1
|
Cumming KT, Reitzner SM, Hanslien M, Skilnand K, Seynnes OR, Horwath O, Psilander N, Sundberg CJ, Raastad T. Muscle memory in humans: evidence for myonuclear permanence and long-term transcriptional regulation after strength training. J Physiol 2024; 602:4171-4193. [PMID: 39159314 DOI: 10.1113/jp285675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
The objective of this work was to investigate myonuclear permanence and transcriptional regulation as mechanisms for cellular muscle memory after strength training in humans. Twelve untrained men and women performed 10 weeks of unilateral elbow-flexor strength training followed by 16 weeks of de-training. Thereafter, 10 weeks' re-training was conducted with both arms: the previously trained arm and the contralateral untrained control arm. Muscle biopsies were taken from the trained arm before and after both training periods and from the control arm before and after re-training. Muscle biopsies were analysed for fibre cross-sectional area (fCSA), myonuclei and global transcriptomics (RNA sequencing). During the first training period, myonuclei increased in type 1 (13 ± 17%) and type 2 (33 ± 23%) fibres together with a 30 ± 43% non-significant increase in mixed fibre fCSA (P = 0.069). Following de-training, fCSA decreased in both fibre types, whereas myonuclei were maintained, resulting in 33% higher myonuclear number in previously trained vs. control muscle in type 2 fibres. Furthermore, in the previously trained muscle, three differentially expressed genes (DEGs; EGR1, MYL5 and COL1A1) were observed. Following re-training, the previously trained muscle showed larger type 2 fCSA compared to the control (P = 0.035). However, delta change in type 2 fCSA was not different between muscles. Gene expression was more dramatically changed in the control arm (1338 DEGs) than in the previously trained arm (822 DEGs). The sustained higher number of myonuclei in the previously trained muscle confirms myonuclear accretion and permanence in humans. Nevertheless, because of the unclear effect on the subsequent hypertrophy with re-training, the physiological benefit remains to be determined. KEY POINTS: Muscle memory is a cellular mechanism that describes the capacity of skeletal muscle fibres to respond differently to training stimuli if the stimuli have been previously encountered. This study overcomes past methodological limitations related to the choice of muscles and analytical procedures. We show that myonuclear number is increased after strength training and maintained during de-training. Increased myonuclear number and differentially expressed genes related to muscle performance and development in the previously trained muscle did not translate into a clearly superior responses during re-training. Because of the unclear effect on the subsequent hypertrophy and muscle strength gain with re-training, the physiological benefit remains to be determined.
Collapse
Affiliation(s)
- Kristoffer Toldnes Cumming
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
- Faculty of Health, Welfare and Organisation, Østfold University College, Fredrikstad, Norway
| | - Stefan Markus Reitzner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Marit Hanslien
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Kenneth Skilnand
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Olivier R Seynnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Oscar Horwath
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Niklas Psilander
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Carl Johan Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Stockholm, Sweden
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
2
|
Vikmoen O, Strandberg E, Svindland KV, Henriksson A, Mazzoni AS, Johansson B, Jönsson J, Karakatsanis A, Annebäck M, Kudrén D, Lindman H, Wärnberg F, Berntsen S, Demmelmaier I, Nordin K, Raastad T. Effects of heavy-load strength training during (neo-)adjuvant chemotherapy on muscle strength, muscle fiber size, myonuclei, and satellite cells in women with breast cancer. FASEB J 2024; 38:e23784. [PMID: 38953567 DOI: 10.1096/fj.202400634r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
To investigate the effects of heavy-load strength training during (neo-)adjuvant chemotherapy in women with breast cancer on muscle strength, body composition, muscle fiber size, satellite cells, and myonuclei. Women with stage I-III breast cancer were randomly assigned to a strength training group (ST, n = 23) performing supervised heavy-load strength training twice a week during chemotherapy, or a usual care control group (CON, n = 17). Muscle strength and body composition were measured and biopsies from m. vastus lateralis collected before the first cycle of chemotherapy (T0) and after chemotherapy and training (T1). Muscle strength increased significantly more in ST than in CON in chest-press (ST: +10 ± 8%, p < .001, CON: -3 ± 5%, p = .023) and leg-press (ST: +11 ± 8%, p < .001, CON: +3 ± 6%, p = .137). Both groups reduced fat-free mass (ST: -4.9 ± 4.0%, p < .001, CON: -5.2 ± 4.9%, p = .004), and increased fat mass (ST: +15.3 ± 16.5%, p < .001, CON: +16.3 ± 19.8%, p = .015) with no significant differences between groups. No significant changes from T0 to T1 and no significant differences between groups were observed in muscle fiber size. For myonuclei per fiber a non-statistically significant increase in CON and a non-statistically significant decrease in ST in type I fibers tended (p = .053) to be different between groups. Satellite cells tended to decrease in ST (type I: -14 ± 36%, p = .097, type II: -9 ± 55%, p = .084), with no changes in CON and no differences between groups. Strength training during chemotherapy improved muscle strength but did not significantly affect body composition, muscle fiber size, numbers of satellite cells, and myonuclei compared to usual care.
Collapse
Affiliation(s)
- Olav Vikmoen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Emelie Strandberg
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | | | - Anna Henriksson
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Anne-Sophie Mazzoni
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Birgitta Johansson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Janniz Jönsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Surgical Sciences, Faculty of Medicine, Uppsala University, Uppsala, Sweden
| | - Andreas Karakatsanis
- Department of Surgical Sciences, Faculty of Medicine, Uppsala University, Uppsala, Sweden
- Section for Breast Surgery, Department of Surgery, Uppsala University Hospital, Uppsala, Sweden
| | - Matilda Annebäck
- Department of Surgical Sciences, Faculty of Medicine, Uppsala University, Uppsala, Sweden
| | - David Kudrén
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Henrik Lindman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Fredrik Wärnberg
- Institute of Clinical Sciences, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sveinung Berntsen
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | - Ingrid Demmelmaier
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | - Karin Nordin
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| |
Collapse
|
3
|
Montenegro CF, Skiles C, Kuszmaul DJ, Gouw A, Minchev K, Chambers TL, Raue U, Trappe TA, Trappe S. Fast and slow myofiber nuclei, satellite cells, and size distribution with lifelong endurance exercise in men and women. Physiol Rep 2024; 12:e16052. [PMID: 38987200 PMCID: PMC11236482 DOI: 10.14814/phy2.16052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 07/12/2024] Open
Abstract
We previously observed lifelong endurance exercise (LLE) influenced quadriceps whole-muscle and myofiber size in a fiber-type and sex-specific manner. The current follow-up exploratory investigation examined myofiber size regulators and myofiber size distribution in vastus lateralis biopsies from these same LLE men (n = 21, 74 ± 1 years) and women (n = 7, 72 ± 2 years) as well as old, healthy nonexercisers (OH; men: n = 10, 75 ± 1 years; women: n = 10, 75 ± 1 years) and young exercisers (YE; men: n = 10, 25 ± 1 years; women: n = 10, 25 ± 1 years). LLE exercised ~5 days/week, ~7 h/week for the previous 52 ± 1 years. Slow (myosin heavy chain (MHC) I) and fast (MHC IIa) myofiber nuclei/fiber, myonuclear domain, satellite cells/fiber, and satellite cell density were not influenced (p > 0.05) by LLE in men and women. The aging groups had ~50%-60% higher proportion of large (>7000 μm2) and small (<3000 μm2) myofibers (OH; men: 44%, women: 48%, LLE; men: 42%, women: 42%, YE; men: 27%, women: 29%). LLE men had triple the proportion of large slow fibers (LLE: 21%, YE: 7%, OH: 7%), while LLE women had more small slow fibers (LLE: 15%, YE: 8%, OH: 9%). LLE reduced by ~50% the proportion of small fast (MHC II containing) fibers in the aging men (OH: 14%, LLE: 7%) and women (OH: 35%, LLE: 18%). These data, coupled with previous findings, suggest that myonuclei and satellite cell content are uninfluenced by lifelong endurance exercise in men ~60-90 years, and this now also extends to septuagenarian lifelong endurance exercise women. Additionally, lifelong endurance exercise appears to influence the relative abundance of small and large myofibers (fast and slow) differently between men and women.
Collapse
Affiliation(s)
| | - Chad Skiles
- Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| | - Dillon J Kuszmaul
- Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| | - Aaron Gouw
- Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| | - Toby L Chambers
- Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| | - Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| |
Collapse
|
4
|
Rajab SAS, Andersen LK, Kenter LW, Berlinsky DL, Borski RJ, McGinty AS, Ashwell CM, Ferket PR, Daniels HV, Reading BJ. Combinatorial metabolomic and transcriptomic analysis of muscle growth in hybrid striped bass (female white bass Morone chrysops x male striped bass M. saxatilis). BMC Genomics 2024; 25:580. [PMID: 38858615 PMCID: PMC11165755 DOI: 10.1186/s12864-024-10325-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/19/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Understanding growth regulatory pathways is important in aquaculture, fisheries, and vertebrate physiology generally. Machine learning pattern recognition and sensitivity analysis were employed to examine metabolomic small molecule profiles and transcriptomic gene expression data generated from liver and white skeletal muscle of hybrid striped bass (white bass Morone chrysops x striped bass M. saxatilis) representative of the top and bottom 10 % by body size of a production cohort. RESULTS Larger fish (good-growth) had significantly greater weight, total length, hepatosomatic index, and specific growth rate compared to smaller fish (poor-growth) and also had significantly more muscle fibers of smaller diameter (≤ 20 µm diameter), indicating active hyperplasia. Differences in metabolomic pathways included enhanced energetics (glycolysis, citric acid cycle) and amino acid metabolism in good-growth fish, and enhanced stress, muscle inflammation (cortisol, eicosanoids) and dysfunctional liver cholesterol metabolism in poor-growth fish. The majority of gene transcripts identified as differentially expressed between groups were down-regulated in good-growth fish. Several molecules associated with important growth-regulatory pathways were up-regulated in muscle of fish that grew poorly: growth factors including agt and agtr2 (angiotensins), nicotinic acid (which stimulates growth hormone production), gadd45b, rgl1, zfp36, cebpb, and hmgb1; insulin-like growth factor signaling (igfbp1 and igf1); cytokine signaling (socs3, cxcr4); cell signaling (rgs13, rundc3a), and differentiation (rhou, mmp17, cd22, msi1); mitochondrial uncoupling proteins (ucp3, ucp2); and regulators of lipid metabolism (apoa1, ldlr). Growth factors pttg1, egfr, myc, notch1, and sirt1 were notably up-regulated in muscle of good-growing fish. CONCLUSION A combinatorial pathway analysis using metabolomic and transcriptomic data collectively suggested promotion of cell signaling, proliferation, and differentiation in muscle of good-growth fish, whereas muscle inflammation and apoptosis was observed in poor-growth fish, along with elevated cortisol (an anti-inflammatory hormone), perhaps related to muscle wasting, hypertrophy, and inferior growth. These findings provide important biomarkers and mechanisms by which growth is regulated in fishes and other vertebrates as well.
Collapse
Affiliation(s)
- Sarah A S Rajab
- Department of Applied Ecology, North Carolina State University, 100 Eugene Brooks Avenue, Box 7617, Raleigh, NC, 27695, USA
| | - Linnea K Andersen
- Department of Applied Ecology, North Carolina State University, 100 Eugene Brooks Avenue, Box 7617, Raleigh, NC, 27695, USA
| | - Linas W Kenter
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH, USA
| | - David L Berlinsky
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH, USA
| | - Russell J Borski
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Andrew S McGinty
- North Carolina State University, Pamlico Aquaculture Field Laboratory, Aurora, NC, USA
| | - Christopher M Ashwell
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
| | - Peter R Ferket
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
| | - Harry V Daniels
- Department of Applied Ecology, North Carolina State University, 100 Eugene Brooks Avenue, Box 7617, Raleigh, NC, 27695, USA
| | - Benjamin J Reading
- Department of Applied Ecology, North Carolina State University, 100 Eugene Brooks Avenue, Box 7617, Raleigh, NC, 27695, USA.
- North Carolina State University, Pamlico Aquaculture Field Laboratory, Aurora, NC, USA.
| |
Collapse
|
5
|
Espino-Gonzalez E, Dalbram E, Mounier R, Gondin J, Farup J, Jessen N, Treebak JT. Impaired skeletal muscle regeneration in diabetes: From cellular and molecular mechanisms to novel treatments. Cell Metab 2024; 36:1204-1236. [PMID: 38490209 DOI: 10.1016/j.cmet.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Diabetes represents a major public health concern with a considerable impact on human life and healthcare expenditures. It is now well established that diabetes is characterized by a severe skeletal muscle pathology that limits functional capacity and quality of life. Increasing evidence indicates that diabetes is also one of the most prevalent disorders characterized by impaired skeletal muscle regeneration, yet underlying mechanisms and therapeutic treatments remain poorly established. In this review, we describe the cellular and molecular alterations currently known to occur during skeletal muscle regeneration in people with diabetes and animal models of diabetes, including its associated comorbidities, e.g., obesity, hyperinsulinemia, and insulin resistance. We describe the role of myogenic and non-myogenic cell types on muscle regeneration in conditions with or without diabetes. Therapies for skeletal muscle regeneration and gaps in our knowledge are also discussed, while proposing future directions for the field.
Collapse
Affiliation(s)
- Ever Espino-Gonzalez
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rémi Mounier
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
6
|
Grandperrin A, Ollive P, Kretel Y, Maufrais C, Nottin S. Impact of a 16-week strength training program on physical performance, body composition and cardiac remodeling in previously untrained women and men. Eur J Sport Sci 2024; 24:474-486. [PMID: 38895874 PMCID: PMC11170668 DOI: 10.1002/ejsc.12033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/09/2023] [Accepted: 08/22/2023] [Indexed: 06/21/2024]
Abstract
Even if more and more women are involved in strength-training (ST) programs in fitness centers, studies on strength gain, body composition, and cardiac remodeling were mainly conducted in men and whether they are similar in women remains to be explored. In this context, the aim of our study was to assess the effect of a supervised ST program on strength gains, body composition, and cardiac remodeling in previously untrained women and men. 17 healthy and previously untrained young women and 17 young men participated in a supervised 16-week ST program built according to the recommendation of the American College of Sports Medicine in terms of intensity, and strictly using similar volume and intensity in both groups. Strength performance, body composition, and cardiac remodeling were evaluated every 4 weeks. Cardiac adaptations were assessed using resting echocardiography, including regional 2D-Strain analysis of the left atrium and ventricle (LA and LV, respectively). Despite lower values at baseline, women exhibited similar or even higher strength gains compared to men. ST induced a decrease of body and abdominal fat mass and an increase of lean body mass in both groups. Similar cardiac remodeling was observed in women, and women, including an early and progressive LV and LA enlargement throughout the ST program, without any alteration of LV diastolic and systolic functions. These findings underlie that ST programs are highly suitable for women to enhance their strength performance and their cardiovascular health.
Collapse
|
7
|
Cisterna B, Malatesta M. Molecular and Structural Alterations of Skeletal Muscle Tissue Nuclei during Aging. Int J Mol Sci 2024; 25:1833. [PMID: 38339110 PMCID: PMC10855217 DOI: 10.3390/ijms25031833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Aging is accompanied by a progressive loss of skeletal muscle mass and strength. The mechanisms underlying this phenomenon are certainly multifactorial and still remain to be fully elucidated. Changes in the cell nucleus structure and function have been considered among the possible contributing causes. This review offers an overview of the current knowledge on skeletal muscle nuclei in aging, focusing on the impairment of nuclear pathways potentially involved in age-related muscle decline. In skeletal muscle two types of cells are present: fiber cells, constituting the contractile muscle mass and containing hundreds of myonuclei, and the satellite cells, i.e., the myogenic mononuclear stem cells occurring at the periphery of the fibers and responsible for muscle growth and repair. Research conducted on different experimental models and with different methodological approaches demonstrated that both the myonuclei and satellite cell nuclei of aged skeletal muscles undergo several structural and molecular alterations, affecting chromatin organization, gene expression, and transcriptional and post-transcriptional activities. These alterations play a key role in the impairment of muscle fiber homeostasis and regeneration, thus contributing to the age-related decrease in skeletal muscle mass and function.
Collapse
Affiliation(s)
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy;
| |
Collapse
|
8
|
Kim KM, Yoo GD, Heo W, Oh HT, Park J, Shin S, Do Y, Jeong MG, Hwang ES, Hong J. TAZ stimulates exercise-induced muscle satellite cell activation via Pard3-p38 MAPK-TAZ signalling axis. J Cachexia Sarcopenia Muscle 2023; 14:2733-2746. [PMID: 37923703 PMCID: PMC10751443 DOI: 10.1002/jcsm.13348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/11/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Exercise stimulates the activation of muscle satellite cells, which facilitate the maintenance of stem cells and their myogenic conversion during muscle regeneration. However, the underlying mechanism is not yet fully understood. This study shows that the transcriptional co-activator with PDZ-binding motif (TAZ) stimulates muscle regeneration via satellite cell activation. METHODS Tazf/f mice were crossed with the paired box gene 7 (Pax7)creERT2 mice to generate muscle satellite cell-specific TAZ knockout (sKO) mice. Mice were trained in an endurance exercise programme for 4 weeks. Regenerated muscles were harvested and analysed by haematoxylin and eosin staining. Muscle tissues were also analysed by immunofluorescence staining, immunoblot analysis and quantitative reverse transcription PCR (qRT-PCR). For the in vitro study, muscle satellite cells from wild-type and sKO mice were isolated and analysed. Mitochondrial DNA was quantified by qRT-PCR using primers that amplify the cyclooxygenase-2 region of mitochondrial DNA. Quiescent and activated satellite cells were stained with MitoTracker Red CMXRos to analyse mitochondria. To study the p38 mitogen-activated protein kinase (MAPK)-TAZ signalling axis, p38 MAPK was activated by introducing the MAPK kinase 6 plasmid into satellite cells and also inhibited by treatment with the p38 MAPK inhibitor, SB203580. RESULTS TAZ interacts with Pax7 to induce Myf5 expression and stimulates mammalian target of rapamycin signalling for satellite cell activation. In sKO mice, TAZ depletion reduces muscle satellite cell number by 38% (0.29 ± 0.073 vs. 0.18 ± 0.034, P = 0.0082) and muscle regeneration. After muscle injury, TAZ levels (2.59-fold, P < 0.0001) increase in committed cells compared to self-renewing cells during asymmetric satellite cell division. Mechanistically, the polarity protein Pard3 induces TAZ (2.01-fold, P = 0.008) through p38 MAPK, demonstrating that the p38 MAPK-TAZ axis is important for muscle regeneration. Physiologically, endurance exercise training induces muscle satellite cell activation and increases muscle fibre diameter (1.33-fold, 43.21 ± 23.59 vs. 57.68 ± 23.26 μm, P = 0.0004) with increased TAZ levels (1.76-fold, P = 0.017). However, sKO mice had a 39% reduction in muscle satellite cell number (0.20 ± 0.03 vs. 0.12 ± 0.02, P = 0.0013) and 24% reduction in muscle fibre diameter compared to wild-type mice (61.07 ± 23.33 vs. 46.60 ± 24.29 μm, P = 0.0006). CONCLUSIONS Our results demonstrate a novel mechanism of TAZ-induced satellite cell activation after muscle injury and exercise, suggesting that activation of TAZ in satellite cells may ameliorate the muscle ageing phenotype and may be an important target protein for the drug development in sarcopenia.
Collapse
Affiliation(s)
| | - Gi Don Yoo
- Division of Life SciencesKorea UniversitySeoulKorea
| | - Woong Heo
- Division of Life SciencesKorea UniversitySeoulKorea
| | - Ho Taek Oh
- Division of Life SciencesKorea UniversitySeoulKorea
| | - Jeekeon Park
- Division of Life SciencesKorea UniversitySeoulKorea
| | - Somin Shin
- Division of Life SciencesKorea UniversitySeoulKorea
| | - Youjin Do
- Division of Life SciencesKorea UniversitySeoulKorea
| | - Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical SciencesEwha Womans UniversitySeoulKorea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical SciencesEwha Womans UniversitySeoulKorea
| | | |
Collapse
|
9
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
10
|
Aman F, El Khatib E, AlNeaimi A, Mohamed A, Almulla AS, Zaidan A, Alshafei J, Habbal O, Eldesouki S, Qaisar R. Is the myonuclear domain ceiling hypothesis dead? Singapore Med J 2023; 64:415-422. [PMID: 34544215 PMCID: PMC10395806 DOI: 10.11622/smedj.2021103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/01/2020] [Indexed: 11/18/2022]
Abstract
Muscle fibres are multinuclear cells, and the cytoplasmic territory where a single myonucleus controls transcriptional activity is called the myonuclear domain (MND). MND size shows flexibility during muscle hypertrophy. The MND ceiling hypothesis states that hypertrophy results in the expansion of MND size to an upper limit or MND ceiling, beyond which additional myonuclei via activation of satellite cells are required to support further growth. However, the debate about the MND ceiling hypothesis is far from settled, and various studies show conflicting results about the existence or otherwise of MND ceiling in hypertrophy. The aim of this review is to summarise the literature about the MND ceiling in various settings of hypertrophy and discuss the possible factors contributing to a discrepancy in the literature. We conclude by describing the physiological and clinical significance of the MND ceiling limit in the muscle adaptation process in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Ferdos Aman
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Eman El Khatib
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Alanood AlNeaimi
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmed Mohamed
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Alya Sultan Almulla
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Amna Zaidan
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jana Alshafei
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Omar Habbal
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Salma Eldesouki
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
11
|
Bersiner K, Park SY, Schaaf K, Yang WH, Theis C, Jacko D, Gehlert S. Resistance exercise: a mighty tool that adapts, destroys, rebuilds and modulates the molecular and structural environment of skeletal muscle. Phys Act Nutr 2023; 27:78-95. [PMID: 37583075 PMCID: PMC10440184 DOI: 10.20463/pan.2023.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/17/2023] Open
Abstract
PURPOSE Skeletal muscle regulates health and performance by maintaining or increasing strength and muscle mass. Although the molecular mechanisms in response to resistance exercise (RE) significantly target the activation of protein synthesis, a plethora of other mechanisms and structures must be involved in orchestrating the communication, repair, and restoration of homeostasis after RE stimulation. In practice, RE can be modulated by variations in intensity, continuity and volume, which affect molecular responses and skeletal muscle adaptation. Knowledge of these aspects is important with respect to planning of training programs and assessing the impact of RE training on skeletal muscle. METHODS In this narrative review, we introduce general aspects of skeletal muscle substructures that adapt in response to RE. We further highlighted the molecular mechanisms that control human skeletal muscle anabolism, degradation, repair and memory in response to acute and repeated RE and linked these aspects to major training variables. RESULTS Although RE is a key stimulus for the activation of skeletal muscle anabolism, it also induces myofibrillar damage. Nevertheless, to increase muscle mass accompanied by a corresponding adaptation of the essential substructures of the sarcomeric environment, RE must be continuously repeated. This requires the permanent engagement of molecular mechanisms that re-establish skeletal muscle integrity after each RE-induced muscle damage. CONCLUSION Various molecular regulators coordinately control the adaptation of skeletal muscle after acute and repeated RE and expand their actions far beyond muscle growth. Variations of key resistance training variables likely affect these mechanisms without affecting muscle growth.
Collapse
Affiliation(s)
- Käthe Bersiner
- Department for Biosciences of Sports, Institute of Sports Science, University of Hildesheim, Hildesheim, Germany
| | - So-Young Park
- Graduate School of Sports Medicine, CHA University, Pocheon, Republic of Korea
| | - Kirill Schaaf
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Woo-Hwi Yang
- Graduate School of Sports Medicine, CHA University, Pocheon, Republic of Korea
- Department of Medicine, General Graduate School, CHA University, Pocheon, Republic of Korea
| | - Christian Theis
- Center for Anaesthesiology, Helios University Hospital Wuppertal, Wuppertal, Germany
| | - Daniel Jacko
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Sebastian Gehlert
- Department for Biosciences of Sports, Institute of Sports Science, University of Hildesheim, Hildesheim, Germany
| |
Collapse
|
12
|
Smith MA, Sexton CL, Smith KA, Osburn SC, Godwin JS, Beausejour JP, Ruple BA, Goodlett MD, Edison JL, Fruge AD, Robinson AT, Gladden LB, Young KC, Roberts MD. Molecular predictors of resistance training outcomes in young untrained female adults. J Appl Physiol (1985) 2023; 134:491-507. [PMID: 36633866 PMCID: PMC10190845 DOI: 10.1152/japplphysiol.00605.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
We sought to determine if the myofibrillar protein synthetic (MyoPS) response to a naïve resistance exercise (RE) bout, or chronic changes in satellite cell number and muscle ribosome content, were associated with hypertrophic outcomes in females or differed in those who classified as higher (HR) or lower (LR) responders to resistance training (RT). Thirty-four untrained college-aged females (23.4 ± 3.4 kg/m2) completed a 10-wk RT protocol (twice weekly). Body composition and leg imaging assessments, a right leg vastus lateralis biopsy, and strength testing occurred before and following the intervention. A composite score, which included changes in whole body lean/soft tissue mass (LSTM), vastus lateralis (VL) muscle cross-sectional area (mCSA), midthigh mCSA, and deadlift strength, was used to delineate upper and lower HR (n = 8) and LR (n = 8) quartiles. In all participants, training significantly (P < 0.05) increased LSTM, VL mCSA, midthigh mCSA, deadlift strength, mean muscle fiber cross-sectional area, satellite cell abundance, and myonuclear number. Increases in LSTM (P < 0.001), VL mCSA (P < 0.001), midthigh mCSA (P < 0.001), and deadlift strength (P = 0.001) were greater in HR vs. LR. The first-bout 24-hour MyoPS response was similar between HR and LR (P = 0.367). While no significant responder × time interaction existed for muscle total RNA concentrations (i.e., ribosome content) (P = 0.888), satellite cell abundance increased in HR (P = 0.026) but not LR (P = 0.628). Pretraining LSTM (P = 0.010), VL mCSA (P = 0.028), and midthigh mCSA (P < 0.001) were also greater in HR vs. LR. Female participants with an enhanced satellite cell response to RT, and more muscle mass before RT, exhibited favorable resistance training adaptations.NEW & NOTEWORTHY This study continues to delineate muscle biology differences between lower and higher responders to resistance training and is unique in that a female population was interrogated. As has been reported in prior studies, increases in satellite cell numbers are related to positive responses to resistance training. Satellite cell responsivity, rather than changes in muscle ribosome content per milligrams of tissue, may be a more important factor in delineating resistance-training responses in women.
Collapse
Affiliation(s)
- Morgan A Smith
- School of Kinesiology, Auburn University, Auburn, Alabama
| | - Casey L Sexton
- School of Kinesiology, Auburn University, Auburn, Alabama
| | - Kristen A Smith
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, Alabama
| | | | | | | | | | - Michael D Goodlett
- Athletics Department, Auburn University, Auburn, Alabama
- Edward Via College of Osteopathic Medicine, Auburn, Alabama
| | - Joseph L Edison
- Athletics Department, Auburn University, Auburn, Alabama
- Edward Via College of Osteopathic Medicine, Auburn, Alabama
| | - Andrew D Fruge
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, Alabama
- College of Nursing, Auburn University, Auburn, Alabama
| | | | | | - Kaelin C Young
- School of Kinesiology, Auburn University, Auburn, Alabama
- Edward Via College of Osteopathic Medicine, Auburn, Alabama
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama
- Edward Via College of Osteopathic Medicine, Auburn, Alabama
| |
Collapse
|
13
|
Dam TV, Dalgaard LB, Johansen FT, Bengtsen MB, Mose M, Lauritsen KM, Gravholt CH, Hansen M. Effects of transdermal estrogen therapy on satellite cell number and molecular markers for muscle hypertrophy in response to resistance training in early postmenopausal women. Eur J Appl Physiol 2023; 123:667-681. [PMID: 36585491 DOI: 10.1007/s00421-022-05093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/31/2022] [Indexed: 01/01/2023]
Abstract
PURPOSE To investigate the effects of resistance training with or without transdermal estrogen therapy (ET) on satellite cell (SC) number and molecular markers for muscle hypertrophy in early postmenopausal women. METHODS Using a double-blinded randomized controlled design, we allocated healthy, untrained postmenopausal women to perform 12 weeks of resistance training with placebo (PLC, n = 16) or ET (n = 15). Muscle biopsies obtained before and after the intervention, and two hours after the last training session were analyzed for fiber type, SC number and molecular markers for muscle hypertrophy and degradation (real-time PCR, western blotting). RESULTS The analysis of SCs per Type I fiber showed a time x treatment interaction caused by a 47% decrease in PLC, and a 26% increase after ET after the training period. Also, SCs per Type II fiber area was lower after the intervention driven by a 57% decrease in PLC. Most molecular markers changed similarly in the two groups. CONCLUSION A decline in SC per muscle fiber was observed after the 12-week training period in postmenopausal women, which was counteracted when combined with use of transdermal ET. CLINICAL TRIAL REGISTRATION NUMBER nct03020953.
Collapse
Affiliation(s)
- Tine Vrist Dam
- Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000, Aarhus C, Denmark
| | - Line Barner Dalgaard
- Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000, Aarhus C, Denmark
| | - Frank Ted Johansen
- Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000, Aarhus C, Denmark
| | - Mads Bisgaard Bengtsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Maike Mose
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Katrine Meyer Lauritsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Claus H Gravholt
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Hansen
- Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000, Aarhus C, Denmark.
| |
Collapse
|
14
|
Lilja M, Moberg M, Apró W, Martínez-Aranda LM, Rundqvist H, Langlet B, Gustafsson T, Lundberg TR. Limited effect of over-the-counter doses of ibuprofen on mechanisms regulating muscle hypertrophy during resistance training in young adults. J Appl Physiol (1985) 2023; 134:753-765. [PMID: 36794689 DOI: 10.1152/japplphysiol.00698.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
We have previously shown that maximal over-the-counter doses of ibuprofen, compared with low doses of acetylsalicylic acid, reduce muscle hypertrophy in young individuals after 8 wk of resistance training. Because the mechanism behind this effect has not been fully elucidated, we here investigated skeletal muscle molecular responses and myofiber adaptations in response to acute and chronic resistance training with concomitant drug intake. Thirty-one young (aged 18-35 yr) healthy men (n = 17) and women (n = 14) were randomized to receive either ibuprofen (IBU; 1,200 mg daily; n = 15) or acetylsalicylic acid (ASA; 75 mg daily; n = 16) while undergoing 8 wk of knee extension training. Muscle biopsies from the vastus lateralis were obtained before, at week 4 after an acute exercise session, and after 8 wk of resistance training and analyzed for mRNA markers and mTOR signaling, as well as quantification of total RNA content (marker of ribosome biogenesis) and immunohistochemical analysis of muscle fiber size, satellite cell content, myonuclear accretion, and capillarization. There were only two treatment × time interaction in selected molecular markers after acute exercise (atrogin-1 and MuRF1 mRNA), but several exercise effects. Muscle fiber size, satellite cell and myonuclear accretion, and capillarization were not affected by chronic training or drug intake. RNA content increased comparably (∼14%) in both groups. Collectively, these data suggest that established acute and chronic hypertrophy regulators (including mTOR signaling, ribosome biogenesis, satellite cell content, myonuclear accretion, and angiogenesis) were not differentially affected between groups and therefore do not explain the deleterious effects of ibuprofen on muscle hypertrophy in young adults.NEW & NOTEWORTHY Here we show that mTOR signaling, fiber size, ribosome biogenesis, satellite cell content, myonuclear accretion, and angiogenesis were not differentially affected between groups undergoing 8 wk of resistance training with concomitant anti-inflammatory medication (ibuprofen versus low-dose aspirin). Atrogin-1 and MuRF-1 mRNA were more downregulated after acute exercise in the low-dose aspirin group than in the ibuprofen group. Taken together it appears that these established hypertrophy regulators do not explain the previously reported deleterious effects of high doses of ibuprofen on muscle hypertrophy in young adults.
Collapse
Affiliation(s)
- Mats Lilja
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Marcus Moberg
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - William Apró
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Luis Manuel Martínez-Aranda
- Movement Analysis Laboratory for Sport and Health (MALab), Faculty of Sport, Catholic University of Murcia, Murcia, Spain
| | - Håkan Rundqvist
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Billy Langlet
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Tommy R Lundberg
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Stevens DR, Wund MA, Mathis KA. Integrating environmental complexity and the plasticity-first hypothesis to study responses to human-altered habitats. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Gaulton N, Wakelin G, Young LV, Wotherspoon S, Kamal M, Parise G, Nederveen JP, Holwerda A, Verdijk LB, van Loon LJC, Snijders T, Johnston AP. Twist2-expressing cells reside in human skeletal muscle and are responsive to aging and resistance exercise training. FASEB J 2022; 36:e22642. [PMID: 36374263 DOI: 10.1096/fj.202201349rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
Skeletal muscle is maintained and repaired by sub-laminar, Pax7-expressing satellite cells. However, recent mouse investigations have described a second myogenic progenitor population that resides within the myofiber interstitium and expresses the transcription factor Twist2. Twist2-expressing cells exclusively repair and maintain type IIx/b muscle fibers. Currently, it is unknown if Twist2-expressing cells are present in human skeletal muscle and if they function as myogenic progenitors. Here, we perform a combination of single-cell RNA sequencing analysis and immunofluorescence staining to demonstrate the identity and localization of Twist2-expressing cells in human skeletal muscle. Twist2-expressing cells were identified to be anatomically and transcriptionally comparable to fibro-adipogenic progenitors (FAPs) and lack expression of typical satellite cell markers such as Pax7. Comparative analysis revealed that human and mouse Twist2-expressing cells were highly transcriptionally analogous and resided within the same anatomical structures in vivo. Examination of young and aged skeletal muscle biopsy samples revealed that Twist2-positive cells are more prevalent in aged muscle and increase following 12-weeks of resistance exercise training (RET) in humans. However, the quantity of Twist2-positive cells was not correlated with indices of muscle mass or muscle fiber cross-sectional area (CSA) in young or older muscle, and their abundance was surprisingly, negatively correlated with CSA and myonuclear domain size following RET. Taken together, we have identified cells expressing Twist2 in human skeletal muscle which are responsive to aging and exercise. Further examination of their myogenic potential is warranted.
Collapse
Affiliation(s)
- Nick Gaulton
- Department of Applied Human Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Griffen Wakelin
- Department of Applied Human Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada.,Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Laura V Young
- Department of Applied Human Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Scott Wotherspoon
- Queen Elizabeth Hospital, Charlottetown, Prince Edward Island, Canada
| | - Michael Kamal
- Department of Kinesiology, Faculty of Science, McMaster University, Ontario, Hamilton, Canada
| | - Gianni Parise
- Department of Kinesiology, Faculty of Science, McMaster University, Ontario, Hamilton, Canada
| | - Joshua P Nederveen
- Department of Pediatrics, McMaster University Children's Hospital, Hamilton, Ontario, Canada
| | - Andy Holwerda
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Lex B Verdijk
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Tim Snijders
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Adam P Johnston
- Department of Applied Human Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada.,Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
17
|
Ruple BA, Mesquita PHC, Godwin JS, Sexton CL, Osburn SC, McIntosh MC, Kavazis AN, Libardi CA, Young KC, Roberts MD. Changes in vastus lateralis fibre cross-sectional area, pennation angle and fascicle length do not predict changes in muscle cross-sectional area. Exp Physiol 2022; 107:1216-1224. [PMID: 36053170 PMCID: PMC9633374 DOI: 10.1113/ep090666] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do changes in myofibre cross-sectional area, pennation angle and fascicle length predict vastus lateralis whole-muscle cross-sectional area changes following resistance training? What is the main finding and its importance? Changes in vastus lateralis mean myofibre cross-sectional area, fascicle length and pennation angle following a period of resistance training did not collectively predict changes in whole-muscle cross-sectional area. Despite the limited sample size in this study, these data reiterate that it remains difficult to generalize the morphological adaptations that predominantly drive tissue-level vastus lateralis muscle hypertrophy. ABSTRACT Myofibre hypertrophy during resistance training (RT) poorly associates with tissue-level surrogates of hypertrophy. However, it is underappreciated that, in pennate muscle, changes in myofibre cross-sectional area (fCSA), fascicle length (Lf ) and pennation angle (PA) likely coordinate changes in whole-muscle cross-sectional area (mCSA). Therefore, we determined if changes in fCSA, PA and Lf predicted vastus lateralis (VL) mCSA changes following RT. Thirteen untrained college-aged males (23 ± 4 years old, 25.4 ± 5.2 kg/m2 ) completed 7 weeks of full-body RT (twice weekly). Right leg VL ultrasound images and biopsies were obtained prior to (PRE) and 72 h following (POST) the last training bout. Regression was used to assess if training-induced changes in mean fCSA, PA and Lf predicted VL mCSA changes. Correlations were also performed between PRE-to-POST changes in obtained variables. Mean fCSA (+18%), PA (+8%) and mCSA (+22%) increased following RT (P < 0.05), but not Lf (0.1%, P = 0.772). Changes in fCSA, Lf and PA did not collectively predict changes in mCSA (R2 = 0.282, adjusted R2 = 0.013, F3,8 = 1.050, P = 0.422). Moderate negative correlations existed for percentage changes in PA and Lf (r = -0.548, P = 0.052) and changes in fCSA and Lf (r = -0.649, P = 0.022), and all other associations were weak (|r| < 0.500). Although increases in mean fCSA, PA and VL mCSA were observed, inter-individual responses for each variable and limitations for each technique make it difficult to generalize the morphological adaptations that predominantly drive tissue-level VL muscle hypertrophy. However, the small subject pool is a significant limitation, and more research in this area is needed.
Collapse
Affiliation(s)
| | | | | | - Casey L Sexton
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | | | | | | | - Cleiton A Libardi
- Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Kaelin C Young
- School of Kinesiology, Auburn University, Auburn, AL, USA
- Edward Via College of Osteopathic Medicine, Auburn, AL, USA
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, AL, USA
- Edward Via College of Osteopathic Medicine, Auburn, AL, USA
| |
Collapse
|
18
|
Grgic J. Use It or Lose It? A Meta-Analysis on the Effects of Resistance Training Cessation (Detraining) on Muscle Size in Older Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14048. [PMID: 36360927 PMCID: PMC9657634 DOI: 10.3390/ijerph192114048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
This review aimed to explore the effect of resistance training cessation (detraining) on muscle size in older adults. Five databases were searched to find eligible studies. Their methodological quality was assessed using the PEDro checklist. The data were pooled in a random-effects meta-analysis. Six studies, with eight groups, were included in the review. Resistance training interventions lasted from 9 to 24 weeks. The detraining duration was from 12 to 52 weeks. Studies were classified as being of fair or good methodological quality. Compared to the baseline data, muscle size significantly increased following the resistance training intervention (Cohen's d: 0.99; 95% confidence interval: 0.63, 1.36). Compared to the post-resistance training data, there was a significant decrease in muscle size following training cessation (Cohen's d: -0.83; 95% confidence interval: -1.30, -0.36). In subgroup analyses, there was no significant decrease in muscle size following 12-24 weeks of training cessation (Cohen's d: -0.60; 95% confidence interval: -1.21, 0.01). There was a significant decrease in muscle size following 31-52 weeks of training cessation (Cohen's d: -1.11; 95% confidence interval: -1.75, -0.47). In summary, resistance training increases muscle size in older adults. In contrast, training cessation is associated with a decrease in muscle size. However, the loss of muscle size might be related to detraining duration, with greater muscle loss occurring during longer duration detraining periods. Future studies are required to establish the time course of muscle size changes during detraining in older adults.
Collapse
Affiliation(s)
- Jozo Grgic
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
| |
Collapse
|
19
|
Rahmati M, McCarthy JJ, Malakoutinia F. Myonuclear permanence in skeletal muscle memory: a systematic review and meta-analysis of human and animal studies. J Cachexia Sarcopenia Muscle 2022; 13:2276-2297. [PMID: 35961635 PMCID: PMC9530508 DOI: 10.1002/jcsm.13043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 12/09/2022] Open
Abstract
One aspect of skeletal muscle memory is the ability of a previously trained muscle to hypertrophy more rapidly following a period of detraining. Although the molecular basis of muscle memory remains to be fully elucidated, one potential mechanism thought to mediate muscle memory is the permanent retention of myonuclei acquired during the initial phase of hypertrophic growth. However, myonuclear permanence is debated and would benefit from a meta-analysis to clarify the current state of the field for this important aspect of skeletal muscle plasticity. The objective of this study was to perform a meta-analysis to assess the permanence of myonuclei associated with changes in physical activity and ageing. When available, the abundance of satellite cells (SCs) was also considered given their potential influence on changes in myonuclear abundance. One hundred forty-seven peer-reviewed articles were identified for inclusion across five separate meta-analyses; (1-2) human and rodent studies assessed muscle response to hypertrophy; (3-4) human and rodent studies assessed muscle response to atrophy; and (5) human studies assessed muscle response with ageing. Skeletal muscle hypertrophy was associated with higher myonuclear content that was retained in rodents, but not humans, with atrophy (SMD = -0.60, 95% CI -1.71 to 0.51, P = 0.29, and MD = 83.46, 95% CI -649.41 to 816.32, P = 0.82; respectively). Myonuclear and SC content were both lower following atrophy in humans (MD = -11, 95% CI -0.19 to -0.03, P = 0.005, and SMD = -0.49, 95% CI -0.77 to -0.22, P = 0.0005; respectively), although the response in rodents was affected by the type of muscle under consideration and the mode of atrophy. Whereas rodent myonuclei were found to be more permanent regardless of the mode of atrophy, atrophy of ≥30% was associated with a reduction in myonuclear content (SMD = -1.02, 95% CI -1.53 to -0.51, P = 0.0001). In humans, sarcopenia was accompanied by a lower myonuclear and SC content (MD = 0.47, 95% CI 0.09 to 0.85, P = 0.02, and SMD = 0.78, 95% CI 0.37-1.19, P = 0.0002; respectively). The major finding from the present meta-analysis is that myonuclei are not permanent but are lost during periods of atrophy and with ageing. These findings do not support the concept of skeletal muscle memory based on the permanence of myonuclei and suggest other mechanisms, such as epigenetics, may have a more important role in mediating this aspect of skeletal muscle plasticity.
Collapse
Affiliation(s)
- Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human SciencesLorestan UniversityKhorramabadIran
| | - John J. McCarthy
- Department of PhysiologyUniversity of KentuckyLexingtonKYUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKYUSA
| | - Fatemeh Malakoutinia
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human SciencesLorestan UniversityKhorramabadIran
| |
Collapse
|
20
|
Brook MS, Wilkinson DJ, Tarum J, Mitchell KW, Lund JL, Phillips BE, Szewczyk NJ, Kadi F, Greenhaff PL, Smith K, Atherton PJ. Neither myonuclear accretion nor a myonuclear domain size ceiling is a feature of the attenuated hypertrophic potential of aged human skeletal muscle. GeroScience 2022; 45:451-462. [PMID: 36083436 PMCID: PMC9886697 DOI: 10.1007/s11357-022-00651-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/25/2022] [Indexed: 02/03/2023] Open
Abstract
Ageing limits growth capacity of skeletal muscle (e.g. in response to resistance exercise), but the role of satellite cell (SC) function in driving this phenomenon is poorly defined. Younger (Y) (~ 23 years) and older (O) men (~ 69 years) (normal-weight BMI) underwent 6 weeks of unilateral resistance exercise training (RET). Muscle biopsies were taken at baseline and after 3-/6-week training. We determined muscle size by fibre CSA (and type), SC number, myonuclei counts and DNA synthesis (via D2O ingestion). At baseline, there were no significant differences in fibre areas between Y and O. RET increased type I fibre area in Y from baseline at both 3 weeks and 6 weeks (baseline: 4509 ± 534 µm2, 3 weeks; 5497 ± 510 µm2 P < 0.05, 6 weeks; 5402 ± 352 µm2 P < 0.05), whilst O increased from baseline at 6 weeks only (baseline 5120 ± 403 µm2, 3 weeks; 5606 ± 620 µm2, 6 weeks; 6017 ± 482 µm2 P < 0.05). However, type II fibre area increased from baseline in Y at both 3 weeks and 6 weeks (baseline: 4949 ± 459 µm2, 3 weeks; 6145 ± 484 µm2 (P < 0.01), 6 weeks; 5992 ± 491 µm2 (P < 0.01), whilst O showed no change (baseline 5210 ± 410 µm2, 3 weeks; 5356 ± 535 µm2 (P = 0.9), 6 weeks; 5857 ± 478 µm2 (P = 0.1). At baseline, there were no differences in fibre myonuclei number between Y and O. RET increased type I fibre myonuclei number from baseline in both Y and O at 3 weeks and 6 weeks with RET (younger: baseline 2.47 ± 0.16, 3 weeks; 3.19 ± 0.16 (P < 0.001), 6 weeks; 3.70 ± 0.29 (P < 0.0001); older: baseline 2.29 ± 0.09, 3 weeks; 3.01 ± 0.09 (P < 0.001), 6 weeks; 3.65 ± 0.18 (P < 0.0001)). Similarly, type II fibre myonuclei number increased from baseline in both Y and O at 3 weeks and 6 weeks (younger: baseline 2.49 ± 0.14, 3 weeks; 3.31 ± 0.21 (P < 0.001), 6 weeks; 3.86 ± 0.29 (P < 0.0001); older: baseline 2.43 ± 0.12, 3 weeks; 3.37 ± 0.12 (P < 0.001), 6 weeks; 3.81 ± 0.15 (P < 0.0001)). DNA synthesis rates %.d-1 exhibited a main effect of training but no age discrimination. Declines in myonuclei addition do not underlie impaired muscle growth capacity in older humans, supporting ribosomal and proteostasis impairments as we have previously reported.
Collapse
Affiliation(s)
- Matthew S. Brook
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK ,School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Daniel J. Wilkinson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK
| | - Janelle Tarum
- School of Health Sciences, Örebro University, Örebro, Sweden
| | - Kyle W. Mitchell
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK
| | - Jonathan L. Lund
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK
| | - Bethan E. Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK
| | - Nathaniel J. Szewczyk
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK
| | - Fawzi Kadi
- School of Health Sciences, Örebro University, Örebro, Sweden
| | - Paul L. Greenhaff
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK ,School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ken Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK
| | - Philip J. Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK
| |
Collapse
|
21
|
Moesgaard L, Jessen S, Mackey AL, Hostrup M. Myonuclear addition is associated with sex-specific fiber hypertrophy and occurs in relation to fiber perimeter not cross-sectional area. J Appl Physiol (1985) 2022; 133:732-741. [PMID: 35952346 DOI: 10.1152/japplphysiol.00235.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is unclear whether resistance training-induced myofiber hypertrophy is affected by sex, and whether myonuclear addition occurs in relation to the myonuclear domain and can contribute to explaining a potential sex-specific hypertrophic response. This study investigated the effect of 8 weeks of resistance training on myofiber hypertrophy and myonuclear addition in 12 males (28±7 years; mean±SD) and 12 females (27±7 years). Muscle biopsies were collected from m. vastus lateralis before and after the training intervention and analyzed by immunohistochemistry for fiber type and size, satellite cells, and myonuclei. Hypertrophy of type I fibers was greater in males than females (P<0.05), whereas hypertrophy of type II fibers was similar between sexes (P=0.158‒0.419). Expansion of the satellite cell pool (P=0.132‒0.667) and myonuclear addition (P=0.064‒0.228) did not differ significantly between sexes, irrespective of myofiber type. However, when individual responses to resistance training were assessed, myonuclear addition was strongly correlated with fiber hypertrophy (r=0.68‒0.85, P<0.001). While myofiber hypertrophy was accompanied by an increase in myonuclear domain (P<0.05), fiber perimeter per myonucleus remained constant throughout the study (P=0.096‒0.666). These findings indicate that myonuclear addition occurs in relation to the fiber perimeter per myonucleus, not the myonuclear domain, and has a substantial role in muscle hypertrophy, but does not fully explain greater hypertrophy of type I fibers in males than females.
Collapse
Affiliation(s)
- Lukas Moesgaard
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Søren Jessen
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Hostrup
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Gehlert S, Weinisch P, Römisch-Margl W, Jaspers RT, Artati A, Adamski J, Dyar KA, Aussieker T, Jacko D, Bloch W, Wackerhage H, Kastenmüller G. Effects of Acute and Chronic Resistance Exercise on the Skeletal Muscle Metabolome. Metabolites 2022; 12:445. [PMID: 35629949 PMCID: PMC9142957 DOI: 10.3390/metabo12050445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 12/18/2022] Open
Abstract
Resistance training promotes metabolic health and stimulates muscle hypertrophy, but the precise routes by which resistance exercise (RE) conveys these health benefits are largely unknown. AIM To investigate how acute RE affects human skeletal muscle metabolism. METHODS We collected vastus lateralis biopsies from six healthy male untrained volunteers at rest, before the first of 13 RE training sessions, and 45 min after the first and last bouts of RE. Biopsies were analysed using untargeted mass spectrometry-based metabolomics. RESULTS We measured 617 metabolites covering a broad range of metabolic pathways. In the untrained state RE altered 33 metabolites, including increased 3-methylhistidine and N-lactoylvaline, suggesting increased protein breakdown, as well as metabolites linked to ATP (xanthosine) and NAD (N1-methyl-2-pyridone-5-carboxamide) metabolism; the bile acid chenodeoxycholate also increased in response to RE in muscle opposing previous findings in blood. Resistance training led to muscle hypertrophy, with slow type I and fast/intermediate type II muscle fibre diameter increasing by 10.7% and 10.4%, respectively. Comparison of post-exercise metabolite levels between trained and untrained state revealed alterations of 46 metabolites, including decreased N-acetylated ketogenic amino acids and increased beta-citrylglutamate which might support growth. Only five of the metabolites that changed after acute exercise in the untrained state were altered after chronic training, indicating that training induces multiple metabolic changes not directly related to the acute exercise response. CONCLUSION The human skeletal muscle metabolome is sensitive towards acute RE in the trained and untrained states and reflects a broad range of adaptive processes in response to repeated stimulation.
Collapse
Affiliation(s)
- Sebastian Gehlert
- Department for Biosciences of Sports, Institute of Sport Science, University of Hildesheim, 31139 Hildesheim, Germany
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, 50933 Cologne, Germany; (T.A.); (D.J.); (W.B.)
| | - Patrick Weinisch
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (P.W.); (W.R.-M.)
| | - Werner Römisch-Margl
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (P.W.); (W.R.-M.)
| | - Richard T. Jaspers
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands;
| | - Anna Artati
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany;
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Kenneth A. Dyar
- Metabolic Physiology, Institute of Diabetes and Cancer, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany;
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Thorben Aussieker
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, 50933 Cologne, Germany; (T.A.); (D.J.); (W.B.)
| | - Daniel Jacko
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, 50933 Cologne, Germany; (T.A.); (D.J.); (W.B.)
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, 50933 Cologne, Germany; (T.A.); (D.J.); (W.B.)
| | - Henning Wackerhage
- Department of Sport and Health Sciences, Technical University of Munich, 80809 Munich, Germany;
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (P.W.); (W.R.-M.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| |
Collapse
|
23
|
Oxfeldt M, Dalgaard LB, Farup J, Hansen M. Sex Hormones and Satellite Cell Regulation in Women. TRANSLATIONAL SPORTS MEDICINE 2022; 2022:9065923. [PMID: 38655160 PMCID: PMC11022763 DOI: 10.1155/2022/9065923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 04/26/2024]
Abstract
Recent years have seen growing scholarly interest in female physiology in general. Moreover, particular attention has been devoted to how concentrations of female sex hormones vary during the menstrual cycle and menopausal transition and how hormonal contraception and hormonal therapy influence skeletal muscle tissue. While much effort has been paid to macro outcomes, such as muscle function or mass, rather less attention has been paid to mechanistic work that may help explain the underlying mechanism through which sex hormones regulate skeletal muscle tissue. Evidence from animal studies shows a strong relationship between the female sex hormone estrogen and satellite cells (SCs), a population of muscle stem cells involved in skeletal muscle regulation. A few human studies investigating this relationship have been published only recently. Thus, the purpose of this study was to bring an updated review on female sex hormones and their role in SC regulation. First, we describe how SCs regulate skeletal muscle maintenance and repair and introduce sex hormone signaling within the muscle. Second, we present evidence from animal studies elucidating how estrogen deficiency and supplementation influence SCs. Third, we present results from investigations from human trials including women whose concentrations of female hormones differ due to menopause, hormone therapy, hormonal contraceptives, and the menstrual cycle. Finally, we discuss research and methodological recommendations for future studies aiming at elucidating the link between female sex hormones and SCs with respect to aging and training.
Collapse
Affiliation(s)
- Mikkel Oxfeldt
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Hansen
- Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
24
|
Gharahdaghi N, Rudrappa S, Brook MS, Farrash W, Idris I, Aziz MHA, Kadi F, Papaioannou K, Phillips BE, Sian T, Herrod PJ, Wilkinson DJ, Szewczyk NJ, Smith K, Atherton PJ. Pharmacological hypogonadism impairs molecular transducers of exercise-induced muscle growth in humans. J Cachexia Sarcopenia Muscle 2022; 13:1134-1150. [PMID: 35233984 PMCID: PMC8977972 DOI: 10.1002/jcsm.12843] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/25/2021] [Accepted: 09/30/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The relative role of skeletal muscle mechano-transduction in comparison with systemic hormones, such as testosterone (T), in regulating hypertrophic responses to exercise is contentious. We investigated the mechanistic effects of chemical endogenous T depletion adjuvant to 6 weeks of resistance exercise training (RET) on muscle mass, function, myogenic regulatory factors, and muscle anabolic signalling in younger men. METHODS Non-hypogonadal men (n = 16; 18-30 years) were randomized in a double-blinded fashion to receive placebo (P, saline n = 8) or the GnRH analogue, Goserelin [Zoladex (Z), 3.6 mg, n = 8], injections, before 6 weeks of supervised whole-body RET. Participants underwent dual-energy X-ray absorptiometry (DXA), ultrasound of m. vastus lateralis (VL), and VL biopsies for assessment of cumulative muscle protein synthesis (MPS), myogenic gene expression, and anabolic signalling pathway responses. RESULTS Zoladex suppressed endogenous T to within the hypogonadal range and was well tolerated; suppression was associated with blunted fat free mass [Z: 55.4 ± 2.8 to 55.8 ± 3.1 kg, P = 0.61 vs. P: 55.9 ± 1.7 to 57.4 ± 1.7 kg, P = 0.006, effect size (ES) = 0.31], composite strength (Z: 40 ± 2.3% vs. P: 49.8 ± 3.3%, P = 0.03, ES = 1.4), and muscle thickness (Z: 2.7 ± 0.4 to 2.69 ± 0.36 cm, P > 0.99 vs. P: 2.74 ± 0.32 to 2.91 ± 0.32 cm, P < 0.0001, ES = 0.48) gains. Hypogonadism attenuated molecular transducers of muscle growth related to T metabolism (e.g. androgen receptor: Z: 1.2 fold, P > 0.99 vs. P: 1.9 fold, P < 0.0001, ES = 0.85), anabolism/myogenesis (e.g. IGF-1Ea: Z: 1.9 fold, P = 0.5 vs. P: 3.3 fold, P = 0.0005, ES = 0.72; IGF-1Ec: Z: 2 fold, P > 0.99 vs. P: 4.7 fold, P = 0.0005, ES = 0.68; myogenin: Z: 1.3 fold, P > 0.99 vs. P: 2.7 fold, P = 0.002, ES = 0.72), RNA/DNA (Z: 0.47 ± 0.03 to 0.53 ± 0.03, P = 0.31 vs. P: 0.50 ± 0.01 to 0.64 ± 0.04, P = 0.003, ES = 0.72), and RNA/ASP (Z: 5.8 ± 0.4 to 6.8 ± 0.5, P > 0.99 vs. P: 6.5 ± 0.2 to 8.9 ± 1.1, P = 0.008, ES = 0.63) ratios, as well as acute RET-induced phosphorylation of growth signalling proteins (e.g. AKTser473 : Z: 2.74 ± 0.6, P = 0.2 vs. P: 5.5 ± 1.1 fold change, P < 0.001, ES = 0.54 and mTORC1ser2448 : Z: 1.9 ± 0.8, P > 0.99 vs. P: 3.6 ± 1 fold change, P = 0.002, ES = 0.53). Both MPS (Z: 1.45 ± 0.11 to 1.50 ± 0.06%·day-1 , P = 0.99 vs. P: 1.5 ± 0.12 to 2.0 ± 0.15%·day-1 , P = 0.01, ES = 0.97) and (extrapolated) muscle protein breakdown (Z: 93.16 ± 7.8 vs. P: 129.1 ± 13.8 g·day-1 , P = 0.04, ES = 0.92) were reduced with hypogonadism result in lower net protein turnover (3.9 ± 1.1 vs. 1.2 ± 1.1 g·day-1 , P = 0.04, ES = 0.95). CONCLUSIONS We conclude that endogenous T sufficiency has a central role in the up-regulation of molecular transducers of RET-induced muscle hypertrophy in humans that cannot be overcome by muscle mechano-transduction alone.
Collapse
Affiliation(s)
- Nima Gharahdaghi
- MRC-Verus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR BRC, School of Medicine, University of Nottingham, Derby, UK
| | - Supreeth Rudrappa
- MRC-Verus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR BRC, School of Medicine, University of Nottingham, Derby, UK
| | - Matthew S Brook
- MRC-Verus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR BRC, School of Medicine, University of Nottingham, Derby, UK
| | - Wesam Farrash
- MRC-Verus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR BRC, School of Medicine, University of Nottingham, Derby, UK.,Laboratory Medicine Department, College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Iskandar Idris
- MRC-Verus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR BRC, School of Medicine, University of Nottingham, Derby, UK
| | - Muhammad Hariz Abdul Aziz
- MRC-Verus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR BRC, School of Medicine, University of Nottingham, Derby, UK
| | - Fawzi Kadi
- Division of Sports Sciences, School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | - Konstantinos Papaioannou
- Division of Sports Sciences, School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | - Bethan E Phillips
- MRC-Verus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR BRC, School of Medicine, University of Nottingham, Derby, UK
| | - Tanvir Sian
- MRC-Verus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR BRC, School of Medicine, University of Nottingham, Derby, UK
| | - Philip J Herrod
- MRC-Verus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR BRC, School of Medicine, University of Nottingham, Derby, UK
| | - Daniel J Wilkinson
- MRC-Verus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR BRC, School of Medicine, University of Nottingham, Derby, UK
| | - Nathaniel J Szewczyk
- MRC-Verus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR BRC, School of Medicine, University of Nottingham, Derby, UK
| | - Kenneth Smith
- MRC-Verus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR BRC, School of Medicine, University of Nottingham, Derby, UK
| | - Philip J Atherton
- MRC-Verus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR BRC, School of Medicine, University of Nottingham, Derby, UK
| |
Collapse
|
25
|
Vann CG, Sexton CL, Osburn SC, Smith MA, Haun CT, Rumbley MN, Mumford PW, Montgomery NT, Ruple BA, McKendry J, Mcleod J, Bashir A, Beyers RJ, Brook MS, Smith K, Atherton PJ, Beck DT, McDonald JR, Young KC, Phillips SM, Roberts MD. Effects of High-Volume Versus High-Load Resistance Training on Skeletal Muscle Growth and Molecular Adaptations. Front Physiol 2022; 13:857555. [PMID: 35360253 PMCID: PMC8962955 DOI: 10.3389/fphys.2022.857555] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/15/2022] [Indexed: 11/30/2022] Open
Abstract
We evaluated the effects of higher-load (HL) versus (lower-load) higher-volume (HV) resistance training on skeletal muscle hypertrophy, strength, and muscle-level molecular adaptations. Trained men (n = 15, age: 23 ± 3 years; training experience: 7 ± 3 years) performed unilateral lower-body training for 6 weeks (3× weekly), where single legs were randomly assigned to HV and HL paradigms. Vastus lateralis (VL) biopsies were obtained prior to study initiation (PRE) as well as 3 days (POST) and 10 days following the last training bout (POSTPR). Body composition and strength tests were performed at each testing session, and biochemical assays were performed on muscle tissue after study completion. Two-way within-subject repeated measures ANOVAs were performed on most dependent variables, and tracer data were compared using dependent samples t-tests. A significant interaction existed for VL muscle cross-sectional area (assessed via magnetic resonance imaging; interaction p = 0.046), where HV increased this metric from PRE to POST (+3.2%, p = 0.018) whereas HL training did not (-0.1%, p = 0.475). Additionally, HL increased leg extensor strength more so than HV training (interaction p = 0.032; HV < HL at POST and POSTPR, p < 0.025 for each). Six-week integrated non-myofibrillar protein synthesis (iNon-MyoPS) rates were also higher in the HV versus HL condition, while no difference between conditions existed for iMyoPS rates. No interactions existed for other strength, VL morphology variables, or the relative abundances of major muscle proteins. Compared to HL training, 6 weeks of HV training in previously trained men optimizes VL hypertrophy in lieu of enhanced iNon-MyoPS rates, and this warrants future research.
Collapse
Affiliation(s)
- Christopher G. Vann
- School of Kinesiology, Auburn University, Auburn, AL, United States
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Casey L. Sexton
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Shelby C. Osburn
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Morgan A. Smith
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | | | | | - Petey W. Mumford
- Department of Kinesiology, Lindenwood University, St. Charles, MO, United States
| | | | - Bradley A. Ruple
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - James McKendry
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Jonathan Mcleod
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Adil Bashir
- MRI Research Center, Auburn University, Auburn, AL, United States
| | - Ronald J. Beyers
- MRI Research Center, Auburn University, Auburn, AL, United States
| | - Matthew S. Brook
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Nottingham, United Kingdom
| | - Kenneth Smith
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Nottingham, United Kingdom
| | - Philip J. Atherton
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Nottingham, United Kingdom
| | - Darren T. Beck
- School of Kinesiology, Auburn University, Auburn, AL, United States
- Edward Via College of Osteopathic Medicine – Auburn Campus, Auburn, AL, United States
| | | | - Kaelin C. Young
- School of Kinesiology, Auburn University, Auburn, AL, United States
- Edward Via College of Osteopathic Medicine – Auburn Campus, Auburn, AL, United States
| | | | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, AL, United States
- Edward Via College of Osteopathic Medicine – Auburn Campus, Auburn, AL, United States
| |
Collapse
|
26
|
Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrão ME, McAdam JS, O’Bryan SM, Ramos S, Roberts LM, Vega RB, Goodpaster BH, Bamman MM, Buford TW. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. Compr Physiol 2022; 12:3193-3279. [PMID: 35578962 PMCID: PMC9186317 DOI: 10.1002/cphy.c200033] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Liliana C. Baptista
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Margaret B. Bell
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin Drummer
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara A. Harper
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manoel E. Lixandrão
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy S. McAdam
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samia M. O’Bryan
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sofhia Ramos
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Lisa M. Roberts
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rick B. Vega
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Bret H. Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Marcas M. Bamman
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Thomas W. Buford
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
27
|
Soendenbroe C, Dahl CL, Meulengracht C, Tamáš M, Svensson RB, Schjerling P, Kjaer M, Andersen JL, Mackey AL. Preserved stem cell content and innervation profile of elderly human skeletal muscle with lifelong recreational exercise. J Physiol 2022; 600:1969-1989. [PMID: 35229299 PMCID: PMC9315046 DOI: 10.1113/jp282677] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract Muscle fibre denervation and declining numbers of muscle stem (satellite) cells are defining characteristics of ageing skeletal muscle. The aim of this study was to investigate the potential for lifelong recreational exercise to offset muscle fibre denervation and compromised satellite cell content and function, both at rest and under challenged conditions. Sixteen elderly lifelong recreational exercisers (LLEX) were studied alongside groups of age‐matched sedentary (SED) and young subjects. Lean body mass and maximal voluntary contraction were assessed, and a strength training bout was performed. From muscle biopsies, tissue and primary myogenic cell cultures were analysed by immunofluorescence and RT‐qPCR to assess myofibre denervation and satellite cell quantity and function. LLEX demonstrated superior muscle function under challenged conditions. When compared with SED, the muscle of LLEX was found to contain a greater content of satellite cells associated with type II myofibres specifically, along with higher mRNA levels of the beta and gamma acetylcholine receptors (AChR). No difference was observed between LLEX and SED for the proportion of denervated fibres or satellite cell function, as assessed in vitro by myogenic cell differentiation and fusion index assays. When compared with inactive counterparts, the skeletal muscle of lifelong exercisers is characterised by greater fatigue resistance under challenged conditions in vivo, together with a more youthful tissue satellite cell and AChR profile. Our data suggest a little recreational level exercise goes a long way in protecting against the emergence of classic phenotypic traits associated with the aged muscle. Key points The detrimental effects of ageing can be partially offset by lifelong self‐organized recreational exercise, as evidence by preserved type II myofibre‐associated satellite cells, a beneficial muscle innervation status and greater fatigue resistance under challenged conditions. Satellite cell function (in vitro), muscle fibre size and muscle fibre denervation determined by immunofluorescence were not affected by recreational exercise. Individuals that are recreationally active are far more abundant than master athletes, which sharply increases the translational perspective of the present study. Future studies should further investigate recreational activity in relation to muscle health, while also including female participants.
Collapse
Affiliation(s)
- Casper Soendenbroe
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark
| | - Christopher L Dahl
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark
| | - Christopher Meulengracht
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark
| | - Michal Tamáš
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark
| | - Rene B Svensson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark
| | - Jesper L Andersen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark
| |
Collapse
|
28
|
He Y, Xie W, Li H, Jin H, Zhang Y, Li Y. Cellular Senescence in Sarcopenia: Possible Mechanisms and Therapeutic Potential. Front Cell Dev Biol 2022; 9:793088. [PMID: 35083219 PMCID: PMC8784872 DOI: 10.3389/fcell.2021.793088] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/22/2021] [Indexed: 01/10/2023] Open
Abstract
Aging promotes most degenerative pathologies in mammals, which are characterized by progressive decline of function at molecular, cellular, tissue, and organismal levels and account for a host of health care expenditures in both developing and developed nations. Sarcopenia is a prominent age-related disorder in musculoskeletal system. Defined as gradual and generalized chronic skeletal muscle disorder, sarcopenia involves accelerated loss of muscle mass, strength and function, which is associated with increased adverse functional outcomes and evolutionally refers to muscle wasting accompanied by other geriatric syndromes. More efforts have been made to clarify mechanisms underlying sarcopenia and new findings suggest that it may be feasible to delay age-related sarcopenia by modulating fundamental mechanisms such as cellular senescence. Cellular senescence refers to the essentially irreversible growth arrest mainly regulated by p53/p21CIP1 and p16INK4a/pRB pathways as organism ages, possibly detrimentally contributing to sarcopenia via muscle stem cells (MuSCs) dysfunction and the senescence-associated secretory phenotype (SASP) while cellular senescence may have beneficial functions in counteracting cancer progression, tissue regeneration and wound healing. By now diverse studies in mice and humans have established that targeting cellular senescence is a powerful strategy to alleviating sarcopenia. However, the mechanisms through which senescent cells contribute to sarcopenia progression need to be further researched. We review the possible mechanisms involved in muscle stem cells (MuSCs) dysfunction and the SASP resulting from cellular senescence, their associations with sarcopenia, current emerging therapeutic opportunities based on targeting cellular senescence relevant to sarcopenia, and potential paths to developing clinical interventions genetically or pharmacologically.
Collapse
Affiliation(s)
- Yongyu He
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Jin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
Angleri V, Damas F, Phillips SM, Selistre-de-Araujo HS, Cornachione AS, Stotzer US, Santanielo N, Soligon SD, Costa LAR, Lixandrão ME, Conceição MS, Cassaro Vechin F, Ugrinowitsch C, Libardi CA. Resistance training variable manipulations is less relevant than intrinsic biology in affecting muscle fiber hypertrophy. Scand J Med Sci Sports 2022; 32:821-832. [PMID: 35092084 DOI: 10.1111/sms.14134] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/21/2021] [Accepted: 01/22/2022] [Indexed: 11/30/2022]
Abstract
We aimed to investigate whether muscle fiber cross-sectional area (fCSA) and associated molecular processes could be differently affected at the group and individual level by manipulating resistance training (RT) variables. Twenty resistance-trained subjects had each leg randomly allocated to either a standard RT (RT-CON: without specific variables manipulations) or a variable RT (RT-VAR: manipulation of load, volume, muscle action, and rest interval at each RT session). Muscle fCSA, satellite cell (SC) pool, myonuclei content, and gene expression were assessed before and after training (chronic effect). Gene expression was assessed 24h after the last training session (acute effect). RT-CON and RT-VAR increased fCSA and myonuclei domain in type I and II fibers after training (P < 0.05). SC and myonuclei content did not change for both conditions (P > 0.05). Pax-7, MyoD, MMP-2 and COL3A1 (chronic) and MGF, Pax-7, and MMP-9 (acute) increased similar for RT-CON and RT-VAR (P < 0.05). The increase in acute MyoG expression was significantly higher for the RT-VAR than RT-CON (P < 0.05). Significant correlation between RT-CON and RT-VAR for the fCSA changes (r = 0.89). fCSA changes were also correlated to satellite cells (r = 0.42) and myonuclei (r = 0.50) changes. Heatmap analyses showed coupled changes in fCSA, SC, and myonuclei responses at the individual level, regardless of the RT protocol. The high between and low within-subject variability regardless of RT protocol suggests that the intrinsic biological factors seem to be more important to explain the magnitude of fCSA gains in resistance-trained subjects.
Collapse
Affiliation(s)
- Vitor Angleri
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Felipe Damas
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Heloisa Sobreiro Selistre-de-Araujo
- LBBM - Laboratory of Biochemistry and Molecular Biology, Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Anabelle Silva Cornachione
- Muscle Physiology and Biophysics Laboratory, Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Uliana Sbeguen Stotzer
- LBBM - Laboratory of Biochemistry and Molecular Biology, Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Natalia Santanielo
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Samuel Domingos Soligon
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | | | | | | | | | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Cleiton Augusto Libardi
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| |
Collapse
|
30
|
Ipulan-Colet LA. Sexual dimorphism through androgen signaling; from external genitalia to muscles. Front Endocrinol (Lausanne) 2022; 13:940229. [PMID: 35983512 PMCID: PMC9379613 DOI: 10.3389/fendo.2022.940229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Sexual dimorphisms can be seen in many organisms with some exhibiting subtle differences while some can be very evident. The difference between male and female can be seen on the morphological level such as discrepancies in body mass, presence of body hair in distinct places, or through the presence of specific reproductive structures. It is known that the development of the reproductive structures is governed by hormone signaling, most commonly explained through the actions of androgen signaling. The developmental program of the male and female external genitalia involves a common anlage, the genital tubercle or GT, that later on develop into a penis and clitoris, respectively. Androgen signaling involvement can be seen in the different tissues in the GT that express Androgen receptor and the different genes that are regulated by androgen in the mesenchyme and endoderm component of the GT. Muscles are also known to be responsive to androgen signaling with male and female muscles exhibiting different capabilities. However, the occurrence of sexual dimorphism in muscle development is unclear. In this minireview, a summary on the role of androgen in the sexually dimorphic development of the genital tubercle was provided. This was used as a framework on analyzing the different mechanism employed by androgen signaling to regulate the sexual dimorphism in muscle development.
Collapse
|
31
|
Mechanobiology-based physical therapy and rehabilitation after orthobiologic interventions: a narrative review. INTERNATIONAL ORTHOPAEDICS 2021; 46:179-188. [PMID: 34709429 DOI: 10.1007/s00264-021-05253-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE This review aims to summarize the evidence for the role of mechanotherapies and rehabilitation in supporting the synergy between regeneration and repair after an orthobiologic intervention. METHODS A selective literature search was performed using Web of Science, OVID, and PubMed to review research articles that discuss the effects of combining mechanotherapy with various forms of regenerative medicine. RESULTS Various mechanotherapies can encourage the healing process for patients at different stages. Taping, bracing, cold water immersion, and extracorporeal shockwave therapy can be used throughout the duration of acute inflammatory response. The regulation of angiogenesis can be sustained with blood flow restriction and resistance training, whereas heat therapy and tissue loading during exercise are recommended in the remodeling phase. CONCLUSION Combining mechanotherapy with various forms of regenerative medicine has shown promise for improving treatment outcomes. However, further studies that reveal a greater volume of evidence are needed to support clinical decisions.
Collapse
|
32
|
Control of satellite cell function in muscle regeneration and its disruption in ageing. Nat Rev Mol Cell Biol 2021; 23:204-226. [PMID: 34663964 DOI: 10.1038/s41580-021-00421-2] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 12/19/2022]
Abstract
Skeletal muscle contains a designated population of adult stem cells, called satellite cells, which are generally quiescent. In homeostasis, satellite cells proliferate only sporadically and usually by asymmetric cell division to replace myofibres damaged by daily activity and maintain the stem cell pool. However, satellite cells can also be robustly activated upon tissue injury, after which they undergo symmetric divisions to generate new stem cells and numerous proliferating myoblasts that later differentiate to muscle cells (myocytes) to rebuild the muscle fibre, thereby supporting skeletal muscle regeneration. Recent discoveries show that satellite cells have a great degree of population heterogeneity, and that their cell fate choices during the regeneration process are dictated by both intrinsic and extrinsic mechanisms. Extrinsic cues come largely from communication with the numerous distinct stromal cell types in their niche, creating a dynamically interactive microenvironment. This Review discusses the role and regulation of satellite cells in skeletal muscle homeostasis and regeneration. In particular, we highlight the cell-intrinsic control of quiescence versus activation, the importance of satellite cell-niche communication, and deregulation of these mechanisms associated with ageing. The increasing understanding of how satellite cells are regulated will help to advance muscle regeneration and rejuvenation therapies.
Collapse
|
33
|
Mesquita PHC, Vann CG, Phillips SM, McKendry J, Young KC, Kavazis AN, Roberts MD. Skeletal Muscle Ribosome and Mitochondrial Biogenesis in Response to Different Exercise Training Modalities. Front Physiol 2021; 12:725866. [PMID: 34646153 PMCID: PMC8504538 DOI: 10.3389/fphys.2021.725866] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/13/2021] [Indexed: 11/20/2022] Open
Abstract
Skeletal muscle adaptations to resistance and endurance training include increased ribosome and mitochondrial biogenesis, respectively. Such adaptations are believed to contribute to the notable increases in hypertrophy and aerobic capacity observed with each exercise mode. Data from multiple studies suggest the existence of a competition between ribosome and mitochondrial biogenesis, in which the first adaptation is prioritized with resistance training while the latter is prioritized with endurance training. In addition, reports have shown an interference effect when both exercise modes are performed concurrently. This prioritization/interference may be due to the interplay between the 5’ AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin complex 1 (mTORC1) signaling cascades and/or the high skeletal muscle energy requirements for the synthesis and maintenance of cellular organelles. Negative associations between ribosomal DNA and mitochondrial DNA copy number in human blood cells also provide evidence of potential competition in skeletal muscle. However, several lines of evidence suggest that ribosome and mitochondrial biogenesis can occur simultaneously in response to different types of exercise and that the AMPK-mTORC1 interaction is more complex than initially thought. The purpose of this review is to provide in-depth discussions of these topics. We discuss whether a curious competition between mitochondrial and ribosome biogenesis exists and show the available evidence both in favor and against it. Finally, we provide future research avenues in this area of exercise physiology.
Collapse
Affiliation(s)
| | | | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - James McKendry
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Kaelin C Young
- School of Kinesiology, Auburn University, Auburn, AL, United States.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Auburn, AL, United States
| | | | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, AL, United States.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Auburn, AL, United States
| |
Collapse
|
34
|
Murach KA, Fry CS, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Fusion and beyond: Satellite cell contributions to loading-induced skeletal muscle adaptation. FASEB J 2021; 35:e21893. [PMID: 34480776 PMCID: PMC9293230 DOI: 10.1096/fj.202101096r] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Satellite cells support adult skeletal muscle fiber adaptations to loading in numerous ways. The fusion of satellite cells, driven by cell-autonomous and/or extrinsic factors, contributes new myonuclei to muscle fibers, associates with load-induced hypertrophy, and may support focal membrane damage repair and long-term myonuclear transcriptional output. Recent studies have also revealed that satellite cells communicate within their niche to mediate muscle remodeling in response to resistance exercise, regulating the activity of numerous cell types through various mechanisms such as secretory signaling and cell-cell contact. Muscular adaptation to resistance and endurance activity can be initiated and sustained for a period of time in the absence of satellite cells, but satellite cell participation is ultimately required to achieve full adaptive potential, be it growth, function, or proprioceptive coordination. While significant progress has been made in understanding the roles of satellite cells in adult muscle over the last few decades, many conclusions have been extrapolated from regeneration studies. This review highlights our current understanding of satellite cell behavior and contributions to adaptation outside of regeneration in adult muscle, as well as the roles of satellite cells beyond fusion and myonuclear accretion, which are gaining broader recognition.
Collapse
Affiliation(s)
- Kevin A Murach
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas, USA.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Christopher S Fry
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Esther E Dupont-Versteegden
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - John J McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Charlotte A Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
35
|
Halaas Y, Duncan D, Bernardy J, Ondrackova P, Dinev I. Activation of Skeletal Muscle Satellite Cells by a Device Simultaneously Applying High-Intensity Focused Electromagnetic Technology and Novel RF Technology: Fluorescent Microscopy Facilitated Detection of NCAM/CD56. Aesthet Surg J 2021; 41:NP939-NP947. [PMID: 33433586 PMCID: PMC8202148 DOI: 10.1093/asj/sjab002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Myosatellite cells are myogenic stem cells that can transform to provide nuclei for existing muscles or generate new muscle fibers as documented after extended exercise programs. Objectives The authors investigated whether the simultaneous application of High-Intensity Focused Electromagnetic (HIFEM) and Synchrode radiofrequency (RF) affects the levels of satellite cells similarly as the prolonged exercise does to achieve muscle growth. Methods Three 30-minute simultaneous HIFEM and Synchrode RF treatments (once a week) were administered over the abdominal area of 5 Large White swine aged approximately 6 months. All animals were anesthetized during the treatments and biopsy acquisition. Biopsies of muscle tissue were collected at baseline, 4 days, 2 weeks, and 1 month post-treatment. After binding the specific antibodies, the NCAM/CD56 levels, a marker of activated satellite cells, were quantified employing the immunofluorescence microscopy technique with a UV lamp. Results Examined slices showed a continuous increase in satellite cell levels throughout the study. Four days after the treatment, we observed a 26.1% increase in satellite cells, which increased to 30.2% at 2-week follow-up. Additional histological analysis revealed an increase in the cross-sectional area of muscle fibers and the signs of newly formed fibers of small diameters at 2 weeks after the treatment. No damage to muscle tissue and no adverse effects related to the treatment were observed. Conclusions The findings indicate that the simultaneous application of HIFEM and novel Synchrode RF treatment can initiate differentiation of satellite cells to support the growth of existing muscles and, presumably, even the formation of new myofibers.
Collapse
Affiliation(s)
| | | | - Jan Bernardy
- Veterinary Research Institute, Brno, Czech Republic
| | | | - Ivan Dinev
- Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
36
|
Shamim B, Camera DM, Whitfield J. Myofibre Hypertrophy in the Absence of Changes to Satellite Cell Content Following Concurrent Exercise Training in Young Healthy Men. Front Physiol 2021; 12:625044. [PMID: 34149439 PMCID: PMC8213074 DOI: 10.3389/fphys.2021.625044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
Concurrent exercise training has been suggested to create an ‘interference effect,’ attenuating resistance training-based skeletal muscle adaptations, including myofibre hypertrophy. Satellite cells support myofibre hypertrophy and are influenced by exercise mode. To determine whether satellite cells contribute to the ‘interference effect’ changes in satellite cell and myonuclear content were assessed following a period of training in 32 recreationally active males (age: 25 ± 5 year; body mass index: 24 ± 3 kg⋅m–2; mean ± SD) who undertook 12-week of either isolated (3 d⋅w–1) resistance (RES; n = 10), endurance (END; n = 10), or alternate day (6 d⋅w–1) concurrent (CET, n = 12) training. Skeletal muscle biopsies were obtained pre-intervention and after 2, 8, and 12 weeks of training to determine fibre type-specific cross-sectional area (CSA), satellite cell content (Pax7+DAPI+), and myonuclei (DAPI+) using immunofluorescence microscopy. After 12 weeks, myofibre CSA increased in all training conditions in type II (P = 0.0149) and mixed fibres (P = 0.0102), with no difference between conditions. Satellite cell content remained unchanged after training in both type I and type II fibres. Significant correlations were observed between increases in fibre type-specific myonuclear content and CSA of Type I (r = 0.63, P < 0.0001), Type II (r = 0.69, P < 0.0001), and mixed fibres (r = 0.72, P < 0.0001). Resistance, endurance, and concurrent training induce similar myofibre hypertrophy in the absence of satellite cell and myonuclear pool expansion. These findings suggest that myonuclear accretion via satellite cell fusion is positively correlated with hypertrophy after 12 weeks of concurrent training, and that individuals with more myonuclear content displayed greater myofibre hypertrophy.
Collapse
Affiliation(s)
- Baubak Shamim
- Exercise and Nutrition Research Programme, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Donny M Camera
- Exercise and Nutrition Research Programme, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Jamie Whitfield
- Exercise and Nutrition Research Programme, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
37
|
Morawin B, Zembroń-Łacny A. Role of endocrine factors and stem cells in skeletal muscle
regeneration. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.9125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The process of reconstructing damaged skeletal muscles involves degeneration, inflammatory
and immune responses, regeneration and reorganization, which are regulated by
a number of immune-endocrine factors affecting muscle cells and satellite cells (SCs). One of
these molecules is testosterone (T), which binds to the androgen receptor (AR) to initiate the
expression of the muscle isoform of insulin-like growth factor 1 (IGF-1Ec). The interaction
between T and IGF-1Ec stimulates the growth and regeneration of skeletal muscles by inhibiting
apoptosis, enhancement of SCs proliferation and myoblasts differentiation. As a result
of sarcopenia, muscle dystrophy or wasting diseases, the SCs population is significantly reduced.
Regular physical exercise attenuates a decrease in SCs count, and thus elevates the
regenerative potential of muscles in both young and elderly people. One of the challenges of
modern medicine is the application of SCs and extracellular matrix scaffolds in regenerative
and molecular medicine, especially in the treatment of degenerative diseases and post-traumatic
muscle reconstruction. The aim of the study is to present current information on the
molecular and cellular mechanisms of skeletal muscle regenera,tion, the role of testosterone
and growth factors in the activation of SCs and the possibility of their therapeutic use in
stimulating the reconstruction of damaged muscle fibers.
Collapse
Affiliation(s)
- Barbara Morawin
- Katedra Fizjologii Stosowanej i Klinicznej, Collegium Medicum, Uniwersytet Zielonogórski
| | | |
Collapse
|
38
|
Snijders T, Holwerda AM, van Loon LJC, Verdijk LB. Myonuclear content and domain size in small versus larger muscle fibres in response to 12 weeks of resistance exercise training in older adults. Acta Physiol (Oxf) 2021; 231:e13599. [PMID: 33314750 PMCID: PMC8047909 DOI: 10.1111/apha.13599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
AIM To assess the relation between muscle fibre hypertrophy and myonuclear accretion in relatively small and large muscle fibre size clusters following prolonged resistance exercise training in older adults. METHODS Muscle biopsies were collected before and after 12 weeks of resistance exercise training in 40 healthy, older men (70 ± 3 years). All muscle fibres were ordered by size and categorized in four muscle fibre size clusters: 'Small': 2000-3999 µm2 , 'Moderate': 4000-5999 µm2 , 'Large': 6000-7999 µm2 and 'Largest': 8000-9999 µm2 . Changes in muscle fibre size cluster distribution were related to changes in muscle fibre size, myonuclear content and myonuclear domain size. RESULTS With training, the percentage of muscle fibres decreased in the Small (from 23 ± 12 to 17 ± 14%, P < .01) and increased in the Largest (from 11 ± 8 to 15 ± 10%, P < .01) muscle fibre size clusters. The decline in the percentage of Small muscle fibres was accompanied by an increase in overall myonuclear domain size (r = -.466, P = .002) and myonuclear content (r = -.390, P = .013). In contrast, the increase in the percentage of the Largest muscle fibres was accompanied by an overall increase in myonuclear content (r = .616, P < .001), but not in domain size. CONCLUSION Prolonged resistance-type exercise training induces a decline in the percentage of small as well as an increase in the percentage of the largest muscle fibres in older adults. Whereas the change in the percentage of small fibres is best predicted by an increase in overall myonuclear domain size, the change in the percentage of the largest fibres is associated with an overall increase in myonuclear content.
Collapse
Affiliation(s)
- Tim Snijders
- Human BiologySchool of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Andy M. Holwerda
- Human BiologySchool of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Luc J. C. van Loon
- Human BiologySchool of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Lex B. Verdijk
- Human BiologySchool of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
39
|
Ancel S, Stuelsatz P, Feige JN. Muscle Stem Cell Quiescence: Controlling Stemness by Staying Asleep. Trends Cell Biol 2021; 31:556-568. [PMID: 33674167 DOI: 10.1016/j.tcb.2021.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022]
Abstract
Muscle stem cells (MuSCs) are tissue-resident stem cells required for growth and repair of skeletal muscle, that are otherwise maintained in a cell-cycle-arrested state called quiescence. While quiescence was originally believed to be a state of cellular inactivity, increasing evidence suggests that quiescence is dynamically regulated and contributes to stemness, the long-term capacity to maintain regenerative functions. Here, we review the current understanding of MuSC quiescence and highlight recently discovered molecular markers, which differentiate depth of quiescence and influence self-renewal capacity. We also discuss how quiescent MuSCs integrate paracrine factors from their niche and dynamically regulate cell signaling, metabolism and proteostasis as they anticipate physiological needs, and how perturbing these cues during aging impairs muscle regeneration.
Collapse
Affiliation(s)
- Sara Ancel
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, 1015 Lausanne, Switzerland; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Pascal Stuelsatz
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Jerome N Feige
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, 1015 Lausanne, Switzerland; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
40
|
Abstract
The COVID-19 pandemic has affected many sectors of our global society since its detection in Wuhan in December 2019, and team sports have been no stranger to this reality. This special article presents a review of the literature exposing the dangers for athletes of this virus, reporting the effects of the pandemic on competitive sport, and making evidence-based recommendations to avoid the consequences of detraining in confined athletes. Furthermore, we present the results of a survey with 361 answers computed from coaches and different staff members from 26 different countries, representing the activity of more than 4500 athletes from all over the world. The aim was to know more teams’ activity during this cessation period. Finally, the article outlines recommendations based on the answers to help teams if a second outbreak of the virus forces massive confinements again, guiding a safe return to sport at any competitive level.
Collapse
|
41
|
Oxfeldt M, Dalgaard LB, Jørgensen EB, Johansen FT, Dalgaard EB, Ørtenblad N, Hansen M. Molecular markers of skeletal muscle hypertrophy following 10 wk of resistance training in oral contraceptive users and nonusers. J Appl Physiol (1985) 2020; 129:1355-1364. [PMID: 33054662 DOI: 10.1152/japplphysiol.00562.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The objective was to determine whether skeletal muscle molecular markers and SC number were influenced differently in users and nonusers of oral contraceptives (OCs) following 10 wk of resistance training. Thirty-eight young healthy untrained users (n = 20) and nonusers of OC (n = 18) completed a 10-wk supervised progressive resistance training program. Before and after the intervention, a muscle tissue sample was obtained from the vastus lateralis muscle for analysis of muscle fiber cross-sectional area (fCSA) and satellite cell (SC) and myonuclei number using immunohistochemistry, gene expression using PCR, protein expression, and myosin heavy chain composition. Following the training period, quadriceps fCSA (P < 0.05), SCs/type I fiber (P = 0.05), and MURF-1 mRNA (P < 0.01) were significantly increased with no difference between the groups. However, SCs/total fiber and SCs/type II fiber increased in OC users only, and SCs/type II fCSA tended (P = 0.055) to be greater in the OC users. Furthermore, in OC users there were a fiber type shift from myosin heavy chain (MHC) IIx to MHC IIa (P < 0.01), and expression of muscle regulatory factor 4 (MRF4) mRNA (P < 0.001) was significantly greater than in non-OC users. Use of second-generation OCs in young untrained women increased skeletal muscle MRF4 expression and SC number following 10 wk of resistance training compared with nonusers.NEW & NOTEWORTHY The effect of oral contraceptive use on the skeletal muscle regulatory pathways in response to resistance training has not been investigated previously. Here we present novel data, demonstrating that use of second-generation oral contraceptives in young untrained women increased skeletal muscle regulatory factor 4 expression and satellite cell number following 10 wk of resistance training compared with nonusers.
Collapse
Affiliation(s)
- Mikkel Oxfeldt
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | | | | | - Emil Barner Dalgaard
- Department of Clinical Medicine, Diagnostic Centre, Silkeborg Regional Hospital, Silkeborg, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Mette Hansen
- Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
42
|
Pascual-Fernández J, Fernández-Montero A, Córdova-Martínez A, Pastor D, Martínez-Rodríguez A, Roche E. Sarcopenia: Molecular Pathways and Potential Targets for Intervention. Int J Mol Sci 2020; 21:ijms21228844. [PMID: 33266508 PMCID: PMC7700275 DOI: 10.3390/ijms21228844] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Aging is associated with sarcopenia. The loss of strength results in decreased muscle mass and motor function. This process accelerates the progressive muscle deterioration observed in older adults, favoring the presence of debilitating pathologies. In addition, sarcopenia leads to a decrease in quality of life, significantly affecting self-sufficiency. Altogether, these results in an increase in economic resources from the National Health Systems devoted to mitigating this problem in the elderly, particularly in developed countries. Different etiological determinants are involved in the progression of the disease, including: neurological factors, endocrine alterations, as well as nutritional and lifestyle changes related to the adoption of more sedentary habits. Molecular and cellular mechanisms have not been clearly characterized, resulting in the absence of an effective treatment for sarcopenia. Nevertheless, physical activity seems to be the sole strategy to delay sarcopenia and its symptoms. The present review intends to bring together the data explaining how physical activity modulates at a molecular and cellular level all factors that predispose or favor the progression of this deteriorating pathology.
Collapse
Affiliation(s)
| | | | - Alfredo Córdova-Martínez
- Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain;
| | - Diego Pastor
- Department of Sport Sciences, University Miguel Hernández (Elche), 03202 Alicante, Spain;
| | - Alejandro Martínez-Rodríguez
- Department of Analytical Chemistry, Nutrition and Food Sciences, Faculty of Sciences, University of Alicante, 3690 Alicante, Spain;
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Enrique Roche
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- Department of Applied Biology-Nutrition, Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-965222029
| |
Collapse
|
43
|
Barreto RV, de Lima LCR, Denadai BS. Moving forward with backward pedaling: a review on eccentric cycling. Eur J Appl Physiol 2020; 121:381-407. [PMID: 33180156 DOI: 10.1007/s00421-020-04548-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE There is a profound gap in the understanding of the eccentric cycling intensity continuum, which prevents accurate exercise prescription based on desired physiological responses. This may underestimate the applicability of eccentric cycling for different training purposes. Thus, we aimed to summarize recent research findings and screen for possible new approaches in the prescription and investigation of eccentric cycling. METHOD A search for the most relevant and state-of-the-art literature on eccentric cycling was conducted on the PubMed database. Literature from reference lists was also included when relevant. RESULTS Transversal studies present comparisons between physiological responses to eccentric and concentric cycling, performed at the same absolute power output or metabolic load. Longitudinal studies evaluate responses to eccentric cycling training by comparing them with concentric cycling and resistance training outcomes. Only one study investigated maximal eccentric cycling capacity and there are no investigations on physiological thresholds and/or exercise intensity domains during eccentric cycling. No study investigated different protocols of eccentric cycling training and the chronic effects of different load configurations. CONCLUSION Describing physiological responses to eccentric cycling based on its maximal exercise capacity may be a better way to understand it. The available evidence indicates that clinical populations may benefit from improvements in aerobic power/capacity, exercise tolerance, strength and muscle mass, while healthy and trained individuals may require different eccentric cycling training approaches to benefit from similar improvements. There is limited evidence regarding the mechanisms of acute physiological and chronic adaptive responses to eccentric cycling.
Collapse
Affiliation(s)
- Renan Vieira Barreto
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, São Paulo, Brazil
| | | | - Benedito Sérgio Denadai
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, São Paulo, Brazil.
| |
Collapse
|
44
|
Kobayashi Y, Tanaka T, Mulati M, Ochi H, Sato S, Kaldis P, Yoshii T, Okawa A, Inose H. Cyclin-Dependent Kinase 1 Is Essential for Muscle Regeneration and Overload Muscle Fiber Hypertrophy. Front Cell Dev Biol 2020; 8:564581. [PMID: 33163487 PMCID: PMC7591635 DOI: 10.3389/fcell.2020.564581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/18/2020] [Indexed: 12/27/2022] Open
Abstract
Satellite cell proliferation is an essential step in proper skeletal muscle development and muscle regeneration. However, the mechanisms regulating satellite cell proliferation are relatively unknown compared to the knowledge associated with the differentiation of satellite cells. Moreover, it is still unclear whether overload muscle fiber hypertrophy is dependent on satellite cell proliferation. In general, cell proliferation is regulated by the activity of cell cycle regulators, such as cyclins and cyclin-dependent kinases (CDKs). Despite recent reports on the function of CDKs and CDK inhibitors in satellite cells, the physiological role of Cdk1 in satellite cell proliferation remains unknown. Herein, we demonstrate that Cdk1 regulates satellite cell proliferation, muscle regeneration, and muscle fiber hypertrophy. Cdk1 is highly expressed in myoblasts and is downregulated upon myoblast differentiation. Inhibition of CDK1 activity inhibits myoblast proliferation. Deletion of Cdk1 in satellite cells leads to inhibition of muscle recovery after muscle injury due to reduced satellite cell proliferation in vivo. Finally, we provide direct evidence that Cdk1 expression in satellite cells is essential for overload muscle fiber hypertrophy in vivo. Collectively, our results demonstrate that Cdk1 is essential for myoblast proliferation, muscle regeneration, and muscle fiber hypertrophy. These findings could help to develop treatments for refractory muscle injuries and muscle atrophy, such as sarcopenia.
Collapse
Affiliation(s)
- Yutaka Kobayashi
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoyuki Tanaka
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mieradilli Mulati
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroki Ochi
- Department of Rehabilitation for Movement Functions, National Rehabilitation Center for Persons with Disabilities, Research Institute, Tokorozawa, Japan
| | - Shingo Sato
- Center for Innovative Cancer Treatment, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Clinical Research Centre, Malmö, Sweden
| | - Toshitaka Yoshii
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Okawa
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Inose
- Department of Orthopedic and Trauma Research, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
45
|
Jørgensen SL, Bohn MB, Aagaard P, Mechlenburg I. Efficacy of low-load blood flow restricted resistance EXercise in patients with Knee osteoarthritis scheduled for total knee replacement (EXKnee): protocol for a multicentre randomised controlled trial. BMJ Open 2020; 10:e034376. [PMID: 33004382 PMCID: PMC7534706 DOI: 10.1136/bmjopen-2019-034376] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Up to 20% of patients undergoing total knee replacement (TKR) surgery report no or suboptimal pain relief after TKR. Moreover, despite chances of recovering to preoperative functional levels, patients receiving TKR have demonstrated persistent deficits in quadriceps strength and functional performance compared with healthy age-matched adults. We intend to examine if low-load blood flow restricted exercise (BFRE) is an effective preoperative method to increase functional capacity, lower limb muscle strength and self-reported outcomes after TKR. In addition, the study aims to investigate to which extent preoperative BFRE will protect against surgery-related atrophy 3 months after TKR. METHODS In this multicentre, randomised controlled and assessor blinded trial, 84 patients scheduled for TKR will be randomised to receive usual care and 8 weeks of preoperative BFRE or to follow usual care-only. Data will be collected before randomisation, 3-4 days prior to TKR, 6 weeks, 3 months and 12 months after TKR. Primary outcome will be the change in 30 s chair stand test from baseline to 3-month follow-up. Key secondary outcomes will be timed up and go, 40 me fast-paced walk test, isometric knee extensor and flexor strength, patient-reported outcome and selected myofiber properties.Intention-to-treat principle and per-protocol analyses will be conducted. A one-way analysis of variance model will be used to analyse between group mean changes. Preintervention-to-postintervention comparisons will be analysed using a mixed linear model. Also, paired Student's t-test will be performed to gain insight into the potential pretraining-to-post-training differences within the respective training or control groups and regression analysis will be used for analysation of associations between selected outcomes. ETHICAL APPROVAL The trial has been accepted by the Central Denmark Region Committee on Biomedical Research Ethics (Journal No 10-72-19-19) and the Danish Data Protection Agency (Journal No 652164). All results will be published in international peer-reviewed scientific journals regardless of positive, negative or inconclusive results. TRIAL REGISTRATION NUMBER NCT04081493.
Collapse
Affiliation(s)
- Stian Langgård Jørgensen
- Department of Occupantional and Physical Therapy, Horsens Regional Hospital, Horsens, Denmark
- H-HIP, Horsens Regional Hospital, Horsens, Denmark
- Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marie Bagger Bohn
- Department of Orthopedic Surgery, Horsens Regional Hospital, Horsens, Denmark
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Inger Mechlenburg
- Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Orthopedics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
46
|
Valenti MT, Dalle Carbonare L, Dorelli G, Mottes M. Effects of physical exercise on the prevention of stem cells senescence. Stem Cell Rev Rep 2020; 16:33-40. [PMID: 31832933 DOI: 10.1007/s12015-019-09928-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regular physical activity is essential for maintaining wellbeing; physical inactivity, on the contrary, is considered by the World Health Organization (WHO) as one of the most important risk factors for global mortality. During physical exercise different growth factors, cytokines and hormones are released, which affect positively the functions of heart, bone, brain and skeletal muscle. It has been reported that physical activity is able to stimulate tissue remodeling. Therefore, in this scenario, it is important to deepen the topic of physical activity-induced effects on stem cells.
Collapse
Affiliation(s)
- Maria Teresa Valenti
- Department of Medicine, University of Verona, Ple Scuro 10, 37100, Verona, Italy
| | - Luca Dalle Carbonare
- Department of Medicine, University of Verona, Ple Scuro 10, 37100, Verona, Italy.
| | - Gianluigi Dorelli
- Department of Medicine, University of Verona, Ple Scuro 10, 37100, Verona, Italy
| | - Monica Mottes
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100, Verona, Italy
| |
Collapse
|
47
|
Role of PAX-7 as a tissue marker in mangled extremity: a pilot study. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2020; 29:1131-1140. [DOI: 10.1007/s00590-019-02410-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/01/2019] [Indexed: 01/01/2023]
|
48
|
Roberts MD, Haun CT, Vann CG, Osburn SC, Young KC. Sarcoplasmic Hypertrophy in Skeletal Muscle: A Scientific "Unicorn" or Resistance Training Adaptation? Front Physiol 2020; 11:816. [PMID: 32760293 PMCID: PMC7372125 DOI: 10.3389/fphys.2020.00816] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle fibers are multinucleated cells that contain mostly myofibrils suspended in an aqueous media termed the sarcoplasm. Select evidence suggests sarcoplasmic hypertrophy, or a disproportionate expansion of the sarcoplasm relative to myofibril protein accretion, coincides with muscle fiber or tissue growth during resistance training. There is also evidence to support other modes of hypertrophy occur during periods of resistance training including a proportional accretion of myofibril protein with fiber or tissue growth (i.e., conventional hypertrophy), or myofibril protein accretion preceding fiber or tissue growth (i.e., myofibril packing). In this review, we discuss methods that have been used to investigate these modes of hypertrophy. Particular attention is given to sarcoplasmic hypertrophy throughout. Thus, descriptions depicting this process as well as the broader implications of this phenomenon will be posited. Finally, we propose future human and rodent research that can further our understanding in this area of muscle physiology.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn, AL, United States.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine - Auburn Campus, Auburn, AL, United States
| | - Cody T Haun
- Fitomics, LLC, Birmingham, AL, United States
| | | | | | - Kaelin C Young
- School of Kinesiology, Auburn, AL, United States.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine - Auburn Campus, Auburn, AL, United States
| |
Collapse
|
49
|
Co-ingestion of carbohydrate and whey protein induces muscle strength and myofibrillar protein accretion without a requirement of satellite cell activation. Curr Res Physiol 2020; 2:12-21. [PMID: 34746812 PMCID: PMC8562141 DOI: 10.1016/j.crphys.2020.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/29/2022] Open
Abstract
Muscle development is controlled by the balance between muscle protein synthesis and protein degradation. Protein supplementation has been widely known to enhance muscle protein synthesis, and carbohydrate supplementation may attenuate protein degradation. The purpose of this study was to compare the effects of whey protein plus carbohydrate (CP), whey protein (WP), and placebo (PLA) supplements on resistance training adaptations. Two-month old rats were trained by ladder climbing every 3 days for 8 weeks. PLA, WP, or CP was given immediately after each exercise session. Non-exercise rats were used as a sedentary control (SED). Total body composition was assessed and blood samples were collected before, middle, and end of training. The flexor hallucis longus (FHL) was excised 24 h after the last exercise session. Following training, maximal carrying capacity was significantly greater in CP than PLA and WP. This improved training performance in CP paralleled an increase in total muscle and myofibrillar protein content. Muscle and fiber cross sectional areas (CSA) were significantly increased by exercise training, with a concomitant increase in myonuclear domain. CP significantly elevated IGF-1 protein expression over SED, but there were no significant differences in myostatin, Pax7, MyoD, or myogenin across treatment groups. There was also no difference in the number of total nuclei in each fiber CSA among groups. Corticosterone levels were significantly elevated in PLA and WP over 8 weeks of training, whereas this change in corticosterone over time was not observed in the CP group. The results suggest that the greater improvement of maximal caring capacity for CP compared with PLA and WP was associated with a greater increase in myofibrillar protein content. Satellite cell activation did not appear to contribute to the observed gains in muscle hypertrophy and strength. CP supplementation enhances muscle strength gains during resistance training. Muscle strength gains were similar for PLA and WP supplementation post exercise. Strength gains were related to increases in myofibrillar protein content. Satellite cell activation is not required for muscle hypertrophy. Muscle hypertrophy can occur without an increase in muscle fiber nuclei infusion.
Collapse
|
50
|
Hansen SK, Ratzer J, Nielsen JL, Suetta C, Karlsen A, Kvorning T, Frandsen U, Aagaard P. Effects of alternating blood flow restricted training and heavy-load resistance training on myofiber morphology and mechanical muscle function. J Appl Physiol (1985) 2020; 128:1523-1532. [PMID: 32324471 DOI: 10.1152/japplphysiol.00015.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To investigate if short-term block-structured training consisting of alternating weeks of blood flow restricted low-load resistance training (BFR-RT) and conventional free-flow heavy-load resistance training (HL-RT) leads to superior gains in mechanical muscle function, myofiber size, and satellite cell (SC) content and myonuclear number compared with HL-RT alone. Eighteen active young participants (women/men: 5/13, 23 ± 1.2 yr) were randomized to 6 wk (22 sessions) of lower limb HL-RT [70-90% one repetition maximum (1-RM)] (HRT, n = 9) or block-structured training alternating weekly between BFR-RT (20% 1-RM) and HL-RT (BFR-HRT, n = 9). Maximal isometric knee extensor strength (MVC) and muscle biopsies (VL) were obtained pre- and posttraining to examine changes in muscle strength, myofiber cross-sectional area (CSA), myonuclear (MN) number, and SC content. MVC increased in both training groups (BFR-HRT: +12%, HRT: +7%; P < 0.05). Type II myofiber CSA increased similarly (+16%) in BFR-HRT and HRT (P < 0.05), while gains in type I CSA were observed following HRT only (+12%, P < 0.05). In addition, myonuclear number remained unchanged, whereas SC content increased in type II myofibers following HRT (+59%, P < 0.05). Short-term alternating BFR-RT and HL-RT did not produce superior gains in muscle strength or myofiber size compared with HL-RT alone. Noticeably, however, conventional HL-RT could be periodically replaced by low-load BFR-RT without compromising training-induced gains in maximal muscle strength and type II myofiber size, respectively.NEW & NOTEWORTHY The present data demonstrate that periodically substituting heavy-load resistance training (HL-RT) with low-load blood flow restricted resistance training (BFR-RT) leads to similar gains in type II myofiber CSA and muscle strength as achieved by HL-RT alone. Furthermore, we have for the first time evaluated myonuclear content and myonuclear domain size before and after training intervention across separate fiber size clusters and found no within-cluster changes for these parameters with training.
Collapse
Affiliation(s)
- S K Hansen
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.,Geriatric Research Unit, Bispebjerg-Frederiksberg University Hospital, Copenhagen, Denmark
| | - J Ratzer
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - J L Nielsen
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - C Suetta
- Geriatric Research Unit, Bispebjerg-Frederiksberg University Hospital, Copenhagen, Denmark.,Geriatric Research Unit, Herlev-Gentofte University Hospital, Copenhagen, Denmark
| | - A Karlsen
- Institute of Sports Medicine Copenhagen, Denmark.,Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.,Center of Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - T Kvorning
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.,Team Danmark (The Danish Elite Sport Institution), Brøndby, Denmark
| | - U Frandsen
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - P Aagaard
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| |
Collapse
|