S40), 50 % (S50), and 60 % (S60) clay content. Compared with I100, I90 and I70 with high clay content (S60) significantly increased the crack volumes and N leaching losses and reduced the total N accumulation and different forms of NUE of rice plants. The values of δ15N in above-ground organs and soil were greatly increased by I90 and I70 irrigation regimes compared to I100. An increasing trend of organs δ15N from root to shoot was found for all three irrigation regimes. Significant negative relationships were found between (i) N partial factor productivity (PFP) and grain 15N, (ii) PFP and leaf 15N, and (iii) N harvest index (NHI) and leaf 15N. These significant negative relationships might contribute to the increased N losses and changed N allocation under AWD with high clay contents. Hence, it is suggested that cracks should be taken into consideration in rice cultivation. Moreover, δ15N may serve as an effective indicator of NUE in rice grown under AWD irrigation with high clay contents as well as an indirect indicator for assessing the N loss in agro-ecosystems.
Collapse
Affiliation(s)
- Zhenchang Wang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China.
| | - Jinjing Liu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Yousef Alhaj Hamoud
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Department of Soil and Land Reclamation, Aleppo University, Aleppo 1319, Syria.
| | - Yaosheng Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rangjian Qiu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Cheng Hong
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Hiba Shaghaleh
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
12
|
Zhang K, Wu Y, Su Y, Li H. Implication of quantifying nitrate utilization and CO 2 assimilation of Brassica napus plantlets in vitro under variable ammonium/nitrate ratios. BMC PLANT BIOLOGY 2022; 22:392. [PMID: 35931951 PMCID: PMC9356413 DOI: 10.1186/s12870-022-03782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Plantlets grown in vitro with a mixed nitrogen source utilize sucrose and CO2 as carbon sources for growth. However, it is very difficult to obtain the correct utilization proportions of nitrate, ammonium, sucrose and CO2 for plantlets. Consequently, the biological effect of ammonium/nitrate utilization, the biological effect of sucrose/CO2 utilization, and the ammonium/nitrate use efficiency for new C input derived from CO2 assimilation/sucrose utilization are still unclear for plantlets. RESULTS The bidirectional stable nitrogen isotope tracer technique quantified the proportions of assimilated nitrate and ammonium in Brassica napus plantlets grown at different ammonium/nitrate ratios. The utilization proportions of sucrose and CO2 could be quantified by a two end-member isotope mixing model for Bn plantlets grown at different ammonium/nitrate ratios. Under the condition that each treatment contained 20 mM ammonium, the proportion of assimilated nitrate did not show a linear increase with increasing nitrate concentration for Bn plantlets. Moreover, the proportion of assimilated CO2 did not show a linear relationship with the nitrate concentration for Bn plantlets. Increasing the nitrate concentration contributed to promoting the assimilation of ammonium and markedly enhanced the ammonium utilization coefficient for Bn plantlets. With increasing nitrate concentration, the amount of nitrogen in leaves derived from nitrate assimilation increased gradually, while the nitrate utilization coefficient underwent no distinct change for Bn plantlets. CONCLUSIONS Quantifying the utilization proportions of nitrate and ammonium can reveal the energy efficiency for N assimilation in plantlets grown in mixed N sources. Quantifying the utilization proportion of CO2 contributes to evaluating the photosynthetic capacity of plantlets grown with variable ammonium/nitrate ratios. Quantifying the utilization proportions of nitrate, ammonium, sucrose and CO2 can reveal the difference in the ammonium/nitrate use efficiency for new C input derived from CO2 assimilation/sucrose utilization for plantlets grown at variable ammonium/nitrate ratios.
Collapse
Affiliation(s)
- Kaiyan Zhang
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001 China
| | - Yanyou Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, No. 99 Lincheng West Road, Guanshanhu District, Guiyang, Guizhou Province 550081 People’s Republic of China
| | - Yue Su
- Department of Agricultural Engineering, Guizhou Vocational College of Agriculture, Qingzhen, 551400 China
| | - Haitao Li
- Department of Agricultural Engineering, Guizhou Vocational College of Agriculture, Qingzhen, 551400 China
| |
Collapse
|
13
|
Baladrón A, Bejarano MD, Sarneel JM, Boavida I. Trapped between drowning and desiccation: Riverine plants under hydropeaking. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154451. [PMID: 35278540 DOI: 10.1016/j.scitotenv.2022.154451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/20/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Hydropeaking is part of hydropower production. The discontinuous release of turbined water during hydropeaking generates sudden rise and falls of the water levels, as well as extended droughts. These artificial flow fluctuations impose challenging growing conditions for riverine vegetation. In order to identify vulnerable/resistant plant species to hydropeaking and to evaluate the impact of contrasting hydropeaking scenarios (simplified (i.e., sudden deep floods, frequent soil saturation and drought) and real-life, power plant-induced scenarios), we measured germination, survival, and morphological and physiological attributes of a selection of 14 plant species commonly found along riparian areas. Species were subject to different hydropeaking scenarios during three months (vegetative period) in the field and in a greenhouse. Half of the species performed worse under hydropeaking in comparison to the control (e.g., less germination and biomass, lower growth rates, reduced stem and root length, physiological stress) but none of the tested hydropeaking scenarios was clearly more disruptive than others. Betula pubescens, Alnus incana and Filipendula ulmifolia showed the largest vulnerability to hydropeaking, while other species (e.g., Carex acuta) were resistant to it. Both in the field and in the greenhouse, plants in perturbed scenarios accumulated more 13C than in the control scenario indicating limited capacity to perform 13C isotope discrimination and evidencing plant physiological stress. The highest 13C abundances were found under drought or flooding conditions in the greenhouse, and under the highest hydropeaking intensities in the field (e.g., Betula pubescens). Our results suggest that any hydropeaking scheme can be equally detrimental in terms of plant performance. Hydropeaking schemes that combine periods of severe drought with long and frequent flooding episodes may create a hostile environment for riverine species. Further research on "hydropeaking-tolerant" plant traits is key to draw the boundaries beyond which riverine species can germinate, grow and complete their life cycle under hydropeaking.
Collapse
Affiliation(s)
- Alejandro Baladrón
- CERIS, Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - María Dolores Bejarano
- Natural Resources Department, Universidad Politécnica de Madrid (UPM), Calle José Antonio Novais, 10, 28040 Madrid, Spain
| | - Judith M Sarneel
- Department of Ecology and Environmental Science, Umeå universitet, 901 87 Umeå, Sweden
| | - Isabel Boavida
- CERIS, Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
14
|
Differed Adaptive Strategies to Nutrient Status between Native and Exotic Mangrove Species. FORESTS 2022. [DOI: 10.3390/f13050804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To rapidly rehabilitate mangrove forests, exotic mangrove species characterized by high growth rates have been introduced in China, which would undoubtedly affect the nutrient status, nutrient acquisition and utilization strategies of mangrove plants, but the mechanism remains unclear. Qi’ao Island (a suburb of Zhuhai City) has the largest continuous exotic mangrove forests in China, where a mass collection of mangrove soils, plant tissues and tidewater was conducted. Ecological stoichiometric ratios and isotopic compositions were then analyzed to evaluate the ecosystem-scale nutrient status and compare the nutrient acquisition and utilization strategies of native Kandelia obovata (KO) and exotic Sonneratia apetala (SA) species. Soil and foliar C:N:P stoichiometries indicated that there is high P availability but N limitations, while further isotopic evidence indicated that native KO and exotic SA responded differently to the N limitation status. First, native KO seemed to prefer NO3−, while exotic SA preferred NH4+, according to the Δ15Nleaf–root (leaf–root δ15N difference) as well as the relationships between foliar δ15N and soil-extracted NH4+ δ15N, and between N and heavy metal contents. This suggested possible inter-specific competition between native KO and exotic SA, leading to different N species’ preferences to maximize resource utilization. Next, native KO likely adopted the “conservative” strategy to ensure survival with reduced investment in N-rich growth components but root systems leading to lower growth rates and higher N use efficiency (NUE) and intrinsic water use efficiency (iWUE), while exotic SA adopted the “aggressive” strategy to ensure fast growth with heavy investment in N-rich growth components, leading to rapid growth and lower NUE and iWUE, and showing signs of invasiveness. Further, native KO is more responsive to aggravated N limitation by enhancing NUE. This study will provide insights into the adaptation of different mangrove species to nutrient limitations and the risks associated with large-scale plantations of exotic mangrove species.
Collapse
|
15
|
Abdallah M, Douthe C, Flexas J. Leaf morpho-physiological comparison between native and non-native plant species in a Mediterranean island. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02797-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractIslands tend to be more prone to plant invasions than mainland regions, with the Mediterranean ones not being an exception. So far, a large number of studies on comparing leaf morphological and physiological traits between native and non-native plants in Mediterranean environments have been performed, although none of them on Mediterranean islands. To fill this gap, this study focuses on 14 plant species grown in a controlled growth chamber in the absence of stress. The goal was (1) to differentiate leaf morpho-physiological traits between native and non-native plants on a Mediterranean island and (2) to deepen in the underlying causes of the differential photosynthetic traits displayed by non-native species. Results showed that in Mediterranean islands, non-native plant species show on average larger values of net CO2 assimilation, stomatal conductance (gm), photosynthetic nitrogen-use efficiency, among others, and lower leaf mass per area (LMA) and leaf thickness, compared to the native species. Among the assessed traits, this study reports for the first time larger gm, and lower mesophyll conductance limitation in non-native species, which seems to be linked to their lower LMA. These novel traits need to be added to the ‘leaf physiological trait invasive syndrome’. It was also found that on a Mediterranean island, native and non-native species are placed on opposite sides of the leaf economics spectrum, with non-native species being placed on the ‘‘fast-return’’ end. In conclusion, this study demonstrates that non-native species inhabiting a Mediterranean island possess distinct leaf morphological and physiological traits compared to co-occurring native species, at least during the favorable growth season, which increases the chances of a successful invasion.
Collapse
|
16
|
Colette M, Guentas L, Gunkel-Grillon P, Callac N, Della Patrona L. Is halophyte species growing in the vicinity of the shrimp ponds a promising agri-aquaculture system for shrimp ponds remediation in New Caledonia? MARINE POLLUTION BULLETIN 2022; 177:113563. [PMID: 35325793 DOI: 10.1016/j.marpolbul.2022.113563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Plant culture integration within aquaculture activities is a topic of recent interest with economic and environmental benefits. Shrimp farming activities generate nutrient-rich waste trapped in the sediments of farming ponds or release in the mangrove area. Thus, we investigate if the halophytes species naturally growing around the pond can use nitrogen and carbon from shrimp farming for remediation purposes. Halophyte biomasses and sediments influenced by shrimp farm effluents, were collected in two farms in New-Caledonia. All samples were analyzed for their C and N stable isotopic composition and N content. Higher δ15N values were found in plants influenced by shrimp farm water thus evidenced their abilities to take nutrient derived from shrimp farming. Deep root species Chenopodium murale, Atriplex jubata, Suaeda australis and Enchylaena tomentosa appears more efficient for shrimp pond remediation. This work demonstrates that halophytes cultivation in shrimp ponds with sediments, could be effective for the pond's remediation.
Collapse
Affiliation(s)
- Marie Colette
- French Institute for Research in the Science of the Sea (IFREMER), Research Institute for Development (IRD), University of New Caledonia, University of Reunion, CNRS, UMR 9220 ENTROPIE, Noumea, New Caledonia; Institute of Exact and Applied Sciences (ISEA), EA 7484, University of New Caledonia, 98851 Noumea, New Caledonia.
| | - Linda Guentas
- Institute of Exact and Applied Sciences (ISEA), EA 7484, University of New Caledonia, 98851 Noumea, New Caledonia.
| | - Peggy Gunkel-Grillon
- Institute of Exact and Applied Sciences (ISEA), EA 7484, University of New Caledonia, 98851 Noumea, New Caledonia.
| | - Nolwenn Callac
- French Institute for Research in the Science of the Sea (IFREMER), Research Institute for Development (IRD), University of New Caledonia, University of Reunion, CNRS, UMR 9220 ENTROPIE, Noumea, New Caledonia.
| | - Luc Della Patrona
- French Institute for Research in the Science of the Sea (IFREMER), Research Institute for Development (IRD), University of New Caledonia, University of Reunion, CNRS, UMR 9220 ENTROPIE, Noumea, New Caledonia.
| |
Collapse
|
17
|
Hu CC, Liu XY, Yan YX, Lei YB, Tan YH, Liu CQ. A new isotope framework to decipher leaf-root nitrogen allocation and assimilation among plants in a tropical invaded ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151203. [PMID: 34710420 DOI: 10.1016/j.scitotenv.2021.151203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Exotic plant invasion is an urgent issue occurring in the biosphere, which can be stimulated by environmental nitrogen (N) loading. However, the allocation and assimilation of soil N sources between leaves and roots remain unclear for plants in invaded ecosystems, which hampers the understanding of mechanisms behind the expansion of invasive plants and the co-existence of native plants. This work established a new framework to use N concentrations and isotopes of soils, roots, and leaves to quantitatively decipher intra-plant N allocation and assimilation among plant species under no invasion and under the invasion of Chromolaena odorata and Ageratina adenophora in a tropical ecosystem of SW China. We found that the assimilation of N derived from both soil ammonium (NH4+) and nitrate (NO3-) were higher in leaves than in roots for invasive plants, leading to higher leaf N levels than native plants. Compared with the same species under no invasion, most native plants under invasion showed higher N concentrations and NH4+ assimilations in both leaves and roots, and increases in leaf N were higher than in root N for native plants under invasion. These results inform that preferential N allocation, dominated by NH4+-derived N, to leaves over roots as an important N-use strategy for plant invasion and co-existence in the studied tropical ecosystem.
Collapse
Affiliation(s)
- Chao-Chen Hu
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xue-Yan Liu
- School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Ya-Xin Yan
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yan-Bao Lei
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yun-Hong Tan
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Cong-Qiang Liu
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
18
|
Hu Y, Guy RD, Soolanayakanahally RY. Genotypic variation in C and N isotope discrimination suggests local adaptation of heart-leaved willow. TREE PHYSIOLOGY 2022; 42:32-43. [PMID: 33517390 DOI: 10.1093/treephys/tpab010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Plants acquire multiple resources from the environment and may need to adjust and/or balance their respective resource-use efficiencies to maximize grow and survival, in a locally adaptive manner. In this study, tissue and whole-plant carbon (C) isotopic composition (δ13C) and carbon/nitrogen (C/N) ratios provided long-term measures of use efficiencies for water (WUE) and nitrogen (NUE), and a nitrogen (N) isotopic composition (δ15N)-based mass balance model was used to estimate traits related to N uptake and assimilation in heart-leaved willow (Salix eriocephala Michx.). In an initial common garden experiment consisting of 34 populations, we found population-level variation in δ13C, C/N ratio and δ15N, indicating different patterns in WUE, NUE and N uptake and assimilation. Although there was no relationship between foliar δ13C and C/N ratios among populations, there was a significant negative correlation between these measures across all individuals, implying a genetic and/or plastic trade-off between WUE and NUE not associated with local adaptation. To eliminate any environmental effect, we grew a subset of 21 genotypes hydroponically with nitrate as the sole N source and detected significant variation in δ13C, δ15N and C/N ratios. Variation in δ15N was mainly due to genotypic differences in the nitrate efflux/influx ratio (E/I) at the root. Both experiments suggested clinal variation in δ15N (and thus N uptake efficiency) with latitude of origin, which may relate to water availability and could contribute to global patterns in ecosystem δ15N. There was a tendency for genotypes with higher WUE to come from more water-replete sites with shorter and cooler growing seasons. We found that δ13C, C/N ratio and E/I were not inter-correlated, suggesting that the selection of growth, WUE, NUE and N uptake efficiency can occur without trade-off.
Collapse
Affiliation(s)
- Yi Hu
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Robert D Guy
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | | |
Collapse
|
19
|
Driscoll AW, Kannenberg SA, Ehleringer JR. Long-term nitrogen isotope dynamics in Encelia farinosa reflect plant demographics and climate. THE NEW PHYTOLOGIST 2021; 232:1226-1237. [PMID: 34352127 DOI: 10.1111/nph.17668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
While plant δ15 N values have been applied to understand nitrogen (N) dynamics, uncertainties regarding intraspecific and temporal variability currently limit their application. We used a 28 yr record of δ15 N values from two Mojave Desert populations of Encelia farinosa to clarify sources of population-level variability. We leveraged > 3500 foliar δ15 N observations collected alongside structural, physiological, and climatic data to identify plant and environmental contributors to δ15 N values. Additional sampling of soils, roots, stems, and leaves enabled assessment of the distribution of soil N content and δ15 N, intra-plant fractionations, and relationships between soil and plant δ15 N values. We observed extensive within-population variability in foliar δ15 N values and found plant age and foliar %N to be the strongest predictors of individual δ15 N values. There were consistent differences between root, stem, and leaf δ15 N values (spanning c. 3‰), but plant and bulk soil δ15 N values were unrelated. Plant-level variables played a strong role in influencing foliar δ15 N values, and interannual relationships between climate and δ15 N values were counter to previously recognized spatial patterns. This long-term record provides insights regarding the interpretation of δ15 N values that were not available from previous large-scale syntheses, broadly enabling more effective application of foliar δ15 N values.
Collapse
Affiliation(s)
- Avery W Driscoll
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT, 84112, USA
| | - Steven A Kannenberg
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT, 84112, USA
| | - James R Ehleringer
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT, 84112, USA
| |
Collapse
|
20
|
Qian J, Jin W, Hu J, Wang P, Wang C, Lu B, Li K, He X, Tang S. Stable isotope analyses of nitrogen source and preference for ammonium versus nitrate of riparian plants during the plant growing season in Taihu Lake Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143029. [PMID: 33129526 DOI: 10.1016/j.scitotenv.2020.143029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 05/22/2023]
Abstract
Plants are vital components of the nitrogen (N) cycling in the riparian zones. Understanding of N uptake strategies of riparian plants, including N sources and preference in N forms (ammonium (NH4+) vs. nitrate (NO3-)), is essential to advance our knowledge on the role that plants play in regulating nutrient biogeochemical cyclings in the riparian areas. In this study, stable N isotopes (δ15N) of three riparian plants, including Acorus calamus, Canna indica and Phragmites australis, and the δ15N of NH4+ and NO3- in different sources were measured during the plant growing season (June-September) in the Taihu Lake Basin. The dissolved inorganic N (DIN) from river water, groundwater, rainwater and soil were considered as the major N sources for plants in the riparian ecosystem. Our results indicated that soil was the largest source for plant N nutrition, with significantly different (P < 0.05) contributions from soil observed among plant species (80.5 ± 4.1, 73.9 ± 2.8 and 58.7 ± 6.1% for A. calamus, C. indica, and P. australis, respectively). Meanwhile, complex water networks, shallow water tables, and high DIN content in rainwater lead to nonignorable N contributions from river water, groundwater and rainwater to plants. Groundwater contributed more percentage of N to P. australis (12.8 ± 3.2%) than A. calamus (6.1 ± 1.9%) and C. indica (8.0 ± 1.5%), which is likely attributed to the deeper roots of P. australis. All plants showed similar N preference for NO3- during the growing season. External environmental conditions and plant characteristics and adaption to more abundant soil NO3- content are possible explanations. Our research could provide important information for vegetation selections during the process of riparian ecological restoration. Reasonable choice of vegetation is essential to plant growth and water quality management, especially in agricultural watersheds where N concentrations are relatively high in agricultural runoff due to the wide uses of N fertilizers.
Collapse
Affiliation(s)
- Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Wen Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jing Hu
- Wetland Biogeochemistry Laboratory, Soil and Water Sciences Department, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Gainesville, FL, USA
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Kun Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Xixian He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
21
|
Foscari A, Leonarduzzi G, Incerti G. N uptake, assimilation and isotopic fractioning control δ 15N dynamics in plant DNA: A heavy labelling experiment on Brassica napus L. PLoS One 2021; 16:e0247842. [PMID: 33705458 PMCID: PMC7951814 DOI: 10.1371/journal.pone.0247842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/12/2021] [Indexed: 12/02/2022] Open
Abstract
In last decades, a large body of evidence clarified nitrogen isotope composition (δ15N) patterns in plant leaves, roots and metabolites, showing isotopic fractionation along N uptake and assimilation pathways, in relation to N source and use efficiency, also suggesting 15N depletion in plant DNA. Here we present a manipulative experiment on Brassica napus var. oleracea, where we monitored δ 15N of purified, lyophilized DNA and source leaf and root materials, over a 60-days growth period starting at d 60 after germination, in plants initially supplied with a heavy labelled (δ 15NAir-N2 = 2100 mUr) ammonium nitrate solution covering nutrient requirements for the whole observation period (470 mg N per plant) and controlling for the labelled N species (ṄH4, ṄO3 and both). Dynamics of Isotopic Ratio Mass Spectrometry (IRMS) data for the three treatments showed that: (1) leaf and root δ 15N dynamics strictly depend on the labelled chemical species, with ṄH4, ṄO3 and ṄH4ṄO3 plants initially showing higher, lower and intermediate values, respectively, then converging due to the progressive NH4+ depletion from the nutrient solution; (2) in ṄH4ṄO3, where δ15N was not affected by the labelled chemical species, we did not observe isotopic fractionation associated to inorganic N uptake; (3) δ15N values in roots compared to leaves did not fully support patterns predicted by differences in assimilation rates of NH4+ and NO3-; (4) DNA is depleted in 15N compared to the total N pools of roots and leaves, likely due to enzymatic discrimination during purine biosynthesis. In conclusion, while our experimental setup did not allow to assess the fractionation coefficient (ε) associated to DNA bases biosynthesis, this is the first study specifically reporting on dynamics of specific plant molecular pools such as nucleic acids over a long observation period with a heavy labelling technique.
Collapse
Affiliation(s)
- Alessandro Foscari
- University of Trieste, Trieste, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Giulia Leonarduzzi
- University of Trieste, Trieste, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Guido Incerti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- * E-mail:
| |
Collapse
|
22
|
陈 佳. Application of Stable Isotope Technique to Nitrogen Cycling in Terrestrial Ecosystems. INTERNATIONAL JOURNAL OF ECOLOGY 2021. [DOI: 10.12677/ije.2021.104051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Hu Y, Guy RD. Isotopic composition and concentration of total nitrogen and nitrate in xylem sap under near steady-state hydroponics. PLANT, CELL & ENVIRONMENT 2020; 43:2112-2123. [PMID: 32463123 DOI: 10.1111/pce.13809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
After root uptake, nitrate is effluxed back to the medium, assimilated locally, or translocated to shoots. Rooted black cottonwood (Populus trichocarpa) scions were supplied with a NO3- -based (0.5 mM) nutrient medium of known isotopic composition (δ15 N), and xylem sap was collected by pressure bombing. To establish a sampling protocol, sap was collected from lower and upper stem sections at 0.1-0.2 MPa above the balancing pressure, and after increasing the pressure by a further 0.5 MPa. Xylem sap from upper stem sections was partially diluted at higher pressure. Further analysis was restricted to sap obtained from intact shoots at low pressure. Total-, NO3- -N and, by difference, organic-N concentrations ranged from 6.1-11.0, 1.2-2.4, and 4.6-9.4 mM, while discrimination relative to the nutrient medium was -6.3 to 0.5‰, -23.3 to -11.5‰ and - 1.3 to 4.9‰, respectively. There was diurnal variation in δ15 N of total- and organic-N, but not NO3- . The difference in δ15 N between xylem NO3- and organic-N suggests that discrimination by nitrate reductase is near 25.1 ± 1.6‰. When this value was used in an isotope mass balance model, the predicted xylem sap NO3- -N to total-N ratio closely matched direct measurement.
Collapse
Affiliation(s)
- Yi Hu
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, British Columbia, Canada
| | - Robert D Guy
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
24
|
Zhang K, Wu Y, Hang H. Differential contributions of NO 3 -/NH 4 + to nitrogen use in response to a variable inorganic nitrogen supply in plantlets of two Brassicaceae species in vitro. PLANT METHODS 2019; 15:86. [PMID: 31384291 PMCID: PMC6668107 DOI: 10.1186/s13007-019-0473-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The primary sources of nitrogen for plants have been suggested to be nitrate (NO3 -) and ammonium (NH4 +). However, when both nitrate and ammonium are simultaneously available to plants, it is very difficult to differentially quantify NO3 -/NH4 + utilization in culture media or soil. Consequently, the contribution of NO3 -/NH4 + to total inorganic nitrogen assimilation cannot be determined. RESULTS We developed a method called the bidirectional stable nitrogen isotope tracer to differentially quantify the nitrate and ammonium utilization by Orychophragmus violaceus (Ov) and Brassica napus (Bn) plantlets in vitro. The utilization efficiency of nitrate was markedly lower than the utilization efficiency of ammonium for plantlets of both Ov and Bn. In both Ov and Bn, the proportion of NO3 -/NH4 + utilization did not show a linear relationship with inorganic nitrogen supply. The Ov plantlets assimilated more nitrate than the Bn plantlets at the lowest inorganic nitrogen concentration. CONCLUSIONS Quantifying the utilization of nitrate and ammonium can reveal the differences in nitrate and ammonium assimilation among plants at different inorganic nitrogen supply levels and provide an alternate way to conveniently optimize the supply of inorganic nitrogen in culture media.
Collapse
Affiliation(s)
- Kaiyan Zhang
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001 China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, No. 99 Lincheng West Road, Guanshanhu District, Guiyang, 550081 Guizhou Province People’s Republic of China
| | - Yanyou Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, No. 99 Lincheng West Road, Guanshanhu District, Guiyang, 550081 Guizhou Province People’s Republic of China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, 710061 China
| | - Hongtao Hang
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001 China
| |
Collapse
|
25
|
Leaf Age Compared to Tree Age Plays a Dominant Role in Leaf δ13C and δ15N of Qinghai Spruce (Picea crassifolia Kom.). FORESTS 2019. [DOI: 10.3390/f10040310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Leaf stable isotope compositions (δ13C and δ15N) are influenced by various abiotic and biotic factors. Qinghai spruce (Picea crassifolia Kom.) as one of the dominant tree species in Qilian Mountains plays a key role in the ecological stability of arid region in the northwest of China. However, our knowledge of the relative importance of multiple factors on leaf δ13C and δ15N remains incomplete. In this work, we investigated the relationships of δ13C and δ15N to leaf age, tree age and leaf nutrients to examine the patterns and controls of leaf δ13C and δ15N variation of Picea crassifolia. Results showed that 13C and 15N of current-year leaves were more enriched than older ones at each tree age level. There was no significant difference in leaf δ13C values among trees of different ages, while juvenile trees (<50 years old) were 15N depleted compared to middle-aged trees (50–100 years old) at each leaf age level except for 1-year-old leaves. Meanwhile, relative importance analysis has demonstrated that leaf age was one of the most important indicators for leaf δ13C and δ15N. Moreover, leaf N concentrations played a dominant role in the variations of δ13C and δ15N. Above all, these results provide valuable information on the eco-physiological responses of P. crassifolia in arid and semi-arid regions.
Collapse
|
26
|
Packer KF, Cramer MD. Quantifying N-loss by root abscission: consequences for wheat N budgets and δ 15N values. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:49-56. [PMID: 30218929 DOI: 10.1016/j.jplph.2018.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 08/15/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Lower plant δ15N values relative to source δ15N are commonly attributed to 15N efflux. We determined the extent to which root abscission contributes to plant N-loss and consequences for plant δ15N. Wheat (Triticum aestivum L. cv. SST015) was grown in hydroponics with direct aeration, aeration constrained within a pipe and circulation of nutrient solution through sand, representing three levels of stability for root growth. The δ15N of nutrient solutions and root fragments were periodically determined, as well as root and shoot δ15N. Plants in solution had significantly more negative δ15N (-8.9 and -9.2‰) than plants in sand (-6.9‰), suggesting greater 15N-loss; root fragments were major biomass- (six-fold greater than root dry weight) and N-loss (two-fold greater than plant net N uptake) pathways in solution. These plants had more ephemeral roots and two-fold more root tips than the sand treatment. We estimated that root fragment loss decreased plant δ15N by at least -3.7, -2.6 and -1.0‰ in the direct, pipe and sand treatments, respectively. Positive nutrient solution δ15N in all treatments relative to the source δ15N suggests that plant N, probably derived from efflux, was present in solution. Despite this, root abscission and root turnover are also important N-loss pathways in plants, while plant δ15N values are probably influenced by a combination of root abscission and N efflux.
Collapse
Affiliation(s)
- Kirsten F Packer
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa.
| | - Michael D Cramer
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| |
Collapse
|
27
|
The use of the15N stable isotope technique to improve the management of nitrogen nutrition of fruit trees – a mini review. ACTA ACUST UNITED AC 2018. [DOI: 10.17660/actahortic.2018.1217.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Meng S, Wang S, Quan J, Su W, Lian C, Wang D, Xia X, Yin W. Distinct Carbon and Nitrogen Metabolism of Two Contrasting Poplar Species in Response to Different N Supply Levels. Int J Mol Sci 2018; 19:E2302. [PMID: 30082610 PMCID: PMC6121361 DOI: 10.3390/ijms19082302] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/16/2018] [Accepted: 07/31/2018] [Indexed: 11/16/2022] Open
Abstract
Poplars have evolved various strategies to optimize acclimation responses to environmental conditions. However, how poplars balance growth and nitrogen deficiency remains to be elucidated. In the present study, changes in root development, carbon and nitrogen physiology, and the transcript abundance of associated genes were investigated in slow-growing Populus simonii (Ps) and fast-growing Populus euramericana (Pe) saplings treated with low, medium, and high nitrogen supply. The slow-growing Ps showed a flourishing system, higher δ15N, accelerated C export, lower N uptake and assimilation, and less sensitive transcriptional regulation in response to low N supply. The slow-growing Ps also had greater resistance to N deficiency due to the transport of photosynthate to the roots and the stimulation of root development, which allows survival. To support its rapid metabolism and growth, compared with the slow-growing Ps, the fast-growing Pe showed greater root development, C/N uptake and assimilation capacity, and more responsive transcriptional regulation with greater N supply. These data suggest that poplars can differentially manage C/N metabolism and photosynthate allocation under different N supply conditions.
Collapse
Affiliation(s)
- Sen Meng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Shu Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Jine Quan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Wanlong Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Conglong Lian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Dongli Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
29
|
Rico CM, Johnson MG, Marcus MA, Andersen CP. Shifts in N and δ 15N in wheat and barley exposed to cerium oxide nanoparticles. NANOIMPACT 2018; 11:156-163. [PMID: 30320238 PMCID: PMC6178835 DOI: 10.1016/j.impact.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The effects of cerium oxide nanoparticles (CeO2-NPs) on 15N/14N ratio (δ15N) in wheat and barley were investigated. Seedlings were exposed to 0 and 500 mg CeO2-NPs/L (Ce-0 and Ce-500, respectively) in hydroponic suspension supplied with NH4NO3, NH4 +, or NO3 -. N uptake and δ15N discrimination (i.e. differences in δ15N of plant and δ15N of N source) were measured. Results showed that N content and 15N abundance decreased in wheat but increased in barley. Ce-500 only induced whole-plant δ15N discrimination (-1.48‰, P ≤ 0.10) with a simultaneous decrease (P ≤ 0.05) in whole-plant δ15N (-3.24‰) compared to Ce-0 (-2.74‰) in wheat in NH4 +. Ce-500 decreased (P ≤ 0.01) root δ15N of wheat in NH4NO3 and NH4 + (3.23 and -2.25‰, respectively) compared to Ce-0 (4.96 and -1.27‰, respectively), but increased (P ≤ 0.05) root δ15N of wheat in NO3 - (3.27‰) compared to Ce-0 (2.60‰). Synchrotron micro-XRF revealed the presence of CeO2-NPs in shoots of wheat and barley regardless of N source. Although the longer-term consequences of CeO2-NP exposure on N uptake and metabolism are unknown, the results clearly show the potential for ENMs to interfere with plant metabolism of critical plant nutrients such as N even when toxicity is not observed.
Collapse
Affiliation(s)
- Cyren M. Rico
- National Research Council, Research Associateship Program, 500 Fifth Street, NW, Washington, DC 20001, USA
- US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, 200 SW 35th St., Corvallis, OR 97333, USA
- Missouri State University, Department of Chemistry, 901 S National Ave., Springfield, MO 65897, USA
| | - Mark G. Johnson
- US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, 200 SW 35th St., Corvallis, OR 97333, USA
| | - Matthew A. Marcus
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Christian P. Andersen
- US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, 200 SW 35th St., Corvallis, OR 97333, USA
| |
Collapse
|
30
|
Fuertes-Mendizábal T, Estavillo JM, Duñabeitia MK, Huérfano X, Castellón A, González-Murua C, Aizpurua A, González-Moro MB. 15N Natural Abundance Evidences a Better Use of N Sources by Late Nitrogen Application in Bread Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:853. [PMID: 29988400 PMCID: PMC6024020 DOI: 10.3389/fpls.2018.00853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 06/01/2018] [Indexed: 05/04/2023]
Abstract
This work explores whether the natural abundance of N isotopes technique could be used to understand the movement of N within the plant during vegetative and grain filling phases in wheat crop (Triticum aestivum L.) under different fertilizer management strategies. We focus on the effect of splitting the same N dose through a third late amendment at flag leaf stage (GS37) under humid Mediterranean conditions, where high spring precipitations can guarantee the incorporation of the lately applied N to the soil-plant system in an efficient way. The results are discussed in the context of agronomic parameters as N content, grain yield and quality, and show that further splitting the same N dose improves the wheat quality and induces a better nitrogen use efficiency. The nitrogen isotopic natural abundance technique shows that N remobilization is a discriminating process that leads to an impoverishment in 15N of senescent leaves and grain itself. This technique also reflects the more efficient use of N resources (fertilizer and native soil-N) when plants receive a late N amendment.
Collapse
Affiliation(s)
| | - José M. Estavillo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Miren K. Duñabeitia
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Ximena Huérfano
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Ander Castellón
- NEIKER-Tecnalia, Basque Institute for Agricultural Research and Development, Derio, Spain
| | - Carmen González-Murua
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Ana Aizpurua
- NEIKER-Tecnalia, Basque Institute for Agricultural Research and Development, Derio, Spain
| | | |
Collapse
|
31
|
Menz J, Range T, Trini J, Ludewig U, Neuhäuser B. Molecular basis of differential nitrogen use efficiencies and nitrogen source preferences in contrasting Arabidopsis accessions. Sci Rep 2018; 8:3373. [PMID: 29463824 PMCID: PMC5820274 DOI: 10.1038/s41598-018-21684-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 02/07/2018] [Indexed: 12/27/2022] Open
Abstract
Natural accessions of Arabidopsis thaliana differ in their growth and development, but also vary dramatically in their nitrogen use efficiencies (NUE). The molecular basis for these differences has not been addressed yet. Experiments with five contrasting accessions grown in hydroponics at different levels of inorganic nitrogen confirmed low NUE of Col-0 and higher NUE in Tsu-0. At constant external nitrogen supply, higher NUE was based on nitrogen capture, rather than utilization of nitrogen for shoot biomass. This changed when a limited nitrogen amount was supplied. Nevertheless, the total NUE sequence remained similar. Interestingly, the two most contrasting accessions, Col-0 and Tsu-0, differed in the capture of single inorganic nitrogen sources, reflected by the differential consumption of 15N label from ammonium or nitrate, when supplied together. Tsu-0 acquired more nitrate than Col-0, both in roots and shoots. This preference was directly correlated with the expression of certain nitrogen uptake and assimilation systems in the root. However, early transcriptional responses of the root to nitrate deprivation were similar in both accessions, suggesting that the sensing of the external lack of nitrate was not different in the more nitrogen use efficient accession. Thus, a robust rapid nitrate-deprivation signaling exists in both genotypes.
Collapse
Affiliation(s)
- Jochen Menz
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70593, Stuttgart, Germany
| | - Tim Range
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70593, Stuttgart, Germany
| | - Johannes Trini
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70593, Stuttgart, Germany
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70593, Stuttgart, Germany
| | - Benjamin Neuhäuser
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70593, Stuttgart, Germany.
| |
Collapse
|
32
|
Han Q, Kabeya D, Inagaki Y. Influence of reproduction on nitrogen uptake and allocation to new organs in Fagus crenata. TREE PHYSIOLOGY 2017; 37:1436-1443. [PMID: 28985424 DOI: 10.1093/treephys/tpx095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
The contributions of the internal nitrogen (N) cycle and N uptake from soil to growth in mature trees remain poorly understood, especially during reproduction. In order to elucidate how reproduction affects N uptake, allocation and remobilization, we applied pulse 15N labelling to three fruiting (F) and three non-fruiting (NF) Fagus crenata Blume trees after the leaves were fully unfurled. Three-year-old branches were sampled from upper crowns at about 2 week intervals until leaf fall. 15N content per organ dry mass (15Nexcess) and N concentration in all new shoot organs were determined. Fruiting led to greater 15Nexcess uptake from the soil during the first month following application. Cupules absorbed the highest fraction of 15Nexcess initially and nuts contained about half the 15Nexcess at the end of the growing season. Biomass of reproductive organs represented up to 70% of new shoot growth in F trees. This fruit burden led to 34% and 38% reduction in biomass and 15Nexcess, respectively, in mature leaves compared with NF trees. Moreover, the increment of 15Nexcess in new shoots of F relative to NF trees was lower than the increment of biomass between the two. These results indicate that N is a limiting resource during masting in F. crenata. 15Nexcess incorporated into nuts started to increase dramatically once 15Nexcess in leaves, branches and cupules hit seasonal maxima. Similar seasonal biomass growth patterns were also found in these organs, indicating that sink strength drives uptake and allocation of 15Nexcess between new shoot compartments. These results, together with translocation of 15Nexcess from cupules and senescing leaves to nuts (contributing to fruit ripening), suggest that a finely tuned growth phenology alleviated N limitation. Thus, fruiting did not influence the N concentration in leaves or branches. These reproduction-related variations in N uptake and allocation among new shoot compartments have implications for N dynamics in the plant-soil system.
Collapse
Affiliation(s)
- Qingmin Han
- Department of Plant Ecology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Daisuke Kabeya
- Department of Plant Ecology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Yoshiyuki Inagaki
- Department of Forest Soils, FFPRI, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
- Shikoku Research Center, FFPRI, 2-915 Asakuranishi, Kochi 780-8077, Japan
| |
Collapse
|
33
|
Muller AL, Hardy SP, Mamet SD, Ota M, Lamb EG, Siciliano SD. Salix arctica
changes root distribution and nutrient uptake in response to subsurface nutrients in High Arctic deserts. Ecology 2017; 98:2158-2169. [DOI: 10.1002/ecy.1908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/10/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Amanda L. Muller
- Department of Soil Science; University of Saskatchewan; Saskatoon Saskatchewan S7N 5A8 Canada
| | - Sarah P. Hardy
- Department of Soil Science; University of Saskatchewan; Saskatoon Saskatchewan S7N 5A8 Canada
| | - Steven D. Mamet
- Department of Soil Science; University of Saskatchewan; Saskatoon Saskatchewan S7N 5A8 Canada
| | - Mitsuaki Ota
- Department of Soil Science; University of Saskatchewan; Saskatoon Saskatchewan S7N 5A8 Canada
| | - Eric G. Lamb
- Department of Plant Sciences; University of Saskatchewan; Saskatoon Saskatchewan S7N 5A8 Canada
| | - Steven D. Siciliano
- Department of Soil Science; University of Saskatchewan; Saskatoon Saskatchewan S7N 5A8 Canada
| |
Collapse
|
34
|
Kalcsits LA, Guy RD. Genotypic variation in nitrogen isotope discrimination in Populus balsamifera L. clones grown with either nitrate or ammonium. JOURNAL OF PLANT PHYSIOLOGY 2016; 201:54-61. [PMID: 27423015 DOI: 10.1016/j.jplph.2016.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/23/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
Intraspecific variability in nitrogen use has not been comprehensively assessed in a natural poplar species. Here, a nitrogen isotope mass balance approach was used to assess variability in nitrogen uptake, assimilation and allocation traits in 25 genotypes from five climatically dispersed provenances of Populus balsamifera L. grown hydroponically with either nitrate or ammonium. Balsam poplar was able to grow well with either ammonium or nitrate as the sole nitrogen source. Variation within provenances exceeded significant provenance level variation. Interestingly, genotypes with rapid growth on nitrate achieved similar growth with ammonium. In most cases, the root:shoot ratio was greater in plants grown with ammonium. However, there were genotypes where root:shoot ratio was lower for some genotypes grown with ammonium compared to nitrate. Tissue nitrogen concentration was greater in the leaves and stems but not the roots for plants grown with ammonium compared to nitrate. There was extensive genotypic variation in organ-level nitrogen isotope composition. Root nitrogen isotope discrimination was greater under nitrate than ammonium, but leaf nitrogen isotope discrimination was not significantly different between plants on different sources. This can indicate variation in partitioning of nitrogen assimilation, efflux/influx (E/I) and root or leaf assimilation rates. The proportion of nitrogen assimilated in roots was lower under nitrate than ammonium. E/I was lower for nitrate than ammonium. With the exception of E/I, genotype-level variations in nitrogen-use traits for nitrate were correlated with the same traits when grown with ammonium. Using the nitrogen isotope mass balance model, a high degree of genotypic variation in nitrogen use traits was identified at both the provenance and, more extensively, the genotypic level.
Collapse
Affiliation(s)
- Lee A Kalcsits
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada; Department of Horticulture, College of Agriculture and Natural Resource Sciences, Washington State University, Pullman, WA, United States; Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA, United States
| | - Robert D Guy
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
35
|
Kalcsits LA, Guy RD. Variation in fluxes estimated from nitrogen isotope discrimination corresponds with independent measures of nitrogen flux in Populus balsamifera L. PLANT, CELL & ENVIRONMENT 2016; 39:310-319. [PMID: 26182898 DOI: 10.1111/pce.12614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 07/05/2015] [Indexed: 06/04/2023]
Abstract
Acquisition of mineral nitrogen by roots from the surrounding environment is often not completely efficient, in which a variable amount of leakage (efflux) relative to gross uptake (influx) occurs. The efflux/influx ratio (E/I) is, therefore, inversely related to the efficiency of nutrient uptake at the root level. Time-integrated estimates of E/I and other nitrogen-use traits may be obtainable from variation in stable isotope ratios or through compartmental analysis of tracer efflux (CATE) using radioactive or stable isotopes. To compare these two methods, Populus balsamifera L. genotypes were selected, a priori, for high or low nitrogen isotope discrimination. Vegetative cuttings were grown hydroponically, and E/I was calculated using an isotope mass balance model (IMB) and compared to E/I calculated using (15) N CATE. Both methods indicated that plants grown with ammonium had greater E/I than nitrate-grown plants. Genotypes with high or low E/I using CATE also had similarly high or low estimates of E/I using IMB, respectively. Genotype-specific means were linearly correlated (r = 0.77; P = 0.0065). Discrepancies in E/I between methods may reflect uncertainties in discrimination factors for the assimilatory enzymes, or temporal differences in uptake patterns. By utilizing genotypes with known variation in nitrogen isotope discrimination, a relationship between nitrogen isotope discrimination and bidirectional nitrogen fluxes at the root level was observed.
Collapse
Affiliation(s)
- Lee A Kalcsits
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T1Z4
- Department of Horticulture, Washington State University, Tree Fruit Research and Extension Center, 1100 Western Ave. N, Wenatchee, WA, 98801, USA
| | - Robert D Guy
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T1Z4
| |
Collapse
|
36
|
Polley HW, Derner JD, Jackson RB, Gill RA, Procter AC, Fay PA. Plant community change mediates the response of foliar δ(15)N to CO 2 enrichment in mesic grasslands. Oecologia 2015; 178:591-601. [PMID: 25604918 DOI: 10.1007/s00442-015-3221-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 01/03/2015] [Indexed: 11/28/2022]
Abstract
Rising atmospheric CO2 concentration may change the isotopic signature of plant N by altering plant and microbial processes involved in the N cycle. CO2 may increase leaf δ(15)N by increasing plant community productivity, C input to soil, and, ultimately, microbial mineralization of old, (15)N-enriched organic matter. We predicted that CO2 would increase aboveground productivity (ANPP; g biomass m(-2)) and foliar δ(15)N values of two grassland communities in Texas, USA: (1) a pasture dominated by a C4 exotic grass, and (2) assemblages of tallgrass prairie species, the latter grown on clay, sandy loam, and silty clay soils. Grasslands were exposed in separate experiments to a pre-industrial to elevated CO2 gradient for 4 years. CO2 stimulated ANPP of pasture and of prairie assemblages on each of the three soils, but increased leaf δ(15)N only for prairie plants on a silty clay. δ(15)N increased linearly as mineral-associated soil C declined on the silty clay. Mineral-associated C declined as ANPP increased. Structural equation modeling indicted that CO2 increased ANPP partly by favoring a tallgrass (Sorghastrum nutans) over a mid-grass species (Bouteloua curtipendula). CO2 may have increased foliar δ(15)N on the silty clay by reducing fractionation during N uptake and assimilation. However, we interpret the soil-specific, δ(15)N-CO2 response as resulting from increased ANPP that stimulated mineralization from recalcitrant organic matter. By contrast, CO2 favored a forb species (Solanum dimidiatum) with higher δ(15)N than the dominant grass (Bothriochloa ischaemum) in pasture. CO2 enrichment changed grassland δ(15)N by shifting species relative abundances.
Collapse
Affiliation(s)
- H Wayne Polley
- Grassland, Soil and Water Research Laboratory, USDA-Agricultural Research Service, Temple, TX, 76502, USA,
| | | | | | | | | | | |
Collapse
|