1
|
Guo W, Chen J, Liu L, Ren Y, Guo R, Ding Y, Li Y, Chai J, Sun Y, Guo C. MsMIOX2, encoding a MsbZIP53-activated myo-inositol oxygenase, enhances saline-alkali stress tolerance by regulating cell wall pectin and hemicellulose biosynthesis in alfalfa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:998-1013. [PMID: 39283985 DOI: 10.1111/tpj.17032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 11/01/2024]
Abstract
Alfalfa is one of the most widely cultivated forage crops worldwide. However, soil salinization restricts alfalfa growth and development and affects global productivity. The plant cell wall is the first barrier against various stresses. Therefore, elucidating the alterations in cell wall architecture is crucial for stress adaptation. This study aimed to clarify the impact of myo-inositol oxygenase 2 (MsMIOX2) on cell wall pectin and hemicellulose biosynthesis under saline-alkali stress and identify the upstream transcription factors that govern MsMIOX2. MsMIOX2 activation induced cell wall pectin and hemicellulose accumulation under saline-alkali stress. The effects of MsMIOX2 in saline-alkali tolerance were investigated by characterizing its overexpression and RNA interference lines. MsMIOX2 overexpression positively regulated the antioxidant system and photosynthesis in alfalfa under saline-alkali stress. MsMIOX2 exhibited myo-inositol oxygenase activity, which increased polysaccharide contents, facilitated pectin and hemicellulose biosynthesis, and extended the cell wall thickness. However, MsMIOX2 RNA interference decreased cell wall thickness and alleviated alfalfa saline-alkali stress tolerance. In addition, MsbZIP53 was identified as an upstream transcriptional MsMIOX2 regulator by yeast one-hybrid, electrophoretic mobility shift assay, dual-luciferase, and beta-glucuronidase assays. MsbZIP53 overexpression increased MsMIOX2 expression, elevated MIOX activity, reinforced the antioxidant system and photosynthesis, and increased saline-alkali stress tolerance in alfalfa. In conclusion, this study presents a novel perspective for elucidating the molecular mechanisms of saline-alkali stress tolerance in alfalfa and emphasizes the potential use of MsMIOX2 in alfalfa breeding.
Collapse
Affiliation(s)
- Weileng Guo
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Jiaxin Chen
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Lei Liu
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Yuekun Ren
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Rui Guo
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Yang Ding
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Ying Li
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Juqi Chai
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Yuanqing Sun
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Changhong Guo
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| |
Collapse
|
2
|
Xu Q, Liu C, Zhang Z, Cao Z, Liang M, Ye C, Lin Z, Deng X, Ye J, Bosch M, Chai L. Myo-inositol oxygenase CgMIOX3 alleviates S-RNase-induced inhibition of incompatible pollen tubes in pummelo. PLANT PHYSIOLOGY 2024; 196:856-869. [PMID: 38991562 DOI: 10.1093/plphys/kiae372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024]
Abstract
Pummelo (Citrus grandis L. Osbeck) exhibits S-RNase-based self-incompatibility (SI), during which S-RNase cytotoxicity inhibits pollen tubes in an S-haplotype-specific manner. The entry of S-RNase into self-pollen tubes triggers a series of reactions. However, these reactions are still poorly understood in pummelo. In the present study, we used S-RNases as baits to screen a pummelo pollen cDNA library and characterized a myo-inositol oxygenase (CgMIOX3) that physically interacts with S-RNases. CgMIOX3 is highly expressed in pummelo pollen tubes, and its downregulation leads to a reduction in pollen tube growth. Upon entering pollen tubes, S-RNases increase the expression of CgMIOX3 and enhance its activity by directly binding to it in an S-haplotype-independent manner. CgMIOX3 improves pollen tube growth under oxidative stress through ascorbic acid (AsA) accumulation and increases the length of self-pollen tubes. Furthermore, over-expression of CgMIOX3 increases the relative length of self-pollen tubes growing in the style of petunia (Petunia hybrida). This study provides intriguing insights into the pumelo SI system, revealing a regulatory mechanism mediated by CgMIOX3 that plays an important role in the resistance of pollen tubes to S-RNase cytotoxicity.
Collapse
Affiliation(s)
- Qiang Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenchen Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhezhong Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zonghong Cao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei Liang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changning Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zongcheng Lin
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EB, UK
| | - Lijun Chai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
3
|
Li L, Liu M, Bi H, Liu T. High-level production of Rhodiola rosea characteristic component rosavin from D-glucose and L-arabinose in engineered Escherichia coli. Metab Eng 2024; 82:274-285. [PMID: 38428730 DOI: 10.1016/j.ymben.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Rosavin is the characteristic component of Rhodiola rosea L., an important medicinal plant used widely in the world that has been reported to possess multiple biological activities. However, the endangered status of wild Rhodiola has limited the supply of rosavin. In this work, we successfully engineered an Escherichia coli strain to efficiently produce rosavin as an alternative production method. Firstly, cinnamate: CoA ligase from Hypericum calycinum, cinnamoyl-CoA reductase from Lolium perenne, and uridine diphosphate (UDP)-glycosyltransferase (UGT) from Bacillus subtilis (Bs-YjiC) were selected to improve the titer of rosin in E. coli. Subsequently, four UGTs from the UGT91R subfamily were identified to catalyze the formation of rosavin from rosin, with SlUGT91R1 from Solanum lycopersicum showing the highest activity level. Secondly, production of rosavin was achieved for the first time in E. coli by incorporating the SlUGT91R1 and UDP-arabinose pathway, including UDP-glucose dehydrogenase, UDP-xylose synthase, and UDP-xylose 4-epimerase, into the rosin-producing stain, and the titer reached 430.5 ± 91.4 mg/L. Thirdly, a two-step pathway derived from L-arabinose, composed of L-arabinokinase and UDP-sugar pyrophosphorylase, was developed in E. coli to further optimize the supply of the precursor UDP-arabinose. Furthermore, 1203.7 ± 32.1 mg/L of rosavin was produced from D-glucose and L-arabinose using shake-flask fermentation. Finally, the production of rosavin reached 7539.1 ± 228.7 mg/L by fed-batch fermentation in a 5-L bioreactor. Thus, the microbe-based production of rosavin shows great potential for commercialization. This work provides an effective strategy for the biosynthesis of other valuable natural products with arabinose-containing units from D-glucose and L-arabinose.
Collapse
Affiliation(s)
- Lijun Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Moshi Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huiping Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| | - Tao Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
4
|
Chen H, Zhang S, Li R, Peng G, Chen W, Rautengarten C, Liu M, Zhu L, Xiao Y, Song F, Ni J, Huang J, Wu A, Liu Z, Zhuang C, Heazlewood JL, Xie Y, Chu Z, Zhou H. BOTRYOID POLLEN 1 regulates ROS-triggered PCD and pollen wall development by controlling UDP-sugar homeostasis in rice. THE PLANT CELL 2023; 35:3522-3543. [PMID: 37352123 PMCID: PMC10473207 DOI: 10.1093/plcell/koad181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/16/2023] [Accepted: 06/01/2023] [Indexed: 06/25/2023]
Abstract
Uridine diphosphate (UDP)-sugars are important metabolites involved in the biosynthesis of polysaccharides and may be important signaling molecules. UDP-glucose 4-epimerase (UGE) catalyzes the interconversion between UDP-Glc and UDP-Gal, whose biological function in rice (Oryza sativa) fertility is poorly understood. Here, we identify and characterize the botryoid pollen 1 (bp1) mutant and show that BP1 encodes a UGE that regulates UDP-sugar homeostasis, thereby controlling the development of rice anthers. The loss of BP1 function led to massive accumulation of UDP-Glc and imbalance of other UDP-sugars. We determined that the higher levels of UDP-Glc and its derivatives in bp1 may induce the expression of NADPH oxidase genes, resulting in a premature accumulation of reactive oxygen species (ROS), thereby advancing programmed cell death (PCD) of anther walls but delaying the end of tapetal degradation. The accumulation of UDP-Glc as metabolites resulted in an abnormal degradation of callose, producing an adhesive microspore. Furthermore, the UDP-sugar metabolism pathway is not only involved in the formation of intine but also in the formation of the initial framework for extine. Our results reveal how UDP-sugars regulate anther development and provide new clues for cellular ROS accumulation and PCD triggered by UDP-Glc as a signaling molecule.
Collapse
Affiliation(s)
- Huiqiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Shuqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ruiqi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guoqing Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Weipan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Carsten Rautengarten
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Minglong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Liya Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yueping Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fengshun Song
- Key Laboratory of Rice Genetics Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Jinlong Ni
- Key Laboratory of Rice Genetics Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Jilei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Aimin Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Joshua L Heazlewood
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhizhan Chu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Thakur N, Chaturvedi S, Tiwari S. Wheat derived glucuronokinase as a potential target for regulating ascorbic acid and phytic acid content with increased root length under drought and ABA stresses in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111671. [PMID: 36931562 DOI: 10.1016/j.plantsci.2023.111671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/20/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Glucuronokinase (GlcAK) converts glucuronic acid into glucuronic acid-1-phosphate, which is then converted into UDP-glucuronic acid (UDP-GlcA) via myo-inositol oxygenase (MIOX) pathway. UDP-GlcA acts as a precursor in the synthesis of nucleotide-sugar moieties forming cell wall biomass. GlcAK being present at the bifurcation point between UDP-GlcA and ascorbic acid (AsA) biosyntheses, makes it necessary to study its role in plants. In this study, the three homoeologs of GlcAK gene from hexaploid wheat were overexpressed in Arabidopsis thaliana. The GlcAK overexpressing transgenic lines showed decreased contents of AsA and phytic acid (PA) as compared to control plants. Root length and seed germination analyses under abiotic stress (drought and abscisic acid) conditions revealed enhanced root length in transgenic lines as compared to control plants. These results indicate that the MIOX pathway might be contributing towards AsA biosynthesis as evident by the decreased AsA content in the GlcAK overexpressing transgenic Arabidopsis thaliana plants. Findings of the present study will enhance the understanding of the involvement of GlcAK gene in MIOX pathway and subsequent physiological effects in plants.
Collapse
Affiliation(s)
- Neha Thakur
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector-81, Mohali 140306, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Siddhant Chaturvedi
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector-81, Mohali 140306, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Siddharth Tiwari
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
6
|
Potential of engineering the myo-inositol oxidation pathway to increase stress resilience in plants. Mol Biol Rep 2022; 49:8025-8035. [PMID: 35294703 DOI: 10.1007/s11033-022-07333-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
Myo-inositol is one of the most abundant form of inositol. The myo-inositol (MI) serves as substrate to diverse biosynthesis pathways and hence it is conserved across life forms. The biosynthesis of MI is well studied in animals. Beyond biosynthesis pathway, implications of MI pathway and enzymes hold potential implications in plant physiology and crop improvement. Myo-inositol oxygenase (MIOX) enzyme catabolize MI into D-glucuronic acid (D-GlcUA). The MIOX enzyme family is well studied across few plants. More recently, the MI associated pathway's crosstalk with other important biosynthesis and stress responsive pathways in plants has drawn attention. The overall outcome from different plant species studied so far are very suggestive that MI derivatives and associated pathways could open new directions to explore stress responsive novel metabolic networks. There are evidences for upregulation of MI metabolic pathway genes, specially MIOX under different stress condition. We also found MIOX genes getting differentially expressed according to developmental and stress signals in Arabidopsis and wheat. In this review we try to highlight the missing links and put forward a tailored view over myo-inositol oxidation pathway and MIOX proteins.
Collapse
|
7
|
Althammer M, Regl C, Herburger K, Blöchl C, Voglas E, Huber CG, Tenhaken R. Overexpression of UDP-sugar pyrophosphorylase leads to higher sensitivity towards galactose, providing new insights into the mechanisms of galactose toxicity in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1416-1426. [PMID: 34913539 PMCID: PMC9306886 DOI: 10.1111/tpj.15638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 05/04/2023]
Abstract
Galactose toxicity (Gal-Tox) is a widespread phenomenon ranging from Escherichia coli to mammals and plants. In plants, the predominant pathway for the conversion of galactose into UDP-galactose (UDP-Gal) and UDP-glucose is catalyzed by the enzymes galactokinase, UDP-sugar pyrophosphorylase (USP) and UDP-galactose 4-epimerase. Galactose is a major component of cell wall polymers, glycolipids and glycoproteins; therefore, it becomes surprising that exogenous addition of galactose leads to drastic root phenotypes including cessation of primary root growth and induction of lateral root formation. Currently, little is known about galactose-mediated toxicity in plants. In this study, we investigated the role of galactose-containing metabolites like galactose-1-phosphate (Gal-1P) and UDP-Gal in Gal-Tox. Recently published data from mouse models suggest that a reduction of the Gal-1P level via an mRNA-based therapy helps to overcome Gal-Tox. To test this hypothesis in plants, we created Arabidopsis thaliana lines overexpressing USP from Pisum sativum. USP enzyme assays confirmed a threefold higher enzyme activity in the overexpression lines leading to a significant reduction of the Gal-1P level in roots. Interestingly, the overexpression lines are phenotypically more sensitive to the exogenous addition of galactose (0.5 mmol L-1 Gal). Nucleotide sugar analysis via high-performance liquid chromatography-mass spectrometry revealed highly elevated UDP-Gal levels in roots of seedlings grown on 1.5 mmol L-1 galactose versus 1.5 mmol L-1 sucrose. Analysis of plant cell wall glycans by comprehensive microarray polymer profiling showed a high abundance of antibody binding recognizing arabinogalactanproteins and extensins under Gal-feeding conditions, indicating that glycoproteins are a major target for elevated UDP-Gal levels in plants.
Collapse
Affiliation(s)
- Martina Althammer
- Department of BiosciencesMolecular Plant PhysiologyUniversity of SalzburgHellbrunnerstr. 34Salzburg5020Austria
| | - Christof Regl
- Department of BiosciencesBioanalytical Research LabsUniversity of SalzburgHellbrunnerstr. 34Salzburg5020Austria
| | - Klaus Herburger
- Department of Plant and Environmental SciencesSection for Plant GlycobiologyUniversity of CopenhagenFrederiksberg1871Denmark
| | - Constantin Blöchl
- Department of BiosciencesBioanalytical Research LabsUniversity of SalzburgHellbrunnerstr. 34Salzburg5020Austria
| | - Elena Voglas
- Department of BiosciencesMolecular Plant PhysiologyUniversity of SalzburgHellbrunnerstr. 34Salzburg5020Austria
| | - Christian G. Huber
- Department of BiosciencesBioanalytical Research LabsUniversity of SalzburgHellbrunnerstr. 34Salzburg5020Austria
| | - Raimund Tenhaken
- Department of BiosciencesMolecular Plant PhysiologyUniversity of SalzburgHellbrunnerstr. 34Salzburg5020Austria
| |
Collapse
|
8
|
Francisco FR, Aono AH, da Silva CC, Gonçalves PS, Scaloppi Junior EJ, Le Guen V, Fritsche-Neto R, Souza LM, de Souza AP. Unravelling Rubber Tree Growth by Integrating GWAS and Biological Network-Based Approaches. FRONTIERS IN PLANT SCIENCE 2021; 12:768589. [PMID: 34992619 PMCID: PMC8724537 DOI: 10.3389/fpls.2021.768589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/02/2021] [Indexed: 06/08/2023]
Abstract
Hevea brasiliensis (rubber tree) is a large tree species of the Euphorbiaceae family with inestimable economic importance. Rubber tree breeding programs currently aim to improve growth and production, and the use of early genotype selection technologies can accelerate such processes, mainly with the incorporation of genomic tools, such as marker-assisted selection (MAS). However, few quantitative trait loci (QTLs) have been used successfully in MAS for complex characteristics. Recent research shows the efficiency of genome-wide association studies (GWAS) for locating QTL regions in different populations. In this way, the integration of GWAS, RNA-sequencing (RNA-Seq) methodologies, coexpression networks and enzyme networks can provide a better understanding of the molecular relationships involved in the definition of the phenotypes of interest, supplying research support for the development of appropriate genomic based strategies for breeding. In this context, this work presents the potential of using combined multiomics to decipher the mechanisms of genotype and phenotype associations involved in the growth of rubber trees. Using GWAS from a genotyping-by-sequencing (GBS) Hevea population, we were able to identify molecular markers in QTL regions with a main effect on rubber tree plant growth under constant water stress. The underlying genes were evaluated and incorporated into a gene coexpression network modelled with an assembled RNA-Seq-based transcriptome of the species, where novel gene relationships were estimated and evaluated through in silico methodologies, including an estimated enzymatic network. From all these analyses, we were able to estimate not only the main genes involved in defining the phenotype but also the interactions between a core of genes related to rubber tree growth at the transcriptional and translational levels. This work was the first to integrate multiomics analysis into the in-depth investigation of rubber tree plant growth, producing useful data for future genetic studies in the species and enhancing the efficiency of the species improvement programs.
Collapse
Affiliation(s)
- Felipe Roberto Francisco
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Alexandre Hild Aono
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Carla Cristina da Silva
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Paulo S. Gonçalves
- Center of Rubber Tree and Agroforestry Systems, Agronomic Institute (IAC), Votuporanga, Brazil
| | | | - Vincent Le Guen
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Roberto Fritsche-Neto
- Department of Genetics, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Livia Moura Souza
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- São Francisco University (USF), Itatiba, Brazil
| | - Anete Pereira de Souza
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
9
|
Duan YF, Zhang C, Zhang M, Ye Y, Zhang KL, Chen MX, Chen L, Wang XR, Zhu FY. SWATH-MS based quantitive proteomics reveal regulatory metabolism and networks of androdioecy breeding system in Osmanthus fragrans. BMC PLANT BIOLOGY 2021; 21:468. [PMID: 34645403 PMCID: PMC8513349 DOI: 10.1186/s12870-021-03243-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/30/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND The fragrant flower plant Osmanthus fragrans has an extremely rare androdioecious breeding system displaying the occurrence of males and hermaphrodites in a single population, which occupies a crucial intermediate stage in the evolutionary transition between hermaphroditism and dioecy. However, the molecular mechanism of androdioecy plant is very limited and still largely unknown. RESULTS Here, we used SWATH-MS-based quantitative approach to study the proteome changes between male and hermaphroditic O. fragrans pistils. A total of 428 proteins of diverse functions were determined to show significant abundance changes including 210 up-regulated and 218 down-regulated proteins in male compared to hermaphroditic pistils. Functional categorization revealed that the differentially expressed proteins (DEPs) primarily distributed in the carbohydrate metabolism, secondary metabolism as well as signaling cascades. Further experimental analysis showed the substantial carbohydrates accumulation associated with promoted net photosynthetic rate and water use efficiency were observed in purplish red pedicel of hermaphroditic flower compared with green pedicel of male flower, implicating glucose metabolism serves as nutritional modulator for the differentiation of male and hermaphroditic flower. Meanwhile, the entire upregulation of secondary metabolism including flavonoids, isoprenoids and lignins seem to protect and maintain the male function in male flowers, well explaining important feature of androdioecy that aborted pistil of a male flower still has a male function. Furthermore, nine selected DEPs were validated via gene expression analysis, suggesting an extra layer of post-transcriptional regulation occurs during O. fragrans floral development. CONCLUSION Taken together, our findings represent the first SWATH-MS-based proteomic report in androdioecy plant O. fragrans, which reveal carbohydrate metabolism, secondary metabolism and post-transcriptional regulation contributing to the androdioecy breeding system and ultimately extend our understanding on genetic basis as well as the industrialization development of O. fragrans.
Collapse
Affiliation(s)
- Yi-Fan Duan
- College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, China
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Cheng Zhang
- College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, China
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Min Zhang
- College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, China
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yu Ye
- College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, China
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Kai-Lu Zhang
- College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, China
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Mo-Xian Chen
- College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, China
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Lin Chen
- College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, China
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xian-Rong Wang
- College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, China.
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Fu-Yuan Zhu
- College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, China.
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
10
|
Liu S, Zhong H, Wang Q, Liu C, Li T, Peng Z, Li Y, Zhang H, Liao J, Huang Y, Wang Z. Global Analysis of UDP Glucose Pyrophosphorylase (UDPGP) Gene Family in Plants: Conserved Evolution Involved in Cell Death. FRONTIERS IN PLANT SCIENCE 2021; 12:681719. [PMID: 34177996 PMCID: PMC8222925 DOI: 10.3389/fpls.2021.681719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/26/2021] [Indexed: 05/28/2023]
Abstract
UDP glucose pyrophosphorylase (UDPGP) family genes have been reported to play essential roles in cell death or individual survival. However, a systematic analysis on UDPGP gene family has not been performed yet. In this study, a total of 454 UDPGP proteins from 76 different species were analyzed. The analyses of the phylogenetic tree and orthogroups divided UDPGPs into three clades, including UDP-N-acetylglucosamine pyrophosphorylase (UAP), UDP-glucose pyrophosphorylase (UGP, containing UGP-A and UGP-B), and UDP-sugar pyrophosphorylase (USP). The evolutionary history of the UDPGPs indicated that the members of UAP, USP, and UGP-B were relatively conserved while varied in UGP-A. Homologous sequences of UGP-B and USP were found only in plants. The expression profile of UDPGP genes in Oryza sativa was mainly motivated under jasmonic acid (JA), abscisic acid (ABA), cadmium, and cold treatments, indicating that UDPGPs may play an important role in plant development and environment endurance. The key amino acids regulating the activity of UDPGPs were analyzed, and almost all of them were located in the NB-loop, SB-loop, or conserved motifs. Analysis of the natural variants of UDPGPs in rice revealed that only a few missense mutants existed in coding sequences (CDSs), and most of the resulting variations were located in the non-motif sites, indicating the conserved structure and function of UDPGPs in the evolution. Furthermore, alternative splicing may play a key role in regulating the activity of UDPGPs. The spatial structure prediction, enzymatic analysis, and transgenic verification of UAP isoforms illustrated that the loss of N- and C-terminal sequences did not affect the overall 3D structures, but the N- and C-terminal sequences are important for UAP genes to maintain their enzymatic activity. These results revealed a conserved UDPGP gene family and provided valuable information for further deep functional investigation of the UDPGP gene family in plants.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Hua Zhong
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qiang Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the People’s Republic of China, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang, China
| | - Caixiang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Ting Li
- Youth League Committee, Jiangxi Agricultural University, Nanchang, China
| | - Zhaohua Peng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hongyu Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the People’s Republic of China, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang, China
| | - Jianglin Liao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the People’s Republic of China, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang, China
| | - Yingjin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the People’s Republic of China, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang, China
| | - Zhaohai Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the People’s Republic of China, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
11
|
De Coninck T, Gistelinck K, Janse van Rensburg HC, Van den Ende W, Van Damme EJM. Sweet Modifications Modulate Plant Development. Biomolecules 2021; 11:756. [PMID: 34070047 PMCID: PMC8158104 DOI: 10.3390/biom11050756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Plant development represents a continuous process in which the plant undergoes morphological, (epi)genetic and metabolic changes. Starting from pollination, seed maturation and germination, the plant continues to grow and develops specialized organs to survive, thrive and generate offspring. The development of plants and the interplay with its environment are highly linked to glycosylation of proteins and lipids as well as metabolism and signaling of sugars. Although the involvement of these protein modifications and sugars is well-studied, there is still a long road ahead to profoundly comprehend their nature, significance, importance for plant development and the interplay with stress responses. This review, approached from the plants' perspective, aims to focus on some key findings highlighting the importance of glycosylation and sugar signaling for plant development.
Collapse
Affiliation(s)
- Tibo De Coninck
- Laboratory of Glycobiology & Biochemistry, Department of Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (T.D.C.); (K.G.)
| | - Koen Gistelinck
- Laboratory of Glycobiology & Biochemistry, Department of Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (T.D.C.); (K.G.)
| | - Henry C. Janse van Rensburg
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium; (H.C.J.v.R.); (W.V.d.E.)
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium; (H.C.J.v.R.); (W.V.d.E.)
| | - Els J. M. Van Damme
- Laboratory of Glycobiology & Biochemistry, Department of Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (T.D.C.); (K.G.)
| |
Collapse
|
12
|
Figueroa CM, Lunn JE, Iglesias AA. Nucleotide-sugar metabolism in plants: the legacy of Luis F. Leloir. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4053-4067. [PMID: 33948638 DOI: 10.1093/jxb/erab109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
This review commemorates the 50th anniversary of the Nobel Prize in Chemistry awarded to Luis F. Leloir 'for his discovery of sugar-nucleotides and their role in the biosynthesis of carbohydrates'. He and his co-workers discovered that activated forms of simple sugars, such as UDP-glucose and UDP-galactose, are essential intermediates in the interconversion of sugars. They elucidated the biosynthetic pathways for sucrose and starch, which are the major end-products of photosynthesis, and for trehalose. Trehalose 6-phosphate, the intermediate of trehalose biosynthesis that they discovered, is now a molecule of great interest due to its function as a sugar signalling metabolite that regulates many aspects of plant metabolism and development. The work of the Leloir group also opened the doors to an understanding of the biosynthesis of cellulose and other structural cell wall polysaccharides (hemicelluloses and pectins), and ascorbic acid (vitamin C). Nucleotide-sugars also serve as sugar donors for a myriad of glycosyltransferases that conjugate sugars to other molecules, including lipids, phytohormones, secondary metabolites, and proteins, thereby modifying their biological activity. In this review, we highlight the diversity of nucleotide-sugars and their functions in plants, in recognition of Leloir's rich and enduring legacy to plant science.
Collapse
Affiliation(s)
- Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional 168 km 0, 3000 Santa Fe,Argentina
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional 168 km 0, 3000 Santa Fe,Argentina
| |
Collapse
|
13
|
Lu Z, Jiang B, Zhao B, Mao X, Lu J, Jin B, Wang L. Liquid profiling in plants: identification and analysis of extracellular metabolites and miRNAs in pollination drops of Ginkgo biloba. TREE PHYSIOLOGY 2020; 40:1420-1436. [PMID: 32542386 DOI: 10.1093/treephys/tpaa073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
The pollination drop (PD), also known as an ovular secretion, is a critical feature of most wind-pollinated gymnosperms and function as an essential component of pollination systems. However, the metabolome and small RNAs of gymnosperm PDs are largely unknown. We employed gas chromatography-mass spectrometry to identify a total of 101 metabolites in Ginkgo biloba L. PDs. The most abundant metabolites were sugars (45.70%), followed by organic acids (15.94%) and alcohols (15.39%) involved in carbohydrate metabolism, glycine, serine and threonine metabolism. Through pollen culture of the PDs, we further demonstrated that the metabolic components of PDs are indispensable for pollen germination and growth; in particular, organic acids and fatty acids play defensive roles against microbial activity. In addition, we successfully constructed a small RNA library and detected 45 known and 550 novel miRNAs in G. biloba PDs. Interestingly, in a comparative analysis of miRNA expression between PDs and ovules, we found that most of the known miRNAs identified in PDs were also expressed in the ovules, implying that miRNAs in PDs may originate from ovules. Further, combining with potential target prediction, degradome validation and transcriptome sequencing, we identified that the interactions of several known miRNAs and their targets in PDs are involved in carbohydrate metabolism, hormone signaling and defense response pathways, consistent with the metabolomics results. Our results broaden the knowledge of metabolite profiling and potential functional roles in gymnosperm PDs and provide the first evidence of extracellular miRNA functions in ovular secretions from gymnosperms.
Collapse
Affiliation(s)
- Zhaogeng Lu
- College of Horticulture and Plant Protection, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
- Agricultural College, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Bei Jiang
- College of Horticulture and Plant Protection, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Beibei Zhao
- College of Horticulture and Plant Protection, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Xinyu Mao
- College of Horticulture and Plant Protection, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Jinkai Lu
- College of Horticulture and Plant Protection, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| |
Collapse
|
14
|
UDP-glucose 6-dehydrogenase knockout impairs migration and decreases in vivo metastatic ability of breast cancer cells. Cancer Lett 2020; 492:21-30. [PMID: 32768525 DOI: 10.1016/j.canlet.2020.07.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022]
Abstract
Dysregulated metabolism is a hallmark of cancer that supports tumor growth and metastasis. One understudied aspect of cancer metabolism is altered nucleotide sugar biosynthesis, which drives aberrant cell surface glycosylation known to support various aspects of cancer cell behavior including migration and signaling. We examined clinical association of nucleotide sugar pathway gene expression and found that UGDH, encoding UDP-glucose 6-dehydrogenase which catalyzes production of UDP-glucuronate, is associated with worse breast cancer patient survival. Knocking out the mouse homolog Ugdh in highly-metastatic 6DT1 breast cancer cells impaired migration ability without affecting in vitro proliferation. Further, Ugdh-KO resulted in significantly decreased metastatic capacity in vivo when the cells were orthotopically injected in syngeneic mice. Our experiments show that UDP-glucuronate biosynthesis is critical for metastasis in a mouse model of breast cancer.
Collapse
|
15
|
Althammer M, Blöchl C, Reischl R, Huber CG, Tenhaken R. Phosphoglucomutase Is Not the Target for Galactose Toxicity in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:167. [PMID: 32180781 PMCID: PMC7059798 DOI: 10.3389/fpls.2020.00167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/04/2020] [Indexed: 05/20/2023]
Abstract
Plants synthesize a number of different oligomeric or polymeric sugars containing galactose. During growth and development some of these carbohydrates are metabolized or remodeled releasing galactose as a breakdown product. All plants have established recycling pathways for such sugars, for which they seem to have a limited capacity to cope with. Exceeding these limits results in sugar toxicity, which is observed already at concentrations as low as 1 mmol·l-1 for galactose. The mechanism of galactose toxicity is poorly understood but it seems plausible that the enzymes involved in carbohydrate metabolism also might be the targets responsible for the adverse effects. Data from yeast and bacteria suggests that the enzyme phosphoglucomutase (PGM) is inhibited by galactose-1-phosphate. To test this hypothesis for plants we expressed recombinant cytosolic PGM3 from Arabidopsis in E. coli. Intriguingly, the enzyme was not inhibited by galactose-1-phosphate at physiological concentrations. Furthermore, PGM3 did not convert galactose-1-phosphate to galactose-6-phosphate, which was suggested as the inhibitory mode of action in yeast. In addition, metabolite levels in Arabidopsis roots were analyzed for their galactose-1-phosphate concentration by means of GC-MS. Seedlings grown on MS-media with sucrose contained less than 10 nmol·g FW-1 of galactose-1-phosphate. However, seedlings from plates, in which the sucrose was replaced by galactose, showed a strong increase of Gal-1-P to levels of up to 200 nmol·g FW-1.
Collapse
Affiliation(s)
- Martina Althammer
- Molecular Plant Physiology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Constantin Blöchl
- Bioanalytical Research Labs, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Roland Reischl
- Bioanalytical Research Labs, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Christian G. Huber
- Bioanalytical Research Labs, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Raimund Tenhaken
- Molecular Plant Physiology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| |
Collapse
|
16
|
OsmiR528 regulates rice-pollen intine formation by targeting an uclacyanin to influence flavonoid metabolism. Proc Natl Acad Sci U S A 2019; 117:727-732. [PMID: 31871204 PMCID: PMC6955233 DOI: 10.1073/pnas.1810968117] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The intine layer of pollen is essential for pollen grain maturation and pollen tube germination. Abnormal intine development causes pollen sterility and affects seed-setting; therefore, the identification of regulators of intine formation is important for elucidating the mechanisms of pollen formation and function, especially for crop breeding. Here, we report a microRNA, OsmiR528, which regulates pollen intine formation and male fertility in rice (Oryza sativa). OsmiR528 directly targets the uclacyanin family member OsUCL23 to regulate flavonoid metabolism and pollen intine development. This study revealed the function of OsmiR528 and an uclacyanin in pollen development. The intine, the inner layer of the pollen wall, is essential for the normal development and germination of pollen. However, the composition and developmental regulation of the intine in rice (Oryza sativa) remain largely unknown. Here, we identify a microRNA, OsmiR528, which regulates the formation of the pollen intine and thus male fertility in rice. The mir528 knockout mutant aborted pollen development at the late binucleate pollen stage, significantly decreasing the seed-setting rate. We further demonstrated that OsmiR528 affects pollen development by directly targeting the uclacyanin gene OsUCL23 (encoding a member of the plant-specific blue copper protein family of phytocyanins) and regulating intine deposition. OsUCL23 overexpression phenocopied the mir528 mutant. The OsUCL23 protein localized in the prevacuolar compartments (PVCs) and multivesicular bodies (MVBs). We further revealed that OsUCL23 interacts with a member of the proton-dependent oligopeptide transport (POT) family of transporters to regulate various metabolic components, especially flavonoids. We propose a model in which OsmiR528 regulates pollen intine formation by directly targeting OsUCL23 and in which OsUCL23 interacts with the POT protein on the PVCs and MVBs to regulate the production of metabolites during pollen development. The study thus reveals the functions of OsmiR528 and an uclacyanin during pollen development.
Collapse
|
17
|
Pedreschi R, Uarrota V, Fuentealba C, Alvaro JE, Olmedo P, Defilippi BG, Meneses C, Campos-Vargas R. Primary Metabolism in Avocado Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:795. [PMID: 31293606 PMCID: PMC6606701 DOI: 10.3389/fpls.2019.00795] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/31/2019] [Indexed: 05/25/2023]
Abstract
Avocado (Persea americana Mill) is rich in a variety of essential nutrients and phytochemicals; thus, consumption has drastically increased in the last 10 years. Avocado unlike other fruit is characterized by oil accumulation during growth and development and presents a unique carbohydrate pattern. There are few previous and current studies related to primary metabolism. The fruit is also quite unique since it contains large amounts of C7 sugars (mannoheptulose and perseitol) acting as transportable and storage sugars and as potential regulators of fruit ripening. These C7 sugars play a central role during fruit growth and development, but still confirmation is needed regarding the biosynthetic routes and the physiological function during growth and development of avocado fruit. Relatively recent transcriptome studies on avocado mesocarp during development and ripening have revealed that most of the oil is synthesized during early stages of development and that oil synthesis is halted when the fruit is harvested (pre-climacteric stage). Most of the oil is accumulated in the form of triacylglycerol (TAG) representing 60-70% in dry basis of the mesocarp tissue. During early stages of fruit development, high expression of transcripts related to fatty acid and TAG biosynthesis has been reported and downregulation of same genes in more advanced stages but without cessation of the process until harvest. The increased expression of fatty acid key genes and regulators such as PaWRI1, PaACP4-2, and PapPK-β-1 has also been reported to be consistent with the total fatty acid increase and fatty acid composition during avocado fruit development. During postharvest, there is minimal change in the fatty acid composition of the fruit. Almost inexistent information regarding the role of organic acid and amino acid metabolism during growth, development, and ripening of avocado is available. Cell wall metabolism understanding in avocado, even though crucial in terms of fruit quality, still presents severe gaps regarding the interactions between cell wall remodeling, fruit development, and postharvest modifications.
Collapse
Affiliation(s)
- Romina Pedreschi
- Laboratorio de Fisiología Postcosecha y Bioquímica de Alimentos, Facultad de Ciencias Agronómicas y de los Alimentos, Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Virgilio Uarrota
- Laboratorio de Fisiología Postcosecha y Bioquímica de Alimentos, Facultad de Ciencias Agronómicas y de los Alimentos, Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Claudia Fuentealba
- Laboratorio de Fisiología Postcosecha y Bioquímica de Alimentos, Facultad de Ciencias Agronómicas y de los Alimentos, Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Juan E. Alvaro
- Laboratorio de Fisiología Postcosecha y Bioquímica de Alimentos, Facultad de Ciencias Agronómicas y de los Alimentos, Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Patricio Olmedo
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andres Bello, Santiago, Chile
| | - Bruno G. Defilippi
- Unidad de Postcosecha, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago, Chile
| | - Claudio Meneses
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andres Bello, Santiago, Chile
| | - Reinaldo Campos-Vargas
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
18
|
Zhou AP, Zong D, Gan PH, Zou XL, Fei X, Zhong YY, He CZ. Physiological Analysis and Transcriptome Profiling of Inverted Cuttings of Populus yunnanensis Reveal That Cell Wall Metabolism Plays a Crucial Role in Responding to Inversion. Genes (Basel) 2018; 9:E572. [PMID: 30477186 PMCID: PMC6316517 DOI: 10.3390/genes9120572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 01/24/2023] Open
Abstract
Inverted cuttings of Populus yunnanensis remain alive by rooting from the original morphological apex and sprouting from the base, but the lateral branches exhibit less vigorous growth than those of the upright plant. In this study, we examined the changes in hormone contents, oxidase activities, and transcriptome profiles between upright and inverted cuttings of P. yunnanensis. The results showed that the indole-3-acetic acid (IAA) and gibberellic acid (GA₃) contents were significantly lower in inverted cuttings than in upright cuttings only in the late growth period (September and October), while the abscisic acid (ABA) level was always similar between the two direction types. The biosynthesis of these hormones was surprisingly unrelated to the inversion of P. yunnanensis during the vegetative growth stage (July and August). Increased levels of peroxidases (PODs) encoded by 13 differentially expressed genes (DEGs) served as lignification promoters that protected plants against oxidative stress. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that most DEGs (107) were related to carbohydrate metabolism. Furthermore, altered activities of uridine diphosphate (UDP)-sugar pyrophosphorylase (USP, 15 DEGs) for nucleotide sugars, pectin methylesterase (PME, 7 DEGs) for pectin, and POD (13 DEGs) for lignin were important factors in the response of the trees to inversion, and these enzymes are all involved cell wall metabolism.
Collapse
Affiliation(s)
- An-Pei Zhou
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, China.
| | - Dan Zong
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, China.
| | - Pei-Hua Gan
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, China.
| | - Xin-Lian Zou
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, China.
| | - Xuan Fei
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, China.
| | - Yuan-Yuan Zhong
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, China.
| | - Cheng-Zhong He
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, China.
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
19
|
Chang Z, Jin M, Yan W, Chen H, Qiu S, Fu S, Xia J, Liu Y, Chen Z, Wu J, Tang X. The ATP-binding cassette (ABC) transporter OsABCG3 is essential for pollen development in rice. RICE (NEW YORK, N.Y.) 2018; 11:58. [PMID: 30311098 PMCID: PMC6181869 DOI: 10.1186/s12284-018-0248-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/14/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND The pollen wall, which protects male gametophyte against various stresses and facilitates pollination, is essential for successful reproduction in flowering plants. The pollen wall consists of gametophyte-derived intine and sporophyte-derived exine. From outside to inside of exine are tectum, bacula, nexine I and nexine II layers. How these structural layers are formed has been under extensive studies, but the molecular mechanisms remain obscure. RESULTS Here we identified two osabcg3 allelic mutants and demonstrated that OsABCG3 was required for pollen development in rice. OsABCG3 encodes a half-size ABCG transporter localized on the plasma membrane. It was mainly expressed in anther when exine started to form. Loss-function of OsABCG3 caused abnormal degradation of the tapetum. The mutant pollen lacked the nexine II and intine layers, and shriveled without cytoplasm. The expression of some genes required for pollen wall formation was examined in osabcg3 mutants. The mutation did not alter the expression of the regulatory genes and lipid metabolism genes, but altered the expression of lipid transport genes. CONCLUSIONS Base on the genetic and cytological analyses, OsABCG3 was proposed to transport the tapetum-produced materials essential for pollen wall formation. This study provided a new perspective to the genetic regulation of pollen wall development.
Collapse
Affiliation(s)
- Zhenyi Chang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107 China
| | - Mingna Jin
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107 China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107 China
- School of Life Sciences, Capital Normal University, Beijing, 10048 China
| | - Hui Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107 China
| | - Shijun Qiu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107 China
| | - Shan Fu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 53004 China
| | - Jixing Xia
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 53004 China
| | - Yuchen Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107 China
| | - Zhufeng Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107 China
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107 China
| |
Collapse
|
20
|
Beauvoit B, Belouah I, Bertin N, Cakpo CB, Colombié S, Dai Z, Gautier H, Génard M, Moing A, Roch L, Vercambre G, Gibon Y. Putting primary metabolism into perspective to obtain better fruits. ANNALS OF BOTANY 2018; 122:1-21. [PMID: 29718072 PMCID: PMC6025238 DOI: 10.1093/aob/mcy057] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/29/2017] [Indexed: 05/18/2023]
Abstract
Background One of the key goals of fruit biology is to understand the factors that influence fruit growth and quality, ultimately with a view to manipulating them for improvement of fruit traits. Scope Primary metabolism, which is not only essential for growth but is also a major component of fruit quality, is an obvious target for improvement. However, metabolism is a moving target that undergoes marked changes throughout fruit growth and ripening. Conclusions Agricultural practice and breeding have successfully improved fruit metabolic traits, but both face the complexity of the interplay between development, metabolism and the environment. Thus, more fundamental knowledge is needed to identify further strategies for the manipulation of fruit metabolism. Nearly two decades of post-genomics approaches involving transcriptomics, proteomics and/or metabolomics have generated a lot of information about the behaviour of fruit metabolic networks. Today, the emergence of modelling tools is providing the opportunity to turn this information into a mechanistic understanding of fruits, and ultimately to design better fruits. Since high-quality data are a key requirement in modelling, a range of must-have parameters and variables is proposed.
Collapse
Affiliation(s)
| | - Isma Belouah
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | | | | | - Sophie Colombié
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - Zhanwu Dai
- UMR 1287 EGFV, INRA, Univ. Bordeaux, Bordeaux Sci Agro, F-Villenave d’Ornon, France
| | | | | | - Annick Moing
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - Léa Roch
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | | | - Yves Gibon
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| |
Collapse
|
21
|
Wang J, Greenway H, Li S, Wei M, Polizzi SJ, Wang PG. Facile and Stereo-Selective Synthesis of UDP-α-D-xylose and UDP-β-L-arabinose Using UDP-Sugar Pyrophosphorylase. Front Chem 2018; 6:163. [PMID: 29876343 PMCID: PMC5974040 DOI: 10.3389/fchem.2018.00163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/23/2018] [Indexed: 11/13/2022] Open
Abstract
A novel synthesis of nucleotide sugars was conducted to prepare UDP-α-D-xylose and UDP-β-L-arabinose without utilizing protection strategies or advanced purification techniques. Sugar-1-phosphates of D-xylose and L-arabinose were synthesized from their β-glycosylsulfonylhydrazides and evaluated as substrates for recombinant UDP-sugar pyrophosphorylases from Arabidopsis thaliana or Bifidobacterium infantis to furnish the biologically active nucleotide. The facile, three-step procedure takes advantage of substrate diversity available through chemical synthesis followed by the selectivity of enzyme catalysis. This approach increases the substrate scope of enzymatic preparation and expands access to stereopure nucleotide sugars on preparative scale. Increased production of both sugars has implications for glycoengineering and glycan production using glycosyltransferases.
Collapse
Affiliation(s)
- JiaJia Wang
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Science, Henan University, Kaifeng, China
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| | - Harmon Greenway
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
- Chemily, LLC, Atlanta, GA, United States
| | - Shanshan Li
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| | - Mohui Wei
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| | | | - Peng G. Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
22
|
Rottmann T, Klebl F, Schneider S, Kischka D, Rüscher D, Sauer N, Stadler R. Sugar Transporter STP7 Specificity for l-Arabinose and d-Xylose Contrasts with the Typical Hexose Transporters STP8 and STP12. PLANT PHYSIOLOGY 2018; 176:2330-2350. [PMID: 29311272 PMCID: PMC5841717 DOI: 10.1104/pp.17.01493] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/29/2017] [Indexed: 05/08/2023]
Abstract
The controlled distribution of sugars between assimilate-exporting source tissues and sugar-consuming sink tissues is a key element for plant growth and development. Monosaccharide transporters of the SUGAR TRANSPORT PROTEIN (STP) family contribute to the uptake of sugars into sink cells. Here, we report on the characterization of STP7, STP8, and STP12, three previously uncharacterized members of this family in Arabidopsis (Arabidopsis thaliana). Heterologous expression in yeast (Saccharomyces cerevisiae) revealed that STP8 and STP12 catalyze the high-affinity proton-dependent uptake of glucose and also accept galactose and mannose. STP12 additionally transports xylose. STP8 and STP12 are highly expressed in reproductive organs, where their protein products might contribute to sugar uptake into the pollen tube and the embryo sac. stp8.1 and stp12.1 T-DNA insertion lines developed normally, which may point toward functional redundancy with other STPs. In contrast to all other STPs, STP7 does not transport hexoses but is specific for the pentoses l-arabinose and d-xylose. STP7-promoter-reporter gene plants showed an expression of STP7 especially in tissues with high cell wall turnover, indicating that STP7 might contribute to the uptake and recycling of cell wall sugars. Uptake analyses with radioactive l-arabinose revealed that 11 other STPs are able to transport l-arabinose with high affinity. Hence, functional redundancy might explain the missing-mutant phenotype of two stp7 T-DNA insertion lines. Together, these data complete the characterization of the STP family and present the STPs as new l-arabinose transporters for potential biotechnological applications.
Collapse
Affiliation(s)
- Theresa Rottmann
- Molecular Plant Physiology, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Franz Klebl
- Molecular Plant Physiology, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Sabine Schneider
- Molecular Plant Physiology, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Dominik Kischka
- Molecular Plant Physiology, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - David Rüscher
- Molecular Plant Physiology, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Norbert Sauer
- Molecular Plant Physiology, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Ruth Stadler
- Molecular Plant Physiology, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
23
|
Seifert GJ. Mad moves of the building blocks - nucleotide sugars find unexpected paths into cell walls. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:905-907. [PMID: 29796610 PMCID: PMC6019018 DOI: 10.1093/jxb/ery026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Georg J Seifert
- University of Natural Resources and Life Science, BOKU Vienna, Department of Applied Genetics and Cell Biology, Vienna, Austria
| |
Collapse
|
24
|
Barnes WJ, Anderson CT. Release, Recycle, Rebuild: Cell-Wall Remodeling, Autodegradation, and Sugar Salvage for New Wall Biosynthesis during Plant Development. MOLECULAR PLANT 2018; 11:31-46. [PMID: 28859907 DOI: 10.1016/j.molp.2017.08.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 05/20/2023]
Abstract
Plant cell walls contain elaborate polysaccharide networks and regulate plant growth, development, mechanics, cell-cell communication and adhesion, and defense. Despite conferring rigidity to support plant structures, the cell wall is a dynamic extracellular matrix that is modified, reorganized, and degraded to tightly control its properties during growth and development. Far from being a terminal carbon sink, many wall polymers can be degraded and recycled by plant cells, either via direct re-incorporation by transglycosylation or via internalization and metabolic salvage of wall-derived sugars to produce new precursors for wall synthesis. However, the physiological and metabolic contributions of wall recycling to plant growth and development are largely undefined. In this review, we discuss long-standing and recent evidence supporting the occurrence of cell-wall recycling in plants, make predictions regarding the developmental processes to which wall recycling might contribute, and identify outstanding questions and emerging experimental tools that might be used to address these questions and enhance our understanding of this poorly characterized aspect of wall dynamics and metabolism.
Collapse
Affiliation(s)
- William J Barnes
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
25
|
Decker D, Öberg C, Kleczkowski LA. Identification and characterization of inhibitors of UDP-glucose and UDP-sugar pyrophosphorylases for in vivo studies. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1093-1107. [PMID: 28273406 DOI: 10.1111/tpj.13531] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/02/2017] [Accepted: 02/23/2017] [Indexed: 05/08/2023]
Abstract
UDP-sugars serve as ultimate precursors in hundreds of glycosylation reactions (e.g. for protein and lipid glycosylation, synthesis of sucrose, cell wall polysaccharides, etc.), underlying an important role of UDP-sugar-producing enzymes in cellular metabolism. However, genetic studies on mechanisms of UDP-sugar formation were frequently hampered by reproductive impairment of the resulting mutants, making it difficult to assess an in vivo role of a given enzyme. Here, a chemical library containing 17 500 compounds was separately screened against purified UDP-glucose pyrophosphorylase (UGPase) and UDP-sugar pyrophosphorylase (USPase), both enzymes representing the primary mechanisms of UDP-sugar formation. Several compounds have been identified which, at 50 μm, exerted at least 50% inhibition of the pyrophosphorylase activity. In all cases, both UGPase and USPase activities were inhibited, probably reflecting common structural features of active sites of these enzymes. One of these compounds (cmp #6), a salicylamide derivative, was found as effective inhibitor of Arabidopsis pollen germination and Arabidopsis cell culture growth. Hit optimization on cmp #6 yielded two analogs (cmp #6D and cmp #6D2), which acted as uncompetitive inhibitors against both UGPase and USPase, and were strong inhibitors in the pollen test, with apparent inhibition constants of less than 1 μm. Their effects on pollen germination were relieved by addition of UDP-glucose and UDP-galactose, suggesting that the inhibitors targeted UDP-sugar formation. The results suggest that cmp #6 and its analogs may represent useful tools to study in vivo roles of the pyrophosphorylases, helping to overcome the limitations of genetic approaches.
Collapse
Affiliation(s)
- Daniel Decker
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, Umeå, 90187, Sweden
| | - Christopher Öberg
- Department of Chemistry, Laboratories for Chemical Biology Umeå, Umeå University, Umeå, 90187, Sweden
| | - Leszek A Kleczkowski
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, Umeå, 90187, Sweden
| |
Collapse
|
26
|
Zhu Y, Chen X. Expanding the Scope of Metabolic Glycan Labeling in Arabidopsis thaliana. Chembiochem 2017; 18:1286-1296. [PMID: 28383803 DOI: 10.1002/cbic.201700069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Indexed: 12/26/2022]
Abstract
Metabolic glycan labeling (MGL) has gained wide utility and has become a useful tool for probing glycosylation in living systems. For the past three decades, the development and application of MGL have mostly focused on animal glycosylation. Recently, exploiting MGL for studying plant glycosylation has gained interest. Here, we describe a systematic evaluation of MGL for fluorescence imaging of root glycans in Arabidopsis thaliana. Nineteen monosaccharide analogues containing a bioorthogonal group (azide, alkyne, or cyclopropene) were synthesized and evaluated for metabolic incorporation into root glycans. Among these unnatural sugars, 14 (including three new compounds) were evaluated in plants for the first time. Our results showed that five unnatural sugars metabolically labeled root glycans efficiently, and enabled fluorescence imaging by bioorthogonal conjugation with fluorophores. We optimized the experimental procedures for MGL in Arabidopsis. Finally, distinct distribution patterns of the newly synthesized glycans were observed along the root developmental zones, thus indicating regulated biosynthesis of glycans during root development. We envision that MGL will find broad applications in plant glycobiology.
Collapse
Affiliation(s)
- Yuntao Zhu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center and, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
27
|
The elaborate route for UDP-arabinose delivery into the Golgi of plants. Proc Natl Acad Sci U S A 2017; 114:4261-4266. [PMID: 28373556 DOI: 10.1073/pnas.1701894114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In plants, L-arabinose (Ara) is a key component of cell wall polymers, glycoproteins, as well as flavonoids, and signaling peptides. Whereas the majority of Ara found in plant glycans occurs as a furanose ring (Araf), the activated precursor has a pyranose ring configuration (UDP-Arap). The biosynthesis of UDP-Arap mainly occurs via the epimerization of UDP-xylose (UDP-Xyl) in the Golgi lumen. Given that the predominant Ara form found in plants is Araf, UDP-Arap must exit the Golgi to be interconverted into UDP-Araf by UDP-Ara mutases that are located outside on the cytosolic surface of the Golgi. Subsequently, UDP-Araf must be transported back into the lumen. This step is vital because glycosyltransferases, the enzymes mediating the glycosylation reactions, are located within the Golgi lumen, and UDP-Arap, synthesized within the Golgi, is not their preferred substrate. Thus, the transport of UDP-Araf into the Golgi is a prerequisite. Although this step is critical for cell wall biosynthesis and the glycosylation of proteins and signaling peptides, the identification of these transporters has remained elusive. In this study, we present data demonstrating the identification and characterization of a family of Golgi-localized UDP-Araf transporters in Arabidopsis The application of a proteoliposome-based transport assay revealed that four members of the nucleotide sugar transporter (NST) family can efficiently transport UDP-Araf in vitro. Subsequent analysis of mutant lines affected in the function of these NSTs confirmed their role as UDP-Araf transporters in vivo.
Collapse
|
28
|
Decker D, Kleczkowski LA. Substrate Specificity and Inhibitor Sensitivity of Plant UDP-Sugar Producing Pyrophosphorylases. FRONTIERS IN PLANT SCIENCE 2017; 8:1610. [PMID: 28970843 PMCID: PMC5609113 DOI: 10.3389/fpls.2017.01610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/04/2017] [Indexed: 05/08/2023]
Abstract
UDP-sugars are essential precursors for glycosylation reactions producing cell wall polysaccharides, sucrose, glycoproteins, glycolipids, etc. Primary mechanisms of UDP sugar formation involve the action of at least three distinct pyrophosphorylases using UTP and sugar-1-P as substrates. Here, substrate specificities of barley and Arabidopsis (two isozymes) UDP-glucose pyrophosphorylases (UGPase), Arabidopsis UDP-sugar pyrophosphorylase (USPase) and Arabidopsis UDP-N-acetyl glucosamine pyrophosphorylase2 (UAGPase2) were investigated using a range of sugar-1-phosphates and nucleoside-triphosphates as substrates. Whereas all the enzymes preferentially used UTP as nucleotide donor, they differed in their specificity for sugar-1-P. UGPases had high activity with D-Glc-1-P, but could also react with Fru-1-P and Fru-2-P (Km values over 10 mM). Contrary to an earlier report, their activity with Gal-1-P was extremely low. USPase reacted with a range of sugar-1-phosphates, including D-Glc-1-P, D-Gal-1-P, D-GalA-1-P (Km of 1.3 mM), β-L-Ara-1-P and α-D-Fuc-1-P (Km of 3.4 mM), but not β-L-Fuc-1-P. In contrast, UAGPase2 reacted only with D-GlcNAc-1-P, D-GalNAc-1-P (Km of 1 mM) and, to some extent, D-Glc-1-P (Km of 3.2 mM). Generally, different conformations/substituents at C2, C4, and C5 of the pyranose ring of a sugar were crucial determinants of substrate specificity of a given pyrophosphorylase. Homology models of UDP-sugar binding to UGPase, USPase and UAGPase2 revealed more common amino acids for UDP binding than for sugar binding, reflecting differences in substrate specificity of these proteins. UAGPase2 was inhibited by a salicylate derivative that was earlier shown to affect UGPase and USPase activities, consistent with a common structural architecture of the three pyrophosphorylases. The results are discussed with respect to the role of the pyrophosphorylases in sugar activation for glycosylated end-products.
Collapse
|
29
|
Engelsdorf T, Will C, Hofmann J, Schmitt C, Merritt BB, Rieger L, Frenger MS, Marschall A, Franke RB, Pattathil S, Voll LM. Cell wall composition and penetration resistance against the fungal pathogen Colletotrichum higginsianum are affected by impaired starch turnover in Arabidopsis mutants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:701-713. [PMID: 28204541 PMCID: PMC5441917 DOI: 10.1093/jxb/erw434] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Penetration resistance represents the first level of plant defense against phytopathogenic fungi. Here, we report that the starch-deficient Arabidopsis thaliana phosphoglucomutase (pgm) mutant has impaired penetration resistance against the hemibiotrophic fungus Colletotrichum higginsianum. We could not determine any changes in leaf cutin and epicuticular wax composition or indolic glucosinolate levels, but detected complex alterations in the cell wall monosaccharide composition of pgm. Notably, other mutants deficient in starch biosynthesis (adg1) or mobilization (sex1) had similarly affected cell wall composition and penetration resistance. Glycome profiling analysis showed that both overall cell wall polysaccharide extractability and relative extractability of specific pectin and xylan epitopes were affected in pgm, suggesting extensive structural changes in pgm cell walls. Screening of mutants with alterations in content or modification of specific cell wall monosaccharides indicated an important function of pectic polymers for penetration resistance and hyphal growth of C. higginsianum during the biotrophic interaction phase. While mutants with affected pectic rhamnogalacturonan-I (mur8) were hypersusceptible, penetration frequency and morphology of fungal hyphae were impaired on pmr5 pmr6 mutants with increased pectin levels. Our results reveal a strong impact of starch metabolism on cell wall composition and suggest a link between carbohydrate availability, cell wall pectin and penetration resistance.
Collapse
Affiliation(s)
- Timo Engelsdorf
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Cornelia Will
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Jörg Hofmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Christine Schmitt
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Brian B Merritt
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - Leonie Rieger
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Marc S Frenger
- Universität Bonn, Institute for Cellular and Molecular Botany, Department of Ecophysiology, Kirschallee 1, Bonn, Germany
| | - André Marschall
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
- Technische Hochschule Nürnberg Georg-Simon Ohm, Nürnberg, Germany
| | - Rochus B Franke
- Universität Bonn, Institute for Cellular and Molecular Botany, Department of Ecophysiology, Kirschallee 1, Bonn, Germany
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - Lars M Voll
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| |
Collapse
|
30
|
Xu HH, Liu SJ, Song SH, Wang WQ, Møller IM, Song SQ. Proteome changes associated with dormancy release of Dongxiang wild rice seeds. JOURNAL OF PLANT PHYSIOLOGY 2016; 206:68-86. [PMID: 27697673 DOI: 10.1016/j.jplph.2016.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/20/2016] [Accepted: 08/28/2016] [Indexed: 06/06/2023]
Abstract
Seed dormancy provides optimum timing for seed germination and subsequent seedling growth, but the mechanism of seed dormancy is still poorly understood. Here, we used Dongxiang wild rice (DXWR) seeds to investigate the dormancy behavior and the differentially changed proteome in embryo and endosperm during dormancy release. DXWR seed dormancy was caused by interaction of embryo and its surrounding structure, and was an intermediate physiological dormancy. During seed dormancy release, a total of 109 and 97 protein spots showed significant change in abundance and were successfully identified in embryo and endosperm, respectively. As a result of dormancy release, the abundance of nine proteins involved in storage protein, cell defense and rescue and energy changed in the same way in both embryo and endosperm, while 67 and 49 protein spots changed differentially in embryo and endosperm, respectively. Dormancy release of DXWR seeds was closely associated with degradation of storage proteins in both embryo and endosperm. At the same time, the abundance of proteins involved in metabolism, glycolysis and TCA cycle, cell growth and division, protein synthesis and destination and signal transduction increased in embryos while staying constant or decreasing in endosperms.
Collapse
Affiliation(s)
- Heng-Heng Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shu-Jun Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shun-Hua Song
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wei-Qing Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Song-Quan Song
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
31
|
Nazemof N, Couroux P, Xing T, Robert LS. Proteomic analysis of the mature Brassica stigma reveals proteins with diverse roles in vegetative and reproductive development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:51-58. [PMID: 27457983 DOI: 10.1016/j.plantsci.2016.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 06/06/2023]
Abstract
The stigma, the specialized apex of the Brassicaceae gynoecium, plays a role in pollen capture, discrimination, hydration, germination, and guidance. Despite this crucial role in reproduction, the global proteome underlying Brassicaceae stigma development and function remains largely unknown. As a contribution towards the characterization of the Brassicaceae dry stigma global proteome, more than 2500 Brassica napus mature stigma proteins were identified using three different gel-based proteomics approaches. Most stigma proteins participated in Metabolic Processes, Responses to Stimulus or Stress, Cellular or Developmental Processes, and Transport. The stigma was found to express a wide variety of proteins with demonstrated roles in cellular and organ development including proteins known to be involved in cellular expansion and morphogenesis, embryo development, as well as gynoecium and stigma development. Comparisons to a corresponding proteome from a very morphologically different Poaceae dry stigma showed a very similar distribution of proteins among different functional categories, but also revealed evident distinctions in protein composition especially in glucosinolate and carotenoid metabolism, photosynthesis, and self-incompatibility. To our knowledge, this study reports the largest Brassicaceae stigma protein dataset described to date.
Collapse
Affiliation(s)
- Nazila Nazemof
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada; Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, ON, Canada.
| | - Philippe Couroux
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada.
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, ON, Canada.
| | - Laurian S Robert
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada.
| |
Collapse
|
32
|
Kotake T, Yamanashi Y, Imaizumi C, Tsumuraya Y. Metabolism of L-arabinose in plants. JOURNAL OF PLANT RESEARCH 2016; 129:781-792. [PMID: 27220955 PMCID: PMC5897480 DOI: 10.1007/s10265-016-0834-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/31/2016] [Indexed: 05/07/2023]
Abstract
L-Arabinose (L-Ara) is a plant-specific sugar accounting for 5-10 % of cell wall saccharides in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). L-Ara occurs in pectic arabinan, rhamnogalacturonan II, arabinoxylan, arabinogalactan-protein (AGP), and extensin in the cell walls, as well as in glycosylated signaling peptides like CLAVATA3 and small glycoconjugates such as quercetin 3-O-arabinoside. This review focuses on recent advances towards understanding the generation of L-Ara and the metabolism of L-Ara-containing molecules in plants.
Collapse
Affiliation(s)
- Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan.
| | - Yukiko Yamanashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Chiemi Imaizumi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Yoichi Tsumuraya
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| |
Collapse
|
33
|
Behmüller R, Kavkova E, Düh S, Huber CG, Tenhaken R. The role of arabinokinase in arabinose toxicity in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:376-90. [PMID: 27145098 DOI: 10.1111/tpj.13206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/22/2016] [Accepted: 04/27/2016] [Indexed: 05/16/2023]
Abstract
Plant cell wall polymers are synthesized by glycosyltransferases using nucleotide sugars as substrates. Most UDP-sugars are synthesized from UDP-glucose via de novo pathways but salvage pathways work in parallel to recycle sugars, which have been released during cell wall polymer and glycoprotein turnover. Here we report on the cloning and biochemical analysis of two arabinokinases in Arabidopsis. Arabinokinase is a 100 kDa protein located in the cytosol with a putative N-terminal glycosyltransferase domain and a C-terminal sugar-1-kinase domain. This unique structure is highly conserved in the plant kingdom. Arabinokinase has a high affinity for l-arabinose, which is the only sugar substrate of this GHMP (galactose; homoserine; mevalonate; phosphomevalonate) kinase. Plants that were knocked-out for arabinokinase and the previously described ara1-1 mutant were characterized. The ARA1-1 mutant form of the enzyme carries a point mutation in an α-helix. The mutation is close to the substrate binding site and changes the Km value for arabinose from 80 μm in the wild type to 17 000 μm in ARA1-1. The previous arabinose toxicity explanation is challenged by knockout plants in arabinokinase that accumulate higher levels of arabinose but do not show signs of arabinose toxicity. Analysis of marker genes from sugar signalling pathways (SnRK1 and Tor) suggest that ara1-1 misinterprets its carbon energy status. Although glucose is present in ara1-1 similar to wild type levels, it constitutively changes gene expression as typically found in wild type plants only under starvation conditions. Furthermore, ara1-1 shows increased expression of marker genes for programmed cell death as found in other lesion mimic mutants.
Collapse
Affiliation(s)
- Robert Behmüller
- Division of Plant Physiology, Department of Cell Biology, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
- Division of Chemistry and Bioanalytics, Department of Molecular Biology, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Eva Kavkova
- Division of Plant Physiology, Department of Cell Biology, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Stefanie Düh
- Division of Plant Physiology, Department of Cell Biology, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Christian G Huber
- Division of Chemistry and Bioanalytics, Department of Molecular Biology, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Raimund Tenhaken
- Division of Plant Physiology, Department of Cell Biology, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria.
| |
Collapse
|
34
|
Lannoo N, Van Damme EJM. Review/N-glycans: The making of a varied toolbox. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:67-83. [PMID: 26398792 DOI: 10.1016/j.plantsci.2015.06.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 05/23/2023]
Abstract
Asparagine (N)-linked protein glycosylation is one of the most crucial, prevalent, and complex co- and post-translational protein modifications. It plays a pivotal role in protein folding, quality control, and endoplasmic reticulum (ER)-associated degradation (ERAD) as well as in protein sorting, protein function, and in signal transduction. Furthermore, glycosylation modulates many important biological processes including growth, development, morphogenesis, and stress signaling processes. As a consequence, aberrant or altered N-glycosylation is often associated with reduced fitness, diseases, and disorders. The initial steps of N-glycan synthesis at the cytosolic side of the ER membrane and in the lumen of the ER are highly conserved. In contrast, the final N-glycan processing in the Golgi apparatus is organism-specific giving rise to a wide variety of carbohydrate structures. Despite our vast knowledge on N-glycans in yeast and mammals, the modus operandi of N-glycan signaling in plants is still largely unknown. This review will elaborate on the N-glycosylation biosynthesis pathway in plants but will also critically assess how N-glycans are involved in different signaling cascades, either active during normal development or upon abiotic and biotic stresses.
Collapse
Affiliation(s)
- Nausicaä Lannoo
- Lab Biochemistry and Glycobiology, Department Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Els J M Van Damme
- Lab Biochemistry and Glycobiology, Department Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
35
|
Abstract
Galactose salvage in Leishmania major is mediated by UDP-sugar pyrophosphorylase (USP). USP is not rate limiting for glycocalyx biosynthesis under standard growth conditions. Salvage by USP contributes to glycoconjugate biosynthesis but is insufficient on its own.
Leishmaniases are a set of tropical and sub-tropical diseases caused by protozoan parasites of the genus Leishmania whose severity ranges from self-healing cutaneous lesions to fatal visceral infections. Leishmania parasites synthesise a wide array of cell surface and secreted glycoconjugates that play important roles in infection. These glycoconjugates are particularly abundant in the promastigote form and known to be essential for establishment of infection in the insect midgut and effective transmission to the mammalian host. Since they are rich in galactose, their biosynthesis requires an ample supply of UDP-galactose. This nucleotide-sugar arises from epimerisation of UDP-glucose but also from an uncharacterised galactose salvage pathway. In this study, we evaluated the role of the newly characterised UDP-sugar pyrophosphorylase (USP) of Leishmania major in UDP-galactose biosynthesis. Upon deletion of the USP encoding gene, L. major lost the ability to synthesise UDP-galactose from galactose-1-phosphate but its ability to convert glucose-1-phosphate into UDP-glucose was fully maintained. Thus USP plays a role in UDP-galactose activation but does not significantly contribute to the de novo synthesis of UDP-glucose. Accordingly, USP was shown to be dispensable for growth and glycoconjugate biosynthesis under standard growth conditions. However, in a mutant seriously impaired in the de novo synthesis of UDP-galactose (due to deficiency of the UDP-glucose pyrophosphorylase) addition of extracellular galactose increased biosynthesis of the cell surface lipophosphoglycan. Thus under restrictive conditions, such as those encountered by Leishmania in its natural habitat, galactose salvage by USP may play a substantial role in biosynthesis of the UDP-galactose pool. We hypothesise that USP recycles galactose from the blood meal within the midgut of the insect for synthesis of the promastigote glycocalyx and thereby contributes to successful vector infection.
Collapse
|
36
|
Kleczkowski LA, Decker D. Sugar Activation for Production of Nucleotide Sugars as Substrates for Glycosyltransferases in Plants. J Appl Glycosci (1999) 2015. [DOI: 10.5458/jag.jag.jag-2015_003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
| | - Daniel Decker
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University
| |
Collapse
|
37
|
Kim S, Park J, Lee J, Shin D, Park DS, Lim JS, Choi IY, Seo YS. Understanding pathogenic Burkholderia glumae metabolic and signaling pathways within rice tissues through in vivo transcriptome analyses. Gene 2014; 547:77-85. [PMID: 24949534 DOI: 10.1016/j.gene.2014.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/10/2014] [Accepted: 06/16/2014] [Indexed: 11/15/2022]
Abstract
Burkholderia glumae is a causal agent of rice grain and sheath rot. Similar to other phytopathogens, B. glumae adapts well to the host environment and controls its biology to induce diseases in the host plant; however, its molecular mechanisms are not yet fully understood. To gain a better understating of the actual physiological changes that occur in B. glumae during infection, we analyzed B. glumae transcriptome from infected rice tissues using an RNA-seq technique. To accomplish this, we analyzed differentially expressed genes (DEGs) and identified 2653 transcripts that were significantly altered. We then performed KEGG pathway and module enrichment of the DEGs. Interestingly, most genes involved bacterial chemotaxis-mediated motility, ascorbate and trehalose metabolisms, and sugar transporters including l-arabinose and d-xylose were found to be highly enriched. The in vivo transcriptional profiling of pathogenic B. glumae will facilitate elucidation of unknown plant-pathogenic bacteria interactions, as well as the overall infection processes.
Collapse
Affiliation(s)
- Sunyoung Kim
- Department of Microbiology, Pusan National University, Busan 609-735, Republic of Korea
| | - Jungwook Park
- Department of Microbiology, Pusan National University, Busan 609-735, Republic of Korea
| | - Jongyun Lee
- Department of Microbiology, Pusan National University, Busan 609-735, Republic of Korea
| | - Dongjin Shin
- Department of Functional Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Gyeongnam, 627-803, Republic of Korea
| | - Dong-Soo Park
- Department of Functional Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Gyeongnam, 627-803, Republic of Korea
| | - Jong-Sung Lim
- NICEM, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Ik-Young Choi
- NICEM, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan 609-735, Republic of Korea.
| |
Collapse
|
38
|
Geserick C, Tenhaken R. UDP-sugar pyrophosphorylase controls the activity of proceeding sugar-1-kinases enzymes. PLANT SIGNALING & BEHAVIOR 2013; 8:25478. [PMID: 23857351 PMCID: PMC4002622 DOI: 10.4161/psb.25478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plant cell wall synthesis requires a number of different nucleotide sugars which provide the building blocks of the different polymers. These nucleotide sugars are mainly provided by de novo synthesis but recycling pathways also contribute to the pools. The last enzyme of the recycling pathway is UDP-sugar pyrophosphorylase (USP), a single copy gene in Arabidopsis, of which a knockout is lethal for pollen development. Here we analyze the dependency between USP enzyme activity and the upstream glucuronokinase. Gene silencing of USP by miRNA cause a concomitant reduction of USP and of glucuronokinase activity presumably to prevent the accumulation of sugar-1-phosphates interfering with normal metabolism and depleting the phosphate pool of the cell.
Collapse
|