1
|
Guan Y, Li B, Zhang Y, Luo H, Wang X, Bai X, Zheng Z, Huang Y, Wei W, Huang M, Song X, Zhong G. Pharmacogenetic and pharmacokinetic factors for dexmedetomidine-associated hemodynamic instability in pediatric patients. Front Pharmacol 2025; 15:1515523. [PMID: 39840108 PMCID: PMC11745869 DOI: 10.3389/fphar.2024.1515523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 01/23/2025] Open
Abstract
Purpose The incidence of hemodynamic instability associated with dexmedetomidine (DEX) sedation has been reported to exceed 50%, with substantial inter-individual variability in response. Genetic factors have been suggested to contribute significantly to such variation. The aim of this study was to identify the clinical, pharmacokinetic, and genetic factors associated with DEX-induced hemodynamic instability in pediatric anesthesia patients. Methods A cohort of 270 pediatric patients scheduled for elective interventional surgery received an intranasal dose of 3 mcg·kg-1 of dexmedetomidine, and subsequent propofol induction was conducted when patients had a UMSS of 2-4. The primary endpoint was hemodynamic instability-defined as a composite of hypotension and/or bradycardia, which is characterized by a 20% reduction from age-specific baseline values. Plasma concentrations of dexmedetomidine were determined, and single-nucleotide polymorphisms (SNPs) were genotyped. A validated population pharmacokinetic model was used to estimate pharmacokinetic parameters. LASSO regression was used to identify significant factors, and a Cox's proportional hazards model-derived nomogram for hemodynamic instability was developed. Results Hemodynamic instability was observed in 52 out of 270 patients (209 events), resulting in a cumulative incidence of 16.30% at 90 min, as estimated by Kaplan-Meier estimation, and it was associated with a median time to event of 35 min. The interval time between DEX initiation and propofol induction was 16 min (IQR: 12-22 min). The cumulative incidence was 8.2% within 22 min after DEX initiation. The identified significant risk factors for DEX-associated hemodynamic instability included weight, DEX clearance, concomitant propofol use, and the following gene variants UGT2B10 rs1841042 (hazard ratio (HR):1.41, 95% confidence interval (CI): 1.12-1.79), CYP2A6 rs8192733 (HR:0.28, 95%CI:0.09-0.88), ADRA2B rs3813662 (HR:1.39,95%CI:1.02-1.89), CACNA2D2 rs2236957 (HR:1.46, 95%CI:1.09-1.96), NR1I2 rs3814057 (HR:0.64, 95%CI:0.43-0.95), and CACNB2 rs10764319 (HR:1.40,95%CI:1.05-1.87). The areas under the curve for the training and test cohorts were 0.881 and 0.762, respectively. The calibration curve indicated excellent agreement. Conclusion The predictive nomogram, which incorporates genetic variants (UGT2B10, CYP2A6, ADRA2B, CACNA2D2, NR1I2, and CACNB2) along with clinical factors such as weight, DEX clearance, and propofol use, may help prevent DEX-associated hemodynamic instability. Delayed hemodynamic instability is likely to occur after 35-min DEX initiation in patients with lower DEX clearance after propofol induction.
Collapse
Affiliation(s)
- Yanping Guan
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Bilian Li
- Department of Anesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yiyu Zhang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Hao Luo
- Department of Anesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xueding Wang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xue Bai
- Department of Anesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zhuoling Zheng
- Department of Pharmacy, Sun Yat-sen University Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yaying Huang
- Department of Anesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Wei Wei
- Department of Anesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Min Huang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xingrong Song
- Department of Anesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Guoping Zhong
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
de Andrade Horn P, Berida TI, Parr LC, Bouchard JL, Jayakodiarachchi N, Schultz DC, Lindsley CW, Crowley ML. Classics in Chemical Neuroscience: Medetomidine. ACS Chem Neurosci 2024; 15:3874-3883. [PMID: 39405508 PMCID: PMC11587509 DOI: 10.1021/acschemneuro.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 11/07/2024] Open
Abstract
Medetomidine is an FDA-approved α2-adrenoreceptor (α2-AR) agonist used as a veterinary sedative due to its analgesic, sedative, and anxiolytic properties. While it is marketed for veterinary use as a racemic mixture under the brand name Domitor, the pharmacologically active enantiomer, dexmedetomidine, is approved for sedation and analgesia in the hospital setting. Medetomidine has recently been detected in the illicit drug supply alongside fentanyl, xylazine, cocaine, and heroin, producing pronounced sedative effects that are not reversed by naloxone. The pharmacological effects along with the low cost of supply and lack of regulation for medetomidine has made it a target for misuse. Since 2022, medetomidine has been found as an adulterant in samples of seized drugs, as well as in toxicological analyses of patients admitted to the emergency department after suspected overdoses across several U.S. states and Canada. This Review will discuss the history, chemistry, structure-activity relationships, drug metabolism and pharmacokinetics (DMPK), pharmacology, and emergence of medetomidine as an adulterant in drug mixtures in the context of the current opioid drug crisis.
Collapse
Affiliation(s)
- Pedro de Andrade Horn
- Warren
Center for Neuroscience Drug Discovery and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Tomayo I. Berida
- Warren
Center for Neuroscience Drug Discovery and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Lauren C. Parr
- Warren
Center for Neuroscience Drug Discovery and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jacob L. Bouchard
- Warren
Center for Neuroscience Drug Discovery and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Navoda Jayakodiarachchi
- Warren
Center for Neuroscience Drug Discovery and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Daniel C. Schultz
- Warren
Center for Neuroscience Drug Discovery and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Warren
Center for Neuroscience Drug Discovery and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Chemistry, and Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Morgan L. Crowley
- Warren
Center for Neuroscience Drug Discovery and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
3
|
Fernandes NS, Passos YDB, Arcoverde KN, Mouta AN, Paiva TC, Oliveira KDS, Araujo-Silva G, de Paula VV. Clinical Effects and Pharmacokinetic Profile of Intramuscular Dexmedetomidine (10 μg/kg) in Cats. Animals (Basel) 2024; 14:2274. [PMID: 39123800 PMCID: PMC11310985 DOI: 10.3390/ani14152274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
This study investigated the pharmacokinetic profile of and pharmacodynamic response to dexmedetomidine administered intramuscularly (IM) at a dose of 10 μg/kg in healthy cats. Nine adult cats were evaluated before and after administration of the drug, with serial collections of plasma samples. Dexmedetomidine induced deep sedation, with a rapid onset of action and a duration of one hour, reaching a peak between 20 and 30 min after administration. The half-life (T½) was 70.2 ± 48 min, with a maximum concentration (Cmax) of 2.2 ± 1.9 ng/mL and time to reach maximum concentration (Tmax) of 26.4 ± 19.8 min. The area under the curve (AUC) was 167.1 ± 149.1 ng/mL*min, with a volume of distribution (Vd) of 2159.9 ± 3237.8 mL/kg and clearance (Cl) of 25.8 ± 33.0 mL/min/kg. There was a reduction in heart rate (HR) and respiratory rate (RR) in relation to the baseline, with a slight decrease in systolic (SBP), diastolic (DBP), and mean (MAP) blood pressure in the first hour. Blood glucose increased after 60 min. Dexmedetomidine proved to be effective and safe, with rapid absorption, metabolization, and elimination, promoting good sedation with minimal adverse effects after IM administration in healthy cats.
Collapse
Affiliation(s)
- Naftáli S. Fernandes
- Department of Animal Sciences, Semi-Arid Federal University, Mossoró 59625-900, RN, Brazil; (N.S.F.); (Y.D.B.P.); (K.N.A.); (A.N.M.); (T.C.P.); (K.D.S.O.)
| | - Yanna D. B. Passos
- Department of Animal Sciences, Semi-Arid Federal University, Mossoró 59625-900, RN, Brazil; (N.S.F.); (Y.D.B.P.); (K.N.A.); (A.N.M.); (T.C.P.); (K.D.S.O.)
| | - Kathryn N. Arcoverde
- Department of Animal Sciences, Semi-Arid Federal University, Mossoró 59625-900, RN, Brazil; (N.S.F.); (Y.D.B.P.); (K.N.A.); (A.N.M.); (T.C.P.); (K.D.S.O.)
| | - Andressa N. Mouta
- Department of Animal Sciences, Semi-Arid Federal University, Mossoró 59625-900, RN, Brazil; (N.S.F.); (Y.D.B.P.); (K.N.A.); (A.N.M.); (T.C.P.); (K.D.S.O.)
| | - Thainá C. Paiva
- Department of Animal Sciences, Semi-Arid Federal University, Mossoró 59625-900, RN, Brazil; (N.S.F.); (Y.D.B.P.); (K.N.A.); (A.N.M.); (T.C.P.); (K.D.S.O.)
| | - Kalyne D. S. Oliveira
- Department of Animal Sciences, Semi-Arid Federal University, Mossoró 59625-900, RN, Brazil; (N.S.F.); (Y.D.B.P.); (K.N.A.); (A.N.M.); (T.C.P.); (K.D.S.O.)
| | | | - Valéria Veras de Paula
- Department of Animal Sciences, Semi-Arid Federal University, Mossoró 59625-900, RN, Brazil; (N.S.F.); (Y.D.B.P.); (K.N.A.); (A.N.M.); (T.C.P.); (K.D.S.O.)
| |
Collapse
|
4
|
Milani N, Qiu N, Fowler S. Contribution of UGT Enzymes to Human Drug Metabolism Stereoselectivity: A Case Study of Medetomidine, RO5263397, Propranolol, and Testosterone. Drug Metab Dispos 2023; 51:306-317. [PMID: 36810196 DOI: 10.1124/dmd.122.001024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The enantiomeric forms of chiral compounds have identical physical properties but may vary greatly in their metabolism by individual enzymes. Enantioselectivity in UDP-glucuronosyl transferase (UGT) metabolism has been reported for a number of compounds and with different UGT isoforms involved. However, the impact of such individual enzyme results on overall clearance stereoselectivity is often not clear. The enantiomers of medetomidine, RO5263397, and propranolol and the epimers testosterone and epitestosterone exhibit more than a 10-fold difference in glucuronidation rates by individual UGT enzymes. In this study, we examined the translation of human UGT stereoselectivity to hepatic drug clearance considering the combination of multiple UGTs to overall glucuronidation, the contribution of other metabolic enzymes such as cytochrome P450s (P450s), and the potential for differences in protein binding and blood/plasma partitioning. For medetomidine and RO5263397, the high individual enzyme (UGT2B10) enantioselectivity translated into ∼3- to >10-fold differences in predicted human hepatic in vivo clearance. For propranolol, the UGT enantioselectivity was irrelevant in the context of high P450 metabolism. For testosterone, a complex picture emerged due to differential epimeric selectivity of various contributing enzymes and potential for extrahepatic metabolism. Quite different patterns of P450- and UGT-mediated metabolism were observed across species, as well as differences in stereoselectivity, indicating that extrapolation from human enzyme and tissue data are essential when predicting human clearance enantioselectivity. SIGNIFICANCE STATEMENT: Individual enzyme stereoselectivity illustrates the importance of three-dimensional drug-metabolizing enzyme-substrate interactions and is essential when considering the clearance of racemic drugs. However, translation from in vitro to in vivo can be challenging as contributions from multiple enzymes and enzyme classes must be combined with protein binding and blood/plasma partitioning data to estimate the net intrinsic clearance for each enantiomer. Preclinical species may be misleading as enzyme involvement and metabolism stereoselectivity can differ substantially.
Collapse
Affiliation(s)
- Nicolò Milani
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland (N.M., N.Q., S.F.) and Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy (N.M.)
| | - NaHong Qiu
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland (N.M., N.Q., S.F.) and Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy (N.M.)
| | - Stephen Fowler
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland (N.M., N.Q., S.F.) and Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy (N.M.)
| |
Collapse
|
5
|
Dias VHV, Mattos JJ, Bastolla CLV, Lüchmann KH, Bainy ACD. Characterisation of UDP-glucuronosyltransferase activity in sea turtle Chelonia mydas. Xenobiotica 2022; 52:1011-1019. [PMID: 36594659 DOI: 10.1080/00498254.2022.2164750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Uridine diphosphate glucuronosyltransferase (UGT) enzymes conjugate many lipophilic chemicals, such as drugs, environmental contaminants, and endogenous compounds, promoting their excretion. The complexity of UGT kinetics, and the location of enzyme active site in endoplasmic reticulum lumen, requires an accurate optimisation of enzyme assays.In the present study, we characterised UGT activity in liver microsomes of green turtles (Chelonia mydas), an endangered species. The conditions for measuring UGT activity were standardised through spectrofluorimetric methods, using the substrates 4-methylumbelliferone (4-MU) and uridine diphosphate glucuronic acid (UDPGA) at 30 °C and pH 7.4.The green turtles showed UGT activity at the saturating concentrations of substrates of 250 µM to 4-MU and 7 mM to UDPGA. The alamethicin, Brij®58, bovine serum albumin (BSA), and magnesium increased UGT activity. The assay using alamethicin (22 µg per mg of protein), magnesium (1 mM), and BSA (0.25%) reached the highest Vmax (1203 pmol·min-1mg·protein-1). Lithocholic acid and diclofenac inhibited UGT activity in green turtles.This study is the first report of UGT activity in the liver of green turtles and provides a base for future studies to understand the mechanisms of toxicity by exposure to contaminants in this charismatic species.
Collapse
Affiliation(s)
- Vera Helena V Dias
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Jacó J Mattos
- Aquaculture Pathology Research Center-NEPAQ, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Camila L V Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Karim H Lüchmann
- Department of Scientific and Technological Education, Santa Catarina State University, Florianópolis, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
6
|
Miners JO, Rowland A, Novak JJ, Lapham K, Goosen TC. Evidence-based strategies for the characterisation of human drug and chemical glucuronidation in vitro and UDP-glucuronosyltransferase reaction phenotyping. Pharmacol Ther 2020; 218:107689. [PMID: 32980440 DOI: 10.1016/j.pharmthera.2020.107689] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022]
Abstract
Enzymes of the UDP-glucuronosyltransferase (UGT) superfamily contribute to the elimination of drugs from almost all therapeutic classes. Awareness of the importance of glucuronidation as a drug clearance mechanism along with increased knowledge of the enzymology of drug and chemical metabolism has stimulated interest in the development and application of approaches for the characterisation of human drug glucuronidation in vitro, in particular reaction phenotyping (the fractional contribution of the individual UGT enzymes responsible for the glucuronidation of a given drug), assessment of metabolic stability, and UGT enzyme inhibition by drugs and other xenobiotics. In turn, this has permitted the implementation of in vitro - in vivo extrapolation approaches for the prediction of drug metabolic clearance, intestinal availability, and drug-drug interaction liability, all of which are of considerable importance in pre-clinical drug development. Indeed, regulatory agencies (FDA and EMA) require UGT reaction phenotyping for new chemical entities if glucuronidation accounts for ≥25% of total metabolism. In vitro studies are most commonly performed with recombinant UGT enzymes and human liver microsomes (HLM) as the enzyme sources. Despite the widespread use of in vitro approaches for the characterisation of drug and chemical glucuronidation by HLM and recombinant enzymes, evidence-based guidelines relating to experimental approaches are lacking. Here we present evidence-based strategies for the characterisation of drug and chemical glucuronidation in vitro, and for UGT reaction phenotyping. We anticipate that the strategies will inform practice, encourage development of standardised experimental procedures where feasible, and guide ongoing research in the field.
Collapse
Affiliation(s)
- John O Miners
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | | | | | | |
Collapse
|
7
|
Anderson BJ, Morse JD, Hannam JA, Cortinez LI. Pharmacokinetic and pharmacodynamic considerations of general anesthesia in pediatric subjects. Expert Opin Drug Metab Toxicol 2020; 16:279-295. [PMID: 32148110 DOI: 10.1080/17425255.2020.1739648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Introduction: The target concentration strategy uses PKPD information for dose determination. Models have also quantified exposure-response relationships, improved understanding of developmental pharmacokinetics, rationalized dose prescription, provided insight into the importance of covariate information, explained drug interactions and driven decision-making and learning during drug development.Areas covered: The prime PKPD consideration is parameter estimation and quantification of variability. The main sources of variability in children are age (maturation) and weight (size). Model use is mostly confined to pharmacokinetics, partly because anesthesia effect models in the young are imprecise. Exploration of PK and PD covariates and their variability hold potential to better individualize treatment.Expert opinion: The ability to model drugs using computer-based technology is hindered because covariate data required to individualize treatment using these programs remain lacking. Target concentration intervention strategies remain incomplete because covariate information that might better predict individualization of dose is absent. Pharmacogenomics appear a valuable area for investigation for pharmacodynamics and pharmacodynamics. Effect measures in the very young are imprecise. Assessment of the analgesic component of anesthesia is crude. While neuromuscular monitoring is satisfactory, depth of anaesthesia EEG interpretation is inadequate. Closed loop anesthesia is possible with better understanding of EEG changes.
Collapse
Affiliation(s)
- Brian J Anderson
- Department of Anaesthesiology, University of Auckland, Auckland, New Zealand
| | - James D Morse
- Department of Pharmacology & Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Jacqueline A Hannam
- Department of Pharmacology & Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - L Ignacio Cortinez
- División Anestesiología, Pontificia Universidad Católica De Chile, Santiago De Chile, Chile
| |
Collapse
|
8
|
Milani N, Qiu N, Molitor B, Badée J, Cruciani G, Fowler S. Use of Phenotypically Poor Metabolizer Individual Donor Human Liver Microsomes To Identify Selective Substrates of UGT2B10. Drug Metab Dispos 2020; 48:176-186. [PMID: 31839590 PMCID: PMC11022891 DOI: 10.1124/dmd.119.089482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/02/2019] [Indexed: 11/22/2022] Open
Abstract
UDP-glucuronosyltransferase (UGT)1A4 and UGT2B10 are the human UGT isoforms most frequently involved in N-glucuronidation of drugs. UGT2B10 exhibits higher affinity than UGT1A4 for numerous substrates, making it potentially the more important enzyme for metabolism of these compounds in vivo. Clinically relevant UGT2B10 polymorphisms, including a null activity splice site mutation common in African populations, can lead to large exposure differences for UGT2B10 substrates that may limit their developability as marketed drugs. UGT phenotyping approaches using recombinantly expressed UGTs are limited by low enzyme activity and lack of validation of scaling to in vivo. In this study, we describe the use of an efficient experimental protocol for identification of UGT2B10-selective substrates (i.e., those with high fraction metabolized by UGT2B10), which exploits the activity difference between pooled human liver microsomes (HLM) and HLM from a phenotypically UGT2B10 poor metabolizer donor. Following characterization of the approach with eight known UGT2B10 substrates, we used ligand-based virtual screening and literature precedents to select 24 potential UGT2B10 substrates of 140 UGT-metabolized drugs for testing. Of these, dothiepin, cidoxepin, cyclobenzaprine, azatadine, cyproheptadine, bifonazole, and asenapine were indicated to be selective UGT2B10 substrates that have not previously been described. UGT phenotyping experiments and tests comparing conjugative and oxidative clearance were then used to confirm these findings. These approaches provide rapid and sensitive ways to evaluate whether a potential drug candidate cleared via glucuronidation will be sensitive to UGT2B10 polymorphisms in vivo. SIGNIFICANCE STATEMENT: The role of highly polymorphic UDP-glucuronosyltransferase (UGT)2B10 is likely to be underestimated currently for many compounds cleared via N-glucuronidation due to high test concentrations often used in vitro and low activity of UGT2B10 preparations. The methodology described in this study can be combined with the assessment of UGT versus oxidative in vitro metabolism to rapidly identify compounds likely to be sensitive to UGT2B10 polymorphism (high fraction metabolized by UGT2B10), enabling either chemical modification or polymorphism risk assessment before candidate selection.
Collapse
Affiliation(s)
- Nicolo Milani
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland (N.M., N.Q., B.M., S.F.); Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy (N.M., G.C.); and Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida (J.B.)
| | - NaHong Qiu
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland (N.M., N.Q., B.M., S.F.); Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy (N.M., G.C.); and Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida (J.B.)
| | - Birgit Molitor
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland (N.M., N.Q., B.M., S.F.); Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy (N.M., G.C.); and Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida (J.B.)
| | - Justine Badée
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland (N.M., N.Q., B.M., S.F.); Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy (N.M., G.C.); and Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida (J.B.)
| | - Gabriele Cruciani
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland (N.M., N.Q., B.M., S.F.); Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy (N.M., G.C.); and Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida (J.B.)
| | - Stephen Fowler
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland (N.M., N.Q., B.M., S.F.); Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy (N.M., G.C.); and Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida (J.B.)
| |
Collapse
|
9
|
Vaillancourt J, Turcotte V, Caron P, Villeneuve L, Lacombe L, Pouliot F, Lévesque É, Guillemette C. Glucuronidation of Abiraterone and Its Pharmacologically Active Metabolites by UGT1A4, Influence of Polymorphic Variants and Their Potential as Inhibitors of Steroid Glucuronidation. Drug Metab Dispos 2020; 48:75-84. [PMID: 31727674 DOI: 10.1124/dmd.119.088229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/08/2019] [Indexed: 02/13/2025] Open
Abstract
Abiraterone (Abi) acetate (AA) is a prodrug of Abi, a CYP17A1 inhibitor used to treat patients with advanced prostate cancer. Abi is a selective steroidal inhibitor that blocks the biosynthesis of androgens. It undergoes extensive biotransformation by steroid pathways, leading to the formation of pharmacologically active Δ4-Abi (D4A) and 5α-Abi. This study aimed to characterize the glucuronidation pathway of Abi and its two active metabolites. We show that Abi, its metabolites, and another steroidal inhibitor galeterone (Gal) undergo secondary metabolism to form glucuronides (G) in human liver microsomes with minor formation by intestine and kidney microsomal preparations. The potential clinical relevance of this pathway is supported by the detection by liquid chromatography-tandem mass spectrometry of Abi-G, D4A-G, and 5α-Abi-G in patients under AA therapy. A screening of UGT enzymes reveals that UGT1A4 is the main enzyme involved. This is supported by inhibition experiments using a selective UGT1A4 inhibitor hecogenin. A number of common and rare nonsynonymous variants significantly abrogate the UGT1A4-mediated formation of Abi-G, D4A-G, and 5α-Abi-G in vitro. We also identify Gal, Abi, and its metabolites as highly potent inhibitors of steroid inactivation by the UGT pathway with submicromolar inhibitor constant values. They reduce the glucuronidation of both the adrenal precursors and potent androgens in human liver, prostate cancer cells, and by recombinant UGTs involved in their inactivation. In conclusion, tested CYP17A1 inhibitors are metabolized through UGT1A4, and germline variations affecting this metabolic pathway may also influence drug metabolism. SIGNIFICANCE STATEMENT: The antiandrogen abiraterone (Abi) is a selective steroidal inhibitor of the cytochrome P450 17α-hydroxy/17,20-lyase, an enzyme involved in the biosynthesis of androgens. Abi is metabolized to pharmacologically active metabolites by steroidogenic enzymes. We demonstrate that Abi and its metabolites are glucuronidated in the liver and that their glucuronide derivatives are detected at variable levels in circulation of treated prostate cancer patients. UDP-glucuronosyltransferase (UGT)1A4 is the primary enzyme involved, and nonsynonymous germline variations affect this metabolic pathway in vitro, suggesting a potential influence of drug metabolism and action in patients. Their inhibitory effect on drug and steroid glucuronidation raises the possibility that these pharmacological compounds might affect the UGT-associated drug-metabolizing system and pre-receptor control of androgen metabolism in patients.
Collapse
Affiliation(s)
- Joanie Vaillancourt
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center - Université Laval and Faculty of Pharmacy (J.V., V.T., P.C., L.V., C.G.), CHU de Québec Research Center - Université Laval, Division of Urology, Faculty of Medicine, Surgery Department (L.L., F.P.), and CHU de Québec Research Center - Université Laval, Division of Hematology-Oncology, Faculty of Medicine (E.L.), Laval University, Québec, Canada
| | - Véronique Turcotte
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center - Université Laval and Faculty of Pharmacy (J.V., V.T., P.C., L.V., C.G.), CHU de Québec Research Center - Université Laval, Division of Urology, Faculty of Medicine, Surgery Department (L.L., F.P.), and CHU de Québec Research Center - Université Laval, Division of Hematology-Oncology, Faculty of Medicine (E.L.), Laval University, Québec, Canada
| | - Patrick Caron
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center - Université Laval and Faculty of Pharmacy (J.V., V.T., P.C., L.V., C.G.), CHU de Québec Research Center - Université Laval, Division of Urology, Faculty of Medicine, Surgery Department (L.L., F.P.), and CHU de Québec Research Center - Université Laval, Division of Hematology-Oncology, Faculty of Medicine (E.L.), Laval University, Québec, Canada
| | - Lyne Villeneuve
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center - Université Laval and Faculty of Pharmacy (J.V., V.T., P.C., L.V., C.G.), CHU de Québec Research Center - Université Laval, Division of Urology, Faculty of Medicine, Surgery Department (L.L., F.P.), and CHU de Québec Research Center - Université Laval, Division of Hematology-Oncology, Faculty of Medicine (E.L.), Laval University, Québec, Canada
| | - Louis Lacombe
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center - Université Laval and Faculty of Pharmacy (J.V., V.T., P.C., L.V., C.G.), CHU de Québec Research Center - Université Laval, Division of Urology, Faculty of Medicine, Surgery Department (L.L., F.P.), and CHU de Québec Research Center - Université Laval, Division of Hematology-Oncology, Faculty of Medicine (E.L.), Laval University, Québec, Canada
| | - Frédéric Pouliot
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center - Université Laval and Faculty of Pharmacy (J.V., V.T., P.C., L.V., C.G.), CHU de Québec Research Center - Université Laval, Division of Urology, Faculty of Medicine, Surgery Department (L.L., F.P.), and CHU de Québec Research Center - Université Laval, Division of Hematology-Oncology, Faculty of Medicine (E.L.), Laval University, Québec, Canada
| | - Éric Lévesque
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center - Université Laval and Faculty of Pharmacy (J.V., V.T., P.C., L.V., C.G.), CHU de Québec Research Center - Université Laval, Division of Urology, Faculty of Medicine, Surgery Department (L.L., F.P.), and CHU de Québec Research Center - Université Laval, Division of Hematology-Oncology, Faculty of Medicine (E.L.), Laval University, Québec, Canada
| | - Chantal Guillemette
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center - Université Laval and Faculty of Pharmacy (J.V., V.T., P.C., L.V., C.G.), CHU de Québec Research Center - Université Laval, Division of Urology, Faculty of Medicine, Surgery Department (L.L., F.P.), and CHU de Québec Research Center - Université Laval, Division of Hematology-Oncology, Faculty of Medicine (E.L.), Laval University, Québec, Canada
| |
Collapse
|
10
|
Li Z, Gao Y, Yang C, Xiang Y, Zhang W, Zhang T, Su R, Lu C, Zhuang X. Assessment and Confirmation of Species Difference in Nonlinear Pharmacokinetics of Atipamezole with Physiologically Based Pharmacokinetic Modeling. Drug Metab Dispos 2020; 48:41-51. [PMID: 31699808 DOI: 10.1124/dmd.119.089151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/24/2019] [Indexed: 11/22/2022] Open
Abstract
Atipamezole, an α 2-adrenoceptor antagonist, displayed nonlinear pharmacokinetics (PK) in rats. The aim of this study was to understand the underlying mechanisms of nonlinear PK in rats and linear PK in humans and develop physiologically based PK models (PBPK) to capture and validate this phenomenon. In vitro and in vivo data were generated to show that metabolism is the main clearance pathway of atipamezole and species differences exist. Where cytochrome P450 (P450) was responsible for the metabolism in rats with a low Michaelis constant, human-specific UDP-glucuronosyltransferase 2B10- and 1A4-mediated N-glucuronidation was identified as the leading contributor to metabolism in humans with a high V max capacity. Saturation of metabolism was observed in rats at pharmacologically relevant doses, but not in humans at clinically relevant doses. PBPK models were developed using GastroPlus software to predict the PK profile of atipamezole in rats after intravenous or intramuscular administration of 0.1 to 3 mg/kg doses. The model predicted the nonlinear PK of atipamezole in rats and predicted observed exposures within 2-fold across dose levels. Under the same model structure, a human PBPK model was developed using human in vitro metabolism data. The PBPK model well described human concentration-time profiles at 10-100 mg doses showing dose-proportional increases in exposure. This study demonstrated that PBPK is a useful tool to predict human PK when interspecies extrapolation is not applicable. The nonlinear PK in rat and linear PK in human were characterized in vitro and allowed the prospective human PK via intramuscular dosing to be predicted at the preclinical stage. SIGNIFICANCE STATEMENT: This study demonstrated that PBPK is a useful tool for predicting human PK when interspecies extrapolation is not applicable due to species unique metabolism. Atipamezole, for example, is metabolized by P450 in rats and by N-glucuronidation in humans that were hypothesized to be the underlying reasons for a nonlinear PK in rats and linear PK in humans. This was testified by PBPK simulation in this study.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (Z.L., Y.G., C.Y., Y.X., W.Z., T.Z., R.S., X.Z.); and Department of DMPK, Sanofi Company, Waltham, Massachusetts (C.L.)
| | - You Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (Z.L., Y.G., C.Y., Y.X., W.Z., T.Z., R.S., X.Z.); and Department of DMPK, Sanofi Company, Waltham, Massachusetts (C.L.)
| | - Chunmiao Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (Z.L., Y.G., C.Y., Y.X., W.Z., T.Z., R.S., X.Z.); and Department of DMPK, Sanofi Company, Waltham, Massachusetts (C.L.)
| | - Yanan Xiang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (Z.L., Y.G., C.Y., Y.X., W.Z., T.Z., R.S., X.Z.); and Department of DMPK, Sanofi Company, Waltham, Massachusetts (C.L.)
| | - Wenpeng Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (Z.L., Y.G., C.Y., Y.X., W.Z., T.Z., R.S., X.Z.); and Department of DMPK, Sanofi Company, Waltham, Massachusetts (C.L.)
| | - Tianhong Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (Z.L., Y.G., C.Y., Y.X., W.Z., T.Z., R.S., X.Z.); and Department of DMPK, Sanofi Company, Waltham, Massachusetts (C.L.)
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (Z.L., Y.G., C.Y., Y.X., W.Z., T.Z., R.S., X.Z.); and Department of DMPK, Sanofi Company, Waltham, Massachusetts (C.L.)
| | - Chuang Lu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (Z.L., Y.G., C.Y., Y.X., W.Z., T.Z., R.S., X.Z.); and Department of DMPK, Sanofi Company, Waltham, Massachusetts (C.L.)
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (Z.L., Y.G., C.Y., Y.X., W.Z., T.Z., R.S., X.Z.); and Department of DMPK, Sanofi Company, Waltham, Massachusetts (C.L.)
| |
Collapse
|
11
|
Yang M, Tse AH, Lee A, Joynt GM, Zuo Z. Large inter-individual variability in pharmacokinetics of dexmedetomidine and its two major N-glucuronides in adult intensive care unit patients. J Pharm Biomed Anal 2019; 175:112777. [DOI: 10.1016/j.jpba.2019.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
|
12
|
Lv X, Zhang JB, Hou J, Dou TY, Ge GB, Hu WZ, Yang L. Chemical Probes for Human UDP-Glucuronosyltransferases: A Comprehensive Review. Biotechnol J 2018; 14:e1800002. [PMID: 30192065 DOI: 10.1002/biot.201800002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/19/2018] [Indexed: 01/11/2023]
Abstract
UGTs play crucial roles in the metabolism and detoxification of both endogenous and xenobiotic compounds. The key roles of UGTs in human health have garnered great interest in the design and development of specific probes for human UGTs. However, in contrast to other human enzymes, the probe substrates for human UGTs are rarely reported, owing to the highly overlapping substrate specificities of UGTs and the lack of the integrated crystal structures of UGTs. Over the past decades, many efforts are made to develop specific probe substrates for UGTs and use them in both basic research and drug discovery. This review focuses on recent progress in the development of probe substrates for UGTs and their biomedical applications. A long list of chemical probes for UGTs, including non-fluorescent and fluorescent probes along with their structural information and kinetic parameters, are prepared and analyzed. Additionally, challenges and future directions in this field are highlighted in the final section. All information and knowledge presented in this review provide practical tools/methods for measuring UGT activities in complex biological samples, which will be very helpful for rapid screening and characterization of UGT modulators, and for exploring the relevance of UGT enzymes to human diseases.
Collapse
Affiliation(s)
- Xia Lv
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, 116600, China.,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | | | - Jie Hou
- Dalian Medical University, Dalian, 116044, China
| | - Tong-Yi Dou
- School of Life Science and Medicine, Dalian University of Technology, Panjin, 124221, China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wen-Zhong Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Ling Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
13
|
Wang L, Wang S, Qi J, Yu R, Zhuang J, Zhuang B, Lou Y, Ruan J, Ye H, Lin F. Impact of CYP2A6 gene polymorphism on the pharmacokinetics of dexmedetomidine for premedication. Expert Rev Clin Pharmacol 2018; 11:917-922. [PMID: 30092666 DOI: 10.1080/17512433.2018.1510312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND Dexmedetomidine is a widely used sedative in clinic, which is mainly metabolized by cytochrome P450 2A6 (CYP2A6). Dexmedetomidine was rarely reported for off-label usage of premedication, but lacking relevant pharmacokinetic investigations. Therefore, our study determined the dexmedetomidine pharmacokinetics of CYP2A6*4 allele in Chinese patients pretreated with dexmedetomidine whose mutation frequency of CYP2A6*4 are high, in order to provide clinical references. METHODS Thirty-one elective surgery patients received premedication with 0.5 μg/kg dexmedetomidine via intravenous pump. Their plasma concentrations at multiple time-points and polymorphism of CYP2A6*4 were determined and statistically analyzed. RESULTS 9 patients were *1/*4 or *4/*4, and 22 patients were *1/*1. The main pharmacokinetic parameters were area under curve (AUC) 1396.19 ± 332.47h· ng· l-1, peak blood concentration (Cmax) 495.50 ± 104.90ng· l-1, distribution volume (V) 0.68 ± 0.20 L/kg, clearance (CL) 0.38 ± 0.11 L/h/kg, distribution half-life (t1/2α) 0.05 ± 0.01h, elimination half-life (t1/2β) 2.53 ± 0.04h. No significant pharmacokinetic differences were found among CYP2A6*1/*1, *1/*4, and *4/*4 patients. CONCLUSIONS In Chinese patients pretreated with dexmedetomidine, T1/2β was consistent with that published, but T1/2α, V and Cl were lower. It was unnecessary to consider the mutation when developing the precision regimen of dexmedetomidine.
Collapse
Affiliation(s)
- Ling Wang
- a Department of Pharmacy , Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University , Fuzhou , China
| | - Shaoming Wang
- a Department of Pharmacy , Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University , Fuzhou , China
| | - Juan Qi
- b Second Department of Anesthesiology , Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University , Fuzhou , China
| | - Rongguo Yu
- c Surgery Intensive Care Unit , Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University , Fuzhou , China
| | - Jie Zhuang
- a Department of Pharmacy , Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University , Fuzhou , China
| | - Boyang Zhuang
- d Center for Certification and Evaluation , Fujian Food and Drug Administration , Fuzhou , China
| | - Yongming Lou
- e Chemical Laboratory , Fujian Institute for Food and Drug Quality Control , Fuzhou , China
| | - Junshan Ruan
- a Department of Pharmacy , Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University , Fuzhou , China
| | - Hong Ye
- a Department of Pharmacy , Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University , Fuzhou , China
| | - Fangfang Lin
- a Department of Pharmacy , Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University , Fuzhou , China
| |
Collapse
|
14
|
Lu D, Dong D, Wu B. Highly selective N-glucuronidation of four piperazine-containing drugs by UDP-glucuronosyltransferase 2B10. Expert Opin Drug Metab Toxicol 2018; 14:989-998. [DOI: 10.1080/17425255.2018.1505862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Danyi Lu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Dong Dong
- College of Medicine, Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Labriet A, Allain EP, Rouleau M, Audet-Delage Y, Villeneuve L, Guillemette C. Post-transcriptional Regulation of UGT2B10 Hepatic Expression and Activity by Alternative Splicing. Drug Metab Dispos 2018; 46:514-524. [PMID: 29438977 PMCID: PMC5894810 DOI: 10.1124/dmd.117.079921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/31/2018] [Indexed: 12/17/2022] Open
Abstract
The detoxification enzyme UDP-glucuronosyltransferase UGT2B10 is specialized in the N-linked glucuronidation of many drugs and xenobiotics. Preferred substrates possess tertiary aliphatic amines and heterocyclic amines, such as tobacco carcinogens and several antidepressants and antipsychotics. We hypothesized that alternative splicing (AS) constitutes a means to regulate steady-state levels of UGT2B10 and enzyme activity. We established the transcriptome of UGT2B10 in normal and tumoral tissues of multiple individuals. The highest expression was in the liver, where 10 AS transcripts represented 50% of the UGT2B10 transcriptome in 50 normal livers and 44 hepatocellular carcinomas. One abundant class of transcripts involves a novel exonic sequence and leads to two alternative (alt.) variants with novel in-frame C termini of 10 or 65 amino acids. Their hepatic expression was highly variable among individuals, correlated with canonical transcript levels, and was 3.5-fold higher in tumors. Evidence for their translation in liver tissues was acquired by mass spectrometry. In cell models, they colocalized with the enzyme and influenced the conjugation of amitriptyline and levomedetomidine by repressing or activating the enzyme (40%-70%; P < 0.01) in a cell context-specific manner. A high turnover rate for the alt. proteins, regulated by the proteasome, was observed in contrast to the more stable UGT2B10 enzyme. Moreover, a drug-induced remodeling of UGT2B10 splicing was demonstrated in the HepaRG hepatic cell model, which favored alt. variants expression over the canonical transcript. Our findings support a significant contribution of AS in the regulation of UGT2B10 expression in the liver with an impact on enzyme activity.
Collapse
Affiliation(s)
- Adrien Labriet
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy, Québec, Canada Research Chair in Pharmacogenomics, Université Laval, Québec, Canada
| | - Eric P Allain
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy, Québec, Canada Research Chair in Pharmacogenomics, Université Laval, Québec, Canada
| | - Michèle Rouleau
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy, Québec, Canada Research Chair in Pharmacogenomics, Université Laval, Québec, Canada
| | - Yannick Audet-Delage
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy, Québec, Canada Research Chair in Pharmacogenomics, Université Laval, Québec, Canada
| | - Lyne Villeneuve
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy, Québec, Canada Research Chair in Pharmacogenomics, Université Laval, Québec, Canada
| | - Chantal Guillemette
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy, Québec, Canada Research Chair in Pharmacogenomics, Université Laval, Québec, Canada
| |
Collapse
|
16
|
Abstract
Dexmedetomidine is an α2-adrenoceptor agonist with sedative, anxiolytic, sympatholytic, and analgesic-sparing effects, and minimal depression of respiratory function. It is potent and highly selective for α2-receptors with an α2:α1 ratio of 1620:1. Hemodynamic effects, which include transient hypertension, bradycardia, and hypotension, result from the drug’s peripheral vasoconstrictive and sympatholytic properties. Dexmedetomidine exerts its hypnotic action through activation of central pre- and postsynaptic α2-receptors in the locus coeruleus, thereby inducting a state of unconsciousness similar to natural sleep, with the unique aspect that patients remain easily rousable and cooperative. Dexmedetomidine is rapidly distributed and is mainly hepatically metabolized into inactive metabolites by glucuronidation and hydroxylation. A high inter-individual variability in dexmedetomidine pharmacokinetics has been described, especially in the intensive care unit population. In recent years, multiple pharmacokinetic non-compartmental analyses as well as population pharmacokinetic studies have been performed. Body size, hepatic impairment, and presumably plasma albumin and cardiac output have a significant impact on dexmedetomidine pharmacokinetics. Results regarding other covariates remain inconclusive and warrant further research. Although initially approved for intravenous use for up to 24 h in the adult intensive care unit population only, applications of dexmedetomidine in clinical practice have been widened over the past few years. Procedural sedation with dexmedetomidine was additionally approved by the US Food and Drug Administration in 2003 and dexmedetomidine has appeared useful in multiple off-label applications such as pediatric sedation, intranasal or buccal administration, and use as an adjuvant to local analgesia techniques.
Collapse
|
17
|
Rolle A, Paredes S, Cortínez LI, Anderson BJ, Quezada N, Solari S, Allende F, Torres J, Cabrera D, Contreras V, Carmona J, Ramírez C, Oliveros AM, Ibacache M. Dexmedetomidine metabolic clearance is not affected by fat mass in obese patients. Br J Anaesth 2018; 120:969-977. [PMID: 29661414 DOI: 10.1016/j.bja.2018.01.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/28/2017] [Accepted: 01/27/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Obesity has been associated with reduced dexmedetomidine clearance, suggesting impaired hepatic function or reduced hepatic blood flow. The aim of this study was to clarify the effect of obesity in dexmedetomidine metabolic clearance. METHODS Forty patients, ASA I-III, 18-60 yr old, weighing 47-126 kg, scheduled for abdominal laparoscopic surgery, were enrolled. Anaesthetic agents (propofol, remifentanil, and dexmedetomidine) were dosed based on lean body weight measured by dual X-ray absorptiometry. Serial venous samples were drawn during and after dexmedetomidine infusion. A pharmacokinetic analysis was undertaken using non-linear mixed-effect models. In the modelling approach, the total body weight, lean body weight, and adjusted body weight were first tested as size descriptors for volumes and clearances. Hepatic blood flow, liver histopathology, liver enzymes, and gene expression of metabolic enzymes (UGT2B10 and UGT1A4) were tested as covariates of dexmedetomidine metabolic clearance. A decrease in NONMEM objective function value (ΔOFV) of 3.84 points, for an added parameter, was considered significant at the 0.05 level. RESULTS A total of 637 dexmedetomidine serum samples were obtained. A two-compartmental model scaled to measured lean weight adequately described the dexmedetomidine pharmacokinetics. Liver blood flow was a covariate for dexmedetomidine clearance (ΔOFV=-5.878). Other factors, including fat mass, histopathological damage, and differential expression of enzymes, did not affect the dexmedetomidine clearance in the population studied (ΔOFV<3.84). CONCLUSIONS We did not find a negative influence of obesity in dexmedetomidine clearance when doses were adjusted to lean body weight. Liver blood flow showed a significant effect on dexmedetomidine clearance. CLINICAL TRIAL REGISTRATION NCT02557867.
Collapse
Affiliation(s)
- A Rolle
- División de Anestesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - S Paredes
- División de Anestesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - L I Cortínez
- División de Anestesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - B J Anderson
- Department of Anaesthesiology, University of Auckland, Auckland, New Zealand
| | - N Quezada
- Departamento de Cirugía Digestiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - S Solari
- Departamento de Laboratorio Clínico, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F Allende
- Departamento de Laboratorio Clínico, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - J Torres
- Departamento de Anatomía Patológica, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - D Cabrera
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - V Contreras
- División de Anestesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - J Carmona
- División de Anestesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C Ramírez
- División de Anestesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A M Oliveros
- División de Anestesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - M Ibacache
- División de Anestesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
18
|
Lu D, Xie Q, Wu B. N-glucuronidation catalyzed by UGT1A4 and UGT2B10 in human liver microsomes: Assay optimization and substrate identification. J Pharm Biomed Anal 2017; 145:692-703. [PMID: 28803208 DOI: 10.1016/j.jpba.2017.07.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
N-glucuronidation is an important pathway for metabolism and disposition of tertiary amines in humans. This reaction is mainly catalyzed by the enzymes UGT1A4 and UGT2B10. However, the metabolic patterns of UGT1A4- and UGT2B10-mediated N-glucuronidation are not fully clear. In this study, we first optimized in vitro reaction conditions for N-glucuronidation by using specific substrates (i.e., trifluoperazine for UGT1A4, cotinine and amitriptyline for UGT2B10). Furthermore, we found that hepatic N-glucuronidation showed significant species differences. In addition, UGT1A4 and UGT2B10 were primarily responsible for N-glucuronidation of many tertiary amines, including asenapine, loxapine, clozapine, chlorpromazine, dothiepin, doxepin, mirtazapine, mianserin, chlorcyclizine, cyclizine, promethazine, cyclobenzaprine, imatinib, retrorsine, strychnine and brucine. In conclusion, this study provides an in vitro assay system for evaluating N-glucuronidation of amines. Also, UGT1A4- and UGT2B10-mediated N-glucuronidation might play significant roles in metabolism and detoxification of tertiary amines in humans.
Collapse
Affiliation(s)
- Danyi Lu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China; Shenzhen Key Laboratory for Molecular Biology of Neural Development, Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Qian Xie
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China.
| |
Collapse
|
19
|
Lu D, Wang S, Xie Q, Guo L, Wu B. Transcriptional Regulation of Human UDP-Glucuronosyltransferase 2B10 by Farnesoid X Receptor in Human Hepatoma HepG2 Cells. Mol Pharm 2017; 14:2899-2907. [PMID: 28267333 DOI: 10.1021/acs.molpharmaceut.6b01103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Little is known about transcriptional regulators of UDP-glucuronosyltransferase 2B10 (UGT2B10), an enzyme known to glucuronidate many chemicals and drugs such as nicotine and tricyclic antidepressants. Here, we uncovered that UGT2B10 was transcriptionally regulated by farnesoid X receptor (FXR), the bile acid sensing nuclear receptor. GW4064 and chenodeoxycholic acid (two specific FXR agonists) treatment of HepG2 cells led to a significant increase in the mRNA level of UGT2B10. The treated cells also showed enhanced glucuronidation activities toward amitriptyline (an UGT2B10 probe substrate). In reporter gene assays, the extent of UGT2B10 activation by the FXR agonists was positively correlated with the amount of cotransfected FXR. Consistently, knockdown of FXR by shRNA attenuated the induction effect on UGT2B10 expression. Furthermore, a combination of electrophoretic mobility shift assay and chromatin immunoprecipitation showed that the FXR receptor trans-activated UGT2B10 through its specific binding to the -209- to -197-bp region (an IR1 element) of the UGT2B10 promoter. In summary, our results for the first time established FXR as a transcriptional regulator of human UGT2B10.
Collapse
Affiliation(s)
- Danyi Lu
- Division of Pharmaceutics, College of Pharmacy, Jinan University , 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Shuai Wang
- Division of Pharmaceutics, College of Pharmacy, Jinan University , 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Qian Xie
- Division of Pharmaceutics, College of Pharmacy, Jinan University , 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Lianxia Guo
- Division of Pharmaceutics, College of Pharmacy, Jinan University , 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Baojian Wu
- Division of Pharmaceutics, College of Pharmacy, Jinan University , 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
20
|
Fowler S, Morcos PN, Cleary Y, Martin-Facklam M, Parrott N, Gertz M, Yu L. Progress in Prediction and Interpretation of Clinically Relevant Metabolic Drug-Drug Interactions: a Minireview Illustrating Recent Developments and Current Opportunities. CURRENT PHARMACOLOGY REPORTS 2017; 3:36-49. [PMID: 28261547 PMCID: PMC5315728 DOI: 10.1007/s40495-017-0082-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW This review gives a perspective on the current "state of the art" in metabolic drug-drug interaction (DDI) prediction. We highlight areas of successful prediction and illustrate progress in areas where limits in scientific knowledge or technologies prevent us from having full confidence. RECENT FINDINGS Several examples of success are highlighted. Work done for bitopertin shows how in vitro and clinical data can be integrated to give a model-based understanding of pharmacokinetics and drug interactions. The use of interpolative predictions to derive explicit dosage recommendations for untested DDIs is discussed using the example of ibrutinib, and the use of DDI predictions in lieu of clinical studies in new drug application packages is exemplified with eliglustat and alectinib. Alectinib is also an interesting case where dose adjustment is unnecessary as the activity of a major metabolite compensates sufficiently for changes in parent drug exposure. Examples where "unusual" cytochrome P450 (CYP) and non-CYP enzymes are responsible for metabolic clearance have shown the importance of continuing to develop our repertoire of in vitro regents and techniques. The time-dependent inhibition assay using human hepatocytes suspended in full plasma allowed improved DDI predictions, illustrating the importance of continued in vitro assay development and refinement. SUMMARY During the past 10 years, a highly mechanistic understanding has been developed in the area of CYP-mediated metabolic DDIs enabling the prediction of clinical outcome based on preclinical studies. The combination of good quality in vitro data and physiologically based pharmacokinetic modeling may now be used to evaluate DDI risk prospectively and are increasingly accepted in lieu of dedicated clinical studies.
Collapse
Affiliation(s)
- Stephen Fowler
- Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Peter N. Morcos
- Pharmaceutical Reseach and Early Development, Roche Innovation Center New York, F. Hoffmann-La Roche Ltd., 430 East 29th Street, New York City, NY USA
| | - Yumi Cleary
- Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Meret Martin-Facklam
- Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Neil Parrott
- Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Michael Gertz
- Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Li Yu
- Pharmaceutical Reseach and Early Development, Roche Innovation Center New York, F. Hoffmann-La Roche Ltd., 430 East 29th Street, New York City, NY USA
| |
Collapse
|
21
|
Su F, Gastonguay MR, Nicolson SC, DiLiberto M, Ocampo-Pelland A, Zuppa AF. Dexmedetomidine Pharmacology in Neonates and Infants After Open Heart Surgery. Anesth Analg 2016. [DOI: 10.1213/ane.0000000000000869] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Pattanawongsa A, Nair PC, Rowland A, Miners JO. Human UDP-Glucuronosyltransferase (UGT) 2B10: Validation of Cotinine as a Selective Probe Substrate, Inhibition by UGT Enzyme-Selective Inhibitors and Antidepressant and Antipsychotic Drugs, and Structural Determinants of Enzyme Inhibition. Drug Metab Dispos 2016; 44:378-88. [PMID: 26669329 DOI: 10.1124/dmd.115.068213] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/14/2015] [Indexed: 02/05/2023] Open
Abstract
Although there is evidence for an important role of UGT2B10 in the N-glucuronidation of drugs and other xenobiotics, the inhibitor selectivity of this enzyme is poorly understood. This study sought primarily to characterize the inhibition selectivity of UGT2B10 by UDP-glucuronosyltransferase (UGT) enzyme-selective inhibitors used for reaction phenotyping, and 34 antidepressant and antipsychotic drugs that contain an amine functional group. Initial studies demonstrated that cotinine is a highly selective substrate of human liver microsomal UGT2B10. The kinetics of cotinine N-glucuronidation by recombinant UGT and human liver microsomes (± bovine serum albumin) were consistent with the involvement of a single enzyme. Of the UGT enzyme-selective inhibitors employed for reaction phenotyping, only the UGT2B4/7 inhibitor fluconazole reduced recombinant UGT2B10 activity to an appreciable extent. The majority of antidepressant and antipsychotic drugs screened for effects on UGT2B10 inhibited enzyme activity with IC50 values <100 µM. The most potent inhibition was observed with the tricyclic antidepressants amitriptyline and doxepin and the tetracyclic antidepressant mianserin, and the structurally related compounds desloratadine and loratadine. Molecular modeling using a ligand-based approach indicated that hydrophobic and charge interactions are involved in inhibitor binding, whereas spatial features influence the potency of UGT2B10 inhibition. Respective mean Ki,u (± S.D.) values for amitriptyline, doxepin, and mianserin inhibition of human liver microsomal UGT2B10 were 0.61 ± 0.05, 0.95 ± 0.18, and 0.43 ± 0.01 µM. In vitro-in vivo extrapolation indicates that these drugs may perpetrate inhibitory drug-drug interactions when coadministered with compounds that are cleared predominantly by UGT2B10.
Collapse
Affiliation(s)
- Attarat Pattanawongsa
- Department of Clinical Pharmacology (A.P., P.C.N., A.R., J.O.M.) and Flinders Centre for Innovation in Cancer (A.R., P.C.N., J.O.M.), Flinders University School of Medicine, Adelaide, Australia
| | - Pramod C Nair
- Department of Clinical Pharmacology (A.P., P.C.N., A.R., J.O.M.) and Flinders Centre for Innovation in Cancer (A.R., P.C.N., J.O.M.), Flinders University School of Medicine, Adelaide, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology (A.P., P.C.N., A.R., J.O.M.) and Flinders Centre for Innovation in Cancer (A.R., P.C.N., J.O.M.), Flinders University School of Medicine, Adelaide, Australia
| | - John O Miners
- Department of Clinical Pharmacology (A.P., P.C.N., A.R., J.O.M.) and Flinders Centre for Innovation in Cancer (A.R., P.C.N., J.O.M.), Flinders University School of Medicine, Adelaide, Australia
| |
Collapse
|
23
|
Inhibition of the cardiac Na⁺ channel α-subunit Nav1.5 by propofol and dexmedetomidine. Naunyn Schmiedebergs Arch Pharmacol 2015; 389:315-25. [PMID: 26667357 DOI: 10.1007/s00210-015-1195-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/26/2015] [Indexed: 12/19/2022]
Abstract
Propofol and dexmedetomidine are very commonly used sedative agents. However, several case reports demonstrated cardiovascular adverse effects of these two sedatives. Both substances were previously demonstrated to quite potently inhibit neuronal voltage-gated Na(+) channels. Thus, a possible molecular mechanism for some of their cardiac side effects is an inhibition of cardiac voltage gated Na(+) channels. In this study, we therefore explored the effects of propofol and dexmedetomidine on the cardiac predominant Na(+) channel α-subunit Nav1.5. Effects of propofol and dexmedetomidine were investigated on constructs of the human α-subunit Nav1.5 stably expressed in HEK-293 cells by means of whole-cell patch clamp recordings. Both agents induced a concentration-dependent tonic inhibition of Nav1.5. The calculated IC50 value for propofol was 228 ± 10 μM, and for dexmedetomidine 170 ± 20 μM. Tonic block only marginally increased on inactivated channels, and a weak use-dependent block at 10 Hz was observed for dexmedetomidine (16 ± 2 % by 100 μM). The voltage dependencies of fast and slow inactivation as well as the time course of recovery from inactivation were shifted by both propofol and dexmedetomidine. Propofol (IC50 126 ± 47 μM) and dexmedetomidine (IC50 182 ± 27 μM) blocked the persistent sodium current induced by veratradine. Finally, the local-anesthetic (LA)-insensitive mutant Nav1.5-F1760A exhibited reduced tonic and use-dependent block by both substances. Dexmedetomidine was generally more potent as compared to propofol. Propofol and dexmedetomidine seem to interact with the LA-binding site to inhibit the cardiac Na(+) channel Nav1.5 in a state-dependent manner. These data suggest that Nav1.5 is a hitherto unrecognized molecular component of some cardiovascular side effects of these sedative agents.
Collapse
|
24
|
Dexmedetomidine pharmacokinetics in the obese. Eur J Clin Pharmacol 2015; 71:1501-8. [DOI: 10.1007/s00228-015-1948-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
|
25
|
Inhibition screening method of microsomal UGTs using the cocktail approach. Eur J Pharm Sci 2015; 71:35-45. [DOI: 10.1016/j.ejps.2015.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/01/2015] [Accepted: 02/02/2015] [Indexed: 02/06/2023]
|
26
|
Fowler S, Kletzl H, Finel M, Manevski N, Schmid P, Tuerck D, Norcross RD, Hoener MC, Spleiss O, Iglesias VA. A UGT2B10 splicing polymorphism common in african populations may greatly increase drug exposure. J Pharmacol Exp Ther 2015; 352:358-67. [PMID: 25503386 DOI: 10.1124/jpet.114.220194] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
RO5263397 [(S)-4-(3-fluoro-2-methyl-phenyl)-4,5-dihydro-oxazol-2-ylamine], a new compound that showed promising results in animal models of schizophrenia, is mainly metabolized in humans by N-glucuronidation. Enzyme studies, using the (then) available commercial uridine 5'-diphosphate-glucuronosyltransferases (UGTs), suggested that UGT1A4 is responsible for its conjugation. In the first clinical trial, in which RO5263397 was administered orally to healthy human volunteers, a 136-fold above-average systemic exposure to the parent compound was found in one of the participants. Further administration in this trial identified two more such poor metabolizers, all three of African origin. Additional in vitro studies with recombinant UGTs showed that the contribution of UGT2B10 to RO5263397 glucuronidation is much higher than UGT1A4 at clinically relevant concentrations. DNA sequencing in all of these poor metabolizers identified a previously uncharacterized splice site mutation that prevents assembly of full-length UGT2B10 mRNA and thus functional UGT2B10 protein expression. Further DNA database analyses revealed the UGT2B10 splice site mutation to be highly frequent in individuals of African origin (45%), moderately frequent in Asians (8%) and almost unrepresented in Caucasians (<1%). A prospective study using hepatocytes from 20 individual African donors demonstrated a >100-fold lower intrinsic clearance of RO5263397 in cells homozygous for the splice site variant allele. Our results highlight the need to include UGT2B10 when screening the human UGTs for the enzymes involved in the glucuronidation of a new compound, particularly when there is a possibility of N-glucuronidation. Moreover, this study demonstrates the importance of considering different ethnicities during drug development.
Collapse
Affiliation(s)
- Stephen Fowler
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (S.F., H.K., P.S., D.T., R.D.N., M.C.H., O.S., V.A.I.); and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F., N.M.)
| | - Heidemarie Kletzl
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (S.F., H.K., P.S., D.T., R.D.N., M.C.H., O.S., V.A.I.); and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F., N.M.)
| | - Moshe Finel
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (S.F., H.K., P.S., D.T., R.D.N., M.C.H., O.S., V.A.I.); and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F., N.M.)
| | - Nenad Manevski
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (S.F., H.K., P.S., D.T., R.D.N., M.C.H., O.S., V.A.I.); and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F., N.M.)
| | - Paul Schmid
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (S.F., H.K., P.S., D.T., R.D.N., M.C.H., O.S., V.A.I.); and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F., N.M.)
| | - Dietrich Tuerck
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (S.F., H.K., P.S., D.T., R.D.N., M.C.H., O.S., V.A.I.); and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F., N.M.)
| | - Roger D Norcross
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (S.F., H.K., P.S., D.T., R.D.N., M.C.H., O.S., V.A.I.); and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F., N.M.)
| | - Marius C Hoener
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (S.F., H.K., P.S., D.T., R.D.N., M.C.H., O.S., V.A.I.); and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F., N.M.)
| | - Olivia Spleiss
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (S.F., H.K., P.S., D.T., R.D.N., M.C.H., O.S., V.A.I.); and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F., N.M.)
| | - Victor A Iglesias
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (S.F., H.K., P.S., D.T., R.D.N., M.C.H., O.S., V.A.I.); and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F., N.M.)
| |
Collapse
|
27
|
Zientek MA, Youdim K. Reaction phenotyping: advances in the experimental strategies used to characterize the contribution of drug-metabolizing enzymes. Drug Metab Dispos 2015; 43:163-81. [PMID: 25297949 DOI: 10.1124/dmd.114.058750] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During the process of drug discovery, the pharmaceutical industry is faced with numerous challenges. One challenge is the successful prediction of the major routes of human clearance of new medications. For compounds cleared by metabolism, accurate predictions help provide an early risk assessment of their potential to exhibit significant interpatient differences in pharmacokinetics via routes of metabolism catalyzed by functionally polymorphic enzymes and/or clinically significant metabolic drug-drug interactions. This review details the most recent and emerging in vitro strategies used by drug metabolism and pharmacokinetic scientists to better determine rates and routes of metabolic clearance and how to translate these parameters to estimate the amount these routes contribute to overall clearance, commonly referred to as fraction metabolized. The enzymes covered in this review include cytochrome P450s together with other enzymatic pathways whose involvement in metabolic clearance has become increasingly important as efforts to mitigate cytochrome P450 clearance are successful. Advances in the prediction of the fraction metabolized include newly developed methods to differentiate CYP3A4 from the polymorphic enzyme CYP3A5, scaling tools for UDP-glucuronosyltranferase, and estimation of fraction metabolized for substrates of aldehyde oxidase.
Collapse
Affiliation(s)
- Michael A Zientek
- Worldwide Research and Development, Pharmacokinetics, Pharmacodynamics, and Metabolism, Pfizer Inc., San Diego, California (M.A.Z.); and Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Basel, Switzerland (K.Y.)
| | - Kuresh Youdim
- Worldwide Research and Development, Pharmacokinetics, Pharmacodynamics, and Metabolism, Pfizer Inc., San Diego, California (M.A.Z.); and Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Basel, Switzerland (K.Y.)
| |
Collapse
|
28
|
Troberg J, Järvinen E, Muniz M, Sneitz N, Mosorin J, Hagström M, Finel M. Dog UDP-glucuronosyltransferase enzymes of subfamily 1A: cloning, expression, and activity. Drug Metab Dispos 2015; 43:107-18. [PMID: 25301937 DOI: 10.1124/dmd.114.059303] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Understanding drug glucuronidation in the dog, a preclinical animal, is important but currently poorly characterized at the level of individual enzymes. We have constructed cDNAs for the 10 dog UDP-glucuronosyltransferases of subfamily 1A (dUGT1As), expressed them in insect cells, and assayed their activity as well as the activity of the nine human UGT1As, toward 14 compounds. The goal was to find out whether individual dUGT1As and individual human UGT1As have similar substrate specificities. The results revealed similarities but also many differences. For example, similarly to the human UGT1A10, dUGT1A11 exhibited high glucuronidation activity toward the 3-OH of 17-β-estradiol, 17-α-estradiol, and ethinylestradiol, and also conjugated the drug entacapone. Unlike the human UGT1A10, however, it failed to catalyze considerable rates of R-propranolol, diclofenac, and indomethacin glucuronidation. The estrogen glucuronidation assays revealed that dUGT1A8 and dUGT1A10 have a capacity to catalyze the formation of (linked) diglucuronides, an activity no human UGT1A exhibited. dUGT1A2-dUGT1A4 are homologs of the human UGT1A4, but none of them catalyzed N-glucuronidation of dexmedetomidine. Contrary to the human UGT1A4, however, dUGT1A2-dUGT1A4 catalyzed indomethacin and diclofenac glucuronidation. It may be concluded that, perhaps with the exception of UGT1A6, high similarities in substrate specificity between individual dog and human UGTs of subfamily 1A are rare or partial. Activity assays with liver and intestine microsomes of both dog and human further revealed interspecies differences, particularly in glucuronidation rates. In the dog, the microsomes assays also strongly suggested important roles for dUGTs of other subfamilies, mainly in the liver.
Collapse
Affiliation(s)
- Johanna Troberg
- Division of Pharmaceutical Chemistry and Technology (J.T., E.J., M.M., N.S., J.M., M.F.) and Centre for Drug Research (M.H.), Faculty of Pharmacy, University of Helsinki, Finland
| | - Erkka Järvinen
- Division of Pharmaceutical Chemistry and Technology (J.T., E.J., M.M., N.S., J.M., M.F.) and Centre for Drug Research (M.H.), Faculty of Pharmacy, University of Helsinki, Finland
| | - Maria Muniz
- Division of Pharmaceutical Chemistry and Technology (J.T., E.J., M.M., N.S., J.M., M.F.) and Centre for Drug Research (M.H.), Faculty of Pharmacy, University of Helsinki, Finland
| | - Nina Sneitz
- Division of Pharmaceutical Chemistry and Technology (J.T., E.J., M.M., N.S., J.M., M.F.) and Centre for Drug Research (M.H.), Faculty of Pharmacy, University of Helsinki, Finland
| | - Johanna Mosorin
- Division of Pharmaceutical Chemistry and Technology (J.T., E.J., M.M., N.S., J.M., M.F.) and Centre for Drug Research (M.H.), Faculty of Pharmacy, University of Helsinki, Finland
| | - Marja Hagström
- Division of Pharmaceutical Chemistry and Technology (J.T., E.J., M.M., N.S., J.M., M.F.) and Centre for Drug Research (M.H.), Faculty of Pharmacy, University of Helsinki, Finland
| | - Moshe Finel
- Division of Pharmaceutical Chemistry and Technology (J.T., E.J., M.M., N.S., J.M., M.F.) and Centre for Drug Research (M.H.), Faculty of Pharmacy, University of Helsinki, Finland
| |
Collapse
|
29
|
Greer AK, Dates CR, Starlard-Davenport A, Edavana VK, Bratton SM, Dhakal IB, Finel M, Kadlubar SA, Radominska-Pandya A. A potential role for human UDP-glucuronosyltransferase 1A4 promoter single nucleotide polymorphisms in the pharmacogenomics of tamoxifen and its derivatives. Drug Metab Dispos 2014; 42:1392-400. [PMID: 24917585 PMCID: PMC4152870 DOI: 10.1124/dmd.114.058016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/10/2014] [Indexed: 01/19/2023] Open
Abstract
Tamoxifen (Tam) is a selective estrogen receptor modulator used to inhibit breast tumor growth. Tam can be directly N-glucuronidated via the tertiary amine group or O-glucuronidated after cytochrome P450-mediated hydroxylation. In this study, the glucuronidation of Tam and its hydroxylated and/or chlorinated derivatives [4-hydroxytamoxifen (4OHTam), toremifene (Tor), and 4-hydroxytoremifene (4OHTor)] was examined using recombinant human UDP-glucuronosyltransferases (UGTs) from the 1A subfamily and human hepatic microsomes. Recombinant UGT1A4 catalyzed the formation of N-glucuronides of Tam and its derivatives and was the most active UGT enzyme toward these compounds. Therefore, it was hypothesized that single nucleotide polymorphisms (SNPs) in the promoter region of UGT1A4 have the ability to significantly decrease the glucuronidation rates of Tam metabolites in the human liver. In vitro activity of 64 genotyped human liver microsomes was used to determine the association between the UGT1A4 promoter and coding region SNPs and the glucuronidation rates of Tam, 4OHTam, Tor, and 4OHTor. Significant decreases in enzymatic activity were observed in microsomes for individuals heterozygous for -163G/A and -217T/G. These alterations in glucuronidation may lead to prolonged circulating half-lives and may potentially modify the effectiveness of these drugs in the treatment of breast cancer.
Collapse
Affiliation(s)
- Aleksandra K Greer
- Departments of Biochemistry and Molecular Biology (A.K.G., C.R.D., S.M.B., A.R.-P.), Medical Genetics (A.S.-D., V.K.E., S.A.K.), and Biostatistics (I.B.D.), College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Centdrika R Dates
- Departments of Biochemistry and Molecular Biology (A.K.G., C.R.D., S.M.B., A.R.-P.), Medical Genetics (A.S.-D., V.K.E., S.A.K.), and Biostatistics (I.B.D.), College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Athena Starlard-Davenport
- Departments of Biochemistry and Molecular Biology (A.K.G., C.R.D., S.M.B., A.R.-P.), Medical Genetics (A.S.-D., V.K.E., S.A.K.), and Biostatistics (I.B.D.), College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Vineetha K Edavana
- Departments of Biochemistry and Molecular Biology (A.K.G., C.R.D., S.M.B., A.R.-P.), Medical Genetics (A.S.-D., V.K.E., S.A.K.), and Biostatistics (I.B.D.), College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Stacie M Bratton
- Departments of Biochemistry and Molecular Biology (A.K.G., C.R.D., S.M.B., A.R.-P.), Medical Genetics (A.S.-D., V.K.E., S.A.K.), and Biostatistics (I.B.D.), College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Ishwori B Dhakal
- Departments of Biochemistry and Molecular Biology (A.K.G., C.R.D., S.M.B., A.R.-P.), Medical Genetics (A.S.-D., V.K.E., S.A.K.), and Biostatistics (I.B.D.), College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Moshe Finel
- Departments of Biochemistry and Molecular Biology (A.K.G., C.R.D., S.M.B., A.R.-P.), Medical Genetics (A.S.-D., V.K.E., S.A.K.), and Biostatistics (I.B.D.), College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Susan A Kadlubar
- Departments of Biochemistry and Molecular Biology (A.K.G., C.R.D., S.M.B., A.R.-P.), Medical Genetics (A.S.-D., V.K.E., S.A.K.), and Biostatistics (I.B.D.), College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Anna Radominska-Pandya
- Departments of Biochemistry and Molecular Biology (A.K.G., C.R.D., S.M.B., A.R.-P.), Medical Genetics (A.S.-D., V.K.E., S.A.K.), and Biostatistics (I.B.D.), College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| |
Collapse
|
30
|
Rezende ML, Grimsrud KN, Stanley SD, Steffey EP, Mama KR. Pharmacokinetics and pharmacodynamics of intravenous dexmedetomidine in the horse. J Vet Pharmacol Ther 2014; 38:15-23. [PMID: 25066475 DOI: 10.1111/jvp.12138] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 05/02/2014] [Indexed: 11/30/2022]
Abstract
The aim of the study was to describe the pharmacokinetics and selected pharmacodynamics of intravenous dexmedetomidine in horses. Eight adult horses received 5 μg/kg dexmedetomidine IV. Blood samples were collected before and for 10 h after drug administration to determine dexmedetomidine plasma concentrations. Pharmacokinetic parameters were calculated using noncompartmental analysis. Data from one outlier were excluded from the statistical summary. Behavioral and physiological responses were recorded before and for 6 h after dexmedetomidine administration. Dexmedetomidine concentrations decreased rapidly (elimination half-life of 8.03 ± 0.84 min). Time of last detection varied from 30 to 60 min. Bradycardia was noted at 4 and 10 min after drug administration (26 ± 8 and 29 ± 8 beats/min respectively). Head height decreased by 70% at 4 and 10 min and gradually returned to baseline. Ability to ambulate was decreased for 60 min following drug administration, and mechanical nociceptive threshold was increased during 30 min. Blood glucose peaked at 30 min (134 ± 24 mg/dL) and borborygmi were decreased for the first hour after dexmedetomidine administration. Dexmedetomidine was quickly eliminated as indicated by the rapid decrease in plasma concentrations. Physiological, behavioral, and analgesic effects observed after dexmedetomidine administration were of short duration.
Collapse
Affiliation(s)
- M L Rezende
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | |
Collapse
|
31
|
Välitalo PA, Ahtola-Sätilä T, Wighton A, Sarapohja T, Pohjanjousi P, Garratt C. Population pharmacokinetics of dexmedetomidine in critically ill patients. Clin Drug Investig 2014; 33:579-87. [PMID: 23839483 PMCID: PMC3717151 DOI: 10.1007/s40261-013-0101-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background and Objectives Although the pharmacokinetics of dexmedetomidine in healthy volunteers have been studied, there are limited data about the pharmacokinetics of long-term administration of dexmedetomidine in critically ill patients. Methods This population pharmacokinetic analysis was performed to quantify the pharmacokinetics of dexmedetomidine in critically ill patients following infusions up to 14 days in duration. The data consisted of three phase III studies (527 patients with sparse blood sampling, for a total of 2,144 samples). Covariates were included in a full random-effects covariate model and the most important covariate relationships were tested separately. The linearity of dexmedetomidine clearance was evaluated by observing steady-state plasma concentrations acquired at various infusion rates. Results The data were adequately described with a one-compartment model. The clearance of dexmedetomidine was 39 (95 % CI 37–41) L/h and volume of distribution 104 (95 % CI 93–115) L. Both clearance and volume of distribution were highly variable between patients (coefficients of variation of 62 and 57 %, respectively), which highlights the importance of dose titration by response. Covariate analysis showed a strong correlation between body weight and clearance of dexmedetomidine. The clearance of dexmedetomidine was constant in the dose range 0.2–1.4 μg/kg/h. Conclusions The pharmacokinetics of dexmedetomidine are dose-proportional in prolonged infusions when dosing rates of 0.2–1.4 μg/kg/h, recommended by the Dexdor® summary of product characteristics, are used.
Collapse
Affiliation(s)
- Pyry Antti Välitalo
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, PO Box 1624, 70211, Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
32
|
Holliday SF, Kane-Gill SL, Empey PE, Buckley MS, Smithburger PL. Interpatient variability in dexmedetomidine response: a survey of the literature. ScientificWorldJournal 2014; 2014:805013. [PMID: 24558330 PMCID: PMC3914598 DOI: 10.1155/2014/805013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/22/2013] [Indexed: 12/28/2022] Open
Abstract
Fifty-five thousand patients are cared for in the intensive care unit (ICU) daily with sedation utilized to reduce anxiety and agitation while optimizing comfort. The Society of Critical Care Medicine (SCCM) released updated guidelines for management of pain, agitation, and delirium in the ICU and recommended nonbenzodiazepines, such as dexmedetomidine and propofol, as first line sedation agents. Dexmedetomidine, an alpha-2 agonist, offers many benefits yet its use is mired by the inability to consistently achieve sedation goals. Three hypotheses including patient traits/characteristics, pharmacokinetics in critically ill patients, and clinically relevant genetic polymorphisms that could affect dexmedetomidine response are presented. Studies in patient traits have yielded conflicting results regarding the role of race yet suggest that dexmedetomidine may produce more consistent results in less critically ill patients and with home antidepressant use. Pharmacokinetics of critically ill patients are reported as similar to healthy individuals yet wide, unexplained interpatient variability in dexmedetomidine serum levels exist. Genetic polymorphisms in both metabolism and receptor response have been evaluated in few studies, and the results remain inconclusive. To fully understand the role of dexmedetomidine, it is vital to further evaluate what prompts such marked interpatient variability in critically ill patients.
Collapse
Affiliation(s)
- Samantha F. Holliday
- University of Pittsburgh School of Pharmacy, 3501 Terrace Street, Pittsburgh, PA 15261, USA
| | - Sandra L. Kane-Gill
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, 3501 Terrace Street, Pittsburgh, PA 15261, USA
| | - Philip E. Empey
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, 3501 Terrace Street, Pittsburgh, PA 15261, USA
| | - Mitchell S. Buckley
- Banner Good Samaritan Medical Center, Department of Pharmacy, 1111 E. McDowell Road, Phoenix, AZ 85006, USA
| | - Pamela L. Smithburger
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, 3501 Terrace Street, Pittsburgh, PA 15261, USA
| |
Collapse
|
33
|
Kredics L, Szekeres A, Czifra D, Vágvölgyi C, Leitgeb B. Recent results in alamethicin research. Chem Biodivers 2013; 10:744-71. [PMID: 23681724 DOI: 10.1002/cbdv.201200390] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Indexed: 12/20/2022]
Affiliation(s)
- László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged.
| | | | | | | | | |
Collapse
|
34
|
Stingl JC, Bartels H, Viviani R, Lehmann ML, Brockmöller J. Relevance of UDP-glucuronosyltransferase polymorphisms for drug dosing: A quantitative systematic review. Pharmacol Ther 2013; 141:92-116. [PMID: 24076267 DOI: 10.1016/j.pharmthera.2013.09.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 01/01/2023]
Abstract
UDP-glucuronosyltransferases (UGT) catalyze the biotransformation of many endobiotics and xenobiotics, and are coded by polymorphic genes. However, knowledge about the effects of these polymorphisms is rarely used for the individualization of drug therapy. Here, we present a quantitative systematic review of clinical studies on the impact of UGT variants on drug metabolism to clarify the potential for genotype-adjusted therapy recommendations. Data on UGT polymorphisms and dose-related pharmacokinetic parameters in man were retrieved by a systematic search in public databases. Mean estimates of pharmacokinetic parameters were extracted for each group of carriers of UGT variants to assess their effect size. Pooled estimates and relative confidence bounds were computed with a random-effects meta-analytic approach whenever multiple studies on the same variant, ethnic group, and substrate were available. Information was retrieved on 30 polymorphic metabolic pathways involving 10 UGT enzymes. For irinotecan and mycophenolic acid a wealth of data was available for assessing the impact of genetic polymorphisms on pharmacokinetics under different dosages, between ethnicities, under comedication, and under toxicity. Evidence for effects of potential clinical relevance exists for 19 drugs, but the data are not sufficient to assess effect size with the precision required to issue dose recommendations. In conclusion, compared to other drug metabolizing enzymes much less systematic research has been conducted on the polymorphisms of UGT enzymes. However, there is evidence of the existence of large monogenetic functional polymorphisms affecting pharmacokinetics and suggesting a potential use of UGT polymorphisms for the individualization of drug therapy.
Collapse
Affiliation(s)
- J C Stingl
- Research Division, Federal Institute for Drugs and Medical Devices, Bonn, Germany; Translational Pharmacology, University of Bonn Medical Faculty, Germany.
| | - H Bartels
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, University of Ulm, Germany
| | - R Viviani
- Department of Psychiatry and Psychotherapy III, University of Ulm, Germany
| | - M L Lehmann
- Research Division, Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - J Brockmöller
- Institute of Clinical Pharmacology, University of Göttingen, Germany
| |
Collapse
|
35
|
Kato Y, Izukawa T, Oda S, Fukami T, Finel M, Yokoi T, Nakajima M. Human UDP-glucuronosyltransferase (UGT) 2B10 in drug N-glucuronidation: substrate screening and comparison with UGT1A3 and UGT1A4. Drug Metab Dispos 2013; 41:1389-97. [PMID: 23611809 DOI: 10.1124/dmd.113.051565] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Recent observations revealed that human UDP-glucuronosyltransferase (UGT) 2B10 catalyzes N-glucuronidation of amine-containing compounds. Knowledge of the substrate specificity and clinical significance of UGT2B10 is still limited. The purpose of this study was to expand the knowledge of UGT2B10 substrates and to evaluate its significance in drug clearance. Using recombinant UGT2B10, we found that it catalyzes the N-glucuronidation of amitriptyline, imipramine, ketotifen, pizotifen, olanzapine, diphenhydramine, tamoxifen, ketoconazole, and midazolam. These are drugs that were previously reported to be substrates for UGT1A4 or UGT1A3, and that contain in their structure either tertiary aliphatic amines, cyclic amines, or an imidazole group. UGT2B10 was inactive in the glucuronidation of desipramine, nortriptyline, carbamazepine, and afloqualone. This group of drugs contains secondary or primary amines, and these results suggest that UGT2B10 preferably conjugates tertiary amines. This preference is partial because UGT2B10 did not conjugate the tertiary cyclic amine in trifluoperazine. Kinetic analyses revealed that the affinity and clearance of UGT2B10 for amitriptyline, imipramine, and diphenhydramine are significantly higher than the corresponding values of UGT1A4 and UGT1A3, although the Vmax values of UGT1A4 toward these drugs are considerably higher. These findings suggest that UGT2B10 plays a major role in the N-glucuronidation of these drugs at therapeutic concentrations. These results are also supported by inhibition studies with nicotine and hecogenin. In conclusion, this study expands the understanding of the substrate specificity of UGT2B10, highlighting its preference for tertiary amines with higher affinities and clearance values than those of UGT1A4 and UGT1A3.
Collapse
Affiliation(s)
- Yukiko Kato
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Manevski N, Troberg J, Svaluto-Moreolo P, Dziedzic K, Yli-Kauhaluoma J, Finel M. Albumin stimulates the activity of the human UDP-glucuronosyltransferases 1A7, 1A8, 1A10, 2A1 and 2B15, but the effects are enzyme and substrate dependent. PLoS One 2013; 8:e54767. [PMID: 23372764 PMCID: PMC3553014 DOI: 10.1371/journal.pone.0054767] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/14/2012] [Indexed: 12/05/2022] Open
Abstract
Human UDP-glucuronosyltransferases (UGTs) are important enzymes in metabolic elimination of endo- and xenobiotics. It was recently shown that addition of fatty acid free bovine serum albumin (BSA) significantly enhances in vitro activities of UGTs, a limiting factor in in vitro–in vivo extrapolation. Nevertheless, since only few human UGT enzymes were tested for this phenomenon, we have now performed detailed enzyme kinetic analysis on the BSA effects in six previously untested UGTs, using 2–4 suitable substrates for each enzyme. We also examined some of the previously tested UGTs, but using additional substrates and a lower BSA concentration, only 0.1%. The latter concentration allows the use of important but more lipophilic substrates, such as estradiol and 17-epiestradiol. In five newly tested UGTs, 1A7, 1A8, 1A10, 2A1, and 2B15, the addition of BSA enhanced, to a different degree, the in vitro activity by either decreasing reaction’s Km, increasing its Vmax, or both. In contrast, the activities of UGT2B17, another previously untested enzyme, were almost unaffected. The results of the assays with the previously tested UGTs, 1A1, 1A6, 2B4, and 2B7, were similar to the published BSA only as far as the BSA effects on the reactions’ Km are concerned. In the cases of Vmax values, however, our results differ significantly from the previously published ones, at least with some of the substrates. Hence, the magnitude of the BSA effects appears to be substrate dependent, especially with respect to Vmax increases. Additionally, the BSA effects may be UGT subfamily dependent since Km decreases were observed in members of subfamilies 1A, 2A and 2B, whereas large Vmax increases were only found in several UGT1A members. The results shed new light on the complexity of the BSA effects on the activity and enzyme kinetics of the human UGTs.
Collapse
Affiliation(s)
- Nenad Manevski
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
37
|
Korprasertthaworn P, Rowland A, Lewis BC, Mackenzie PI, Yoovathaworn K, Miners JO. Effects of amino acid substitutions at positions 33 and 37 on UDP-glucuronosyltransferase 1A9 (UGT1A9) activity and substrate selectivity. Biochem Pharmacol 2012; 84:1511-21. [DOI: 10.1016/j.bcp.2012.08.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 08/29/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
|
38
|
Manevski N, Yli-Kauhaluoma J, Finel M. UDP-glucuronic acid binds first and the aglycone substrate binds second to form a ternary complex in UGT1A9-catalyzed reactions, in both the presence and absence of bovine serum albumin. Drug Metab Dispos 2012; 40:2192-203. [PMID: 22912433 DOI: 10.1124/dmd.112.047746] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The presence of bovine serum albumin (BSA) largely modulates the enzyme kinetics parameters of the human UDP-glucuronosyltransferase (UGT) 1A9, increasing both the apparent aglycone substrate affinity of the enzyme and its limiting reaction velocity (Drug Metab Dispos 39:2117-2129, 2011). For a better understanding of the BSA effects and an examination of whether its presence changes the catalytic mechanism, we have studied the enzyme kinetics of 4-methylumbelliferone glucuronidation by UGT1A9 in the presence and absence of 0.1% BSA, using bisubstrate enzyme kinetic experiments, in both the forward and reverse directions, as well as product and dead-end inhibition. The combined results strongly suggest that the reaction mechanism of UGT1A9, and presumably other human UGTs as well, involves the formation of a compulsory-order ternary-complex, with UDP-α-d-glucuronic acid (UDPGA) as the first binding substrate. Based on the enzyme kinetic parameters measured for the forward and reverse reactions, the equilibrium constant of the overall reaction was calculated (Keq = 574) and the relative magnitudes of the reaction rate constants were elucidated. The inclusion of BSA in the bisubstrate kinetic experiments quantitatively changed the apparent enzyme kinetic parameters, presumably by removing internal inhibitors that bind to the binary enzyme-UDPGA (E-UDPGA) complex, as well as to the ternary E-UDPGA-aglycone complex. Nevertheless, the underlying compulsory-order ternary-complex mechanism with UDPGA binding first is the same in both the absence and presence of BSA. The results offer a novel understanding of UGT enzyme kinetic mechanism and BSA effects.
Collapse
Affiliation(s)
- Nenad Manevski
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
39
|
Tajima T, Hirakawa K, Kawaguchi H, Sakamoto A. Proton nuclear magnetic resonance and pattern recognition analysis of liver extracts from rats under different anesthetics. BMC Med Imaging 2012; 12:28. [PMID: 22898647 PMCID: PMC3443671 DOI: 10.1186/1471-2342-12-28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/13/2012] [Indexed: 01/01/2023] Open
Abstract
Background Although general anesthesia is widely used in the surgical arena, the mechanisms by which general anesthetics act remain unclear. We previously described alterations in gene expression ratios in hepatic tissue taken from rats treated with anesthetics. Consequently, it is considered that anesthetics influence liver metabolism. Thus, the goal of this study was to use pattern recognition analysis of proton nuclear magnetic resonance spectra to visualize changes in liver metabolic phenotypes in response to widely used intravenous anesthetics (propofol and dexmedetomidine) and inhalational anesthetics (sevoflurane and isoflurane). Methods Rats were randomized into 13 groups (n = 6 in each group), and each group received one of following agents: propofol, dexmedetomidine, sevoflurane, isoflurane, or no anesthetic (control group). The liver was directly removed from rats immediately after or 24 h or 48 h after a 6-h period of anesthesia. Hydrophilic compounds were extracted from the liver and were analyzed with proton nuclear magnetic resonance spectroscopy. All spectral data were processed and analyzed by principal component analysis for comparison of metabolite profiles. Results Data were visualized by plotting principal component (PC) scores. In the plots, each point represents an individual sample. Each group was clustered separately on the plots, and the PC scores of the propofol group were clearly distinct from those of the control group and other anesthetic groups. The difference in PC scores was more pronounced immediately after completion of anesthesia when compared with 24 or 48 h after completion of anesthesia. Although the effect of intravenous anesthetics on the liver dissipated over time, the effect of inhalational anesthetics persisted. Conclusions Propofol, dexmedetomidine, sevoflurane and isoflurane exert different effects on liver metabolism. In particular, liver metabolism was markedly altered after exposure to propofol. The effect of anesthesia on the liver under propofol or dexmedetomidine resolved rapidly when compared with the effect under sevoflurane or isoflurane.
Collapse
Affiliation(s)
- Tomoyuki Tajima
- Department of Anesthesiology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan.
| | | | | | | |
Collapse
|
40
|
Walsky RL, Bauman JN, Bourcier K, Giddens G, Lapham K, Negahban A, Ryder TF, Obach RS, Hyland R, Goosen TC. Optimized assays for human UDP-glucuronosyltransferase (UGT) activities: altered alamethicin concentration and utility to screen for UGT inhibitors. Drug Metab Dispos 2012; 40:1051-65. [PMID: 22357286 DOI: 10.1124/dmd.111.043117] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The measurement of the effect of new chemical entities on human UDP-glucuronosyltransferase (UGT) marker activities using in vitro experimentation represents an important experimental approach in drug development to guide clinical drug-interaction study designs or support claims that no in vivo interaction will occur. Selective high-performance liquid chromatography-tandem mass spectrometry functional assays of authentic glucuronides for five major hepatic UGT probe substrates were developed: β-estradiol-3-glucuronide (UGT1A1), trifluoperazine-N-glucuronide (UGT1A4), 5-hydroxytryptophol-O-glucuronide (UGT1A6), propofol-O-glucuronide (UGT1A9), and zidovudine-5'-glucuronide (UGT2B7). High analytical sensitivity permitted characterization of enzyme kinetic parameters at low human liver microsomal and recombinant UGT protein concentration (0.025 mg/ml), which led to a new recommended optimal universal alamethicin activation concentration of 10 μg/ml for microsomes. Alamethicin was not required for recombinant UGT incubations. Apparent enzyme kinetic parameters, particularly for UGT1A1 and UGT1A4, were affected by nonspecific binding. Unbound intrinsic clearance for UGT1A9 and UGT2B7 increased significantly after addition of 2% bovine serum albumin, with minimal changes for UGT1A1, UGT1A4, and UGT1A6. Eleven potential UGT and cytochrome P450 inhibitors were evaluated as UGT inhibitors, resulting in observation of nonselective UGT inhibition by chrysin, mefenamic acid, silibinin, tangeretin, ketoconazole, itraconazole, ritonavir, and verapamil. The pan-cytochrome P450 inhibitor, 1-aminobenzotriazole, minimally inhibited UGT activities and may be useful in reaction phenotyping of mixed UGT and cytochrome P450 substrates. These methods should prove useful in the routine assessments of the potential for new drug candidates to elicit pharmacokinetic drug interactions via inhibition of human UGT activities and the identification of UGT enzyme-selective chemical inhibitors.
Collapse
Affiliation(s)
- Robert L Walsky
- Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut 06340, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kaivosaari S, Finel M, Koskinen M. N-glucuronidation of drugs and other xenobiotics by human and animal UDP-glucuronosyltransferases. Xenobiotica 2011; 41:652-69. [PMID: 21434773 DOI: 10.3109/00498254.2011.563327] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolic disposition of drugs and other xenobiotics includes glucuronidation reactions that are catalyzed by the uridine diphosphate glucuronosyltransferases (UGTs). The most common glucuronidation reactions are O- and N-glucuronidation and in this review, we discuss both, while the emphasis is on N-glucuronidation. Interspecies difference in glucuronidation is another central issue in this review due to its importance in drug development. Accordingly, the available data on glucuronidation in different animals comes mainly from the species that are used in preclinical studies to assess the safety of drugs under development. Both O- and N-glucuronidation reactions are chemically diverse. Different O-glucuronidation reactions are described and discussed, and many drugs that undergo such reactions are indicated. The compounds that undergo N-glucuronidation include primary aromatic amines, hydroxylamines, amides, tertiary aliphatic amines, and aromatic N-heterocycles. The interspecies variability in N-glucuronidation is particularly high, above all when it comes to aliphatic tertiary amines and aromatic N-heterocycles. The N-glucuronidation rates in humans are typically much higher than in animals, largely due to the activity of two enzymes, the extensively studied UGT1A4, and the more recently identified as a main player in N-glucuronidation, UGT2B10. We discuss both enzymes and review the findings that revealed the role of UGT2B10 in N-glucuronidation.
Collapse
Affiliation(s)
- Sanna Kaivosaari
- Research and Development, Orion Corporation Orion Pharma, Espoo, Finland
| | | | | |
Collapse
|
42
|
Zhang H, Tolonen A, Rousu T, Hirvonen J, Finel M. Effects of cell differentiation and assay conditions on the UDP-glucuronosyltransferase activity in Caco-2 cells. Drug Metab Dispos 2011; 39:456-64. [PMID: 21098645 DOI: 10.1124/dmd.110.036582] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cell differentiation increases UDP-glucuronosyltransferase (UGT) gene expression in Caco-2 cells. Glucuronidation of 13 UGT substrates, 1-naphthol, diclofenac, epitestosterone, estradiol, ethinylestradiol, indomethacin, oxazepam, R- and S-propranolol, propofol, testosterone, trifluoperazine, and zidovudine, were studied to derive a broad view on the effect of cell differentiation on the glucuronidation activities of different human UGTs. In parallel, the glucuronidation of these compounds in human liver microsomes (HLM) and human intestinal microsomes (HIM) was analyzed. Because many of the substrates are highly lipophilic, the effects of dimethyl sulfoxide (DMSO) concentrations in the reaction mixture on glucuronidation rates were tested, as well as the effect of alamethicin, a pore-forming peptide. Large differences were observed in the effects of DMSO and alamethicin between recombinant UGTs and Caco-2 cells and HLM and HIM, and, therefore, the activity assays were performed under multiple conditions. Regardless of the assay conditions, however, the results clearly indicated that although differentiation increases glucuronidation activity, the rates in Caco-2 cells are mostly very low, much lower than those in either HLM or HIM. One clear exception was observed: substrates of UGT1A6, such as 1-naphthol, were glucuronidated at very high rates in both undifferentiated and differentiated Caco-2 cells. It may thus be concluded that Caco-2 cells, even differentiated ones, do not provide a good model system to assess first-pass drug glucuronidation in the intestine.
Collapse
Affiliation(s)
- Hongbo Zhang
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
43
|
Wang Q, Hao H, Zhu X, Yu G, Lai L, Liu Y, Wang Y, Jiang S, Wang G. Regioselective glucuronidation of tanshinone iia after quinone reduction: identification of human UDP-glucuronosyltransferases, species differences, and interaction potential. Drug Metab Dispos 2010; 38:1132-40. [PMID: 20382756 DOI: 10.1124/dmd.109.031864] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
We have previously identified that the predominant metabolic pathway for tanshinone IIa (TSA) in rat is the NAD(P)H:quinone oxidoreductase 1 (NQO1)-mediated quinone reduction and subsequent glucuronidation. The present study contributes to further research on its glucuronidation enzyme kinetics, the identification of human UDP-glucuronosyltransferase (UGT) isoforms, and the interaction potential with typical UGT substrates. A pair of regioisomers (M1 and M2) of reduced TSA glucuronides was found from human, rat, and mouse, whereas only M1 was found in dog liver S9 incubations. The overall glucuronidation clearance of TSA in human liver S9 was 11.8 +/- 0.8 microl/min/mg protein, 0.7-, 0.8-, and 3-fold of that in the mouse, rat, and dog, respectively. Using intrinsic clearance M2/M1 as a regioselective index, opposite regioselectivity was found between human (0.7) and mouse (1.3), whereas no significant regioselectivity was found in rat. In a sequential metabolism system, by applying human liver cytosol as an NQO1 donor combined with a screening panel of 12 recombinant human UGTs, multiple UGTs were found involved in the M1 formation, whereas only UGT1A9 and, to a very minor extent, UGT1A1 and UGT1A3 contributed to the M2 formation. Further enzyme kinetics, correlation, and chemical inhibition studies confirmed that UGT1A9 played a major role in both M1 and M2 formation. In addition, TSA presented a potent inhibitory effect on the glucuronidation of typical UGT1A9 substrates propofol and mycophenolic acid, with an IC(50) value of 8.4 +/- 1.8 and 8.9 +/- 1.9 microM, respectively. This study will help to guide future studies on characterizing the NQO1-mediated reduction and subsequent glucuronidation of other quinones.
Collapse
Affiliation(s)
- Qiong Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Key Unit of State Administration of Traditional Chinese Medicine for Pharmacokinetic Methodology of Traditional Chinese Medicine Complex Prescription, China Pharmaceutical University, Nanjing 210009, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bourcier K, Hyland R, Kempshall S, Jones R, Maximilien J, Irvine N, Jones B. Investigation into UDP-glucuronosyltransferase (UGT) enzyme kinetics of imidazole- and triazole-containing antifungal drugs in human liver microsomes and recombinant UGT enzymes. Drug Metab Dispos 2010; 38:923-9. [PMID: 20304965 DOI: 10.1124/dmd.109.030676] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Imidazoles and triazoles represent major classes of antifungal azole derivatives. With respect to UDP-glucuronosyltransferase (UGT) enzymes, the drug metabolism focus has mainly concentrated on their inhibitory effects with little known about azoles as substrates for UGTs. N-Glucuronide metabolites of the imidazole antifungals, tioconazole and croconazole, have been reported, but there are currently no reports of N-glucuronidation of triazole antifungal agents. In this study, evidence for glucuronidation of azole-containing compounds was studied in human liver microsomes (HLM). When a glucuronide metabolite was identified, azoles were incubated in 12 recombinant UGT (rUGT) enzymes, and enzyme kinetics were determined for the UGT with the most intense glucuronide peak. Six imidazole antifungals, three triazoles, and the benzodiazepine alprazolam (triazole) were evaluated in this study. All compounds investigated were identified as substrates of UGT. UGT1A4 was the main enzyme involved in the metabolism of all compounds except for fluconazole, which was mainly metabolized by UGT2B7, probably mediating its O-glucuronide metabolism. UGT1A3 was also found to be involved in the metabolism of all imidazoles but not triazoles. In both HLM and rUGT K(m) values were lower for imidazoles (14.8-144 microM) than for triazoles (158-3037 microM), with the exception of itraconazole (8.4 microM). All of the imidazoles studied inhibited their own metabolism at high substrate concentrations. In terms of UGT1A4 metabolism, itraconazole showed kinetic features characteristic of imidazole rather than triazole antifungals. This behavior is attributed to the physicochemical properties of itraconazole that are similar to those of imidazoles in terms of clogP.
Collapse
Affiliation(s)
- Karine Bourcier
- Pfizer Global R&D, Ramsgate Rd., Sandwich, Kent CT13 9NJ, UK.
| | | | | | | | | | | | | |
Collapse
|
45
|
Miners JO, Mackenzie PI, Knights KM. The prediction of drug-glucuronidation parameters in humans: UDP-glucuronosyltransferase enzyme-selective substrate and inhibitor probes for reaction phenotyping and in vitro-in vivo extrapolation of drug clearance and drug-drug interaction potential. Drug Metab Rev 2010; 42:196-208. [PMID: 19795925 DOI: 10.3109/03602530903210716] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Major advances in the characterization of uridine diphosphate (UDP)-glucuronosyltransferase (UGT) enzyme substrate and inhibitor selectivities and the development of experimental paradigms to investigate xenobiotic glucuronidation in vitro now permit the prediction of a range of drug-glucuronidation parameters in humans. In particular, the availability of substrate and inhibitor "probes" for the major hepatic drug metabolizing UGTs together with batteries of recombinant enzymes allow the reaction phenotyping of drug glucuronidation reactions. Additionally, in vitro experimental approaches and scaling strategies have been successfully applied to the quantitative prediction of in vivo clearance via glucuronidation and drug-drug interaction potential.
Collapse
Affiliation(s)
- John O Miners
- Department of Clinical Pharmacology, Flinders University School of Medicine, Adelaide, Australia.
| | | | | |
Collapse
|
46
|
He YQ, Liu Y, Zhang BF, Liu HX, Lu YL, Yang L, Xiong AZ, Xu LL, Wang CH, Yang L, Wang ZT. Identification of the UDP-glucuronosyltransferase isozyme involved in senecionine glucuronidation in human liver microsomes. Drug Metab Dispos 2010; 38:626-34. [PMID: 20056725 DOI: 10.1124/dmd.109.030460] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Senecionine (SEN) is a representative of the hepatotoxic pyrrolizidine alkaloids. Although phase I metabolism for cytochrome P450-mediated metabolic activation of SEN was investigated extensively, phase II metabolism for glucuronidation of this compound has not been investigated until now. In our present study, one unique glucuronidation product of SEN in human liver microsomes (HLMs) was identified as SEN N-glucuronide using an authentically synthesized product for which the structure was identified via (1)H and (13)C NMR analysis. Subsequently, kinetics indicated that SEN N-glucuronidation followed the typical Michaelis-Menten model and only one major isozyme participated in it. Finally, this isozyme was demonstrated to be UDP-glucuronosyltransferase (UGT) 1A4, with the direct evidence that recombinant UGT1A4 exhibited predominant and exclusive activity on SEN N-glucuronidation. This result was confirmed by other experiments including chemical inhibition by selective inhibitors and a correlation study between activities of SEN N-glucuronidation and various UGT isozymes. The exclusive role of UGT1A4 on SEN N-glucuronidation was strengthened additionally by its inhibitory kinetic study in which the selective inhibitor of UGT1A4 showed a similar inhibition pattern and K(i) values in both HLM and recombinant UGT1A4 systems. Because UGT2B10 activity failed to correlate with SEN N-glucuronidation in HLMs from 10 individuals, it was impossible for UGT2B10 to play an important role in this metabolism.
Collapse
Affiliation(s)
- Yu-Qi He
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Manevski N, Kurkela M, Höglund C, Mauriala T, Court MH, Yli-Kauhaluoma J, Finel M. Glucuronidation of psilocin and 4-hydroxyindole by the human UDP-glucuronosyltransferases. Drug Metab Dispos 2010; 38:386-95. [PMID: 20007669 PMCID: PMC2835393 DOI: 10.1124/dmd.109.031138] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 12/10/2009] [Indexed: 11/22/2022] Open
Abstract
We have examined the glucuronidation of psilocin, a hallucinogenic indole alkaloid, by the 19 recombinant human UDP-glucuronosyltransferases (UGTs) of subfamilies 1A, 2A, and 2B. The glucuronidation of 4-hydroxyindole, a related indole that lacks the N,N-dimethylaminoethyl side chain, was studied as well. UGT1A10 exhibited the highest psilocin glucuronidation activity, whereas the activities of UGTs 1A9, 1A8, 1A7, and 1A6 were significantly lower. On the other hand, UGT1A6 was by far the most active enzyme mediating 4-hydroxyindole glucuronidation, whereas the activities of UGTs 1A7-1A10 toward 4-hydroxyindole resembled their respective psilocin glucuronidation rates. Psilocin glucuronidation by UGT1A10 followed Michaelis-Menten kinetics in which psilocin is a low-affinity high-turnover substrate (K(m) = 3.8 mM; V(max) = 2.5 nmol/min/mg). The kinetics of psilocin glucuronidation by UGT1A9 was more complex and may be best described by biphasic kinetics with both intermediate (K(m1) = 1.0 mM) and very low affinity components. The glucuronidation of 4-hydroxyindole by UGT1A6 exhibited higher affinity (K(m) = 178 microM) and strong substrate inhibition. Experiments with human liver and intestinal microsomes (HLM and HIM, respectively) revealed similar psilocin glucuronidation activity in both samples, but a much higher 4-hydroxyindole glucuronidation rate was found in HLM versus HIM. The expression levels of UGTs 1A6-1A10 in different tissues were studied by quantitative real-time-PCR, and the results, together with the activity assays findings, suggest that whereas psilocin may be subjected to extensive glucuronidation by UGT1A10 in the small intestine, UGT1A9 is likely the main contributor to its glucuronidation once it has been absorbed into the circulation.
Collapse
Affiliation(s)
- Nenad Manevski
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
48
|
Berg JZ, Mason J, Boettcher AJ, Hatsukami DK, Murphy SE. Nicotine metabolism in African Americans and European Americans: variation in glucuronidation by ethnicity and UGT2B10 haplotype. J Pharmacol Exp Ther 2010; 332:202-9. [PMID: 19786624 PMCID: PMC2802474 DOI: 10.1124/jpet.109.159855] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 09/21/2009] [Indexed: 11/22/2022] Open
Abstract
Nicotine is the major addictive agent in tobacco smoke, and it is metabolized extensively by oxidation and glucuronide conjugation. The contributions of ethnicity and UGT2B10 haplotype on variation in nicotine metabolism were investigated. Nicotine metabolism was evaluated in two populations of smokers. In one population of African American and European American smokers (n = 93), nicotine and its metabolites were analyzed in plasma and 24-h urine over 3 days while participants were abstinent and at steady state on the nicotine patch. In a second study of smokers (n = 84), the relationship of a UGT2B10 haplotype linked with D67Y to nicotine and cotinine glucuronidation levels was determined. We observed that both African American ethnicity and the UGT2B10 D67Y allele were associated with a low glucuronidation phenotype. African Americans excreted less nicotine and cotinine as their glucuronide conjugates compared with European Americans; percentage of nicotine glucuronidation, 18.1 versus 29.3 (p < 0.002) and percentage of cotinine glucuronidation, 41.4 versus 61.7 (p < 0.0001). In smokers with a UGT2B10 Tyr67 allele, glucuronide conjugation of nicotine and cotinine was decreased by 20% compared with smokers without this allele. Two key outcomes are reported here. First, the observation that African Americans have lower nicotine and cotinine glucuronidation was confirmed in a population of abstinent smokers on the nicotine patch. Second, we provide the first convincing evidence that UGT2B10 is a key catalyst of these glucuronidation pathways in vivo.
Collapse
Affiliation(s)
- Jeannette Zinggeler Berg
- Department of Biochemistry, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
49
|
Nakazato K, Yoshida Y, Takemori K, Kobayashi K, Sakamoto A. Expressions of genes encoding drug-metabolizing enzymes are altered after sevoflurane, isoflurane, propofol or dexmedetomidine anesthesia. ACTA ACUST UNITED AC 2009; 30:17-24. [PMID: 19265259 DOI: 10.2220/biomedres.30.17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We previously showed that sevoflurane anesthesia affected the expression ratios of 177 of 10,000 genes in multiple organs of rats by microarray analyses. The maximum number of altered genes was detected in the liver, and included several genes characterized as encoding drug-metabolizing enzymes (DMEs). Here, we investigated whether alterations of pharmacokinetic gene expressions after anesthesia differed between inhalation and intravenous anesthesia, and how long the alterations persisted after awakening from anesthesia. Livers were obtained from rats (n = 6 per group) anesthetized with sevoflurane, isoflurane, propofol or dexmedetomidine for 0 or 6 h, and rats awakened for 24 h after anesthesia for 6 h. The mRNA expression ratios of eight genes encoding DMEs that showed the greatest alterations in the previous study, namely Cyp7a1, Cyp2b15, Por, Nr1i2, Ces2, Ugt1a7, Abcb1a and Abcc2, were measured by quantitative real-time reverse transcriptase-polymerase chain reaction. The expression ratios were mostly increased after 6 h of anesthesia and returned to their control levels at 24 h after awakening from anesthesia. However, the expression ratios of some genes remained elevated for 24 h after awakening from anesthesia. There were differences between inhalation and intravenous anesthesia, and interestingly, between sevoflurane and isoflurane and between propofol and dexmedetomidine.
Collapse
Affiliation(s)
- Keiko Nakazato
- Department of Anesthesiology, Nippon Medical School, Tokyo, Japan.
| | | | | | | | | |
Collapse
|