1
|
Bentley RF, Nikolovski N, Goodman JM. How does the dose and type of exercise impact acute cardiovascular function in healthy individuals? Can J Cardiol 2024:S0828-282X(24)01261-3. [PMID: 39694141 DOI: 10.1016/j.cjca.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024] Open
Abstract
During aerobic exercise, the cardiovascular system is tasked with delivering oxygen to active skeletal muscle via muscle blood flow while regulating mean arterial blood pressure. The impact of aerobic exercise on acute cardiovascular function may be modulated by the dose and type of exercise. Acutely, dose is the product of exercise intensity and time, while the exercise type may refer to common aerobic modalities like cycling, running, swimming or rowing. Each modality is unique for their medium of completion as well as the implications on blood flow arising from the position of active muscle mass relative to heart level. The purpose of this review was to address how an acute exercise dose influences cardiovascular function between prominent aerobic exercise modalities in healthy individuals. Across all modalities, all doses may transiently reduce both left and right ventricular systolic and diastolic function as well as both macro and micro -vascular function. However, accurately quantifying and comparing exercise dose across the literature is challenging due to methodological differences in exercise prescription and the cardiovascular demands imposed by differing modalities of exercise. Further, potential confounding influence of cardiovascular drift alongside variation in age, the composition of cohorts with respect to biological sex and timing of cardiovascular measures further complicates interpretation. Future work should focus on exercise intensity prescription according to modality specific physiological thresholds in order to provide a comparable dose. This approach may serve to standardize the physiological stimulus and allow for objective assessments to be compared with confidence.
Collapse
Affiliation(s)
- Robert F Bentley
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada.
| | - Nino Nikolovski
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Jack M Goodman
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Astorino TA, Pierce S, Piva MB, Metcalfe RS, Vollaard NB. Physiological and perceptual responses to sprint interval exercise using arm versus leg cycling ergometry. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:385-393. [PMID: 39309456 PMCID: PMC11411376 DOI: 10.1016/j.smhs.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/17/2023] [Accepted: 01/26/2024] [Indexed: 09/25/2024] Open
Abstract
Increases in power output and maximal oxygen consumption (V ˙ O 2 max) occur in response to sprint interval exercise (SIE), but common use of "all-out" intensities presents a barrier for many adults. Furthermore, lower-body SIE is not feasible for all adults. We compared physiological and perceptual responses to supramaximal, but "non-all-out" SIE between leg and arm cycling exercise. Twenty-four active adults (mean ± SD age: [25 ± 7] y; cyclingV ˙ O 2 max: [39 ± 7] mL·kg-1·min-1) performed incremental exercise using leg (LCE) and arm cycle ergometry (ACE) to determineV ˙ O 2 max and maximal work capacity (Wmax). Subsequently, they performed four 20 s bouts of SIE at 130% Wmax on the LCE or ACE at cadence = 120-130 rev/min, with 2 min recovery between intervals. Gas exchange data, heart rate (HR), blood lactate concentration (BLa), rating of perceived exertion (RPE), and affective valence were acquired. Data showed significantly lower (p < 0.001) absolute mean ([1.24 ± 0.31] L·min-1 vs. [1.59 ± 0.34] L·min-1; d = 1.08) and peakV ˙ O 2 ([1.79 ± 0.48] L·min-1 vs. [2.10 ± 0.44] L·min-1; d = 0.70) with ACE versus LCE. However, ACE elicited significantly higher (p < 0.001) relative mean ([62% ± 9%]V ˙ O 2 max vs. [57% ± 7%]V ˙ O 2 max, d = 0.63) and peakV ˙ O 2 ([88% ± 10%]V ˙ O 2 max vs. [75% ± 10%]V ˙ O 2 max, d = 1.33). Post-exercise BLa was significantly higher ([7.0 ± 1.7] mM vs. [5.7 ± 1.5] mM, p = 0.024, d = 0.83) for LCE versus ACE. There was no significant effect of modality on RPE or affective valence (p > 0.42), and lowest affective valence recorded (2.0 ± 1.8) was considered "good to fairly good". Data show that non "all-out" ACE elicits lower absolute but higher relative HR andV ˙ O 2 compared to LCE. Less aversive perceptual responses could make this non-all-out modality feasible for inactive adults.
Collapse
Affiliation(s)
| | - Shealin Pierce
- Department of Kinesiology, CSU—San Marcos, San Marcos, CA, USA
| | - Madisen B. Piva
- Department of Kinesiology, CSU—San Marcos, San Marcos, CA, USA
| | - Richard S. Metcalfe
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Center, Swansea University, Swansea, UK
| | | |
Collapse
|
3
|
Wu Z, Heffernan KS. Central blood pressure and peripheral augmentation index following acute submaximal arm versus leg exercise. Eur J Appl Physiol 2024; 124:3729-3739. [PMID: 39133269 DOI: 10.1007/s00421-024-05573-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Aerobic exercises like running and cycling may lower cardiovascular disease (CVD) risk through favorable effects on central blood pressure and vascular function. Arm ergometry is a popular exercise modality used in rehabilitation settings, but little is known regarding the central hemodynamic and vascular effects of this form of exercise. PURPOSE To compare the acute effects of leg versus arm exercise on central blood pressure and vascular function. METHODS Twenty-one participants (n = 11 female, Age 21 ± 3, BMI 24.5 ± 3.2 kg/m2) completed two visits to the Human Performance Laboratory. Central systolic blood pressure (cSBP), central diastolic blood pressure (cDBP), and peripheral augmentation index (pAIx) were measured using a brachial oscillometric blood pressure cuff with measures being taken before and after 20 min of acute moderate-intensity (submaximal) arm or leg cycling exercise. RESULTS There was a condition-by-time interaction for pAIx (p = 0.011). pAIx slightly increased following arm exercise but significantly decreased following leg exercise. There was a condition-by-time interaction for cDBP (p = 0.011). cDBP significantly decreased following arm exercise but increased immediately following leg exercise. There was no condition-by-time interaction for cSBP (p = 0.721). There were similar acute increases in cSBP immediately post-exercise for both conditions. CONCLUSION Arm exercise increased pAlx and decreased cDBP compared to leg exercise. As an increase in pAIx may increase left ventricular work and a reduction in cDBP may reduce coronary perfusion pressure, these findings suggest that a single bout of arm exercise may not have the same favorable acute effect on central hemodynamic load as a single bout of leg exercise.
Collapse
Affiliation(s)
- Zeyi Wu
- Department of Exercise Science, David B. Falk College of Sport and Human Dynamics, Syracuse University, Syracuse, NY, USA
| | - Kevin S Heffernan
- Department of Biobehavioral Sciences, Movement Science & Applied Physiology, Teachers College, Columbia University, 525 W 120th St, Building 528, New York, NY, USA.
| |
Collapse
|
4
|
Santos PMC, Oliveira ACS, Vieira LR, Gomes IC, Polese JC, de Lacerda LT, Rezende BA, Soares DD, Rodrigues-Machado MG. Differential contribution of elbow flexion and knee extension on vascular and hemodynamic parameters and arterial stiffness indices after acute strength exercise in young adults. BMC Sports Sci Med Rehabil 2024; 16:193. [PMID: 39289719 PMCID: PMC11406758 DOI: 10.1186/s13102-024-00977-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Different types of exercise, performed acutely or chronically, have different repercussions on central hemodynamics, arterial stiffness, and cardiac function. In this study, we aim to compare the effects of acute elbow flexion (EFlex) and knee extension (KExt) exercises on vascular and hemodynamic parameters and arterial stiffness indices in healthy young adults. METHODS Young adults (20 to 39 years) underwent randomized muscle strength tests to obtain 1 repetition maximum (1RM) for elbow flexion (EFlex) and knee extension (KExt). After a minimum interval of 48 h, cardiovascular parameters were assessed using Mobil-O-Graph® (Mobil-O-Graph, IEM, Germany) at three-time points: at baseline (before exercise), immediately after elbow flexion or knee extension exercises with a load corresponding to 50% of 1RM (T0) and after 15 min of rest (T15). RESULTS Immediately after exercise (T0), peripheral systolic blood pressure, peripheral pulse pressure, central systolic blood pressure, and central pulse pressure were significantly higher in KExt than EFlex (Δ 3.13; Δ 3.06; Δ 5.65; Δ 5.61 mmHg, respectively). Systolic volume, cardiac output, and cardiac index were significantly higher immediately after KExt when compared with EFlex (Δ 4.2 ml; Δ 0.27 ml/min and 0.14 l/min*1/m2, respectively). The reflection coefficient and the pulse wave velocity were also significantly higher at T0 in KExt compared to EFlex ( Δ 8.59 and Δ 0.12 m/sec, respectively). CONCLUSION Our results show differential contribution of muscle mass in vascular and hemodynamic parameters evaluated immediately after EFlex and KExt. In addition, our study showed for the first time that the reflection coefficient, an index that evaluates the magnitude of the reflected waves from the periphery, was only affected by KExt.
Collapse
Affiliation(s)
| | | | - Leonardo Ribeiro Vieira
- Programa de Pós-Graduação em Ciências da Saúde - Faculdade Ciências Médicas- MG, Belo Horizonte, MG, Brazil
| | | | | | | | - Bruno Almeida Rezende
- Programa de Pós-Graduação em Ciências da Saúde - Faculdade Ciências Médicas- MG, Belo Horizonte, MG, Brazil
| | | | | |
Collapse
|
5
|
Heidelbach MJ, Cysarz D, Edelhäuser F. Typical everyday movements cause specific patterns in heart rate. Front Physiol 2024; 15:1379739. [PMID: 39129753 PMCID: PMC11310120 DOI: 10.3389/fphys.2024.1379739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Physical inactivity and sedentary behaviour are important risk factors for cardiovascular disease. Knowledge about the impact of everyday movements on cardiac autonomic regulation is sparse. This study aims to provide evidence that typical everyday movements show a clear impact on heart rate regulation. 40 healthy participants performed two everyday movements: (1) calmly kneeling down ("tie one's shoes") and standing up again and (2) raising the arms to the horizontal ("expressive yawning"). Both movements elicited reproducible pattern in the sequence of heart periods. Local minima and local maxima appeared in the transient period of approx. 30 s. The regulatory response for ergometer cycling, which was used as control, did not show a pattern formation. Calmly performed everyday movements are able to elicit rich cardiac regulatory responses including specific patterns in heart rate. These newly described patterns have multiple implications for clinical and rehabilitative medicine, basic research, digital health data processing, and public health. If carried out regularly these regulatory responses may help to mitigate the burden of physical inactivity and enrich cardiovascular regulation.
Collapse
Affiliation(s)
- Max J. Heidelbach
- Integrated Curriculum for Anthroposophic Medicine, University of Witten/Herdecke, Witten, Germany
| | | | | |
Collapse
|
6
|
Ando S, Ishioka Y, Kambayashi S, Kano K, Fujibayashi M, Costello JT, Sudo M. Combined effects of electrical muscle stimulation and cycling exercise on cognitive performance. Front Physiol 2024; 15:1408963. [PMID: 38827991 PMCID: PMC11140777 DOI: 10.3389/fphys.2024.1408963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
The purpose of this study was to investigate whether a combination of electrical muscle stimulation (EMS) and cycling exercise is beneficial for improving cognitive performance. Eighteen participants (7 females and 11 males) performed a Go/No-Go task before and 2 min after i) cycling exercise (EX), ii) a combination of EMS and cycling (EMS + EX) and iii) a control (rest) intervention in a randomized controlled crossover design. In the EX intervention, the participants cycled an ergometer for 20 min with their heart rate maintained at ∼120 beats·min-1. In the EMS + EX intervention, the participants cycled an ergometer simultaneously with EMS for 20 min, with heart rate maintained at ∼120 beats·min-1. In the Control intervention, the participants remained at rest while seated on the ergometer. Cognitive performance was assessed by reaction time (RT) and accuracy. There was a significant interaction between intervention and time (p = 0.007). RT was reduced in the EX intervention (p = 0.054, matched rank biserial correlation coefficient = 0.520). In the EMS + EX intervention, RT was not altered (p = 0.243, Cohen's d = 0.285) despite no differences in heart rate between the EX and EMS + EX interventions (p = 0.551). RT was increased in the Control intervention (p = 0.038, Cohen's d = -0.529). These results indicate that combining EMS and cycling does not alter cognitive performance despite elevated heart rate, equivalent to a moderate intensity. The present findings suggest that brain activity during EMS with cycling exercise may be insufficient to improve cognitive performance when compared to exercise alone.
Collapse
Affiliation(s)
- Soichi Ando
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, Japan
| | - Yuka Ishioka
- Faculty of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, Japan
| | - Sari Kambayashi
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, Japan
| | - Kosuke Kano
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, Japan
| | | | - Joseph T. Costello
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Mizuki Sudo
- Physical Fitness Research Institute, Meiji Yasuda Life Foundation of Health and Welfare, Shinjuku, Tokyo, Japan
| |
Collapse
|
7
|
Esen O, Fox J, Karayigit R, Walshe I. Acute Beetroot Juice Supplementation Has No Effect on Upper- and Lower-Body Maximal Isokinetic Strength and Muscular Endurance in International-Level Male Gymnasts. Int J Sport Nutr Exerc Metab 2024; 34:164-171. [PMID: 38237581 DOI: 10.1123/ijsnem.2023-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 04/14/2024]
Abstract
Nitrate (NO3-) has properties that can improve muscle function, leading to improvements in metabolic cost of exercise as well as enhance force production. Gymnastics is a whole-body sport, involving events that demand a high level of strength and fatigue resistance. However, the effect of NO3- supplementation on both upper- and lower-body function in gymnasts is unknown. This study examined the effect of acute beetroot juice (BRJ) supplementation on isokinetic strength and endurance of the upper- and lower-body in highly trained international-level male gymnasts. In a double-blind, randomized crossover design, 10 international-level male gymnasts completed two acute supplementation periods, consuming either 2 × 70 ml NO3--rich (∼12.8 mmol/L of NO3-) or NO3--depleted (PLA) BRJ. Maximal strength of the upper-leg and upper-arm at 60°/s, 120°/s, 180°/s, and 300°/s, and muscular endurance (50 repeated isokinetic contractions at 180°/s) were assessed. Plasma NO3- (BRJ: 663 ± 164 μM, PLA: 89 ± 48 μM) and nitrite (NO2-) concentrations (BRJ: 410 ± 137 nmol/L, PLA: 125 ± 36 nmol/L) were elevated following BRJ compared to PLA (both p < .001). Maximal strength of knee and elbow extensors and flexors did not differ between supplements (p > .05 for all velocities). Similarly, fatigue index of knee and elbow extension and flexion was not different between supplements (all p > .05). Acute BRJ supplementation, containing ∼12.8 mmol/L of NO3-, increased plasma NO3- and NO2- concentrations, but did not enhance isokinetic strength or fatigue resistance of either upper or lower extremities in international-level male gymnasts.
Collapse
Affiliation(s)
- Ozcan Esen
- Department of Sport and Exercise Rehabilitation, Northumbria University, Newcastle Upon Tyne, United Kingdom
- Department of Health Professions, Manchester Metropolitan University, Manchester, United Kingdom
| | - Joseph Fox
- Department of Health Professions, Manchester Metropolitan University, Manchester, United Kingdom
| | - Raci Karayigit
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Turkey
| | - Ian Walshe
- Department of Sport and Exercise Rehabilitation, Northumbria University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
8
|
Mckee JR, Girard O, Peiffer JJ, Scott BR. Manipulating Internal and External Loads During Repeated Cycling Sprints: A Comparison of Continuous and Intermittent Blood Flow Restriction. J Strength Cond Res 2024; 38:47-54. [PMID: 37889856 DOI: 10.1519/jsc.0000000000004594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
ABSTRACT Mckee, JR, Girard, O, Peiffer, JJ, and Scott, BR. Manipulating internal and external loads during repeated cycling sprints: A comparison of continuous and intermittent blood flow restriction. J Strength Cond Res 38(1): 47-54, 2024-This study examined the impact of blood flow restriction (BFR) application method (continuous vs. intermittent) during repeated-sprint exercise (RSE) on performance, physiological, and perceptual responses. Twelve adult male semi-professional Australian football players completed 4 RSE sessions (3 × [5 × 5-second maximal sprints:25-second passive recovery], 3-minute rest between the sets) with BFR applied continuously (C-BFR; excluding interset rest periods), intermittently during only sprints (I-BFR WORK ), or intraset rest periods (I-BFR REST ) or not at all (Non-BFR). An alpha level of p < 0.05 was used to determine significance. Mean power output was greater for Non-BFR ( p < 0.001, dz = 1.58 ), I-BFR WORK ( p = 0.002, dz = 0.63 ), and I-BFR REST ( p = 0.003, dz = 0.69 ) than for C-BFR and for Non-BFR ( p = 0.043, dz = 0.55 ) compared with I-BFR REST . Blood lactate concentration ( p = 0.166) did not differ between the conditions. Mean oxygen consumption was higher during Non-BFR ( p < 0.001, dz = 1.29 and 2.31; respectively) and I-BFR WORK ( p < 0.001, dz = 0.74 and 1.63; respectively) than during I-BFR REST and C-BFR and for I-BFR REST ( p = 0.002, dz = 0.57) compared with C-BFR. Ratings of perceived exertion were greater for I-BFR REST ( p = 0.042, dz = 0.51) and C-BFR ( p = 0.011, dz = 0.90) than for Non-BFR and during C-BFR ( p = 0.023, dz = 0.54) compared with I-BFR WORK . Applying C-BFR or I-BFR REST reduced mechanical output and cardiorespiratory demands of RSE and were perceived as more difficult. Practitioners should be aware that BFR application method influences internal and external demands during RSE.
Collapse
Affiliation(s)
- James R Mckee
- Murdoch Applied Sports Science Laboratory, Discipline of Exercise Science, Murdoch University, Perth, Australia
- Centre for Healthy Ageing, Murdoch University, Perth, Australia; and
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia
| | - Jeremiah J Peiffer
- Murdoch Applied Sports Science Laboratory, Discipline of Exercise Science, Murdoch University, Perth, Australia
- Centre for Healthy Ageing, Murdoch University, Perth, Australia; and
| | - Brendan R Scott
- Murdoch Applied Sports Science Laboratory, Discipline of Exercise Science, Murdoch University, Perth, Australia
- Centre for Healthy Ageing, Murdoch University, Perth, Australia; and
| |
Collapse
|
9
|
Chua MT, Sim A, Burns SF. Acute and Chronic Effects of Blood Flow Restricted High-Intensity Interval Training: A Systematic Review. SPORTS MEDICINE - OPEN 2022; 8:122. [PMID: 36178530 PMCID: PMC9525532 DOI: 10.1186/s40798-022-00506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/06/2022] [Indexed: 11/18/2022]
Abstract
Background The implementation of blood flow restriction (BFR) during exercise is becoming an increasingly useful adjunct method in both athletic and rehabilitative settings. Advantages in pairing BFR with training can be observed in two scenarios: (1) training at lower absolute intensities (e.g. walking) elicits adaptations akin to high-intensity sessions (e.g. running intervals); (2) when performing exercise at moderate to high intensities, higher physiological stimulus may be attained, leading to larger improvements in aerobic, anaerobic, and muscular parameters. The former has been well documented in recent systematic reviews, but consensus on BFR (concomitant or post-exercise) combined with high-intensity interval training (HIIT) protocols is not well established. Therefore, this systematic review evaluates the acute and chronic effects of BFR + HIIT. Methods The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to identify relevant studies. A systematic search on 1 February 2022, was conducted on four key databases: ScienceDirect, PubMed, Scopus and SPORTDiscus. Quality of each individual study was assessed using the Physiotherapy Evidence Database (PEDro) scale. Extraction of data from included studies was conducted using an adapted version of the 'Population, Intervention, Comparison, Outcome' (PICO) framework. Results A total of 208 articles were identified, 18 of which met inclusion criteria. Of the 18 BFR + HIIT studies (244 subjects), 1 reported both acute and chronic effects, 5 examined acute responses and 12 investigated chronic effects. Acutely, BFR challenges the metabolic processes (vascular and oxygenation responses) during high-intensity repeated sprint exercise—which accelerates central and peripheral neuromuscular fatigue mechanisms resulting in performance impairments. Analysis of the literature exploring the chronic effects of BFR + HIIT suggests that BFR does provide an additive physiological training stimulus to HIIT protocols, especially for measured aerobic, muscular, and, to some extent, anaerobic parameters. Conclusion Presently, it appears that the addition of BFR into HIIT enhances physiological improvements in aerobic, muscular, and, to some extent, anaerobic performance. However due to large variability in permutations of BFR + HIIT methodologies, it is necessary for future research to explore and recommend standardised BFR guidelines for each HIIT exercise type.
Collapse
|
10
|
Price M, Bottoms L, Hill M, Eston R. Maximal Fat Oxidation during Incremental Upper and Lower Body Exercise in Healthy Young Males. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15311. [PMID: 36430032 PMCID: PMC9691189 DOI: 10.3390/ijerph192215311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study is to determine the magnitude of maximal fat oxidation (MFO) during incremental upper and lower body exercise. Thirteen non-specifically trained male participants (19.3 ± 0.5 y, 78.1 ± 9.1 kg body mass) volunteered for this repeated-measures study, which had received university ethics committee approval. Participants undertook two incremental arm crank (ACE) and cycle ergometry (CE) exercise tests to volitional exhaustion. The first test for each mode served as habituation. The second test was an individualised protocol, beginning at 40% of the peak power output (POpeak) achieved in the first test, with increases of 10% POpeak until volitional exhaustion. Expired gases were recorded at the end of each incremental stage, from which fat and carbohydrate oxidation rates were calculated. MFO was taken as the greatest fat oxidation value during incremental exercise and expressed relative to peak oxygen uptake (%V˙O2peak). MFO was lower during ACE (0.44 ± 0.24 g·min-1) than CE (0.77 ± 0.31 g·min-1; respectively, p < 0.01) and occurred at a lower exercise intensity (53 ± 21 vs. 67 ± 18%V˙O2peak; respectively, p < 0.01). Inter-participant variability for MFO was greatest during ACE. These results suggest that weight loss programs involving the upper body should occur at lower exercise intensities than for the lower body.
Collapse
Affiliation(s)
- Mike Price
- Centre for Sport, Exercise and Life Sciences, School of Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Lindsay Bottoms
- Department of Psychology, Sport and Geography, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Matthew Hill
- Centre for Sport, Exercise and Life Sciences, School of Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Roger Eston
- Alliance for Research in Exercise, Nutrition and Activity, Campus Central—City East, University of South Australia, GPO Box 2471, Adelaide 5001, Australia
| |
Collapse
|
11
|
Colosio M, Rasica L, Baldassarre G, Temesi J, Vernillo G, Marzorati M, Porcelli S. Performance fatigability and recovery after dynamic multi-joint maximal exercise in elbow flexors versus knee extensors. Am J Physiol Regul Integr Comp Physiol 2022; 323:R300-R309. [PMID: 35759521 DOI: 10.1152/ajpregu.00173.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elbow flexors (EF) and knee extensors (KE) have shown differences in performance fatigability and recovery of neuromuscular function after isometric and isotonic single-joint fatiguing contractions. However, dynamic multi-joint movements are more representative of real-world activities. The aim of the study was to assess central and peripheral mechanisms of fatigability after either arm-cranking or cycling. Ten physically-active men performed maximal incremental arm-cranking and cycling until task-failure. Maximal voluntary isometric contraction (MVIC) and electrically-evoked forces of both EF and KE were assessed before (PRE) and 1 (POST) and 20 (POST20) min after exercise. At POST, MVIC decreased similarly to 76 ± 8% and 81 ± 7% (both P < 0.001) of PRE for EF and KE, respectively. MVIC force remained lower than PRE at POST20 for both EF and KE (85 ± 8% vs. 95 ± 3% of PRE, P ≤ 0.033), having recovered less in EF than KE (P = 0.003). Electrically-evoked forces decreased similarly from PRE to POST in EF and KE (all P > 0.05). At POST20, the ratio of low-to-high frequency doublets was lowerin EF than KE (75 ± 13% vs. 85 ± 10% of PRE; P ≤ 0.034). Dynamic maximal incremental exercise acutely induced similar magnitudes of MVIC and evoked forces loss in EF and KE. However, at POST20, impaired MVIC recovery and lower ratio of low-to-high frequency doublets in EF compared to KE suggests the recovery of neuromuscular function after dynamic maximal exercises is specific to and dependent on changes within the muscles investigated.
Collapse
Affiliation(s)
| | - Letizia Rasica
- Faculty of Kinesiology, grid.22072.35University of Calgary, Calgary, Canada
| | - Giovanni Baldassarre
- Department of Medicine, grid.5390.fUniversità degli Studi di Milano, Udine, Udine, Italy
| | - John Temesi
- Faculty of Health and Life Sciences, grid.42629.3bNorthumbria University, Newcastle upon Tyne, United Kingdom
| | | | - Mauro Marzorati
- Institue of Biomedical Technologies, grid.5326.2National Research Council, Segrate, Milano, Italy
| | - Simone Porcelli
- Department of Molecular Medicine, grid.8982.bUniversity of Pavia, Pavia, Italy
| |
Collapse
|
12
|
Antunes A, Domingos C, Diniz L, Monteiro CP, Espada MC, Alves FB, Reis JF. The Relationship between VO 2 and Muscle Deoxygenation Kinetics and Upper Body Repeated Sprint Performance in Trained Judokas and Healthy Individuals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020861. [PMID: 35055684 PMCID: PMC8776052 DOI: 10.3390/ijerph19020861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/10/2023]
Abstract
The present study sought to investigate if faster upper body oxygen uptake (VO2) and hemoglobin/myoglobin deoxygenation ([HHb]) kinetics during heavy intensity exercise were associated with a greater upper body repeated-sprint ability (RSA) performance in a group of judokas and in a group of individuals of heterogenous fitness level. Eight judokas (JT) and seven untrained healthy participants (UT) completed an incremental step test, two heavy intensity square-wave transitions and an upper body RSA test consisting of four 15 s sprints, with 45 s rest, from which the experimental data were obtained. In the JT group, VO2 kinetics, [HHb] kinetics and the parameters determined in the incremental test were not associated with RSA. However, when the two groups were combined, the amplitude of the primary phase VO2 and [HHb] were positively associated with the accumulated work in the four sprints (ΣWork). Additionally, maximal aerobic power (MAP), peak VO2 and the first ventilatory threshold (VT1) showed a positive correlation with ΣWork and an inverse correlation with the decrease in peak power output (Dec-PPO) between the first and fourth sprints. Faster VO2 and [HHb] kinetics do not seem to be associated with an increased upper body RSA in JT. However, other variables of aerobic fitness seem to be associated with an increased upper body RSA performance in a group of individuals with heterogeneous fitness level.
Collapse
Affiliation(s)
- André Antunes
- Laboratory of Physiology and Biochemistry of Exercise, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada-Dafundo, 1495-761 Lisboa, Portugal; (A.A.); (L.D.); (C.P.M.); (F.B.A.)
| | - Christophe Domingos
- Life Quality Research Centre, 2040-413 Rio Maior, Portugal; (C.D.); (M.C.E.)
| | - Luísa Diniz
- Laboratory of Physiology and Biochemistry of Exercise, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada-Dafundo, 1495-761 Lisboa, Portugal; (A.A.); (L.D.); (C.P.M.); (F.B.A.)
| | - Cristina P. Monteiro
- Laboratory of Physiology and Biochemistry of Exercise, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada-Dafundo, 1495-761 Lisboa, Portugal; (A.A.); (L.D.); (C.P.M.); (F.B.A.)
- Interdisciplinary Centre for Human Performance Research (CIPER), Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada-Dafundo, 1495-761 Lisboa, Portugal
| | - Mário C. Espada
- Life Quality Research Centre, 2040-413 Rio Maior, Portugal; (C.D.); (M.C.E.)
- Polytechnic Institute of Setúbal, School of Education, 2914-514 Setúbal, Portugal
| | - Francisco B. Alves
- Laboratory of Physiology and Biochemistry of Exercise, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada-Dafundo, 1495-761 Lisboa, Portugal; (A.A.); (L.D.); (C.P.M.); (F.B.A.)
- Interdisciplinary Centre for Human Performance Research (CIPER), Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada-Dafundo, 1495-761 Lisboa, Portugal
| | - Joana F. Reis
- Laboratory of Physiology and Biochemistry of Exercise, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada-Dafundo, 1495-761 Lisboa, Portugal; (A.A.); (L.D.); (C.P.M.); (F.B.A.)
- Interdisciplinary Centre for Human Performance Research (CIPER), Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada-Dafundo, 1495-761 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
13
|
Shi P, Li A, Wu L, Yu H. The effect of passive lower limb training on heart rate asymmetry. Physiol Meas 2021; 43. [PMID: 34915452 DOI: 10.1088/1361-6579/ac43c1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/16/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Heart rate asymmetry (HRA) is an approach for quantitatively assessing the uneven distribution of heart rate accelerations and decelerations for sinus rhythm. We aimed to investigate whether automatic regulation led to HRA alternation during passive lower limb training. METHODS Thirty healthy participants were recruited in this study. The protocol included a baseline (Pre-E) and three passive lower limb training trials (E1, E2 and E3) with a randomized order. Several variance-based HRA variables were established. Heart rate variability (HRV) parameters, i.e., mean RR, SDNN, RMSSD, LF (n.u.), HF (n.u.) and VLF (ms2), and HRA variables, i.e., SD1a, SD1d, SD2a, SD2d, SDNNa and SDNNd, were calculated by using 5-min RR time series, as well as the normalized HRA variables, i.e., C1a, C1d, C2a, C2d, Ca and Cd. RESULTS Our results showed that the performance of HRA was distinguished. The normalized HRA was observed with significant changes in E1, E2 and E3 compared to Pre -E. Moreover, parts of non-normalized HRA variables correlated with HRV parameters, which indicated that HRA might benefit in assessing cardiovascular modulation in passive lower limb training. CONCLUSIONS In summary, this study suggested that passive training led to significant HRA alternation and the application of HRA gave us the possibility for autonomic assessment.
Collapse
Affiliation(s)
- Ping Shi
- nstitute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, 580 Jungong Road, Yangpu District, Shanghai, China, shanghai, Shanghai, 200093, CHINA
| | - Anan Li
- nstitute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, no.580 Jungong road, Yangpu district, Shanghai, China, Shanghai, Shanghai, 200093, CHINA
| | - Liang Wu
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, 580 Jungong Road, Yangpu District, Shanghai, China, Shanghai, 200093, CHINA
| | - Hongliu Yu
- nstitute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, 580 Jungong Road, Yangpu District, Shanghai, China, Shanghai, Shanghai, 200093, CHINA
| |
Collapse
|
14
|
Valtonen RIP, Hintsala HHE, Kiviniemi A, Kenttä T, Crandall C, van Marken Lichtenbelt W, Perkiömäki J, Hautala A, Jaakkola JJK, Ikäheimo TM. Cardiovascular responses to dynamic and static upper-body exercise in a cold environment in coronary artery disease patients. Eur J Appl Physiol 2021; 122:223-232. [PMID: 34655331 PMCID: PMC8748357 DOI: 10.1007/s00421-021-04826-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022]
Abstract
Purpose Upper-body exercise performed in a cold environment may increase cardiovascular strain, which could be detrimental to patients with coronary artery disease (CAD). This study compared cardiovascular responses of CAD patients during graded upper-body dynamic and static exercise in cold and neutral environments. Methods 20 patients with stable CAD performed 30 min of progressive dynamic (light, moderate, and heavy rating of perceived exertion) and static (10, 15, 20, 25 and 30% of maximal voluntary contraction) upper body exercise in cold (− 15 °C) and neutral (+ 22 °C) environments. Heart rate (HR), blood pressure (BP) and electrocardiographic (ECG) responses were recorded and rate pressure product (RPP) calculated. Results Dynamic-graded upper-body exercise in the cold increased HR by 2.3–4.8% (p = 0.002–0.040), MAP by 3.9–5.9% (p = 0.038–0.454) and RPP by 18.1–24.4% (p = 0.002–0.020) when compared to the neutral environment. Static graded upper-body exercise in the cold resulted in higher MAP (6.3–9.1%; p = 0.000–0.014), lower HR (4.1–7.2%; p = 0.009–0.033), but unaltered RPP compared to a neutral environment. Heavy dynamic exercise resulted in ST depression that was not related to temperature. Otherwise, ECG was largely unaltered during exercise in either thermal condition. Conclusions Dynamic- and static-graded upper-body exercise in the cold involves higher cardiovascular strain compared with a neutral environment among patients with stable CAD. However, no marked changes in electric cardiac function were observed. The results support the use of upper-body exercise in the cold in patients with stable CAD. Trial registration Clinical trial registration NCT02855905 August 2016.
Collapse
Affiliation(s)
- Rasmus I P Valtonen
- Center for Environmental and Respiratory Health Research (CERH), University of Oulu, 5000, 90014, Oulu, Finland.,Medical Research Center, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Heidi H E Hintsala
- Center for Environmental and Respiratory Health Research (CERH), University of Oulu, 5000, 90014, Oulu, Finland.,Centria University of Applied Sciences, Kokkola, Finland
| | - Antti Kiviniemi
- Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Tuomas Kenttä
- Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Craig Crandall
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, USA
| | - Wouter van Marken Lichtenbelt
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Juha Perkiömäki
- Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Arto Hautala
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jouni J K Jaakkola
- Center for Environmental and Respiratory Health Research (CERH), University of Oulu, 5000, 90014, Oulu, Finland.,Medical Research Center, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Tiina M Ikäheimo
- Center for Environmental and Respiratory Health Research (CERH), University of Oulu, 5000, 90014, Oulu, Finland. .,Medical Research Center, University of Oulu, Oulu University Hospital, Oulu, Finland. .,Department of Community Medicine, University of Tromsø, Tromsø, Norway.
| |
Collapse
|
15
|
Góis Leandro C, Arnaut Brinco R, Góes Nobre G, Góes Nobre I, Silva-Santiago LC, Aires-Dos-Santos BR, Marinho-Dos-Santos R, Rodrigues-Ribeiro M, Marinho-Barros MR, Alves-Macedo F, Brito-Almeida M, Tchamo ME, Costa-Silva JH, Moura-Dos-Santos MA. Post-exercise hypotension effects in response to plyometric training of 7- to 9-year-old boys with overweight/obesity: a randomized controlled study. J Sports Med Phys Fitness 2021; 61:1281-1289. [PMID: 34610730 DOI: 10.23736/s0022-4707.20.11648-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Physical activity plays an important role on children with obesity. This study evaluated the effects of plyometric training on the anthropometry, body composition, and the blood pressure (BP) and heart rate (HR) of boys with obesity. METHODS Boys aged 7 to 9 years old were divided in: non-trained (N.=12) and trained (N.=29). The plyometric training program consisted of jumps on nonconsecutive days for twelve weeks. Anthropometry and body composition, BP and HR were evaluated. BP, HR and rate-pressure product were recorded at rest and 2 minutes after the section. Two-way repeated factors ANOVA was used. RESULTS Trained group had a reduction in skinfolds and an increase in free fat mass (within and between-groups) and a large effect size for most anthropometric and body composition variables. Late systolic response was reduced from 122±1.1 (immediately post-exercise at the first week) to 112±1.0 at the end of plyometric training period. Diastolic reduction was seen two minutes after each session of exercise (from 68±1.1 to 62±1.2). HR was reduced in response to plyometric training (108 bpm to 97 bpm). CONCLUSIONS Our findings strengthen previous studies that suggest that intense exercise has significant adaptive effects on BP and HR.
Collapse
Affiliation(s)
- Carol Góis Leandro
- Department of Nutrition, Federal University of Pernambuco, Recife, Brazil -
| | | | - Gabriela Góes Nobre
- Department of Physical Education and Sports Science, Academic Center of Vitória (CAV), Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Isabele Góes Nobre
- Department of Physical Education and Sports Science, Academic Center of Vitória (CAV), Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | | | - Bruno R Aires-Dos-Santos
- Department of Physical Education and Sports Science, Academic Center of Vitória (CAV), Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Ravi Marinho-Dos-Santos
- Department of Physical Education and Sports Science, Academic Center of Vitória (CAV), Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Marcílio Rodrigues-Ribeiro
- Department of Physical Education and Sports Science, Academic Center of Vitória (CAV), Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Marcos R Marinho-Barros
- Department of Physical Education and Sports Science, Academic Center of Vitória (CAV), Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Fernanda Alves-Macedo
- Department of Nursing, Academic Center of Vitória (CAV), Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Marcelus Brito-Almeida
- Department of Physical Education and Sports Science, Academic Center of Vitória (CAV), Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Mário E Tchamo
- Department of Physical Education, Pedagogical University of Maputo, Maputo, Mozambique
| | - João H Costa-Silva
- Department of Physical Education and Sports Science, Academic Center of Vitória (CAV), Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | | |
Collapse
|
16
|
Differences in Blood Pressure and Workload Intensity During Arm and Leg Ergometry at Submaximal Target Heart Rates in College-Aged Individuals. Cardiopulm Phys Ther J 2021. [DOI: 10.1097/cpt.0000000000000181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Huang YC, Cheng ML, Tang HY, Huang CY, Chen KM, Wang JS. Eccentric Cycling Training Improves Erythrocyte Antioxidant and Oxygen Releasing Capacity Associated with Enhanced Anaerobic Glycolysis and Intracellular Acidosis. Antioxidants (Basel) 2021; 10:antiox10020285. [PMID: 33668606 PMCID: PMC7918820 DOI: 10.3390/antiox10020285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/20/2022] Open
Abstract
The antioxidant capacity of erythrocytes protects individuals against the harmful effects of oxidative stress. Despite improved hemodynamic efficiency, the effect of eccentric cycling training (ECT) on erythrocyte antioxidative capacity remains unclear. This study investigates how ECT affects erythrocyte antioxidative capacity and metabolism in sedentary males. Thirty-six sedentary healthy males were randomly assigned to either concentric cycling training (CCT, n = 12) or ECT (n = 12) at 60% of the maximal workload for 30 min/day, 5 days/week for 6 weeks or to a control group (n = 12) that did not receive an exercise intervention. A graded exercise test (GXT) was performed before and after the intervention. Erythrocyte metabolic characteristics and O2 release capacity were determined by UPLC-MS and high-resolution respirometry, respectively. An acute GXT depleted Glutathione (GSH), accumulated Glutathione disulfide (GSSG), and elevated the GSSG/GSH ratio, whereas both CCT and ECT attenuated the extent of the elevated GSSG/GSH ratio caused by a GXT. Moreover, the two exercise regimens upregulated glycolysis and increased glucose consumption and lactate production, leading to intracellular acidosis and facilitation of O2 release from erythrocytes. Both CCT and ECT enhance antioxidative capacity against severe exercise-evoked circulatory oxidative stress. Moreover, the two exercise regimens activate erythrocyte glycolysis, resulting in lowered intracellular pH and enhanced O2 released from erythrocytes.
Collapse
Affiliation(s)
- Yu-Chieh Huang
- Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung 413, Taiwan;
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; (M.-L.C.); (H.-Y.T.)
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hsiang-Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; (M.-L.C.); (H.-Y.T.)
| | - Chi-Yao Huang
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Medical Collage, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.H.); (K.-M.C.)
| | - Kuan-Ming Chen
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Medical Collage, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.H.); (K.-M.C.)
| | - Jong-Shyan Wang
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Medical Collage, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.H.); (K.-M.C.)
- Heart Failure Center, Department of Physical Medicine and Rehabilitation, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-2118800 (ext. 5748); Fax: +886+886-3-2118700
| |
Collapse
|
18
|
Cardiorespiratory, Metabolic and Perceived Responses to Electrical Stimulation of Upper-Body Muscles While Performing Arm Cycling. J Hum Kinet 2021; 77:117-123. [PMID: 34168697 PMCID: PMC8008305 DOI: 10.2478/hukin-2021-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study was designed to assess systemic cardio-respiratory, metabolic and perceived responses to incremental arm cycling with concurrent electrical myostimulation (EMS). Eleven participants (24 ± 3 yrs; 182 ± 10 cm; 86 ± 16.8 kg) performed two incremental tests involving arm cycling until volitional exhaustion was reached with and without EMS of upper-body muscles. The peak power output was 10.1% lower during arm cycling with (128 ± 30 W) than without EMS (141 ± 25 W, p = 0.01; d = 0.47). In addition, the heart rate (2-9%), oxygen uptake (7-15%), blood lactate concentration (8-46%) and ratings of perceived exertion (4-14%) while performing submaximal arm cycling with EMS were all higher with than without EMS (all p < 0.05). Upon exhaustion, the heart rate, oxygen uptake, lactate concentration, and ratings of perceived exertion did not differ between the two conditions (all p > 0.05). In conclusion, arm cycling with EMS induced more pronounced cardio-respiratory, metabolic and perceived responses, especially during submaximal arm cycling. This form of exercise with stimulation might be beneficial for a variety of athletes competing in sports involving considerable generation of work by the upper body (e.g., kayaking, cross-country skiing, swimming, rowing and various parasports).
Collapse
|
19
|
Richard NA, Hodges L, Koehle MS. Elevated peak systolic blood pressure in endurance-trained athletes: Physiology or pathology? Scand J Med Sci Sports 2021; 31:956-966. [PMID: 33382462 DOI: 10.1111/sms.13914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/17/2020] [Accepted: 12/27/2020] [Indexed: 01/21/2023]
Abstract
Blood pressure is a function of cardiac output and peripheral vascular resistance. During graded exercise testing (GXT), systolic blood pressure (SBP) is expected to increase gradually along with work rate, oxygen consumption, heart rate, and cardiac output. Individuals exposed to chronic endurance training attain a greater exercise SBP than in their untrained state and sedentary counterparts, but it is currently unknown what is considered a safe upper limit. This review discusses key studies examining blood pressure response in sedentary individuals and athletes. We highlight the physiological characteristics of highly fit individuals in terms of cardiovascular physiology and exercise blood pressure and review the state of the current literature regarding the safety of high SBP during exercise in this particular subgroup. Findings from this review indicate that a consensus on what is a normal SBP response to exercise in highly fit subjects and direct causation linking high GXT SBP to pathology is lacking. Consequently, applying GXT SBP guidelines developed for a "normal" population to endurance-trained individuals appears unsupported at this time. Lack of evidence for poor outcomes leads us to infer that elevated peak SBP in this subgroup could more likely reflect an adaptive response to training, rather than a pathological outcome. Future studies should track clinical outcomes of those achieving elevated SBP and develop athlete-specific guidelines.
Collapse
Affiliation(s)
| | - Lynette Hodges
- School of Sport, Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| | - Michael S Koehle
- School of Kinesiology, University of British Columbia, Vancouver, Canada.,Division of Sports Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
20
|
Stephenson BT, Stone B, Mason BS, Goosey‐Tolfrey VL. Physiology of handcycling: A current sports perspective. Scand J Med Sci Sports 2020; 31:4-20. [DOI: 10.1111/sms.13835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/28/2020] [Accepted: 09/15/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Ben T. Stephenson
- Peter Harrison Centre for Disability Sport School of Sport, Exercise and Health Sciences Loughborough University Loughborough UK
- English Institute of Sport Performance Centre Loughborough University Loughborough UK
| | - Benjamin Stone
- Peter Harrison Centre for Disability Sport School of Sport, Exercise and Health Sciences Loughborough University Loughborough UK
| | - Barry S. Mason
- Peter Harrison Centre for Disability Sport School of Sport, Exercise and Health Sciences Loughborough University Loughborough UK
| | - Victoria L. Goosey‐Tolfrey
- Peter Harrison Centre for Disability Sport School of Sport, Exercise and Health Sciences Loughborough University Loughborough UK
| |
Collapse
|
21
|
Skattebo Ø, Calbet JAL, Rud B, Capelli C, Hallén J. Contribution of oxygen extraction fraction to maximal oxygen uptake in healthy young men. Acta Physiol (Oxf) 2020; 230:e13486. [PMID: 32365270 PMCID: PMC7540168 DOI: 10.1111/apha.13486] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022]
Abstract
We analysed the importance of systemic and peripheral arteriovenous O2 difference (
a-v¯O2 difference and a‐vfO2 difference, respectively) and O2 extraction fraction for maximal oxygen uptake (
V˙O2max). Fick law of diffusion and the Piiper and Scheid model were applied to investigate whether diffusion versus perfusion limitations vary with
V˙O2max. Articles (n = 17) publishing individual data (n = 154) on
V˙O2max, maximal cardiac output (
Q˙max; indicator‐dilution or the Fick method),
a-v¯O2 difference (catheters or the Fick equation) and systemic O2 extraction fraction were identified. For the peripheral responses, group‐mean data (articles: n = 27; subjects: n = 234) on leg blood flow (LBF; thermodilution), a‐vfO2 difference and O2 extraction fraction (arterial and femoral venous catheters) were obtained.
Q˙max and two‐LBF increased linearly by 4.9‐6.0 L · min–1 per 1 L · min–1 increase in
V˙O2max (R2 = .73 and R2 = .67, respectively; both P < .001). The
a-v¯O2 difference increased from 118‐168 mL · L–1 from a
V˙O2max of 2‐4.5 L · min–1 followed by a reduction (second‐order polynomial: R2 = .27). After accounting for a hypoxemia‐induced decrease in arterial O2 content with increasing
V˙O2max (R2 = .17; P < .001), systemic O2 extraction fraction increased up to ~90% (
V˙O2max: 4.5 L · min–1) with no further change (exponential decay model: R2 = .42). Likewise, leg O2 extraction fraction increased with
V˙O2max to approach a maximal value of ~90‐95% (R2 = .83). Muscle O2 diffusing capacity and the equilibration index Y increased linearly with
V˙O2max (R2 = .77 and R2 = .31, respectively; both P < .01), reflecting decreasing O2 diffusional limitations and accentuating O2 delivery limitations. In conclusion, although O2 delivery is the main limiting factor to
V˙O2max, enhanced O2 extraction fraction (≥90%) contributes to the remarkably high
V˙O2max in endurance‐trained individuals.
Collapse
Affiliation(s)
- Øyvind Skattebo
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
| | - Jose A. L. Calbet
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS) University of Las Palmas de Gran Canaria Gran Canaria Spain
| | - Bjarne Rud
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
| | - Carlo Capelli
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
- Department of Neurosciences, Biomedicine and Movement Sciences University of Verona Verona Italy
| | - Jostein Hallén
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
| |
Collapse
|
22
|
Larsen FJ, Schiffer TA, Zinner C, Willis SJ, Morales‐Alamo D, Calbet JA, Boushel R, Holmberg H. Mitochondrial oxygen affinity increases after sprint interval training and is related to the improvement in peak oxygen uptake. Acta Physiol (Oxf) 2020; 229:e13463. [PMID: 32144872 DOI: 10.1111/apha.13463] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 01/16/2023]
Abstract
AIMS The body responds to exercise training by profound adaptations throughout the cardiorespiratory and muscular systems, which may result in improvements in maximal oxygen consumption (VO2 peak) and mitochondrial capacity. By convenience, mitochondrial respiration is often measured at supra-physiological oxygen levels, an approach that ignores any potential regulatory role of mitochondrial affinity for oxygen (p50mito ) at physiological oxygen levels. METHODS In this study, we examined the p50mito of mitochondria isolated from the Vastus lateralis and Triceps brachii in 12 healthy volunteers before and after a training intervention with seven sessions of sprint interval training using both leg cycling and arm cranking. The changes in p50mito were compared to changes in whole-body VO2 peak. RESULTS We here show that p50mito is similar in isolated mitochondria from the Vastus (40 ± 3.8 Pa) compared to Triceps (39 ± 3.3) but decreases (mitochondrial oxygen affinity increases) after seven sessions of sprint interval training (to 26 ± 2.2 Pa in Vastus and 22 ± 2.7 Pa in Triceps, both P < .01). The change in VO2 peak modelled from changes in p50mito was correlated to actual measured changes in VO2 peak (R2 = .41, P = .002). CONCLUSION Together with mitochondrial respiratory capacity, p50mito is a critical factor when measuring mitochondrial function, it can decrease with sprint interval training and should be considered in the integrative analysis of the oxygen cascade from lung to mitochondria.
Collapse
Affiliation(s)
- Filip J. Larsen
- Åstrand Laboratory The Swedish School of Sport and Health Sciences Stockholm Sweden
| | - Tomas A. Schiffer
- Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden
| | - Christoph Zinner
- Department of Sport University of Applied Sciences for Police and Administration of Hesse Wiesbaden Germany
| | - Sarah J. Willis
- Institute of Sport Sciences University of Lausanne Lausanne Switzerland
| | - David Morales‐Alamo
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS) University of Las Palmas de Gran Canaria Gran Canaria Spain
| | - Jose A.L. Calbet
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS) University of Las Palmas de Gran Canaria Gran Canaria Spain
- School of Kinesiology Faculty of Education The University of British Columbia Vancouver BC Canada
- Department of Physical Performance The Norwegian School of Sport Sciences Oslo Norway
| | - Robert Boushel
- School of Kinesiology Faculty of Education The University of British Columbia Vancouver BC Canada
| | - Hans‐Christer Holmberg
- Swedish Winter Sports Research Centre Department of Health SciencesMid Sweden University Östersund Sweden
| |
Collapse
|
23
|
Skattebo Ø, Capelli C, Rud B, Auensen M, Calbet JAL, Hallén J. Increased oxygen extraction and mitochondrial protein expression after small muscle mass endurance training. Scand J Med Sci Sports 2020; 30:1615-1631. [PMID: 32403173 DOI: 10.1111/sms.13707] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/06/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
Abstract
When exercising with a small muscle mass, the mass-specific O2 delivery exceeds the muscle oxidative capacity resulting in a lower O2 extraction compared with whole-body exercise. We elevated the muscle oxidative capacity and tested its impact on O2 extraction during small muscle mass exercise. Nine individuals conducted six weeks of one-legged knee extension (1L-KE) endurance training. After training, the trained leg (TL) displayed 45% higher citrate synthase and COX-IV protein content in vastus lateralis and 15%-22% higher pulmonary oxygen uptake ( V ˙ O 2 peak ) and peak power output ( W ˙ peak ) during 1L-KE than the control leg (CON; all P < .05). Leg O2 extraction (catheters) and blood flow (ultrasound Doppler) were measured while both legs exercised simultaneously during 2L-KE at the same submaximal power outputs (real-time feedback-controlled). TL displayed higher O2 extraction than CON (main effect: 1.7 ± 1.6% points; P = .010; 40%-83% of W ˙ peak ) with the largest between-leg difference at 83% of W ˙ peak (O2 extraction: 3.2 ± 2.2% points; arteriovenous O2 difference: 7.1 ± 4.8 mL· L-1 ; P < .001). At 83% of W ˙ peak , muscle O2 conductance (DM O2 ; Fick law of diffusion) and the equilibration index Y were higher in TL (P < .01), indicating reduced diffusion limitations. The between-leg difference in O2 extraction correlated with the between-leg ratio of citrate synthase and COX-IV (r = .72-.73; P = .03), but not with the difference in the capillary-to-fiber ratio (P = .965). In conclusion, endurance training improves O2 extraction during small muscle mass exercise by elevating the muscle oxidative capacity and the recruitment of DM O2, especially evident during high-intensity exercise exploiting a larger fraction of the muscle oxidative capacity.
Collapse
Affiliation(s)
- Øyvind Skattebo
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Carlo Capelli
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Bjarne Rud
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Marius Auensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Jose A L Calbet
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway.,Department of Physical Education, University of Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), Las Palmas de Gran Canaria, Spain
| | - Jostein Hallén
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
24
|
Labrecque L, Drapeau A, Rahimaly K, Imhoff S, Billaut F, Brassard P. Comparable blood velocity changes in middle and posterior cerebral arteries during and following acute high-intensity exercise in young fit women. Physiol Rep 2020; 8:e14430. [PMID: 32342622 PMCID: PMC7186567 DOI: 10.14814/phy2.14430] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/04/2020] [Indexed: 12/13/2022] Open
Abstract
The cerebral blood flow response to high-intensity interval training (HIIT) remains unclear. HIIT induces surges in mean arterial pressure (MAP), which could be transmitted to the brain, especially early after exercise onset. The aim of this study was to describe regional cerebral blood velocity changes during and following 30 s of high-intensity exercise. Ten women (age: 27 ± 6 years; VO2max : 48.6 ± 3.8 ml·kg·min-1 ) cycled for 30 s at the workload reached at V ˙ O2max followed by 3min of passive recovery. Middle (MCAvmean ) and posterior cerebral artery mean blood velocities (PCAvmean ; transcranial Doppler ultrasound), MAP (finger photoplethysmography), and end-tidal carbon dioxide partial pressure (PET CO2 ; gaz analyzer) were measured. MCAvmean (+19 ± 10%) and PCAvmean (+21 ± 14%) increased early after exercise onset, returning toward baseline values afterward. MAP increased throughout exercise (p < .0001). PET CO2 initially decreased by 3 ± 2 mmHg (p < .0001) before returning to baseline values at end-exercise. During recovery, MCAvmean (+43 ± 15%), PCAvmean (+42 ± 15%), and PET CO2 (+11 ± 3 mmHg; p < .0001) increased. In young fit women, cerebral blood velocity quickly increases at the onset of a 30-s exercise performed at maximal workload, before returning to baseline values through the end of the exercise. During recovery, cerebral blood velocity augments in both arteries, along with PET CO2 .
Collapse
Affiliation(s)
- Lawrence Labrecque
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec‐Université LavalQuébecQuébecCanada
| | - Audrey Drapeau
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec‐Université LavalQuébecQuébecCanada
| | - Kevan Rahimaly
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec‐Université LavalQuébecQuébecCanada
| | - Sarah Imhoff
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec‐Université LavalQuébecQuébecCanada
| | - François Billaut
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec‐Université LavalQuébecQuébecCanada
| | - Patrice Brassard
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec‐Université LavalQuébecQuébecCanada
| |
Collapse
|
25
|
Asahara R, Ishii K, Okamoto I, Sunami Y, Hamada H, Kataoka T, Ohshita W, Watanabe T, Matsukawa K. Increased oxygenation in the non‐contracting forearm muscle during contralateral skilful hand movement. Exp Physiol 2020; 105:950-965. [DOI: 10.1113/ep088194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/16/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Ryota Asahara
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
- Automotive Human Factors Research Center National Institute of Advanced Industrial Science and Technology Ibaraki Japan
| | - Kei Ishii
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
- Automotive Human Factors Research Center National Institute of Advanced Industrial Science and Technology Ibaraki Japan
| | - Izumi Okamoto
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Yuki Sunami
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Tsuyoshi Kataoka
- Department of Health Care for Adults, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Wakana Ohshita
- Department of Health Care for Adults, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Tae Watanabe
- Department of Health Care for Adults, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Kanji Matsukawa
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| |
Collapse
|
26
|
Sustainable Sport: Cardio-Differentiated Planning of Fitness Programs for High School Boys Engaged in Speed Skiing. SUSTAINABILITY 2019. [DOI: 10.3390/su11216077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In speed skiing, an athlete’s functional readiness is tested by means of a bicycle ergometer (EGM). The purpose of this research is to make various mesocycle plans for high school boys, engaged in speed skiing, with due account for their cardio-functional indicators obtained by means of the EGM. The study was attended by the 16–17 years old, first-category and sub-master racing skiers, included in the junior regional teams of the Russian Federation (Republic of Tatarstan and Udmurtia). The total number of subjects included eight men. In training young racing skiers, a differentiated approach combined with leg muscle testing will allow an improvement in sports results more effectively at different stages, as well as monitoring the young athlete’s response to the cardiovascular load. Low cardiac capacity indices have a negative impact on the racing skier’s performance. EGM testing allows determining the maximum cardiac capacity by measuring the amount of oxygen delivered to the working muscles at the HR of 190 beats per minute. Therefore, case-specific aerobic load was planned for each mesocycle according to these data. Based on the cardiac capacity growth, such means of physical training as interval, high-speed, and tempo training were planned.
Collapse
|
27
|
Helgerud J, Øiestad BE, Wang E, Hoff J. Prediction of upper extremity peak oxygen consumption from heart rate during submaximal arm cycling in young and middle-aged adults. Eur J Appl Physiol 2019; 119:2589-2598. [PMID: 31586223 DOI: 10.1007/s00421-019-04225-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/04/2019] [Indexed: 12/27/2022]
Abstract
Based on the strong linear relationship between heart rate (HR) and oxygen consumption, the Åstrand-Ryhming cycle ergometer test (Astrand and Ryhming in J Appl Physiol 7:218-221, 1954) is a widely used submaximal test to predict whole body maximal oxygen consumption ([Formula: see text]). However, a similar test predicting peak oxygen consumption ([Formula: see text]) in the upper extremities is not established, and may be very useful for individuals unable to use their lower extremities or/and if separation of upper extremity aerobic capacity is sought after. Thus, the aim of the current study was to develop a submaximal test predicting [Formula: see text] in arm-cycling. Forty-nine healthy volunteers (25 women: 38 ± 13 years; 24 men: 39 ± 12 years) tested arm-cycle [Formula: see text] on a protocol with 4-min, 21-W increments to exhaustion. The data were contrasted to treadmill [Formula: see text] values. Arm-cycle [Formula: see text] was 66 ± 8% of [Formula: see text] (r = 0.92, p < 0.001; women: 1.9 ± 0.4 L min-1; men: 3.0 ± 0.7 L min-1). Arm-cycle HR and [Formula: see text] exhibited correlations of r = 0.79 and r = 0.78 for women and men, respectively, while corresponding correlations between work rate and [Formula: see text] were r = 0.95 (women) and r = 0.89 (men) (all p < 0.001). Arm-cycle [Formula: see text] prediction revealed a standard error of estimate (SEE) of 11.2% (women) and 10.2% (men), and was primarily due to individual arm-cycle maximal HR (women: 173 ± 13 beats min-1; men: 174 ± 10 beats min-1; correction factor: 5-7%). In conclusion, from a single 4-min stage of submaximal arm cycling, [Formula: see text] can be predicted with a SEE of 10-11%. The arm-cycle test may have important value for individuals who rely on arms in sports and occupations, and for patients with lower extremity disabilities.
Collapse
Affiliation(s)
- Jan Helgerud
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Prinsesse Kristinas gt. 3, 7006, Trondheim, Norway.,Myworkout, Medical Rehabilitation Clinic, Trondheim, Norway
| | - Britt Elin Øiestad
- Department of Physiotherapy, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - Eivind Wang
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Prinsesse Kristinas gt. 3, 7006, Trondheim, Norway. .,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA. .,Faculty of Health Sciences and Social Care, Molde University College, Molde, Norway.
| | - Jan Hoff
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Prinsesse Kristinas gt. 3, 7006, Trondheim, Norway.,Myworkout, Medical Rehabilitation Clinic, Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
28
|
Magder S, Famulari G, Gariepy B. Periodicity, time constants of drainage, and the mechanical determinants of peak cardiac output during exercise. J Appl Physiol (1985) 2019; 127:1611-1619. [PMID: 31414960 DOI: 10.1152/japplphysiol.00688.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To analyze mechanical adaptations that must occur in the cardiovascular system to reach the high cardiac outputs known to occur at peak aerobic performance, we adapted a computational model of the circulation by adding a second parallel venous compartment as proposed by August Krogh in 1912. One venous compartment has a large compliance and slow time constant of emptying; it is representative of the splanchnic circulation. The other has a low compliance and fast time constant of emptying and is representative of muscle beds. Fractional distribution between the two compartments is an important determinant of cardiac output. Parameters in the model were based on values from animal and human studies normalized to a 70 kg male. The baseline cardiac output was set at 5 L/min, and we aimed for 25 L/min at peak exercise with a fractional flow to the peripheral-muscle region of 90%. Finally, we added the equivalent of a muscle pump. Adjustments in circuit and cardiac parameters alone increased cardiac output to only 15.6 L/min because volume accumulated in the muscle compartment and limited a higher cardiac output. Addition of muscle contractions decompressed the muscle region and allowed cardiac output to increase to 23.4 L/min. The pulsatility of blood flow imposes important constraints on the adaptations of cardiac and circulatory functions because it fixes the times for filling and emptying. Flow is further limited by the limits of cardiac filling on each beat. Muscle contractions play a key role by decompressing volume that would otherwise accumulate in the muscle vasculature and by decreasing the time for stroke return to the right ventricle.NEW & NOTEWORTHY We used a computational model of the circulation and previous human and animal data to model mechanical changes in the heart and circulation that are needed to reach the known high cardiac output at peak aerobic exercise. Key points are that time constants of drainage of circulatory compartments put limits on peak flow in a pulsatile system. Muscle contractions increase the rate of return to the heart and by doing so prevent accumulation of volume in the muscle compartment and greatly increase circulatory capacity.
Collapse
Affiliation(s)
- Sheldon Magder
- McGill University Health Centre, Department of Critical Care and Department of Physiology, Montreal, Quebec, Canada
| | - Gabriel Famulari
- McGill University Health Centre, Department of Critical Care and Department of Physiology, Montreal, Quebec, Canada
| | - Brian Gariepy
- McGill University Health Centre, Department of Critical Care and Department of Physiology, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Sanz-Quinto S, López-Grueso R, Brizuela G, Flatt AA, Moya-Ramón M. Influence of Training Models at 3,900-m Altitude on the Physiological Response and Performance of a Professional Wheelchair Athlete: A Case Study. J Strength Cond Res 2019; 33:1714-1722. [PMID: 29927887 DOI: 10.1519/jsc.0000000000002667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sanz-Quinto, S, López-Grueso, R, Brizuela, G, Flatt, AA, and Moya-Ramón, M. Influence of training models at 3,900-m altitude on the physiological response and performance of a professional wheelchair athlete: A case study. J Strength Cond Res 33(6): 1715-1723, 2019-This case study compared the effects of two training camps using flexible planning (FP) vs. inflexible planning (IP) at 3,860-m altitude on physiological and performance responses of an elite marathon wheelchair athlete with Charcot-Marie-Tooth disease (CMT). During IP, the athlete completed preplanned training sessions. During FP, training was adjusted based on vagally mediated heart rate variability (HRV) with specific sessions being performed when a reference HRV value was attained. The camp phases were baseline in normoxia (BN), baseline in hypoxia (BH), specific training weeks 1-4 (W1, W2, W3, W4), and Post-camp (Post). Outcome measures included the root mean square of successive R-R interval differences (rMSSD), resting heart rate (HRrest), oxygen saturation (SO2), diastolic blood pressure and systolic blood pressure, power output and a 3,000-m test. A greater impairment of normalized rMSSD (BN) was shown in IP during BH (57.30 ± 2.38% vs. 72.94 ± 11.59%, p = 0.004), W2 (63.99 ± 10.32% vs. 81.65 ± 8.87%, p = 0.005), and W4 (46.11 ± 8.61% vs. 59.35 ± 6.81%, p = 0.008). At Post, only in FP was rMSSD restored (104.47 ± 35.80%). Relative changes were shown in power output (+3 W in IP vs. +6 W in FP) and 3,000-m test (-7s in IP vs. -16s in FP). This case study demonstrated that FP resulted in less suppression and faster restoration of rMSSD and more positive changes in performance than IP in an elite wheelchair marathoner with CMT.
Collapse
Affiliation(s)
| | | | - Gabriel Brizuela
- Department of Physical and Sports Education, University of Valencia, Valencia, Spain
| | - Andrew A Flatt
- Department of Health Science and Kinesiology, Georgia Southern University, Savannah, Georgia
| | - Manuel Moya-Ramón
- Sports Research Center, Miguel Hernandez University, Elche, Spain.,Department of Health Psychology, Miguel Hernandez University, Elche, Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante, Spain
| |
Collapse
|
30
|
Shepherd JRA, Dominelli PB, Roy TK, Secomb TW, Hoyer JD, Oliveira JL, Joyner MJ. Modelling the relationships between haemoglobin oxygen affinity and the oxygen cascade in humans. J Physiol 2019; 597:4193-4202. [PMID: 31290158 DOI: 10.1113/jp277591] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/08/2019] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Haemoglobin affinity is an integral concept in exercise physiology that impacts oxygen uptake, delivery and consumption. How chronic alterations in haemoglobin affinity impact physiology is unknown. Using human haemoglobin variants, we demonstrate that the affinity of haemoglobin for oxygen is highly correlated with haemoglobin concentration. Using the Fick equation, we model how altered haemoglobin affinity and the associated haemoglobin concentration influences oxygen consumption at rest and during exercise via alterations in cardiac output and mixed-venous P O 2 . The combination of low oxygen affinity haemoglobin and reduced haemoglobin concentration seen in vivo may be unable to support oxygen uptake during moderate or heavy exercise. ABSTRACT The physiological implications, with regard to exercise, of altered haemoglobin affinity for oxygen are not fully understood. Data from the Mayo Clinic Laboratories database of rare human haemoglobin variants reveal a strong inverse correlation (r = -0.82) between blood haemoglobin concentration and P50 , an index of oxygen affinity [Hb = -0.3135(P50 ) + 23.636]. In the present study, observed P50 values for high, normal and low oxygen-affinity haemoglobin variants (13, 26 and 39 mmHg) and corresponding haemoglobin concentrations (19.5, 15.5 and 11.4 g dL-1 respectively) are used to model oxygen consumption as a fraction of delivery at rest ( V ̇ O 2 = 0.25 L min-1 , cardiac output = 5.70 L min-1 ) and during exercise ( V ̇ O 2 = 2.75 L min-1 , cardiac output = 18.9 l min-1 ). With high-affinity haemoglobin, the model shows that normal levels of oxygen consumption can be achieved at rest and during exercise at the assumed cardiac output levels, with reduced oxygen extraction both at rest (16.8% high affinity vs. 21.7% normal) and during exercise (55.8% high affinity vs. 72.2% normal). With low-affinity haemoglobin, which predicts low haemoglobin concentration, oxygen consumption at rest can be sustained with the assumed cardiac output, with increased oxygen extraction (31.1% low affinity vs. 21.7% normal). However, exercise at 2.75 l min-1 cannot be achieved with the assumed cardiac output, even with 100% oxygen extraction. In conclusion, the model indicates chronic alterations in P50 associate directly with Hb concentration, highlighting that human Hb variants can serve as 'experiments of nature' to address fundamental hypotheses on oxygen transport and exercise.
Collapse
Affiliation(s)
- John R A Shepherd
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Paolo B Dominelli
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Kinesiology, University of Waterloo, Waterloo, ON, USA
| | - Tuhin K Roy
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - James D Hoyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jennifer L Oliveira
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Michael J Joyner
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
31
|
Influence of Equimolar Doses of Beetroot Juice and Sodium Nitrate on Time Trial Performance in Handcycling. Nutrients 2019; 11:nu11071642. [PMID: 31323779 PMCID: PMC6683039 DOI: 10.3390/nu11071642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
This study aimed to investigate the influence of a single dose of either beetroot juice (BR) or sodium nitrate (NIT) on performance in a 10 km handcycling time trial (TT) in able-bodied individuals and paracyclists. In total, 14 able-bodied individuals [mean ± SD; age: 28 ± 7 years, height: 183 ± 5 cm, body mass (BM): 82 ± 9 kg, peak oxygen consumption (VO2peak): 33.9 ± 4.2 mL/min/kg] and eight paracyclists (age: 40 ± 11 years, height: 176 ± 9cm, BM: 65 ± 9 kg, VO2peak: 38.6 ± 10.5 mL/min/kg) participated in the study. All participants had to perform three TT on different days, receiving either 6 mmol nitrate as BR or NIT or water as a placebo. Time-to-complete the TT, power output (PO), as well as oxygen uptake (VO2) were measured. No significant differences in time-to-complete the TT were found between the three interventions in able-bodied individuals (p = 0.80) or in paracyclists (p = 0.61). Furthermore, VO2 was not significantly changed after the ingestion of BR or NIT in either group (p < 0.05). The PO to VO2 ratio was significantly higher in some kilometers of the TT in able-bodied individuals (p < 0.05). The ingestion of BR or NIT did not increase handcycling performance in able-bodied individuals or in paracyclists.
Collapse
|
32
|
No Effect of Beetroot Juice Supplementation on 100-m and 200-m Swimming Performance in Moderately Trained Swimmers. Int J Sports Physiol Perform 2019; 14:706-710. [PMID: 30427246 DOI: 10.1123/ijspp.2018-0654] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Purpose: Dietary nitrate supplementation has been reported to improve performance in kayaking and rowing exercise, which mandate significant recruitment of the upper-body musculature. Because the effect of dietary nitrate supplementation on swimming performance is unclear, the purpose of this study was to assess the effect of dietary nitrate supplementation on 100-m and 200-m swimming freestyle time-trial (TT) performance. Methods: In a double-blind, randomized crossover design, 10 moderately trained swimmers underwent 2 separate 3-d supplementation periods, with a daily dose of either 140 mL nitrate-rich (∼800 mg/d nitrate) or nitrate-depleted (PLA) beetroot juice (BRJ). After blood sampling on day 3, the swimmers performed both 200-m and 100-m freestyle swimming TTs, with 30 min recovery between trials. Results: Plasma nitrite concentration was greater after BRJ relative to PLA consumption (432 [203] nmol/L, 111 [56] nmol/L, respectively, P = .001). Systolic blood pressure was lowered after BRJ compared with PLA supplementation (114 [10], 120 [10] mm Hg, respectively P = .001), but time to complete the 200-m (BRJ 152.6 [14.1] s, PLA 152.5 [14.1] s) and 100-m (BRJ 69.5 [7.2] s, PLA 69.4 [7.4] s) freestyle swimming TTs was not different between BRJ and PLA (P > .05). Conclusions: Although 3 d of BRJ supplementation increased plasma nitrite concentration and lowered blood pressure, it did not improve 100-m and 200-m swimming TT performance. These results do not support an ergogenic effect of nitrate supplementation in moderately trained swimmers, at least for 100-m and 200-m freestyle swimming performance.
Collapse
|
33
|
Astorino TA, Bediamol N, Cotoia S, Ines K, Koeu N, Menard N, Nguyen B, Olivo C, Phillips G, Tirados A, Cruz GV. Verification testing to confirm VO 2max attainment in persons with spinal cord injury. J Spinal Cord Med 2019; 42:494-501. [PMID: 29355464 PMCID: PMC6718936 DOI: 10.1080/10790268.2017.1422890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Context/Objective: Maximal oxygen uptake (VO2max) is a widely used measure of cardiorespiratory fitness, aerobic function, and overall health risk. Although VO2max has been measured for almost 100 yr, no standardized criteria exist to verify VO2max attainment. Studies document that incidence of 'true' VO2max obtained from incremental exercise (INC) can be confirmed using a subsequent verification test (VER). In this study, we examined efficacy of VER in persons with spinal cord injury (SCI). Design: Repeated measures, within-subjects study. Setting: University laboratory in San Diego, CA. Participants: Ten individuals (age and injury duration = 33.3 ± 10.5 yr and 6.8 ± 6.2 yr) with SCI and 10 able-bodied (AB) individuals (age = 24.1 ± 7.4 yr). Interventions: Peak oxygen uptake (VO2peak) was determined during INC on an arm ergometer followed by VER at 105 percent of peak power output (% PPO). Outcome Measures: Gas exchange data, heart rate (HR), and blood lactate concentration (BLa) were measured during exercise. Results: Across all participants, VO2peak was highly related between protocols (ICC = 0.98) and the mean difference was equal to 0.08 ± 0.11 L/min. Compared to INC, VO2peak from VER was not different in SCI (1.30 ± 0.45 L/min vs. 1.31 ± 0.43 L/min) but higher in AB (1.63 ± 0.40 L/min vs. 1.76 ± 0.40 L/min). Conclusion: Data show similar VO2peak between incremental and verification tests in SCI, suggesting that VER confirms VO2max attainment. However, in AB participants completing arm ergometry, VER is essential to validate appearance of 'true' VO2peak.
Collapse
Affiliation(s)
- Todd A. Astorino
- Department of Kinesiology, California State University—San Marcos, San Marcos, California, USA,Correspondence to: Todd A. Astorino, Department of Kinesiology, California State University, San Marcos, 333. S. Twin Oaks Valley Road, UNIV 320, San Marcos, CA 92096, USA.
| | - Noelle Bediamol
- Department of Kinesiology, California State University—San Marcos, San Marcos, California, USA
| | - Sarah Cotoia
- Department of Kinesiology, California State University—San Marcos, San Marcos, California, USA
| | - Kenneth Ines
- Department of Kinesiology, California State University—San Marcos, San Marcos, California, USA
| | - Nicolas Koeu
- Department of Kinesiology, California State University—San Marcos, San Marcos, California, USA
| | - Natasha Menard
- Department of Kinesiology, California State University—San Marcos, San Marcos, California, USA
| | - Brianna Nguyen
- Department of Kinesiology, California State University—San Marcos, San Marcos, California, USA
| | - Cassandra Olivo
- Department of Kinesiology, California State University—San Marcos, San Marcos, California, USA
| | - Gabrielle Phillips
- Department of Kinesiology, California State University—San Marcos, San Marcos, California, USA
| | - Ardreen Tirados
- Department of Kinesiology, California State University—San Marcos, San Marcos, California, USA
| | - Gabriela Velasco Cruz
- Department of Kinesiology, California State University—San Marcos, San Marcos, California, USA
| |
Collapse
|
34
|
Willis SJ, Borrani F, Millet GP. Leg- vs arm-cycling repeated sprints with blood flow restriction and systemic hypoxia. Eur J Appl Physiol 2019; 119:1819-1828. [PMID: 31187281 DOI: 10.1007/s00421-019-04171-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/03/2019] [Indexed: 02/04/2023]
Abstract
PURPOSE The aim was to compare changes in peripheral and cerebral oxygenation, as well as metabolic and performance responses during conditions of blood flow restriction (BFR, bilateral vascular occlusion at 0% vs. 45% of resting pulse elimination pressure) and systemic hypoxia (~ 400 m, FIO2 20.9% vs. ~ 3800 m normobaric hypoxia, FIO2 13.1 ± 0.1%) during repeated sprint tests to exhaustion (RST) between leg- and arm-cycling exercises. METHODS Seven participants (26.6 ± 2.9 years old; 74.0 ± 13.1 kg; 1.76 ± 0.09 m) performed four sessions of RST (10-s maximal sprints with 20-s recovery until exhaustion) during both leg and arm cycling to measure power output and metabolic equivalents as well as oxygenation (near-infrared spectroscopy) of the muscle tissue and prefrontal cortex. RESULTS Mean power output was lower in arms than legs (316 ± 118 vs. 543 ± 127 W; p < 0.001) and there were no differences between conditions for a given limb. Arms demonstrated greater changes in concentration of deoxyhemoglobin (∆[HHb], - 9.1 ± 6.1 vs. - 6.5 ± 5.6 μm) and total hemoglobin concentration (∆[tHb], 15.0 ± 10.8 vs. 11.9 ± 7.9 μm), as well as the absolute maximum tissue saturation index (TSI, 62.0 ± 8.3 vs. 59.3 ± 8.1%) than legs, respectively (p < 0.001), demonstrating a greater capacity for oxygen extraction. Further, there were greater changes in tissue blood volume [tHb] during BFR only compared to all other conditions (p < 0.01 for all). CONCLUSIONS The combination of BFR and/or hypoxia led to increased changes in [HHb] and [tHb] likely due to greater vascular resistance, to which arms were more responsive than legs.
Collapse
Affiliation(s)
- Sarah J Willis
- Institute of Sport Sciences, Building Synathlon, Quarter UNIL-Centre, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Fabio Borrani
- Institute of Sport Sciences, Building Synathlon, Quarter UNIL-Centre, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, Building Synathlon, Quarter UNIL-Centre, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
35
|
Ubolsakka-Jones C, Tongdee P, Jones DA. The effects of slow loaded breathing training on exercise blood pressure in isolated systolic hypertension. PHYSIOTHERAPY RESEARCH INTERNATIONAL 2019; 24:e1785. [PMID: 31141288 DOI: 10.1002/pri.1785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/22/2019] [Accepted: 04/07/2019] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Slow loaded breathing training has been shown to reduce resting blood pressure (BP) in isolated systolic hypertension (ISH), but it is not known whether this also reduces their exaggerated BP responses to exercise. METHODS The study was a randomized controlled trial with block allocation stratified by sex. Twenty ISH patients (68 ± 5 yrs, 11 males) were randomized with one group undertaking 8-weeks training with slow loaded breathing (SLB: 25% maximum inspiratory pressure, 6 breaths per minute, 60 breaths every day) or deep breathing control (CON), with 8 weeks follow-up. Outcome measures were home BP and heart rate (HR) with laboratory measures of BP and HR responses to static handgrip and dynamic arm cranking exercise. Data were compared with a two-week run-in baseline. RESULTS Home systolic BP fell by 22 mmHg (20-23; mean, 95% CI), diastolic BP by 9 mmHg (7-11), and HR by 12 bpm (9-15; all p < .001) as a result of SLB training. Systolic BP at the end of 2-min isometric handgrip was 189 ± 10 mmHg (mean, SD) before training and 157 ± 6 mmHg following SLB training. After 4-min arm exercise, systolic BP, measured at the ankle, was reduced from 243 ± 8 mmHg during the run-in period to 170 ± 15 mmHg after SLB training with no change for CON. The reduction in exercise BP, in both types of exercise, was partly due to a reduction in resting BP and to a smaller increase above resting. Systolic and pulse pressures remained below run-in values 8 weeks after the end of SLB training, and BP response to handgrip exercise remained below run-in values at 4 weeks after SLB training. CONCLUSIONS SLB not only reduces resting BP in ISH but also the responses to both static and dynamic exercise, potentially reducing the negative aspect of exercise for cardiovascular health.
Collapse
Affiliation(s)
- Chulee Ubolsakka-Jones
- School of Physical Therapy, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen, Thailand
| | - Phailin Tongdee
- Department of Physical Therapy, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - David A Jones
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
36
|
Neuromuscular evaluation of arm-cycling repeated sprints under hypoxia and/or blood flow restriction. Eur J Appl Physiol 2019; 119:1533-1545. [PMID: 31011807 DOI: 10.1007/s00421-019-04143-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/11/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE This study aimed to determine the effects of hypoxia and/or blood flow restriction (BFR) on an arm-cycling repeated sprint ability test (aRSA) and its impact on elbow flexor neuromuscular function. METHODS Fourteen volunteers performed an aRSA (10 s sprint/20 s recovery) to exhaustion in four randomized conditions: normoxia (NOR), normoxia plus BFR (NBFR), hypoxia (FiO2 = 0.13, HYP) and hypoxia plus BFR (HBFR). Maximal voluntary contraction (MVC), resting twitch force (Db10), and electromyographic responses from the elbow flexors [biceps brachii (BB)] to electrical and transcranial magnetic stimulation were obtained to assess neuromuscular function. Main effects of hypoxia, BFR, and interaction were analyzed on delta values from pre- to post-exercise. RESULTS BFR and hypoxia decreased the number of sprints during aRSA with no significant cumulative effect (NOR 16 ± 8; NBFR 12 ± 4; HYP 10 ± 3 and HBFR 8 ± 3; P < 0.01). MVC decrease from pre- to post-exercise was comparable whatever the condition. M-wave amplitude (- 9.4 ± 1.9% vs. + 0.8 ± 2.0%, P < 0.01) and Db10 force (- 41.8 ± 4.7% vs. - 27.9 ± 4.5%, P < 0.01) were more altered after aRSA with BFR compared to without BFR. The exercise-induced increase in corticospinal excitability was significantly lower in hypoxic vs. normoxic conditions (e.g., BB motor evoked potential at 75% of MVC: - 2.4 ± 4.2% vs. + 16.0 ± 5.9%, respectively, P = 0.03). CONCLUSION BFR and hypoxia led to comparable aRSA performance impairments but with distinct fatigue etiology. BFR impaired the muscle excitation-contraction coupling whereas hypoxia predominantly affected corticospinal excitability indicating incapacity of the corticospinal pathway to adapt to fatigue as in normoxia.
Collapse
|
37
|
Joshi H, Edgell H. Sex differences in the ventilatory and cardiovascular response to supine and tilted metaboreflex activation. Physiol Rep 2019; 7:e14041. [PMID: 30916469 PMCID: PMC6436143 DOI: 10.14814/phy2.14041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/26/2022] Open
Abstract
Women have attenuated exercise pressor responses compared to men; however, their cerebrovascular and ventilatory responses have not been previously measured. Furthermore, recent evidence has shown that posture change can influence the response of the metaboreflex but this has only been tested in men. Young and healthy men (n = 14; age: 21 ± 2) and women (n = 11; age: 19 ± 1) underwent 40% MVC static handgrip exercise (HG) for 2 min followed by 3 min of post-exercise circulatory occlusion (PECO) in the supine and 70° tilted postures. In supine position during HG and PECO only men had an increase in ventilation (Men: Baseline: 12.5 ± 1.7 L/min, HG: 18.6 ± 5.3 L/min, PECO: 17.7 ± 10.3 L/min; Women: Baseline: 12.0 ± 1.5 L/min, HG: 12.4 ± 1.2 L/min, PECO: 11.5 ± 1.3 L/min; Sex × Time interaction P = 0.037). In supine position during HG and PECO men and women had similar reductions in cerebrovascular conductance (Men: Baseline: 0.79 ± 0.13 cm/sec/mmHg, HG: 0.68 ± 0.18 cm/sec/mmHg, PECO: 0.61 ± 0.19 cm/s/mmHg; Women: Baseline: 0.87 ± 0.13 cm/sec/mmHg, HG: 0.83 ± 0.14 cm/sec/mmHg, PECO: 0.75 ± 0.17 cm/sec/mmHg; P < 0.015 HG/PECO vs. baseline). When comparing the response to PECO in the supine versus upright postures there was a significant attenuation in the increase in mean arterial pressure in both men and women (Supine posture: Men: +23.3 ± 14.5 mmHg, Women: +12.0 ± 7.3 mmHg; Upright posture: Men: +15.7 ± 14.1 mmHg, Women: +7.7 ± 6.7 mmHg; Main effect of sex P = 0.042, Main effect of posture P < 0.001). Our results indicate sexually dimorphic ventilatory responses to HG and PECO which could be due to different interactions of the metaboreflex and chemoreflex. We have also shown evidence of attenuated metaboreflex function in the upright posture in both men and women.
Collapse
Affiliation(s)
- Hitesh Joshi
- School of Kinesiology and Health SciencesYork UniversityTorontoOntarioCanada
| | - Heather Edgell
- School of Kinesiology and Health SciencesYork UniversityTorontoOntarioCanada
- Muscle Health Research CentreYork UniversityTorontoOntarioCanada
| |
Collapse
|
38
|
Bentley RF, Jones JH, Hirai DM, Zelt JT, Giles MD, Raleigh JP, Quadrilatero J, Gurd BJ, Neder JA, Tschakovsky ME. Submaximal exercise cardiac output is increased by 4 weeks of sprint interval training in young healthy males with low initial Q̇-V̇O2: Importance of cardiac response phenotype. PLoS One 2019; 14:e0195458. [PMID: 30673702 PMCID: PMC6343875 DOI: 10.1371/journal.pone.0195458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/22/2018] [Indexed: 11/18/2022] Open
Abstract
Cardiovascular adaptations to exercise, particularly at the individual level, remain poorly understood. Previous group level research suggests the relationship between cardiac output and oxygen consumption ( Q˙- V˙O2) is unaffected by training as submaximal Q˙ is unchanged. We recently identified substantial inter-individual variation in the exercise Q˙- V˙O2 relationship that was correlated to stroke volume (SV) as opposed to arterial oxygen content. Therefore we explored the effects of sprint interval training (SIT) on modulating Q˙- V˙O2 given an individual’s specific Q˙- V˙O2 relationship. 22 (21±2 yrs) healthy, recreationally active males participated in a 4-week SIT (8, 20 second sprints; 4x/week, 170% of the work rate at V˙O2 peak) study with progressive exercise tests (PET) until exhaustion. Cardiac output ( Q˙ L/min; inert gas rebreathe, Finometer Modelflow™), oxygen consumption ( V˙O2 L/min; breath-by-breath pulmonary gas exchange), quadriceps oxygenation (near infrared spectroscopy) and exercise tolerance (6–20; Borg Scale RPE) were measured throughout PET both before and after training. Data are mean Δ from bsl±SD. Higher Q˙ ( HQ˙) and lower Q˙ ( LQ˙) responders were identified post hoc (n = 8/group). SIT increased the Q˙- V˙O2 post-training in LQ˙ (3.8±0.2 vs. 4.7±0.2; P = 0.02) while HQ˙ was unaffected (5.8±0.1 vs. 5.3±0.6; P = 0.5). ΔQ˙ was elevated beyond 80 watts in LQ˙ due to a greater increase in SV (all P<0.04). Peak V˙O2 (ml/kg/min) was increased in LQ˙ (39.7±6.7 vs. 44.5±7.3; P = 0.015) and HQ˙ (47.2±4.4 vs. 52.4±6.0; P = 0.009) following SIT, with HQ˙ having a greater peak V˙O2 both pre (P = 0.02) and post (P = 0.03) training. Quadriceps muscle oxygenation and RPE were not different between groups (all P>0.1). In contrast to HQ˙, LQ˙ responders are capable of improving submaximal Q˙- V˙O2 in response to SIT via increased SV. However, the increased submaximal exercise Q˙ does not benefit exercising muscle oxygenation.
Collapse
Affiliation(s)
- Robert F. Bentley
- School of Kinesiology and Health Studies, Human Vascular Control Laboratory, Queen’s University, Kingston, ON, Canada
| | - Joshua H. Jones
- Department of Medicine, Division of Respirology, Laboratory of Clinical Exercise Physiology, Queen’s University, Kingston, ON, Canada
| | - Daniel M. Hirai
- Department of Medicine, Division of Respirology, Laboratory of Clinical Exercise Physiology, Queen’s University, Kingston, ON, Canada
| | - Joel T. Zelt
- Department of Medicine, Division of Respirology, Laboratory of Clinical Exercise Physiology, Queen’s University, Kingston, ON, Canada
| | - Matthew D. Giles
- School of Kinesiology and Health Studies, Queen’s Muscle Physiology Laboratory, Queen’s University, Kingston, ON, Canada
| | - James P. Raleigh
- School of Kinesiology and Health Studies, Queen’s Muscle Physiology Laboratory, Queen’s University, Kingston, ON, Canada
| | - Joe Quadrilatero
- Department of Kinesiology, Muscle Biology and Cell Death Laboratory, University of Waterloo, Waterloo, ON, Canada
| | - Brendon J. Gurd
- School of Kinesiology and Health Studies, Queen’s Muscle Physiology Laboratory, Queen’s University, Kingston, ON, Canada
| | - J. Alberto Neder
- Department of Medicine, Division of Respirology, Laboratory of Clinical Exercise Physiology, Queen’s University, Kingston, ON, Canada
| | - Michael E. Tschakovsky
- School of Kinesiology and Health Studies, Human Vascular Control Laboratory, Queen’s University, Kingston, ON, Canada
- * E-mail:
| |
Collapse
|
39
|
Bentley RF, Jones JH, Hirai DM, Zelt JT, Giles MD, Raleigh JP, Quadrilatero J, Gurd BJ, Neder JA, Tschakovsky ME. Do interindividual differences in cardiac output during submaximal exercise explain differences in exercising muscle oxygenation and ratings of perceived exertion? Physiol Rep 2019; 6. [PMID: 29368399 PMCID: PMC5789726 DOI: 10.14814/phy2.13570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 11/24/2022] Open
Abstract
Considerable interindividual differences in the Q˙-V˙O2 relationship during exercise have been documented but implications for submaximal exercise tolerance have not been considered. We tested the hypothesis that these interindividual differences were associated with differences in exercising muscle deoxygenation and ratings of perceived exertion (RPE) across a range of submaximal exercise intensities. A total of 31 (21 ± 3 years) healthy recreationally active males performed an incremental exercise test to exhaustion 24 h following a resting muscle biopsy. Cardiac output (Q˙ L/min; inert gas rebreathe), oxygen uptake (V˙O2 L/min; breath-by-breath pulmonary gas exchange), quadriceps saturation (near infrared spectroscopy) and exercise tolerance (6-20; Borg Scale RPE) were measured. The Q˙-V˙O2 relationship from 40 to 160 W was used to partition individuals post hoc into higher (n = 10; 6.3 ± 0.4) versus lower (n = 10; 3.7 ± 0.4, P < 0.001) responders. The Q˙-V˙O2 difference between responder types was not explained by arterial oxygen content differences (P = 0.5) or peripheral skeletal muscle characteristics (P from 0.1 to 0.8) but was strongly associated with stroke volume (P < 0.05). Despite considerable Q˙-V˙O2 difference between groups, no difference in quadriceps deoxygenation was observed during exercise (all P > 0.4). Lower cardiac responders had greater leg (P = 0.027) and whole body (P = 0.03) RPE only at 185 W, but this represented a higher %peak V˙O2 in lower cardiac responders (87 ± 15% vs. 66 ± 12%, P = 0.005). Substantially lower Q˙-V˙O2 in the lower responder group did not result in altered RPE or exercising muscle deoxygenation. This suggests substantial recruitment of blood flow redistribution in the lower responder group as part of protecting matching of exercising muscle oxygen delivery to demand.
Collapse
Affiliation(s)
- Robert F Bentley
- Human Vascular Control Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Joshua H Jones
- Laboratory of Clinical Exercise Physiology, Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Daniel M Hirai
- Laboratory of Clinical Exercise Physiology, Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Joel T Zelt
- Laboratory of Clinical Exercise Physiology, Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Matthew D Giles
- Queen's Muscle Physiology Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - James P Raleigh
- Queen's Muscle Physiology Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Joe Quadrilatero
- Muscle Biology and Cell Death Laboratory, Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Brendon J Gurd
- Queen's Muscle Physiology Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - J Alberto Neder
- Laboratory of Clinical Exercise Physiology, Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Michael E Tschakovsky
- Human Vascular Control Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
40
|
Hemodynamic and cardiorespiratory responses to various arm cycling regimens in men with spinal cord injury. Spinal Cord Ser Cases 2019; 5:2. [PMID: 30675386 DOI: 10.1038/s41394-018-0145-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
Study design Repeated measures within-subjects crossover study. Objectives High intensity interval exercise (HIIE) elicits higher oxygen consumption (VO2) and heart rate (HR) versus moderate intensity continuous exercise (MICE) in men with spinal cord injury (SCI). No study has compared hemodynamic responses to HIIE versus MICE in SCI. In this study, we determined hemodynamic and cardiorespiratory responses to different bouts of arm cycling in men with SCI. Setting Human Performance Laboratory, San Diego, CA. Methods Five men (age and injury duration = 42.6 ± 16.1 yr and 9.9 ± 7.6 yr) with SCI participated in the study. VO2peak and peak power output were initially assessed. Subsequent visits included MICE, HIIE, sprint interval exercise (SIE), and a no-exercise control (CON). Energy expenditure was matched across modes and equal to 100 ± 10 kcal. During the bouts, cardiac output (CO), stroke volume (SV), HR, and VO2 were measured. Results Heart rate, SV, and CO increased in response to all exercise bouts and were higher during exercise versus CON. During HIIE and SIE, heart rate approached 90% of maximum, and stroke volume increased by 40% which was higher (p < 0.05) versus MICE and CON. In addition, exercise led to a two (MICE) to threefold increase in CO (HIIE and SIE) although it was not different from CON. VO2 during SIE and HIIE was higher (p < 0.05) versus MICE. Conclusions Similar to results in non-disabled populations, HIIE and SIE elicit near-maximal values of SV and CO.
Collapse
|
41
|
Fouladi B, Joshi H, Edgell H. Cardiovascular and autonomic responses to passive arm or leg movement in men and women. Eur J Appl Physiol 2018; 119:551-559. [PMID: 30446863 DOI: 10.1007/s00421-018-4030-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/02/2018] [Indexed: 01/09/2023]
Abstract
PURPOSE Women display an attenuated mechanoreflex during leg movement; however, sex differences in the response to arm movement are unknown. METHODS Men (n = 12) and women (n = 10) performed passive arm or leg movement where either the right elbow or right knee was passively flexed/extended for 3 min at 30 times/min. Mean arterial pressure (MAP), cardiac output index (Qi), and heart rate (HR) were continuously measured and 1-min averages along with peak values were obtained. Heart rate variability was measured at baseline and throughout 3 min of passive movement. RESULTS Men had a greater average HR (P = 0.006) and Qi (P = 0.05) responses to passive limb movement compared to women. Men also had a greater (P = 0.02) and faster (P = 0.04) peak Qi response compared to women. During arm movement, men exhibited a greater change of average MAP compared to both women (P = 0.002) and leg movement (P = 0.05). Movement of either limb in both sexes decreased low-frequency power (LF; P = 0.04), decreased low-frequency to high-frequency ratio (LF/HF; P = 0.03), and increased high-frequency power (HF; P = 0.01) of heart rate variability. Women had lower pulse wave velocity (P = 0.02), higher root mean square of the successive differences (RMSSD; P = 0.04), lower LF power (P = 0.04), higher HF power (P = 0.03), and higher cardiovagal baroreceptor sensitivity (P = 0.003) compared to men at all time points. CONCLUSIONS We have found sex- and limb-dependent responses where men exhibit higher blood pressure in response to passive arm movement compared to women and compared to leg movement.
Collapse
Affiliation(s)
- Bahareh Fouladi
- School of Kinesiology and Health Sciences, York University, 355 Bethune College, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - Hitesh Joshi
- School of Kinesiology and Health Sciences, York University, 355 Bethune College, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - Heather Edgell
- School of Kinesiology and Health Sciences, York University, 355 Bethune College, 4700 Keele St, Toronto, ON, M3J 1P3, Canada. .,Muscle Health Research Centre, York University, Toronto, ON, Canada.
| |
Collapse
|
42
|
Nyberg SK, Berg OK, Helgerud J, Wang E. Reliability of forearm oxygen uptake during handgrip exercise: assessment by ultrasonography and venous blood gas. Physiol Rep 2018; 6:e13696. [PMID: 29845765 PMCID: PMC5974736 DOI: 10.14814/phy2.13696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 01/18/2023] Open
Abstract
Assessment of forearm oxygen uptake (V˙O2 ) during handgrip exercise is a keenly investigated concept for observing small muscle mass metabolism. Although a combination of Doppler ultrasound measurements of brachial artery blood flow (Q˙) and blood gas drawn from a deep forearm vein has been utilized to calculate forearm V˙O2 for more than two decades, the applicability of this experimental design may benefit from a thorough evaluation of its reliability during graded exercise. Therefore, we evaluated the reliability of this technique during incremental handgrip exercise in ten healthy young (24 ± 3(SD) years.) males. V˙O2 and work rate (WR) exhibited a linear relationship (1.0 W: 43.8 ± 10.1 mL·min-1 ; 1.5 W: 53.8 ± 14.1 mL·min-1 ; 2.0 W: 63.4 ± 16.3 mL·min-1 ; 2.5 W: 72.2 ± 17.6 mL·min-1 ; 3.0 W: 79.2 ± 18.6 mL·min-1 ; r = 0.65, P < 0.01). In turn, V˙O2 was strongly associated with Q˙ (1.0 W: 359 ± 86 mL·min-1 ; 1.5 W: 431 ± 112 mL·min-1 ; 2.0 W: 490 ± 123 mL·min-1 ; 2.5 W: 556 ± 112 mL·min-1 ; 3.0 W: 622 ± 131 mL·min-1 ; r = 0.96; P < 0.01), whereas arteriovenous oxygen difference (a-vO2diff ) remained constant following all WRs (123 ± 11-130 ± 10 mL·L-1 ). Average V˙O2 test-retest difference was -0.4 mL·min-1 with ±2SD limits of agreement (LOA) of 8.4 and -9.2 mL·min-1 , respectively, whereas coefficients of variation (CVs) ranged from 4-7%. Accordingly, test-retest Q˙ difference was 11.9 mL·min-1 (LOA: 84.1 mL·min-1 ; -60.4 mL·min-1 ) with CVs between 4 and 7%. Test-retest difference for a-vO2diff was -0.28 mL·dL-1 (LOA: 1.26mL·dL-1 ; -1.82 mL·dL-1 ) with 3-5% CVs. In conclusion, our results revealed that forearm V˙O2 determination by Doppler ultrasound and direct venous sampling is linearly related to WR, and a reliable experimental design across a range of exercise intensities.
Collapse
Affiliation(s)
- Stian K. Nyberg
- Department of Circulation and Medical ImagingFaculty of MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Ole Kristian Berg
- Faculty of Health and Social SciencesMolde University CollegeMoldeNorway
| | - Jan Helgerud
- Department of Circulation and Medical ImagingFaculty of MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Eivind Wang
- Department of Circulation and Medical ImagingFaculty of MedicineNorwegian University of Science and TechnologyTrondheimNorway
- Faculty of Health and Social SciencesMolde University CollegeMoldeNorway
- Department of Internal MedicineUniversity of UtahSalt Lake CityUtah
| |
Collapse
|
43
|
Casuso RA, Aragon-Vela J, Huertas JR, Ruiz-Ariza A, Martínez-Lopez EJ. Comparison of the inflammatory and stress response between sprint interval swimming and running. Scand J Med Sci Sports 2018; 28:1371-1378. [PMID: 29281146 DOI: 10.1111/sms.13046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2017] [Indexed: 01/03/2023]
Abstract
The aim of the study was to compare myocellular damage, metabolic stress, and inflammatory responses as well as circulating sodium (Na+ ) and potassium (K+ ) between a single sprint swimming and running training. Eighteen subjects regularly involved in swimming and running training for at least 2 years were recruited. The subjects performed 8 × 30 seconds "all out" exercise on different days either by running or by swimming in a random order. Blood was collected before each training session, after the cessation of exercise (post) and after 2 hours of rest (2 hours). We then analyzed tumor necrosis factor alpha (TNF-α), interleukin 10 (IL-10), interleukin 6 (IL-6), cortisol, creatine kinase MB isoform (CK-MB), lactate dehydrogenase (LDH), K+ , and Na+ . Neither TNF-α nor IL-10 differed between swimming and running. Most of the subjects showed a non-statistically significant increase of LDH and CK-MB after swimming. On the other hand, IL-6 (P < .05) and cortisol (P < .05) were significantly lower after 2 hours of swimming than after running. In addition, post-exercise K+ was significantly lower (P < .001) for swimming than for running. Our results provide evidence of similar inflammatory responses between exercise modes but lower metabolic stress in response to swimming than in response to running.
Collapse
Affiliation(s)
- R A Casuso
- Institute of Nutrition and Food Technology, Biomedical Research Center, Department of Physiology, Faculty of Physical Activity and Sport, University of Granada, Granada, Spain
| | - J Aragon-Vela
- Institute of Nutrition and Food Technology, Biomedical Research Center, Department of Physiology, Faculty of Physical Activity and Sport, University of Granada, Granada, Spain
| | - J R Huertas
- Institute of Nutrition and Food Technology, Biomedical Research Center, Department of Physiology, Faculty of Physical Activity and Sport, University of Granada, Granada, Spain
| | - A Ruiz-Ariza
- Department of Didactic of Musical, Plastic and Body Expression, University of Jaén, Jaén, Spain
| | - E J Martínez-Lopez
- Department of Didactic of Musical, Plastic and Body Expression, University of Jaén, Jaén, Spain
| |
Collapse
|
44
|
Abstract
PURPOSE We evaluated physiological responses during exercise at a fixed evaporative requirement for heat balance (Ereq) but varying combinations of metabolic and environmental heat load. METHODS Nine healthy, physically active males (age: 46 ± 8 yr) performed four experimental sessions consisting of 75 min of semirecumbent cycling at various ambient temperatures. Whole-body dry heat loss (direct calorimetry) was monitored continuously as was heat production (indirect calorimetry), which was adjusted to achieve an Ereq of 400 W. The resultant metabolic heat productions and ambient temperatures for the sessions were as follows: (i) 440 W and 30°C (440 [30]), (ii) 388 W and 35°C (388 [35]), (iii) 317 W and 40°C (317 [40]), and (iv) 258 W and 45°C (258 [45]). Whole-body evaporative heat loss was determined via direct calorimetry. Esophageal (Tes) and mean skin (Tsk) temperatures as well as HR were monitored continuously. Mean body temperature (Tb) was calculated from Tes and Tsk. Physiological strain index (PSI) was determined from Tes and HR. RESULTS End-exercise evaporative heat loss and Tb were similar between conditions (both P ≥ 0.48). Tes was greater in 440 [30] (37.67°C ± 0.04°C) and 388 [35] (37.58°C ± 0.07°C) relative to both 317 [40] (37.35°C ± 0.06°C) and 258 [45] (37.20°C ± 0.07°C; all P ≤ 0.05). Further, Tsk was different between each condition (440 [30], 33.85°C ± 0.16°C; 388 [35], 34.53°C ± 0.08°C; 317 [40], 35.67°C ± 0.07°C; and 258 [45], 36.54°C ± 0.08°C; all P < 0.01). In 440 [30], HR was elevated by about 13 and 18 bpm relative to 317 [40] and 258 [45], respectively (both P < 0.01). Finally, PSI was greater in both 440 [30] and 388 [35] compared with 317 [40] and 258 [45] (all P ≤ 0.04). CONCLUSIONS Exercise at a fixed Ereq resulted in similar evaporative heat loss and Tb. However, the Tes, Tsk, HR, and PSI responses varied depending on the relative contribution of metabolic and environmental heat load.
Collapse
Affiliation(s)
- Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Montpetit Hall, Ottawa, CANADA
| | | |
Collapse
|
45
|
Curtelin D, Morales-Alamo D, Torres-Peralta R, Rasmussen P, Martin-Rincon M, Perez-Valera M, Siebenmann C, Pérez-Suárez I, Cherouveim E, Sheel AW, Lundby C, Calbet JA. Cerebral blood flow, frontal lobe oxygenation and intra-arterial blood pressure during sprint exercise in normoxia and severe acute hypoxia in humans. J Cereb Blood Flow Metab 2018; 38:136-150. [PMID: 28186430 PMCID: PMC5757439 DOI: 10.1177/0271678x17691986] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cerebral blood flow (CBF) is regulated to secure brain O2 delivery while simultaneously avoiding hyperperfusion; however, both requisites may conflict during sprint exercise. To determine whether brain O2 delivery or CBF is prioritized, young men performed sprint exercise in normoxia and hypoxia (PIO2 = 73 mmHg). During the sprints, cardiac output increased to ∼22 L min-1, mean arterial pressure to ∼131 mmHg and peak systolic blood pressure ranged between 200 and 304 mmHg. Middle-cerebral artery velocity (MCAv) increased to peak values (∼16%) after 7.5 s and decreased to pre-exercise values towards the end of the sprint. When the sprints in normoxia were preceded by a reduced PETCO2, CBF and frontal lobe oxygenation decreased in parallel ( r = 0.93, P < 0.01). In hypoxia, MCAv was increased by 25%, due to a 26% greater vascular conductance, despite 4-6 mmHg lower PaCO2 in hypoxia than normoxia. This vasodilation fully accounted for the 22 % lower CaO2 in hypoxia, leading to a similar brain O2 delivery during the sprints regardless of PIO2. In conclusion, when a conflict exists between preserving brain O2 delivery or restraining CBF to avoid potential damage by an elevated perfusion pressure, the priority is given to brain O2 delivery.
Collapse
Affiliation(s)
- David Curtelin
- 1 Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,2 Emergency Medicine Department, Insular Universitary Hospital of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - David Morales-Alamo
- 1 Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,3 Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Rafael Torres-Peralta
- 1 Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,3 Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Peter Rasmussen
- 4 Center for Integrative Human Physiology, Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Marcos Martin-Rincon
- 1 Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,3 Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Mario Perez-Valera
- 1 Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,3 Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Christoph Siebenmann
- 4 Center for Integrative Human Physiology, Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Ismael Pérez-Suárez
- 1 Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,3 Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Evgenia Cherouveim
- 5 Department of Physical Education and Sport Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - A William Sheel
- 6 School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Carsten Lundby
- 4 Center for Integrative Human Physiology, Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - José Al Calbet
- 1 Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,3 Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
46
|
Berg OK, Nyberg SK, Windedal TM, Wang E. Maximal strength training-induced improvements in forearm work efficiency are associated with reduced blood flow. Am J Physiol Heart Circ Physiol 2017; 314:H853-H862. [PMID: 29351462 DOI: 10.1152/ajpheart.00435.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Maximal strength training (MST) improves work efficiency. However, since blood flow is greatly dictated by muscle contractions in arms during exercise and vascular conductance is lower, it has been indicated that arms rely more upon adapting oxygen extraction than legs in response to the enhanced work efficiency. Thus, to investigate if metabolic and vascular responses are arm specific, we used Doppler-ultrasound and a catheter placed in the subclavian vein to measure blood flow and the arteriovenous oxygen difference during steady-state work in seven young men [24 ± 3 (SD) yr] following 6 wk of handgrip MST. As expected, MST improved maximal strength (49 ± 9 to 62 ± 10 kg) and the rate of force development (923 ± 224 to 1,086 ± 238 N/s), resulting in a reduced submaximal oxygen uptake (30 ± 9 to 24 ± 10 ml/min) and concomitantly increased work efficiency (9.3 ± 2.5 to 12.4 ± 3.9%) (all P < 0.05). In turn, the work efficiency improvement was associated with reduced blood flow (486 ± 102 to 395 ± 114 ml/min), mediated by a lower blood velocity (43 ± 8 to 32 ± 6 cm/s) (all P < 0.05). Conduit artery diameter and the arteriovenous oxygen difference remained unaltered. The maximal work test revealed an increased time to exhaustion (949 ± 239 to 1,102 ± 292 s) and maximal work rate (both P < 0.05) but no change in peak oxygen uptake. In conclusion, despite prior indications of metabolic and vascular limb-specific differences, these results reveal that improved work efficiency after small muscle mass strength training in the upper extremities is accompanied by a blood flow reduction and coheres with what has been documented for lower extremities. NEW & NOTEWORTHY Maximal strength training increases skeletal muscle work efficiency. Oxygen extraction has been indicated to be the adapting component with this increased work efficiency in arms. However, we document that decreased blood flow, achieved by blood velocity reduction, is the adapting mechanism responding to the improved aerobic metabolism in the forearm musculature.
Collapse
Affiliation(s)
- Ole Kristian Berg
- Faculty of Health and Social Sciences, Molde University College, Molde, Norway
| | - Stian Kwak Nyberg
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology , Trondheim , Norway
| | - Tobias Midtvedt Windedal
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology , Trondheim , Norway
| | - Eivind Wang
- Faculty of Health and Social Sciences, Molde University College, Molde, Norway.,Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology , Trondheim , Norway.,Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| |
Collapse
|
47
|
Willis SJ, Alvarez L, Millet GP, Borrani F. Changes in Muscle and Cerebral Deoxygenation and Perfusion during Repeated Sprints in Hypoxia to Exhaustion. Front Physiol 2017; 8:846. [PMID: 29163193 PMCID: PMC5671463 DOI: 10.3389/fphys.2017.00846] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023] Open
Abstract
During supramaximal exercise, exacerbated at exhaustion and in hypoxia, the circulatory system is challenged to facilitate oxygen delivery to working tissues through cerebral autoregulation which influences fatigue development and muscle performance. The aim of the study was to evaluate the effects of different levels of normobaric hypoxia on the changes in peripheral and cerebral oxygenation and performance during repeated sprints to exhaustion. Eleven recreationally active participants (six men and five women; 26.7 ± 4.2 years, 68.0 ± 14.0 kg, 172 ± 12 cm, 14.1 ± 4.7% body fat) completed three randomized testing visits in conditions of simulated altitude near sea-level (~380 m, FIO2 20.9%), ~2000 m (FIO2 16.5 ± 0.4%), and ~3800 m (FIO2 13.3 ± 0.4%). Each session began with a 12-min warm-up followed by two 10-s sprints and the repeated cycling sprint (10-s sprint: 20-s recovery) test to exhaustion. Measurements included power output, vastus lateralis, and prefrontal deoxygenation [near-infrared spectroscopy, delta (Δ) corresponds to the difference between maximal and minimal values], oxygen uptake, femoral artery blood flow (Doppler ultrasound), hemodynamic variables (transthoracic impedance), blood lactate concentration, and rating of perceived exertion. Performance (total work, kJ; −27.1 ± 25.8% at 2000 m, p < 0.01 and −49.4 ± 19.3% at 3800 m, p < 0.001) and pulse oxygen saturation (−7.5 ± 6.0%, p < 0.05 and −18.4 ± 5.3%, p < 0.001, respectively) decreased with hypoxia, when compared to 400 m. Muscle Δ hemoglobin difference ([Hbdiff]) and Δ tissue saturation index (TSI) were lower (p < 0.01) at 3800 m than at 2000 and 400 m, and lower Δ deoxyhemoglobin resulted at 3800 m compared with 2000 m. There were reduced changes in peripheral [Δ[Hbdiff], ΔTSI, Δ total hemoglobin ([tHb])] and greater changes in cerebral (Δ[Hbdiff], Δ[tHb]) oxygenation throughout the test to exhaustion (p < 0.05). Changes in cerebral deoxygenation were greater at 3800 m than at 2000 and 400 m (p < 0.01). This study confirms that performance in hypoxia is limited by continually decreasing oxygen saturation, even though exercise can be sustained despite maximal peripheral deoxygenation. There may be a cerebral autoregulation of increased perfusion accounting for the decreased arterial oxygen content and allowing for task continuation, as shown by the continued cerebral deoxygenation.
Collapse
Affiliation(s)
- Sarah J Willis
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Laurent Alvarez
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Grégoire P Millet
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Fabio Borrani
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
48
|
Leicht CA, Paulson TAW, Goosey-Tolfrey VL, Bishop NC. Arm and Intensity-Matched Leg Exercise Induce Similar Inflammatory Responses. Med Sci Sports Exerc 2017; 48:1161-8. [PMID: 26765632 DOI: 10.1249/mss.0000000000000874] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The amount of active muscle mass can influence the acute inflammatory response to exercise, associated with reduced risk for chronic disease. This may affect those restricted to upper body exercise, for example, due to injury or disability. The purpose of this study was to compare the inflammatory responses for arm exercise and intensity-matched leg exercise. METHODS Twelve male individuals performed three 45-min constant load exercise trials after determination of peak oxygen uptake for arm exercise (V˙O2peak A) and cycling (V˙O2peak C): 1) arm cranking exercise at 60% V˙O2peak A, 2) moderate cycling at 60% V˙O2peak C, and 3) easy cycling at 60% V˙O2peak A. Cytokine, adrenaline, and flow cytometric analysis of monocyte subsets were performed before and up to 4 h postexercise. RESULTS Plasma IL-6 increased from resting concentrations in all trials; however, postexercise concentrations were higher for arm exercise (1.73 ± 1.04 pg·mL) and moderate cycling (1.73 ± 0.95 pg·mL) compared with easy cycling (0.87 ± 0.41 pg·mL; P < 0.04). Similarly, the plasma IL-1ra concentration in the recovery period was higher for arm exercise (325 ± 139 pg·mL) and moderate cycling (316 ± 128 pg·mL) when compared with easy cycling (245 ± 77 pg·mL, P < 0.04). Arm exercise and moderate cycling induced larger increases in monocyte numbers and larger increases of the classical monocyte subset in the recovery period than easy cycling (P < 0.05). The postexercise adrenaline concentration was lowest for easy cycling (P = 0.04). CONCLUSIONS Arm exercise and cycling at the same relative exercise intensity induces a comparable acute inflammatory response; however, cycling at the same absolute oxygen uptake as arm exercise results in a blunted cytokine, monocyte, and adrenaline response. Relative exercise intensity appears to be more important to the acute inflammatory response than modality, which is of major relevance for populations restricted to upper body exercise.
Collapse
Affiliation(s)
- Christof A Leicht
- The Peter Harrison Centre for Disability Sport, School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | | | | | | |
Collapse
|
49
|
Lund Ohlsson M, Laaksonen MS. Sitting position affects performance in cross-country sit-skiing. Eur J Appl Physiol 2017; 117:1095-1106. [PMID: 28382550 PMCID: PMC5427162 DOI: 10.1007/s00421-017-3596-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/23/2017] [Indexed: 11/25/2022]
Abstract
PURPOSE In cross-country sit-skiing (XCSS), athletes with reduced trunk control predominantly sit with the knees higher than the hips (KH); a position often associated with large spinal flexion. Therefore, to improve spinal curvature a new sledge with frontal trunk support, where knees are lower than hips (KL) was created. It was hypothesized that the KL position would improve respiratory function and enhance performance in seated double-poling compared to KH. METHODS Ten female able-bodied cross-country skiers (age 25.5 ± 3.8 years, height 1.65 ± 0.05 m, mass 61.1 ± 6.8 kg) completed a 30 s all-out test (WIN), a submaximal incremental test including 3-7 3 min loads (SUB) and a maximal 3 min time trial (MAX) in both KL and KH positions. During SUB and MAX external power, pole forces, surface electromyography, and kinematics were measured. Metabolic rates were calculated from oxygen consumption and blood lactate concentrations. RESULTS KL reduced spinal flexion and range of motion
at the hip joint and indicated more muscle activation in the
triceps. Performance (W kg−1) was impeded in both WIN
(KH 1.40 ± 0.30 vs. KL 1.13 ± 0.33, p < 0.01) and MAX
(KH 0.88 ± 0.19 vs. KL 0.67 ± 0.14, p < 0.01). KH resulted
in lower lactate concentration, anaerobic metabolic rate, and
minute ventilation for equal power output [corrected]. CONCLUSIONS The new KL position can be recommended due to improved respiratory function but may impede performance. Generalization of results to XCSS athletes with reduced trunk muscle control may be limited, but these results can serve as a control for future studies of para-athletes.
Collapse
Affiliation(s)
- M Lund Ohlsson
- Swedish Winter Sports Research Centre, Department of Health Science, Mid Sweden University, Hus D, 83125, Östersund, Sweden.
| | - M S Laaksonen
- Swedish Winter Sports Research Centre, Department of Health Science, Mid Sweden University, Hus D, 83125, Östersund, Sweden
| |
Collapse
|
50
|
Sylow L, Kleinert M, Richter EA, Jensen TE. Exercise-stimulated glucose uptake - regulation and implications for glycaemic control. Nat Rev Endocrinol 2017; 13:133-148. [PMID: 27739515 DOI: 10.1038/nrendo.2016.162] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Skeletal muscle extracts glucose from the blood to maintain demand for carbohydrates as an energy source during exercise. Such uptake involves complex molecular signalling processes that are distinct from those activated by insulin. Exercise-stimulated glucose uptake is preserved in insulin-resistant muscle, emphasizing exercise as a therapeutic cornerstone among patients with metabolic diseases such as diabetes mellitus. Exercise increases uptake of glucose by up to 50-fold through the simultaneous stimulation of three key steps: delivery, transport across the muscle membrane and intracellular flux through metabolic processes (glycolysis and glucose oxidation). The available data suggest that no single signal transduction pathway can fully account for the regulation of any of these key steps, owing to redundancy in the signalling pathways that mediate glucose uptake to ensure maintenance of muscle energy supply during physical activity. Here, we review the molecular mechanisms that regulate the movement of glucose from the capillary bed into the muscle cell and discuss what is known about their integrated regulation during exercise. Novel developments within the field of mass spectrometry-based proteomics indicate that the known regulators of glucose uptake are only the tip of the iceberg. Consequently, many exciting discoveries clearly lie ahead.
Collapse
Affiliation(s)
- Lykke Sylow
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Kleinert
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Erik A Richter
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|