1
|
Baker JG, Summers RJ. Adrenoceptors: Receptors, Ligands and Their Clinical Uses, Molecular Pharmacology and Assays. Handb Exp Pharmacol 2024; 285:55-145. [PMID: 38926158 DOI: 10.1007/164_2024_713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The nine G protein-coupled adrenoceptor subtypes are where the endogenous catecholamines adrenaline and noradrenaline interact with cells. Since they are important therapeutic targets, over a century of effort has been put into developing drugs that modify their activity. This chapter provides an outline of how we have arrived at current knowledge of the receptors, their physiological roles and the methods used to develop ligands. Initial studies in vivo and in vitro with isolated organs and tissues progressed to cell-based techniques and the use of cloned adrenoceptor subtypes together with high-throughput assays that allow close examination of receptors and their signalling pathways. The crystal structures of many of the adrenoceptor subtypes have now been determined opening up new possibilities for drug development.
Collapse
Affiliation(s)
- Jillian G Baker
- Cell Signalling, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
- Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK.
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
2
|
Papay RS, Macdonald JD, Stauffer SR, Perez DM. Characterization of a novel positive allosteric modulator of the α 1A-Adrenergic receptor. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 4:100142. [PMID: 36544813 PMCID: PMC9762201 DOI: 10.1016/j.crphar.2022.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/27/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
α1-Adrenergic Receptors (ARs) are G-protein Coupled Receptors (GPCRs) that regulate the sympathetic nervous system via the binding and activation of norepinephrine (NE) and epinephrine (Epi). α1-ARs control various aspects of neurotransmission, cognition, cardiovascular functions as well as other organ systems. However, therapeutic drug development for these receptors, particularly agonists, has been stagnant due to unwanted effects on blood pressure regulation. We report the synthesis and characterization of the first positive allosteric modulator (PAM) for the α1-AR based upon the derivation of the α1A-AR selective imidazoline agonist, cirazoline. Compound 3 (Cmpd-3) binds the α1A-AR with high and low affinity sites (0.13pM; 54 nM) typical of GPCR agonists, and reverts to a single low affinity site of 100 nM upon the addition of GTP. Comparison of Cmpd-3 versus other orthosteric α1A-AR-selective imidazoline ligands reveal unique properties that are consistent with a type I PAM. Cmpd-3 is both conformationally and ligand-selective for the α1A-AR subtype. In competition binding studies, Cmpd-3 potentiates NE-binding at the α1A-AR only on the high affinity state of NE with no effect on the Epi-bound α1A-AR. Moreover, Cmpd-3 demonstrates signaling-bias and potentiates the NE-mediated cAMP response of the α1A-AR at nM concentrations with no effects on the NE-mediated inositol phosphate response. There are no effects of Cmpd-3 on the signaling at the α1B- or α1D-AR subtypes. Cmpd-3 displays characteristics of a pure PAM with no intrinsic agonist properties. Specific derivation of Cmpd-3 at the R1 ortho-position recapitulated PAM characteristics. Our results characterize the first PAM for the α1-AR and holds promise for a first-in-class therapeutic to treat various diseases without the side effect of increasing blood pressure intrinsic to classical orthosteric agonists.
Collapse
Affiliation(s)
- Robert S. Papay
- The Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Jonathan D. Macdonald
- Center for Therapeutics Discovery, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Shaun R. Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Dianne M. Perez
- The Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| |
Collapse
|
3
|
Heydenreich FM, Plouffe B, Rizk A, Milic D, Zhou J, Breton B, Le Gouill C, Inoue A, Bouvier M, Veprintsev D. Michaelis-Menten quantification of ligand signalling bias applied to the promiscuous Vasopressin V2 receptor. Mol Pharmacol 2022; 102:139-149. [PMID: 35779859 DOI: 10.1124/molpharm.122.000497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
Activation of the G protein-coupled receptors by agonists may result in the activation of one or more G proteins and recruitment of arrestins. The extent of the activation of each of these pathways depends on the intrinsic efficacy of the ligand. Quantification of intrinsic efficacy relative to a reference compound is essential for the development of novel compounds. In the operational model, changes in efficacy can be compensated by changes in the "functional" affinity, resulting in poorly defined values. To separate the effects of ligand affinity from the intrinsic activity of the receptor, we developed a Michaelis-Menten based quantification of G protein activation bias that uses experimentally measured ligand affinities and provides a single measure of ligand efficacy. We used it to evaluate the signalling of a promiscuous model receptor, the Vasopressin V2 receptor (V2R). Using BRET-based biosensors, we show that the V2R engages many different G proteins across all G protein subfamilies in response to its primary endogenous agonist, arginine vasopressin (AVP), including Gs and members of the Gi/o and G12/13 families. These signaling pathways are also activated by the synthetic peptide desmopressin, oxytocin, and the non-mammalian hormone vasotocin. We compared bias quantification using the operational model with Michaelis-Menten based quantification, the latter accurately quantified ligand efficacies despite large difference in ligand affinities. Together, these results showed that V2R is promiscuous in its ability to engage several G proteins and that its' signaling profile is biased by small structural changes in the ligand. Significance Statement By modelling the G protein activation as Michaelis-Menten reaction, we developed a novel way of quantifying signalling bias. V2R activates or at least engages G proteins from all G protein subfamilies, including Gi2, Gz, Gq, G12, and G13. Their relative activation may explain its Gs-independent signalling.
Collapse
Affiliation(s)
| | - Bianca Plouffe
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom
| | | | - Dalibor Milic
- Department of Structural and Computational Biology, University of Vienna, Austria
| | - Joris Zhou
- Institute for Research in Immunology and Cancer, University of Montreal, Canada
| | - Billy Breton
- Institute for Research in Immunology and Cancer, University of Montreal, Canada
| | | | | | - Michel Bouvier
- Department of Biochemistry and Molec ular Medicine, University of Montreal, Canada
| | | |
Collapse
|
4
|
Proudman RGW, Baker JG. The selectivity of α-adrenoceptor agonists for the human α1A, α1B, and α1D-adrenoceptors. Pharmacol Res Perspect 2021; 9:e00799. [PMID: 34355529 PMCID: PMC8343220 DOI: 10.1002/prp2.799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Highly selective drugs offer a way to minimize side-effects. For agonist ligands, this could be through highly selective affinity or highly selective efficacy, but this requires careful measurements of intrinsic efficacy. The α1-adrenoceptors are important clinical targets, and α1-agonists are used to manage hypotension, sedation, attention deficit hypersensitivity disorder (ADHD), and nasal decongestion. With 100 years of drug development, there are many structurally different compounds with which to study agonist selectivity. This study examined 62 α-agonists at the three human α1-adrenoceptor (α1A, α1B, and α1D) stably expressed in CHO cells. Affinity was measured using whole-cell 3 H-prazosin binding, while functional responses were measured for calcium mobilization, ERK1/2-phosphorylation, and cAMP accumulation. Efficacy ratios were used to rank compounds in order of intrinsic efficacy. Adrenaline, noradrenaline, and phenylephrine were highly efficacious α1-agonists at all three receptor subtypes. A61603 was the most selective agonist and its very high α1A-selectivity was due to selective α1A-affinity (>660-fold). There was no evidence of Gq-calcium versus ERK-phosphorylation biased signaling at the α1A, α1B, or α1D-adrenoceptors. There was little evidence for α1A calcium versus cAMP biased signaling, although there were suggestions of calcium versus cAMP bias the α1B-adrenoceptor. Comparisons of the rank order of ligand intrinsic efficacy suggest little evidence for selective intrinsic efficacy between the compounds, with perhaps the exception of dobutamine which may have some α1D-selective efficacy. There seems plenty of scope to develop affinity selective and intrinsic efficacy selective drugs for the α1-adrenoceptors in future.
Collapse
Affiliation(s)
- Richard G. W. Proudman
- Cell Signalling Research GroupDivision of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesC Floor Medical SchoolQueen’s Medical CentreUniversity of NottinghamNottinghamUK
| | - Jillian G. Baker
- Cell Signalling Research GroupDivision of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesC Floor Medical SchoolQueen’s Medical CentreUniversity of NottinghamNottinghamUK
| |
Collapse
|
5
|
Perez DM. Targeting Adrenergic Receptors in Metabolic Therapies for Heart Failure. Int J Mol Sci 2021; 22:5783. [PMID: 34071350 PMCID: PMC8198887 DOI: 10.3390/ijms22115783] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
The heart has a reduced capacity to generate sufficient energy when failing, resulting in an energy-starved condition with diminished functions. Studies have identified numerous changes in metabolic pathways in the failing heart that result in reduced oxidation of both glucose and fatty acid substrates, defects in mitochondrial functions and oxidative phosphorylation, and inefficient substrate utilization for the ATP that is produced. Recent early-phase clinical studies indicate that inhibitors of fatty acid oxidation and antioxidants that target the mitochondria may improve heart function during failure by increasing compensatory glucose oxidation. Adrenergic receptors (α1 and β) are a key sympathetic nervous system regulator that controls cardiac function. β-AR blockers are an established treatment for heart failure and α1A-AR agonists have potential therapeutic benefit. Besides regulating inotropy and chronotropy, α1- and β-adrenergic receptors also regulate metabolic functions in the heart that underlie many cardiac benefits. This review will highlight recent studies that describe how adrenergic receptor-mediated metabolic pathways may be able to restore cardiac energetics to non-failing levels that may offer promising therapeutic strategies.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195, USA
| |
Collapse
|
6
|
Perez DM. Current Developments on the Role of α 1-Adrenergic Receptors in Cognition, Cardioprotection, and Metabolism. Front Cell Dev Biol 2021; 9:652152. [PMID: 34113612 PMCID: PMC8185284 DOI: 10.3389/fcell.2021.652152] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
The α1-adrenergic receptors (ARs) are G-protein coupled receptors that bind the endogenous catecholamines, norepinephrine, and epinephrine. They play a key role in the regulation of the sympathetic nervous system along with β and α2-AR family members. While all of the adrenergic receptors bind with similar affinity to the catecholamines, they can regulate different physiologies and pathophysiologies in the body because they couple to different G-proteins and signal transduction pathways, commonly in opposition to one another. While α1-AR subtypes (α1A, α1B, α1C) have long been known to be primary regulators of vascular smooth muscle contraction, blood pressure, and cardiac hypertrophy, their role in neurotransmission, improving cognition, protecting the heart during ischemia and failure, and regulating whole body and organ metabolism are not well known and are more recent developments. These advancements have been made possible through the development of transgenic and knockout mouse models and more selective ligands to advance their research. Here, we will review the recent literature to provide new insights into these physiological functions and possible use as a therapeutic target.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
7
|
Walsh SK, Lipina C, Ang SY, Sato M, Chia LY, Kocan M, Hutchinson DS, Summers RJ, Wainwright CL. GPR55 regulates the responsiveness to, but does not dimerise with, α 1A-adrenoceptors. Biochem Pharmacol 2021; 188:114560. [PMID: 33844984 DOI: 10.1016/j.bcp.2021.114560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 11/15/2022]
Abstract
Emerging evidence suggests that G protein coupled receptor 55 (GPR55) may influence adrenoceptor function/activity in the cardiovascular system. Whether this reflects direct interaction (dimerization) between receptors or signalling crosstalk has not been investigated. This study explored the interaction between GPR55 and the alpha 1A-adrenoceptor (α1A-AR) in the cardiovascular system and the potential to influence function/signalling activities. GPR55 and α1A-AR mediated changes in both cardiac and vascular function was assessed in male wild-type (WT) and GPR55 homozygous knockout (GPR55-/-) mice by pressure volume loop analysis and isolated vessel myography, respectively. Dimerization of GPR55 with the α1A-AR was examined in transfected Chinese hamster ovary-K1 (CHO-K1) cells via Bioluminescence Resonance Energy Transfer (BRET). GPR55 and α1A-AR mediated signalling (extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation) was investigated in neonatal rat ventricular cardiomyocytes using AlphaScreen proximity assays. GPR55-/- mice exhibited both enhanced pressor and inotropic responses to A61603 (α1A-AR agonist), while in isolated vessels, A61603 induced vasoconstriction was attenuated by a GPR55-dependent mechanism. Conversely, GPR55-mediated vasorelaxation was not altered by pharmacological blockade of α1A-ARs with tamsulosin. While cellular studies demonstrated that GPR55 and α1A-AR failed to dimerize, pharmacological blockade of GPR55 altered α1A-AR mediated signalling and reduced ERK1/2 phosphorylation. Taken together, this study provides evidence that GPR55 and α1A-AR do not dimerize to form heteromers, but do interact at the signalling level to modulate the function of α1A-AR in the cardiovascular system.
Collapse
Affiliation(s)
- Sarah K Walsh
- Cardiometabolic Health Research, School of Pharmacy and Life Sciences, Robert Gordon University, Sir Ian Wood Building, Aberdeen AB10 7GJ, UK.
| | - Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Sheng Y Ang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Masaaki Sato
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Ling Yeong Chia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Martina Kocan
- The Florey Institute of Neuroscience and Mental Health and School of Biosciences, University of Melbourne, Parkville, VIC, Australia
| | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Cherry L Wainwright
- Cardiometabolic Health Research, School of Pharmacy and Life Sciences, Robert Gordon University, Sir Ian Wood Building, Aberdeen AB10 7GJ, UK
| |
Collapse
|
8
|
Kitano T, Eguchi R, Okamatsu-Ogura Y, Yamaguchi S, Otsuguro KI. Opposing functions of α- and β-adrenoceptors in the formation of processes by cultured astrocytes. J Pharmacol Sci 2021; 145:228-240. [PMID: 33602503 DOI: 10.1016/j.jphs.2020.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/07/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022] Open
Abstract
Astrocytes are glial cells with numerous fine processes which are important for the functions of the central nervous system. The activation of β-adrenoceptors induces process formation of astrocytes via cyclic AMP (cAMP) signaling. However, the role of α-adrenoceptors in the astrocyte morphology has not been elucidated. Here, we examined it by using cultured astrocytes from neonatal rat spinal cords and cortices. Exposure of these cells to noradrenaline and the β-adrenoceptor agonist isoproterenol increased intracellular cAMP levels and induced the formation of processes. Noradrenaline-induced process formation was enhanced with the α1-adrenoceptor antagonist prazosin and α2-adrenoceptor antagonist atipamezole. Atipamezole also enhanced noradrenaline-induced cAMP elevation. Isoproterenol-induced process formation was not inhibited by the α1-adrenoceptor agonist phenylephrine but was inhibited by the α2-adrenoceptor agonist dexmedetomidine. Dexmedetomidine also inhibited process formation induced by the adenylate cyclase activator forskolin and the membrane-permeable cAMP analog dibutyryl-cAMP. Moreover, dexmedetomidine inhibited cAMP-independent process formation induced by adenosine or the Rho-associated kinase inhibitor Y27632. In the presence of propranolol, noradrenaline inhibited Y27632-induced process formation, which was abolished by prazosin or atipamezole. These results demonstrate that α-adrenoceptors inhibit both cAMP-dependent and -independent astrocytic process formation.
Collapse
Affiliation(s)
- Taisuke Kitano
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Ryota Eguchi
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Soichiro Yamaguchi
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Ken-Ichi Otsuguro
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan.
| |
Collapse
|
9
|
Onaran HO, Costa T. Conceptual and experimental issues in biased agonism. Cell Signal 2021; 82:109955. [PMID: 33607257 DOI: 10.1016/j.cellsig.2021.109955] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/20/2021] [Accepted: 02/14/2021] [Indexed: 12/31/2022]
Abstract
In this review, we discuss the theoretical and experimental foundations for assessing agonism in the context of signalling bias in GPCRs. We show that the formulation of efficacy in classical receptor theory and the definition of ligand-induced allosteric effect in chemical thermodynamics are coincident measures of agonism, only if we recognize that the classical model cannot be considered as a mechanistic description of the physicochemical events underlying ligand-receptor signalling. It represents instead a mathematical tool, fortuitously capable of extracting efficacy information from concentration-dependent functional data, where both ligand-dependent and ligand-independent information are present. We also assert that dissecting efficacy from affinity, as originally advocated in classical theory, is imperative for understanding the molecular property underlying agonism, and the biased agonism that leads to preferential formation of diverse GPCR-transducer complexes. Finally, we argue that beyond the assumed translational value of functional selectivity (i.e. signalling bias), the identification of ligands with true bias of efficacy is of fundamental importance for unravelling the conformational space that determines the complex functional chemistry of GPCRs.
Collapse
Affiliation(s)
- H Ongun Onaran
- Ankara University, Faculty of Medicine, Department of Pharmacology, Molecular Biology and Technology Development Unit, Ankara, Turkey.
| | | |
Collapse
|
10
|
de-Los-Santos-Cocotle G, Martínez-Morales JC, Romero-Ávila MT, Reyes-Cruz G, García-Sáinz JA. Effects of agonists and phorbol esters on α 1A-adrenergic receptor-Rab protein interactions. Eur J Pharmacol 2020; 885:173423. [PMID: 32750368 DOI: 10.1016/j.ejphar.2020.173423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 11/29/2022]
Abstract
In a cell line, stably expressing α1A-adrenoceptors fused to the mCherry red fluorescent protein, noradrenaline, methoxamine, and oxymetazoline induced concentration-dependent increases in intracellular calcium. All of these agents increase α1A-adrenoceptor phosphorylation and internalization. Transient co-expression of these receptors with Rab proteins tagged with the enhanced Green Fluorescent Protein was employed to estimate α1A-adrenoceptor-Rab interaction using Förster Resonance Energy Transfer. Noradrenaline and methoxamine increased α1A-adrenoceptor interaction with Rab5 and Rab7 but did not modify it with Rab9. Oxymetazoline induced adrenoceptor interaction with Rab5 and Rab9 and only an insignificant increase in Rab7 signal. Phorbol myristate acetate increased α1A-adrenoceptor interaction with Rab5 and Rab9 but did not modify it with Rab7. The agonists and the active phorbol ester, all of which induce receptor phosphorylation and internalization, favor receptor interaction with Rab5, i.e., association with early endosomes. Cell stimulation with phorbol myristate acetate induced the α1A-adrenoceptors to interact with the late endosomal marker, Rab9, suggesting that the receptors are directed to slow recycling endosomes once they have transited to the Trans-Golgi network to be retrieved to the plasma membrane. The agonists noradrenaline and methoxamine likely induce a faster recycling and might direct some of the adrenoceptors toward degradation and/or very slow recycling to the plasma membrane. Oxymetazoline produced a mixed pattern of interaction with the Rab proteins. These data indicate that α1A-adrenoceptor agonists can trigger different vesicular traffic and receptor fates within the cells.
Collapse
Affiliation(s)
- Gustavo de-Los-Santos-Cocotle
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan Carlos Martínez-Morales
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - M Teresa Romero-Ávila
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guadalupe Reyes-Cruz
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Av. Instituto Politécnico Nacional 2508; Col, San Pedro Zacatenco, Mexico City, Mexico
| | - J Adolfo García-Sáinz
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
11
|
Perez DM. α 1-Adrenergic Receptors in Neurotransmission, Synaptic Plasticity, and Cognition. Front Pharmacol 2020; 11:581098. [PMID: 33117176 PMCID: PMC7553051 DOI: 10.3389/fphar.2020.581098] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
α1-adrenergic receptors are G-Protein Coupled Receptors that are involved in neurotransmission and regulate the sympathetic nervous system through binding and activating the neurotransmitter, norepinephrine, and the neurohormone, epinephrine. There are three α1-adrenergic receptor subtypes (α1A, α1B, α1D) that are known to play various roles in neurotransmission and cognition. They are related to two other adrenergic receptor families that also bind norepinephrine and epinephrine, the β- and α2-, each with three subtypes (β1, β2, β3, α2A, α2B, α2C). Previous studies assessing the roles of α1-adrenergic receptors in neurotransmission and cognition have been inconsistent. This was due to the use of poorly-selective ligands and many of these studies were published before the characterization of the cloned receptor subtypes and the subsequent development of animal models. With the availability of more-selective ligands and the development of animal models, a clearer picture of their role in cognition and neurotransmission can be assessed. In this review, we highlight the significant role that the α1-adrenergic receptor plays in regulating synaptic efficacy, both short and long-term synaptic plasticity, and its regulation of different types of memory. We will also present evidence that the α1-adrenergic receptors, and particularly the α1A-adrenergic receptor subtype, are a potentially good target to treat a wide variety of neurological conditions with diminished cognition.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
12
|
Papay RS, Perez DM. α 1-Adrenergic receptors increase glucose oxidation under normal and ischemic conditions in adult mouse cardiomyocytes. J Recept Signal Transduct Res 2020; 41:138-144. [PMID: 32757689 DOI: 10.1080/10799893.2020.1799291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The role of catecholamine receptors in cardiac energy metabolism is unknown. α1-adrenergic receptors (α1-ARs) have been identified to play a role in whole body metabolism but its role in cardiac energy metabolism has not been explored. We used freshly prepared primary adult mouse cardiomyocytes and incubated with either 14C-palmitate or 14C-glucose tracers to measure oxidation rates in the presence or absence of phenylephrine, an α1-AR agonist (with β and α2-AR blockers) under normal cell culture conditions. 14CO2 released was collected over a 10 min period in covered tissue culture plates using a 1 M hyamine hydroxide solution placed in well cups, counted by scintillation and converted into nmoles/hr. We found that phenylephrine stimulated glucose oxidation but not fatty acid oxidation in adult primary cardiomyocytes. α1-AR stimulated glucose oxidation was blocked by the AMPK inhibitor, dorsomorphin dihydrochloride, and the PKC inhibitor, rottlerin. Ischemic conditions were induced by lowering the glucose concentration from 22.5 mM to 1.375 mM. Under ischemic conditions, we found that phenylephrine also increased glucose oxidation. We report a direct role of α1-ARs in regulating glucose oxidation under normal and ischemic conditions that may lead to new therapeutic approaches in treating ischemia.
Collapse
Affiliation(s)
- Robert S Papay
- The Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Dianne M Perez
- The Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
13
|
Hoare SRJ, Tewson PH, Quinn AM, Hughes TE. A kinetic method for measuring agonist efficacy and ligand bias using high resolution biosensors and a kinetic data analysis framework. Sci Rep 2020; 10:1766. [PMID: 32019973 PMCID: PMC7000712 DOI: 10.1038/s41598-020-58421-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/20/2019] [Indexed: 01/14/2023] Open
Abstract
The kinetics/dynamics of signaling are of increasing value for G-protein-coupled receptor therapeutic development, including spatiotemporal signaling and the kinetic context of biased agonism. Effective application of signaling kinetics to developing new therapeutics requires reliable kinetic assays and an analysis framework to extract kinetic pharmacological parameters. Here we describe a platform for measuring arrestin recruitment kinetics to GPCRs using a high quantum yield, genetically encoded fluorescent biosensor, and a data analysis framework to quantify the recruitment kinetics. The sensor enabled high temporal resolution measurement of arrestin recruitment to the angiotensin AT1 and vasopressin V2 receptors. The analysis quantified the initial rate of arrestin recruitment (kτ), a biologically-meaningful kinetic drug efficacy parameter, by fitting time course data using routine curve-fitting methods. Biased agonism was assessed by comparing kτ values for arrestin recruitment with those for Gq signaling via the AT1 receptor. The kτ ratio values were in good agreement with bias estimates from existing methods. This platform potentially improves and simplifies assessment of biased agonism because the same assay modality is used to compare pathways (potentially in the same cells), the analysis method is parsimonious and intuitive, and kinetic context is factored into the bias measurement.
Collapse
Affiliation(s)
- Sam R J Hoare
- Pharmechanics LLC, 14 Sunnyside Drive South, Owego, NY, 13827, USA.
| | - Paul H Tewson
- Montana Molecular, 366 Gallatin Park Dr. Suite A, Bozeman, MT, 59715, USA
| | - Anne Marie Quinn
- Montana Molecular, 366 Gallatin Park Dr. Suite A, Bozeman, MT, 59715, USA
| | - Thomas E Hughes
- Montana Molecular, 366 Gallatin Park Dr. Suite A, Bozeman, MT, 59715, USA.
| |
Collapse
|
14
|
Bartole E, Littmann T, Tanaka M, Ozawa T, Buschauer A, Bernhardt G. [ 3H]UR-DEBa176: A 2,4-Diaminopyrimidine-Type Radioligand Enabling Binding Studies at the Human, Mouse, and Rat Histamine H 4 Receptors. J Med Chem 2019; 62:8338-8356. [PMID: 31469288 DOI: 10.1021/acs.jmedchem.9b01342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Differences in sequence homology between human (h), mouse (m), and rat (r) histamine H4 receptors (H4R) cause discrepancies regarding affinities, potencies, and/or efficacies of ligands and therefore compromise translational animal models and the applicability of radioligands. Aiming at a radioligand enabling robust and comparative binding studies at the h/m/rH4Rs, 2,4-diaminopyrimidines were synthesized and pharmacologically investigated. The most notable compounds identified were two (partial) agonists with comparable potencies at the h/m/rH4Rs: UR-DEBa148 (N-neopentyl-4-(1,4,6,7-tetrahydro-5H-imidazo[4,5-c]pyridin-5-yl)pyrimidin-2-amine bis(2,2,2-trifluoroacetate), 43), the most potent [pEC50 (reporter gene assay) = 9.9/9.6/10.3] compound in the series being slightly G-protein biased and UR-DEBa176 [(R)-4-[3-(dimethylamino)pyrrolidin-1-yl]-N-neopentylpyrimidin-2-amine bis(2,2,2-trifluoroacetate), 46, pEC50 (reporter gene assay) = 8.7/9.0/9.2], a potential "cold" form of a tritiated H4R ligand. After radiolabeling, binding studies with [3H]UR-DEBa176 ([3H]46) at the h/m/rH4Rs revealed comparable Kd values (41/17/22 nM), low nonspecific binding (11-17%, ∼Kd), and fast associations/dissociations (25-30 min) and disclosed [3H]UR-DEBa176 as useful molecular tool to determine h/m/rH4R binding affinities for H4R ligands.
Collapse
Affiliation(s)
- Edith Bartole
- Institute of Pharmacy , University of Regensburg , D-93053 Regensburg , Germany
| | - Timo Littmann
- Institute of Pharmacy , University of Regensburg , D-93053 Regensburg , Germany
| | - Miho Tanaka
- Department of Chemistry, School of Science , University of Tokyo , 7-3-1 Bunkyo-ku , Hongo , Tokyo 113-0033 , Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science , University of Tokyo , 7-3-1 Bunkyo-ku , Hongo , Tokyo 113-0033 , Japan
| | - Armin Buschauer
- Institute of Pharmacy , University of Regensburg , D-93053 Regensburg , Germany
| | - Günther Bernhardt
- Institute of Pharmacy , University of Regensburg , D-93053 Regensburg , Germany
| |
Collapse
|
15
|
Odagaki Y, Kinoshita M, Ota T. Functional activation of Gα q/11 protein via α 1 -adrenoceptor in rat cerebral cortical membranes. Clin Exp Pharmacol Physiol 2019; 46:567-574. [PMID: 30869808 DOI: 10.1111/1440-1681.13084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/21/2019] [Accepted: 03/09/2019] [Indexed: 11/26/2022]
Abstract
Although it is recognized that α1 -adrenoceptors are coupled to diverse intracellular signalling pathways, its primary transduction mechanisms are evoked by activating phospholipase C in the cell membrane through Gαq/11 , resulting in production of inositol 1,4,5-trisphosphate and diacylglycerol. However, there have been few studies that indicate directly the involvement of Gαq/11 proteins in this signalling pathway in the central nervous system. In the current study, we tried to pharmacologically characterize (-)-adrenaline-stimulated [35 S]GTPγS binding to Gαq/11 in rat brain membranes. Functional activation of Gαq/11 coupled to α1 -adrenoceptor was investigated by using [35 S]GTPγS binding/immunoprecipitation assay in the membranes prepared from rat cerebral cortex, hippocampus, and striatum. The specific [35 S]GTPγS binding to Gαq/11 was stimulated by (-)-adrenaline in a concentration-dependent and saturable manner in rat cerebral cortical membranes. In hippocampal or striatal membranes, the stimulatory effects of (-)-adrenaline were scarce. The effect of (-)-adrenaline was potently inhibited by prazosin, a potent and selective α1 -adrenoceptor antagonist, but not by yohimbine, a selective α2 -adrenoceptor antagonist. The response was mimicked by cirazoline, but not by R(-)-phenylephrine. Although oxymetazoline also stimulated the specific [35 S]GTPγS binding to Gαq/11 as an apparent "super-agonist", detailed pharmacological characterization revealed that its agonistic properties in this experimental system were derived from off-target effects on 5-HT2A receptors, but not via α1 -adrenoceptors. In conclusion, functional coupling of α1 -adrenoceptors to Gαq/11 proteins are detectable in rat brain membranes by means of [35 S]GTPγS binding/immunoprecipitation assay. It is necessary to interpret the experimental data with caution when oxymetazoline is included as an agonist at α1 -adrenoceptors.
Collapse
Affiliation(s)
- Yuji Odagaki
- Department of Psychiatry, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Masakazu Kinoshita
- Department of Psychiatry, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Toshio Ota
- Department of Psychiatry, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| |
Collapse
|
16
|
|
17
|
Zhu X, Finlay DB, Glass M, Duffull SB. An evaluation of the operational model when applied to quantify functional selectivity. Br J Pharmacol 2018; 175:1654-1668. [PMID: 29457969 PMCID: PMC5913411 DOI: 10.1111/bph.14171] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/06/2017] [Accepted: 01/28/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Functional selectivity describes the ability of ligands to differentially regulate multiple signalling pathways when coupled to a single receptor, and the operational model is commonly used to analyse these data. Here, we assess the mathematical properties of the operational model and evaluate the outcomes of fixing parameters on model performance. EXPERIMENTAL APPROACH The operational model was evaluated using both a mathematical identifiability analysis and simulation. KEY RESULTS Mathematical analysis revealed that the parameters R0 and KE were not independently identifiable which can be solved by considering their ratio, τ. The ratio parameter, τ, was often imprecisely estimated when only functional assay data were available and generally only the transduction coefficient R ( τKA) could be estimated precisely. The general operational model (that includes baseline and the Hill coefficient) required either the parameters Em or KA to be fixed. The normalization process largely cancelled out the mean error of the calculated Δlog (R) caused by fixing these parameters. From this analysis, it was determined that we can avoid the need for a full agonist ligand to be included in an experiment to determine Δlog (R). CONCLUSION AND IMPLICATIONS This analysis has provided a ready-to-use understanding of current methods for quantifying functional selectivity. It showed that current methods are generally tolerant to fixing parameters. A new method was proposed that removes the need for including a high efficacy ligand in any given experiment, which allows application to large-scale screening to identify compounds with desirable features of functional selectivity.
Collapse
Affiliation(s)
- Xiao Zhu
- Otago Pharmacometrics Group, National School of PharmacyUniversity of OtagoDunedinNew Zealand
| | - David B Finlay
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | - Michelle Glass
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | - Stephen B Duffull
- Otago Pharmacometrics Group, National School of PharmacyUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
18
|
Bradley SJ, Molloy C, Bundgaard C, Mogg AJ, Thompson KJ, Dwomoh L, Sanger HE, Crabtree MD, Brooke SM, Sexton PM, Felder CC, Christopoulos A, Broad LM, Tobin AB, Langmead CJ. Bitopic Binding Mode of an M 1 Muscarinic Acetylcholine Receptor Agonist Associated with Adverse Clinical Trial Outcomes. Mol Pharmacol 2018; 93:645-656. [PMID: 29695609 PMCID: PMC5963591 DOI: 10.1124/mol.118.111872] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/27/2018] [Indexed: 12/30/2022] Open
Abstract
The realization of the therapeutic potential of targeting the M1
muscarinic acetylcholine receptor (mAChR) for the treatment of cognitive decline in
Alzheimer’s disease has prompted the discovery of M1 mAChR ligands
showing efficacy in alleviating cognitive dysfunction in both rodents and humans.
Among these is GSK1034702
(7-fluoro-5-methyl-3-[1-(oxan-4-yl)piperidin-4-yl]-1H-benzimidazol-2-one),
described previously as a potent M1 receptor allosteric agonist, which
showed procognitive effects in rodents and improved immediate memory in a clinical
nicotine withdrawal test but induced significant side effects. Here we provide
evidence using ligand binding, chemical biology and functional assays to establish
that rather than the allosteric mechanism claimed, GSK1034702 interacts in a bitopic
manner at the M1 mAChR such that it can concomitantly span both the
orthosteric and an allosteric binding site. The bitopic nature of GSK1034702,
together with the intrinsic agonist activity and a lack of muscarinic receptor
subtype selectivity reported here, all likely contribute to the adverse effects of
this molecule in clinical trials. Although they impart beneficial effects on learning
and memory, we conclude that these properties are undesirable in a clinical candidate
due to the likelihood of adverse side effects. Rather, our data support the notion
that “pure” positive allosteric modulators showing selectivity for the
M1 mAChR with low levels of intrinsic activity would be preferable to
provide clinical efficacy with low adverse responses.
Collapse
Affiliation(s)
- Sophie J Bradley
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Colin Molloy
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Christoffer Bundgaard
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Adrian J Mogg
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Karen J Thompson
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Louis Dwomoh
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Helen E Sanger
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Michael D Crabtree
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Simon M Brooke
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Patrick M Sexton
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Christian C Felder
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Arthur Christopoulos
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Lisa M Broad
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Andrew B Tobin
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Christopher J Langmead
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| |
Collapse
|
19
|
Chun LS, Vekariya RH, Free RB, Li Y, Lin DT, Su P, Liu F, Namkung Y, Laporte SA, Moritz AE, Aubé J, Frankowski KJ, Sibley DR. Structure-Activity Investigation of a G Protein-Biased Agonist Reveals Molecular Determinants for Biased Signaling of the D 2 Dopamine Receptor. Front Synaptic Neurosci 2018. [PMID: 29515433 PMCID: PMC5826336 DOI: 10.3389/fnsyn.2018.00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The dopamine D2 receptor (D2R) is known to elicit effects through activating two major signaling pathways mediated by either G proteins (Gi/o) or β-arrestins. However, the specific role of each pathway in physiological or therapeutic activities is not known with certainty. One approach to the dissection of these pathways is through the use of drugs that can selectively modulate one pathway vs. the other through a mechanism known as functional selectivity or biased signaling. Our laboratory has previously described a G protein signaling-biased agonist, MLS1547, for the D2R using a variety of in vitro functional assays. To further evaluate the biased signaling activity of this compound, we investigated its ability to promote D2R internalization, a process known to be mediated by β-arrestin. Using multiple cellular systems and techniques, we found that MLS1547 promotes little D2R internalization, which is consistent with its inability to recruit β-arrestin. Importantly, we validated these results in primary striatal neurons where the D2R is most highly expressed suggesting that MLS1547 will exhibit biased signaling activity in vivo. In an effort to optimize and further explore structure-activity relationships (SAR) for this scaffold, we conducted an iterative chemistry campaign to synthesize and characterize novel analogs of MLS1547. The resulting analysis confirmed previously described SAR requirements for G protein-biased agonist activity and, importantly, elucidated new structural features that are critical for agonist efficacy and signaling bias of the MLS1547 scaffold. One of the most important determinants for G protein-biased signaling is the interaction of a hydrophobic moiety of the compound with a defined pocket formed by residues within transmembrane five and extracellular loop two of the D2R. These results shed new light on the mechanism of biased signaling of the D2R and may lead to improved functionally-selective molecules.
Collapse
Affiliation(s)
- Lani S Chun
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Rakesh H Vekariya
- Department of Medicinal Chemistry and Specialized Chemistry Center, University of Kansas, Lawrence, KS, United States
| | - R Benjamin Free
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Yun Li
- Neural Engineering Unit, Behavior Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Da-Ting Lin
- Neural Engineering Unit, Behavior Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Ping Su
- Molecular Neuroscience, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Fang Liu
- Molecular Neuroscience, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Yoon Namkung
- Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal, QC, Canada
| | - Stephane A Laporte
- Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal, QC, Canada
| | - Amy E Moritz
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Jeffrey Aubé
- Department of Medicinal Chemistry and Specialized Chemistry Center, University of Kansas, Lawrence, KS, United States
| | - Kevin J Frankowski
- Department of Medicinal Chemistry and Specialized Chemistry Center, University of Kansas, Lawrence, KS, United States
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
20
|
Riddy DM, Delerive P, Summers RJ, Sexton PM, Langmead CJ. G Protein–Coupled Receptors Targeting Insulin Resistance, Obesity, and Type 2 Diabetes Mellitus. Pharmacol Rev 2017; 70:39-67. [DOI: 10.1124/pr.117.014373] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/13/2017] [Indexed: 12/18/2022] Open
|
21
|
Sato M, Evans BA, Sandström AL, Chia LY, Mukaida S, Thai BS, Nguyen A, Lim L, Tan CYR, Baltos JA, White PJ, May LT, Hutchinson DS, Summers RJ, Bengtsson T. α 1A-Adrenoceptors activate mTOR signalling and glucose uptake in cardiomyocytes. Biochem Pharmacol 2017; 148:27-40. [PMID: 29175420 DOI: 10.1016/j.bcp.2017.11.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022]
Abstract
The capacity of G protein-coupled receptors to modulate mechanistic target of rapamycin (mTOR) activity is a newly emerging paradigm with the potential to link cell surface receptors with cell survival. Cardiomyocyte viability is linked to signalling pathways involving Akt and mTOR, as well as increased glucose uptake and utilization. Our aim was to determine whether the α1A-adrenoceptor (AR) couples to these protective pathways, and increased glucose uptake. We characterised α1A-AR signalling in CHO-K1 cells co-expressing the human α1A-AR and GLUT4 (CHOα1AGLUT4myc) and in neonatal rat ventricular cardiomyocytes (NRVM), and measured glucose uptake, intracellular Ca2+ mobilization, and phosphorylation of mTOR, Akt, 5' adenosine monophosphate-activated kinase (AMPK) and S6 ribosomal protein (S6rp). In both systems, noradrenaline and the α1A-AR selective agonist A61603 stimulated glucose uptake by parallel pathways involving mTOR and AMPK, whereas another α1-AR agonist oxymetazoline increased glucose uptake predominantly by mTOR. All agonists promoted phosphorylation of mTOR at Ser2448 and Ser2481, indicating activation of both mTORC1 and mTORC2, but did not increase Akt phosphorylation. In CHOα1AGLUT4myc cells, siRNA directed against rictor but not raptor suppressed α1A-AR mediated glucose uptake. We have thus identified mTORC2 as a key component in glucose uptake stimulated by α1A-AR agonists. Our findings identify a novel link between the α1A-AR, mTORC2 and glucose uptake, that have been implicated separately in cardiomyocyte survival. Our studies provide an improved framework for examining the utility of α1A-AR selective agonists as tools in the treatment of cardiac dysfunction.
Collapse
Affiliation(s)
- Masaaki Sato
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Bronwyn A Evans
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Anna L Sandström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ling Yeong Chia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Saori Mukaida
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Bui San Thai
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Anh Nguyen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Linzi Lim
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Christina Y R Tan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jo-Anne Baltos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Paul J White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Tore Bengtsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
22
|
da Silva Junior ED, Sato M, Merlin J, Broxton N, Hutchinson DS, Ventura S, Evans BA, Summers RJ. Factors influencing biased agonism in recombinant cells expressing the human α 1A -adrenoceptor. Br J Pharmacol 2017; 174:2318-2333. [PMID: 28444738 DOI: 10.1111/bph.13837] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Agonists acting at GPCRs promote biased signalling via Gα or Gβγ subunits, GPCR kinases and β-arrestins. Since the demonstration of biased agonism has implications for drug discovery, it is essential to consider confounding factors contributing to bias. We have examined bias at human α1A -adrenoceptors stably expressed at low levels in CHO-K1 cells, identifying off-target effects at endogenous receptors that contribute to ERK1/2 phosphorylation in response to the agonist oxymetazoline. EXPERIMENTAL APPROACH Intracellular Ca2+ mobilization was monitored in a Flexstation® using Fluo 4-AM. The accumulation of cAMP and ERK1/2 phosphorylation were measured using AlphaScreen® proximity assays, and mRNA expression was measured by RT-qPCR. Ligand bias was determined using the operational model of agonism. KEY RESULTS Noradrenaline, phenylephrine, methoxamine and A61603 increased Ca2+ mobilization, cAMP accumulation and ERK1/2 phosphorylation. However, oxymetazoline showed low efficacy for Ca+2 mobilization, no effect on cAMP generation and high efficacy for ERK1/2 phosphorylation. The apparent functional selectivity of oxymetazoline towards ERK1/2 was related to off-target effects at 5-HT1B receptors endogenously expressed in CHO-K1 cells. Phenylephrine and methoxamine showed genuine bias towards ERK1/2 phosphorylation compared to Ca2+ and cAMP pathways, whereas A61603 displayed bias towards cAMP accumulation compared to ERK1/2 phosphorylation. CONCLUSION AND IMPLICATIONS We have shown that while adrenergic agonists display bias at human α1A -adrenoceptors, the marked bias of oxymetazoline for ERK1/2 phosphorylation originates from off-target effects. Commonly used cell lines express a repertoire of endogenous GPCRs that may confound studies on biased agonism at recombinant receptors.
Collapse
Affiliation(s)
| | - Masaaki Sato
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Jon Merlin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Natalie Broxton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Sabatino Ventura
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Bronwyn A Evans
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
23
|
Mallipeddi S, Janero DR, Zvonok N, Makriyannis A. Functional selectivity at G-protein coupled receptors: Advancing cannabinoid receptors as drug targets. Biochem Pharmacol 2017; 128:1-11. [PMID: 27890725 PMCID: PMC5470118 DOI: 10.1016/j.bcp.2016.11.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/14/2016] [Indexed: 12/11/2022]
Abstract
The phenomenon of functional selectivity, whereby a ligand preferentially directs the information output of a G-protein coupled receptor (GPCR) along (a) particular effector pathway(s) and away from others, has redefined traditional GPCR signaling paradigms to provide a new approach to structure-based drug design. The two principal cannabinoid receptors (CBRs) 1 and 2 belong to the class-A GPCR subfamily and are considered tenable therapeutic targets for several indications. Yet conventional orthosteric ligands (agonists, antagonists/inverse agonists) for these receptors have had very limited clinical utility due to their propensity to incite on-target adverse events. Chemically distinct classes of cannabinergic ligands exhibit signaling bias at CBRs towards individual subsets of signal transduction pathways. In this review, we discuss the known signaling pathways regulated by CBRs and examine the current evidence for functional selectivity at CBRs in response to endogenous and exogenous cannabinergic ligands as biased agonists. We further discuss the receptor and ligand structural features allowing for selective activation of CBR-dependent functional responses. The design and development of biased ligands may offer a pathway to therapeutic success for novel CBR-targeted drugs.
Collapse
Affiliation(s)
- Srikrishnan Mallipeddi
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States; Center for Drug Discovery, Northeastern University, Boston, MA 02115, United States
| | - David R Janero
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States; Center for Drug Discovery, Northeastern University, Boston, MA 02115, United States
| | - Nikolai Zvonok
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States; Center for Drug Discovery, Northeastern University, Boston, MA 02115, United States
| | - Alexandros Makriyannis
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States; Center for Drug Discovery, Northeastern University, Boston, MA 02115, United States; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States.
| |
Collapse
|
24
|
Dhopeshwarkar A, Mackie K. Functional Selectivity of CB2 Cannabinoid Receptor Ligands at a Canonical and Noncanonical Pathway. J Pharmacol Exp Ther 2016; 358:342-51. [PMID: 27194477 PMCID: PMC4959096 DOI: 10.1124/jpet.116.232561] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/17/2016] [Indexed: 01/14/2023] Open
Abstract
The CB2 cannabinoid receptor (CB2) remains a tantalizing, but unrealized therapeutic target. CB2 receptor ligands belong to varied structural classes and display extreme functional selectivity. Here, we have screened diverse CB2 receptor ligands at canonical (inhibition of adenylyl cyclase) and noncanonical (arrestin recruitment) pathways. The nonclassic cannabinoid (-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol (CP55940) was the most potent agonist for both pathways, while the classic cannabinoid ligand (6aR,10aR)-3-(1,1-Dimethylbutyl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran JWH133) was the most efficacious agonist among all the ligands profiled in cyclase assays. In the cyclase assay, other classic cannabinoids showed little [(-)-trans-Δ(9)-tetrahydrocannabinol and (-)-(6aR,7,10,10aR)-tetrahydro-6,6,9-trimethyl-3-(1-methyl-1-phenylethyl)-6H-dibenzo[b,d]pyran-1-ol] (KM233) to no efficacy [(6aR,10aR)-1-methoxy-6,6,9-trimethyl-3-(2-methyloctan-2-yl)-6a,7,10,10a-tetrahydrobenzo[c]chromene(L759633) and (6aR,10aR)-3-(1,1-dimethylheptyl)-6a,7,8,9,10,10a-hexahydro-1-methoxy-6,6-dimethyl-9-methylene-6H-dibenzo[b,d]pyran]L759656. Most aminoalkylindoles, including [(3R)-2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenyl-methanone, monomethanesulfonate (WIN55212-2), were moderate efficacy agonists. The cannabilactone 3-(1,1-dimethyl-heptyl)-1-hydroxy-9-methoxy-benzo(c)chromen-6-one (AM1710) was equiefficacious to CP55940 to inhibit adenylyl cyclase, albeit with lower potency. In the arrestin recruitment assays, all classic cannabinoid ligands failed to recruit arrestins, indicating a bias toward G-protein coupling for this class of compound. All aminoalkylindoles tested, except for WIN55212-2 and (1-pentyl-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)-methanone (UR144), failed to recruit arrestin. WIN55212-2 was a low efficacy agonist for arrestin recruitment, while UR144 was arrestin biased with no significant inhibition of cyclase. Endocannabinoids were G-protein biased with no arrestin recruitment. The diarylpyrazole antagonist 5-(4-chloro-3-methylphenyl)-1-[(4-methylphenyl)methyl]-N-[(1S,2S,4R)-1,3,3-trimethylbicyclo[2.2.1]hept-2-yl]-1H-pyrazole-3-carboxamide (SR144258) was an inverse agonist in cyclase and arrestin recruitment assays while the aminoalkylindole 6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl)methanone (AM630) and carboxamide N-(1,3-benzodioxol-5-ylmethyl)-1,2-dihydro-7-methoxy-2-oxo-8-(pentyloxy)-3-quinolinecarboxamide (JTE907) were inverse agonists in cyclase but low efficacy agonists in arrestin recruitment assays. Thus, CB2 receptor ligands display strong and varied functional selectivity at both pathways. Therefore, extreme care must be exercised when using these compounds to infer the role of CB2 receptors in vivo.
Collapse
Affiliation(s)
- Amey Dhopeshwarkar
- The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Ken Mackie
- The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| |
Collapse
|
25
|
Shi T, Papay RS, Perez DM. The role of α 1-adrenergic receptors in regulating metabolism: increased glucose tolerance, leptin secretion and lipid oxidation. J Recept Signal Transduct Res 2016; 37:124-132. [PMID: 27277698 DOI: 10.1080/10799893.2016.1193522] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The role of α1-adrenergic receptors (α1-ARs) and their subtypes in metabolism is not well known. Most previous studies were performed before the advent of transgenic mouse models and utilized transformed cell lines and poorly selective antagonists. We have now studied the metabolic regulation of the α1A- and α1B-AR subtypes in vivo using knock-out (KO) and transgenic mice that express a constitutively active mutant (CAM) form of the receptor, assessing subtype-selective functions. CAM mice increased glucose tolerance while KO mice display impaired glucose tolerance. CAM mice increased while KO decreased glucose uptake into white fat tissue and skeletal muscle with the CAM α1A-AR showing selective glucose uptake into the heart. Using indirect calorimetry, both CAM mice demonstrated increased whole body fatty acid oxidation, while KO mice preferentially oxidized carbohydrate. CAM α1A-AR mice displayed significantly decreased fasting plasma triglycerides and glucose levels while α1A-AR KO displayed increased levels of triglycerides and glucose. Both CAM mice displayed increased plasma levels of leptin while KO mice decreased leptin levels. Most metabolic effects were more efficacious with the α1A-AR subtype. Our results suggest that stimulation of α1-ARs results in a favorable metabolic profile of increased glucose tolerance, cardiac glucose uptake, leptin secretion and increased whole body lipid metabolism that may contribute to its previously recognized cardioprotective and neuroprotective benefits.
Collapse
Affiliation(s)
- Ting Shi
- a Department of Molecular Cardiology , Lerner Research Institute, Cleveland Clinic Foundation , Cleveland , OH , USA
| | - Robert S Papay
- a Department of Molecular Cardiology , Lerner Research Institute, Cleveland Clinic Foundation , Cleveland , OH , USA
| | - Dianne M Perez
- a Department of Molecular Cardiology , Lerner Research Institute, Cleveland Clinic Foundation , Cleveland , OH , USA
| |
Collapse
|
26
|
Systematic analysis of factors influencing observations of biased agonism at the mu-opioid receptor. Biochem Pharmacol 2016; 113:70-87. [PMID: 27286929 DOI: 10.1016/j.bcp.2016.05.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/31/2016] [Indexed: 11/24/2022]
Abstract
Biased agonism describes the ability of distinct G protein-coupled receptor (GPCR) ligands to stabilise distinct receptor conformations leading to the activation of different cell signalling pathways that can deliver different physiologic outcomes. This phenomenon is having a major impact on modern drug discovery as it offers the potential to design ligands that selectively activate or inhibit the signalling pathways linked to therapeutic effects with minimal activation or blockade of signalling pathways that are linked to the development of adverse on-target effects. However, the explosion in studies of biased agonism at multiple GPCR families in recombinant cell lines has revealed a high degree of variability on descriptions of biased ligands at the same GPCR and raised the question of whether biased agonism is a fixed attribute of a ligand in all cell types. The current study addresses this question at the mu-opioid receptor (MOP). Here, we have systematically assessed the impact of differential cellular protein complement (and cellular background), signalling kinetics and receptor species on our previous descriptions of biased agonism at MOP by several opioid peptides and synthetic opioids. Our results show that all these factors need to be carefully determined and reported when considering biased agonism. Nevertheless, our studies also show that, despite changes in overall signalling profiles, ligands that previously showed distinct bias profiles at MOP retained their uniqueness across different cell backgrounds.
Collapse
|
27
|
Deutsch D, Deen S, Entschladen F, Coveney C, Rees R, Zänker KS, Powe DG. Alpha1B adrenoceptor expression is a marker of reduced survival and increased tumor recurrence in patients with endometrioid ovarian cancer. World J Obstet Gynecol 2016; 5:118-126. [DOI: 10.5317/wjog.v5.i1.118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/27/2015] [Accepted: 11/11/2015] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate the expression patterns of different adrenoceptor isoforms in ovarian cancer and their association with survival and tumor recurrence.
METHODS: The protein expression levels of α1B, α2C and β2 adrenoceptor were assessed in unselected ovarian cancer using immunohistochemistry on microarrayed archival tissue samples. A database containing clinical and pathology parameters and follow-up was used to investigate the association between adrenoceptor isoform expression with ovarian specific survival and tumor recurrence, using univariate and multivariate statistical analysis.
RESULTS: Expression of α1B showed an association with reduced ovarian specific survival (P = 0.05; CI: 1.00-1.49) and increased tumor recurrence (P = 0.021, CI: 1.04-1.69) in the whole patient group. On sub-analysis the expression of α1B in endometrioid cancers (χ2 = 5.867, P = 0.015) was found to predict reduced ovarian specific survival and increased tumor recurrence independently of tumor grade, clinical stage and chemotherapy. An association with clinical outcome was not seen for α2C or β2 AR.
CONCLUSION: Alpha1B adrenoceptor protein was found to predict increased risk of tumor recurrence and reduced mortality in patients with endometrioid type ovarian cancer and should be investigated as a biomarker for identifying patients at increased risk of disease progression. Furthermore, α adrenergic receptor antagonists with α1B selectivity should be investigated as a possible adjuvant therapy for treating patients with endometrioid cancer. Proof of principle could be tested in a retrospective population study.
Collapse
|
28
|
Kenakin T. New Lives for Seven Transmembrane Receptors as Drug Targets. Trends Pharmacol Sci 2015; 36:705-706. [DOI: 10.1016/j.tips.2015.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/21/2015] [Indexed: 10/22/2022]
|
29
|
Rajaraman G, Simcocks A, Hryciw DH, Hutchinson DS, McAinch AJ. G protein coupled receptor 18: A potential role for endocannabinoid signaling in metabolic dysfunction. Mol Nutr Food Res 2015; 60:92-102. [PMID: 26337420 DOI: 10.1002/mnfr.201500449] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/18/2015] [Accepted: 08/23/2015] [Indexed: 02/06/2023]
Abstract
Endocannabinoids are products of dietary fatty acids that are modulated by an alteration in food intake levels. Overweight and obese individuals have substantially higher circulating levels of the arachidonic acid derived endocannabinoids, anandamide and 2-arachidonoyl glycerol, and show an altered pattern of cannabinoid receptor expression. These cannabinoid receptors are part of a large family of G protein coupled receptors (GPCRs). GPCRs are major therapeutic targets for various diseases within the cardiovascular, neurological, gastrointestinal, and endocrine systems, as well as metabolic disorders such as obesity and type 2 diabetes mellitus. Obesity is considered a state of chronic low-grade inflammation elicited by an immunological response. Interestingly, the newly deorphanized GPCR (GPR18), which is considered to be a putative cannabinoid receptor, is proposed to have an immunological function. In this review, the current scientific knowledge on GPR18 is explored including its localization, signaling pathways, and pharmacology. Importantly, the involvement of nutritional factors and potential dietary regulation of GPR18 and its (patho)physiological roles are described. Further research on this receptor and its regulation will enable a better understanding of the complex mechanisms of GPR18 and its potential as a novel therapeutic target for treating metabolic disorders.
Collapse
Affiliation(s)
- Gayathri Rajaraman
- Centre for Chronic Disease Prevention and Management, College of Health & Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Anna Simcocks
- Centre for Chronic Disease Prevention and Management, College of Health & Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Deanne H Hryciw
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Dana S Hutchinson
- Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Andrew J McAinch
- Centre for Chronic Disease Prevention and Management, College of Health & Biomedicine, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Kenakin T. Gaddum Memorial Lecture 2014: receptors as an evolving concept: from switches to biased microprocessors. Br J Pharmacol 2015; 172:4238-53. [PMID: 26075971 PMCID: PMC4556465 DOI: 10.1111/bph.13217] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/06/2015] [Accepted: 03/16/2015] [Indexed: 12/17/2022] Open
Abstract
This review is based on the JR Vane Medal Lecture presented at the BPS Winter Meeting in December 2014 by T. Kenakin. A recording of the lecture is included as supporting information and can also be viewed online here: https://www.youtube.com/watch?v=xrP81AQ8l-8. Pharmacological models used to describe drug agonism and antagonism have evolved over the past 20 years from a parsimonious model describing single active and inactive receptor states to models of multiconformational receptor systems modified by ligand conformational selection. These latter models describe the observed, presently underexploited, pharmacological mechanism of ligand-directed biased signalling. Biased signals can be quantified with transduction coefficients (ΔΔLog(τ/KA) values), a scale grounded in the Black/Leff operational model; this enables the optimization of biased profiles through medicinal chemistry. The past decades have also brought the availability of new technologies to measure multiple functional effects mediated by seven transmembrane receptors. These have confirmed that drugs can have many efficacies, which may be collaterally linked, that is there is no linear sequence of activities required. In addition, new functional screening assays have introduced increasing numbers of allosteric ligands into drug discovery. These molecules are permissive (they do not necessarily preclude endogenous signalling in vivo); therefore, they may allow better fine tuning of pathological physiology. The permissive quality of allosteric ligands can also change the quality of endogenous signalling efficacy ('induced bias') as well as the quantity of signal; in this regard, indices related to ΔΔLog(τ/KA) values (namely ΔLog(αβ) values) can be used to quantify these effects for optimization in the drug discovery process. All of these added scales of drug activity will, hopefully, allow better targeting of candidate molecules towards therapies.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of MedicineChapel Hill, NC, USA
| |
Collapse
|
31
|
Alpha-1-adrenergic receptors in heart failure: the adaptive arm of the cardiac response to chronic catecholamine stimulation. J Cardiovasc Pharmacol 2014; 63:291-301. [PMID: 24145181 DOI: 10.1097/fjc.0000000000000032] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alpha-1-adrenergic receptors (ARs) are G protein-coupled receptors activated by catecholamines. The alpha-1A and alpha-1B subtypes are expressed in mouse and human myocardium, whereas the alpha-1D protein is found only in coronary arteries. There are far fewer alpha-1-ARs than beta-ARs in the nonfailing heart, but their abundance is maintained or increased in the setting of heart failure, which is characterized by pronounced chronic elevation of catecholamines and beta-AR dysfunction. Decades of evidence from gain and loss-of-function studies in isolated cardiac myocytes and numerous animal models demonstrate important adaptive functions for cardiac alpha-1-ARs to include physiological hypertrophy, positive inotropy, ischemic preconditioning, and protection from cell death. Clinical trial data indicate that blocking alpha-1-ARs is associated with incident heart failure in patients with hypertension. Collectively, these findings suggest that alpha-1-AR activation might mitigate the well-recognized toxic effects of beta-ARs in the hyperadrenergic setting of chronic heart failure. Thus, exogenous cardioselective activation of alpha-1-ARs might represent a novel and viable approach to the treatment of heart failure.
Collapse
|
32
|
Yoshiki H, Uwada J, Umada H, Kobayashi T, Takahashi T, Yamakawa T, Yamaguchi A, Yokoyama O, Muramatsu I. Agonist pharmacology at recombinant α1A - and α1L -adrenoceptors and in lower urinary tract α1 -adrenoceptors. Br J Pharmacol 2014; 170:1242-52. [PMID: 24024968 DOI: 10.1111/bph.12403] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 08/02/2013] [Accepted: 08/29/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Two distinct α1 -adrenoceptor phenotypes (α1A and α1L ) have recently been demonstrated to originate from a single α1A -adrenoceptor gene. Here, we examined the agonist profiles of recombinant α1A and α1L phenotypes and of lower urinary tract (LUT) α1 -adrenoceptors. EXPERIMENTAL APPROACH A series of drugs (A61603, Ro 115-1240, NS-49 , MK017 and ESR1150) originally developed for stress urinary incontinence (SUI) therapy were used to stimulate recombinant α1A - and α1L -adrenoceptor phenotypes, and their potencies and intrinsic activity estimated from Ca(2+) responses. Agonist-induced contractions were also examined in LUT tissues of rats and humans and in human mesenteric artery and rat tail artery. KEY RESULTS All the drugs were potent agonists of the α1A -adrenoceptor compared with the α1L -adrenoceptor phenotype. Among them, Ro 115-1240 was shown to be an α1A -specific partial agonist that produced partial contractions through α1A -adrenoceptors in rat prostate and tail artery, but not in the other LUT tissues and human mesenteric artery. In contrast, P-come 102 showed full agonist activity at α1A - and α1L -adrenoceptors, but was less selective than noradrenaline for α1A -adrenoceptors. Like noradrenaline, P-come 102 was highly potent at inducing contractions in all of the LUT tissues tested. However, the potency and intrinsic activity of P-come 102 were significantly lower than those of noradrenaline in human mesenteric artery. CONCLUSIONS AND IMPLICATIONS The α1A - and α1L -adrenoceptor phenotypes and LUT α1 -adrenoceptors were demonstrated to have distinct agonist profiles. As adrenergic contractions in LUT are predominantly mediated through α1L -adrenoceptors, the development of α1L -selective agonists may provide clinically useful drugs for SUI therapy.
Collapse
Affiliation(s)
- Hatsumi Yoshiki
- Division of Pharmacology, Department of Biochemistry and Bioinformative Sciences, School of Medicine, University of Fukui, Fukui, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Structure-bias relationships for fenoterol stereoisomers in six molecular and cellular assays at the β2-adrenoceptor. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:51-65. [PMID: 25342094 DOI: 10.1007/s00210-014-1054-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/02/2014] [Indexed: 01/14/2023]
Abstract
Functional selectivity is well established as an underlying concept of ligand-specific signaling via G protein-coupled receptors (GPCRs). Functionally, selective drugs could show greater therapeutic efficacy and fewer adverse effects. Dual coupling of the β2-adrenoceptor (β2AR) triggers a signal transduction via Gsα and Giα proteins. Here, we examined 12 fenoterol stereoisomers in six molecular and cellular assays. Using β2AR-Gsα and β2AR-Giα fusion proteins, (R,S')- and (S,S')-isomers of 4'-methoxy-1-naphthyl-fenoterol were identified as biased ligands with preference for Gs. G protein-independent signaling via β-arrestin-2 was disfavored by these ligands. Isolated human neutrophils constituted an ex vivo model of β2AR signaling and demonstrated functional selectivity through the dissociation of cAMP accumulation and the inhibition of formyl peptide-stimulated production of reactive oxygen species. Ligand bias was calculated using an operational model of agonism and revealed that the fenoterol scaffold constitutes a promising lead structure for the development of Gs-biased β2AR agonists.
Collapse
|
34
|
Kelly E. Efficacy and ligand bias at the μ-opioid receptor. Br J Pharmacol 2014; 169:1430-46. [PMID: 23646826 DOI: 10.1111/bph.12222] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 04/10/2013] [Accepted: 04/20/2013] [Indexed: 12/11/2022] Open
Abstract
In order to describe drug action at a GPCR, a full understanding of the pharmacological terms affinity, efficacy and potency is necessary. This is true whether comparing the ability of different agonists to produce a measurable response in a cell or tissue, or determining the relative ability of an agonist to activate a single receptor subtype and produce multiple responses. There is a great deal of interest in the μ-opioid receptor (MOP receptor) and the ligands that act at this GPCR not only because of the clinically important analgesic effects produced by MOP agonists but also because of their liability to induce adverse effects such as respiratory depression and dependence. Our understanding of the mechanisms underlying these effects, as well as the ability to develop new, more effective MOP receptor drugs, depends upon the accurate determination of the efficacy with which these ligands induce coupling of MOP receptors to downstream signalling events. In this review, which is written with the minimum of mathematical content, the basic meaning of terms including efficacy, intrinsic activity and intrinsic efficacy is discussed, along with their relevance to the field of MOP receptor pharmacology, and in particular in relation to biased agonism at this important GPCR.
Collapse
Affiliation(s)
- E Kelly
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK.
| |
Collapse
|
35
|
Influence of acute treatment with sibutramine on the sympathetic neurotransmission of the young rat vas deferens. Eur J Pharmacol 2014; 738:118-24. [PMID: 24886880 DOI: 10.1016/j.ejphar.2014.05.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/07/2014] [Accepted: 05/19/2014] [Indexed: 11/21/2022]
Abstract
The effects of acute treatment with sibutramine on the peripheral sympathetic neurotransmission in vas deferens of young rats were still not evaluated. Therefore, we carried out this study in order to verify the effects of acute sibutramine treatment on the neuronal- and exogenous agonist-induced contractions of the young rat vas deferens. Young 45-day-old male Wistar rats were pretreated with sibutramine 6 mg/kg and after 4h the vas deferens was used for experiment. The acute treatment with sibutramine was able to increase the potency (pD2) of noradrenaline and phenylephrine. Moreover, the efficacy (Emax) of noradrenaline was increased while the efficacy of serotonin and nicotine were decreased. The maximum effect induced by a single concentration of tyramine was diminished in the vas deferens from treated group. Moreover, the leftward shift of the noradrenaline curves promoted by uptake blockers (cocaine and corticosterone) and β-adrenoceptor antagonist (propranolol) was reduced in the vas deferens of treated group. The initial phasic and secondary tonic components of the neuronal-evoked contractions of vas deferens from treated group at the frequencies of 2 Hz were decreased. Moreover, only the initial phasic component at 5 Hz was diminished by the acute treatment with sibutramine. In conclusion, we showed that the acute treatment with sibutramine in young rats was able to affect the peripheral sympathetic nervous system by inhibition of noradrenaline uptake and reduction of the neuronal content of this neurotransmitter, leading to an enhancement of vas deferens sensitivity to noradrenaline.
Collapse
|
36
|
Kurko D, Kapui Z, Nagy J, Lendvai B, Kolok S. Analysis of functional selectivity through G protein-dependent and -independent signaling pathways at the adrenergic α(2C) receptor. Brain Res Bull 2014; 107:89-101. [PMID: 25080296 DOI: 10.1016/j.brainresbull.2014.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 01/01/2023]
Abstract
Although G protein-coupled receptors (GPCRs) are traditionally categorized as Gs-, Gq-, or Gi/o-coupled, their signaling is regulated by multiple mechanisms. GPCRs can couple to several effector pathways, having the capacity to interact not only with more than one G protein subtype but also with alternative signaling or effector proteins such as arrestins. Moreover, GPCR ligands can have different efficacies for activating these signaling pathways, a characteristic referred to as biased agonism or functional selectivity. In this work our aim was to detect differences in the ability of various agonists acting at the α2C type of adrenergic receptors (α2C-ARs) to modulate cAMP accumulation, cytoplasmic Ca(2+) release, β-arrestin recruitment and receptor internalization. A detailed comparative pharmacological characterization of G protein-dependent and -independent signaling pathways was carried out using adrenergic agonists (norepinephrine, phenylephrine, brimonidine, BHT-920, oxymetazoline, clonidine, moxonidine, guanabenz) and antagonists (MK912, yohimbine). As initial analysis of agonist Emax and EC50 values suggested possible functional selectivity, ligand bias was quantified by applying the relative activity scale and was compared to that of the endogenous agonist norepinephrine. Values significantly different from 0 between pathways indicated an agonist that promoted different level of activation of diverse effector pathways most likely due to the stabilization of a subtly different receptor conformation from that induced by norepinephrine. Our results showed that a series of agonists acting at the α2C-AR displayed different degree of functional selectivity (bias factors ranging from 1.6 to 36.7) through four signaling pathways. As signaling via these pathways seems to have distinct functional and physiological outcomes, studying all these stages of receptor activation could have further implications for the development of more selective therapeutics with improved efficacy and/or fewer side effects.
Collapse
Affiliation(s)
- Dalma Kurko
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary.
| | - Zoltán Kapui
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - József Nagy
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Balázs Lendvai
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Sándor Kolok
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| |
Collapse
|
37
|
Christopoulos A. Advances in G protein-coupled receptor allostery: from function to structure. Mol Pharmacol 2014; 86:463-78. [PMID: 25061106 DOI: 10.1124/mol.114.094342] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is now widely accepted that G protein-coupled receptors (GPCRs) are highly dynamic proteins that adopt multiple active states linked to distinct functional outcomes. Furthermore, these states can be differentially stabilized not only by orthosteric ligands but also by allosteric ligands acting at spatially distinct binding sites. The key pharmacologic characteristics of GPCR allostery include improved selectivity due to either greater sequence divergence between receptor subtypes and/or subtype-selective cooperativity, a ceiling level to the effect, probe dependence (whereby the magnitude and direction of the allosteric effect change with the nature of the interacting ligands), and the potential for biased signaling. Recent chemical biology developments are beginning to demonstrate how the incorporation of analytical pharmacology and operational modeling into the experimental workflow can enrich structure-activity studies of allostery and bias, and have also led to the discovery of a new class of hybrid orthosteric/allosteric (bitopic) molecules. The potential for endogenous allosteric modulators to play a role in physiology and disease remains to be fully appreciated but will likely represent an important area for future studies. Finally, breakthroughs in structural and computational biology are beginning to unravel the mechanistic basis of GPCR allosteric modulation at the molecular level.
Collapse
Affiliation(s)
- Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
38
|
Ceraudo E, Galanth C, Carpentier E, Banegas-Font I, Schonegge AM, Alvear-Perez R, Iturrioz X, Bouvier M, Llorens-Cortes C. Biased signaling favoring gi over β-arrestin promoted by an apelin fragment lacking the C-terminal phenylalanine. J Biol Chem 2014; 289:24599-610. [PMID: 25012663 DOI: 10.1074/jbc.m113.541698] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Apelin plays a prominent role in body fluid and cardiovascular homeostasis. We previously showed that the C-terminal Phe of apelin 17 (K17F) is crucial for triggering apelin receptor internalization and decreasing blood pressure (BP) but is not required for apelin binding or Gi protein coupling. Based on these findings, we hypothesized that the important role of the C-terminal Phe in BP decrease may be as a Gi-independent but β-arrestin-dependent signaling pathway that could involve MAPKs. For this purpose, we have used apelin fragments K17F and K16P (K17F with the C-terminal Phe deleted), which exhibit opposite profiles on apelin receptor internalization and BP. Using BRET-based biosensors, we showed that whereas K17F activates Gi and promotes β-arrestin recruitment to the receptor, K16P had a much reduced ability to promote β-arrestin recruitment while maintaining its Gi activating property, revealing the biased agonist character of K16P. We further show that both β-arrestin recruitment and apelin receptor internalization contribute to the K17F-stimulated ERK1/2 activity, whereas the K16P-promoted ERK1/2 activity is entirely Gi-dependent. In addition to providing new insights on the structural basis underlying the functional selectivity of apelin peptides, our study indicates that the β-arrestin-dependent ERK1/2 activation and not the Gi-dependent signaling may participate in K17F-induced BP decrease.
Collapse
Affiliation(s)
- Emilie Ceraudo
- From the Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75005, France, the Center for Interdisciplinary Research in Biology, Collège de France, Paris F-75005, France, CNRS, UMR 7241, Paris F-75005, France, and
| | - Cécile Galanth
- From the Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75005, France, the Center for Interdisciplinary Research in Biology, Collège de France, Paris F-75005, France, CNRS, UMR 7241, Paris F-75005, France, and
| | - Eric Carpentier
- the Department of Biochemistry, Institute for Research in Immunology and Cancer, and Groupe de Recherche Universitaire sur le Médicament, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Inmaculada Banegas-Font
- From the Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75005, France, the Center for Interdisciplinary Research in Biology, Collège de France, Paris F-75005, France, CNRS, UMR 7241, Paris F-75005, France, and
| | - Anne-Marie Schonegge
- the Department of Biochemistry, Institute for Research in Immunology and Cancer, and Groupe de Recherche Universitaire sur le Médicament, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Rodrigo Alvear-Perez
- From the Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75005, France, the Center for Interdisciplinary Research in Biology, Collège de France, Paris F-75005, France, CNRS, UMR 7241, Paris F-75005, France, and
| | - Xavier Iturrioz
- From the Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75005, France, the Center for Interdisciplinary Research in Biology, Collège de France, Paris F-75005, France, CNRS, UMR 7241, Paris F-75005, France, and
| | - Michel Bouvier
- the Department of Biochemistry, Institute for Research in Immunology and Cancer, and Groupe de Recherche Universitaire sur le Médicament, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Catherine Llorens-Cortes
- From the Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75005, France, the Center for Interdisciplinary Research in Biology, Collège de France, Paris F-75005, France, CNRS, UMR 7241, Paris F-75005, France, and
| |
Collapse
|
39
|
Shonberg J, Lopez L, Scammells PJ, Christopoulos A, Capuano B, Lane JR. Biased Agonism at G Protein-Coupled Receptors: The Promise and the Challenges-A Medicinal Chemistry Perspective. Med Res Rev 2014; 34:1286-330. [DOI: 10.1002/med.21318] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jeremy Shonberg
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University (Parkville Campus); Parkville Victoria Australia
| | - Laura Lopez
- Drug Discovery Biology; Monash Institute of Pharmaceutical Sciences; Monash University (Parkville Campus); Parkville Victoria Australia
| | - Peter J. Scammells
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University (Parkville Campus); Parkville Victoria Australia
| | - Arthur Christopoulos
- Drug Discovery Biology; Monash Institute of Pharmaceutical Sciences; Monash University (Parkville Campus); Parkville Victoria Australia
| | - Ben Capuano
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University (Parkville Campus); Parkville Victoria Australia
| | - J. Robert Lane
- Drug Discovery Biology; Monash Institute of Pharmaceutical Sciences; Monash University (Parkville Campus); Parkville Victoria Australia
| |
Collapse
|
40
|
Effect of severe acidosis on vasoactive effects of epinephrine and norepinephrine in human distal mammary artery. J Thorac Cardiovasc Surg 2014; 147:1698-705. [DOI: 10.1016/j.jtcvs.2013.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 10/17/2013] [Accepted: 11/08/2013] [Indexed: 11/21/2022]
|
41
|
Valant C, May LT, Aurelio L, Chuo CH, White PJ, Baltos JA, Sexton PM, Scammells PJ, Christopoulos A. Separation of on-target efficacy from adverse effects through rational design of a bitopic adenosine receptor agonist. Proc Natl Acad Sci U S A 2014; 111:4614-9. [PMID: 24619092 PMCID: PMC3970544 DOI: 10.1073/pnas.1320962111] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The concepts of allosteric modulation and biased agonism are revolutionizing modern approaches to drug discovery, particularly in the field of G protein-coupled receptors (GPCRs). Both phenomena exploit topographically distinct binding sites to promote unique GPCR conformations that can lead to different patterns of cellular responsiveness. The adenosine A1 GPCR (A1AR) is a major therapeutic target for cardioprotection, but current agents acting on the receptor are clinically limited for this indication because of on-target bradycardia as a serious adverse effect. In the current study, we have rationally designed a novel A1AR ligand (VCP746)--a hybrid molecule comprising adenosine linked to a positive allosteric modulator--specifically to engender biased signaling at the A1AR. We validate that the interaction of VCP746 with the A1AR is consistent with a bitopic mode of receptor engagement (i.e., concomitant association with orthosteric and allosteric sites) and that the compound displays biased agonism relative to prototypical A1AR ligands. Importantly, we also show that the unique pharmacology of VCP746 is (patho)physiologically relevant, because the compound protects against ischemic insult in native A1AR-expressing cardiomyoblasts and cardiomyocytes but does not affect rat atrial heart rate. Thus, this study provides proof of concept that bitopic ligands can be designed as biased agonists to promote on-target efficacy without on-target side effects.
Collapse
Affiliation(s)
- Celine Valant
- Drug Discovery Biology and Department of Pharmacology and
| | - Lauren T. May
- Drug Discovery Biology and Department of Pharmacology and
| | - Luigi Aurelio
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Chung Hui Chuo
- Drug Discovery Biology and Department of Pharmacology and
| | - Paul J. White
- Drug Discovery Biology and Department of Pharmacology and
| | - Jo-Anne Baltos
- Drug Discovery Biology and Department of Pharmacology and
| | | | - Peter J. Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | | |
Collapse
|
42
|
van der Westhuizen ET, Breton B, Christopoulos A, Bouvier M. Quantification of ligand bias for clinically relevant β2-adrenergic receptor ligands: implications for drug taxonomy. Mol Pharmacol 2013; 85:492-509. [PMID: 24366668 DOI: 10.1124/mol.113.088880] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The concepts of functional selectivity and ligand bias are becoming increasingly appreciated in modern drug discovery programs, necessitating more informed approaches to compound classification and, ultimately, therapeutic candidate selection. Using the β2-adrenergic receptor as a model, we present a proof of concept study that assessed the bias of 19 β-adrenergic ligands, including many clinically used compounds, across four pathways [cAMP production, extracellular signal-regulated kinase 1/2 (ERK1/2) activation, calcium mobilization, and receptor endocytosis] in the same cell background (human embryonic kidney 293S cells). Efficacy-based clustering placed the ligands into five distinct groups with respect to signaling signatures. In some cases, apparent functional selectivity originated from off-target effects on other endogenously expressed adrenergic receptors, highlighting the importance of thoroughly assessing selectivity of the responses before concluding receptor-specific ligand-biased signaling. Eliminating the nonselective compounds did not change the clustering of the 10 remaining compounds. Some ligands exhibited large differences in potency for the different pathways, suggesting that the nature of the receptor-effector complexes influences the relative affinity of the compounds for specific receptor conformations. Calculation of relative effectiveness (within pathway) and bias factors (between pathways) for each of the compounds, using an operational model of agonism, revealed a global signaling signature for all of the compounds relative to isoproterenol. Most compounds were biased toward ERK1/2 activation over the other pathways, consistent with the notion that many proximal effectors converge on this pathway. Overall, we demonstrate a higher level of ligand texture than previously anticipated, opening perspectives for the establishment of pluridimensional correlations between signaling profiles, drug classification, therapeutic efficacy, and safety.
Collapse
Affiliation(s)
- Emma T van der Westhuizen
- Department of Biochemistry and Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada (E.T.v.d.W., B.B., M.B.); and Drug Discovery Biology and Department of Pharmacology, Monash Institute for Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (E.T.v.d.W., A.C.)
| | | | | | | |
Collapse
|
43
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Br J Pharmacol 2013; 170:1459-581. [PMID: 24517644 PMCID: PMC3892287 DOI: 10.1111/bph.12445] [Citation(s) in RCA: 505] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
44
|
Zhou L, Lovell KM, Frankowski KJ, Slauson SR, Phillips AM, Streicher JM, Stahl E, Schmid CL, Hodder P, Madoux F, Cameron MD, Prisinzano TE, Aubé J, Bohn LM. Development of functionally selective, small molecule agonists at kappa opioid receptors. J Biol Chem 2013; 288:36703-16. [PMID: 24187130 DOI: 10.1074/jbc.m113.504381] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The kappa opioid receptor (KOR) is widely expressed in the CNS and can serve as a means to modulate pain perception, stress responses, and affective reward states. Therefore, the KOR has become a prominent drug discovery target toward treating pain, depression, and drug addiction. Agonists at KOR can promote G protein coupling and βarrestin2 recruitment as well as multiple downstream signaling pathways, including ERK1/2 MAPK activation. It has been suggested that the physiological effects of KOR activation result from different signaling cascades, with analgesia being G protein-mediated and dysphoria being mediated through βarrestin2 recruitment. Dysphoria associated with KOR activation limits the therapeutic potential in the use of KOR agonists as analgesics; therefore, it may be beneficial to develop KOR agonists that are biased toward G protein coupling and away from βarrestin2 recruitment. Here, we describe two classes of biased KOR agonists that potently activate G protein coupling but weakly recruit βarrestin2. These potent and functionally selective small molecule compounds may prove to be useful tools for refining the therapeutic potential of KOR-directed signaling in vivo.
Collapse
Affiliation(s)
- Lei Zhou
- From the Departments of Molecular Therapeutics and Neuroscience and
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Weaver CD. Triple-addition assay protocols for detecting and characterizing modulators of seven-transmembrane receptors. ACTA ACUST UNITED AC 2013; 3:119-40. [PMID: 23801564 DOI: 10.1002/9780470559277.ch110060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The detection and characterization of seven-transmembrane-receptor modulators (orthosteric binding site agonists, antagonists, and more recently allosteric modulators) is an area of intense interest for both drug discovery and basic research. Traditionally, assays used to detect and characterize these different modes of modulation have been executed as separate, discrete protocols focused on a particular mode of action (e.g., agonism). In recent years, investigators have begun to combine aspects of these separate protocols to produce methods that detect multiple modes of modulation simultaneously. The power of such approaches is revealed not only in conservation of time and resources, but more importantly in a superior ability to discover and characterize novel modulators of the targets of interest. The protocols in this article describe a general procedure for developing, validating, and utilizing triple-addition assays to enable the simultaneous detection and characterization of multiple modes of seven-transmembrane-receptor modulation. Curr. Protoc. Chem. Biol. 3:119-140 © 2011 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- C David Weaver
- Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
46
|
Munro TA, Huang XP, Inglese C, Perrone MG, Van't Veer A, Carroll FI, Béguin C, Carlezon WA, Colabufo NA, Cohen BM, Roth BL. Selective κ opioid antagonists nor-BNI, GNTI and JDTic have low affinities for non-opioid receptors and transporters. PLoS One 2013; 8:e70701. [PMID: 23976952 PMCID: PMC3747596 DOI: 10.1371/journal.pone.0070701] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/21/2013] [Indexed: 01/16/2023] Open
Abstract
Background Nor-BNI, GNTI and JDTic induce selective κ opioid antagonism that is delayed and extremely prolonged, but some other effects are of rapid onset and brief duration. The transient effects of these compounds differ, suggesting that some of them may be mediated by other targets. Results In binding assays, the three antagonists showed no detectable affinity (Ki≥10 µM) for most non-opioid receptors and transporters (26 of 43 tested). There was no non-opioid target for which all three compounds shared detectable affinity, or for which any two shared sub-micromolar affinity. All three compounds showed low nanomolar affinity for κ opioid receptors, with moderate selectivity over μ and δ (3 to 44-fold). Nor-BNI bound weakly to the α2C-adrenoceptor (Ki = 630 nM). GNTI enhanced calcium mobilization by noradrenaline at the α1A-adrenoceptor (EC50 = 41 nM), but did not activate the receptor, displace radioligands, or enhance PI hydrolysis. This suggests that it is a functionally-selective allosteric enhancer. GNTI was also a weak M1 receptor antagonist (KB = 3.7 µM). JDTic bound to the noradrenaline transporter (Ki = 54 nM), but only weakly inhibited transport (IC50 = 1.1 µM). JDTic also bound to the opioid-like receptor NOP (Ki = 12 nM), but gave little antagonism even at 30 µM. All three compounds exhibited rapid permeation and active efflux across Caco-2 cell monolayers. Conclusions Across 43 non-opioid CNS targets, only GNTI exhibited a potent functional effect (allosteric enhancement of α1A-adrenoceptors). This may contribute to GNTI's severe transient effects. Plasma concentrations of nor-BNI and GNTI may be high enough to affect some peripheral non-opioid targets. Nonetheless, κ opioid antagonism persists for weeks or months after these transient effects dissipate. With an adequate pre-administration interval, our results therefore strengthen the evidence that nor-BNI, GNTI and JDTic are highly selective κ opioid antagonists.
Collapse
MESH Headings
- Allosteric Regulation
- Biological Transport
- Caco-2 Cells
- Calcium/metabolism
- Guanidines/metabolism
- Guanidines/pharmacology
- Humans
- Kinetics
- Morphinans/metabolism
- Morphinans/pharmacology
- Naltrexone/analogs & derivatives
- Naltrexone/metabolism
- Naltrexone/pharmacology
- Narcotic Antagonists/metabolism
- Narcotic Antagonists/pharmacology
- Norepinephrine/metabolism
- Norepinephrine Plasma Membrane Transport Proteins/metabolism
- Piperidines/metabolism
- Piperidines/pharmacology
- Protein Binding
- Receptors, Adrenergic, alpha/metabolism
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/metabolism
- Tetrahydroisoquinolines/metabolism
- Tetrahydroisoquinolines/pharmacology
Collapse
Affiliation(s)
- Thomas A. Munro
- McLean Hospital, Belmont, Massachusetts, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
- School of Chemistry and Bio21 Institute, University of Melbourne, Parkville, Australia
- * E-mail:
| | - Xi-Ping Huang
- National Institute of Mental Health Psychoactive Drug Screening Program and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Carmela Inglese
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Bari, Italy
| | - Maria Grazia Perrone
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Bari, Italy
| | - Ashlee Van't Veer
- McLean Hospital, Belmont, Massachusetts, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
| | - F. Ivy Carroll
- Center for Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, North Carolina, United States of America
| | - Cécile Béguin
- McLean Hospital, Belmont, Massachusetts, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
| | - William A. Carlezon
- McLean Hospital, Belmont, Massachusetts, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nicola A. Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Bari, Italy
| | - Bruce M. Cohen
- McLean Hospital, Belmont, Massachusetts, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bryan L. Roth
- National Institute of Mental Health Psychoactive Drug Screening Program and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
47
|
Maïga A, Merlin J, Marcon E, Rouget C, Larregola M, Gilquin B, Fruchart-Gaillard C, Lajeunesse E, Marchetti C, Lorphelin A, Bellanger L, Summers RJ, Hutchinson DS, Evans BA, Servent D, Gilles N. Orthosteric binding of ρ-Da1a, a natural peptide of snake venom interacting selectively with the α1A-adrenoceptor. PLoS One 2013; 8:e68841. [PMID: 23935897 PMCID: PMC3723878 DOI: 10.1371/journal.pone.0068841] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 06/01/2013] [Indexed: 01/02/2023] Open
Abstract
ρ-Da1a is a three-finger fold toxin from green mamba venom that is highly selective for the α1A-adrenoceptor. This toxin has atypical pharmacological properties, including incomplete inhibition of 3H-prazosin or 125I-HEAT binding and insurmountable antagonist action. We aimed to clarify its mode of action at the α1A-adrenoceptor. The affinity (pKi 9.26) and selectivity of ρ-Da1a for the α1A-adrenoceptor were confirmed by comparing binding to human adrenoceptors expressed in eukaryotic cells. Equilibrium and kinetic binding experiments were used to demonstrate that ρ-Da1a, prazosin and HEAT compete at the α1A-adrenoceptor. ρ-Da1a did not affect the dissociation kinetics of 3H-prazosin or 125I-HEAT, and the IC50 of ρ-Da1a, determined by competition experiments, increased linearly with the concentration of radioligands used, while the residual binding by ρ-Da1a remained stable. The effect of ρ-Da1a on agonist-stimulated Ca2+ release was insurmountable in the presence of phenethylamine- or imidazoline-type agonists. Ten mutations in the orthosteric binding pocket of the α1A-adrenoceptor were evaluated for alterations in ρ-Da1a affinity. The D1063.32A and the S1885.42A/S1925.46A receptor mutations reduced toxin affinity moderately (6 and 7.6 times, respectively), while the F862.64A, F2886.51A and F3127.39A mutations diminished it dramatically by 18- to 93-fold. In addition, residue F862.64 was identified as a key interaction point for 125I-HEAT, as the variant F862.64A induced a 23-fold reduction in HEAT affinity. Unlike the M1 muscarinic acetylcholine receptor toxin MT7, ρ-Da1a interacts with the human α1A-adrenoceptor orthosteric pocket and shares receptor interaction points with antagonist (F862.64, F2886.51 and F3127.39) and agonist (F2886.51 and F3127.39) ligands. Its selectivity for the α1A-adrenoceptor may result, at least partly, from its interaction with the residue F862.64, which appears to be important also for HEAT binding.
Collapse
Affiliation(s)
- Arhamatoulaye Maïga
- Commissariat à l'énergie atomique et aux énergies alternatives, iBiTec-S, Service d'Ingénierie Moléculaire des Protéines, Gif sur Yvette, France
| | - Jon Merlin
- Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Elodie Marcon
- Commissariat à l'énergie atomique et aux énergies alternatives, iBiTec-S, Service d'Ingénierie Moléculaire des Protéines, Gif sur Yvette, France
| | - Céline Rouget
- Commissariat à l'énergie atomique et aux énergies alternatives, iBiTec-S, Service d'Ingénierie Moléculaire des Protéines, Gif sur Yvette, France
| | - Maud Larregola
- Commissariat à l'énergie atomique et aux énergies alternatives, iBiTec-S, Service d'Ingénierie Moléculaire des Protéines, Gif sur Yvette, France
| | - Bernard Gilquin
- Commissariat à l'énergie atomique et aux énergies alternatives, iBiTec-S, Service de Bioénergétique, Biologie Structurale et Mécanismes, Gif sur Yvette, France
| | - Carole Fruchart-Gaillard
- Commissariat à l'énergie atomique et aux énergies alternatives, iBiTec-S, Service d'Ingénierie Moléculaire des Protéines, Gif sur Yvette, France
| | - Evelyne Lajeunesse
- Commissariat à l'énergie atomique et aux énergies alternatives, iBiTec-S, Service d'Ingénierie Moléculaire des Protéines, Gif sur Yvette, France
| | - Charles Marchetti
- Commissariat à l'énergie atomique et aux énergies alternatives, iBEB, Service de Biochimie et Toxicologie Nucléaire, Bagnols-sur-Cèze Cedex, France
| | - Alain Lorphelin
- Commissariat à l'énergie atomique et aux énergies alternatives, iBEB, Service de Biochimie et Toxicologie Nucléaire, Bagnols-sur-Cèze Cedex, France
| | - Laurent Bellanger
- Commissariat à l'énergie atomique et aux énergies alternatives, iBEB, Service de Biochimie et Toxicologie Nucléaire, Bagnols-sur-Cèze Cedex, France
| | - Roger J. Summers
- Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Dana S. Hutchinson
- Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Bronwyn A. Evans
- Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Denis Servent
- Commissariat à l'énergie atomique et aux énergies alternatives, iBiTec-S, Service d'Ingénierie Moléculaire des Protéines, Gif sur Yvette, France
| | - Nicolas Gilles
- Commissariat à l'énergie atomique et aux énergies alternatives, iBiTec-S, Service d'Ingénierie Moléculaire des Protéines, Gif sur Yvette, France
- * E-mail:
| |
Collapse
|
48
|
Keov P, Valant C, Devine SM, Lane JR, Scammells PJ, Sexton PM, Christopoulos A. Reverse Engineering of the Selective Agonist TBPB Unveils Both Orthosteric and Allosteric Modes of Action at the M1 Muscarinic Acetylcholine Receptor. Mol Pharmacol 2013; 84:425-37. [DOI: 10.1124/mol.113.087320] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
49
|
Schmid CL, Streicher JM, Groer CE, Munro TA, Zhou L, Bohn LM. Functional selectivity of 6'-guanidinonaltrindole (6'-GNTI) at κ-opioid receptors in striatal neurons. J Biol Chem 2013; 288:22387-98. [PMID: 23775075 DOI: 10.1074/jbc.m113.476234] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is considerable evidence to suggest that drug actions at the κ-opioid receptor (KOR) may represent a means to control pain perception and modulate reward thresholds. As a G protein-coupled receptor (GPCR), the activation of KOR promotes Gαi/o protein coupling and the recruitment of β-arrestins. It has become increasingly evident that GPCRs can transduce signals that originate independently via G protein pathways and β-arrestin pathways; the ligand-dependent bifurcation of such signaling is referred to as "functional selectivity" or "signaling bias." Recently, a KOR agonist, 6'-guanidinonaltrindole (6'-GNTI), was shown to display bias toward the activation of G protein-mediated signaling over β-arrestin2 recruitment. Therefore, we investigated whether such ligand bias was preserved in striatal neurons. Although the reference KOR agonist U69,593 induces the phosphorylation of ERK1/2 and Akt, 6'-GNTI only activates the Akt pathway in striatal neurons. Using pharmacological tools and β-arrestin2 knock-out mice, we show that KOR-mediated ERK1/2 phosphorylation in striatal neurons requires β-arrestin2, whereas Akt activation depends upon G protein signaling. These findings reveal a point of KOR signal bifurcation that can be observed in an endogenous neuronal setting and may prove to be an important indicator when developing biased agonists at the KOR.
Collapse
Affiliation(s)
- Cullen L Schmid
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | | | | | | | | | | |
Collapse
|
50
|
Evans BA, Hutchinson DS, Summers RJ. β2-Adrenoceptor-mediated regulation of glucose uptake in skeletal muscle--ligand-directed signalling or a reflection of system complexity? Naunyn Schmiedebergs Arch Pharmacol 2013; 386:757-60. [PMID: 23657252 DOI: 10.1007/s00210-013-0879-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 04/24/2013] [Indexed: 01/14/2023]
Abstract
The capacity of G protein-coupled receptors (GPCRs) to activate multiple G protein isoforms and additional effectors such as β-arrestins has become a well-established paradigm and provides the basis for developing drugs that preferentially activate beneficial signalling pathways. There are many published examples of ligand-directed signalling, and recent studies have provided direct evidence that different agonists stabilise distinct GPCR conformations. This field is rapidly evolving, but a key question is whether signalling bias observed in heterologous cell expression systems can be translated to physiological systems of therapeutic relevance. The paper by Ngala et al. in this issue of the journal addresses the capacity of agonists acting at the β2-adrenoceptor to engender signalling bias in relation to glucose uptake in isolated skeletal muscle, an area of considerable potential interest in targeting insulin-independent pathways for the treatment of type 2 diabetes. The authors show that clenbuterol and BRL37344 have opposite effects on glucose uptake, despite both having agonist actions at β2-adrenoceptors. This study underlines some of the obstacles associated with studies in a complex physiological system but nonetheless highlights the need to consider signalling bias in the relevant target tissue when developing novel drugs.
Collapse
Affiliation(s)
- Bronwyn A Evans
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, 399 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | | | | |
Collapse
|