1
|
Huang Y, Xia P. Biomolecular condensates in plant cells: Mediating and integrating environmental signals and development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112178. [PMID: 38971467 DOI: 10.1016/j.plantsci.2024.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
In response to the spatiotemporal coordination of various biochemical reactions and membrane-encapsulated organelles, plants appear to provide another effective mechanism for cellular organization by phase separation that allows the internal compartmentalization of cells to form a variety of membrane-less organelles. Most of the research on phase separation has centralized in various non-plant systems, such as yeast and animal systems. Recent studies have shown a remarkable correlation between the formation of condensates in plant systems and the formation of condensates in these systems. Moreover, the last decade has made new advances in phase separation research in the context of plant biology. Here, we provide an overview of the physicochemical forces and molecular factors that drive liquid-liquid phase separation in plant cells and the biochemical characterization of condensates. We then explore new developments in phase separation research specific to plants, discussing examples of condensates found in green plants and detailing their role in plant growth and development. We propose that phase separation may be a conserved organizational mechanism in plant evolution to help plants respond rapidly and effectively to various environmental stresses as sessile organisms.
Collapse
Affiliation(s)
- Yang Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Devi S, Singh V, Yashveer S, Poonia AK, Paras, Chawla R, Kumar D, Akbarzai DK. Phenotypic, Physiological and Biochemical Delineation of Wheat Genotypes Under Different Stress Conditions. Biochem Genet 2024; 62:3305-3335. [PMID: 38100038 DOI: 10.1007/s10528-023-10579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/28/2023] [Indexed: 09/28/2024]
Abstract
Wheat is a vital crop, providing calories, nutrients and versatility in the food industry. However, the combination of heat and drought stress, exacerbated by climate change, poses a significant threat to wheat production, leading to potential yield losses. To ensure the sustainability of wheat production it is crucial to prioritize research on developing stress-tolerant wheat genotypes. The current study focused on identifying the traits that are important for developing stress-tolerant wheat varieties under timely sown irrigated, drought stress, heat stress, and combined stress conditions. It addresses the knowledge gap regarding the combined effects of heat and drought stress on wheat physiology and yield, aiming to shed light on the intricate interactions between these stresses. The experiment was conducted at CCS HAU, Hisar, during the Rabi seasons of 2019-2020 and 2020-2021. By evaluating variability parameters, conducting correlation analysis, and path coefficient analysis among 80 diverse wheat genotypes, this research identifies genetic factors contributing to stress tolerance and helps select plants with desirable characteristics. The results showed that traits i.e., malendialdehyde, wax covering on blade, wax covering on sheath and wax covering on spike had high potential for improvement through selection among genotypes for grain yield and its component traits. The study also highlighted the importance of selecting wheat varieties with early maturity to mitigate the risk of yield loss under combined stress conditions. Moreover, the interaction between drought and heat stress can increase oxidative stress, leading to elevated malondialdehyde levels. Selecting varieties with lower malondialdehyde and optimal canopy temperature is important. Understanding the complex response of wheat to heat, drought, and their combined stress is essential for improving crop quality and production potential. Overall, this research contributes to the field of plant breeding by facilitating the development of wheat varieties with high and stable yields in challenging environments.
Collapse
Affiliation(s)
- Suman Devi
- Genetics and Plant Breeding Department, CCS HAU, Hisar, Haryana, India.
| | - Vikram Singh
- Genetics and Plant Breeding Department, CCS HAU, Hisar, Haryana, India
| | - Shikha Yashveer
- Department of Molecular Biology and Biotechnology, CCS HAU, Hisar, Haryana, India
| | - Anil Kumar Poonia
- Department of Molecular Biology and Biotechnology, CCS HAU, Hisar, Haryana, India
| | - Paras
- Genetics and Plant Breeding Department, CCS HAU, Hisar, Haryana, India
| | - Rukoo Chawla
- Genetics and Plant Breeding Department, CCS HAU, Hisar, Haryana, India
| | - Deepak Kumar
- Genetics and Plant Breeding Department, CCS HAU, Hisar, Haryana, India
| | | |
Collapse
|
3
|
Lenart A, Wrona D, Krupa T. Biostimulators with marine algae extracts and their role in increasing tolerance to drought stress in highbush blueberry cultivation. PLoS One 2024; 19:e0306831. [PMID: 39298418 DOI: 10.1371/journal.pone.0306831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/24/2024] [Indexed: 09/21/2024] Open
Abstract
Drought is one of the most serious challenges facing agriculture and ecosystems around the world. With more frequent and more extreme weather events, the effects of drought are becoming more severe, leading to yield losses, soil depletion and environmental degradation. In this work, we present an analysis of the impact of a marine algae biostimulanat andits ability to offset the effects of drought stress in blueberry cultivation. The aim of the research was to evaluate various fertilisation programs in increasing plant resistance to abiotic stress such as drought. It was tested whether the algal biostimulator provides the same tolerance to drought stress in highbush blueberry plants as regular fertilisers without biostimulation. The research was conducted in 2022 in a greenhouse in controlled drought conditions. Three-year-old highbush blueberry bushes (12 pieces) were used in the experiment. Highbush blueberry bushes (Vaccinium corymbosum) 'Brigitta Blue' varieties were planted in plastic pots with a capacity of 10 dm3 containing an acidic substrate and placed in a greenhouse. Controlled lighting conditions were maintained using sodium lamps and a temperature of 25°C/20°C day/night. The substrate in pots was maintained at 80% of field water capacity by manual watering and weekly supply of nutrient solution for 5 weeks until water deficit occurred. Half of the plants were sprayed weekly with biostimulant at a concentration of 1%, three times 1 week apart (1 application per week). The biostimulant was evenly applied to the entire plant. Seven days after the third application of the product, half of the unsprayed and sprayed plants were subjected to water deficit stress by holding thewatering until 40% of the field water capacity (FC) was reached. The experimental layout included four combinations: C-Control-no biostimulation, no water deficit; CS-Stress control-water deficit up to 40% FC, no biostimulation; B-Biostimulator-no water deficit, biostimulation; BS-Stress plus biostimulator-water deficit up to 40% FC, biostimulation. Fertilisers with seaweed extracts show the ability to reduce the adverse effects of stress, promoting plant resilience, including tolerance to drought stress. The following were evaluated in the experiment: catalase activity, peroxidase activity, free malondialdehyde content, photosynthetic activity and leaf mineral content. The biostimulant used in experiment increased the oxidative activity of the enzymes pe-roxidase and catalase under simulated drought stress conditions. The algal biostimulant increased the average value of catalase activity by 20% in comparison to the control plants, in both combinatinations. The tested biostimulator had no effect on the chlorophyll content in the leaves or the concentration of nutrients in the leaves. The effect of marine algae products on the yield quantity and high quality is related among other to bioactive substances which helps to prevent drought stress.
Collapse
Affiliation(s)
- Agnieszka Lenart
- Department of Pomology and Horticultural Economics, Warsaw University of Life Sciences - SGGW, Warszawa, Poland
| | - Dariusz Wrona
- Department of Pomology and Horticultural Economics, Warsaw University of Life Sciences - SGGW, Warszawa, Poland
| | - Tomasz Krupa
- Department of Pomology and Horticultural Economics, Warsaw University of Life Sciences - SGGW, Warszawa, Poland
| |
Collapse
|
4
|
Leiva-Mora M, Capdesuñer Y, Villalobos-Olivera A, Moya-Jiménez R, Saa LR, Martínez-Montero ME. Uncovering the Mechanisms: The Role of Biotrophic Fungi in Activating or Suppressing Plant Defense Responses. J Fungi (Basel) 2024; 10:635. [PMID: 39330396 PMCID: PMC11433257 DOI: 10.3390/jof10090635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
This paper discusses the mechanisms by which fungi manipulate plant physiology and suppress plant defense responses by producing effectors that can target various host proteins. Effector-triggered immunity and effector-triggered susceptibility are pivotal elements in the complex molecular dialogue underlying plant-pathogen interactions. Pathogen-produced effector molecules possess the ability to mimic pathogen-associated molecular patterns or hinder the binding of pattern recognition receptors. Effectors can directly target nucleotide-binding domain, leucine-rich repeat receptors, or manipulate downstream signaling components to suppress plant defense. Interactions between these effectors and receptor-like kinases in host plants are critical in this process. Biotrophic fungi adeptly exploit the signaling networks of key plant hormones, including salicylic acid, jasmonic acid, abscisic acid, and ethylene, to establish a compatible interaction with their plant hosts. Overall, the paper highlights the importance of understanding the complex interplay between plant defense mechanisms and fungal effectors to develop effective strategies for plant disease management.
Collapse
Affiliation(s)
- Michel Leiva-Mora
- Laboratorio de Biotecnología, Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato (UTA-DIDE), Cantón Cevallos Vía a Quero, Sector El Tambo-La Universidad, Cevallos 1801334, Ecuador
| | - Yanelis Capdesuñer
- Natural Products Department, Centro de Bioplantas, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| | - Ariel Villalobos-Olivera
- Facultad de Ciencias Agropecuarias, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| | - Roberto Moya-Jiménez
- Facultad de Diseño y Arquitectura, Universidad Técnica de Ambato (UTA-DIDE), Huachi 180207, Ecuador;
| | - Luis Rodrigo Saa
- Departamento de Ciencias Biológicas y Agropecuarias, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador;
| | - Marcos Edel Martínez-Montero
- Facultad de Ciencias Agropecuarias, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| |
Collapse
|
5
|
Silva IP, Costa MGC, Costa-Pinto MFF, Silva MAA, Coelho Filho MA, Fancelli M. Volatile compounds in citrus in adaptation to water deficit and to herbivory by Diaphorina citri: How the secondary metabolism of the plant is modulated under concurrent stresses. A review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112157. [PMID: 38871029 DOI: 10.1016/j.plantsci.2024.112157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Citrus plants are grown in diverse regions of the world, from subtropical to semi-arid and humid tropical areas. Through mechanisms essential for their survival, they adapt to the environmental conditions to which they are subjected. Although there is vast literature on adaptation of citrus plants to individual stresses, plant responses to interaction among different types of stresses have not been clearly examined. Abiotic or biotic stresses, or a combination of these stresses, result in reorganization of plant energy resources for defense, whether it be for resistance, tolerance, or prevention of stress. Plants generally respond to these stress factors through production of secondary metabolites, such as volatile compounds, derived from different biosynthesis and degradation pathways, which are released through distinct routes. Volatile compounds vary among plant species, meeting the specific needs of the plant. Simultaneous exposure to the stress factors of water deficit and herbivory leads to responses such as qualitative and quantitative changes in the emission of secondary metabolites, and compounds may accumulate within the leaves or predispose the plant to more quickly respond to the stress brought about by the herbivore. The genetic makeup of citrus plants can contribute to a better response to stress factors; however, studies on the emission of volatile compounds in different citrus genotypes under simultaneous stresses are limited. This review examines the effects of abiotic stress due to water deficit and biotic stress due to herbivory by Diaphorina citri in citrus plants and examines their connection with volatile compounds. A summary is made of advances in knowledge regarding the performance of volatile compounds in plant defense against both stress factors, as well as the interaction between them and possible findings in citrus plants. In addition, throughout this review, we focus on how genetic variation of the citrus species is correlated with production of volatile compounds to improve stress tolerance.
Collapse
Affiliation(s)
- Indiara Pereira Silva
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Márcio Gilberto Cardoso Costa
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | | | - Monique Ayala Araújo Silva
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | | | | |
Collapse
|
6
|
Yuan X, Li J, Zhang X, Ai X, Bi H. Auxin as a downstream signal positively participates in melatonin-mediated chilling tolerance of cucumber. PHYSIOLOGIA PLANTARUM 2024; 176:e14526. [PMID: 39318034 DOI: 10.1111/ppl.14526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024]
Abstract
Here, we elucidate the interaction between IAA and melatonin (MT) in response to chilling in cucumber. The results showed that chilling stress induced the increase of endogenous MT and IAA, and the application of MT promoted the synthesis of IAA, while IAA could not affect endogenous MT content under chilling stress. Moreover, MT and IAA application both remarkably increased the chilling tolerance of cucumber seedlings in terms of lower contents of MDA and ROS, higher mRNA abundance of cold response genes, net photosynthetic rate (Pn), maximum regeneration rate of ribulose-1,5-diphosphate (Jmax), Rubisco maximum carboxylation efficiency (Vcmax), the activities and gene expression of RCA and Rubisco, as well as the content of active P700 (I/I0) and photosynthetic electron transport, compared with the plants in H2O treatment. Further analysis revealed that the inhibition of IAA transportation significantly reduced the chilling tolerance induced by MT, whereas the inhibition of endogenous MT did not affect the chilling tolerance induced by IAA. Meanwhile, we found that overexpression of the MT biosynthesis gene CsASMT increased the chilling tolerance, which was blocked by inhibition of endogenous IAA, and the silence of IAA biosynthesis gene CsYUCCA10 decreased the chilling tolerance of cucumber, which could not be alleviated by MT. These data implied IAA acted as a downstream signal to participate in the MT-induced chilling tolerance of cucumber seedlings. The study has implications for the production of greenhouse cucumber in winter seasons.
Collapse
Affiliation(s)
- Xinru Yuan
- Key laboratory of crop biology and genetic improvement of horticultural crops in Huanghuai region/College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| | - Junqi Li
- Key laboratory of crop biology and genetic improvement of horticultural crops in Huanghuai region/College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| | - Xiaowei Zhang
- Key laboratory of crop biology and genetic improvement of horticultural crops in Huanghuai region/College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| | - Xizhen Ai
- Key laboratory of crop biology and genetic improvement of horticultural crops in Huanghuai region/College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| | - Huangai Bi
- Key laboratory of crop biology and genetic improvement of horticultural crops in Huanghuai region/College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| |
Collapse
|
7
|
Amoah JN, Adu-Gyamfi MO. Effect of drought acclimation on sugar metabolism in millet. PROTOPLASMA 2024:10.1007/s00709-024-01976-5. [PMID: 39102079 DOI: 10.1007/s00709-024-01976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Drought stress triggers sugar accumulation in plants, providing energy and aiding in protection against oxidative damage. Plant hardening under mild stress conditions has been shown to enhance plant resistance to severe stress conditions. While sugar accumulation and metabolism under drought stress have been well-documented in crop plants, the effect of drought acclimation treatment on sugar accumulation and metabolism has not yet been explored. In this study, we investigated the impact of drought stress acclimation on sugar accumulation and metabolism in the leaves and root tissues of two commonly cultivated foxtail millet (Setaria italica L.) genotypes, 'PI 689680' and 'PI 662292'. Quantification of total sugars (soluble sugar, fructose, glucose, and sucrose), their related enzymes (SPS, SuSy, NI, and AI), and the regulation of their related transcripts (SiSPS1, SiSuSy1, SiSWEET6, SiA-INV, and SiC-INV) revealed that drought-acclimated (DA) plants exhibited levels of these indicators comparable to those of control plants. However, under subsequent drought stress conditions, both the leaves and roots of non-acclimated plants accumulated higher levels of total sugars, displayed increased activity of sugar metabolism enzymes, and showed elevated expression of sugar metabolism-related transcripts compared to drought-acclimated plants. Thus, acclimation-induced restriction of sugar accumulation, transport, and metabolism could be one of the metabolic processes contributing to enhanced drought tolerance in millet. This study advocates for the use of acclimation as an effective strategy to mitigate the negative impacts of drought-induced metabolic disturbances in millet, thereby enhancing global food security and promoting sustainable agricultural systems.
Collapse
Affiliation(s)
- Joseph N Amoah
- School of Life and Environmental Sciences, University of Sydney, 380 Werombi Road, Brownlow Hill, Camden, NSW, 2570, Australia.
| | - Monica Ode Adu-Gyamfi
- Plant Biotechnology Department, CSIR - Crop Research Institute, Kumasi, Ghana
- King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
8
|
Nguyen NS, Poelstra JW, Stupar RM, McHale LK, Dorrance AE. Comparative Transcriptomics of Soybean Genotypes with Partial Resistance Toward Phytophthora sojae, Conrad, and M92-220 to Moderately Susceptible Fast Neutron Mutant Soybeans and Sloan. PHYTOPATHOLOGY 2024; 114:1851-1868. [PMID: 38772042 DOI: 10.1094/phyto-11-23-0436-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The breeding of disease-resistant soybeans cultivars to manage Phytophthora root and stem rot caused by the pathogen Phytophthora sojae involves combining quantitative disease resistance (QDR) and Rps gene-mediated resistance. To identify and confirm potential mechanisms of QDR toward P. sojae, we conducted a time course study comparing changes in gene expression among Conrad and M92-220 with high QDR to susceptible genotypes, Sloan, and three mutants derived from fast neutron irradiation of M92-220. Differentially expressed genes from Conrad and M92-220 indicated several shared defense-related pathways at the transcriptomic level but also defense pathways unique to each cultivar, such as stilbenoid, diarylheptanoid, and gingerol biosynthesis and monobactam biosynthesis. Gene Ontology pathway analysis showed that the susceptible fast neutron mutants lacked enrichment of three terpenoid-related pathways and two cell wall-related pathways at either one or both time points, in contrast to M92-220. The susceptible mutants also lacked enrichment of potentially important Kyoto Encyclopedia of Genes and Genomes pathways at either one or both time points, including sesquiterpenoid and triterpenoid biosynthesis; thiamine metabolism; arachidonic acid; stilbenoid, diarylheptanoid, and gingerol biosynthesis; and monobactam biosynthesis. Additionally, 31 genes that were differentially expressed in M92-220 following P. sojae infection were not expressed in the mutants. These 31 genes have annotations related to unknown proteins; valine, leucine, and isoleucine biosynthesis; and protein and lipid metabolic processes. The results of this study confirm previously proposed mechanisms of QDR, provide evidence for potential novel QDR pathways in M92-220, and further our understanding of the complex network associated with QDR mechanisms in soybean toward P. sojae.
Collapse
Affiliation(s)
- Nghi S Nguyen
- Department of Plant Pathology, The Ohio State University, Wooster, OH
- Center for Soybean Research, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH
| | - Jelmer W Poelstra
- Molecular and Cellular Imaging Center, College of Food, Agricultural, and Environmental Sciences, Wooster Campus, Wooster, OH
| | - Robert M Stupar
- Agronomy and Plant Genetics Department, University of Minnesota, Minneapolis, MN
| | - Leah K McHale
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH
- Center for Soybean Research, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH
| | - Anne E Dorrance
- Department of Plant Pathology, The Ohio State University, Wooster, OH
- Center for Soybean Research, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH
| |
Collapse
|
9
|
Perdomo SA, Valencia DP, Velez GE, Jaramillo-Botero A. Advancing abiotic stress monitoring in plants with a wearable non-destructive real-time salicylic acid laser-induced-graphene sensor. Biosens Bioelectron 2024; 255:116261. [PMID: 38565026 DOI: 10.1016/j.bios.2024.116261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Drought and salinity stresses present significant challenges that exert a severe impact on crop productivity worldwide. Understanding the dynamics of salicylic acid (SA), a vital phytohormone involved in stress response, can provide valuable insights into the mechanisms of plant adaptation to cope with these challenging conditions. This paper describes and tests a sensor system that enables real-time and non-invasive monitoring of SA content in avocado plants exposed to drought and salinity. By using a reverse iontophoretic system in conjunction with a laser-induced graphene electrode, we demonstrated a sensor with high sensitivity (82.3 nA/[μmol L-1⋅cm-2]), low limit of detection (LOD, 8.2 μmol L-1), and fast sampling response (20 s). Significant differences were observed between the dynamics of SA accumulation in response to drought versus those of salt stress. SA response under drought stress conditions proved to be faster and more intense than under salt stress conditions. These different patterns shed light on the specific adaptive strategies that avocado plants employ to cope with different types of environmental stressors. A notable advantage of the proposed technology is the minimal interference with other plant metabolites, which allows for precise SA detection independent of any interfering factors. In addition, the system features a short extraction time that enables an efficient and rapid analysis of SA content.
Collapse
Affiliation(s)
- Sammy A Perdomo
- Omicas Alliance. Pontificia Universidad Javeriana, Cali, 760031, Colombia
| | | | | | - Andres Jaramillo-Botero
- Omicas Alliance. Pontificia Universidad Javeriana, Cali, 760031, Colombia; Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| |
Collapse
|
10
|
Lai Y, Ma J, Zhang X, Xuan X, Zhu F, Ding S, Shang F, Chen Y, Zhao B, Lan C, Unver T, Huo G, Li X, Wang Y, Liu Y, Lu M, Pan X, Yang D, Li M, Zhang B, Zhang D. High-quality chromosome-level genome assembly and multi-omics analysis of rosemary (Salvia rosmarinus) reveals new insights into the environmental and genome adaptation. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1833-1847. [PMID: 38363812 PMCID: PMC11182591 DOI: 10.1111/pbi.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
High-quality genome of rosemary (Salvia rosmarinus) represents a valuable resource and tool for understanding genome evolution and environmental adaptation as well as its genetic improvement. However, the existing rosemary genome did not provide insights into the relationship between antioxidant components and environmental adaptability. In this study, by employing Nanopore sequencing and Hi-C technologies, a total of 1.17 Gb (97.96%) genome sequences were mapped to 12 chromosomes with 46 121 protein-coding genes and 1265 non-coding RNA genes. Comparative genome analysis reveals that rosemary had a closely genetic relationship with Salvia splendens and Salvia miltiorrhiza, and it diverged from them approximately 33.7 million years ago (MYA), and one whole-genome duplication occurred around 28.3 MYA in rosemary genome. Among all identified rosemary genes, 1918 gene families were expanded, 35 of which are involved in the biosynthesis of antioxidant components. These expanded gene families enhance the ability of rosemary adaptation to adverse environments. Multi-omics (integrated transcriptome and metabolome) analysis showed the tissue-specific distribution of antioxidant components related to environmental adaptation. During the drought, heat and salt stress treatments, 36 genes in the biosynthesis pathways of carnosic acid, rosmarinic acid and flavonoids were up-regulated, illustrating the important role of these antioxidant components in responding to abiotic stresses by adjusting ROS homeostasis. Moreover, cooperating with the photosynthesis, substance and energy metabolism, protein and ion balance, the collaborative system maintained cell stability and improved the ability of rosemary against harsh environment. This study provides a genomic data platform for gene discovery and precision breeding in rosemary. Our results also provide new insights into the adaptive evolution of rosemary and the contribution of antioxidant components in resistance to harsh environments.
Collapse
Affiliation(s)
- Yong Lai
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Jinghua Ma
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi‐Omics Research, School of Life SciencesHenan UniversityKaifengHenanChina
| | - Xiaobo Xuan
- Key Laboratory of Water Management and Water Security for Yellow River BasinMinistry of Water ResourcesZhengzhouHenanChina
| | - Fengyun Zhu
- School of Biological and Food Processing EngineeringHuanghuai UniversityZhumadianHenanChina
| | - Shen Ding
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Fude Shang
- College of Life ScienceHenan Agricultural UniversityZhengzhouHenanChina
| | - Yuanyuan Chen
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi‐Omics Research, School of Life SciencesHenan UniversityKaifengHenanChina
| | - Chen Lan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi‐Omics Research, School of Life SciencesHenan UniversityKaifengHenanChina
| | | | - George Huo
- Department of BiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Ximei Li
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Yihan Wang
- College of Life ScienceHenan Agricultural UniversityZhengzhouHenanChina
| | - Yufang Liu
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Mengfei Lu
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Xiaoping Pan
- Department of BiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Deshuang Yang
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Mingwan Li
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Baohong Zhang
- Department of BiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Dangquan Zhang
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| |
Collapse
|
11
|
Paul M, Dalal A, Jääskeläinen M, Moshelion M, Schulman AH. Precision phenotyping of a barley diversity set reveals distinct drought response strategies. FRONTIERS IN PLANT SCIENCE 2024; 15:1393991. [PMID: 38984164 PMCID: PMC11231632 DOI: 10.3389/fpls.2024.1393991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/30/2024] [Indexed: 07/11/2024]
Abstract
Plants exhibit an array of drought responses and adaptations, where the trade-off between water loss and CO2 uptake for growth is mediated by regulation of stomatal aperture in response to soil water content (SWC), among other factors. For crop yield stability, the question is how drought timing and response patterns relate to post-drought growth resilience and vigor. We earlier identified, in a few reference varieties of barley that differed by the SWC at which transpiration was curtailed, two divergent water use strategies: water-saving ("isohydric") and water-spending ("anisohydric"). We proposed that an isohydric strategy may reduce risk from spring droughts in climates where the probability of precipitation increases during the growing season, whereas the anisohydric is consistent with environments having terminal droughts, or with those where dry periods are short and not seasonally progressive. Here, we have examined drought response physiology in an 81-line barley (Hordeum vulgare L.) diversity set that spans 20th century European breeding and identified several lines with a third, dynamic strategy. We found a strong positive correlation between vigor and transpiration, the dynamic group being highest for both. However, these lines curtailed daily transpiration at a higher SWC than the isohydric group. While the dynamic lines, particularly cv Hydrogen and Baronesse, were not the most resilient in terms of restoring initial growth rates, their strong initial vigor and high return to initial transpiration rates meant that their growth nevertheless surpassed more resilient lines during recovery from drought. The results will be of use for defining barley physiological ideotypes suited to future climate scenarios.
Collapse
Affiliation(s)
- Maitry Paul
- HiLIFE Institute of Biotechnology and Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Ahan Dalal
- Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Marko Jääskeläinen
- HiLIFE Institute of Biotechnology and Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Menachem Moshelion
- Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alan H. Schulman
- HiLIFE Institute of Biotechnology and Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
- Production Systems, Natural Resources Institute Finland (LUKE), Helsinki, Finland
| |
Collapse
|
12
|
Liu M, Jiang P, Chase JM, Liu X. Global insect herbivory and its response to climate change. Curr Biol 2024; 34:2558-2569.e3. [PMID: 38776900 DOI: 10.1016/j.cub.2024.04.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/22/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Herbivorous insects consume a large proportion of the energy flow in terrestrial ecosystems and play a major role in the dynamics of plant populations and communities. However, high-resolution, quantitative predictions of the global patterns of insect herbivory and their potential underlying drivers remain elusive. Here, we compiled and analyzed a dataset consisting of 9,682 records of the severity of insect herbivory from across natural communities worldwide to quantify its global patterns and environmental determinants. Global mapping revealed strong spatial variation in insect herbivory at the global scale, showing that insect herbivory did not significantly vary with latitude for herbaceous plants but increased with latitude for woody plants. We found that the cation-exchange capacity in soil was a main predictor of levels of herbivory on herbaceous plants, while climate largely determined herbivory on woody plants. We next used well-established scenarios for future climate change to forecast how spatial patterns of insect herbivory may be expected to change with climate change across the world. We project that herbivore pressure will intensify on herbaceous plants worldwide but would likely only increase in certain biomes (e.g., northern coniferous forests) for woody plants. Our assessment provides quantitative evidence of how environmental conditions shape the spatial pattern of insect herbivory, which enables a more accurate prediction of the vulnerabilities of plant communities and ecosystem functions in the Anthropocene.
Collapse
Affiliation(s)
- Mu Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, 730000 Lanzhou, P.R. China
| | - Peixi Jiang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, 730000 Lanzhou, P.R. China
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany; Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale) 06099, Germany
| | - Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, 730000 Lanzhou, P.R. China.
| |
Collapse
|
13
|
Zhou J, Li J, Liang E, Qi M, Huang Y, Zhang L. Transcriptomic Analysis Under Drought and Salt Stress Provides Insight into Genes Putatively Involved in Ginsenoside Biosynthesis in Panax japonicus Meyer. Biochem Genet 2024:10.1007/s10528-024-10845-y. [PMID: 38836961 DOI: 10.1007/s10528-024-10845-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
Panax japonicus Meyer, a perennial herb of the dicotyledonaceae family Araliaceae, is a rare folk traditional Chinese medicine, known as "the king of herbal medicine" in China. To understand the genes involved in secondary pathways under drought and salt stress, the transcriptomic analysis of P. japonicus is of vital importance. The transcriptome of underground rhizomes, stems, and leaves under drought and salt stress in P. japonicus were performed using the Illumina HiSeq platform. After de novo assembly of transcripts, expression profiling and identified differentially expressed genes (DEGs) were performed. Furthermore, putative functions of identified DEGs correlated with ginsenoside in P. japonicus were explored using Gene Ontology terms and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analysis. A total of 221,804 unigenes were obtained from the transcriptome of P. japonicus. The further analysis revealed that 10,839 unigenes were mapped to 91 KEGG pathways. Furthermore, a total of two metabolic pathways of P. japonicus in response to drought and salt stress related to triterpene saponin synthesis were screened. The sesquiterpene and triterpene metabolic pathways were annotated and finally putatively involved in ginsenoside content and correlation analysis of the expression of these genes were analyzed to identify four genes, β-amyrin synthase, isoprene synthase, squalene epoxidase, and 1-deoxy-D-ketose-5-phosphate synthase, respectively. Our results paves the way for screening highly expressed genes and mining genes related to triterpenoid saponin synthesis. It also provides valuable references for the study of genes involved in ginsenoside biosynthesis and signal pathway of P. japonicus.
Collapse
Affiliation(s)
- Jiangbo Zhou
- College of Agriculture, Anshun University, Anshun, China
- Innovation Center for Efficient Agriculture of Guizhou Mountain Characteristics, Anshun University, Anshun, China
| | - Jing Li
- Innovation Center for Efficient Agriculture of Guizhou Mountain Characteristics, Anshun University, Anshun, China
| | - E Liang
- Innovation Center for Efficient Agriculture of Guizhou Mountain Characteristics, Anshun University, Anshun, China
| | - Minjie Qi
- Innovation Center for Efficient Agriculture of Guizhou Mountain Characteristics, Anshun University, Anshun, China
| | - Yuanshe Huang
- Innovation Center for Efficient Agriculture of Guizhou Mountain Characteristics, Anshun University, Anshun, China
| | - Lai Zhang
- College of Agriculture, Anshun University, Anshun, China.
- Innovation Center for Efficient Agriculture of Guizhou Mountain Characteristics, Anshun University, Anshun, China.
| |
Collapse
|
14
|
Jiang P, Han P, He M, Shui G, Guo C, Shah S, Wang Z, Wu H, Li J, Pan Z. Appropriate mowing can promote the growth of Anabasis aphylla through the auxin metabolism pathway. BMC PLANT BIOLOGY 2024; 24:482. [PMID: 38822275 PMCID: PMC11141038 DOI: 10.1186/s12870-024-05204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Anabasis aphylla (A. aphylla), a species of the Amaranthaceae family, is widely distributed in northwestern China and has high pharmacological value and ecological functions. However, the growth characteristics are poorly understood, impeding its industrial development for biopesticide development. Here, we explored the regenerative capacity of A. aphylla. To this end, different lengths of the secondary branches of perennial branches were mowed at the end of March before sprouting. The four treatments were no mowing (M0) and mowing 1/3, 2/3, and the entire length of the secondary branches of perennial branches (M1-M3, respectively). Next, to evaluate the compensatory growth after mowing, new assimilate branches' related traits were recorded every 30 days, and the final biomass was recorded. The mowed plants showed a greater growth rate of assimilation branches than un-mowed plants. Additionally, with the increasing mowing degree, the growth rate and the final biomass of assimilation branches showed a decreasing trend, with the greatest growth rate and final biomass in response to M1. To evaluate the mechanism of the compensatory growth after mowing, a combination of dynamic (0, 1, 5, and 8 days after mowing) plant hormone-targeted metabolomics and transcriptomics was performed for the M0 and M1 treatment. Overall, 26 plant hormone metabolites were detected, 6 of which significantly increased after mowing compared with control: Indole-3-acetyl-L-valine methyl ester, Indole-3-carboxylic acid, Indole-3-carboxaldehyde, Gibberellin A24, Gibberellin A4, and cis (+)-12-oxo-phytodienoic acid. Additionally, 2,402 differentially expressed genes were detected between the mowed plants and controls. By combining clustering analysis based on expression trends after mowing and gene ontology analysis of each cluster, 18 genes related to auxin metabolism were identified, 6 of which were significantly related to auxin synthesis. Our findings suggest that appropriate mowing can promote A. aphylla growth, regulated by the auxin metabolic pathway, and lays the foundation for the development of the industrial value of A. aphylla.
Collapse
Affiliation(s)
- Ping Jiang
- Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China
- Key Laboratory of Special Fruit and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, 832003, Xinjiang, China
| | - Peng Han
- Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Mengyao He
- Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China
- Key Laboratory of Special Fruit and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, 832003, Xinjiang, China
| | - Guangling Shui
- Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Chunping Guo
- Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Sulaiman Shah
- Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China
- Key Laboratory of Special Fruit and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, 832003, Xinjiang, China
| | - Zixuan Wang
- Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China
- Key Laboratory of Special Fruit and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, 832003, Xinjiang, China
| | - Haokai Wu
- Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China
- Key Laboratory of Special Fruit and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, 832003, Xinjiang, China
| | - Jian Li
- Southern Xinjiang Research Institute, Shihezi University, Tumushuk, 843806, Xinjiang, China.
| | - Zhenyuan Pan
- Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China.
| |
Collapse
|
15
|
Zhao Q, Xiong H, Yu H, Wang C, Zhang S, Hao J, Wang J, Zhang H, Zhang L. Function of MYB8 in larch under PEG simulated drought stress. Sci Rep 2024; 14:11290. [PMID: 38760385 PMCID: PMC11101485 DOI: 10.1038/s41598-024-61510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
Larch, a prominent afforestation, and timber species in northeastern China, faces growth limitations due to drought. To further investigate the mechanism of larch's drought resistance, we conducted full-length sequencing on embryonic callus subjected to PEG-simulated drought stress. The sequencing results revealed that the differentially expressed genes (DEGs) primarily played roles in cellular activities and cell components, with molecular functions such as binding, catalytic activity, and transport activity. Furthermore, the DEGs showed significant enrichment in pathways related to protein processing, starch and sucrose metabolism, benzose-glucuronic acid interconversion, phenylpropyl biology, flavonoid biosynthesis, as well as nitrogen metabolism and alanine, aspartic acid, and glutamic acid metabolism. Consequently, the transcription factor T_transcript_77027, which is involved in multiple pathways, was selected as a candidate gene for subsequent drought stress resistance tests. Under PEG-simulated drought stress, the LoMYB8 gene was induced and showed significantly upregulated expression compared to the control. Physiological indices demonstrated an improved drought resistance in the transgenic plants. After 48 h of PEG stress, the transcriptome sequencing results of the transiently transformed LoMYB8 plants and control plants exhibited that genes were significantly enriched in biological process, cellular component and molecular function. Function analyses indicated for the enrichment of multiple KEGG pathways, including energy synthesis, metabolic pathways, antioxidant pathways, and other relevant processes. The pathways annotated by the differential metabolites mainly encompassed signal transduction, carbohydrate metabolism, amino acid metabolism, and flavonoid metabolism.
Collapse
Affiliation(s)
- Qingrong Zhao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, China
| | - Huanhuan Xiong
- Forestry Research Institute in Heilongjiang Province, Harbin, China
| | - Hongying Yu
- State Administration of Forestry and Grassland, Harbin Research Institute of Forestry Machinery, Harbin, China
| | - Chen Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, China
| | - Sufang Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Junfei Hao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding (Chinese Academy of Forestry), Beijing, China
| | - Hanguo Zhang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, China.
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, China.
| |
Collapse
|
16
|
Braidotti R, Falchi R, Calderan A, Pichierri A, Vankova R, Dobrev PI, Griesser M, Sivilotti P. Multi-hormonal analysis and aquaporins regulation reveal new insights on drought tolerance in grapevine. JOURNAL OF PLANT PHYSIOLOGY 2024; 296:154243. [PMID: 38593590 DOI: 10.1016/j.jplph.2024.154243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/26/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
Disentangling the factors that foster the tolerance to water stress in plants could provide great benefits to crop productions. In a two-year experiment, two new PIWI (fungus resistant) grapevine varieties, namely Merlot Kanthus and Sauvignon Kretos (Vitis hybrids), grown in the field, were subjected to two different water regimes: weekly irrigated (IR) or not irrigated (NIR) for two months during the summer. The two varieties exhibited large differences in terms of performance under water-limiting conditions. In particular, Merlot Kanthus strongly decreased stem water potential (Ψs) under water shortage and Sauvignon Kretos maintained higher Ψs values accompanied by generally high stomatal conductance and net carbon assimilation, regardless of the treatment. We hypothesized differences in the hormonal profile that mediate most of the plant responses to stresses or in the regulation of the aquaporins that control the water transport in the leaves. In general, substantial differences were found in the abundance of different hormonal classes, with Merlot Kanthus reporting higher concentrations of cytokinins while Sauvignon Kretos higher concentrations of auxins, jasmonate and salicylic acid. Interestingly, under water stress conditions ABA modulation appeared similar between the two cultivars, while other hormones were differently modulated between the two varieties. Regarding the expression of aquaporin encoding genes, Merlot Kanthus showed a significant downregulation of VvPIP2;1 and VvTIP2;1 in leaves exposed to water stress. Both genes have probably a role in influencing leaf conductance, and VvTIP2;1 has been correlated with stomatal conductance values. This evidence suggests that the two PIWI varieties are characterized by different behaviour in response to drought. Furthermore, the findings of the study may be generalized, suggesting the involvement of a complex hormonal cross-talk and aquaporins in effectively influencing plant performance under water shortage.
Collapse
Affiliation(s)
- Riccardo Braidotti
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via Delle Scienze 206, 33100, Udine, Italy
| | - Rachele Falchi
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via Delle Scienze 206, 33100, Udine, Italy.
| | - Alberto Calderan
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via Delle Scienze 206, 33100, Udine, Italy; University of Trieste, Department of Life Sciences, Via Licio Giorgieri 5, 34127, Trieste, Italy
| | - Alessandro Pichierri
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via Delle Scienze 206, 33100, Udine, Italy; University of Trieste, Department of Life Sciences, Via Licio Giorgieri 5, 34127, Trieste, Italy
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojova 263, 16502, Prague, 6, Czech Republic
| | - Petre I Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojova 263, 16502, Prague, 6, Czech Republic
| | - Michaela Griesser
- Department of Crop Sciences, Institute of Viticulture and Pomology, University of Natural Resources and Life Sciences, Konrad Lorenz Straße 24, Tulln, 3430, Vienna, Austria
| | - Paolo Sivilotti
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via Delle Scienze 206, 33100, Udine, Italy
| |
Collapse
|
17
|
Lim-Hing S, Gandhi KJK, Villari C. The role of Manganese in tree defenses against pests and pathogens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108641. [PMID: 38663267 DOI: 10.1016/j.plaphy.2024.108641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Manganese (Mn) deficiency is a widespread occurrence across different landscapes, including agricultural systems and managed forests, and causes interruptions in the normal metabolic functioning of plants. The microelement is well-characterized for its role in the oxygen-evolving complex in photosystem II and maintenance of photosynthetic structures. Mn is also required for a variety of enzymatic reactions in secondary metabolism, which play a crucial role in defense strategies for trees. Despite the strong relationship between Mn availability and the biosynthesis of defense-related compounds, there are few studies addressing how Mn deficiency can impact tree defense mechanisms and the ensuing ecological patterns and processes. Understanding this relationship and highlighting the potentially deleterious effects of Mn deficiency in trees can also inform silvicultural and management decisions to build more robust forests. In this review, we address this relationship, focusing on forest trees. We describe Mn availability in forest soils, characterize the known impacts of Mn deficiency in plant susceptibility, and discuss the relationship between Mn and defense-related compounds by secondary metabolite class. In our review, we find several lines of evidence that low Mn availability is linked with lowered or altered secondary metabolite activity. Additionally, we compile documented instances where Mn limitation has altered the defense capabilities of the host plant and propose potential ecological repercussions when studies are not available. Ultimately, this review aims to highlight the importance of untangling the effects of Mn limitation on the ecophysiology of plants, with a focus on forest trees in both managed and natural stands.
Collapse
Affiliation(s)
- Simone Lim-Hing
- D.B. Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, 30602, Georgia, USA; Department of Plant Biology, University of Georgia, 120 Carlton Street, Athens, 30602, Georgia, USA.
| | - Kamal J K Gandhi
- D.B. Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, 30602, Georgia, USA
| | - Caterina Villari
- D.B. Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, 30602, Georgia, USA.
| |
Collapse
|
18
|
Malacarne G, Lagreze J, Rojas San Martin B, Malnoy M, Moretto M, Moser C, Dalla Costa L. Insights into the cell-wall dynamics in grapevine berries during ripening and in response to biotic and abiotic stresses. PLANT MOLECULAR BIOLOGY 2024; 114:38. [PMID: 38605193 PMCID: PMC11009762 DOI: 10.1007/s11103-024-01437-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 04/13/2024]
Abstract
The cell wall (CW) is the dynamic structure of a plant cell, acting as a barrier against biotic and abiotic stresses. In grape berries, the modifications of pulp and skin CW during softening ensure flexibility during cell expansion and determine the final berry texture. In addition, the CW of grape berry skin is of fundamental importance for winemaking, controlling secondary metabolite extractability. Grapevine varieties with contrasting CW characteristics generally respond differently to biotic and abiotic stresses. In the context of climate change, it is important to investigate the CW dynamics occurring upon different stresses, to define new adaptation strategies. This review summarizes the molecular mechanisms underlying CW modifications during grapevine berry fruit ripening, plant-pathogen interaction, or in response to environmental stresses, also considering the most recently published transcriptomic data. Furthermore, perspectives of new biotechnological approaches aiming at modifying the CW properties based on other crops' examples are also presented.
Collapse
Affiliation(s)
- Giulia Malacarne
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy.
| | - Jorge Lagreze
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
- Centre Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, 38098, Trento, Italy
| | - Barbara Rojas San Martin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
- Centre Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, 38098, Trento, Italy
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| | - Marco Moretto
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| | - Claudio Moser
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| | - Lorenza Dalla Costa
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| |
Collapse
|
19
|
Shokri-Gharelo R, Derakhti-Dizaji M, Dadashi D, Chalekaei M, Rostami-Tobnag G. Bioinformatics and meta-analysis of expression data to investigate transcriptomic response of wheat root to abiotic stresses. Biosystems 2024; 237:105165. [PMID: 38430956 DOI: 10.1016/j.biosystems.2024.105165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Abiotic stresses are predominant and main causes of the losses in the crop yield. A complexity of systems biology and involvement of numerous genes in the response to abiotic factors have challenged efforts to create tolerant cultivars with sustainable production. The root is the main organ of the plant and determines a plant tolerance under stressful conditions. In this study, we carried out a meta-analysis of expression datasets from wheat root to identify differentially expressed genes, followed by the weighted gene co-expression network analysis (WGCNA) to construct the weighted gene co-expression network. The aim was to identify consensus differentially expressed genes with regulatory functions, gene networks, and biological pathways involved in response of wheat root to a set of abiotic stresses. The meta-analysis using Fisher method (FDR<0.05) identified consensus 526 DEGs from 55,367 probe sets. Although the annotated expression data are limited for wheat, the functional analysis based on the data from model plants could identify the up-regulated seven regulatory genes involved in chromosome organization and response to oxygen-containing compounds. WGCNA identified four gene modules that were mostly associated with the ribosome biogenesis and polypeptide synthesis. This study's findings enhance our understanding of key players and gene networks related to wheat root response to multiple abiotic stresses.
Collapse
Affiliation(s)
- Reza Shokri-Gharelo
- Department of Plant Breeding and Biotechnology, College of Agriculture, University of Tabriz, Tabriz, Iran; Researcher of Sugar Beet Seed Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Morteza Derakhti-Dizaji
- Department of Plant Breeding and Biotechnology, College of Agriculture, University of Tabriz, Tabriz, Iran
| | - Davod Dadashi
- Department of Plant Breeding and Biotechnology, College of Agriculture, University of Tabriz, Tabriz, Iran
| | - Maryam Chalekaei
- Department of Agronomy and Plant Breeding, Agricultural College, University of Tehran, Iran
| | - Ghader Rostami-Tobnag
- Department of Horticulture, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
20
|
Li Y, Yang J, Zhou J, Wan X, Liu J, Wang S, Ma X, Guo L, Luo Z. Multi-omics revealed molecular mechanism of biphenyl phytoalexin formation in response to yeast extract-induced oxidative stress in Sorbus aucuparia suspension cells. PLANT CELL REPORTS 2024; 43:62. [PMID: 38336832 DOI: 10.1007/s00299-024-03155-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
KEY MESSAGE Yeast extract-induced oxidative stress in Sorbus aucuparia suspension cells leads to the biosynthesis of various hormones, which activates specific signaling pathways that augments biphenyl phytoalexin production. Pathogen incursions pose a significant threat to crop yield and can have a pronounced effect on agricultural productivity and food security. Biphenyl phytoalexins are a specialized group of secondary metabolites that are mainly biosynthesized by Pyrinae plants as a defense mechanism against various pathogens. Despite previous research demonstrating that biphenyl phytoalexin production increased dramatically in Sorbus aucuparia suspension cells (SASCs) treated with yeast extract (YE), the underlying mechanisms remain poorly understood. To address this gap, we conducted an in-depth, multi-omics analysis of transcriptome, proteome, and metabolite (including biphenyl phytoalexins and phytohormones) dynamics in SASCs exposed to YE. Our results indicated that exposure to YE-induced oxidative stress in SASCs, leading to the biosynthesis of a range of hormones, including jasmonic acid (JA), jasmonic acid isoleucine (JA-ILE), gibberellin A4 (GA4), indole-3-carboxylic acid (ICA), and indole-3-acetic acid (IAA). These hormones activated specific signaling pathways that promoted phenylpropanoid biosynthesis and augmented biphenyl phytoalexin production. Moreover, reactive oxygen species (ROS) generated during this process also acted as signaling molecules, amplifying the phenylpropanoid biosynthesis cascade through activation of the mitogen-activated protein kinase (MAPK) pathway. Key genes involved in these signaling pathways included SaBIS1, SaBIS2, SaBIS3, SaPAL, SaB4H, SaOMT, SaUGT1, SaLOX2, SaPR1, SaCHIB1, SaCHIB2 and SaCHIB3. Collectively, this study provided intensive insights into biphenyl phytoalexin accumulation in YE-treated SASCs, which would inform the development of more efficient disease-resistance strategies in economically significant cultivars.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, People's Republic of China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, People's Republic of China
| | - Junhui Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, People's Republic of China
| | - Xiufu Wan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, People's Republic of China
| | - Juan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, People's Republic of China
| | - Sheng Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, People's Republic of China
| | - Xiaojing Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, People's Republic of China
| | - Lanping Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, People's Republic of China.
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.
| | - Zhiqiang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, People's Republic of China.
| |
Collapse
|
21
|
Rahmani N, Radjabian T. Integrative effects of phytohormones in the phenolic acids production in Salvia verticillata L. under multi-walled carbon nanotubes and methyl jasmonate elicitation. BMC PLANT BIOLOGY 2024; 24:56. [PMID: 38238679 PMCID: PMC10797988 DOI: 10.1186/s12870-023-04719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/31/2023] [Indexed: 01/22/2024]
Abstract
Salvia verticillata L. is a well-known herb rich in rosmarinic acid (RA) and with therapeutic values. To better understand the possible roles of phytohormones in the production of phenolic acids in S. verticillata, in this work, we investigated some physiological and biochemical responses of the species to methyl jasmonate (MJ) and multi-walled carbon nanotubes (MWCNTs) as two effective elicitors. The leaves were sprayed with aqueous solutions containing 100 mg L-1 MWCNTs and 100 µM MJ and then harvested during interval times of exposure up to 96 h. The level of abscisic acid, as the first effective phytohormone, was altered in the leaves in response to MJ and MWCNTs elicitation (2.26- and 3.06-fold more than the control, respectively), followed by significant increases (P ˂ 0.05) detected in jasmonic acid and salicylic acid contents up to 8 h after exposure. Obtained data revealed that simultaneously with changes in phytohormone profiles, significant (P ˂ 0.05) rises were observed in the content of H2O2 (8.85- and 9.74-folds of control), and the amount of lipid peroxidation (10.18- and 17.01-folds of control) during the initial times after exposure to MJ and MWCNTs, respectively. Later, the content of phenolic acids increased in the elicited leaves due to changes in the transcription levels of key enzymes involved in their biosynthesis pathways, so 2.71- and 11.52-fold enhances observed in the RA content of the leaves after exposure to MJ and MWCNTs, respectively. It is reasonable to conclude that putative linkages between changes in some phytohormone pools lead to the accumulation of phenolic acids in the leaves of S. verticillata under elicitation. Overall, the current findings help us improve our understanding of the signal transduction pathways of the applied stimuli that led to enhanced secondary metabolite production in medicinal plants.
Collapse
Affiliation(s)
- Nosrat Rahmani
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Tayebeh Radjabian
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran.
| |
Collapse
|
22
|
Madhu, Sharma A, Kaur A, Singh K, Upadhyay SK. Modulation in gene expression and enzyme activity suggested the roles of monodehydroascorbate reductase in development and stress response in bread wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111902. [PMID: 37879539 DOI: 10.1016/j.plantsci.2023.111902] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/23/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Monodehydroascorbate reductase (MDHAR) is a crucial enzymatic antioxidant of the ascorbate-glutathione pathway involved in reactive oxygen species scavenging. Herein, we identified 15 TaMDHAR genes in bread wheat. Phylogenetic analysis revealed their clustering into three groups, which are also related to the subcellular localization in the peroxisome matrix, peroxisome membrane, and chloroplast. Each TaMDHAR protein consisted of two conserved domains; Pyr_redox and Pyr_redox_2 of the pyridine nucleotide disulfide oxidoreductase family. The occurrence of diverse groups of cis-regulatory elements in the promoter region and their interaction with numerous transcription factors suggest assorted functions of TaMDHARs in growth and development and in light, phytohormones, and stress responses. Expression analysis in various tissues further revealed their importance in vegetative and reproductive development. In addition, the differential gene expression and enhanced enzyme activity during drought, heat, and salt treatments exposed their role in abiotic stress response. Interaction of MDHARs with various antioxidant enzymes and biochemicals related to the ascorbate-glutathione cycle exposed their synchronized functioning. Interaction with auxin indicated the probability of cross-talk between antioxidants and auxin signaling. The miR168a, miR169, miR172 and others interaction with various TaMDHARs further directed their association with developmental processes and stress responses. The current study provides extensive information about the importance of TaMDHARs, moreover, the precise role of each gene needs to be established in future studies.
Collapse
Affiliation(s)
- Madhu
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Alok Sharma
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Amandeep Kaur
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
23
|
Narayan OP, Kumar P, Yadav B, Dua M, Johri AK. Sulfur nutrition and its role in plant growth and development. PLANT SIGNALING & BEHAVIOR 2023; 18:2030082. [PMID: 35129079 PMCID: PMC10730164 DOI: 10.1080/15592324.2022.2030082] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Sulfur is one of the essential nutrients that is required for the adequate growth and development of plants. Sulfur is a structural component of protein disulfide bonds, amino acids, vitamins, and cofactors. Most of the sulfur in soil is present in organic matter and hence not accessible to the plants. Anionic form of sulfur (SO42-) is the primary source of sulfur for plants that are generally present in minimal amounts in the soil. It is water-soluble, so readily leaches out of the soil. Sulfur and sulfur-containing compounds act as signaling molecules in stress management as well as normal metabolic processes. They also take part in crosstalk of complex signaling network as a mediator molecule. Plants uptake sulfate directly from the soil by using their dedicated sulfate transporters. In addition, plants also use the sulfur transporter of a symbiotically associated organism like bacteria and fungi to uptake sulfur from the soil especially under sulfur depleted conditions. So, sulfur is a very important component of plant metabolism and its analysis with different dimensions is highly required to improve the overall well-being of plants, and dependent animals as well as human beings. The deficiency of sulfur leads to stunted growth of plants and ultimately loss of yield. In this review, we have focused on sulfur nutrition, uptake, transport, and inter-organismic transfer to host plants. Given the strong potential for agricultural use of sulfur sources and their applications, we cover what is known about sulfur impact on the plant health. We identify opportunities to expand our understanding of how the application of soil microbes like AMF or other root endophytic fungi affects plant sulfur uptake and in turn plant growth and development.
Collapse
Affiliation(s)
| | - Paras Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
24
|
Huo D, Xiao X, Zhang X, Hao X, Hao Z, Li E. Exploration of unique starch physicochemical properties of novel buckwheat lines created by crossing Golden buckwheat and Tatary buckwheat. Food Chem X 2023; 20:100949. [PMID: 38144746 PMCID: PMC10739759 DOI: 10.1016/j.fochx.2023.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 12/26/2023] Open
Abstract
Buckwheat is considered as a healthy cereal food, and it is essential to cultivate new buckwheat lines with good starch physicochemical properties for both consumers and food producers. Six novel buckwheat (Duoku, Dk) were generated by crossing of Golden buckwheat and Tatary buckwheat, and their kernel appearance properties and starch physicochemical properties were analyzed together with one domestic line (Cimiqiao) and one wild line (Yeku). The results showed that Dk samples had better appearance properties than two control samples. The Dk samples showed lower amylose content, similar amylopectin molecular structure and chain length distributions, and larger starch granules compared with Cimiqiao. The digestion results showed that two Dk samples: Dk6 & Dk9 had high resistant starch content; while the other two Dk samples: Dk37 & Dk38 had a steady glucose releasing rate. The Dk samples also showed high gelatinization temperature, indicating they were good raw materials for producing glass noodle. This study proved that Dk buckwheat had unique starch physicochemical properties, and could be used as new food materials in the future.
Collapse
Affiliation(s)
- Dongao Huo
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan 030619, China
| | - Xue Xiao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xiao Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan 030619, China
| | - Xuefeng Hao
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan 030619, China
| | - Zhanyang Hao
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan 030619, China
| | - Enpeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
25
|
Laftouhi A, Eloutassi N, Ech-Chihbi E, Rais Z, Taleb A, Assouguem A, Ullah R, Kara M, Fidan H, Beniken M, Taleb M. Impact of Climate Change on the Chemical Compositions and Antioxidant Activity of Mentha pulegium L. ACS OMEGA 2023; 8:46598-46607. [PMID: 38107916 PMCID: PMC10720290 DOI: 10.1021/acsomega.3c05564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023]
Abstract
A central position in Moroccan ethnobotany is held by the Mentha genus, serving as a vital reference for aromatic and medicinal plants within the Lamiaceae family. The profound importance of Mentha species in the daily lives of Moroccans is recognized, and the primary objective of this study is to assess the impact of rising temperatures and decreasing precipitation on the primary and secondary metabolites of Mentha pulegium under the following climatic conditions: sample 1, cultivated under standard temperature and precipitation conditions during the first year; sample 2, subjected to an 8 °C temperature increase and a 25% reduction in water supply; and sample 3, exposed to a 12 °C temperature rise and a 50% decrease in water availability. Phytochemical screening results reveal a progressive decline in primary metabolites from sample 1 to sample 3 due to the increase in temperature and decrease in precipitation. Conversely, a distinct trend is observed in secondary metabolites and the yield of essential oil, increasing from sample 1 to sample 2 as the temperature rises and precipitation decreases. Remarkably, in sample 3, the yield of essential oil decreases as climatic conditions further deteriorate. Additionally, GC analysis demonstrates that modifications in the chemical compositions of essential oils occur because of the disruption of climatic parameters, particularly in the major compounds. Similarly, changes in climatic parameters significantly influence antioxidant activity, with sample 2 exhibiting the highest activity, as reflected by an IC50 value (half-maximal inhibitory concentration) of 14,874.04 μg/mL, followed by the third sample at 8488.43 μg/mL, whereas the first sample exhibits the lowest activity at 4505.02 μg/mL. In summary, the complex relationship between climatic factors and the chemical composition of Mentha pulegium is highlighted by our experiment, emphasizing its implications for medicinal properties within an ecological context.
Collapse
Affiliation(s)
- Abdelouahid Laftouhi
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME), Sidi Mohamed Ben Abdellah University, Faculty of Sciences
Fes, Fes 30000, Morocco
| | - Noureddine Eloutassi
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME), Sidi Mohamed Ben Abdellah University, Faculty of Sciences
Fes, Fes 30000, Morocco
| | - Elhachmia Ech-Chihbi
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME), Sidi Mohamed Ben Abdellah University, Faculty of Sciences
Fes, Fes 30000, Morocco
| | - Zakia Rais
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME), Sidi Mohamed Ben Abdellah University, Faculty of Sciences
Fes, Fes 30000, Morocco
| | - Abdslam Taleb
- Environmental
Process Engineering Laboratory- Faculty of Science and Technology
Mohammedia, Hassan II University of Casablanca, Fes 30000, Morocco
| | - Amine Assouguem
- Laboratory
of Functional Ecology and Environment, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, P.O. Box 2202, Fez 30000, Morocco
- Laboratory
of Applied Organic Chemistry, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer street, P.O. Box 2202, Fez 30000, Morocco
| | - Riaz Ullah
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Kara
- Laboratory
of Biotechnology, Conservation and Valorisation of Natural Resources
(LBCVNR), Faculty of Sciences Dhar El Mehraz,
University Sidi Mohamed Ben Abdallah, BP 1796 Atlas, Fez 30000, Morocco
| | - Hafize Fidan
- University
of Food Technologies, Plovdiv 4000, Bulgaria
| | - Mustapha Beniken
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME), Sidi Mohamed Ben Abdellah University, Faculty of Sciences
Fes, Fes 30000, Morocco
| | - Mustapha Taleb
- Laboratory
of Electrochemistry, Modeling and Environment Engineering (LIEME), Sidi Mohamed Ben Abdellah University, Faculty of Sciences
Fes, Fes 30000, Morocco
| |
Collapse
|
26
|
Sharma N, Raman H, Wheeler D, Kalenahalli Y, Sharma R. Data-driven approaches to improve water-use efficiency and drought resistance in crop plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111852. [PMID: 37659733 DOI: 10.1016/j.plantsci.2023.111852] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
With the increasing population, there lies a pressing demand for food, feed and fibre, while the changing climatic conditions pose severe challenges for agricultural production worldwide. Water is the lifeline for crop production; thus, enhancing crop water-use efficiency (WUE) and improving drought resistance in crop varieties are crucial for overcoming these challenges. Genetically-driven improvements in yield, WUE and drought tolerance traits can buffer the worst effects of climate change on crop production in dry areas. While traditional crop breeding approaches have delivered impressive results in increasing yield, the methods remain time-consuming and are often limited by the existing allelic variation present in the germplasm. Significant advances in breeding and high-throughput omics technologies in parallel with smart agriculture practices have created avenues to dramatically speed up the process of trait improvement by leveraging the vast volumes of genomic and phenotypic data. For example, individual genome and pan-genome assemblies, along with transcriptomic, metabolomic and proteomic data from germplasm collections, characterised at phenotypic levels, could be utilised to identify marker-trait associations and superior haplotypes for crop genetic improvement. In addition, these omics approaches enable the identification of genes involved in pathways leading to the expression of a trait, thereby providing an understanding of the genetic, physiological and biochemical basis of trait variation. These data-driven gene discoveries and validation approaches are essential for crop improvement pipelines, including genomic breeding, speed breeding and gene editing. Herein, we provide an overview of prospects presented using big data-driven approaches (including artificial intelligence and machine learning) to harness new genetic gains for breeding programs and develop drought-tolerant crop varieties with favourable WUE and high-yield potential traits.
Collapse
Affiliation(s)
- Niharika Sharma
- NSW Department of Primary Industries, Orange Agricultural Institute, Orange, NSW 2800, Australia.
| | - Harsh Raman
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650, Australia
| | - David Wheeler
- NSW Department of Primary Industries, Orange Agricultural Institute, Orange, NSW 2800, Australia
| | - Yogendra Kalenahalli
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana 502324, India
| | - Rita Sharma
- Department of Biological Sciences, BITS Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
27
|
Gao H, Ge W, Bai L, Zhang T, Zhao L, Li J, Shen J, Xu N, Zhang H, Wang G, Lin X. Proteomic analysis of leaves and roots during drought stress and recovery in Setaria italica L. FRONTIERS IN PLANT SCIENCE 2023; 14:1240164. [PMID: 37885665 PMCID: PMC10598781 DOI: 10.3389/fpls.2023.1240164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023]
Abstract
Drought is a major environmental factor that limits agricultural crop productivity and threatens food security. Foxtail millet is a model crop with excellent abiotic stress tolerance and is consequently an important subject for obtaining a better understanding of the molecular mechanisms underlying plant responses to drought and recovery. Here the physiological and proteomic responses of foxtail millet (cultivar Yugu1) leaves and roots to drought treatments and recovery were evaluated. Drought-treated foxtail millet exhibited increased relative electrolyte leakage and decreased relative water content and chlorophyll content compared to control and rewatering plants. A global analysis of protein profiles was evaluated for drought-treated and recovery treatment leaves and roots. We also identified differentially abundant proteins in drought and recovery groups, enabling comparisons between leaf and root tissue responses to the conditions. The principal component analysis suggested a clear distinction between leaf and root proteomes for the drought-treated and recovery treatment plants. Gene Ontology enrichment and co-expression analyses indicated that the biological responses of leaves differed from those in roots after drought and drought recovery. These results provide new insights and data resources to investigate the molecular basis of tissue-specific functional responses of foxtail millet during drought and recovery, thereby significantly informing crop breeding.
Collapse
Affiliation(s)
- Hui Gao
- Hebei Key Laboratory of Crop Stress Biology, Department of Life Science and Technology, College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Weina Ge
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Lin Bai
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ting Zhang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Ling Zhao
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Jingshi Li
- Hebei Key Laboratory of Crop Stress Biology, Department of Life Science and Technology, College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Jiangjie Shen
- Hebei Key Laboratory of Crop Stress Biology, Department of Life Science and Technology, College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Ningwei Xu
- College of Landscape and Tourism, Hebei Agricultural University, Baoding, China
| | - Haoshan Zhang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Genping Wang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Xiaohu Lin
- Hebei Key Laboratory of Crop Stress Biology, Department of Life Science and Technology, College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| |
Collapse
|
28
|
Amoah JN, Adu-Gyamfi MO, Kwarteng AO. Effect of drought acclimation on antioxidant system and polyphenolic content of Foxtail Millet ( Setaria italica L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1577-1589. [PMID: 38076760 PMCID: PMC10709255 DOI: 10.1007/s12298-023-01366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 12/17/2023]
Abstract
The impact of climate change-induced drought stress on global food security and environmental sustainability is a serious concern. While previous research has highlighted the potential benefits of drought hardening in improving plants' ability to withstand drought, the exact underlying physiological mechanisms in millet plants (Setaria italica L.) have not been explored. This study aimed to investigate the impact of drought hardening on antioxidant defense and polyphenol accumulation in different millet genotypes ('PI 689680' and 'PI 662292') subjected to different treatments: control (unstressed), drought acclimation (two stress episodes with recovery), and non-acclimation (single stress episode with no recovery). The results showed that drought stress led to higher levels of polyphenols and oxidative damage, as indicated by increased phenolic, flavonoid, and anthocyanin levels. Non-acclimated (NA) plants experienced more severe oxidative damage and inhibition of enzymes associated with the ascorbate glutathione cycle compared to drought-acclimated plants. NA plants also exhibited a significant reduction in photosynthesis and tissue water content. The expression of genes related to antioxidants and polyphenol synthesis was more pronounced in non-acclimated plants. The study demonstrated that drought hardening not only prepared plants for subsequent drought stress but also mitigated damage caused by oxidative stress in plant physiology. Drought-acclimated (DA) plants displayed improved drought tolerance, as evidenced by better growth, photosynthesis, antioxidant defense, polyphenol accumulation, and gene expression related to antioxidants and polyphenol synthesis. In conclusion, the research advocates for the use of drought hardening as an effective strategy to alleviate the negative impacts of drought-induced metabolic disturbances in millet. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01366-w.
Collapse
Affiliation(s)
- Joseph N. Amoah
- Centre for Carbon, Water, and Food, University of Sydney, 380 Werombi Road, Brownlow Hill, Camden, NSW 2570 Australia
| | | | - Albert Owusu Kwarteng
- Department of Plant Sciences, Kimberly Research and Extension Center, University of Idaho, Moscow, ID USA
| |
Collapse
|
29
|
Liu S, Zenda T, Tian Z, Huang Z. Metabolic pathways engineering for drought or/and heat tolerance in cereals. FRONTIERS IN PLANT SCIENCE 2023; 14:1111875. [PMID: 37810398 PMCID: PMC10557149 DOI: 10.3389/fpls.2023.1111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Drought (D) and heat (H) are the two major abiotic stresses hindering cereal crop growth and productivity, either singly or in combination (D/+H), by imposing various negative impacts on plant physiological and biochemical processes. Consequently, this decreases overall cereal crop production and impacts global food availability and human nutrition. To achieve global food and nutrition security vis-a-vis global climate change, deployment of new strategies for enhancing crop D/+H stress tolerance and higher nutritive value in cereals is imperative. This depends on first gaining a mechanistic understanding of the mechanisms underlying D/+H stress response. Meanwhile, functional genomics has revealed several stress-related genes that have been successfully used in target-gene approach to generate stress-tolerant cultivars and sustain crop productivity over the past decades. However, the fast-changing climate, coupled with the complexity and multigenic nature of D/+H tolerance suggest that single-gene/trait targeting may not suffice in improving such traits. Hence, in this review-cum-perspective, we advance that targeted multiple-gene or metabolic pathway manipulation could represent the most effective approach for improving D/+H stress tolerance. First, we highlight the impact of D/+H stress on cereal crops, and the elaborate plant physiological and molecular responses. We then discuss how key primary metabolism- and secondary metabolism-related metabolic pathways, including carbon metabolism, starch metabolism, phenylpropanoid biosynthesis, γ-aminobutyric acid (GABA) biosynthesis, and phytohormone biosynthesis and signaling can be modified using modern molecular biotechnology approaches such as CRISPR-Cas9 system and synthetic biology (Synbio) to enhance D/+H tolerance in cereal crops. Understandably, several bottlenecks hinder metabolic pathway modification, including those related to feedback regulation, gene functional annotation, complex crosstalk between pathways, and metabolomics data and spatiotemporal gene expressions analyses. Nonetheless, recent advances in molecular biotechnology, genome-editing, single-cell metabolomics, and data annotation and analysis approaches, when integrated, offer unprecedented opportunities for pathway engineering for enhancing crop D/+H stress tolerance and improved yield. Especially, Synbio-based strategies will accelerate the development of climate resilient and nutrient-dense cereals, critical for achieving global food security and combating malnutrition.
Collapse
Affiliation(s)
- Songtao Liu
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Zaimin Tian
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Zhihong Huang
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| |
Collapse
|
30
|
Abbas K, Li J, Gong B, Lu Y, Wu X, Lü G, Gao H. Drought Stress Tolerance in Vegetables: The Functional Role of Structural Features, Key Gene Pathways, and Exogenous Hormones. Int J Mol Sci 2023; 24:13876. [PMID: 37762179 PMCID: PMC10530793 DOI: 10.3390/ijms241813876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
The deleterious effects of drought stress have led to a significant decline in vegetable production, ultimately affecting food security. After sensing drought stress signals, vegetables prompt multifaceted response measures, eventually leading to changes in internal cell structure and external morphology. Among them, it is important to highlight that the changes, including changes in physiological metabolism, signal transduction, key genes, and hormone regulation, significantly influence drought stress tolerance in vegetables. This article elaborates on vegetable stress tolerance, focusing on structural adaptations, key genes, drought stress signaling transduction pathways, osmotic adjustments, and antioxidants. At the same time, the mechanisms of exogenous hormones such as abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) toward improving the adaptive drought tolerance of vegetables were also reviewed. These insights can enhance the understanding of vegetable drought tolerance, supporting vegetable tolerance enhancement by cultivation technology improvements under changing climatic conditions, which provides theoretical support and technical reference for innovative vegetable stress tolerance breeding and food security.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongbo Gao
- Key Laboratory of North China Water-Saving Irrigation Engineering, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
31
|
Niu Y, Li J, Sun F, Song T, Han B, Liu Z, Su P. Comparative transcriptome analysis reveals the key genes and pathways involved in drought stress response of two wheat (Triticum aestivum L) varieties. Genomics 2023; 115:110688. [PMID: 37474013 DOI: 10.1016/j.ygeno.2023.110688] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Drought stress results in significant yield losses in wheat production. Although studies have reported a number of wheat drought tolerance genes, a deeper understanding of the tolerance mechanisms is required for improving wheat tolerance against drought stress. In this study, we found that "Deguo 2" exhibited higher tolerance to drought than "Truman". Transcriptomics analysis enabled identification of 6084 and 7146 differentially expressed genes (DEGs), mainly mapping flavonoid biosynthesis, plant hormone, phenolamides and antioxidant pathways and revealed altered expression levels of about 700 genes. Exogenous melatonin application enhanced wheat tolerance against drought stress. Co-expression analysis showed that bHLH and bZIP transcription factors may be involved in the regulation of various pathway genes. Take together, these results provide new insights for us on exploring the crosstalk between phytohormones and secondary metabolites, and will deepen the understanding of the complex tolerance mechanisms against drought stress in wheat.
Collapse
Affiliation(s)
- Yufei Niu
- College of Agronomy, Liaocheng University, Liaocheng 252059, PR China
| | - Jingyu Li
- College of Agronomy, Liaocheng University, Liaocheng 252059, PR China
| | - Fanting Sun
- College of Agronomy, Liaocheng University, Liaocheng 252059, PR China
| | - Taiyu Song
- College of Agronomy, Liaocheng University, Liaocheng 252059, PR China
| | - Baojia Han
- College of Agronomy, Liaocheng University, Liaocheng 252059, PR China
| | - Zijie Liu
- College of Agronomy, Liaocheng University, Liaocheng 252059, PR China
| | - Peisen Su
- College of Agronomy, Liaocheng University, Liaocheng 252059, PR China.
| |
Collapse
|
32
|
Riyazuddin R, Singh K, Iqbal N, Labhane N, Ramteke P, Singh VP, Gupta R. Unveiling the biosynthesis, mechanisms, and impacts of miRNAs in drought stress resilience in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107978. [PMID: 37660607 DOI: 10.1016/j.plaphy.2023.107978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Drought stress is one of the most serious threats to sustainable agriculture and is predicted to be further intensified in the coming decades. Therefore, understanding the mechanism of drought stress tolerance and the development of drought-resilient crops are the major goals at present. In recent years, noncoding microRNAs (miRNAs) have emerged as key regulators of gene expressions under drought stress conditions and are turning out to be the potential candidates that can be targeted to develop drought-resilient crops in the future. miRNAs are known to target and decrease the expression of various genes to govern the drought stress response in plants. In addition, emerging evidence also suggests a regulatory role of long non-coding RNAs (lncRNAs) in the regulation of miRNAs and the expression of their target genes by a process referred as miRNA sponging. In this review, we present the regulatory roles of miRNAs in the modulation of drought-responsive genes along with discussing their biosynthesis and action mechanisms. Additionally, the interactive roles of miRNAs with phytohormone signaling components have also been highlighted to present the global view of miRNA functioning under drought-stress conditions.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary.
| | - Kalpita Singh
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary; Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2, H-2462, Martonvásár, Hungary.
| | - Nadeem Iqbal
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary; Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary.
| | - Nitin Labhane
- Department of Botany, Bhavan's College Andheri West, Mumbai, 400058, India.
| | - Pramod Ramteke
- Department of Biotechnology, Dr. Ambedkar College, Nagpur, India.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Ravi Gupta
- College of General Education, Kookmin University, 02707, Seoul, Republic of Korea.
| |
Collapse
|
33
|
La VH, Tran DH, Han VC, Nguyen TD, Duong VC, Nguyen VH, Tran AT, Nguyen THG, Ngo XB. Drought stress-responsive abscisic acid and salicylic acid crosstalk with the phenylpropanoid pathway in soybean seeds. PHYSIOLOGIA PLANTARUM 2023; 175:e14050. [PMID: 37882260 DOI: 10.1111/ppl.14050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Crosstalk between hormones and secondary metabolites regulates the interactions between plants and stress. However, little is known about the effects of hormone crosstalk on the concentration of flavonoids in seeds. In this study, we identified abscisic acid (ABA) as a negative regulator of flavonoid accumulation in soybean seeds under drought-stress conditions. Alterations in flavonoid accumulation at several intensities of water stress, followed by a recovery period, were measured during the soybean seed-filling stage. Low soil moisture (SM 10%) significantly decreased the total flavonoid content in seeds. The decline in flavonoid content was proportional to the severity of drought stress and was dependent on the activities of phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS), two key phenylpropanoid pathway enzymes. The expression of phenylalanine ammonia-lyase 1 (GmPAL1), chalcone isomerase 1A (GmCHI1A), and chalcone synthase 8 (GmCHS8) was associated with phenolic and flavonoid accumulation in soybean seeds of plants subjected to drought stress. Interestingly, the expression levels of GmCHS8 were highly correlated with flavonoid levels under drought stress and water recovery conditions. Cinnamic acid, which is a biosynthesis precursor shared by both phenylpropanoid metabolism and salicylic acid (SA) biosynthesis, decreased under drought stress conditions. Notably, exogenous ABA suppressed the expression of GmPAL1, which encodes the first rate-limiting enzyme in the phenylpropanoid biosynthesis pathway and affects downstream products such as SA and flavonoids. In conclusion, drought stress altered the phenylpropanoid-derived compounds, at least with regard to flavonoid and SA accumulation in seeds, which was regulated by antagonistic interactions with ABA.
Collapse
Affiliation(s)
- Van Hien La
- Center of Crop Research for Adaptation to Climate Change, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Vietnam
| | - Dinh Ha Tran
- Center of Crop Research for Adaptation to Climate Change, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Vietnam
- Department of Agronomy, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Vietnam
| | - Viet-Cuong Han
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Tien Dung Nguyen
- Department of Biotechnology and Food Technology, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Vietnam
| | - Van Cuong Duong
- Center of Crop Research for Adaptation to Climate Change, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Vietnam
| | - Viet Hung Nguyen
- Center of Crop Research for Adaptation to Climate Change, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Vietnam
- Department of Agronomy, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Vietnam
| | - Anh Tuan Tran
- Faculty of Agronomy, Vietnam National University of Agriculture, Hanoi, Vietnam
| | | | - Xuan Binh Ngo
- Department of Biotechnology and Food Technology, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Vietnam
| |
Collapse
|
34
|
Ding H, Dai L, Guo Q, Chen X, Zhang G, Feng H, Qin F, Gao H, Xu Y, Zhang Z. Comprehensive Transcriptome and Metabolome Analyses Reveal Primary Molecular Regulation Pathways Involved in Peanut under Water and Nitrogen Co-Limitation. Int J Mol Sci 2023; 24:13308. [PMID: 37686113 PMCID: PMC10487698 DOI: 10.3390/ijms241713308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The yield and quality of peanut (Arachis hypogaea L.), an oil crop planted worldwide, are often limited by drought stress (DS) and nitrogen (N) deficiency. To investigate the molecular mechanism by which peanut counteracts DS and N deficiency, we conducted comprehensive transcriptomic and metabolomic analyses of peanut leaves. Herein, 829 known differentially accumulated metabolites, 324 differentially expressed transcription factors, and 5294 differentially expressed genes (DEGs) were identified under different water and N conditions. The transcriptome analysis demonstrated that drought-related DEGs were predominantly expressed in "glycolysis/gluconeogenesis" and "glycerolipid metabolism", while N-deficiency-related DEGs were mainly expressed in starch and sucrose metabolism, as well as in the biosynthesis of amino acid pathways. The biosynthesis, transport, and catabolism of secondary metabolites accounted for a large proportion of the 1317 DEGs present in water and N co-limitation. Metabolomic analysis showed that the metabolic accumulation of these pathways was significantly dependent on the stress conditions. Additionally, the roles of metabolites and genes in these pathways, such as the biosynthesis of amino acids and phenylpropanoid biosynthesis under different stress conditions, were discussed. The results demonstrated that different genes, metabolic pathways, and metabolites were related to DS and N deficiency. Thus, this study elucidates the metabolic pathways and functional genes that can be used for the improvement of peanut resistance to abiotic stress.
Collapse
Affiliation(s)
- Hong Ding
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao 266100, China; (H.D.); (L.D.); (Q.G.); (G.Z.); (H.F.); (F.Q.)
| | - Liangxiang Dai
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao 266100, China; (H.D.); (L.D.); (Q.G.); (G.Z.); (H.F.); (F.Q.)
| | - Qing Guo
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao 266100, China; (H.D.); (L.D.); (Q.G.); (G.Z.); (H.F.); (F.Q.)
| | - Xiaoshu Chen
- Peanut Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China; (X.C.); (H.G.)
| | - Guanchu Zhang
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao 266100, China; (H.D.); (L.D.); (Q.G.); (G.Z.); (H.F.); (F.Q.)
| | - Hao Feng
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao 266100, China; (H.D.); (L.D.); (Q.G.); (G.Z.); (H.F.); (F.Q.)
| | - Feifei Qin
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao 266100, China; (H.D.); (L.D.); (Q.G.); (G.Z.); (H.F.); (F.Q.)
| | - Huayuan Gao
- Peanut Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China; (X.C.); (H.G.)
| | - Yang Xu
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao 266100, China; (H.D.); (L.D.); (Q.G.); (G.Z.); (H.F.); (F.Q.)
| | - Zhimeng Zhang
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao 266100, China; (H.D.); (L.D.); (Q.G.); (G.Z.); (H.F.); (F.Q.)
| |
Collapse
|
35
|
Khan S, Ambika, Rani K, Sharma S, Kumar A, Singh S, Thapliyal M, Rawat P, Thakur A, Pandey S, Thapliyal A, Pal M, Singh Y. Rhizobacterial mediated interactions in Curcuma longa for plant growth and enhanced crop productivity: a systematic review. FRONTIERS IN PLANT SCIENCE 2023; 14:1231676. [PMID: 37692412 PMCID: PMC10484415 DOI: 10.3389/fpls.2023.1231676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/21/2023] [Indexed: 09/12/2023]
Abstract
Turmeric (Curcuma longa L.), a significant commercial crop of the Indian subcontinent is widely used as a condiment, natural dye, and as a cure for different ailments. Various bioactive compounds such as turmerones and curcuminoids have been isolated from C. longa that have shown remarkable medicinal activity against various ailments. However, reduced soil fertility, climatic variations, rapid urbanization, and enhanced food demand, pose a multifaceted challenge to the current agricultural practices of C. longa. Plant growth-promoting microbes play a vital role in plant growth and development by regulating primary and secondary metabolite production. Rhizospheric associations are complex species-specific interconnections of different microbiota with a plant that sustain soil health and promote plant growth through nutrient acquisition, nitrogen fixation, phosphate availability, phytohormone production, and antimicrobial activities. An elaborative study of microbiota associated with the roots of C. longa is essential for rhizospheric engineering as there is a huge potential to develop novel products based on microbial consortium formulations and elicitors to improve plant health, stress tolerance, and the production of secondary metabolites such as curcumin. Primarily, the purpose of this review is to implicate the rhizospheric microbial flora as probiotics influencing overall C. longa health, development, and survival for an increase in biomass, enhanced yield of secondary metabolites, and sustainable crop production.
Collapse
Affiliation(s)
- Sonam Khan
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India
| | - Ambika
- Forest Pathology Discipline, Forest Protection Division, ICFRE-Forest Research Institute, Dehradun, India
| | - Komal Rani
- Genetics and Tree Improvement Division, ICFRE-Forest Research Institute, Dehradun, India
| | - Sushant Sharma
- Genetics and Tree Improvement Division, ICFRE-Forest Research Institute, Dehradun, India
| | - Abhishek Kumar
- Forest Ecology and Climate Change Division, ICFRE-Forest Research Institute, Dehradun, India
| | - Seema Singh
- Forest Pathology Discipline, Forest Protection Division, ICFRE-Forest Research Institute, Dehradun, India
| | - Madhu Thapliyal
- Department of Zoology, Ram Chandra Uniyal Government Post Graduate College College, Uttarkashi, India
| | - Pramod Rawat
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India
| | - Ajay Thakur
- Genetics and Tree Improvement Division, ICFRE-Forest Research Institute, Dehradun, India
| | - Shailesh Pandey
- Forest Pathology Discipline, Forest Protection Division, ICFRE-Forest Research Institute, Dehradun, India
| | - Ashish Thapliyal
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun, India
| | - Manoj Pal
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun, India
| | - Yashaswi Singh
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India
| |
Collapse
|
36
|
Mehravi S, Hanifei M, Gholizadeh A, Khodadadi M. Water deficit stress changes in physiological, biochemical and antioxidant characteristics of anise (Pimpinella anisum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107806. [PMID: 37379658 DOI: 10.1016/j.plaphy.2023.107806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/14/2023] [Accepted: 05/29/2023] [Indexed: 06/30/2023]
Abstract
This study was designed to evaluate the impact of water deficit stress on the seed yield and its components, physiological functions, fatty acid content and compositions, essential oil (EO) content and compositions, phenolic acids and flavonoids amounts, and antioxidant activities of anise seeds. Plants evaluations were performed under well-watered (WW), moderate water deficit stressed (MWDS), and severe water deficit stressed (SWDS). The results revealed that SWDS significantly reduced seed yield, branch number per plant, seed number, umbel number, and thousand seed weight. Water deficit stress also caused a decrease in chlorophyll content, relative water content, quantum efficiency of photosystem II, and cell membrane stability, while increasing leaf temperature. The analysis of fatty acid composition indicated that petroselinic acid was the main fatty acid and its percentage increased by 8.75% and 14.60% under MWDS and SWDS, respectively. Furthermore, MWDS increased the EO content by 1.48 times, while it decreased by 41.32% under SWDS. The chemotype of EO was altered from t-anethole/estragole in WW seeds to t-anethole/β-bisabolene in treated seeds. Higher levels of total phenolics were detected in stressed seeds. Water deficit stress increased the amount of the major class, naringin, by 1.40 and 1.26 times under MWDS and SWDS. The evaluation of antioxidant activity through reducing power, DPPH, and chelating ability assays indicated that stressed seeds exhibited the highest activity. The study's findings suggest that the application of drought stress before harvesting can regulate the production of bioactive compounds, which can affect the industrial and nutritional values of anise seeds.
Collapse
Affiliation(s)
- Shaghayegh Mehravi
- School of Biological Sciences, University of Western Australia, Perth WA 6009, Australia.
| | - Mehrdad Hanifei
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, C.P. 14115-336, Iran.
| | - Amir Gholizadeh
- Crop and Horticultural Science Research Department, Golestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, C.P. 4915677555, Iran.
| | - Mostafa Khodadadi
- Seed and Plant Improvement Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, C.P. 33151-31359, Iran.
| |
Collapse
|
37
|
Ferrandino A, Pagliarani C, Pérez-Álvarez EP. Secondary metabolites in grapevine: crosstalk of transcriptional, metabolic and hormonal signals controlling stress defence responses in berries and vegetative organs. FRONTIERS IN PLANT SCIENCE 2023; 14:1124298. [PMID: 37404528 PMCID: PMC10315584 DOI: 10.3389/fpls.2023.1124298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/26/2023] [Indexed: 07/06/2023]
Abstract
Abiotic stresses, such as temperature, heat waves, water limitation, solar radiation and the increase in atmospheric CO2 concentration, significantly influence the accumulation of secondary metabolites in grapevine berries at different developmental stages, and in vegetative organs. Transcriptional reprogramming, miRNAs, epigenetic marks and hormonal crosstalk regulate the secondary metabolism of berries, mainly the accumulation of phenylpropanoids and of volatile organic compounds (VOCs). Currently, the biological mechanisms that control the plastic response of grapevine cultivars to environmental stress or that occur during berry ripening have been extensively studied in many worlds viticultural areas, in different cultivars and in vines grown under various agronomic managements. A novel frontier in the study of these mechanisms is the involvement of miRNAs whose target transcripts encode enzymes of the flavonoid biosynthetic pathway. Some miRNA-mediated regulatory cascades, post-transcriptionally control key MYB transcription factors, showing, for example, a role in influencing the anthocyanin accumulation in response to UV-B light during berry ripening. DNA methylation profiles partially affect the berry transcriptome plasticity of different grapevine cultivars, contributing to the modulation of berry qualitative traits. Numerous hormones (such as abscisic and jasmomic acids, strigolactones, gibberellins, auxins, cytokynins and ethylene) are involved in triggering the vine response to abiotic and biotic stress factors. Through specific signaling cascades, hormones mediate the accumulation of antioxidants that contribute to the quality of the berry and that intervene in the grapevine defense processes, highlighting that the grapevine response to stressors can be similar in different grapevine organs. The expression of genes responsible for hormone biosynthesis is largely modulated by stress conditions, thus resulting in the numeourous interactions between grapevine and the surrounding environment.
Collapse
Affiliation(s)
- Alessandra Ferrandino
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Grugliasco, Italy
| | - Chiara Pagliarani
- National Research Council, Institute for Sustainable Plant Protection (CNR-IPSP), Torino, Italy
| | - Eva Pilar Pérez-Álvarez
- Grupo VIENAP. Finca La Grajera, Instituto de Ciencias de la Vid y del Vino (ICVV), Logroño, La Rioja, Spain
| |
Collapse
|
38
|
Paul M, Tanskanen J, Jääskeläinen M, Chang W, Dalal A, Moshelion M, Schulman AH. Drought and recovery in barley: key gene networks and retrotransposon response. FRONTIERS IN PLANT SCIENCE 2023; 14:1193284. [PMID: 37377802 PMCID: PMC10291200 DOI: 10.3389/fpls.2023.1193284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/09/2023] [Indexed: 06/29/2023]
Abstract
Introduction During drought, plants close their stomata at a critical soil water content (SWC), together with making diverse physiological, developmental, and biochemical responses. Methods Using precision-phenotyping lysimeters, we imposed pre-flowering drought on four barley varieties (Arvo, Golden Promise, Hankkija 673, and Morex) and followed their physiological responses. For Golden Promise, we carried out RNA-seq on leaf transcripts before and during drought and during recovery, also examining retrotransposon BARE1expression. Transcriptional data were subjected to network analysis. Results The varieties differed by their critical SWC (ϴcrit), Hankkija 673 responding at the highest and Golden Promise at the lowest. Pathways connected to drought and salinity response were strongly upregulated during drought; pathways connected to growth and development were strongly downregulated. During recovery, growth and development pathways were upregulated; altogether, 117 networked genes involved in ubiquitin-mediated autophagy were downregulated. Discussion The differential response to SWC suggests adaptation to distinct rainfall patterns. We identified several strongly differentially expressed genes not earlier associated with drought response in barley. BARE1 transcription is strongly transcriptionally upregulated by drought and downregulated during recovery unequally between the investigated cultivars. The downregulation of networked autophagy genes suggests a role for autophagy in drought response; its importance to resilience should be further investigated.
Collapse
Affiliation(s)
- Maitry Paul
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Jaakko Tanskanen
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
- Production Systems, Natural Resources Institute Finland (LUKE), Helsinki, Finland
| | - Marko Jääskeläinen
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Wei Chang
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Ahan Dalal
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Menachem Moshelion
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alan H. Schulman
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
- Production Systems, Natural Resources Institute Finland (LUKE), Helsinki, Finland
| |
Collapse
|
39
|
Zhang D, He J, Cheng P, Zhang Y, Khan A, Wang S, Li Z, Zhao S, Zhan X, Ma F, Li X, Guan Q. 4-methylumbelliferone (4-MU) enhances drought tolerance of apple by regulating rhizosphere microbial diversity and root architecture. HORTICULTURE RESEARCH 2023; 10:uhad099. [PMID: 37427035 PMCID: PMC10327542 DOI: 10.1093/hr/uhad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/04/2023] [Indexed: 07/11/2023]
Abstract
The dwarfing rootstocks-mediated high-density apple orchard is becoming the main practice management. Currently, dwarfing rootstocks are widely used worldwide, but their shallow root system and drought sensitivity necessitate high irrigation requirements. Here, the root transcriptome and metabolome of dwarfing (M9-T337, a drought-sensitive rootstock) and vigorous rootstocks (Malus sieversii, a drought-tolerant species, is commonly used as a rootstock) showed that a coumarin derivative, 4-Methylumbelliferon (4-MU), was found to accumulate significantly in the roots of vigorous rootstock under drought condition. When exogenous 4-MU was applied to the roots of dwarfing rootstock under drought treatment, the plants displayed increased root biomass, higher root-to-shoot ratio, greater photosynthesis, and elevated water use efficiency. In addition, diversity and structure analysis of the rhizosphere soil microbial community demonstrated that 4-MU treatment increased the relative abundance of putatively beneficial bacteria and fungi. Of these, Pseudomonas, Bacillus, Streptomyces, and Chryseolinea bacterial strains and Acremonium, Trichoderma, and Phoma fungal strains known for root growth, or systemic resistance against drought stress, were significantly accumulated in the roots of dwarfing rootstock after 4-MU treatment under drought stress condition. Taken together, we identified a promising compound-4-MU, as a useful tool, to strengthen the drought tolerance of apple dwarfing rootstock.
Collapse
Affiliation(s)
- Dehui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
- College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Pengda Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yutian Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur 22620, Pakistan
| | - Shicong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zhongxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Shuang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xiangqiang Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
40
|
Ghuge SA, Nikalje GC, Kadam US, Suprasanna P, Hong JC. Comprehensive mechanisms of heavy metal toxicity in plants, detoxification, and remediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131039. [PMID: 36867909 DOI: 10.1016/j.jhazmat.2023.131039] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Natural and anthropogenic causes are continually growing sources of metals in the ecosystem; hence, heavy metal (HM) accumulation has become a primary environmental concern. HM contamination poses a serious threat to plants. A major focus of global research has been to develop cost-effective and proficient phytoremediation technologies to rehabilitate HM-contaminated soil. In this regard, there is a need for insights into the mechanisms associated with the accumulation and tolerance of HMs in plants. It has been recently suggested that plant root architecture has a critical role in the processes that determine sensitivity or tolerance to HMs stress. Several plant species, including those from aquatic habitats, are considered good hyperaccumulators for HM cleanup. Several transporters, such as the ABC transporter family, NRAMP, HMA, and metal tolerance proteins, are involved in the metal acquisition mechanisms. Omics tools have shown that HM stress regulates several genes, stress metabolites or small molecules, microRNAs, and phytohormones to promote tolerance to HM stress and for efficient regulation of metabolic pathways for survival. This review presents a mechanistic view of HM uptake, translocation, and detoxification. Sustainable plant-based solutions may provide essential and economical means of mitigating HM toxicity.
Collapse
Affiliation(s)
- Sandip A Ghuge
- Agricultural Research Organization (ARO), The Volcani Institute, P.O. Box 15159, 7505101 Rishon LeZion, Israel
| | - Ganesh Chandrakant Nikalje
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea; Department of Botany, Seva Sadan's R. K. Talreja College of Arts, Science and Commerce, Affiliated to University of Mumbai, Ulhasnagar 421003, India
| | - Ulhas Sopanrao Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea.
| | - Penna Suprasanna
- Amity Centre for Nuclear Biotechnology, Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, India
| | - Jong Chan Hong
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea; Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
41
|
Lin PA, Kansman J, Chuang WP, Robert C, Erb M, Felton GW. Water availability and plant-herbivore interactions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2811-2828. [PMID: 36477789 DOI: 10.1093/jxb/erac481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/04/2022] [Indexed: 06/06/2023]
Abstract
Water is essential to plant growth and drives plant evolution and interactions with other organisms such as herbivores. However, water availability fluctuates, and these fluctuations are intensified by climate change. How plant water availability influences plant-herbivore interactions in the future is an important question in basic and applied ecology. Here we summarize and synthesize the recent discoveries on the impact of water availability on plant antiherbivore defense ecology and the underlying physiological processes. Water deficit tends to enhance plant resistance and escape traits (i.e. early phenology) against herbivory but negatively affects other defense strategies, including indirect defense and tolerance. However, exceptions are sometimes observed in specific plant-herbivore species pairs. We discuss the effect of water availability on species interactions associated with plants and herbivores from individual to community levels and how these interactions drive plant evolution. Although water stress and many other abiotic stresses are predicted to increase in intensity and frequency due to climate change, we identify a significant lack of study on the interactive impact of additional abiotic stressors on water-plant-herbivore interactions. This review summarizes critical knowledge gaps and informs possible future research directions in water-plant-herbivore interactions.
Collapse
Affiliation(s)
- Po-An Lin
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Jessica Kansman
- Department of Entomology, the Pennsylvania State University, University Park, PA, USA
| | - Wen-Po Chuang
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | | | - Matthias Erb
- Institute of Plant Science, University of Bern, Bern, Switzerland
| | - Gary W Felton
- Department of Entomology, the Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
42
|
Bastías DA, Ueno AC, Gundel PE. Global Change Factors Influence Plant- Epichloë Associations. J Fungi (Basel) 2023; 9:446. [PMID: 37108902 PMCID: PMC10145611 DOI: 10.3390/jof9040446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
There is an increasing interest in determining the influence of global change on plant-microorganism interactions. We review the results of experiments that evaluated the effects of the global change factors carbon dioxide, ozone, temperature, drought, flooding, and salinity on plant symbioses with beneficial Epichloë endophytes. The factors affected the performance of both plants and endophytes as well as the frequency of plants symbiotic with the fungus. Elevated carbon dioxide levels and low temperatures differentially influenced the growth of plants and endophytes, which could compromise the symbioses. Furthermore, we summarise the plant stage in which the effects of the factors were quantified (vegetative, reproductive, or progeny). The factors ozone and drought were studied at all plant stages, but flooding and carbon dioxide were studied in just a few of them. While only studied in response to ozone and drought, evidence showed that the effects of these factors on symbiotic plants persisted trans-generationally. We also identified the putative mechanisms that would explain the effects of the factors on plant-endophyte associations. These mechanisms included the increased contents of reactive oxygen species and defence-related phytohormones, reduced photosynthesis, and altered levels of plant primary metabolites. Finally, we describe the counteracting mechanisms by which endophytes would mitigate the detrimental effects of the factors on plants. In presence of the factors, endophytes increased the contents of antioxidants, reduced the levels of defence-related phytohormones, and enhanced the plant uptake of nutrients and photosynthesis levels. Knowledge gaps regarding the effects of global change on plant-endophyte associations were identified and discussed.
Collapse
Affiliation(s)
- Daniel A. Bastías
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Andrea C. Ueno
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3480094, Chile
- Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Campus Talca, Talca 3480094, Chile
| | - Pedro E. Gundel
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3480094, Chile
- Facultad de Agronomía, IFEVA, CONICET, Universidad de Buenos Aires, Buenos Aires C1417DSE, Argentina
| |
Collapse
|
43
|
Ghorbanzadeh Z, Hamid R, Jacob F, Zeinalabedini M, Salekdeh GH, Ghaffari MR. Comparative metabolomics of root-tips reveals distinct metabolic pathways conferring drought tolerance in contrasting genotypes of rice. BMC Genomics 2023; 24:152. [PMID: 36973662 PMCID: PMC10044761 DOI: 10.1186/s12864-023-09246-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Abstract
Background
The mechanisms underlying rice root responses to drought during the early developmental stages are yet unknown.
Results
This study aimed to determine metabolic differences in IR64, a shallow-rooting, drought-susceptible genotype, and Azucena, a drought-tolerant and deep-rooting genotype under drought stress. The morphological evaluation revealed that Azucena might evade water stress by increasing the lateral root system growth, the root surface area, and length to access water. At the same time, IR64 may rely mainly on cell wall thickening to tolerate stress. Furthermore, significant differences were observed in 49 metabolites in IR64 and 80 metabolites in Azucena, for which most metabolites were implicated in secondary metabolism, amino acid metabolism, nucleotide acid metabolism and sugar and sugar alcohol metabolism. Among these metabolites, a significant positive correlation was found between allantoin, galactaric acid, gluconic acid, glucose, and drought tolerance. These metabolites may serve as markers of drought tolerance in genotype screening programs. Based on corresponding biological pathways analysis of the differentially abundant metabolites (DAMs), biosynthesis of alkaloid-derivatives of the shikimate pathway, fatty acid biosynthesis, purine metabolism, TCA cycle and amino acid biosynthesis were the most statistically enriched biological pathway in Azucena in drought response. However, in IR64, the differentially abundant metabolites of starch and sucrose metabolism were the most statistically enriched biological pathways.
Conclusion
Metabolic marker candidates for drought tolerance were identified in both genotypes. Thus, these markers that were experimentally determined in distinct metabolic pathways can be used for the development or selection of drought-tolerant rice genotypes.
Collapse
|
44
|
Pérez-Llorca M, Pollmann S, Müller M. Ethylene and Jasmonates Signaling Network Mediating Secondary Metabolites under Abiotic Stress. Int J Mol Sci 2023; 24:5990. [PMID: 36983071 PMCID: PMC10051637 DOI: 10.3390/ijms24065990] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Plants are sessile organisms that face environmental threats throughout their life cycle, but increasing global warming poses an even more existential threat. Despite these unfavorable circumstances, plants try to adapt by developing a variety of strategies coordinated by plant hormones, resulting in a stress-specific phenotype. In this context, ethylene and jasmonates (JAs) present a fascinating case of synergism and antagonism. Here, Ethylene Insensitive 3/Ethylene Insensitive-Like Protein1 (EIN3/EIL1) and Jasmonate-Zim Domain (JAZs)-MYC2 of the ethylene and JAs signaling pathways, respectively, appear to act as nodes connecting multiple networks to regulate stress responses, including secondary metabolites. Secondary metabolites are multifunctional organic compounds that play crucial roles in stress acclimation of plants. Plants that exhibit high plasticity in their secondary metabolism, which allows them to generate near-infinite chemical diversity through structural and chemical modifications, are likely to have a selective and adaptive advantage, especially in the face of climate change challenges. In contrast, domestication of crop plants has resulted in change or even loss in diversity of phytochemicals, making them significantly more vulnerable to environmental stresses over time. For this reason, there is a need to advance our understanding of the underlying mechanisms by which plant hormones and secondary metabolites respond to abiotic stress. This knowledge may help to improve the adaptability and resilience of plants to changing climatic conditions without compromising yield and productivity. Our aim in this review was to provide a detailed overview of abiotic stress responses mediated by ethylene and JAs and their impact on secondary metabolites.
Collapse
Affiliation(s)
- Marina Pérez-Llorca
- Department of Biology, Health and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Ali-Mentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
45
|
Wang Y, Zhang M, Li X, Zhou R, Xue X, Zhang J, Liu N, Xue R, Qi X. Overexpression of the Wheat TaPsb28 Gene Enhances Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2023; 24:ijms24065226. [PMID: 36982301 PMCID: PMC10049290 DOI: 10.3390/ijms24065226] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Psb28 is a soluble protein in the photosystem II (PSII) complex, but its role in the drought stress response of wheat remains unclear. Here, we functionally characterized the TaPsb28 gene, which positively regulates drought tolerance in wheat. When the full-length 546-bp TaPsb28 cDNA was transferred into Arabidopsis thaliana, it was located in the guard cell chloroplast around the stroma. Overexpression of TaPsb28 conferred drought tolerance, as exhibited by the increases in the survival rate. Transgenic plants maintained lower MDA content and higher chlorophyll content by inducing chlorophyll synthase (ChlG) gene transcription. The content of abscisic acid (ABA) and zeatin increased significantly in wild-type (WT) plants under drought stress, and the transcriptional expression levels of RD22, dihydroflavonol 4-reductase (DFR) and anthocyanin reductase (ANR) genes were induced, thus enhancing the contents of endogenous cyanidin, delphinidin, and proanthocyanidins. However, in transgenic plants, although anthocyanins were further aggregated, the ABA increase was inhibited, zeatin was restored to the control level under drought stress, and stomatal closure was promoted. These findings indicate ABA and zeatin have opposite synergistic effects in the process of drought tolerance caused by TaPsb28 because only after the effect of zeatin is alleviated can ABA better play its role in promoting anthocyanin accumulation and stomatal closure, thus enhancing the drought tolerance of transgenic plants. The results suggest that overexpression of TaPsb28 exerts a positive role in the drought response by influencing the functional metabolism of endogenous hormones. The understanding acquired through the research laid a foundation for further in-depth investigation of the function of TaPsb28 in drought resistance in wheat, especially its relationship with anthocyanidin accumulation.
Collapse
Affiliation(s)
- Yuexia Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence: (Y.W.); (X.Q.); Tel./Fax: +86-(37)-163555319 (Y.W.)
| | - Menghan Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoyan Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruixiang Zhou
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinyu Xue
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Jing Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Nana Liu
- Department of Biological Science, Purdue University, West Lafayette, IN 47907, USA
| | - Ruili Xue
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xueli Qi
- Institute of Crops Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
- Correspondence: (Y.W.); (X.Q.); Tel./Fax: +86-(37)-163555319 (Y.W.)
| |
Collapse
|
46
|
He R, Su H, Wang X, Ren Z, Zhang K, Feng T, Zhang M, Li Z, Li L, Zhuang J, Gong Z, Zhou Y, Duan L. Coronatine promotes maize water uptake by directly binding to the aquaporin ZmPIP2;5 and enhancing its activity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:703-720. [PMID: 36511119 DOI: 10.1111/jipb.13432] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Water uptake is crucial for crop growth and development and drought stress tolerance. The water channel aquaporins (AQP) play important roles in plant water uptake. Here, we discovered that a jasmonic acid analog, coronatine (COR), enhanced maize (Zea mays) root water uptake capacity under artificial water deficiency conditions. COR treatment induced the expression of the AQP gene Plasma membrane intrinsic protein 2;5 (ZmPIP2;5). In vivo and in vitro experiments indicated that COR also directly acts on ZmPIP2;5 to improve water uptake in maize and Xenopus oocytes. The leaf water potential and hydraulic conductivity of roots growing under hyperosmotic conditions were higher in ZmPIP2;5-overexpression lines and lower in the zmpip2;5 knockout mutant, compared to wild-type plants. Based on a comparison between ZmPIP2;5 and other PIP2s, we predicted that COR may bind to the functional site in loop E of ZmPIP2;5. We confirmed this prediction by surface plasmon resonance technology and a microscale thermophoresis assay, and showed that deleting the binding motif greatly reduced COR binding. We identified the N241 residue as the COR-specific binding site, which may activate the channel of the AQP tetramer and increase water transport activity, which may facilitate water uptake under hyperosmotic stress.
Collapse
Affiliation(s)
- Rui He
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Huiqing Su
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhijie Ren
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Kun Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Tianyu Feng
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Legong Li
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Junhong Zhuang
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuyi Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
47
|
Park YJ, Kwon DY, Koo SY, Truong TQ, Hong SC, Choi J, Moon J, Kim SM. Identification of drought-responsive phenolic compounds and their biosynthetic regulation under drought stress in Ligularia fischeri. FRONTIERS IN PLANT SCIENCE 2023; 14:1140509. [PMID: 36860897 PMCID: PMC9968736 DOI: 10.3389/fpls.2023.1140509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Ligularia fischeri, a leafy edible plant found in damp shady regions, has been used as an herbal medicine and is also consumed as a horticultural crop. In this study, we investigated the physiological and transcriptomic changes, especially those involved in phenylpropanoid biosynthesis, induced by severe drought stress in L. fischeri plants. A distinguishing characteristic of L. fischeri is a color change from green to purple due to anthocyanin biosynthesis. We chromatographically isolated and identified two anthocyanins and two flavones upregulated by drought stress using liquid chromatography-mass spectrometry and nuclear magnetic resonance analyses in this plant for the first time. In contrast, all types of caffeoylquinic acids (CQAs) and flavonol contents were decreased under drought stress. Further, we performed RNA sequencing to examine the molecular changes in these phenolic compounds at the transcriptome level. In an overview of drought-inducible responses, we identified 2,105 hits for 516 distinct transcripts as drought-responsive genes. Moreover, differentially expressed genes (DEGs) associated with phenylpropanoid biosynthesis accounted for the greatest number of both up- and downregulated DEGs by Kyoto Encyclopedia of Genes and Genomes enrichment analysis. We identified 24 meaningful DEGs based on the regulation of phenylpropanoid biosynthetic genes. Potential drought-responsive genes included upregulated flavone synthase (LfFNS, TRINITY DN31661 c0 g1 i1) and anthocyanin 5-O-glucosyltransferase (LfA5GT1, TRINITY DN782 c0 g1 i1), which could contribute to the high levels of flavones and anthocyanins under drought stress in L. fischeri. In addition, the downregulated shikimate O-hydroxycinnamolytransferase (LfHCT, TRINITY DN31661 c0 g1 i1) and hydroxycinnamoyl-CoA quinate/shikimate transferase (LfHQT4, TRINITY DN15180 c0 g1 i1) genes led to a reduction in CQAs. Only one or two BLASTP hits for LfHCT were obtained for six different Asteraceae species. It is possible that the HCT gene plays a crucial role in CQAs biosynthesis in these species. These findings expand our knowledge of the response mechanisms to drought stress, particularly regarding the regulation of key phenylpropanoid biosynthetic genes in L. fischeri.
Collapse
Affiliation(s)
- Yun Ji Park
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, Republic of Korea
| | | | - Song Yi Koo
- Natural Product Informatics Center, KIST Gangneung Institute of Natural Products, Gangneung, Republic of Korea
| | - To Quyen Truong
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, Republic of Korea
- Department of Bio-medical Science & Technology, Korea Institute of Science and Technology (KIST) School, University of Science and Technology, Seoul, Republic of Korea
| | - Sung-Chul Hong
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, Republic of Korea
| | - Jaeyoung Choi
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, Republic of Korea
| | - Jinyoung Moon
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, Republic of Korea
| | - Sang Min Kim
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, Republic of Korea
- Department of Bio-medical Science & Technology, Korea Institute of Science and Technology (KIST) School, University of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
48
|
Wang Q, Guo C, Yang S, Zhong Q, Tian J. Screening and Verification of Reference Genes for Analysis of Gene Expression in Garlic ( Allium sativum L.) under Cold and Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:763. [PMID: 36840111 PMCID: PMC9963267 DOI: 10.3390/plants12040763] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The principal objective of this study was to screen and verify reference genes appropriate for gene expression evaluation during plant growth and development under distinct growth conditions. Nine candidate reference genes were screened based on garlic transcriptome sequence data. RT-qPCR was used to detect the expression levels of the aforementioned reference genes in specific tissues under drought and cold stress. Then, geNorm, NormFinder, BestKeeper, and ReFinder were used to consider the consistency of the expression levels of candidate reference genes. Finally, the stress-responsive gene expression of ascorbate peroxidase (APX) was quantitatively evaluated to confirm the chosen reference genes. Our results indicated that there were variations in the abundance and stability of nine reference gene transcripts underneath cold and drought stress, among which ACT and UBC-E2 had the highest transcript abundance, and 18S rRNA and HIS3 had the lowest transcript abundance. UBC and UBC-E2 were the most stably expressed genes throughout all samples; UBC and UBC-E2 were the most stably expressed genes during cold stress, and ACT and UBC were the most stably expressed genes under drought stress. The most stably expressed genes in roots, pseudostems, leaves, and cloves were EF1, ACT, HIS3, UBC, and UBC-E2, respectively, while GAPDH was the most unstable gene during drought and cold stress conditions and in exclusive tissues. Taking the steady reference genes UBC-E2, UBC, and ACT as references during drought and cold stress, the reliability of the expression levels was further demonstrated by detecting the expression of AsAPX. Our work thereby offers a theoretical reference for the evaluation of gene expression in garlic in various tissues and under stress conditions.
Collapse
Affiliation(s)
- Qizhang Wang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences of Qinghai University, Xining 810016, China
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chunqian Guo
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences of Qinghai University, Xining 810016, China
| | - Shipeng Yang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences of Qinghai University, Xining 810016, China
| | - Qiwen Zhong
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences of Qinghai University, Xining 810016, China
| | - Jie Tian
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences of Qinghai University, Xining 810016, China
| |
Collapse
|
49
|
Arjmand MP, Lahiji HS, Golfazani MM, Biglouei MH. New insights on the regulatory network of drought-responsive key genes in Arabidopsis thaliana. Genetica 2023; 151:29-45. [PMID: 36474134 DOI: 10.1007/s10709-022-00177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Drought stress is complex abiotic stress that seriously affects crop productivity and yield. Many genes with various functions are induced in response to drought stress. The present study aimed to identify drought-responsive hub genes and their related regulation network in Arabidopsis thaliana under drought stress. In this study, RNA-sequencing data of well-watered and drought treatment samples of Arabidopsis were analyzed, and differential expression genes were identified. The gene ontology enrichment and protein-protein interaction network analyses were performed for differential expression genes. Then, the most important hub genes, gene ontology enrichment, co-expression network, and prediction of related miRNAs of hub genes were investigated by in silico approaches. A total of 2462 genes were expressed differentially, of which 1926 transcripts were up-regulated under drought stress, and the rest were down-regulated. WRKY33, WRKY40, AT1G19020, STZ, SYP122, CNI1, CML37, BCS1, AT3G02840, and AT5G54490 were identified as hub genes in drought stress. The gene ontology analysis showed that hub genes significantly enriched in response to hypoxia, chitin, wounding, and salicylic acid-mediated signaling pathway. The hub genes were co-expressed with important drought-responsive genes such as WRKY46, WRKY60, CML38, ERF6, ERF104, and ERF1A. They were regulated by many stress-responsive miRNAs, such as ath-miR5021, miR413, miR5998, and miR162, that could be used as candidate miRNAs for regulating key genes under drought stress. It seems that the regulation network was involved in signaling pathways and protein degradation under drought stress, and it consists of several important genes and miRNAs that are potential candidates for plant improvement and breeding programs.
Collapse
Affiliation(s)
- Maryam Pasandideh Arjmand
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | | | - Mohammad Hassan Biglouei
- Department of Water Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
50
|
Wu C, Wang Y, Sun H. Targeted and untargeted metabolomics reveals deep analysis of drought stress responses in needles and roots of Pinus taeda seedlings. FRONTIERS IN PLANT SCIENCE 2023; 13:1031466. [PMID: 36798806 PMCID: PMC9927248 DOI: 10.3389/fpls.2022.1031466] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/28/2022] [Indexed: 06/01/2023]
Abstract
Drought stress is one of major environmental stresses affecting plant growth and yield. Although Pinus taeda trees are planted in rainy southern China, local drought sometime occurs and can last several months, further affecting their growth and resin production. In this study, P. taeda seedlings were treated with long-term drought (42 d), and then targeted and untargeted metabolomics analysis were carried out to evaluate drought tolerance of P. taeda. Targeted metabolomics analysis showed that levels of some sugars, phytohormones, and amino acids significantly increased in the roots and needles of water-stressed (WS) P. taeda seedlings, compared with well-watered (WW) pine seedlings. These metabolites included sucrose in pine roots, the phytohormones abscisic acid and sacylic acid in pine needles, the phytohormone gibberellin (GA4) and the two amino acids, glycine and asparagine, in WS pine roots. Compared with WW pine seedlings, the neurotransmitter acetylcholine significantly increased in needles of WS pine seedlings, but significantly reduced in their roots. The neurotransmitters L-glutamine and hydroxytyramine significantly increased in roots and needles of WS pine seedlings, respectively, compared with WW pine seedlings, but the neurotransmitter noradrenaline significantly reduced in needles of WS pine seedlings. Levels of some unsaturated fatty acids significantly reduced in roots or needles of WS pine seedlings, compared with WW pine seedlings, such as linoleic acid, oleic acid, myristelaidic acid, myristoleic acid in WS pine roots, and palmitelaidic acid, erucic acid, and alpha-linolenic acid in WS pine needles. However, three saturated fatty acids significantly increased in WS pine seedlings, i.e., dodecanoic acid in WS pine needles, tricosanoic acid and heptadecanoic acid in WS pine roots. Untargeted metabolomics analysis showed that levels of some metabolites increased in WS pine seedlings, especially sugars, long-chain lipids, flavonoids, and terpenoids. A few of specific metabolites increased greatly, such as androsin, piceatanol, and panaxatriol in roots and needles of WS pine seedlings. Comparing with WW pine seedlings, it was found that the most enriched pathways in WS pine needles included flavone and flavonol biosynthesis, ABC transporters, diterpenoid biosynthesis, plant hormone signal transduction, and flavonoid biosynthesis; in WS pine roots, the most enriched pathways included tryptophan metabolism, caffeine metabolism, sesquiterpenoid and triterpenoid biosynthesis, plant hormone signal transduction, biosynthesis of phenylalanine, tyrosine, and tryptophan. Under long-term drought stress, P. taeda seedlings showed their own metabolomics characteristics, and some new metabolites and biosynthesis pathways were found, providing a guideline for breeding drought-tolerant cultivars of P. taeda.
Collapse
Affiliation(s)
- Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Yun Wang
- College of Life Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Honggang Sun
- Institute of Subtropic Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, China
| |
Collapse
|