1
|
Hao T, Pei Z, Hu S, Zhao Z, He W, Wang J, Jiang L, Ariben J, Wu L, Yang X, Wang L, Wu Y, Chen X, Li Q, Yang H, Li S, Wang X, Sun M, Zhang B. Identification of osteoarthritis-associated chondrocyte subpopulations and key gene-regulating drugs based on multi-omics analysis. Sci Rep 2025; 15:12448. [PMID: 40216809 PMCID: PMC11992032 DOI: 10.1038/s41598-025-90694-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/14/2025] [Indexed: 04/14/2025] Open
Abstract
The mechanism by which chondrocytes respond to mechanical stress in joints significantly affects the balance and function of cartilage. This study aims to characterize osteoarthritis-associated chondrocyte subpopulations and key gene targets for regulatory drugs. To begin, single-cell and transcriptome datasets were obtained from the Gene Expression Omnibus (GEO) database. Cell communication and pseudo-temporal analysis, as well as High-dimensional Weighted Gene Co-expression Network Analysis (hdWGCNA), were conducted on the single-cell data to identify key chondrocyte subtypes and module genes. Subsequently, Consensus Cluster Plus analysis was utilized to identify distinct disease subgroups within the osteoarthritis (OA) training dataset based on the key module genes. Furthermore, differential gene expression analysis and GO/KEGG pathway enrichment analysis were performed on the identified subgroups. To screen for hub genes associated with OA, a combination of 10 machine learning algorithms and 113 algorithm compositions was integrated. Additionally, the immune and pathway scores of the training dataset samples were evaluated using the ESTIMATE, MCP-counter, and ssGSEA algorithms to establish the relationship between the hub genes and immune and pathways. Following this, a network depicting the interaction between the hub genes and transcription factors was constructed based on the Network Analyst database. Moreover, the hub genes were subjected to drug prediction and molecular docking using the RNAactDrug database and AutoDockTools. Finally, real-time fluorescence quantitative PCR (RT-qPCR) was employed to detect the expression of hub genes in the plasma samples collected from osteoarthritis patients and healthy adults. In the OA sample, there is a significant increase in the proportion of prehypertrophic chondrocytes (preHTC), particularly in subgroups 6, 7, and 9. We defined these subgroups as OA_PreHTC subgroups. The OA_PreHTC subgroup exhibits a higher communication intensity with proliferative-related pathways such as ANGPTL and TGF-β. Furthermore, two OA disease subgroups were identified in the training set samples. This led to the identification of 411 differentially expressed genes (DEGs) related to osteoarthritis, 2485 DEGs among subgroups, as well as 238 intersecting genes and 5 hub genes (MMP13, FAM26F, CHI3L1, TAC1, and CKS2). RT-qPCR results indicate significant differences in the expression levels of five hub genes and their related TFs in the clinical blood samples of OA patients compared to the healthy control group (NC). Moreover, these five hub genes are positively associated with inflammatory pathways such as TNF-α, JAK-STAT3, and inflammatory response, while being negatively associated with proliferation pathways like WNT and KRAS. Additionally, the five hub genes are positively associated with neutrophils, activated CD4 T cell, gamma delta T cell, and regulatory T cell, while being negatively associated with CD56dim natural killer cell and Type 17T helper cell. Molecular docking results reveal that CAY10603, Tenulin, T0901317, and Nonactin exhibit high binding activity to CHI3L1, suggesting their potential as therapeutic drugs for OA. The OA_PreHTC subgroups plays a crucial role in the occurrence and development of osteoarthritis (OA). Five hub genes may exert their effects on OA through interactions with PreHTC cells, other chondrocytes, and immune cells, playing a role in inhibiting cell proliferation and stimulating inflammation, thus having high diagnostic value for OA. Additionally, CAY10603, Tenulin, T0901317, and Nonactin have potential therapeutic effects for OA patients.
Collapse
Affiliation(s)
- Ting Hao
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Zhiwei Pei
- Tianjin Hospital, Tianjin University, Jiefang Nan Road 406, Hexi District, Tianjin, 300211, People's Republic of China
| | - Sile Hu
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Zhenqun Zhao
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Wanxiong He
- Sanya People's Hospital, No. 558 Jiefang Road, Sanya City, Hainan Province, People's Republic of China
| | - Jing Wang
- Baotou Medical College Bayannur Clinical Medical College, Bayannur City, 015000, Inner Mongolia, People's Republic of China
| | - Liuchang Jiang
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Jirigala Ariben
- Bayannur City Hospital, Bayannur City, 015000, Inner Mongolia, People's Republic of China
| | - Lina Wu
- Aier Eye Hospital, Tianjin University, No. 102 Fukang Road, Tianjin, 300000, People's Republic of China
| | - Xiaolong Yang
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Leipeng Wang
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Yonggang Wu
- Bayannur City Hospital, Bayannur City, 015000, Inner Mongolia, People's Republic of China
| | - Xiaofeng Chen
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Qiang Li
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Haobo Yang
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Siqin Li
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China
- Bayannur City Hospital, Bayannur City, 015000, Inner Mongolia, People's Republic of China
| | - Xing Wang
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China.
- Bayannur City Hospital, Bayannur City, 015000, Inner Mongolia, People's Republic of China.
| | - Mingqi Sun
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China.
| | - Baoxin Zhang
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China.
- Tianjin Hospital, Tianjin University, Jiefang Nan Road 406, Hexi District, Tianjin, 300211, People's Republic of China.
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China.
| |
Collapse
|
2
|
Ruiz VY, Calderon TM, Leon-Rivera R, Chilunda V, Zhang J, Berman JW. Single-cell analysis of CD14 +CD16 + monocytes identifies a subpopulation with an enhanced migratory and inflammatory phenotype. Front Immunol 2025; 16:1475480. [PMID: 40051633 PMCID: PMC11883828 DOI: 10.3389/fimmu.2025.1475480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
Monocytes in the central nervous system (CNS) play a pivotal role in surveillance and homeostasis, and can exacerbate pathogenic processes during injury, infection, or inflammation. CD14+CD16+ monocytes exhibit diverse functions and contribute to neuroinflammatory diseases, including HIV-associated neurocognitive impairment (HIV-NCI). Analysis of human CD14+CD16+ monocytes matured in vitro by single-cell RNA sequencing identified a heterogenous population of nine clusters. Ingenuity pathway analysis of differentially expressed genes in each cluster identified increased migratory and inflammatory pathways for a group of clusters, which we termed Group 1 monocytes. Group 1 monocytes, distinguished by increased ALCAM, CD52, CD63, and SDC2, exhibited gene expression signatures implicated in CNS inflammatory diseases, produced higher levels of CXCL12, IL-1Ra, IL-6, IL-10, TNFα, and ROS, and preferentially transmigrated across a human in vitro blood-brain barrier model. Thus, Group 1 cells within the CD14+CD16+ monocyte subset are likely to be major contributors to neuroinflammatory diseases.
Collapse
Affiliation(s)
- Vanessa Y. Ruiz
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States
| | - Tina M. Calderon
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States
| | - Rosiris Leon-Rivera
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States
| | - Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States
| | - Jinghang Zhang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Joan W. Berman
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
3
|
Aradillas-Pérez M, Espinosa-López EM, Ortiz-Guisado B, Martín-Suárez EM, Gómez-Baena G, Galán-Rodríguez A. Quantitative proteomics analysis of cerebrospinal fluid reveals putative protein biomarkers for canine non-infectious meningoencephalomyelitis. Vet J 2025; 309:106285. [PMID: 39662837 DOI: 10.1016/j.tvjl.2024.106285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Accurate ante-mortem diagnosis of non-infectious meningoencephalomyelitis (NIME) in dogs is challenging due to the similarity of clinical presentations, imaging findings, and cerebrospinal fluid (CSF) analysis results with other diseases. This study aimed to apply state-of-the-art quantitative proteomic technology to identify novel biomarkers for NIME. Serum and CSF samples from 11 dogs were included, with the control group consisting of patients presenting with intervertebral disc disease (IVDD, n = 6) and the study group consisting of dogs suffering from NIME (n = 5). Mass spectrometry-based quantitative proteomics revealed a set of 36 proteins with significant differential abundance in CSF samples. Up-regulated proteins in NIME CSF included immunoglobulins, inter-alpha-trypsin inhibitor heavy chain 2, acid sphingomyelinase-like phosphodiesterase, and chitinase 3-like protein 1, all associated with immune response and inflammation. Conversely, significantly down-regulated proteins included neural cell adhesion molecule, contactin-1, and procollagen C-endopeptidase enhancer, which are involved in neurodevelopment and synaptic plasticity. No differences in serum profiles were observed among the groups. This study identified a panel of CSF protein biomarker candidates for NIME and provided new insights into the pathogenesis of the disease, suggesting that neuronal dysfunction and immune dysregulation may be involved.
Collapse
Affiliation(s)
- M Aradillas-Pérez
- Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, University of Córdoba, Campus Universitario de Rabanales, Córdoba 14014, Spain
| | - E M Espinosa-López
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, University of Córdoba, Campus Universitario de Rabanales, Córdoba 14014, Spain
| | - B Ortiz-Guisado
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, University of Córdoba, Campus Universitario de Rabanales, Córdoba 14014, Spain
| | - E M Martín-Suárez
- Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, University of Córdoba, Campus Universitario de Rabanales, Córdoba 14014, Spain
| | - G Gómez-Baena
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, University of Córdoba, Campus Universitario de Rabanales, Córdoba 14014, Spain.
| | - A Galán-Rodríguez
- Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, University of Córdoba, Campus Universitario de Rabanales, Córdoba 14014, Spain.
| |
Collapse
|
4
|
Xu L, Xu H, Tang C. Aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders: progress of experimental models based on disease pathogenesis. Neural Regen Res 2025; 20:354-365. [PMID: 38819039 PMCID: PMC11317952 DOI: 10.4103/nrr.nrr-d-23-01325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/18/2023] [Accepted: 12/19/2023] [Indexed: 06/01/2024] Open
Abstract
Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction. To date, no effective treatment exists as the exact causative mechanism remains unknown. Therefore, experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets. Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4, which is highly expressed on the membrane of astrocyte endfeet, most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes. These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders, such as aquaporin-4 loss, astrocytopathy, granulocyte and macrophage infiltration, complement activation, demyelination, and neuronal loss; however, they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders. In this review, we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro, ex vivo, and in vivo for neuromyelitis optica spectrum disorders, suggest potential pathogenic mechanisms for further investigation, and provide guidance on experimental model choices. In addition, this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders, offering further therapeutic targets and a theoretical basis for clinical trials.
Collapse
Affiliation(s)
- Li Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
5
|
Mwale PF, Hsieh CT, Yen TL, Jan JS, Taliyan R, Yang CH, Yang WB. Chitinase-3-like-1: a multifaceted player in neuroinflammation and degenerative pathologies with therapeutic implications. Mol Neurodegener 2025; 20:7. [PMID: 39827337 PMCID: PMC11742494 DOI: 10.1186/s13024-025-00801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
Chitinase-3-like-1 (CHI3L1) is an evolutionarily conserved protein involved in key biological processes, including tissue remodeling, angiogenesis, and neuroinflammation. It has emerged as a significant player in various neurodegenerative diseases and brain disorders. Elevated CHI3L1 levels have been observed in neurological conditions such as traumatic brain injury (TBI), Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Creutzfeldt-Jakob disease (CJD), multiple sclerosis (MS), Neuromyelitis optica (NMO), HIV-associated dementia (HAD), Cerebral ischemic stroke (CIS), and brain tumors. This review explores the role of CHI3L1 in the pathogenesis of these disorders, with a focus on its contributions to neuroinflammation, immune cell infiltration, and neuronal degeneration. As a key regulator of neuroinflammation, CHI3L1 modulates microglia and astrocyte activity, driving the release of proinflammatory cytokines that exacerbate disease progression. In addition to its role in disease pathology, CHI3L1 has emerged as a promising biomarker for the diagnosis and monitoring of brain disorders. Elevated cerebrospinal fluid (CSF) levels of CHI3L1 have been linked to disease severity and cognitive decline, particularly in AD and MS, highlighting its potential for clinical diagnostics. Furthermore, therapeutic strategies targeting CHI3L1, such as small-molecule inhibitors and neutralizing antibodies, have shown promise in preclinical studies, demonstrating reduced neuroinflammation, amyloid plaque accumulation, and improved neuronal survival. Despite its therapeutic potential, challenges remain in developing selective and safe CHI3L1-targeted therapies, particularly in ensuring effective delivery across the blood-brain barrier and mitigating off-target effects. This review addresses the complexities of targeting CHI3L1, highlights its potential in precision medicine, and outlines future research directions aimed at unlocking its full therapeutic potential in treating neurodegenerative diseases and brain pathologies.
Collapse
Affiliation(s)
- Pharaoh Fellow Mwale
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei, 110, Taiwan
| | - Cheng-Ta Hsieh
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei, 110, Taiwan
- Division of Neurosurgery, Department of Surgery, Cathay General Hospital, Taipei City, 106438, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Department of Medicine, School of Medicine, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
| | - Ting-Lin Yen
- Department of Medical Research, Cathay General Hospital, Taipei, 22174, Taiwan
| | - Jing-Shiun Jan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei, 110, Taiwan
| | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei, 110, Taiwan.
- Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan.
| | - Wen-Bin Yang
- Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan.
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
6
|
Sanfilippo C, Castrogiovanni P, Imbesi R, Vecchio M, Sortino M, Musumeci G, Vinciguerra M, Di Rosa M. Exploring SERPINA3 as a neuroinflammatory modulator in Alzheimer's disease with sex and regional brain variations. Metab Brain Dis 2025; 40:83. [PMID: 39754632 DOI: 10.1007/s11011-024-01523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
SERPINA3, a serine protease inhibitor, is strongly associated with neuroinflammation, a typical condition of AD. Its expression is linked to microglial and astrocytic markers, suggesting it plays a significant role in modulating neuroinflammatory responses. In this study, we examined the SERPINA3 expression levels, along with CHI3L1, in various brain regions of AD patients and non-demented healthy controls (NDHC). Nineteen microarray datasets were analyzed, with brain samples stratified by sex and age from areas including the prefrontal cortex, occipital lobe, and cerebellum. Results showed that SERPINA3 was significantly highly expressed in AD patients compared to NDHCs only in males. Sex-specific differences were observed only in NDHCs, where females had higher SERPINA3 levels than males. ROC analysis suggested that SERPINA3 could be a strong marker for distinguishing AD in males but not females. In NDHCs, SERPINA3 expression correlated more strongly with age than in AD patients. In brain regions, SERPINA3 expression in NDHC females was higher across multiple areas, while in AD patients, this difference was limited to the prefrontal cortex. The most significant differences between NDHC and AD patients were found in the occipital and prefrontal regions. Furthermore, we identified a potential nuclear localization for SERPINA3, supported by immunohistochemistry analysis from The Human Protein Atlas. Correlation with neuropathological traits, including Clinical Dementia Rating (CDR) and Braak Neurofibrillary Tangle Score, showed positive significant associations between SERPINA3 and CDR in AD patients. Performing a docking analysis, we revealed an interaction region between SERPINA3 and CHI3L1 proteins, suggesting a potential role in AD. Tissue transcriptomic deconvolution analysis indicated a significant overlap between SERPINA3 expression and microglial/astrocytic signatures, suggesting that SERPINA3 plays a key role in modulating neuroinflammation in AD.
Collapse
Affiliation(s)
- Cristina Sanfilippo
- Neurologic Unit, AOU "Policlinico-San Marco", Department of Medical, Surgical Sciences and Advanced Technologies, GF, Ingrassia, University of Catania, Via Santa Sofia n.78, Catania, 95100, Sicily, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Michele Vecchio
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Martina Sortino
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Manlio Vinciguerra
- Department of Translational Stem Cell Biology, Research Institute, Medical University Varna, Varna, Bulgaria
- Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
7
|
Friske MM, Torrico EC, Haas MJW, Borruto AM, Giannone F, Hade AC, Yu Y, Gao L, Sutherland GT, Hitzemann R, Philips MA, Fei SS, Sommer WH, Mayfield RD, Spanagel R. A systematic review and meta-analysis on the transcriptomic signatures in alcohol use disorder. Mol Psychiatry 2025; 30:310-326. [PMID: 39242950 PMCID: PMC11649567 DOI: 10.1038/s41380-024-02719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
Currently available clinical treatments on alcohol use disorder (AUD) exhibit limited efficacy and new druggable targets are required. One promising approach to discover new molecular treatment targets involves the transcriptomic profiling of brain regions within the addiction neurocircuitry, utilizing animal models and postmortem brain tissue from deceased patients with AUD. Unfortunately, such studies suffer from large heterogeneity and small sample sizes. To address these limitations, we conducted a cross-species meta-analysis on transcriptome-wide data obtained from brain tissue of patients with AUD and animal models. We integrated 36 cross-species transcriptome-wide RNA-expression datasets with an alcohol-dependent phenotype vs. controls, following the PRISMA guidelines. In total, we meta-analyzed 964 samples - 502 samples from the prefrontal cortex (PFC), 282 nucleus accumbens (NAc) samples, and 180 from amygdala (AMY). The PFC had the highest number of differentially expressed genes (DEGs) across rodents, monkeys, and humans. Commonly dysregulated DEGs suggest conserved cross-species mechanisms for chronic alcohol consumption/AUD comprising MAPKs as well as STAT, IRF7, and TNF. Furthermore, we identified numerous unique gene sets that might contribute individually to these conserved mechanisms and also suggest novel molecular aspects of AUD. Validation of the transcriptomic alterations on the protein level revealed interesting targets for further investigation. Finally, we identified a combination of DEGs that are commonly regulated across different brain tissues as potential biomarkers for AUD. In summary, we provide a compendium of genes that are assessable via a shiny app, and describe signaling pathways, and physiological and cellular processes that are altered in AUD that require future studies for functional validation.
Collapse
Affiliation(s)
- Marion M Friske
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany.
- Waggoner Center for Alcohol and Addiction Research and the Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA.
| | - Eva C Torrico
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Maximilian J W Haas
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Anna M Borruto
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Francesco Giannone
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Andreas-Christian Hade
- Department of Pathological Anatomy and Forensic Medicine, University of Tartu, Tartu, Estonia
- Forensic Medical Examination Department, Estonian Forensic Science Institute, Tallinn, Estonia
| | - Yun Yu
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University West Campus, Portland, OR, USA
| | - Lina Gao
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University West Campus, Portland, OR, USA
| | - Greg T Sutherland
- New South Wales Tissue Resource Center, University of Sydney, Camperdown, NSW, Australia
| | - Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Suzanne S Fei
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University West Campus, Portland, OR, USA
| | - Wolfgang H Sommer
- Bethania Hospital for Psychiatry, Psychosomatics and Psychotherapy, Greifswald, Germany
- German Center for Mental Health (DZPG), Partner Site Mannheim-Heidelberg-Ulm, Mannheim, Germany
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research and the Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany.
- German Center for Mental Health (DZPG), Partner Site Mannheim-Heidelberg-Ulm, Mannheim, Germany.
| |
Collapse
|
8
|
Kloske CM, Mahinrad S, Barnum CJ, Batista AF, Bradshaw EM, Butts B, Carrillo MC, Chakrabarty P, Chen X, Craft S, Da Mesquita S, Dabin LC, Devanand D, Duran‐Laforet V, Elyaman W, Evans EE, Fitzgerald‐Bocarsly P, Foley KE, Harms AS, Heneka MT, Hong S, Huang YA, Jackvony S, Lai L, Guen YL, Lemere CA, Liddelow SA, Martin‐Peña A, Orr AG, Quintana FJ, Ramey GD, Rexach JE, Rizzo SJS, Sexton C, Tang AS, Torrellas JG, Tsai AP, van Olst L, Walker KA, Wharton W, Tansey MG, Wilcock DM. Advancements in Immunity and Dementia Research: Highlights from the 2023 AAIC Advancements: Immunity Conference. Alzheimers Dement 2025; 21:e14291. [PMID: 39692624 PMCID: PMC11772715 DOI: 10.1002/alz.14291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/23/2024] [Accepted: 09/07/2024] [Indexed: 12/19/2024]
Abstract
The immune system is a key player in the onset and progression of neurodegenerative disorders. While brain resident immune cell-mediated neuroinflammation and peripheral immune cell (eg, T cell) infiltration into the brain have been shown to significantly contribute to Alzheimer's disease (AD) pathology, the nature and extent of immune responses in the brain in the context of AD and related dementias (ADRD) remain unclear. Furthermore, the roles of the peripheral immune system in driving ADRD pathology remain incompletely elucidated. In March of 2023, the Alzheimer's Association convened the Alzheimer's Association International Conference (AAIC), Advancements: Immunity, to discuss the roles of the immune system in ADRD. A wide range of topics were discussed, such as animal models that replicate human pathology, immune-related biomarkers and clinical trials, and lessons from other fields describing immune responses in neurodegeneration. This manuscript presents highlights from the conference and outlines avenues for future research on the roles of immunity in neurodegenerative disorders. HIGHLIGHTS: The immune system plays a central role in the pathogenesis of Alzheimer's disease. The immune system exerts numerous effects throughout the brain on amyloid-beta, tau, and other pathways. The 2023 AAIC, Advancements: Immunity, encouraged discussions and collaborations on understanding the role of the immune system.
Collapse
|
9
|
Jatczak-Pawlik I, Jurewicz A, Domowicz M, Ewiak-Paszyńska A, Stasiołek M. CHI3L1 in Multiple Sclerosis-From Bench to Clinic. Cells 2024; 13:2086. [PMID: 39768177 PMCID: PMC11674340 DOI: 10.3390/cells13242086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/05/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) with a complex and not fully understood etiopathological background involving inflammatory and neurodegenerative processes. CHI3L1 has been implicated in pathological conditions such as inflammation, injury, and neurodegeneration, and is likely to play a role in the physiological development of the CNS. CHI3L1 is primarily produced by CNS macrophages, microglia, and activated astrocytes. The CHI3L1 expression pattern in MS lesions might support the important role of astrocytes in modulating inflammatory processes in this disease. The potential applications of CHI3L1 as a biomarker in MS are multifactorial. The measurement of CHI3L1 in body fluids might find its role in the early diagnosis of MS. In further stages, the monitoring of CHI3L1 levels might provide information on disease severity and progression, enabling a better adjustment of therapeutic strategies. Importantly, CHI3L1 might potentially serve as a marker of ongoing glial activation, reflecting the dynamic response of the CNS cells to the inflammatory processes in MS. Although preliminary findings have been promising, further research is needed to validate the utility of CHI3L1 measurements in the diagnosis and prediction of the progression of MS. Additionally, comparisons with other biomarkers might be useful in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Mariusz Stasiołek
- Department of Neurology, Medical University of Lodz, Kosciuszki Street 4, 90-419 Lodz, Poland; (I.J.-P.); (A.J.); (M.D.); (A.E.-P.)
| |
Collapse
|
10
|
Liu D, Hu X, Ding X, Li M, Ding L. Inflammatory Effects and Regulatory Mechanisms of Chitinase-3-like-1 in Multiple Human Body Systems: A Comprehensive Review. Int J Mol Sci 2024; 25:13437. [PMID: 39769202 PMCID: PMC11678640 DOI: 10.3390/ijms252413437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
Chitinase-3-like-1 (Chi3l1), also known as YKL-40 or BRP-39, is a highly conserved mammalian chitinase with a chitin-binding ability but no chitinase enzymatic activity. Chi3l1 is secreted by various cell types and induced by several inflammatory cytokines. It can mediate a series of cell biological processes, such as proliferation, apoptosis, migration, differentiation, and polarization. Accumulating evidence has verified that Chi3l1 is involved in diverse inflammatory conditions; however, a systematic and comprehensive understanding of the roles and mechanisms of Chi3l1 in almost all human body system-related inflammatory diseases is still lacking. The human body consists of ten organ systems, which are combinations of multiple organs that perform one or more physiological functions. Abnormalities in these human systems can trigger a series of inflammatory environments, posing serious threats to the quality of life and lifespan of humans. Therefore, exploring novel and reliable biomarkers for these diseases is highly important, with Chi3l1 being one such parameter because of its physiological and pathophysiological roles in the development of multiple inflammatory diseases. Reportedly, Chi3l1 plays an important role in diagnosing and determining disease activity/severity/prognosis related to multiple human body system inflammation disorders. Additionally, many studies have revealed the influencing factors and regulatory mechanisms (e.g., the ERK and MAPK pathways) of Chi3l1 in these inflammatory conditions, identifying potential novel therapeutic targets for these diseases. In this review, we comprehensively summarize the potential roles and underlying mechanisms of Chi3l1 in inflammatory disorders of the respiratory, digestive, circulatory, nervous, urinary, endocrine, skeletal, muscular, and reproductive systems, which provides a more systematic understanding of Chi3l1 in multiple human body system-related inflammatory diseases. Moreover, this article summarizes potential therapeutic strategies for inflammatory diseases in these systems on the basis of the revealed roles and mechanisms mediated by Chi3l1.
Collapse
Affiliation(s)
- Dong Liu
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| | - Xin Hu
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Ecosecurity, Yunnan University, Kunming 650500, China;
| | - Xiao Ding
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Ming Li
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| | - Lei Ding
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| |
Collapse
|
11
|
Fang K. Modulation of the central nervous system immune response and neuroinflammation via Wnt signaling in health and neurodegenerative diseases. IBRAIN 2024; 10:462-476. [PMID: 39691422 PMCID: PMC11649390 DOI: 10.1002/ibra.12185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 12/19/2024]
Abstract
The immune response in the central nervous system (CNS) is a highly specialized and tightly regulated process essential for maintaining neural health and protecting against pathogens and injuries. The primary immune cells within the CNS include microglia, astrocytes, T cells, and B cells. They work together, continuously monitor the CNS environment for signs of infection, injury, or disease, and respond by phagocytosing debris, releasing cytokines, and recruiting other immune cells. In addition to providing neuroprotection, these immune responses must be carefully balanced to prevent excessive inflammation that can lead to neuronal damage and contribute to neurodegenerative diseases. Dysregulated immune responses in the CNS are implicated in various neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Wnt signaling is a crucial pathway in the CNS that regulates various cellular processes critical for brain development, function, and maintenance. Despite enhancing immune responses in the health CNS, dysregulated Wnt signaling exacerbates neuroinflammation in the neurodegenerative brains. This review summarized the role of Wnt signaling in regulating immune response under different conditions. We then examined the role of immune response in healthy brains and during the development of neurodegenerative diseases. We also discussed therapeutic intervention in various neurodegenerative diseases through the modulation of the Wnt signaling pathway and neuroinflammation and highlighted challenges and limitations in current clinical trials.
Collapse
Affiliation(s)
- Kevin Fang
- Living Systems InstituteUniversity ExeterExeterUK
| |
Collapse
|
12
|
Li X, Zhang J, Zhang S, Shi S, Lu Y, Leng Y, Li C. Biomarkers for neuromyelitis optica: a visual analysis of emerging research trends. Neural Regen Res 2024; 19:2735-2749. [PMID: 38595291 PMCID: PMC11168523 DOI: 10.4103/nrr.nrr-d-24-00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 04/11/2024] Open
Abstract
Neuromyelitis optica is an inflammatory demyelinating disease of the central nervous system that differs from multiple sclerosis. Over the past 20 years, the search for biomarkers for neuromyelitis optica has been ongoing. Here, we used a bibliometric approach to analyze the main research focus in the field of biomarkers for neuromyelitis optica. Research in this area is consistently increasing, with China and the United States leading the way on the number of studies conducted. The Mayo Clinic is a highly reputable institution in the United States, and was identified as the most authoritative institution in this field. Furthermore, Professor Wingerchuk from the Mayo Clinic was the most authoritative expert in this field. Keyword analysis revealed that the terms "neuromyelitis optica" (261 times), "multiple sclerosis" (220 times), "neuromyelitis optica spectrum disorder" (132 times), "aquaporin 4" (99 times), and "optical neuritis" (87 times) were the most frequently used keywords in literature related to this field. Comprehensive analysis of the classical literature showed that the majority of publications provide conclusive research evidence supporting the use of aquaporin-4-IgG and neuromyelitis optica-IgG to effectively diagnose and differentiate neuromyelitis optica from multiple sclerosis. Furthermore, aquaporin-4-IgG has emerged as a highly specific diagnostic biomarker for neuromyelitis optica spectrum disorder. Myelin oligodendrocyte glycoprotein-IgG is a diagnostic biomarker for myelin oligodendrocyte glycoprotein antibody-associated disease. Recent biomarkers for neuromyelitis optica include cerebrospinal fluid immunological biomarkers such as glial fibrillary acidic protein, serum astrocyte damage biomarkers like FAM19A5, serum albumin, and gamma-aminobutyric acid. The latest prospective clinical trials are exploring the potential of these biomarkers. Preliminary results indicate that glial fibrillary acidic protein is emerging as a promising candidate biomarker for neuromyelitis optica spectrum disorder. The ultimate goal of future research is to identify non-invasive biomarkers with high sensitivity, specificity, and safety for the accurate diagnosis of neuromyelitis optica.
Collapse
Affiliation(s)
- Xiangjun Li
- Department of Ophthalmology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| | - Jiandong Zhang
- Department of Ophthalmology, Changchun Bright Eye Hospital, Changchun, Jilin Province, China
| | - Siqi Zhang
- Department of Ophthalmology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| | - Shengling Shi
- Department of Ophthalmology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| | - Yi’an Lu
- Department of Ophthalmology, Changchun Bright Eye Hospital, Changchun, Jilin Province, China
| | - Ying Leng
- Department of Ophthalmology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| | - Chunyan Li
- Department of Endocrinology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| |
Collapse
|
13
|
Sutley-Koury SN, Anderson A, Taitano-Johnson C, Ajayi M, Kulinich AO, Contreras K, Regalado J, Tiwari-Woodruff SK, Ethell IM. Astrocytic Ephrin-B1 Regulates Oligodendrocyte Development and Myelination. ASN Neuro 2024; 16:2401753. [PMID: 39437409 PMCID: PMC11792131 DOI: 10.1080/17590914.2024.2401753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Astrocytes have been implicated in oligodendrocyte development and myelination, however, the mechanisms by which astrocytes regulate oligodendrocytes remain unclear. Our findings suggest a new mechanism that regulates astrocyte-mediated oligodendrocyte development through ephrin-B1 signaling in astrocytes. Using a mouse model, we examined the role of astrocytic ephrin-B1 signaling in oligodendrocyte development by deleting ephrin-B1 specifically in astrocytes during the postnatal days (P)14-P28 period and used mRNA analysis, immunohistochemistry, and mouse behaviors to study its effects on oligodendrocytes and myelination. We found that deletion of astrocytic ephrin-B1 downregulated many genes associated with oligodendrocyte development, myelination, and lipid metabolism in the hippocampus and the corpus callosum. Additionally, we observed a reduced number of oligodendrocytes and impaired myelination in the corpus callosum of astrocyte-specific ephrin-B1 KO mice. Finally, our data show reduced motor strength in these mice exhibiting clasping phenotype and impaired performance in the rotarod test most likely due to impaired myelination. Our studies provide new evidence that astrocytic ephrin-B1 positively regulates oligodendrocyte development and myelination, potentially through astrocyte-oligodendrocyte interactions.
Collapse
Affiliation(s)
- Samantha N. Sutley-Koury
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Alyssa Anderson
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Christopher Taitano-Johnson
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California, USA
- Neuroscience Graduate Program, University of California Riverside, Riverside, California, USA
| | - Moyinoluwa Ajayi
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Anna O. Kulinich
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Kimberly Contreras
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Jasmin Regalado
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Seema K. Tiwari-Woodruff
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California, USA
- Neuroscience Graduate Program, University of California Riverside, Riverside, California, USA
| | - Iryna M. Ethell
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California, USA
- Neuroscience Graduate Program, University of California Riverside, Riverside, California, USA
| |
Collapse
|
14
|
Zhu F, He P, Jiang W, Afridi SK, Xu H, Alahmad M, Alvin Huang YW, Qiu W, Wang G, Tang C. Astrocyte-secreted C3 signaling impairs neuronal development and cognition in autoimmune diseases. Prog Neurobiol 2024; 240:102654. [PMID: 38945516 DOI: 10.1016/j.pneurobio.2024.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/05/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Neuromyelitis optica (NMO) arises from primary astrocytopathy induced by autoantibodies targeting the astroglial protein aquaporin 4 (AQP4), leading to severe neurological sequelae such as vision loss, motor deficits, and cognitive decline. Mounting evidence has shown that dysregulated activation of complement components contributes to NMO pathogenesis. Complement C3 deficiency has been shown to protect against hippocampal neurodegeneration and cognitive decline in neurodegenerative disorders (e.g., Alzheimer's disease, AD) and autoimmune diseases (e.g., multiple sclerosis, MS). However, whether inhibiting the C3 signaling can ameliorate cognitive dysfunctions in NMO remains unclear. In this study, we found that the levels of C3a, a split product of C3, significantly correlate with cognitive impairment in our patient cohort. In response to the stimulation of AQP4 autoantibodies, astrocytes were activated to secrete complement C3, which inhibited the development of cultured neuronal dendritic arborization. NMO mouse models exhibited reduced adult hippocampal newborn neuronal dendritic and spine development, as well as impaired learning and memory functions, which could be rescued by decreasing C3 levels in astrocytes. Mechanistically, we found that C3a engaged with C3aR to impair neuronal development by dampening β-catenin signalling. Additionally, inhibition of the C3-C3aR-GSK3β/β-catenin cascade restored neuronal development and ameliorated cognitive impairments. Collectively, our results suggest a pivotal role of the activation of the C3-C3aR network in neuronal development and cognition through mediating astrocyte and adult-born neuron communication, which represents a potential therapeutic target for autoimmune-related cognitive impairment diseases.
Collapse
Affiliation(s)
- Fan Zhu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Pengyan He
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Wei Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Shabbir Khan Afridi
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; China Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Maali Alahmad
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, United States
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Guangyou Wang
- Department of Neurology, First Affiliated Clinical Hospital of Harbin Medical University, and Department of Neurobiology, Harbin Medical University, Harbin 150081, China.
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China.
| |
Collapse
|
15
|
Ni F, Liu X, Wang S. Impact of negative emotions and insomnia on sepsis: A mediation Mendelian randomization study. Comput Biol Med 2024; 180:108858. [PMID: 39067155 DOI: 10.1016/j.compbiomed.2024.108858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 07/06/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Negative emotions and insomnia (NEI) can lead to inflammation, which is a characteristic of sepsis. However, the interaction among NEI and sepsis has not yet been proven. Therefore, Mendelian mediation was used to explore this relationship in this study. METHODS The genetic correlation NEI and sepsis was assessed by via linkage disequilibrium scores (LDSC). A two-sample Mendelian randomization (MR) study design was performed to examine the causal association between NEI and sepsis using the inverse variance weighted (IVW) method. The reliability of the results was estimated by weighted median and MR-Egger methods, but heterogeneity was evaluated via Radial and Cochran's Q tests. Biases in gene polymorphisms were checked by MR-Egger regression and MR-PRESSO. Mendelian mediation analyses were applied to quantify the intermediary effect and proportional contribution. RESULTS A genetic link between sepsis and depression was determined via LDSC analysis. The relationship between depression and sepsis was revealed through MR analysis [odds ratio (OR) = 1.21, 95 % confidence interval (CI) = 1.08-1.36, p = 1.07 × 10-3)]. The results were not influenced by heterogeneity or pleiotropy biases. Chitinase 3 Like 1 (CHI3L1) was a mediator with a mediation effect size of 0.12. The ratio of the intermediated effect to total effect was 10.31 %. CONCLUSION CHI3L1 is a key factor which mediates the interaction between NEI and sepsis.
Collapse
Affiliation(s)
- Fengming Ni
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xinmin Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Shaokun Wang
- Department of Emergency, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
16
|
Villareal JAB, Bathe T, Hery GP, Phillips JL, Tsering W, Prokop S. Deterioration of neuroimmune homeostasis in Alzheimer's Disease patients who survive a COVID-19 infection. J Neuroinflammation 2024; 21:202. [PMID: 39154174 PMCID: PMC11330027 DOI: 10.1186/s12974-024-03196-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
Growing evidence has implicated systemic infection as a significant risk factor for the development and advancement of Alzheimer's disease (AD). With the emergence of SARS-CoV-2 (COVID-19) and the resultant pandemic, many individuals from the same aging population vulnerable to AD suffered a severe systemic infection with potentially unidentified long-term consequences for survivors. To study the impact of COVID-19 survival on the brain's intrinsic immune system in a population also suffering from AD, we profiled post-mortem brain tissue from patients in the UF Neuromedicine Human Brain and Tissue Bank with a diagnosis of AD who survived a COVID-19 infection (COVID-AD) and contrasted our findings with AD patients who did not experience a COVID-19 infection, including a group of brain donors who passed away before arrival of SARS-CoV-2 in the United States. We assessed disease-relevant protein pathology and microglial and astrocytic markers by quantitative immunohistochemistry and supplemented these data with whole tissue gene expression analysis performed on the NanoString nCounter® platform. COVID-AD patients showed slightly elevated Aβ burden in the entorhinal, fusiform, and inferior temporal cortices compared to non-COVID-AD patients, while tau pathology burden did not differ between groups. Analysis of microglia revealed a significant loss of microglial homeostasis as well as exacerbated microgliosis in COVID-AD patients compared to non-COVID-AD patients in a brain region-dependent manner. Furthermore, COVID-AD patients showed reduced cortical astrocyte numbers, independent of functional subtype. Transcriptomic analysis supported these histological findings and, in addition, identified a dysregulation of oligodendrocyte and myelination pathways in the hippocampus of COVID-AD patients. In summary, our data demonstrate a profound impact of COVID-19 infection on neuroimmune and glial pathways in AD patients persisting for months post-infection, highlighting the importance of peripheral to central neuroimmune crosstalk in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonathan A B Villareal
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Tim Bathe
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Gabriela P Hery
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608, USA
| | - Jennifer L Phillips
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Wangchen Tsering
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Stefan Prokop
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32608, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
17
|
Fan Y, Meng Y, Hu X, Liu J, Qin X. Uncovering novel mechanisms of chitinase-3-like protein 1 in driving inflammation-associated cancers. Cancer Cell Int 2024; 24:268. [PMID: 39068486 PMCID: PMC11282867 DOI: 10.1186/s12935-024-03425-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Chitinase-3-like protein 1 (CHI3L1) is a secreted glycoprotein that is induced and regulated by multiple factors during inflammation in enteritis, pneumonia, asthma, arthritis, and other diseases. It is associated with the deterioration of the inflammatory environment in tissues with chronic inflammation caused by microbial infection or autoimmune diseases. The expression of CHI3L1 expression is upregulated in several malignant tumors, underscoring the crucial role of chronic inflammation in the initiation and progression of cancer. While the precise mechanism connecting inflammation and cancer is unclear, the involvement of CHI3L1 is involved in chronic inflammation, suggesting its role as a contributing factor to in the link between inflammation and cancer. CHI3L1 can aggravate DNA oxidative damage, induce the cancerous phenotype, promote the development of a tumor inflammatory environment and angiogenesis, inhibit immune cells, and promote cancer cell growth, invasion, and migration. Furthermore, it participates in the initiation of cancer progression and metastasis by binding with transmembrane receptors to mediate intracellular signal transduction. Based on the current research on CHI3L1, we explore introduce the receptors that interact with CHI3L1 along with the signaling pathways that may be triggered during chronic inflammation to enhance tumorigenesis and progression. In the last section of the article, we provide a brief overview of anti-inflammatory therapies that target CHI3L1.
Collapse
Affiliation(s)
- Yan Fan
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Yuan Meng
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Xingwei Hu
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China.
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China.
| |
Collapse
|
18
|
Deng J, Labarta-Bajo L, Brandebura AN, Kahn SB, Pinto AFM, Diedrich JK, Allen NJ. Suppression of astrocyte BMP signaling improves fragile X syndrome molecular signatures and functional deficits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599752. [PMID: 38979341 PMCID: PMC11230279 DOI: 10.1101/2024.06.19.599752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Fragile X syndrome (FXS) is a monogenic neurodevelopmental disorder with manifestations spanning molecular, neuroanatomical, and behavioral changes. Astrocytes contribute to FXS pathogenesis and show hundreds of dysregulated genes and proteins; targeting upstream pathways mediating astrocyte changes in FXS could therefore be a point of intervention. To address this, we focused on the bone morphogenetic protein (BMP) pathway, which is upregulated in FXS astrocytes. We generated a conditional KO (cKO) of Smad4 in astrocytes to suppress BMP signaling, and found this lessens audiogenic seizure severity in FXS mice. To ask how this occurs on a molecular level, we performed in vivo transcriptomic and proteomic profiling of cortical astrocytes, finding upregulation of metabolic pathways, and downregulation of secretory machinery and secreted proteins in FXS astrocytes, with these alterations no longer present when BMP signaling is suppressed. Functionally, astrocyte Smad4 cKO restores deficits in inhibitory synapses present in FXS auditory cortex. Thus, astrocytes contribute to FXS molecular and functional phenotypes, and targeting astrocytes can mitigate FXS symptoms.
Collapse
Affiliation(s)
- James Deng
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Lara Labarta-Bajo
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ashley N Brandebura
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Samuel B Kahn
- Department of Biology, University of California, San Diego, La Jolla, CA, USA
| | - Antonio F M Pinto
- Mass Spectrometry Core for Proteomics and Metabolomics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jolene K Diedrich
- Mass Spectrometry Core for Proteomics and Metabolomics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nicola J Allen
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
19
|
Song Y, Jiang W, Afridi SK, Wang T, Zhu F, Xu H, Nazir FH, Liu C, Wang Y, Long Y, Huang YWA, Qiu W, Tang C. Astrocyte-derived CHI3L1 signaling impairs neurogenesis and cognition in the demyelinated hippocampus. Cell Rep 2024; 43:114226. [PMID: 38733586 DOI: 10.1016/j.celrep.2024.114226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/15/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Cognitive dysfunction is a feature in multiple sclerosis (MS), a chronic inflammatory demyelinating disorder. A notable aspect of MS brains is hippocampal demyelination, which is closely associated with cognitive decline. However, the mechanisms underlying this phenomenon remain unclear. Chitinase-3-like (CHI3L1), secreted by activated astrocytes, has been identified as a biomarker for MS progression. Our study investigates CHI3L1's function within the demyelinating hippocampus and demonstrates a correlation between CHI3L1 expression and cognitive impairment in patients with MS. Activated astrocytes release CHI3L1 in reaction to induced demyelination, which adversely affects the proliferation and differentiation of neural stem cells and impairs dendritic growth, complexity, and spine formation in neurons. Our findings indicate that the astrocytic deletion of CHI3L1 can mitigate neurogenic deficits and cognitive dysfunction. We showed that CHI3L1 interacts with CRTH2/receptor for advanced glycation end (RAGE) by attenuating β-catenin signaling. The reactivation of β-catenin signaling can revitalize neurogenesis, which holds promise for therapy of inflammatory demyelination.
Collapse
Affiliation(s)
- Yanna Song
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University; 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Wei Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University; 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Shabbir Khan Afridi
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tongtong Wang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Fan Zhu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University; 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University; 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Faisal Hayat Nazir
- Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chunxin Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University; 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University; 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Youming Long
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, Guangdong Province, China; Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, 250 Changgang East Road, Guangzhou 510260, Guangdong Province, China
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University; 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University; 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
20
|
Ji X, Zhang J, Tang X, Chen HZ. What we talk about when we talk about spinal cord aging. Cell Metab 2024; 36:7-9. [PMID: 38171339 DOI: 10.1016/j.cmet.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Spinal cord-associated disorders are common in the elderly population; however, the mechanisms underlying spinal aging remain elusive. In a recent Nature paper, Sun et al. systemically analyzed aged spines in nonhuman primates and identified a new cluster of CHIT1-positive microglia that drives motor neuron senescence and subsequent spine aging.
Collapse
Affiliation(s)
- Xianhong Ji
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Jiajia Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China; National Health Commission Key Laboratory of Chronobiology, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China; Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China; Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China; National Health Commission Key Laboratory of Chronobiology, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China; Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China.
| | - Hou-Zao Chen
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China; Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Beijing 100005, China.
| |
Collapse
|